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Key Points:8

� Determining uncertainty in wave power models is necessary to quantify uncertainty9

in radial diffusion coefficients for modeling.10

� Our model of ground-based ULF wave power depends on solar wind speed, number11

density variance and Bz . This outperforms hourly persistence.12

� Total power over extended events is best modeled probabilistically while the wave13

power in a single hour is best modeled deterministically.14
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Abstract15

We develop and test an empirical model predicting ground-based observations of ultra-16

low frequency (ULF, 1-20 mHz) wave power across a range of frequencies, latitudes and17

magnetic local time sectors. This is parameterized by instantaneous solar wind speed vsw ,18

variance in proton number density var„Np” and interplanetary southward magnetic field19

Bz . A probabilistic model of ULF wave power will allow us to address uncertainty in ra-20

dial diffusion coefficients and therefore improve diffusion modeling of radial transport in21

Earth’s outer radiation belt. Our model can be used in two ways to reproduce wave power;22

by sampling from conditional probability distribution functions or by using the mean (ex-23

pectation) values. We derive a method for testing the quality of the parameterization and24

test the ability of the model to reproduce ULF wave power time series. Sampling is a25

better method for reproducing power over an extended time period as it retains the same26

overall distribution while mean values are better for predicting the power in a time se-27

ries. The model predicts each hour in a time series better than the assumption that power28

persists from the preceding hour. Finally, we review other sources of diffusion coefficient29

uncertainty. Although this wave model is designed principally for the goal of improved30

radial diffusion coefficients to include in outer radiation belt diffusion based modeling,31

we anticipate that our model can also be used to investigate the occurrence of ULF waves32

throughout the magnetosphere and hence the physics of ULF wave generation and propa-33

gation.34

1 Introduction35

Modeling of the outer radiation belt can potentially enable satellite operators to pro-36

tect their spacecraft from dangerous space weather such as spacecraft charging, deep di-37

electric charging and single upset events [Baker et al., 1987; Frederickson, 1996; Horne38

et al., 2013]. One of the areas identified as requiring better characterization in order to39

improve forecasting and modeling of past events is the radial transport of electrons by40

ultra-low frequency (ULF) plasma waves. This can be achieved by improving models of41

ULF occurrence, including understanding the azimuthal variation of ULF waves and the42

underlying coupling to the solar wind [Horne et al., 2013]. ULF waves are in the range43

1 � 20 mHz, also known as the Pc 4-5 range following the classification in Jacobs et al.44

[1964]. Frequencies at the lower end of this band are most effective at radial transport,45

as there is more power on average at lower frequencies [Bentley et al., 2018, Figure 1(a)]46
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and because lower frequencies can set up drift resonant diffusion [Elkington et al., 1999,47

2003]. Hence it is important to examine the generation and propagation of the electromag-48

netic waves that drive this diffusion, and to construct a model of the resultant diffusion49

that will improve nowcasting and forecasting in the outer radiation belt. Current calcula-50

tions of radial diffusion coefficients can be constructed from the electromagnetic field in51

MHD models [Fei et al., 2006] or from observations, either solely using in situ measure-52

ments [Lejosne et al., 2013; Liu et al., 2016] or by incorporating ground-based magnetic53

field measurements mapped up to the equatorial electric field [Ozeke et al., 2009, 2012,54

2014]. In situ spacecraft provide more reliable measurements of the electromagnetic waves55

driving radial diffusion, but spacecraft coverage is sparse and has limited temporal cover-56

age. Ground-based magnetometer networks across the globe have produced many years of57

observations spanning multiple solar cycles [e.g. Rostoker et al., 1995; Mann et al., 2008;58

Tanskanen, 2009; Gjerloev, 2012]. By mapping these measurements of ULF waves up59

to the equatorial plane these networks can provide a long-term dataset with significantly60

better spatiotemporal coverage, allowing multiple simultaneous measurements at different61

locations and encompassing a large range of latitudes (and hence radial locations) and az-62

imuthal (or magnetic local time, MLT) sectors.63

Existing models of radial diffusion coefficients are often parameterized by the geo-64

magnetic activity index Kp [Brautigam and Albert, 2000; Lejosne et al., 2013; Ozeke et al.,65

2014; Ali et al., 2016]. Individual radial diffusion models based on this parameterization66

can differ by orders of magnitude [Liu et al., 2016; Ali et al., 2016]. This makes it difficult67

to accurately capture radial diffusion in radiation belt models as the uncertainty in models68

is unquantified but could easily extend across orders of magnitude. While Kp is a proxy69

for geomagnetic activity, it is not directly related to processes driving ULF waves. Addi-70

tionally, as a three-hour averaged index, only forecasted Kp rather than real time Kp can71

be used for nowcasting or forecasting. The choice of parameters is an important part of72

constructing any kind of empirical model as the parameters chosen should have a clear73

physical basis in order to represent (and ultimately, to interpret) the physical phenomena74

underlying the observations. We propose a model based initially on solar wind parameters75

measured by spacecraft at the L1 Lagrange point, which has a lead time of around an hour76

[Richardson and Paularena, 1998; Weimer et al., 2002; King and Papitashvili, 2005]. The77

use of solar wind parameters will also represent the external driving of magnetospheric78
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processes by the solar wind and will allow us to directly compare model results to our79

existing knowledge of those physical processes.80

To address the large difference between existing radial diffusion models, we also81

propose a probabilistic model. In meteorology and climate modeling, probabilistic ap-82

proaches have met with considerable success in recent years as a method of improving83

models by accounting for uncertainty and variability in modelling, e.g. [Berner et al.,84

2017]. Probabilistic models produce a probability distribution as output instead of the sin-85

gle values produced by deterministic models, and can be used to quantify the uncertainty86

introduced by each model component. Model components or steps with larger uncertainty87

will therefore indicate areas where the model can be improved to better approximate the88

underlying physics, regardless of the physical process being approximated. Component un-89

certainties that should be quantified include uncertainty due to initial conditions, boundary90

conditions, the underlying physics model and (perhaps most importantly for this paper)91

due to natural internal variability in the system. Probabilistic methods provide a way to92

quantify variability that either exists naturally, or exists due to a parameterization that has93

yet to be optimised [Watt et al., 2017].94

The ultimate goal of this work is to construct a probabilistic model of diffusion co-95

efficients suitable for nowcasting and forecasting. In this article we focus our initial efforts96

on outlining a statistical model of ground-based power spectral density which can be used97

to probabilistically predict ULF wave power at the ground from solar wind observations98

across a range of frequencies, latitudes (i.e. L-shells) and azimuthal angles (magnetic local99

times, MLTs). We present the model concept and test it, but reserve comparison between100

the model and physics (i.e. ULF propagation and generation) for future work. In future101

this model can also be used to map along field lines to the equatorial plane in the magne-102

tosphere to calculate diffusion coefficients [Ozeke et al., 2009].103

In Section 2 we briefly review the relationship between ULF power spectral den-104

sity and radial diffusion coefficients. In Section 3 we present our initial solar-wind based,105

probabilistic model of ground-based ULF wave power which is available from the Read-106

ing Research Data Archive, Bentley [2019]. In Section 4 we define what qualities make107

a "good" parameterization and confirm that our model possesses these qualities. We also108

test the ability of our solar-wind based model to predict ULF wave power and compare it109

to a similar Kp-based model. In Section 5 we discuss other known sources of uncertainty110
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in the calculation of radial diffusion coefficients, in addition to the uncertainty introduced111

by the underlying description ULF wave power addressed by our model. In Section 6 we112

draw our conclusions and describe future work necessary to apply this initial ULF wave113

model to the production of diffusion coefficients for radiation belt modeling.114

