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GRAPHICAL ABSTRACT

« Randomly sampled, aged American
mink were tested for anticoagulant ro-
denticides.

 78.8% of mink had detectable residues;
bromadiolone being the most common-
ly found.

« The probability of mink exposure to an-
ticoagulants increased by 4.5% per
month of age.

» Exposure was 1.7 times higher for mink
in areas with a high density of farms.

* American mink are a potential sentinel
species for exposure risks across Eu-
rope.
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Anticoagulant rodenticides (ARs) are highly toxic compounds that are exclusively used for the control of rodent
pests. Despite their defined use, they are nonetheless found in a large number of non-target species indicating
widespread penetration of wildlife. Attempts to quantify the scale of problem are complicated by non-random
sampling of individuals tested for AR contamination. The American mink (Neovison vison) is a wide ranging,
non-native, generalist predator that is subject to wide scale control efforts in the UK. Exposure to eight ARs
was determined in 99 mink trapped in NE Scotland, most of which were of known age. A high percentage
(79%) of the animals had detectable residues of at least one AR, and more than 50% of the positive animals had
two or more ARs. The most frequently detected compound was bromadiolone (75% of all animals tested), follow-
ed by difenacoum (53% of all mink), coumatetralyl (22%) and brodifacoum (9%). The probability of mink expo-
sure to ARs increased by 4.5% per month of life, and was 1.7 times higher for mink caught in areas with a high,
as opposed to a low, density of farms. The number of AR compounds acquired also increased with age and
with farm density. No evidence was found for sexual differences in the concentration and number of ARs. The
wide niche and dietary overlap of mink with several native carnivore species, and the fact that American mink
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are culled for conservation throughout Europe, suggest that this species may act as a sentinel species, and the ap-
plication of these data to other native carnivores is discussed.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Anticoagulant rodenticides (ARs) are the most common type of
chemicals used to control rodent pests, and work by blocking the vitamin
K cycle, which is essential for the production of blood-clotting factors
(Pelfréne, 2010; Stone et al., 1999). Due to the delayed action of ARs, ro-
dents consuming AR bait may accumulate several toxic doses in their
liver tissue between the first ingestion of the rodenticide and their death,
and as much as 8-10 times the LD50 of some anticoagulants have been re-
corded in liver tissue at death (Cox and Smith, 1992; Dowding et al., 2010;
Sanchez-Barbudo et al., 2012; Smith and Shore, 2015). Furthermore, the
development of resistance to ARs in commensal rodents exacerbates this
level of toxicity, with resistant rats containing up to 5 times more anticoag-
ulant in their bodies than non-resistant rodents (Smith and Shore, 2015).
Due to the development of resistance, there has been a shift in use away
from the “first generation anticoagulant rodenticides” (FGARs) in favour
of the “second generation anticoagulant rodenticides” (SGARs; Pelfréne,
2010), which are more effective, more toxic and have longer half-lives
than FGARs (Eason et al., 2002; Pelfréne, 2010; Stone et al., 1999). For ex-
ample, reported LD50s (mg active ingredient per kg body weight) for lab-
oratory rodents are 6.2, 2.3 and 3 for chlorophacinone, diphacinone and
warfarin (all FGARSs) respectively, but are as little as 0.4, 0.55 and 0.7 for
brodifacoum, difethialone and bromadiolone (all SGARs) respectively
(Erickson and Urban, 2004). In mammals, hepatic half-lives range from
8 days (FGARs) to 307 days (SGARs) (Lépez-Perea et al., 2015).

ARs are typically formulated within a cereal based bait, and any an-
imal that consumes the bait, including non-target species such as gra-
nivorous birds (Sanchez-Barbudo et al., 2012) or insects (Godfrey,
1985; Booth et al., 2001; Spurr and Drew, 1999), may act as a source
of contamination to other species that predate or scavenge them. Con-
firmation of the presence of residues of ARs in non-target species has
been found in predatory and scavenging raptors (Hughes et al., 2013;
Lambert et al., 2007; Lopez-Perea et al., 2015; Ruiz-Suarez et al., 2014;
Stone et al., 2003; Walker et al., 2008), and mammals (Dowding et al.,
2010; Elmeros et al., 2011; Sanchez-Barbudo et al., 2012; Tosh et al.,
2011), but reliable quantification of the extent of wildlife contamination
and hence the impact of changes in AR use, are challenging.

Exposure to ARs is commonly monitored opportunistically via sam-
ples of dead animals. In Scotland, opportunistic encounters of specific
species, most commonly raptors, are submitted into the Wildlife Inci-
dent Investigation Scheme (WIIS). Opportunistic sampling may howev-
er have limitations in quantifying exposure in wildlife if individuals
submitted are unrepresentative of the whole population of the focal
species. The carcases submitted may be predisposed towards AR expo-
sure. For instance, starving animals may be more inclined to forage
close to areas with high levels of human activity where their encounter
rate with poisoned rodents, partly intoxicated or dead, is likely to be
much higher than in remote areas, and the chance of someone finding
and submitting a carcase is also relatively high. In the US, bird carcase
detection has been shown to be approximately twice the rate in urban
than in rural areas, and three times more likely to be reported in
urban than in rural areas (Ward et al., 2006). Even animals submitted
as aresult of a road traffic accident (again with a high human encounter
rate) might be a biased sample since partially intoxicated individuals
could be more vulnerable to collisions with vehicles (Newton et al.,
1999). Certainly prey species exposed to ARs exhibit abnormal behav-
iors which increase their risk of mortality (Smith and Shore, 2015). In
North America, fishers with higher residues of ARs suffered higher
rates of mortality, suggesting that exposure to ARs may predispose the
animal to dying from other causes (Thompson et al., 2014).

