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Abstract. Concerns about climate change, pollution and energy security have prompted policies 

aiming at replacing fossil fuels (in heating and cooling, and transportation) with electricity, 

presumably generated from renewable sources. Climate change itself is expected to increase the 

demand for cooling in buildings, which is generally met with electricity-powered air 

conditioning.  We use hourly electricity demand from a sample of Italian residences over a full 

year to examine how sensitive residential demand is to temperature. Our regression model 

includes a rich set of household-by-time fixed effects to control for dwelling characteristics and 

equipment, family composition, work and business schedules, demand for lighting, and seasonal 

habits other than temperature. These allows us to separate the effect of temperature from the 

demand for lighting and from other seasonal effects that may be correlated with temperature, but 

are not temperature. We find that demand stays within a relatively narrow range (and is thus 

relatively flat) up to temperatures of about 24.4 C, and increases sharply with temperature 

thereafter. We find that temperature accounts for a very small share of daily electricity demand. 

Only on exceptionally hot summer days can temperature account for 12% of hourly electricity 

use.  
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1. Introduction  

 The power generation sector is a major contributor to greenhouse gas emissions that 

trigger climate change (IPCC, [1]). In the United States alone, in 2016 electricity generation was 

responsible for a total of 1,809.25 million metric tons of carbon dioxide (CO2),
2 or 

approximately 36% of the country’s total CO2 emissions.3 Climate policy and the push towards 

renewables will affect this industry heavily, but the de-carbonization of the energy sector is in 

turn likely to be meaningfully affected by the changes in electricity demand induced by climate 

change (Tobin et al., [2]). Cooling is the fastest growing energy service in buildings, having 

doubled globally since the beginning of the 21st Century (International Energy Agency, [3]). Air 

conditioners and electric fans already account for about one fifth of the total electricity in 

buildings, and the demand for electricity for heating will presumably decrease at many locales.  

How does a changed climate—a warmer climate, in most places—affect electricity 

demand? Brown et al. [4] summarize earlier studies, noting that it is unclear which is a better 

predictor of electricity demand—temperature or heating/cooling degree days—and whether this 

relationship follows a U shape with a flat bottom or a sharp V. Auffhammer et al. (2017) use 

daily data from the balancing authorities in the United States, covering a total of 166 load zones, 

from 2006 to 2014, and find that while in certain zones (e.g., ERCOT, the Texas independent 

system operator), the temperature-load relationship is symmetric around 21 C, for others on the 

East Coast loads grow much more sharply as the temperature rises above 21 C. Franco and 

Sanstad [6] and Khanna [7] conclude that annual electricity demand in California can be 

                                                           
2 See 

https://www3.epa.gov/climatechange/ghgemissions/inventoryexplorer/#electricitygeneration/allgas/source/current. 
3 In 2016 the US emitted a total of 5,011.69 million tons of CO2 

(http://edgar.jrc.ec.europa.eu/overview.php?v=CO2andGHG1970-2016&sort=des8).  

. 

https://www3.epa.gov/climatechange/ghgemissions/inventoryexplorer/#electricitygeneration/allgas/source/current
http://edgar.jrc.ec.europa.eu/overview.php?v=CO2andGHG1970-2016&sort=des8
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expected to increase by 0.8 - 17.8% and by 15%, respectively, relative to the 1961-1990 base 

period (depending on the model, SRES scenario, and period) over the course of the century.  

A recent study by Wang and Bielicki [8] analyzes ten years of aggregated (i.e., all 

sectors) hourly electricity load data to estimate the relationship between electricity demand and 

meteorological conditions in the northeastern United States. It finds that there is a ~7 °C 

“comfort zone” where electricity loads are less sensitive to temperature. Electricity loads are 

linearly sensitive to temperature when this is either below the lower comfort zone breakpoint or 

above the higher comfort breakpoint.4 

Studies for the European Union have sought to predict electricity loads under a variety of 

climate change realizations. Damm et al. [11] predict total annual electricity consumption to 

diminish for all countries (except for one: Italy) due to the milder winters, which are not fully 

offset by the increased demand for cooling in the summer. By contrast, in Italy the relationship 

between temperature and electricity demand is shaped as a very sharp V, and Italy is the one 

country that is predicted to experience a net increase in electricity usage (+0.5%), driven 

primarily by the increased demand for cooling. Wenz et al. [12] arrive at similar findings, which 

they characterize as a “north-south polarization” in energy demand.   

 This earlier literature has econometrically estimated the relationship between electricity 

load and temperature using total aggregated demand by all users—the industrial, commercial, 

and residential sectors—and thus has been unable to empirically separate the potentially different 

sensitivities to increases in the average global temperature across or within these groups of 

                                                           
4 Among other things, Wang and Bielicki [8] examine the role of wind speed and dew point, and whether 

consecutive days of hot weather matter. Ahmed et al. [9] use stepwise regression techniques to investigate which 

weather variables are redundant for degree days. Jiang et al. [10] examine the effect of a cold wave in China on 

heating demand, finding that only the more developed areas saw a change in heating area consumption per floor area 

when heating degree days (their measure of cold weather and hence heating demand) increased.  
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customers. Alternatively, previous studies have used model-based approaches to build bottom-up 

estimates of the change in electricity usage under future climate scenarios, as in Dirks et al. [13], 

whose approach is strictly based on the existing stock of buildings in the United States, and 