2 ULF wave power and radial diffusion coefficients115

The Fokker-Planck equation can be used in the outer radiation belt to determine the116

evolution of a phase space distribution function F due to diffusion from wave-particle117

interactions, see e.g. Schulz and Lanzerotti [1974]. The most appropriate co-ordinate sys-118

tem to use is based upon the set of three adiabatic invariants corresponding to quantities119

conserved in periodic motions of particles trapped in Earth’s magnetosphere - gyromotion120

around a guiding centre, bounce motion along the magnetic field between mirror points121

closer to the Earth and a drift around the Earth itself. We are particularly interested in the122

case where a disturbance is on a timescale (�) longer than gyromotion or the bounce pe-123

riod of particles but shorter than or comparable to drift periods (�bounce << � . �dri f t ,124

a range that extends from minutes to hours). This range of timescales corresponds to the125

periods of ultra-low frequency waves and impulses such as changes in magnetopause lo-126

cation, [Southwood and Kivelson, 1990; Kepko et al., 2002; McPherron, 2005]. A dis-127

turbance on such a timescale can then lead to a violation of the third adiabatic invariant128

while the first two remain conserved. This can result in an increase of kinetic energy for129

individual particles [see e.g. Elkington et al., 1999; Elkington, 2013; Roederer and Zhang,130

2014]. Additionally, the bulk transport of particles to drift contours closer to (or more131

distant from) the Earth is particularly of interest when combined with particle sinks and132

sources. For example, if there exists a source of particles far from the Earth and a sink at133

low L-shell, this mechanism corresponds to a net transport of energy inwards. Similarly,134

when there is a sink at the outer boundary of the magnetosphere (e.g. magnetopause shad-135

owing, [West Jun et al., 1972; Loto’aniu et al., 2010; Turner et al., 2012] ) radial diffusion136

can result in a loss of energy. Hence radial diffusion contributes to the energization and137

transport of particles in the outer radiation belt.138

When considering only third-invariant diffusion, the diffusion equation reduces to139

@F

@t
= L�2

@

@L�

�
1

L�2
DLL

@F

@L�

�
(1)
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[Schulz and Lanzerotti, 1974; Roederer and Zhang, 2014] with radial diffusion coeffi-140

cient141

DLL =



„�L�”2

�
2�

; (2)

where L� =
2�BE R2

E

� [Roederer and Zhang, 2014]. Hence L� is related to the third adi-142

abatic invariant, namely flux � through a drift contour, and is related to the equatorial143

radius r0 of the corresponding drift contour in a dipole with no field perturbations. This144

is clear using units of Earth radii, (L� = r0�RE ). While the drift shell radius will change145

once the dipole field is distorted, the L� value will be conserved. Calculating the mean146

square displacement in L�, „�L�”2, reduces to an integral whose non-negligible terms use147

the autocorrelation of electromagnetic field amplitudes [Fälthammar, 1965; Falthammar,148

1968; Fei et al., 2006; Lejosne et al., 2012]. The Fourier transform of the autocorrelation149

function and power spectral density (PSD) are related via the Wiener-Khinchin theorem,150

assuming a weakly stationary and stochastic signal. Hence PSD at each frequency is an151

important component of DLL [Fälthammar, 1965; Schulz and Lanzerotti, 1974; Fei et al.,152

2006]. Typically, for radiation belt modeling „�L�”2 is estimated using electric and mag-153

netic ultra-low frequency wave PSDs [Brautigam and Albert, 2000; Brautigam et al., 2005;154

Fei et al., 2006; Ozeke et al., 2012, 2014; Liu et al., 2016; Ali et al., 2016].155

This work focuses on constructing a statistical model of ULF PSDs that can quan-156

tify the uncertainty passed forward into ULF wave derived radial diffusion coefficients.157

However, there are multiple other sources of uncertainty in our diffusion coefficient cal-158

culations which are reviewed in Section 5. These other sources can arise from physical159

assumptions used in our formalism, from restrictions imposed by observation methods or160

from statistical methods in creating models.161

3 Model construction162

In this section we discuss the method of construction of a statistical map of ground-163

based ULF wave power, parameterized by physical properties that have been demonstrated164

to causally correlate with power [Bentley et al., 2018] ("Paper 1"). Here, "causally corre-165

lated properties" are properties whose correlation to ULF power cannot be attributed to166

covariance with other solar wind parameters. The probabilistic model we outline can be167

used to estimate the uncertainty in predictions of ULF wave PSDs. We will show that the168
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conditional probability distributions resulting from this parameterization can be approxi-169

mated by a family of normal distributions whose mean and variance values make a "good"170

parameterization. We discuss possible uses and testing of such a probabilistic model and171

in future we also intend to use this to investigate the underlying physics of ULF genera-172

tion and propagation.173

To construct this statistical wave map we use the data as detailed in Paper 1; solar174

wind observations from National Aeronautics and Space Administration/ Goddard Flight175

Center’s OMNI data set through OMNIWeb at http://omniweb.gsfc.nasa.gov/ and ground-176

based magnetic field measurements from the CANOPUS magnetometer chain in Canada177

[Rostoker et al., 1998] (now upgraded and expanded into the CARISMA array, [Mann178

et al., 2008]) to calculate PSD in hourly windows from 1990-2005 using the multitaper179

method. This conserves the square of the signal in the time (t) and frequency ( f ) domain180

as follows:181

Õ
f

PSD„ f ” = �t
Õ

t

jx„t”j2 =

„ T

t=0
jx„t”j2dt (3)

where x„t” is the detrended signal in the time domain and �t the time resolution.182

Previous work (Paper 1) has identified three near-instantaneous solar wind properties183

that are causally correlated with ULF PSD: solar wind speed vsw , interplanetary magnetic184

field Bz < 0 and summed perturbations in number density across 1:69 � 6:79 mHz, �Np .185

The method used to identify these properties accounts for skewed data distributions and186

solar wind interparameter relationships by deconvolving the contribution of each individ-187

ual solar wind parameter to ground ULF wave power from the relationship with other cor-188

related solar wind parameters. Hence these solar wind properties are each directly related189

to the occurrence of ULF wave power. In this paper we demonstrate the construction of190

a parameterization using the three solar wind parameters above, with the expectation that191

further parameters such as geomagnetic activity, magnetospheric plasma density distribu-192

tion, substorms, time lags and history of the magnetosphere will be added as necessary in193

future. In this work we choose to use var„Np” in place of �Np as it is equivalent in the194

analysis method of Paper 1 but is simpler to use.195
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Table 1. Parameters used to discretely partition model196

Parameter Values num. values

Radial L-shell (Station latitude) Four stations FCHU, GILL, ISLL, PINA (L � 7:94;6:51;5:40;4:21) 4

Frequency 0:83 � 20 mHz 69

Azimuthal angle (MLT) Dawn, noon dusk and midnight (3-9, 9-15, 15-21 and 21-3 MLT) 4

Bz = 0 threshold Bz > 0 and Bz < 0 2

These parameters define the separate partitions. Solar wind properties vsw;Bz < 0; var„Np” are used in each partition to

parameterize the power observed.