Furthermore, potentially confounding factors, such as the age and sex
of sampled individuals or the geographical provenance and land use,
may give a biased perception of the extent of contamination. Thus,
where individuals analysed for AR contamination are collected opportu-
nistically, it may be unwise to extrapolate the rate of contamination
from the sample to the wider population and estimate the true risk
ARs pose. An ideal sampling regime would provide estimates of the con-
tamination risk to species exposed to ARs per unit time that could be re-
liably compared between e.g. ecosystems, land use types and regulatory
regimes.

In northern Scotland, a large-scale participatory project to control in-
vasive non-native American mink (Neovison vison) has been underway
since 2006, yielding 970 individuals by 2013, collected over an area of
20,000 km? (Bryce et al., 2011; Melero et al., 2015). This provided us
with an unbiased sample source of a priori healthy carnivore individuals
on which exposure to ARs could be analysed. Given the generalist diet
of mink (see review in Melero et al., 2014), the species can be considered
a sentinel species of exposure to chemicals for other sympatric carnivores
species. In the UK, this includes many native carnivores, some fully
protected such as otters (Lutra lutra; SSI, 2007; Strachan, 2007), badgers
(Meles meles; PBA, 1992; Rainey et al., 2009), pine martens (Martes
martes; SSI, 2007; WCA, 1981; Croose et al., 2014), and Scottish wildcats
(Felis silvestris; SSI, 2007; Kilshaw et al., 2015), as well as non-protected
carnivores, such as red foxes (Vulpes vulpes), stoats (Mustela erminea),
weasels (Mustela nivalis) and polecats (Mustela putorius) (see Harris et
al,, 2008 for distribution of non-protected carnivores).

In this study we aimed to quantify levels of AR exposure in Scottish
wild carnivores using mink as a sentinel species. In addition, we exam-
ined potential factors involved in the rate of exposure to ARs, by exam-
ining how exposure per unit time varied by land use and the sex of the
individuals, and by considering how relationships between mink age
and exposure were affected by these covariates.

ARs are commonly used to prevent rodent damage to stored agricul-
tural crops and feed (Hughes et al.,, 2012, 2014), where they are permitted
for use indoors, and for some compounds, for use outdoors away from
buildings, for example, to control rats around stacks of hay and straw
(Farmers Academy, 2015). Therefore, in terms of land use, the accessibil-
ity of mink to farms was expected to be the main environmental covariate
affecting mink exposure to ARs via predation of available, contaminated
prey. Thus, AR exposure was compared to the connectivity to farms, a
metric reflecting the potential influence of these sources of AR weighted
by their sizes (number of fields per farm) and their distance to each
mink at their capture location. Given that mink are strongly sexually di-
morphic, with the smaller females preying upon smaller items than
males (Dunstone and Birks, 1987), we also considered whether male
and female mink had different levels of exposure. Further, because culled
mink were accurately aged, and because of the long half-lives of the SGAR
metabolites in particular, we estimated the per time unit rate of accumu-
lation of SGAR via ingestion of contaminated prey (the slope of exposure
and age relationships), which we suggest has the potential to serve as a
robust metric suitable for multi-site comparisons of the risk ARs pose to
predators in the natural environment.

2. Materials and methods
2.1. Sample collection
Liver samples were obtained from necropsies of a total of 99 mink

selected amongst 979 that were captured between 2007 and 2013 in
rural areas of northern Scotland as part of an invasive non-native
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species control project (Bryce et al., 2011; graphical abstract). All mink
were captured in cage traps typically placed on floating platforms and
sacrificed in accordance with the Wildlife & Countryside Act, 1981 and
only secondarily used for answering applied ecology research questions
(e.g. Melero et al.,, 2015; Oliver et al., 2016). Guidance to people trapping
mink was to use unbaited traps, and rely on the curiosity of the mink to
investigate their environment for capture. However, some volunteer
trappers used dead rabbit or canned sardines. Given the broad diet of
mink (Melero et al., 2008b), neither approach was considered to induce
capture bias with respect to likely sources of AR contamination. Whole
livers, the primary organ in which anticoagulant rodenticides accumu-
late (Dowding et al., 2010; Fournier-Chambrillon et al., 2004), were ex-
cised and stored at — 20 °C until sample preparation and analysis. Place
of capture, year of capture and sex were recorded on site or during nec-
ropsy. Based on the appearance of dental pulp of canine teeth at X-ray,
mink were aged as younger or older than 10 months (Helldin, 1997).
Mink less than 10 months old were assumed to have been born the pre-
vious May, which is the month of peak births (Dunstone, 1993). Those
judged to be older than 10 months were further aged using tooth ce-
mentum analyses performed by Matson Laboratory LLC (MT, USA).

2.2. Analytes of interest

The ARs examined in this study include those that have been most
commonly used in rodent control activities in the UK: warfarin;
coumatetralyl; diphacinone; chlorophacinone (all FGARs), and
bromadiolone; difenacoum; flocoumafen, brodifacoum (SGARs). The
mink were not screened for difethialone, since ARs containing this ac-
tive were only available in the UK from July 2011, and approximately
8 mink from the sample were captured after this time.