Afshari and Friedrich (2017), who modelled urban energy systems using hourly electricity 

demand and weather measurements. The literature analyzing the relationship between 

temperature and aggregate energy demand—consisting of industrial, commercial, and residential 

sectors—comprises a number of empirical studies.5 

There are fewer empirical studies focusing on the relationship between temperature and 

electricity demand in the residential sector only. Heterogeneity across households is a potentially 

important issue when examining residential energy demand as a function of outside temperature 

(Birt et al. [15]; Mirasgedis et al. [16]). Summerfield et al. [17]) examine daily energy delivered 

to a large sample of UK homes between 2008 and 2010, where energy delivered is expressed in 

kWh and includes both gas (used for space heating, cooking and hot water) and electricity, with 

gas accounting for the majority of it. They define the power-temperature gradient (PTG) as the 

slope of the linear regression of daily energy delivered on average outside temperature when 

such temperature is between 0 and 15 C. The PTG is thus the expected decline in energy 

delivered as the average temperature increases by 1 C. The PTG is estimated separately for each 

dwelling and is found to vary across dwelling types (e.g., single-family home, flat in a building, 

etc.) and to increase with the number of rooms and the age of the dwelling, but not, once these 

are controlled for, with the number of occupants.  The homes with the largest PTG are also the 

ones with the most pronounced fluctuations in load within the day, on cold (average temperature 

0 C), moderate (8 C) and mild (18 C) days.  

                                                           
5 For a review, see Wang and Bielicki [8]. 
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 The aim of this paper is to explore the relationship between temperatures and hourly 

residential electricity demand. We use hourly electricity load data from a sample of homes in 

Italy, merged with temperature data. For context, ARERA [18] reports that the total electricity 

consumption in 2011 in Italy was 311.6 TWh, and that residential consumption accounted for 

22.34% of this figure.  

Our work differs from earlier studies in at least four respects. First, we focus on 

residential loads. Second, we seek to separate the effect of temperature from that of other 

seasonal factors that may be correlated with temperature, but are not temperature. For example, 

in the summer people may need to use more electricity for cooling purposes but less for lighting, 

as there are more hours of daylight (Jylhä et al. [19]). They may also spend more time outside of 

the house or away from home, which would imply less demand for electricity. We account for 

the different behaviors, which in turn affect loads, using a rich set of household-by-time fixed 

effects. We also account for whether it is completely dark or otherwise, which depends on the 

time of the day and varies across seasons and locations. 

Third, since our data are at the household level for each hour and each day of the year 

2011, we examine whether the effect of temperature is different for different households, 

depending on their income, house size, location and ownership of appliances and electric 

devices. Finally, rather than running global circulation models under alternate scenarios (e.g., 

RCP2.6, RCP4.5, etc.), downscaling them to the local level, and predicting electricity demand at 

the resulting temperatures (which means applying temperature changes expected to occur mid-

century to the current stock of housing, energy efficiency technology and behaviors), we conduct 

a somewhat different exercise. We use the results from our regressions to predict what the 

demand would have been, had the temperatures in the summer of 2011 been what they were in 
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the summer of 2003, when an unprecedented heat wave swept across all of Europe, causing 

difficulties in the generation sector, and even more important, leading to tens of thousands 

premature deaths among the population of several European countries (Foulliet et al. [20]).6 We 

also predict what the usage would have been if the temperatures in our 2011 sample had been 

raised systematically by 1 C. 

Briefly, we find that, even with our rich set of fixed effects and controls, the demand for 

electricity does rise sharply as the outdoor temperature increases above 24.4 C, but remains 

within a narrow range for temperatures below that. The “J” shape of the relationship between 

electricity usage and temperature is robust to several checks, and, importantly, the slope with 

respect to temperature is virtually the same across income groups. We also find that the 

temperature itself explains on average a relatively low share of load (roughly 2.9% in 2011).  We 

show that holding consumption behaviors and equipment the same as 2011, on the warmest 

2003-level days, load would have increased up to 12% of total daily usage. 

 

2. Data and Methods 

2.1 The Data  

 We have electricity consumption collected by smart meters at 15-minute intervals from a 

sample of 396 homes in Italy. These meter readings cover an entire year, 2011, from January 1st 

to December 31st.  This sample was provided to us by the Italian National Regulatory Authority 

(ARERA), and is representative of the geographic distribution of the population, as shown in 

                                                           
6 See https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/heatwave 

and http://www.grid.unep.ch/products/3_Reports/ew_heat_wave.en.pdf.   

https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/heatwave
http://www.grid.unep.ch/products/3_Reports/ew_heat_wave.en.pdf
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table 1. For context, during our study period the majority (80%) of the residential customers 

were served under a regulated price regime (ARERA [18]).   

 For each household, in addition to the municipality and region of residence, we also have 

information about the number of white goods owned,7 the total number of electrically operated 

devices owned (including TVs, computers, and others), whether hot water is supplied by one or 

more electric water heaters, and the approximate size of the dwelling (in square meters, banded 

into 10-square-meter intervals). We also know the number of household members and have a 

rough indicator of household income (5 categories, ranging from “very low” to “very high”).  