3.1 Partitions of the magnetosphere197

To capture the changing behavior of ULF waves in different regions of the magne-198

tosphere, we define a set of nested bins. We call the magnetospheric bins "partitions",199

which depend on frequency, azimuthal angle (i.e. magnetic local time) and radial loca-200

tion (i.e. L-shell, defined by station latitude). These are reviewed in Table 1. The param-201

eterization using three solar wind properties is performed separately in each partition, so202

that our final empirical model is dependent on the solar wind, the region of the magne-203

tosphere, and ULF frequency. For the remainder of this article, "bins" will solely refer204

to the nested solar wind parameter bins nested in each partition. We choose to cover fre-205

quencies from 0.8 to 20 mHz. Lower frequencies contain the most power but as the power206

tends to drop off gradually with frequency [Bentley et al., 2018, Figure 1(a)], we also in-207

clude higher frequencies in order to examine their contribution. The dataset is already dis-208

cretised by radial location and frequency (due to the use of different ground magnetometer209

stations and our PSD calculation) and we subdivide the data further into four MLT sec-210

tors centred at dawn, noon, dusk and midnight. Use of four sectors allows us to resolve211

azimuthal variations while retaining enough data to construct a parameterization. In ad-212

dition, we split the data at Bz = 0 as Paper 1 indicates that the physical processes either213

driving or propagating ULF waves differs for Bz > 0 and Bz < 0. This will aid future214

analysis of the physics. The full L-shell ranges corresponding to the four magnetometer215

stations FCHU, GILL, ISLL and PINA over this time period can be found in Table 1 of216

Rae et al. [2012].217

Therefore in total we have 4x69x4x2 = 2208 partitions. In each of these, we param-218

eterise ULF wave power using vsw;Bz < 0 and var„Np” bins. In this paper we present219
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and test the results of the ground based geomagnetic north-south component in order to220

validate our approach. The east-west component is also included in the dataset. Together,221

these comprise the magnetospheric toroidal and poloidal modes [Elkington, 2013] plus222

some mixing. The final, perpendicular component represents the compressional mode and223

is not included.224

3.2 Parameterization in each partition225

The model in each partition is constructed by binning ground-based ULF wave power226

by the corresponding solar wind properties. We remove the 0.1% most extreme solar wind227

values to improve data resolution, (i.e. the lowest and highest 0.05% values). This results228

in a parameter space where the ends bins are not unnecessarily large and empty. The rel-229

evant ranges are velocity: 282 to 783 km s�1, variance of proton number density: 0:0038230

to 42:814 cm�3 and Bz : �12:3 to 11:5 nT. From this point onwards we use log10„var„Np””231

instead of var„Np” in order to work with linear scales in our parameterization. Bins are232

equally spaced on this linear scale and are the same in each partition.233

In any one partition (i.e. for one station, MLT sector, frequency and for Bz < or234

> 0) we determine conditional probability distributions of ULF wave power given obser-235

vations of solar wind properties vsw , log10„var„Np”” and Bz . We bin observed power into236

a 10x10x5 grid, and examine the distribution of log10„PSD” in each bin. Since we split at237

Bz = 0, the Bz dimension only has 5 bins instead of 10. For each partition, this creates238

a 3d look-up table of probability distributions that are parameterized by the solar wind239

observations. These are therefore conditional probability distributions as they express the240

probability distribution given a particular set of solar wind properties.241

The distribution of log10„PSD” in each bin is approximated with a normal distri-242

bution, by fitting a normal to the log-power observed in each bin containing at least 10243

points. While the majority of bins contain distributions of log-power that are technically244

statistically distinct from normal distributions, they are nonetheless reasonable approxi-245

mations. In Figure 1 we show example distributions from three bins in a single partition;246

a probability distribution that is highly likely to be drawn from a normal distribution as247

measured using a chi-square goodness of fit test (panel (a)) and two others that are far less248

likely (b) and highly unlikely (c). While all three may not be exactly normally distributed,249

this makes a reasonable approximation, with the arguable exception of (c). However, even250
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Figure 1. The original and normal (fitted) distributions of logpower in three example bins from the GILL

station at L � 6:6RE , 3.33 mHz, with Bz < 0 in the noon sector; the three distributions most likely (a),

highly unlikely (b) and least likely (c) to be drawn from a normal distribution, with chi-square p-values of

p = 0:95;0:13;0:01 respectively. Bin (a) is centred at vsw =558 km s�1, log10„var„Np”” = �0:059 cm�3,

Bz = �1:23 nT. (b) is centred at 608 km s�1, �0:999 cm�3, �1:23 nT and (c) is centred at 407 km s�1, 0:620

cm�3 and �1:23 nT. For each bin, the mean � and standard deviation � of the distribution of the n points in

that bin are shown.

257

258

259

260

261

262

263

for this poor fit, a normal approximation is preferable to having nothing in this bin. The251

poor fit of 1 (c) indicates how uncertainty can enter PSD prediction when underlying ap-252

proximations (here, the lognormal assumption) are less valid. Examining where these fits253

are good approximations is an example of the future analysis that can be done to investi-254

gate the physics, as the type of distribution may provide insight into the underlying physi-255

cal processes.256

Constructing a distribution for each bin in a given partition provides multiple bene-264

fits compared to simply taking the mean or median; firstly, if we choose to use the mean265

or median in future we retain information about the range and variance. Secondly, we are266

able to then use these distributions for probabilistic forecasting. We note that as the dis-267

tribution in each bin describes the occurrence of ULF wave PSD depending on the solar268

wind conditions, this is a set of conditional probability distribution functions, which al-269

lows us to explore the physics of ULF occurrence in new ways. By approximating these270

probability distributions as lognormals we can use this information relatively cheaply, as271

for every single bin in a given partition we need only store the mean and variance of each272

normal distribution of log-power rather than the entire distribution.273
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vsw

Bz

log (var(Np))10

Figure 2. A visualization of our parameterization for each station, magnetic local time sector and frequency

partition. Using a 3-d grid with solar wind speed, variance of proton number density and interplanetary

magnetic field axes, ground-measured ULF wave log-power is binned and the corresponding probability dis-

tributions (a family of normal distributions) are used to model the power. We use 10, 10 and 5 bins for each

solar wind parameter respectively in the model.

275

276

277

278

279

3.3 Example: using this model274

We have produced a series of look-up tables which, for each partition (station/freq/MLT/Bz280

< or > 0), contain a family of normal distributions parameterized by the near-instantaneous281

solar wind properties. Figure 2 illustrates this; we can use the bins nested in each partition282

to look up the distribution function of ULF PSD values for a given solar wind speed, vari-283

ance of proton number density and Bz observed in the solar wind (i.e. conditional prob-284

ability distribution functions). Hence at each point in time this model can be used in two285

ways; given the solar wind observations, we can look up the corresponding conditional286

probability distribution and either use the expectation value (i.e. the mean) of the distribu-287

tion, or sample the entire distribution. Sampling will randomly obtain PSD values drawn288

from the probability distribution in a given bin. With many such samples, the distribution289

of our predicted values will converge towards the original distribution in that bin. In this290

way a time series of reproduced power can then be built up an hour at a time, either deter-291

ministically (i.e. using the mean) or stochastically (by sampling).292

An example reproduced hourly time series is shown in Figure 3 where we show the301

solar wind speed vsw , variance in number density log10„var„Np””, Bz and the original and302

reproduced log-power measured at GILL station, 3.33 mHz, for two weeks in May 2001.303

We also show the number density Np for reference. The reproduced power shown in (e)304

can be found by using the mean values in each look-up table (orange) or by sampling. For305
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Figure 3. Using instantaneous solar wind speed vsw (a), southward interplanetary magnetic Bz (b) and

variance in proton number density log10„var„Np”” (c), the power spectral density observed across all MLT

sectors at a single station and frequency (GILL, 3:33 mHz) can be reproduced using a family of normal prob-

ability distributions parameterized by solar wind properties. Panel (e) shows the original power time series