2.3. Preparation of matrix-matched calibration curves

Standards for ARs were purchased from Dr. Ehrenstorfer (Augsburg,
Germany). All standards were certified reference materials (purity
ranging from 98% to 99.5%). Stock solutions of individual pesticides
were prepared from certified reference material into methanol
(~400 pg/ml) and aliquots taken to compose standard mixtures
(5 pg/ml) of warfarin, coumatetralyl, diphacinone, chlorophacinone,
bromadiolone, difenacoum, flocoumafen and brodifacoum. From this,
an intermediate solution at 0.4 ug/ml was prepared by diluting 2 ml of
mix stock to a final volume of 25 ml with methanol. This intermediate
solution was used to prepare solvent standards at different concentra-
tions: 0.05 pg/ml, 0.02 pg/ml, 0.004 pg/ml, 0.002 pg/ml; all in methanol.

To prepare rodenticide matrix-matched standards, 2.5 ml of each
solvent standard concentration plus 0.25 ml of a concentrate of chicken
liver (4 g/ml in methanol) were introduced into a 5 ml volumetric flask
with methanol containing 5 mM Di-butylammonium Acetate (DBAA) to
obtain the standards at 0.025 pg/ml, 0.01 pg/ml, 0.002 pg/ml and
0.001 pg/ml with a final matrix concentration of 0.2 g/ml. Another mix-
ture of rodenticides was prepared as above, to be used as a confirmation
mixture. Both the matrix-matched and the solvent standards were pre-
pared every 7 days to ensure the correct quantification of samples. Lin-
ear calibration curves were constructed using QuanLynx software
(Waters Corporation, MA, USA), which correlates peak areas and
concentration.

An experiment was conducted to check the validity of the chicken
liver for preparing matrix-matched calibration curves. All the proce-
dures described above were repeated using residue-free mink liver
(n = 18) instead of chicken liver, and the quantification was compared
to each other. As shown in Fig. 1, the results in both matrices were well
correlated (Pearson correlation test; R> = 0.984, p < 0.0001), and thus,
the employment of chicken matrix-matched standard curves for the
quantification of ARs in mink liver was validated.
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Fig. 1. Correlation of anticoagulant rodenticides in chicken liver and mink liver matrices.

24. Sample preparation and clean-up

Liver tissue was finely chopped and a portion (<4 g) was weighed
into a beaker (100 ml); 40 £+ 1 mg of solid ascorbic acid was added
and mixed thoroughly using a glass rod. Anhydrous sodium sulphate
(50 g +10 g, adjusted for the weight of the liver sample extracted)
was added to absorb moisture. The mixture was left to dry for 20—
30 min until friable then transferred into an extraction bottle (250 ml)
and 100 + 10 ml of extraction solvent chloroform/acetone (1:1 v/v,
0.075% ascorbic acid) was added. The bottle was securely capped and
placed on a shaker for at least an hour at 145 strokes per minute. The
crude extract was filtered off through a Whatman No1 filter paper
(18.5 cm) with washings into a round bottom flask (150 ml) and evap-
orated just to dryness by rotary evaporation (bath temperature not ex-
ceeding 40 °C). The dry residue was redissolved in approximately 2 ml
of cyclohexane/ethyl acetate (1:1 v/v) and the resulting extract was
transferred quantitatively to a volumetric flask (4 ml) and made up to
volume with the same solvent mixture.

Automated gel permeation chromatographic (GPC) clean-up was
undertaken to enhance recovery, and used a Gilson 233-XL/402 system
and Bio-bead SX-3 column (340 x 25 mm). The Bio-bead column was
prepared as previously described (Hunter and Sharp, 1988) except
that the solvent mixture employed was cyclohexane/ethyl acetate
(1:1 v/v). The GPC flow rate used was 5 ml/min.

Liver tissue extracts were filtered through glass fibre syringe filters
(25 mm, 1.2 um) and 2 ml applied to the GPC column (approx. 2 g of ex-
tract). The first 70 ml of eluate was discarded, and the next 100 ml col-
lected. The cleaned-up extract was evaporated just to dryness (bath
temperature not exceeding 40 °C) and re-dissolved, with the aid of
ultrasonication in 5 mM methanolic DBAA solution (10 ml) for analysis
by Liquid Chromatography Mass Spectrometry (LC-MS/MS). When
sample weight was <4 g, the final volume of 5 mM methanolic DBAA
was calculated to maintain the ratio of 0.2 g/ml.

2.5. Chemical analysis

Chromatographic analyses were performed using an Acquity UPLC
system coupled to a Quattro Premier XE triple quadrupole mass spec-
trometer (Waters Corporation, MA, USA). The chromatographic separa-
tion was performed using a 50 x 2.1 mm, 1.7 pm analytic column
(Waters Acquity UPLC BEH C18) at 35 °C. Mobile phases were (A)
water/methanol 95/5 v/v, 5 mM ammonium acetate, and (B) methanol,
5 mM ammonium acetate. The flow was set at 480 pl/min. The volume
injection was 5 pl. The total run time was 7 min and the gradient was
programmed as follows: min 0, 70% A; min 0.52, 70% A; min 0.66, 40%
A; min 1.05, 40% A; min 3.31, 15% A; min 4.90, 15% A; min 5.00, 0% A;
min 6.00, 0% A, min 6.05, 70% A; and min 7.00, 70% A.

Retention times of each compound were initially determined in the
full scan mode (mass range: m/z 45-600). The time-selected multiple
reaction monitoring (MRM) method was constructed by infusion of
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Table 1
LC-MS/MS method settings of the anticoagulant rodenticides.
Cone
MRM-screen voltage Collision MRM-confirmation
Rodenticide (m/z - m/z) (V) energy (eV) (m/z— m/z)
Warfarin 307 - 161 60 20 307 - 250
Coumatetralyl 291 — 141 40 30 291 — 247
Diphacinone 339 - 167 50 25 339 - 144
Chlorophacinone 373 — 201 40 25 375 — 203
Bromadiolone 525 — 250 80 40 527 - 250
Difenacoum 443 - 293 70 30 443 - 135
Flocoumafen 541 — 161 70 35 541 — 289
Brodifacoum 521 - 135 70 35 521 - 187
523 - 135 70 35 523 - 187

m/z — m/z: Precursor ion — product ion transitions.

methanolic solutions of pure standards directly into the source. Opti-
mum cone voltage and collision energy values were determined for
each analyte. The molecular ion species was identified i.e. [M-H] and se-
lected as the (negative) precursor ion. The precursor ion — product ion
transitions listed in Table 1 were used for screening, confirmation and
construction of associated calibration curves.