Descriptive statistics of these variables in the sample are reported in tables 2, 3 and 4. 

 We do not have information about the type of heating and cooling systems used in each 

dwelling, but the Italy Residential Energy Consumption Survey (RECS), which was conducted in 

2013, reports that 79.81% of the homes in Italy use natural gas as their only or main heating 

fuel.8 Regarding cooling, RECS indicates that about 27.60% of the homes in Italy have some 

form of air conditioner—either a heat pump (19% of the total) or central, individual-room, or 

movable air conditioners. (This definition excludes electric fans.)  

 Some information about cooling devices in Italian homes is also available from the 

Household Budget Survey (HBS), which is conducted annually on independent cross-sections 

from the population.9 The HBS from each year from 2004 to 2016 shows that the penetration of 

cooling devices increased at an annual rate of 1.6-2%. 

 In this paper we examine the electricity demand and its responsiveness to temperature, so 

we merged the household load records with temperature. We obtained temperature data for Italy 

                                                           
7 “White goods” is a term that refers to refrigerators, freezers, clothes washing machines and tumble dryers 

(https://www.ademe.fr/energy-efficiency-of-white-goods-in-europe-monitoring-the-market-with-sales-data).  
8 See https://www4.istat.it/it/archivio/203344.  
9 See https://www.istat.it/en/archive/180353.  

https://www.ademe.fr/energy-efficiency-of-white-goods-in-europe-monitoring-the-market-with-sales-data
https://www4.istat.it/it/archivio/203344
https://www.istat.it/en/archive/180353
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in 2011 from the Modern-Era Retrospective Analysis for Research and Applications version 2 

(MERRA-2).10 MERRA-2 is a global atmospheric reanalysis produced by the NASA Global 

Modeling and Assimilation Office (GMAO) that spans the satellite observing era from 1980 to 

the present and has a resolution of 0.5° × 0.625° (approximately 50 km × 65 km). MERRA-2 

provides atmospheric temperature at different pressure levels every 3 hours. We assign 

temperature to each location after matching the town or city each household lives in with its 

geographic coordinates and elevation (and hence pressure). Table 5 and figure 1 summarize 

information about the mild climate of Italy: the average temperature is 22 C, and the distribution 

of hourly temperature is bimodal.   

Turning to electricity, as shown in table 5 the average hourly load per household is 

approximately 0.3 kWh, which is equivalent to a little over 7 kWh a day, or 2622 kWh a year. 

This is in line with the average consumption levels (about 2700 kWh/year) generally used by the 

Regulator to compute expenditure on electricity bills and the impacts of various pricing or other 

supply policies.11 Meter readings equal to zero account for 0.69% of the sample. We attribute 

them to either absences from home or outages. This is consistent with the fact that in Sardinia 

(the second largest island of Italy, and both a vacation destination with vacation homes likely 

vacant for part of the time as well as an area with grid difficulties) they account for up to about 

3% of the observations.   

 As expected, electricity usage does vary widely throughout the day. Figure 2 shows that 

during the week consumption is lowest in the early morning, then rises as people get up to go 

school or work, or simply go about their daily routine. There is an early afternoon peak between 

                                                           
10 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  
11 ARERA [21] reports that household consumption was 2700 kWh/year in 2011, and had fallen to 2400 kWh by 

2014.  

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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13:00 and 15:00, and a much more pronounced evening peak between 19:00 and 21:00. At the 

evening peak, usage is about three times as much as large as lowest level, which is observed 

between 4:00 and 5:00am.  

 Figure 2 also contrasts weekday patterns with weekend patterns. On the weekends, the 

morning usage increase is a little delayed compared to that on weekdays, presumably as a result 

of a morning schedule that for many people is not associated with work activities. Consumption 

also remains somewhat higher throughout the day, as people spend more time at home and 

engage in energy-using household chores, and the evening peak is lower. These patterns are 

consistent with our expectations.  

Figure 3 displays the average daily consumption by average daily temperature.  Usage 

exhibits only minor fluctuations as the average temperature is below 5C, hits a plateau between 

5 and 10 C, and then declines as the average temperature rises, reaching its minimum between 

17.5 and 20 C, and rising sharply thereafter.  We had expected electricity usage to be high when 

the weather is cold, in part because people spend more time inside and there are fewer hours of  

daylight, and in part because electricity may be used as the main or as a secondary heating fuel.12 

In practice, however, electricity usage does not increase sharply as the temperature drops. 

Rather, it increases sharply as the temperature rises, presumably as more power is needed to run 

cooling devices.  In the remainder of this paper, we estimate the exact extent of this increase and 

examine its impact on electricity demand under alternate hot weather scenarios. 

 

                                                           
12 In practice, the Italy Residential Energy Consumption Survey of 2013 and the Italy HBSs since at least 2004 

confirm that natural gas is the main heating fuel used in the majority (two-thirds or more) of the Italian homes. 