(black) and power reproduced using our model, either by taking the mean of the probability distribution given

the observed solar wind values (orange) or by sampling from that distribution multiple times (the interquartile

range of 2000 samples is shown in blue). Panel (d) shows the proton number density in the solar wind for

reference.
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the sampling method, 2000 time series were constructed and for each hour in Figure 3 the306

blue sleeve indicates the the interquartile range of samples taken. This time period was307

chosen for the variety of solar wind speed conditions; however, the few gaps in our re-308

production also highlight some areas of our model that can be improved. These gaps are309

primarily due to data gaps in the solar wind observations in variance of number density310

(absent � 15% of the time from 1990-2005 when OMNI data is supplied for vsw;Bz) and311

also due to too few observations in the more extreme bins, preventing us from determining312

the underlying probability distribution. We anticipate that these will be addressed using313

additional solar wind observations and/or Np correlations for the former, and additional314

years of data and/or extrapolations for the latter. More simply, approximations could be315

made using only vsw and Bz. In Figure 3(e) it can be seen that the observed and repro-316

duced log-power roughly follow each other. Overall the model appears to have performed317

exceedingly well given that it depends primarily on the instantaneous contribution of three318

solar wind properties, and includes no time lags or properties internal to the magneto-319

sphere. There appears to be a diurnal variation which is captured reasonably well by the320

four MLT sectors used here; the relative contribution of the solar wind parameters and321

MLT sectors to the PSD observed throughout the magnetosphere will be considered in fu-322

ture work. However, first we must verify that our model is a good approximation to the323

original PSD observations. We discuss different metrics for testing this model below.324

4 Testing the model325

While the ability to reproduce observed phenomena is an important test of a model,326

other model qualities determine whether it is fit for purpose and whether it produces sta-327

tistically significant results. We discuss all these qualities first, before building metrics in328

Section 4.2 to measure the ability of our model to reproduce ULF wave power observa-329

tions and comparing to a similar Kp-based model in Section 4.3.330

4.1 A "good" parameterization331

We use the following criteria to define a good parameterization, in no particular or-332

der:333

1. The parameterization reproduces behavior well, as measured by a relevant metric.334
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(a) (b)

(c)
�i = �i+1

�i = �i+1

�S = 0 (d)

�i �i+1 = �i

�i �i+1

�S = 1

Figure 4. (a)-(b) An illustration of two sets of three normal distributions, which have the same three mean

values but a larger (a) and smaller (b) variance. We would consider (b) a better parameterization as there is

considerably more overlap between neighboring probability distributions in (a). (c) and (d) show the dis-

tribution overlap corresponding to separation proxy values of zero and one respectively, when the standard

deviations of each distribution are roughly the same.

342

343

344

345

346

2. Parameters chosen are significantly related to changes in power spectral density, i.e335

the probability distribution of power values in neighboring bins are distinct. Vari-336

ance is minimised while the mean values are much larger and vary more.337

3. Parameters are physically motivated and we can interpret their impact338

4. The parameterization can be used for nowcasting and forecasting339

5. Excess parameters are excluded to avoid overfitting, as models with larger degrees340

of freedom are less statistically significant.341

The ability of our model to reproduce observed PSD values is examined in Section347

4.2. The importance of the second criterion is illustrated in Figure 4(a) and (b); the larger348

the variance in each bin, the more likely that neighboring probability distributions overlap.349

This is a consequence of our finite amount of data, which in turn can only be binned by350

a finite number of parameters. With infinite data, considerable overlap would be fine and351

we could bin by all physically motivated parameters. Instead, when we can only use a352

finite number of parameters a clear evolution of PSD distribution across neighbouring bins353

suggests that the parameters chosen are significantly related to changes in PSD. Numerous354
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overlap coefficients exist to examine the relationship between two normal distributions,355

but we can define a simple metric here specifically to quantify how this overlap affects356

the quality of our parameterization. This metric is particularly suitable as the standard357

deviation of all our bins are so similar (discussed below). We use the ratio of the standard358

deviation in each bin to the difference in mean values; for two neighboring bins bi; bi+1359

this quantity is then the separation proxy360

�S =
k�i � �i+1k

�i;i+1

� (4)

which (as illustrated in Figure 4 (c) and (d)) will be zero for two completely over-361

lapping distributions but will be equal to 1 for two distributions with equal standard de-362

viations, where the point of overlap is exactly one standard deviation of either mean. The363

median values of this separation proxy between all neighboring bins for GILL, 3.33 mHz,364

noon, Bz < 0 is 0.5 for probability distributions along the speed axis, 0.28 along log10„var„Np””365

and 0.37 along Bz. For GILL, 3.33 mHz, noon, Bz > 0 these values are 0.6, 0.29 and366

0.25 respectively. The magnitude of these values corresponds to the order of dominant367

contributing parameters vsw;Bz < 0 and var„Np” as expected and indicate that in fu-368

ture such a measure can be used to investigate where the solar wind parameters contribute369

meaningfully to changes in ULF power.370

This separation proxy �S is very similar to the well established effect size measure371

Cohen’s d [Cohen, 1988]. Instead of standardising the two mean values by the average372

standard deviation < �i;i+1 >, Cohen’s d standardises by the "pooled" standard deviation373

which weights by the number of points in each distribution. This is unnecessary here as374

the normal distributions are already known to be approximations, and the uncertainty aris-375

ing from that approximation should be decoupled from our separation proxy and investi-376

gated separately. However, we note that in the case where �i = �i+1, much of the existing377

literature on interpreting Cohen’s d can still be applied here.378

Indeed, the separation proxy �S is most meaningful where the standard deviations386

of all distributions are roughly the same, hence a more detailed comparison of mean and387

standard deviation (�;�) values is made for all bins at GILL, 3.33 mHz in Figure 5. Fig-388

ure 5(a) shows the distribution of all � values, which is clustered around � 0:7. This389

can be compared to Figure 5(b), which shows the � of normal distributions fitted to the390

same number of power values which were randomly selected from the original distribu-391
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Figure 5. (a) the standard deviation (�) values of the normal fitted probability distributions for all bins

at GILL, 3.33 mHz. (b) the � values of normal distributions fitted to bins of equal size as those in (a), but

randomly sampled from the original distribution. (c) the mean (�) values of the normal probability distribu-

tions, corresponding to those in (a). There is less variance in each probability distribution when binning by

three solar wind parameters than in equivalent randomly sampled distributions, and this variance is small and

consistent relative to the range of mean values. (d) An example of the variation of probability distributions

with speed in a constant Bz; var„Np” bin in a single partition.
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tion rather than using our binning technique. (This was run 1000 times). As the variance392

is smaller for our parameterization, our model is outperforming randomly selected dis-393

tributions. Figure 5(c) shows the � values for GILL, 3.33 mHz, corresponding to the �394

shown in (a). This range of mean values indicates that the mean power (i.e. PSD, not395

log10„PSD”) varies over several orders of magnitude while the variance of each distribu-396

tion is about an order of magnitude for each bin. Hence the family of probability distribu-397

tions we use is better than randomly selected distributions as the variance is smaller, and398

the variance/mean ratio is such that changes in the solar wind parameters correspond to399

the probability distribution shifting up and down the power axis without changing shape.400

An example of this can be seen in Figure 5(d); the probability distributions associated401

with different solar wind speed values for constant Bz; var„Np” bin is shown for GILL,402