Analyses were performed using electrospray ionization in the nega-
tive mode. An interchannel delay of 0.005 s, an interscan time of 0.02 s,
dwell time 0.02 s and span corresponding to 0.2 Da were used. Argon of
99.9% purity (BOC Manchester, UK) was used as a collision gas
(2.89 x 10~ 3 mbar cell pressure). A nitrogen generator (Peak Scientific,
Renfrew, UK) and a compressor system (Atlas Copco, Cumbernauld, UK)
were used to supply nitrogen as the de-solvation, cone and nebulizer
gas. These were set at universally applied values of approximately
500 I/h (de-solvation gas flow rate) and 50 I/h (cone gas flow rate).
The ion source was operated at 120 °C, the de-solvation temperature
held at 500 °C and the capillary voltage was maintained at 0.3 kV. The
LC-MS/MS instrument was controlled and the data processed using
MassLynx 4.1 and QuanLynx Application Manager software (Waters
Corporation (Micromass), Manchester, UK).

The limit of determination (LOD) was set at 0.005 mg/kg for all the
ARs. When necessary, the samples were diluted in order to fit within
the limits of the calibration curve. Acceptable recoveries fell within the
range 60%-140% with the mean being between 70% and 90% at low
and high levels. However as recoveries for chlorophacinone and
diphacinone were between 20% and 80%, the method is therefore con-
sidered qualitative/semi-quantitative for these two compounds. Mea-
sured concentrations were not corrected for recovery rates.

2.6. Quality control of AR measurements (QA/QC)

All of the measurements were performed in duplicate, and mean
values were used for the calculations. In each batch of samples, two 4-
point calibration curves were injected: one at the beginning and the
other at the end of the batch. A low-level calibrator (0.002 pg/ml) was
included every four samples. Each batch also contained a routine liver
matrix sample spiked at high-level (0.1 mg/kg) processed at the same
time as samples, including GPC clean-up. In addition, a liver matrix sam-
ple spiked at low-level (0.02 mg/kg) was included with every fourth
batch analysed. Two blanks were also included in each batch of samples
i.e. a reagent blank, containing 100% methanol, and a matrix blank (pro-
cedural blank). The results were considered to be acceptable when the
quantification of the analytes in the QC was within 40% of the deviation
of the theoretical value.

2.7. Statistical analyses

Two variables were defined to quantify the rate of contamination in
mink: the concentration and the cumulative number of rodenticides in
mink liver, each likely to reflect the ingestion of contaminated prey.
Concentration was defined as the total concentration of all rodenticides

(>~ AR) measured as mg/kg and then rank-ordered to control for
overdispersion. The cumulative number of rodenticides was the sum
of the different AR compounds found per mink (_ Nag).

To test the hypotheses of sexual dimorphism in feeding habits and
the bio-accumulation of ARs with age, we tested the effects of sex and
age (in months) on the concentration and the cumulative number of ro-
denticides. To test the effect of the availability of potentially contami-
nated prey from farms, we used the connectivity index S’ following
Hanski and Thomas (1994), defined as:

F & dij
Si=> exp(—F>Aj

Jj=1

where SFis the connectivity of each mink i to the surrounding matrix
(sum) of all farm holdings j, dj; is the distance (km) between each mink i
to each farm holding j, and A; is the size of the farm, defined as the num-
ber of fields per farm holding j. Connectivity increases with the number
of fields within a farm but decreases exponentially with the distance to
the farms weighted by the parameter d’ (also knownaso = 1/d’),
which reflects the mobility of mink. Values of d’ indicate the size of
the farmed area that influences AR contamination of mink, reflecting
the scale of mink foraging. We estimated the value of d’ based on a pro-
file likelihood approach whereby models for the concentration and the
cumulative number of rodenticides, analysed independently as re-
sponse variables (see below), were iteratively fitted to the data using
values of S estimated using a range of values for d’ (1-120 km) chosen
to best reflect mink movements (Oliver et al., 2016). The most likely
value of d’ was obtained by the model with the lowest model deviance
value. Values of d’ were then back-transformed to actual distances (i.e.
applying —In(1/d")).

All statistical analyses were performed using generalised linear
models (GLMs). The ranked concentration of ARs was fitted to a Gauss-
ian distribution. The cumulative number of ARs was fitted to a Poisson
distribution with a log link. For all models the null hypotheses were
that there were no differences between the estimates of the covariates
and the baseline factorial category (i.e. female = 0 as the intercept).
For each analysis, a global model was first defined and model selection
was conducted by sequentially dropping non-standardised covariates
based on AIC (Akaike, 1973; Burnham and Anderson, 1998). Model av-
eraging and estimates weighting across the most likely models
(AAIC < 1) were used to incorporate model uncertainty in the parame-
ter estimates using the R package MuMIn (Bartofi, 2014). Analyses were
carried out in R 3.2.0 using package Ime4 (Bates et al., 2014).