Electricity is not as frequently used, and only recently have a number of policies promoted high-efficiency heat 

pumps for heating and cooling purposes (see http://www.enea.it/it/seguici/pubblicazioni/pdf-

volumi/2018/detrazioni-2018-executivesummary-en.pdf).  

http://www.enea.it/it/seguici/pubblicazioni/pdf-volumi/2018/detrazioni-2018-executivesummary-en.pdf
http://www.enea.it/it/seguici/pubblicazioni/pdf-volumi/2018/detrazioni-2018-executivesummary-en.pdf
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2.2 The Model  

 Earlier studies have focused on the heterogeneity of electricity demand and how demand, 

and demand responsiveness to electricity price, depends crucially on the stock of energy-using 

durables in the home (McFadden et al. [22]; Reiss and White [23]). Our dataset contains 

information about the number of “white goods” and electrical appliances in the home, but does 

not tell us what specific appliances they are, their vintages and/or energy efficiency levels. We 

do know the home’s approximate size, which is a major determinant of electricity demand 

(Alberini et al. [24]).   

For these reasons, we specify a regression equation that contains a rich set of fixed effects 

to capture the unobserved heterogeneity across households and over time, plus terms that capture 

the effect of temperature: 

(1)  𝐸𝑖𝑠 = 𝐹𝐸(𝑖, 𝑠) + ∑ 𝑇𝑗𝛿𝑗 + 𝜀𝑖𝑠
𝐽
𝑗=1 ,  

where 𝐸𝑖𝑠 denotes the electricity demand of household i during a suitably defined period s (see 

below), FE(i,s) denotes a set of household- and time-specific fixed effects (described in detail 

below), while we let the effect of temperature be captured by a set of dummies denoting whether 

or not the temperature at time s falls in a specified interval. This approach is very flexible, in that 

it does not impose any functional form (whether linear, piecewise linear as in Wang and Bielicki 

[8], or polynomial) on the relationship between temperature and electricity load. It is also less 

sensitive to the presence of outliers than a polynomial of order three or higher is likely to be. Its 

only assumption is that the relationship is linear within the very small temperature range within 

each “bin” j. 

Our experience (e.g., Alberini et al. [25]; Alberini et al. [26]) is that household electricity 

loads are affected by temperature, but temperature accounts only for a small share of the total 
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variability in loads. For example, in Alberini et al. [26] we found that the household fixed effects 

alone accounted for 73% of the variation in monthly household electricity usage in Western 

Ukraine. Adding time fixed effects common to all households raised the regression R2 to 0.79, 

and adding heating degree days changed the R2 by less than 0.01.  Based on this reasoning and 

on the fact that electricity is not the most important heating fuel in Italy, the temperature terms 

enter in our model in an additive fashion.  

Before we specify equation (1) in detail, however, two matters must be resolved. The first 

is the choice of the time period s. There is an obvious mismatch between the frequency of the 

meter readings (every 15 minutes), and the times at which temperature is available in MERRA-2 

(every 3 hours, namely at 0:00, 3:00, 6:00, 9:00, etc.). A number of alternatives are possible to 

handle this mismatch. One could, for example, use only the meter readings at the exact time 

when temperature is available. Doing so will result in 8 observations per household per day, but 

discards information about the loads at, say, 0:15, 0:30, etc.  

Alternatively, one may aggregate (i.e., sum) the meter readings over three hours, 

matching 3-hour loads with the 3-hour temperatures. This will also produce 8 observations per 

household per day, does not discard any of the 15-minute loads, but may sacrifice information on 

the infra-hour variation in loads. Finally, one may impute temperature at the times when the 

temperature from the MERRA-2 dataset is not available in an effort to keep as many of the daily 

electricity meter readings as possible. This procedure should result in unbiased regression 

coefficients, but will “compress” the true variability of temperature and introduce 

heteroskedasticity, requiring appropriate correction of the standard errors (or, at a minimum, 

heteroskedasticity-robust standard errors; Little [27]).   
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The second matter that must be addressed is the selection of the temperature “bins” (Tj in 

equation (1)).  Narrow bins are desirable because impose minimal assumptions on the functional 

form of the relationship with electricity loads, but excessively narrow bins may contain too few 

observations and produce unstable regression results. 

 To strike a good balance between all of these considerations, we aggregate the 15-minute 

meter readings to form total hourly usage and write regression (1) as: 

(2) 𝐸𝑖ℎ𝑡 = 𝛼𝑖ℎ + 𝜃𝑖𝑑 + 𝜏𝑖𝑚 + 𝛾𝑑𝑚 + 𝜆𝑑ℎ + 𝛽1 ∙ 𝐷𝑎𝑟𝑘𝑖ℎ𝑡 + 𝛽2 ∙ 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑡 + ∑ 𝑇𝑗
𝐽
𝑗=1 𝛿𝑗 + 𝜀𝑖ℎ𝑡 

where i denotes the household, d the day of the week (DOW), m the month, h the hour, and t the 

exact date (day, month and year), and the Tj are 2.5 C bins. Equation (2) includes i) household-

by-hour fixed effects, ii) household-by-DOW fixed effects, iii) household-by-month fixed 

effects, iv) DOW-by-month fixed effects, and v) DOW-by-hour fixed effects. 