3.33 mHz in the noon sector, Bz < 0. For lower solar wind speeds the distributions are403

distinct, while at higher speeds they overlap. Future improvements of this parameterization404

could involve identifying where such distributions should be merged using �S , while iden-405

tifying what this corresponds to physically is one example of the future work that can be406

done to understand the underlying physics using this probabilistic model.407

Criteria 3 and 4 reflect the intention that our model be capable of investigating ex-408

isting physics and, eventually, to be capable of forecasting. For a model parameterizing409

radial diffusion coefficients, the chosen parameters should also be clearly and significantly410

related to changes in the diffusion coefficients. The solar wind parameters used in this411

model were selected as they have been shown to be causally correlated to ground ULF412

wave power; a review of their physical interpretation can be found in Paper 1. As they are413

drawn from solar wind observations they can be used for nowcasting and forecasting. We414

have attempted to reduce the degrees of freedom by only using causally correlated solar415

wind parameters, and by using a long time period, which makes overfitting on the five pa-416

rameters here (L,MLT,vsw;Bz; var„Np”) unlikely.417

4.2 Ability to predict ULF wave power418

We anticipate that our model will be put to two main uses: calculating the total419

power distribution over an extended event or predicting the power for each hour in a time420

series. For example, the total distribution method will be useful for long timescale recon-421

structions where it is important to reproduce signal properties that include the overall dis-422

tribution, while the time series will be useful for forecasting. Both outputs may be useful423
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to case studies of individual events. Therefore we examine the efficacy of this model using424

two tests. The first (a series of violin plots) compares the total distribution of log-power425

from the original observed log-power to the distribution of log-power reproduced from426

our model. The second test (forecasting skill) examines the ability to predict power in the427

oncoming hour compared to a reference model. Both these tests are completed first on428

sample partitions of the entire 15 years of original data and on a small set of CARISMA429

data from Jan-Mar 2015, i.e. we test our model on both the training data and on data out-430

side the training window. Customarily such testing is not done on training data, however431

the size of the dataset compared to the few parameters we have used suggests that this is a432

reasonable test.433

We use vertically plotted probability distribution functions (violin plots) in Figure434

6 to compare original and reproduced probability distributions of PSD over an extended435

time. Here we have chosen four representative combinations of station and frequency; the436

frequency for each station is the average eigenfrequency over all MLT as calculated by the437

cross-phase technique [Waters et al., 1991; Sandhu et al., 2018] over several years. Hence438

this is a stricter test than choosing consistently "quiet" frequencies for each station. For439

each combination the total original power distribution (black) is compared to reproduced440

power using the mean of each probability distribution (right, blue) and to sampling from441

the probability distributions (left, blue). As the original distribution falls roughly between442

the interquartile range when using the sampling method, but is clearly very far off for the443

means method, this suggests that a sampling method is suitable for obtaining the power444

distribution over an extended event while the mean is not. Interestingly PINA and FCHU445

appear to have the worst fits, which may be due to the changing plasmapause and magne-446

topause locations crossing these respective stations. This is an example of the latitude and447

MLT dependent physics we intend to explore in future. Unfortunately it is very difficult to448

statistically quantify the ability to reproduce these distributions without overly favoring ei-449

ther the centre of the distribution or the tails; we have been unable to find a suitable met-450

ric. Existing measures designed to measure the similarity of two distributions found our451

sampled reproductions to be either all very good or all very poor. Therefore future study452

is necessary to identify a metric that accurately reflects our ability to reproduce the phys-453

ical distributions and that can be used as a tool to improve our model by distinguishing454

where fits are good or bad.455
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Figure 6. Violin plots showing the probability distribution of power over the original fifteen years of data,

compared to reproduced distributions of power using the two methods possible with our model. For each hour

the model defines a probability distribution of power which is dependent on solar wind conditions; this is used

to reproduce the original fifteen-year distribution. The left hand side of each violin compares the original

total power distribution to the reproduced distribution found by sampling from the conditional probability

distribution of power for each hour, while the right hand side compares to taking the mean value of the condi-

tional probability distribution for each hour. Black lines indicate the original distribution while the reproduced

values are indicated by a dashed blue line (mean values), a blue region (interquartile range of 2000 samples)

and light blue region (upper and lower bounds from sampling). This is shown for four combinations of station

and frequency. Violins are all scaled so that the area under the original and reproduced distributions are equal

to 1.
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Forecasting skill is a simple measure that can be used to compare the ability of two467

methods to predict a time series. In space physics, it has previously been used to test solar468

wind predictions, e.g. Owens et al. [2013]. It is calculated as follows:469

Skill = 100
�
1 �

MSEmodel

MSEre f

�
(5)

using the mean square error (MSE) between each model and the observed values.470

Forecast skill scores can range from �1 to 100 and positive values indicate that the tested471

model is better than the reference model. We compare both mean and sampling methods472

of applying our model and two "persistence" models to a random model sampling from473

the entire original distribution of power, as per Owens et al. [2013]. The two persistence474

models assume that the power we see in the next hour will be the same as that observed475

24 hours ago and 1 hour ago respectively. Calculating forecasting skill is relatively simple476

using the means or persistence method as the reproduced time series is always the same.477

To calculate forecasting skill for random and sampling methods, 2000 time series were478

constructed by sampling from either the random or appropriate normal distributions. The479

forecasting skill was calculated for each of these time series and the median forecasting480

skill of these 2000 runs taken. Results of this are shown in Table 2.481

For all four examples, both means and sampling methods of using our model were486

better than randomly sampling, as expected. However, both methods were also superior to487

assuming 24 hour persistence and using the expected (mean) value from our look-up ta-488

bles is a better predictor of power than assuming that power continues from the previous489

hour. For example, at FCHU 3.06 mHz, all four models tested are better than the base-490

line "random" model as they all have positive values. With the highest forecasting skill491

score of 74.6, using the mean values of each parameterized probability distribution outper-492

forms all other models, followed by 1h persistence with a score of 69.1. Sampling from493

the probability distributions lags behind this with a skill score of 48.7 and 24h persistence494

performs least well with a score of 34.9. To confirm that this ranking is not frequency de-495

pendent, we have also calculated forecasting skill across 1990-2005 for every frequency at496

a single station (GILL) using a smaller number of runs, shown in Figure 7. Across all fre-497

quencies, the ranking of models compared to a random reference model remains the same.498

Hence using the mean value is the best method for reproducing a time series whereas the499

sampling method is outperformed by 1h persistence. However, it should be recalled that500
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Table 2. Forecasting skill at selected stations and frequencies482

Partition Tested
Model skill score vs random reference model

24h persistence 1h persistence Model (sampled) Model (means only)

FCHU, 3.06 mHz 34.9 69.1 48.7 74.6

GILL, 3.33 mHz 38.0 74.1 55.6 78.0

ISLL, 4.17 mHz 37.6 76.2 56.5 78.4

PINA, 4.44 mHz 35.3 72.7 54.8 77.6

Forecasting skill scores for four stations and frequencies, testing the ability of the solar wind

parameterized model to reproduce the original fifteen years of data. The baseline reference model used

is a "random" model, where power is sampled from the original total distribution of the given partition.

Simple 24-hour and 1-hour "persistence" models are tested against this baseline (i.e assuming power in

the oncoming hour is the same as the previous day or hour) in addition to the solar wind-parameterized

model. The probability distributions predicted for each hour by the solar wind model were either

sampled or the mean value was taken to construct each fifteen year time series. Where sampling

methods were used, 2000 time series were made and the forecast skill calculated for each one; the

median is shown here.