3. Results

Of the 99 animals sampled in this study, 54 were captured in the pe-
riod 2007-2008; 15 in the period 2009-2010; and 30 in the period
2011-2012. Forty eight percent (n = 45) were male and 52% (n =
54) were female. Most mink were juveniles (less than 10 months of
age, n = 57; median age = 6 months old, average = 10.83, range = 2
to 59). Mink were tested for exposure to a total of 8 AR (4 FGARs and
4 SGARs), with 79% (n = 78) of the animals exhibiting detectable resi-
dues of at least one of these compounds in their livers; 56% with two
or more compounds; 21% with 3 or more, and 5% with 4 compounds
(average 1.56 compounds, range 0-4 for the whole sample). The most
common SGARs found were bromadiolone and difenacoum, one or
both being present in all mink with residues (n = 77) with the excep-
tion of one animal, which contained only brodifacoum. The single-
feed, more toxic SGARs (brodifacoum, flocoumafen) were found in
10% of mink (n = 9). Coumatetralyl was the only FGAR detected
(n = 22), but was only found in liver samples that also contained at
least one SGAR. The average concentration of AR across all animals sam-
pled (n = 99) was 0.23 mg/kg (median = 0.11, p25th-p75th = 0.009
and 0.357 mg/kg, respectively), with almost 50% of positive cases
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(n = 37) exhibiting levels of ) AR above a reported toxicity threshold
of 0.20 mg/kg (Table 2).

The concentration of ARs increased by 4.5% per month of life (Fig.
2a), and the rate of accumulation was 1.7 times higher in locations
with proportionally more farms (third quartile of connectivity) relative
to those in areas with fewer farms (first quartile of connectivity), due to
the connectivity—age interaction (Table 3). Male and female mink had
similar contamination rates irrespective of age (additive effect of ARs
and age sex interaction were non-significant; Tables 3 and 4).

The influence of farm connectivity was best explained 2 km away
(0-3 km 95% CI) from the source of contamination (hence, within
each mink's territory; bestd’ = 8; 0.5-18, 95% CI; Fig. 3). The model pre-
dicted that by the time mink reached 20 months of age, most contained
at least 0.2 mg/kg ARs in their livers (Fig. 2a).

The cumulative number of ARs present in mink also increased with
age and connectivity to farm (best d’ = 4; 0.5-7 km 95% CI; Fig. 2b,
Table 3b). The model predicted that most mink were contaminated
with at least two compounds at 24 months of age (Fig. 2b). The accumu-
lation of ARs was slower for males; although the difference was not sig-
nificant. There was no evidence of any asymptote in the number of ARs
encountered in a mink lifespan over the range of mink age available
(Fig. 2b, Table 3b), although clearly there are only a limited number of
ARs to which mink may be exposed, and the confidence intervals for
this statistic are large, suggesting that some older animals may only be
exposed to a single AR.

4. Discussion

Unlike most other studies that either do not provide age data, or use
broad age categories, the accurate ageing of mink in this study allowed
us to model AR exposure with age, along with sex, and proximity to
farms at known densities. Overall, 79% of mink (n = 99) culled in north-
ern Scotland exhibited detectable residues of AR compounds in their
livers; with over half exposed to two or more compounds, and a fifth
to three or more compounds. Mink were increasingly likely to have ac-
quired ARs as they aged, with virtually all mink of two years of age con-
taminated to 0.2 mg/kg, which corresponds to a previously reported
potential toxicity threshold (Grolleau et al., 1989; Newton et al.,
1999). Mink living in the more densely farmed area accumulated AR
at the rate of 4.5% per month, which was significantly higher than
2.5% in the least intensely farmed parts of the study area. The monthly
rate of acquisition of ARs by mink was significantly related to connectiv-
ity to farm holdings, our chosen measure of the intensity of farming ac-
tivities in the locality of sampled mink. Our estimates of connectivity
best predicting the concentration were relatively precise (0-3 km 95%
CI), indicating that the most influential farms as source of ARs were at

Table 2
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Fig. 2. Model predictions for (a) the concentration of ARs, and (b) the cumulative number
of ARs in mink in relation to mink age (in months) for males (black) and females (grey),
keeping connectivity at its median values. Continuous lines relate to the estimated fit of
the best model weighted for models within the best values of d’ (8 and 4; dashed lines
denote the 95% CIs).

<2 km, therefore within mink home range and foraging distances
(Zuberogoitia et al., 2006; Melero et al., 2008a). The interaction between
age and farm connectivity strongly suggests that farming practices

Liver concentration (mg/kg) of different anticoagulant active ingredients in all mink and mink with detectable residues.

All mink sampled

Mink with detectable AR residues

n=99 n=237
Compound % Mean + SD Median (range) Mean + SD Median (range)
FGAR
Warfarin 0.0 NA NA NA NA
Chlorophacinone 0.0 NA NA NA NA
Coumatetralyl 22.2 0.015 4 0.050 <LOD (<LOD — 0.300) 0.067 4 0.089 0.026 (0.004-0.300)
Diphacinone 0.0 NA NA NA NA
Multi-feed SGAR
Bromadiolone 74.7 0.186 + 0.251 0.063 (<LOD — 1.296) 0.249 + 0.263 0.141 (0.006-1.296)
Difenacoum 52.5 0.022 4 0.049 0.004 (<LOD — 0.315) 0.042 + 0.062 0.016 (0.003-0.315)
Single feed SGAR
Brodifacoum 9.1 0.003 £ 0.018 <LOD (<LOD — 0.171) 0.038 4 0.054 0.015 (0.004-0.171)
Flocoumafen 2.0 0.0002 + 0.002 <LOD (<LOD — 0.017) 0.012 £ 0.008 0.012 (0.006-0.017)
3ARs 77.8 0.227 4+ 0.276 0.110 (<LOD — 1.296) 0.288 + 0.281 0.194 (0.004-1.296)

AR: anticoagulant rodenticide; FGAR: first generation anticoagulant rodenticide; SGAR: second generation AR; 3ARs: sum of all ARs; <LOD: below limits of determination; NA: not

applicable.
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Table 3

Parameter estimates of the effect of covariates with their associated standard errors for
variables included in the best model weighted for the models including the best values
of d’ for (a) the concentration of ARs, and (b) the cumulative number of ARs.