With the household-by-hour fixed effects (ih in equation (2)), we hope to capture hourly 

usage patterns that are specific to a household. For example, a household with early risers would 

be expected to incur the morning peak earlier than one where members do not get up as early; a 

household with children who come back from school would be expected to experience an early 

afternoon peak that would not be observed for households where everyone comes back from 

work in the evening, etc.  The household-by-day of the week fixed effects (𝜃𝑖𝑑) account for 

patterns typical of households with members who work or go to school versus households 

comprised exclusively of retired persons, while the household-by-month effects (𝜏𝑖𝑚) helps 

capture personal holidays and/or school holidays, structural characteristics of the home that 

affect consumption on a seasonal basis, etc.13  Terms 𝛾𝑑𝑚 and 𝜆𝑑ℎ, namely the DOW-by-month 

                                                           
13 Since we do not have any information about the dwelling type (e.g., single-family home, apartment in a building, 

etc.), vintage, construction materials, orientation and exposure to sunlight or wind, we are unable to explicitly 

account for building capacitance. The household-by-hour and household-by-month fixed effects may capture, 
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and DOW-by-hour fixed effects, are assumed to be in common with all households. They are 

included to capture workweek and business schedules that are likely to alter the time spent at 

home and usage patterns of most people.  

Taken together, the fixed effects seek to capture the effects of housing structure, family 

composition, work and school schedules, and seasonal variation in usage that is not necessarily 

due to temperature. There are a total of 16,506 fixed effects, and hence coefficients, to be 

estimated from a total of 3,310,524 observations.14  

Dark is the share of the hour before sunrise or after sunset, and is assumed to capture 

lighting-related electricity demand. The coefficient on this variable is identified off the variation 

in light across seasons (at 6:00am it is dark if in December, but bright and light in June) and on 

the same date within household and across locales (in the summer, for example, the sun rises 

earlier in Northern Italy than it does in Southern Italy).15 Holiday is a dummy for the major civic 

and religious holidays. The coefficient on the Holiday dummy captures the average additional 

effect of a holiday on hourly electricity consumption.   

The terms Tj  in equation (2) are dummy variables denoting temperature bins, and are 

based on uniform bin widths of 2.5 degrees Celsius. The temperature intervals range from -8 C 

                                                           
among other things, capacitance.  Wang and Bielicki [8] interpret some of the shifts in the lower and upper 

breakpoints over the day and in relation to the previous day’s temperature as possibly due to building capacitance.  
14 Specifically, there are a total of 9072 household-by-hour fixed effects, 2646 household-by-day of the week fixed 

effects, 4356 household-by-month fixed effects, 168 day of the week-by-hour fixed effects, and 84 day-of-the-week-

by-month fixed effects.  
15 Sunrise and sunset time vary significantly by date and town location. For instance, the family with ID=1 in our 

dataset experienced sunrise at times ranging from 5:41 - 8:07 and sunset from 16:47 to 21:19 in 2011.  On the same 

day, the families living in Lecce (in Southeastern Italy) saw the sunset at 16:31 whereas the family in Sestu 

(Sardinia) saw the sunset 40 minutes later, at 17:10. The sunset and sunrise time are calculated using NOAA 

Sunrise/Sunset and Solar Position Calculators, which is based on equations from Astronomical Algorithms by Jean 

Meeus. The sunrise and sunset results are theoretically accurate to within a minute for locations between +/- 72° 

latitude, and within 10 minutes outside of those latitudes. Since Italy has a latitude ranging from 36.7 to 47, 

NOAA’s solar calculator is well suited. We use the coordinates of each town to calculate the site- and date-specific 

sunrise and sunset times, and compare each hour of the day with the sunrise and sunset time of this day at each 

location to generate the Dark variable. 
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to 38 C by 2.5 C. To place the temperature in the appropriate bins, we linearly interpolated the 

3-hour temperatures from MERRA-2 to fill in the missing hourly values (e.g., those at 1:00, 

2:00, 4:00, 5:00, etc.).  

 

3. Results  

 We report selected coefficients from running OLS on equation (2) in table 6. All standard 

errors are clustered at the household-day level, and are thus heteroskedasticity-robust.16 Briefly, 

we find evidence that temperature does influence electricity consumption above and beyond 

other household, dwelling, time and seasonal effects. The R square of the regression, however, 

only increases from 0.3978 to 0.3988 when the temperature terms are added.  

The coefficients on the temperature in dummies are plotted in figure 4.  They exhibit a 

“hockey-stick” or “J” shape, with a relatively flat left side (at low temperatures), a relatively flat 

bottom between 16 and 24.4 C, and a very steep increase as temperature rises above 24.4 C. 

Based on the coefficients in table 6, at 32.5C electricity consumption is, all else the same, some 

41% higher than the baseline (which is the omitted category in our regression, namely when the 

temperature is below -3.7 C).  

                                                           
16 We remind the reader that equation (2) is based on hourly loads (i.e., the sum of four 15-minute meter readings) 

and hourly temperatures. Appendix A, table A.1, reports results from running regression (2) on i) only the hours at 

each temperatures from the MERRA-2 dataset are available (panel (A)), ii) three-hour loads and the 3-hour 

temperatures (panels (B) and (C)), and the approach we finally settled on (described in Section 2.2; panel (D)). 