0 5 10 15 20
Frequency, mHz

20

30

40

50

60

70

80

F
or

ec
as

t S
ki

ll

Solar wind model (means)

Persistence model (1h)

Solar wind model (sampling)

Persistence model (24h)

Figure 7. Forecasting skill at all frequencies for GILL, 1990-2005, where models are compared to a ran-
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500 runs were taken. The ranking of model types is consistent across all frequencies.
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Figure 8. Testing the ability of a solar wind-parameterised model to predict ground-based power not in our

training set, across January-March 2015, GILL, 3.33mHz. The violin plot compares both the sampled and

mean-value methods against the original total power distribution over an extended time period (as in Figure

6) and the forecasting skill tests the ability of models to reproduce a time series. Here we compare the perfor-

mance of two persistence models and our solar wind-parameterised model (using both sampling and the mean

methods) to a baseline "random" model, as described in Table 2. Results are very similar to the tests carried

out on the training data; the sampling method reproduces the power distribution well (as the original power

lies within the interquartile range of reproductions) while the mean value predicts the oncoming hour best.
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the sampling method outperformed the mean method for reproducing the total distribution501

(as tested using violin plots in Figure 6). Therefore different construction methods should502

be used depending on the desired output.503

Similarly, we test these methods for 3.33 mHz at GILL using CARISMA data for512

Jan-Mar 2015 in Figure 8. Again, the sampling method is best for reproducing the total513

power distribution over these two months and the mean method is superior at predicting514

the power in individual hours. Note that while the sleeve between the upper and lower515

bound in the violin plot of Figure 8 is wider than in Figure 6, this is a slightly misleading516

visualisation artefact due to plotting less populated distributions, as the CARISMA data517

is considerably shorter. It is more important to note that the original power distribution518

shown in black still lies within the interquartile range of our samples. This emphasises the519
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need for a metric that quantifies the ability of the model to reproduce total power distribu-520

tions, rather than relying on visualisations.521

4.3 Comment on other possible parameters522

The parameters used so far correspond to three near-instantaneous solar wind prop-523

erties and the radial and azimuthal location in the magnetosphere. Therefore there is no524

history of the solar wind or the magnetosphere, including the persistence of existing ULF525

waves. The method presented in this paper does not represent internal properties such as526

substorm activity or magnetospheric plasma density; therefore our current distributions av-527

erage over all internal configurations. This is likely to contribute to the variance in each528

distribution and requires further study. While no internal parameters or geomagnetic in-529

dices are included, we compare our results to a Kp based model below. Finally, our se-530

lection of parameters includes no long-term dependencies, such as seasonal or solar cycle531

variations. It has long been understood that ULF wave activity varies with solar activity532

phase [Saito, 1969; Murphy et al., 2011]. An underlying assumption of this work is that533

such effects can be characterised by the changing solar wind parameters vsw;Bz; var„Np”,534

rather than representing this changed solar output indirectly using a parameter such as535

F10.7. As the magnetospheric mass density also varies over a solar cycle, once internal536

properties have been included the ability of our chosen parameters to represent ULF wave537

power changes across a solar cycle could be compared to F10.7. More sophisticated meth-538

ods will be necessary to add further parameters as we cannot further reduce the number of539

data points in each bin.540

4.4 Comparison to K p-based models541

Existing models of radial diffusion coefficients and ULF wave PSD use Kp. We542

cannot compare directly to the values predicted by the Kp-parameterised ground-based543

empirical model of Ozeke et al. [2014] as our prototype model describes ground-based544

power instead of total power in the equatorial azimuthal field. Instead we can briefly ex-545

amine the properties of a Kp-based model of ground PSD, constructed similarly to the546

solar wind model already presented. Ground-based PSD at 3.33 mHz, GILL is binned by547

the corresponding Kp value and the probability distribution function is calculated in each548

bin. These distributions are shown in Figure 9(a). By merging overlapping high Kp bins,549

a parameteristion could be constructed where the distributions are distinct with relatively550
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small variance. Hence a Kp-based model based on sampling empirical probability distri-551

bution functions could be constructed that satisfies point 2 of the necessary conditions for552

a "good" parameterization in Section 4.2. However, it would not fully satisfy the require-553

ment for forecasting or nowcasting capability (due to the 3-hr averaged nature of Kp) or554

the requirement for physically motivated parameters (it is difficult to ascribe a direct phys-555

ical property to Kp due to the processing involved in constructing it, as discussed below).556

The variance of the Kp bins are similar to those in our solar wind-parameterized model557

(Figure 5); there may be a lower limit to the variance, either dependent on our hourly558

timescale or due to underlying physical processes that require better characterization.559

Interestingly, the variance of each Kp bin in this model (explicitly shown in Fig-560

ure 9(b)) is clearly smaller than those from the storm-time data set used by Murphy et al.561

[2016], even while the mean values are similar. The storm list used by Murphy et al. [2016]562

is based on times where the magnetosphere is driven by corotating interaction regions and563

coronal mass ejections, although part of the list was also constructed with a Dst thresh-564

old. The greater uncertainty in the storm-time values (i.e. the larger variance) is there-565

fore likely to be caused by more extreme solar wind conditions, while the similarity in566

the mean values is most likely due to either a correlation between Dst and Kp, to the fact567

that a portion of the storm list does not use a Dst threshold and so the internal conditions568

of the magnetosphere may not be significantly different to the average, or most probably569

a combination of the two. Regardless of the similar mean values, the increase in uncer-570

tainty indicates that Kp does not capture ground ULF wave power behavior as well under571

extreme solar wind conditions. It is likely that our model will perform better, being solar572

wind based, but future work should quantify this.573

To compare the Kp-based model directly to our solar wind based model, we have574

used the Kp probability distribution functions to reproduce PSD values for the same time575

series as Figure 3, shown in Figure 9(d). The time series is reasonably well followed by576

both models, but forecasting skill scores indicate that the Kp model does not perform577

quite as well as our solar wind based model. At GILL over the fifteen years, for 3.33 mHz578

the solar wind based model has a positive skill value of 10.6 when compared to Kp as a579

reference model. Nevertheless, Kp is a surprisingly good proxy for ground-based PSD.580

Examining the relationship between Kp and the solar wind parameters suggests that Kp581

represents an independent contribution to power; the two-parameter plot in Figure 10582

shows that median PSD increases with Kp independently of vsw;Bz or log10„var„Np””.583
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(This analysis is in line with that followed in Paper 1 to identify causally correlated pa-584

rameters). As Kp is a mid-latitude index it is related to the magnetospheric convection585

electric field [Thomsen, 2004], while as a range index it is particularly related to explosive586

changes such as substorms. Since it is a three-hour index and substorm cycles generally587

last within three hours [Borovsky and Yakymenko, 2017], Kp is therefore related to sub-588

storm activity [Lockwood, 2013]. However, very large amplitude ULF waves may also589

contribute to Kp, as they may cause significant magnetic field deviations on the dayside590

stations used to construct Kp, particularly during times of low substorm activity. Hence591

the independent contribution indicated by Kp may represent substorm activity or ULF592

wave persistence. This suggests that ULF wave persistence should be studied, and that593

one of the first improvements to this prototype model should account for internal mag-594

netospheric processes such as substorm activity. However, as Kp is highly averaged and595

processed, suitable options would be either a more physically based internal parameter, a596

solar wind time lag or the recent history of the magnetosphere. These different approaches597

will need to be considered for both their physical interpretability and their suitability for598

nowcasting and forecasting.599

5 Other sources of uncertainty in radial diffusion coefficients612

In this paper we have focused on a model of ULF wave PSD that will allow us to613

quantify the uncertainty introduced to calculation of radial diffusion coefficients. How-614

ever, to construct a probabilistic description of diffusion coefficients we will need to in-615

clude all sources of uncertainty; in this section additional sources of uncertainty are re-616

viewed. Physical assumptions used in our theoretical formalism, constraints due to ob-617

servational capabilities and different statistical methods all contribute to this uncertainty.618

Indeed, some sources of uncertainty have multiple knock-on effects such as the underlying619

magnetic field model, which can give rise to uncertainty in the formalism and again when620

calculating L�, i.e. in processing observational data and when constructing averages for621

statistical wave maps.622

The following review is ordered from purely physical assumptions, through approx-623

imations of theory that make up our formalism, to observational restrictions and finally624

uncertainty from our statistical model construction.625

1. Background magnetic field model626
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Figure 9. A Kp-based model using probability distributions to predict ULF wave power at GILL, L � 6:6,

3.33 mHz. (a) the fitted normal distributions of power for each Kp values, (b) the mean and standard deviation

of both these fits and (c) similar storm-time only fits. In (d) we use both the Kp and solar wind parameter

models to reproduce power over a short period of time (two weeks in May 2001, the same as Figure 3).
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Figure 10. A series of "two-parameter" plots, where observations are binned by a solar wind parameter

and Kp, and the median power in each bin at GILL, 3.33 mHz is shown. (a) Power is binned by both speed

and Kp. Median ULF wave power is shown, which increases with both parameters. (b) Power is binned by

variance in proton number density Np and Kp for a single speed bin. Median ULF wave power increases with

Kp but not with variance in number density. (c) Power is binned by Bz and Kp for a single solar wind speed.