Parameter Estimate SE z p-Value
(a) Concentration of ARs

Age 45 1.82 2.51 0.01
sF 1.58 0.0001 227 0.02
Sex —4.65 5.61 —0.82 0.40
Age + S" —0.0001 5e—5 —2.41 0.01
(b) Cumulative number of ARs

Age 0.06 0.03 2.35 0.02
sF 0.0002 5e—5 2.83 <0.001
Sex —0.01 0.02 —0.94 0.35
Age = S" —8e—6 4e—6 —2.38 0.02

SF: connectivity of mink to the surrounding farm holding matrix.

represent a major source of contamination of ARs in this species. AR res-
idues in foxes have also been positively associated with farming prac-
tices in Germany; specifically with livestock (pig) densities (Geduhn
et al,, 2015). Although the current analysis did not test the relationship
between total ARs, and occurrence or distribution of the different farm-
ing sectors, in 2014, 57% of Scotland's pigs were reared in parts of north-
ern Scotland where many of the sampled mink were trapped (see
graphical abstract; http://www.gov.scot/Topics/Statistics/Browse/
Agriculture-Fisheries/agritopics/Pigs). Our analyses do not rule out the
influence of other contributors to the rate of contamination, since
even mink caught in areas with low farm density were contaminated.
The contribution of rodent control by gamekeepers, where rats are a sig-
nificant pest of game rearing activities should be assessed in future
studies (Mcdonald and Harris, 2000; Sanchez-Garcia et al., 2015). Also,
urban sources of ARs will arise from sewer baiting of rats by local au-
thorities, and use in domestic and industrial circumstances to control in-
gress of commensal rodents (Battersby et al., 2002).

Although livers were tested for eight different ARs, only five com-
pounds were found, with bromadiolone being the most frequently
found (75% of all animals tested). Difenacoum was the second most fre-
quently detected AR (53%) in the mink, followed by coumatetralyl
(22%), brodifacoum (9%) and flocoumafen (2%). The pattern of AR expo-
sure, with comparatively low exposure to the FGARs and especially the
single-feed SGARS, reflects the known usage patterns of ARs on arable,
grassland and fodder crop farms (that tend to support grazing livestock)
over broadly the same time period that mink were collected (Hughes et
al,, 2012; Hughes et al., 2014). In this study, mink were contaminated on
average with two distinct AR compounds by two years of age, and that
acquisition of different AR compounds was best explained by farm con-
nectivity across 0.5-7 km (95% CI), more than twice the maximum dis-
tance over which generalised AR contamination took place. Since
commercial products are not manufactured with combinations of differ-
ent ARs (Lopez-Perea et al., 2015), this distance might be explained by
farmers favouring a particular product with a specific AR compound,

Table 4
Model selection based on AIC and AAIC for (a) the concentration of ARs and (b) the cumu-
lative number of rodenticides ARs in mink. Best models are marked in bold.

Rank Covariates df AIC AAIC
(a) Concentration of ARs

1 Age « ST + sex 4,86 859.00 0

2 Age « ST« sex 7,83 861.27 2.73
3 Age + S* + sex 3,87 863.00 4
(b) Cumulative number of ARs

1 Age « ST + sex 90 282.23 0

2 Age + ST+ sex 90 286.68 4.45
3 Age  SF« sex 90 286.69 4.46

SF: connectivity of mink to the surrounding farm holding matrix.

and mink travelling further distances, covering more individual farms,
are more likely to acquire multiple AR compounds.