Table A.1 shows that the coefficients on the temperature bin dummies are virtually the same across approaches 

(keeping in mind that the coefficients in panel (B) and (C) must be divided by three to compare them to those in 

panels (A) and (D)), but those in panel (D) tend to have the smallest standard errors. In Appendix B we experiment 

with different temperature bin widths and plot the resulting coefficients. The first graph shows that using one-degree 

bins may result in a graph with some “jagged edge” segments. We attribute this “instability” to the few data points 

that fall in certain bins. Increasing the bin width produces more stable results, due to the larger number of data 

points in each bin, and the general shape of the relationship with electricity usage is unaffected.   
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 Panel B of Figure 4 displays the load v. temperature relationship by income group. The 

general shape of the relationship is the same as in panel A. It is noteworthy that load appears to 

increase at temperatures above 24.4 C just as sharply across all income groups. (We attribute 

the drop for the highest temperature bin for low-income households to imprecision due to the 

small number of observations that fall in that bin.)  As shown in panel C of Figure 4 at the 

highest temperatures the increase in load is sharper for households with more “white goods.” 

 Appendix C reports the coefficients on the temperature bin dummies from fitting 

equation (2) to the subsamples from Northern Italy, Central Italy, the South and the two major 

islands, namely Sicily and Sardinia. The pattern for Northern and Southern Italy is similar to that 

for the full sample. That for Sicily and Sardinia, which generally enjoy milder weather in the 

winter and are apparently less likely to experience the extremely hot days sometimes observed in 

the North, is more difficult to interpret, and may be in part due to the smaller number of 

observations. There are over a million observations from Central Italy in our sample, so we trust 

that the much more limited responsiveness to temperature is genuine and not an artifact of a 

smaller or more unbalanced sample.  

 Figure 5 shows that the effect of temperature is small compared to other household, 

dwelling, time and seasonal factors (the fixed effects of equation (2)) and even to that of dark v. 

light times of the day. The share of usage attributable to lighting clearly increases during winter, 

while that of temperature alone is most pronounced in the summer months (and in the coldest 

winter months). We arrive at this conclusion after using the estimated coefficients to predict, for 

each household, hour and day of the study, (i) the fixed effects in the right-hand side of equation 

(2), (ii) the predicted temperature component (i.e., ∑ 𝑇𝑗𝛿𝑗𝑗 ), (iii) the predicted light v. darkness 

component (i.e., 𝐷𝑎𝑟𝑘 ∙ �̂�1 ), and iv) the predicted holiday component (i.e., 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 ∙ �̂�2). The 
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total predicted load for that household, hour and day of the year is thus the sum of (i), (ii), (iii) 

and (iv). We then take the average of the total hourly loads and of their separate components 

over each month. Figure 5 displays such averages for (i), (ii) and (iii), ignoring component (iv), 

which proved to be negligible.  

 In figure 6 we plot the average of each component of electricity consumption across 

households for each temperature bin.17 This graph shows that the fixed effects component does 

increase somewhat with temperature, presumably as a result of seasonal behaviors that tend to be 

correlated with temperature and that we do not perfectly separate from temperature, but the 

effect of temperature alone rises at a much sharper rate. By contrast, the portion of the load due 

to lighting declines with temperature, as there are more hours of daylight in the summer, when 

the temperatures are higher.  

 Figure 7 depicts the share of total electricity consumption attributable to the temperatures 

of that day for each day of the 2011 year (blue line). This share is computed as the load 

attributable to temperature, i.e., the term ∑ 𝑇𝑗
𝐽
𝑗=1 𝛿𝑗   in equation (2), divided by the full predicted 

load (�̂�𝑖ℎ𝑡). The share is generally small (2.5% on average for the entire summer) but as high as 

9% on certain days in the summer (22-23 August).  

In addition, figure 7 graphically displays the results from the following exercise. Suppose 

our sample had experienced, in 2011, the same temperatures, hour by hour, as in the 

corresponding days of 2003—a year with an extremely hot summer (see Figures D.1 and D.2 in 

Appendix D). The orange line in Figure 8 represents the share of total consumption associated 

with the 2003 temperatures, which is clearly much higher than that for the 2011 summer. The 

                                                           
17 We followed a procedure similar to that used to produce figure 6, except that this time we average the hourly 

consumption levels predicted by our model over the temperatures in each bin (rather than over each month). 
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share during the summer of 2003 would have been on average 4%, reaching 11-12% in at least 

four days in August 2003 and 9% or higher on 10 days of the summer.  Over the entire summer 

(June 21-September 21), our households would have used 12.6% more electricity in 2003 than 

they are predicted to have used in 2011. Over the entire year, our households would have used 

5% more electricity in 2003 than they are predicted to have used in 2011. 

We are also interested in a more gradual, less extreme, type of temperature increase. For 

example, we predict consumption if the temperature had been higher by 1 C, hour by hour, than 

the value observed in 2011. This time the summer increase is completely offset by the decline in 

the other seasons, and total electricity usage is predicted to be lower than the predicted value for 

2011. The difference is however only one-tenth of one percent.  

 

4. Conclusions  

 We have used a unique dataset documenting hourly electricity loads from a 

geographically representative sample of families in Italy to study the relationship between 

consumption and temperature. Unlike earlier analyses based on total daily load at the national 

level (and hence aggregated by geography, time of the day, and over industrial, commercial and 

residential users), we have exploited the variation in temperature across locales and within the 

day and disentangled the effect of dark v. light time of day off the variation across seasons and 

the different sunrise and sunset hours across the northern and southern parts of the country 

within the same day. We have used a rich set of fixed effects to control for behaviors that vary 

across households, within the day, and over the year. The purpose of these fixed effects is to seek 

to disentangle the effect of temperature from that of lighting and of behaviors and habits that 

depend on other, seasonal factors potentially correlated with temperature, but different from 
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temperature.  This is a significant advancement in the state of the knowledge about temperatures 

and electricity demand, as separating empirically the potentially different sensitivities to 

increases in the average global temperature across residential customers is an analytically 

important step towards understanding the integration of cooling.  