Median ULF wave power increases with both Bz < 0 and Kp. Hence Kp represents a contribution to median

ULF wave power independent of any correlations with solar wind speed, Bz or variance in proton number

density.
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2. Other physics underlying the formalism627

3. Summation over resonant frequencies628

4. Accounting for azimuthal wave structure629

5. Double-counting symmetric perturbations630

6. Double-counting electric field perturbations631

7. Methods of calculating power spectral density632

8. Uncertainty from ground and space based observations633

9. Statistical method construction634

This list of known sources of uncertainty are all briefly reviewed below.635

5.1 Background magnetic field636

As discussed in Section 2, the diffusion coefficient DLL can be derived from per-637

turbations of electromagnetic fields. Fälthammar [1965] considered the radial diffusion638

of equatorially mirroring particles due to small symmetric and asymmetric perturbations639

of the dipole field, while others have extended this to other magnetic field models [Schulz640

and Eviatar, 1969; Elkington et al., 2003]. Clearly, the choice of magnetic field model will641

contribute some uncertainty to the resulting diffusion coefficients, particularly at higher642

radial distances and during geomagnetically extreme periods when magnetic field models643

are often less accurate. This choice also gives rise to uncertainty in using observations, as644

we map in situ observations from real space to L�, or ground-based observations up to the645

equatorial plane.646

5.2 Other physics underlying the formalism647

Diffusion coefficients are bounce-averaged and hence calculated in the equatorial648

plane, using equatorially mirroring particles. This assumes that there is no latitude de-649

pendent field variation such as the South Atlantic Anomaly. Additionally, the radial dif-650

fusion coefficient used in radiation belt modelling is generally drift-averaged. However,651

there is no conventional method of constructing a drift-averaged diffusion coefficient as it652

is unclear whether it is more physically representative to calculate DLL in each azimuthal653

sector and average, or to calculate „�L�”2 in each sector, average these and then calculate654

DLL . Instead, the lack of simultaneous measurements across a wide range of MLT sectors655

often dictates our choice. Finally, we also note for completeness that an underlying phys-656
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ical assumption used in these derivations is that the frozen-in theorem is valid, i.e. that657

there is no parallel electric field [Falthammar, 1968].658

5.3 Summation over resonant frequencies659

Radial diffusion coefficients for a particle of a given energy are found in many ex-660

isting formulations by evaluating the power at frequencies corresponding to the resonant661

and harmonic drift frequencies of a particle [Brautigam et al., 2005; Fei et al., 2006; Ozeke662

et al., 2014; Ali et al., 2016]. An example of this mechanism can be found by Elkington663

et al. [1999]. They showed that global toroidal mode ULF oscillations can accelerate elec-664

trons, particularly with the addition of a dawn-dusk electric field. However, integrating665

over a broader frequency range than just resonant frequencies results in larger final dif-666

fusion coefficients via a sum of smaller scatterings, where this frequency range is deter-667

mined by the drift frequency and the sampling frequency (up to the bounce frequency668

limit) [Lejosne et al., 2013]. Hence clarifying the role of resonant and non-resonant dif-669

fusion will be necessary to understand the energy dependence of diffusion coefficients.670

When using the resonant frequency method, a common assumption used is that ra-671

dial diffusion is caused by a magnetic impulse similar to a step function, so that power672

decays very slowly and is proportional to inverse square frequency, P / f �2, [Schulz and673

Lanzerotti, 1974; Ozeke et al., 2014]. This assumption is particularly useful as it causes674

the energy dependence of DLL to cancel out and hence makes the diffusion coefficient675

easier to calculate. This approximation appears to be valid for average power spectra, but676

may not hold for the spectrum in an individual hour.677

5.4 Accounting for azimuthal wave structure678

Using observations to calculate DLL via a sum over drift resonances involves yet679

more uncertainty in using and determining wave structures from in situ observations.680

Where our formalism sums only over resonant frequency contributions we must estimate681

the power at harmonics of that frequency. In their radial diffusion coefficient derivation,682

Fei et al. [2006] use a sum over azimuthal mode numbers m to describe this effect. How-683

ever, in practice this is often simplified by assuming m = 1. Sarris and Li [2017] found684

that the amplitude of power is indeed concentrated in low m-numbers for the dayside and685

for less geomagnetically active time periods, but less so for the nightside and geomagnet-686
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ically active periods. Murphy et al. [2018] found that the m-number during a moderate687

storm is typically low but the distribution of positive or negative values depends on radial688

location; this initial study gives some idea how the direction of propagation (i.e. m < vs689

> 0) is distributed among ULF waves but due to challenges in measuring m much more690

work is required. It is also unclear how direction of propagation should be included in ex-691

isting radial diffusion coefficient calculations, yet the orientation of these oscillations will692

clearly affect the resultant diffusion.693

5.5 Double-counting symmetric perturbations694

Another source of uncertainty that comes into both the theoretical framework and695

when using observations is double-counting from background magnetic field perturbations.696

This arises from the inclusion of both symmetric and asymmetric magnetic field pertur-697

bations, when only asymmetric (i.e. azimuthally dependent, or varying in magnetic local698

time) variations contribute to radial diffusion [Fälthammar, 1965; Lejosne et al., 2012,699

2013]. While axisymmetric variations in the magnetic field may distort the entire drift700

contour (hence moving particles in real space) particles will not be moved to a new drift701

contour (i.e. changing the value of enclosed flux, or L�) without asymmetric perturba-702

tions. Observationally, it is difficult to identify asymmetric components from in situ data703

as it is generally a set of sparsely located point measurements, yet the asymmetric compo-704

nent is of smaller amplitude at the ground where there is better coverage of observations.705

This difficulty was resolved by Lejosne et al. [2012, 2013], who avoid the issue of confus-706

ing symmetric with asymmetric perturbations by using an analytical model of disturbances707

added to a dipole field. By sampling multiple in situ locations, the value of these addi-708

tional terms can be determined. Lejosne et al. [2013] also describes a method to approxi-709

mate this type of analysis using only single point measurements, which reduces the num-710

ber of spacecraft coverage necessary to cover the L�-shells and sectors of interest. While711

this approach removes symmetric double-counting, uncertainty remains from the use of a712

dipole field model. This emphasises the necessity of calculating uncertainty to allow us to713

choose between physical assumptions in diffusion coefficient estimation methods.714

5.6 Double-counting electric field perturbations715

The second type of double counting arises from our treatment of electric fields.716