In this study samples were taken from apparently healthy mink that
were trapped and culled, rather than a potentially biased sample of op-
portunistically collected carnivores, that might have included individ-
uals found dead, moribund or road-killed. The expected direction of
any bias arising in opportunistic samples might be to overestimate
true contamination rates. Despite this, and worryingly, the observed ac-
cumulated concentration of AR contamination in seemingly healthy an-
imals in this study was higher than those reported in other mustelids in
the UK before 2000, and higher than the concentration reported in some
other European countries. For example, 36.0% (n = 50) of European
polecats (M. putorius) which had been killed on roads in Wales and En-
gland, 30.0% (n = 10) of weasels (M. nivalis) and 22.5% (n = 45) of
stoats (M. erminea) that had been killed by gamekeepers on shooting es-
tates in England sampled in 1996/97, were reported to have detectable
amounts of ARs in their livers (McDonald et al., 1998; Shore et al., 2003).
Unfortunately, non-standardised sampling between studies precludes
establishing whether this reflects a high degree of penetration of these
chemicals in the trophic chain in Scotland compared with the rest of
the UK, or changing patterns of AR use over time. The latter option is
supported by a recent study of foxes (shot, and opportunistically sam-
pled from road kills) collected from across the UK (n: Northern Ire-
land = 155; England & Wales = 29; Scotland = 44), which suggested
similar levels of contamination in Scotland as the rest of the UK (Tosh
et al.,, 2011). However, only 15% of trapped American mink (n = 47)
and 10% of Eurasian otters opportunistically collected (n = 11; 20 re-
spectively) were exposed to ARs in France (Fournier-Chambrillon et
al., 2004; Lemarchand et al., 2010); while 39% of Scottish otters (n =
23) were found exposed to ARs between 2004 and 2015 (EA Sharp,
SASA, pers. comm.; unpublished data). Whether the high contamination
rate observed in Scottish mink reflect real differences or merely sam-
pling effect caused by e.g. differences in the age of individuals, and
hence the length of exposure, of the typically small number of individ-
uals sampled is not known. Furthermore, differences in assay methodol-
ogy and sensitivity (limits of detection, recovery of compound, and
whether or not corrections for recovery are applied) mean that at pres-
ent, comparisons between contemporary and older studies should be
treated with some caution (Shore et al., 2015). Using assay sensitivities
broadly comparable with those of the current study, it is reported that
97% (n = 61) of stoats and 93% (n = 69) of weasels collected opportu-
nistically in Denmark, and 78% (n = 58) of American fishers (Martes
pennanti) in California that had been trapped, radiotagged and carcases
collected if later found dead, contained ARs residues (Elmeros et al.,
2011; Gabriel et al.,, 2012). These degrees of exposure are comparable
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Fig. 3. AIC profile obtained by fitting the model of the concentration of ARs (black), and the
cumulative number of ARs (grey) in relation to the connectivity (S") data estimated across
values of the parameter d’ between 0 (i.e. capture location) and 120 km. The lowest AIC
values indicate the best models, leading to d’ = 8 and d’ = 4 for the concentration and
the number of ARs respectively.
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with that found in stoats (100%, n = 11 and 85%, n = 115) after inten-
sive rodent eradication operations using broadcast baiting methods in
New Zealand (Alterio et al., 1997; Eason et al., 2002 respectively).

Almost 50% of the positive cases (n = 37) detected residues above a
previously reported potential toxicity threshold (0.20 mg/kg), which
has been associated with mortalities in mustelids and other mammals
(Grolleau et al., 1989; Berny et al., 1997; Newton et al., 1999). Evidence
of toxicity is generally based on macroscopic haemorrhaging, which
cannot be accounted for as physical trauma injuries, but is associated
with relatively high concentrations of hepatic ARs. Bromadiolone poi-
soned stoats were associated with liver concentrations of 0.23 mg/kg
(Grolleau et al., 1989), whereas Fournier-Chambrillon et al. (2004)
found that hepatic bromadiolone residues of 0.7 mg/kg were responsi-
ble for AR poisoning in two polecats and a mink. In another study, mor-
tality in a single polecat was associated with a difenacoum liver residue
of 1.4 mg/kg (Shore et al., 1996). In coyotes, mortality has been associ-
ated with hepatic brodifacoum residues of between 0.25 and 1.0 mg/
kg (Poessei et al., 2015), while very similar total AR concentrations
were not associated with lethality at all in hedgehogs (Dowding et al.,
2010). Mortality in bats was associated with levels of between 0.19
and 0.68 mg/kg (Dennis and Gartrell, 2015), although various studies
arising from New Zealand consider toxicity thresholds to have been
reached at various concentrations ranging from 0.3, 0.5 and 0.7 mg/kg
(see Spurr et al., 2005). In general, Sanchez-Barbudo et al. (2012)
found that haemorrhaging was typically associated with higher levels
of AR, although the response could be variable. This variability has
been observed both within and between species (Shore et al., 2015),
and the relationship between mortality and ) AR is complex (Eason
et al.,, 2002; Rattner et al., 2014). For ARs to exert a lethal effect on mam-
mals and birds, it is necessary for all specific binding sites, predominant-
ly located in the liver and pancreas, to be saturated with AR, and in
addition, for AR to be present in excess of this (Mosterd and Thijssen,
1991; Thijssen, 1995). The concentrations of the specific binding sites
in the livers have been reported to vary between species of mammals
and birds, although they are of the same order of magnitude. Thus the
liver residue levels in species that have died as a result of ARs would
also be expected to vary between species, but within the same order
of magnitude (Erickson and Urban, 2004; C. Prescott, pers. comm.).
While signs of anticoagulant toxicity can sometimes be obvious due to
haemorrhaging at the macroscopic level, it can also be very difficult to
verify that an animal has actually died as a result of anticoagulant inges-
tion, particularly if haemorrhaging occurs at the microscopic level
(Shore et al,, 2015). Nonetheless, survival despite contamination is un-
equivocal, and in these animals, liver residue levels provide a minimum
measure of their binding site concentrations (C. Prescott, pers. comm.).
Furthermore, it has been reported that individual animals, once they
have recovered from sub-lethal exposure, may develop compensatory
tolerance to ARs (Eason et al., 2002), and that American mink may be
less susceptible to these chemicals (Kaukeinen, 1982). In this study,
the high liver concentrations found in a large proportion of apparently
healthy mink, while indicative of exposure, are not indicative of lethal-
ity, at least in this species, although they might be indicative of a more
deleterious impact on other carnivores. Another approach to assessing
lethality where carcases with confirmed anticoagulant-induced
haemorrhaging are available, is to construct a probabilistic model relat-
ing the risk of lethal poisoning by SGARs with hepatic concentrations
(Thomas et al., 2011).