 The results are striking. Instead of a deep and asymmetric V curve (as in Damm et al. 

[11], and Wenz et al. [12]), the effect of temperature appears to be rather flat at low and mild 

temperatures. At about 24.4 C and higher temperatures, however, electricity use rises sharply 

with temperature. The sensitivity of residential electricity load profiles is greater at higher 

temperatures, echoing findings at other locations and with more aggregate data (e.g., Wang and 

Bielicki [8]). This finding is robust across the different market zones in Italy, income quintiles in 

our samples, and possession of white goods, even though the gradient of the curve may be 

steeper for households that own more numerous appliances. 

 While on very hot days temperature can account for as much as 9-12% of total electricity 

usage (depending on the weather extremes we considered), very hot days account for a small 

share of the total number of days, and for this reason the share of electricity usage attributable to 

temperature is on average only 3%.  Such low share is consistent with the fact that in the largest 

majority of homes in Italy space heating is provided by gas boilers, and electric heating systems 

are rare. 

 We conduct two exercises to evaluate the possible impact of future climate at the current 

technologies and habit. The first assumes that households had experienced in 2011, locale by 

locale and hour by hour, the same temperatures as in 2003, when the summer was extremely hot. 

This would have raised summer consumption by 12% and annual consumption by 5%. 

Temperatures like the ones experienced in 2003 are expected to become the norm after 2060, just 
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as Europe is experiencing hotter and hotter summers even in Scandinavia and normally colder 

countries (Rubin [28]).  The second exercise assumes instead a uniform increase in temperature 

by 1 C, showing that the change in total annual consumption would have been quite small.  
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Table 1. Geographical distribution of the sample and comparison with the population of Italy in 

2011. 

 

Region 

number of 
households 

in the 
sample 

percent 
of the 

sample 

Census 2011*: 
Number of 

persons 

Census 
2011*: 

Percent of 
the total 

population 

Abruzzo 7 1.77% 1,307,309  2.23% 

Basilicata 8 2.02%    578,036  0.99% 

Calabria 11 2.78% 1,959,050  3.35% 

Campania 35 8.84% 5,766,810  9.85% 

Emilia Romagna 41 10.35% 4,342,135  7.42% 

Friuli Venezia Giulia 3 0.76% 1,218,886  2.08% 

Lazio 19 4.80% 5,502,866  9.40% 

Liguria 6 1.52% 1,570,694  2.68% 

Lombardia 63 15.91% 9,704,151  16.57% 

Marche 12 3.03% 1,541,319  2.63% 

Molise 4 1.01%    313,660  0.54% 

Piemonte 25 6.31% 4,363,916  7.45% 

Puglia 26 6.57% 4,052,566  6.92% 

Sardegna 6 1.52% 1,639,362  2.80% 

Sicilia 21 5.30% 5,002,904  8.54% 

Toscana 41 10.35% 3,672,202  6.27% 

Umbria 6 1.52% 1,029,475  1.76% 

Val d'Aosta 0 0.00%    126,806  0.22% 

Veneto 44 11.11%  4,857,210  8.30% 

missing 18 4.55%     

Total 396 100.00% 58,549,357  100.00% 

* Source: Census data, as reported in 
http://www.citypopulation.de/Italy-Cities.html 
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Table 2. Descriptive statistics: Homes and households.  

variable mean 
standard 
deviation min max 

size of the home in square meters 103.52 36.4 30 200 

number of household members 2.68 1.21 1 6 

number of total electric appliances 17.47 5.34 4 36 
has one electric water heater (share of the sample) 0.1349 0.3416 0 1 

has two electric water heaters (share of the sample) 0.0159 0.1251 0 1 

 

 

Table 3. Descriptive statistics: White goods owned by the household. 

 

Number of white goods Percent of the households 

1 1.01 
2 29.04 
3 36.11 
4 18.69 
5 7.83 
6 2.53 
7 0.25 
missing 4.55 

 

 

Table 4. Descriptive Statistics: Income  

 

Income category Percent of the households 

Very low 4.04 
Low 15.91 
Mid-income 41.17 
High 17.93 
Very high 15.40 
missing 4.55 
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Table 5. Descriptive Statistics: Temperature and electricity usage.  

 

variable mean 
standard 
deviation min max 

temperature in C 22.06 3.88 4.47 37.47 

hourly electricity consumption in kWh 0.2993 0.3029 0 3.938 

 

 

 

Table 6. Summary of regression results: Selected coefficients from regression equation (2). 

Regressor Coefficient Std. error T stat. 