Theoretically, if the inductive electric field term is neglected from the magnetic com-717
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ponent of diffusion DB
LL , adiabatic changes in the magnetic field may appear to result718

in spurious changes in L� and hence in our radial diffusion coefficients [Fälthammar,719

1965]. However, it is difficult to quantify this term as in situ observations simply pro-720

vide the localised value of the electric field, and it is difficult to distinguish how much of721

that is due to induction (i.e. dB
dt ). Hence any diffusion coefficient calculation is at risk of722

double-counting electromagnetic field contributions. Using the method briefly mentioned723

in the previous section, Lejosne et al. [2012, 2013] also address this inductive electric field724

double-counting. More commonly, simplifying assumptions are made to make this prob-725

lem more tractable. Fei et al. [2006] simply sum the electric and magnetic components726

DLL = DE
LL + DB

LL . This approach is approximately valid where either the two electric727

components can be distinguished, (for example by making assumptions on the background728

magnetic field model and the types of wave present, which determines the relationship be-729

tween the electric and magnetic field perturbations, [Ozeke et al., 2012]) or when either730

DE
LL << DB

LL or DB
LL << DE

LL . However, these coefficients may be of comparable magni-731

tude [Pokhotelov et al., 2016] so it is unclear how often this approximation can be used.732

5.7 Methods of calculating power spectral density733

While power spectral density is vital to our diffusion coefficient derivations, there734

are multiple valid transforms between the time and frequency domain. Different transform735

methods are better suited for either broadband or narrowband signals and so may over or736

underestimate the power at a single frequency, hence the choice of transform should reflect737

either the drift-resonant sum or frequency-range integral method of coefficient derivation.738

For example, if DLL is calculated at specific resonant frequencies, then different methods739

of calculating power spectral density could result in different amounts of diffusion. Addi-740

tionally, the underlying assumptions of a transformation to the frequency domain via the741

Wiener-Khinchin theorem have not been fully explored, such as stationarity on a range of742

timescales. It is not clear whether this would contribute uncertainty to the final diffusion743

coefficients but is included here for completeness.744

5.8 Uncertainty from ground and space based observations745

Some types of uncertainty are unique to the observation method. While the real-746

space location of in situ data may be known, it is difficult to be certain of the L�-value.747

Spacecraft are often located at the equator and therefore may be at the node of any res-748
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onant field line oscillations, which they will therefore underestimate. As point measure-749

ments, it is difficult to make assumptions about the spatial and temporal scale of oscilla-750

tions from single spacecraft measurements. However, ground-based data has its own set of751

uncertainties; each ground station corresponds to some field-line centred volume of vari-752

able width, and the mapping of ground power to the equatorial plane relies on assump-753

tions of ionospheric conductivity and number density variations along the field, in addition754

to the magnetic field model and Ek = 0 approximations discussed previously [Ozeke et al.,755

2009].756

5.9 Statistical model construction757

When constructing statistical models of diffusion coefficients, additional uncertainty758

enters due to our methods of averaging and parameterization. For example, while az-759

imuthal resolution is important for statistical wave maps as it is the asymmetric (azimuthally760

dependent) contributions that account for radial diffusion, it is unclear what size azimuthal761

sector to average over as the spatial coherence of ULF waves has not been studied for this762

purpose. Similarly, the plasma density distribution affects the occurrence and penetration763

of ULF waves and hence radial diffusion. Averaging over periods with both high and low764

density will introduce more variability in statistical models.765

Finally, the method of constructing a statistical model can also introduce uncertainty766

by our choice of parameters. Several recent studies calculating diffusion coefficients across767

the magnetosphere parameterize by Kp and L [Ozeke et al., 2014; Lejosne et al., 2013;768

Brautigam and Albert, 2000; Brautigam et al., 2005; Ali et al., 2016; Liu et al., 2016]. Us-769

ing L as a parameter is fraught with difficulty due to the difficulty mapping L to L�. The770

quality of such a parameterization can be quantified by examining the fits and the choice771

of parameters, as discussed in Section 4.1.772

5.10 Summary773

There are many sources of uncertainty in our existing methods of calculating dif-774

fusion coefficients. Quantifying the uncertainty introduced by different theoretical for-775

malisms and by different physical assumptions will aid in selecting the most appropriate776

model approach with minimal uncertainty. Uncertainty due to observational restrictions,777

underlying natural variation and due to statistical methods may not be as easily avoided778
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but still needs to be quantified in order to accurately describe the ability of radial diffusion779

coefficients to reproduce radiation belt phenomena in modeling. In this paper we have fo-780

cused on producing a statistical model of ULF power spectral density that is suitable for781

nowcasting and forecasting yet can capture the uncertainty due to underlying natural vari-782

ation. This is only one component of a final, fully probabilistic radial diffusion coefficient783

model. Until then it can be used to improve existing models and to better understand the784

physics underlying the generation and propagation of ULF waves.785

6 Conclusion786

A description of ULF wave power is an important component of any radial diffu-787

sion coefficient calculation. We have outlined a method to construct a model of ground-788

based ULF wave power that is dependent on solar wind parameters, azimuthal angle (i.e.789

magnetic local time), station latitude and frequency. This model outputs probability dis-790

tributions, which will allow us to produce probabilistic forecasts and to identify areas of791

uncertainty in future statistical models of radial diffusion coefficients.792

The probability distribution in each bin is approximated by a normal distribution of793

log-power, which allows us to use two methods of predicting ULF wave power. By look-794

ing up the appropriate normal distribution correpsonding to solar wind observations in a795

given hour, that distribution can either be sampled or the mean can be taken. Sampling796

each distribution is suitable for reproducing the total distribution of power over an ex-797

tended event while using the mean value is the best method of reproducing a time series.798

Comparing this to a similarly constructed model based on Kp, we find that our prototype799

model based only on three solar wind parameters slightly outperforms the Kp model and800

that Kp represents an independent contribution to power that should later be included in801

our model. We also find that the uncertainty in a Kp parameterization increases during802

storm times. Hence future improvements could include a dependence on internal magne-803

tospheric properties that satisfy the characterisitcs of a "good" parameterization, which we804

have defined in Section 4.1.805

To apply this prototype model to the production of radial diffusion coefficients in-806

volves extending to more stations and mapping ground based power to the equatorial elec-807

tric field [Ozeke et al., 2009, 2012], then examining whether this is an effective model and808

where the largest uncertainty stems from. Identifying the source of this uncertainty will809
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allow for targeted improvement of a statistical radial diffusion coefficient model. In Sec-810

tion 5 we reviewed other ways that uncertainty can enter the radial diffusion coefficient811

calculation in addition to the underlying wave model. We anticipate that the methods and812

tests outlined throughout this paper can be used to inform construction of other compo-813

nents of a fully probabilistic radial diffusion coefficient model.814

Future improvements to reduce any uncertainty from the solar wind based model815

outlined here could be made by including time-lagged solar wind contributions, substorms,816

magnetospheric plasma density, magnetospheric conditions and also the time history of817

the magnetosphere. Additionally, the underlying normal distribution approximation could818

be further examined to identify where this approximation holds; as well as quantifying the819

resulting uncertainty this will indicate magnetospheric regions or solar wind conditions of820

physical interest for the generation and propagation of ULF waves.821

To summarize, our simple parameterization based on magnetospheric regions and822

just three solar wind properties predicts ULF wave power time series better than assuming823

that power carries on from the previous hour. We submit that this is a surprisingly effec-824

tive result for such a simple model and therefore constitutes a step towards a probabilistic825

model of radial diffusion coefficients. This prototype model can also be used to investigate826

questions about the occurrence of ULF waves; immediate future work includes examining827

the parameterization results across a variety of stations and MLT sectors.828
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