A key contribution of this study is the first estimates of the rate of
contamination with increasing age, calculated from the slopes of the
contamination age relationships. The rates of exposures are high, in
the order of 4.5% of the population per month of life in mink. This expo-
sure rate results in virtually all mink being exposed above a reported po-
tential toxicity threshold of 0.2 mg/kg by 2 years of age, and assumes
cumulative exposure due to the long half-lives of the SGAR compounds
in particular. For example, the hepatic half-life of bromadiolone, the
most frequently detected active ingredient found in this study, has

been estimated in rats at between 170 and 318 days (see Erickson and
Urban, 2004 for review). While few mink live to 2 years in culled popu-
lations, other carnivores routinely do (e.g. otters and martens) such that
if extrapolated, our result suggest widespread penetration of potentially
toxic levels of AR and therefore, potential population impacts. Carni-
vores can be aged relatively easily using canine X-ray and section, and
it would be highly desirable for future studies to report age-corrected
estimates of AR exposure, where possible using exposure rate per unit
time for comparing prevalence of AR non-target contamination be-
tween regions and different regulatory regimes.

The precise routes of exposure in this study remain unconfirmed, al-
though dietary analysis of mink has shown that they will take target ro-
dents such as rats (Rattus norvegicus), as well as non-target rodents such
as field voles (Microtus agrestis), wood mice (Apodemus sylvaticus),
water voles (Arvicola terrestris) and shrews (Sorex spp.) (Akande,
1972; Cuthbert, 1979; Melero et al., 2014). Recent studies from Germa-
ny have found high AR residues in non-target species which were
trapped at various distances from AR bait boxes. The highest maximum
residues were found in field mice (Apodemus), followed by voles
(Microtus, Myodes), then shrews (Sorex, Crocidura). However, 21% of
Apodemus species contained AR residues; 7% and 26% respectively in
Microtus and Myodes species; and 28% and 66% respectively in Sorex
and Crocidura species (n total = 732). The majority of rodents with
AR residues were trapped within 15 m of the bait boxes (Geduhn et
al., 2014, 2016). These data strongly support previous reports of second-
ary exposure risks via non-targets in the UK (Brakes and Smith, 2005).

Of particular concern is the incidence of the most potent, single-feed
SGARSs, brodifacoum (9% of all mink) and flocoumafen (2%) (Table 2),
which at the time of mink trapping, were only approved for indoor
use (EC, 2004; EC, 2007). Given these restrictions, routes of exposure
suggest regular movement of rodents in and out of buildings which is
plausible only for house mice, wood mice and rats, or unapproved use
outside of buildings.

Similarly high rates of exposure and high concentrations of ARs
found in this study, have been reported in foxes and some raptors
from Scotland (Tosh et al., 2011; Hartley et al., 2013; Hughes et al.,
2013). These levels of exposure may suggest possible risks to other
non-target species, although the current data may be more indicative
of risks to mustelids of high conservation status, especially given the de-
gree of dietary overlap between mink and native mustelids (Gorman,
2008). Where there is both niche and dietary overlap, it is possible
that native mustelids may be exposed to toxic levels of ARs. Analyses
performed on 23 Eurasian otters from Scotland over a similar time peri-
od found that 39% were exposed to ARs, and that just under 9% exhibit-
ed Y_ AR above 0.20 mg/kg (E. Sharp, pers. comm.; unpublished data).
While the niche and diet of otter and mink overlap (Clode and
MacDonald, 1995; Bonesi et al., 2004; Melero et al., 2008b), and otters
can be found in a wide variety of habitats across Scotland (SNH,
2015), otters specialize mainly on aquatic prey, while mink can exploit
both aquatic and terrestrial species (see Melero et al., 2014). It is also
possible that mink outcompete sympatric carnivores for access to poi-
soned rodents, and may inadvertently be lowering their exposure
risks. Although there are no published data from Scotland on AR resi-
dues in European pine marten (M. martes), concerns have been raised
regarding AR impacts in protected American fishers (M. pennanti)
(Gabriel et al., 2012).

5. Conclusions

This study has demonstrated a relatively high level of AR exposure in
mink. The long half-lives of the SGARs in particular (WHO, 2007;
Vandenbroucke et al., 2008), means that across the lifetime of most
mink, AR residues increase in both concentration and number of active
compounds. This relationship is highly affected by the presence of farms
in terms of number and the size of the farms found in the area around
mink trapping locations.



1020 N. Ruiz-Sudrez et al. / Science of the Total Environment 569-570 (2016) 1013-1021

Mustelids are particularly susceptible to AR contamination probably
as a result of their varied prey base, which includes target and non-tar-
get rodents (Shore et al,, 2003; Gabriel et al., 2012; Melero et al., 2014).
These data support the use of mustelids, and in particular the American
mink, as a sentinel of environmental AR contamination in rural areas.
The rigour of comparisons of the degree of penetration of wild carnivore
populations by AR could be increased if done in a standardised manner
by using feral mink that are widely culled for conservation. The invasive
alien species framework for the identification of invasive alien species of
EU concern (EC, 2013) lists the American mink as one of 16 invasive
mammals, of which several may be candidate species for comparative
AR mitigation studies. For instance across mainland Europe, the raccoon
(Procyon lotor) is widely found living in the wild, although not in the UK.
Nonetheless, the American mink has been found in 28 European coun-
tries (Bonesi and Palazon, 2007), and in some of these countries, they
are intensively controlled (Maran et al., 2012). Our results suggest
that correcting prevalence for age, hence the time of exposure to AR,
would greatly increase the power of comparisons.

Under Directive 98/8/EC concerning the placing on the market of
biocidal products, several anticoagulants were described as “high
toxic, non-selective and can pose a high risk of primary and secondary
poisoning to non-target animals and children”. For these reasons, Euro-
pean Member States are required to implement and assess the success
of risk mitigation measures (EC, 2009). The measurement of AR residues
in American mink has the potential to provide an intra-continental ref-
erence database, against which risk mitigation measures may be judged
at the international level.
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