Holiday (dummy) 0.0086 0.0051 1.70 

Dark (share of the hour in the dark) 0.0777 0.0038 20.34 

Temp.: -3.7 to -1.2 C (dummy) 0.0314 0.0095 3.32 

Temp.: -1.2 to 1.4 C (dummy) 0.0250 0.0034 7.30 

Temp.: 1.4 to 4 C (dummy) 0.0232 0.0053 4.39 

Temp.: 4 to 6.5 C (dummy) 0.0220 0.0052 4.27 

Temp.: 6.5 to 9.1 C (dummy) 0.0164 0.0057 2.85 

Temp.: 9.1 to 11.6 C (dummy) 0.0113 0.0058 1.97 

Temp.: 11.6 to 14.2 C (dummy) 0.0055 0.0061 0.91 

Temp.: 14.2 to 16.7 C (dummy) 0.0016 0.0063 0.26 

Temp.: 16.7 to 19.3 C (dummy) -0.0032 0.0065 -0.50 

Temp.: 19.3 to 21.8 C (dummy) -0.0018 0.0066 -0.27 

Temp.: 21.8 to 24.4 C (dummy) -0.0030 0.0070 -0.44 

Temp.: 24.4 to 26.9 C (dummy) 0.0112 0.0077 1.46 

Temp.: 26.9 to 29.5 C (dummy) 0.0439 0.0119 3.70 

Temp.: 29.5 to 32 C (dummy) 0.0845 0.0169 4.99 

Temp.: 32 to 34.6 C (dummy) 0.1164 0.0250 4.65 

Temp.: 34.6 to 37.8 C (dummy) 0.1741 0.0417 4.17 

constant 0.2510 0.0063 40.07 

 Note: The regression also include household-by-hour, household-by-day of the week, 

household-by-month, day of the week-by-month and day of the week-by-hour fixed effects. 

Standard errors are clustered at the household-day level.  
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Figure 1. Distribution of hourly temperature in 2011. 
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Figure 2. Hourly electricity consumption throughout the day: Weekday v. Weekend. (Average 

hourly load over the entire year 2011.) 

 

 
 

 

Figure 3. Average daily usage by temperature.  

 

 
 

 

Figure 4. Effect of temperature on hourly electricity usage.  
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A. Full sample.  

 
B. By income category. 

 

 

Note: The label “low income” refers to both low income and very low income households. “High 

income” covers households classified as high income as well as those classified as very high 

income.  
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C. Effect of temperature on hourly electricity usage: Role of number of white goods owned. 
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Figure 5. Contribution of temperature and darkness/light v. fixed effects to hourly electricity 

usage. 

Note: This chart was construct as follows. Using the regression results (see table 6) we 

predict, for each household, hour and day of the study, (i) the fixed effects in the right-

hand side of equation (2), (ii) the predicted temperature component (i.e., ∑ 𝑇𝑗𝛿𝑗𝑗 ), (iii) the 

predicted light v. darkness component (i.e., 𝐷𝑎𝑟𝑘 ∙ �̂�1 ), and iv) the predicted holiday 

component (i.e., 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 ∙ �̂�2). The total predicted load for that household, hour and day 

of the year is thus the sum of (i), (ii), (iii) and (iv). We then take the average of the total 

hourly loads or their separate components over each month of the year. The charts 

displays such averages for (i), (ii) and (iii), ignoring component (iv), which proved to be 

negligible. 
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Figure 6. Hourly consumption by temperature bin. Based on the full year of data. 

 
 

Note: This chart was construct as follows. Using the regression results (see table 6) we predict, 

for each household, hour and day of the study, (i) the fixed effects in the right-hand side of 

equation (2), (ii) the predicted temperature component (i.e., ∑ 𝑇𝑗𝛿𝑗𝑗 ), (iii) the predicted light v. 

darkness component (i.e., 𝐷𝑎𝑟𝑘 ∙ �̂�1 ), and iv) the predicted holiday component (i.e., 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 ∙

�̂�2). The total predicted load for that household, hour and day of the year is thus the sum of (i), 

(ii), (iii) and (iv). We then take the average of the total hourly loads or their separate components 

over each temperature bin.   
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Figure 7. Share of total electricity consumption accounted for by temperature: 2003 v. 2011. 
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Appendix A 

  

Table A.1. Selected coefficients from fitting equation (2) to samples constructed through various 

temperature selections and load aggregation (or selections). All regressions include our 

full set of household-by-time and time fixed effects. Standard errors are clustered at the 

household-day level. The temperature bins are dummy variables denoting whether the 

temperature falls in the indicated interval.  

 

 

  

(A) 
 

1-hour load at 0:00, 
3:00, 6:00, etc. 

(B) 
3-hour load and temp 
at beginning of the 3-
hour interval (e.g., at 
0:00, 3:00, 6:00, etc.) 

(C) 
3-hour load and temp 
at end of the 3-hour 
interval (e.g., at 3:00, 

6:00, 9:00, etc.) 

(D) 
1-hour load at 0:00, 

1:00, 2:00, etc. 
(preferred 

specification) 

  coeff st err coeff st err coeff st err coeff st err 

Holiday 
dummy 

0.0112 0.0057 0.0204 0.0172 0.0278 0.0152 0.0086 0.0051 

Dark (share of 
hour when it is 
dark) 

0.0515 0.0038 0.2003 0.0112 0.1687 0.0108 0.0777 0.0038 

-3.7 to 1.2 C 0.0400 0.0132 0.0912 0.0304 0.0944 0.0230 0.0314 0.0095 

-1.2 to 1.4 C 0.0328 0.0075 0.0777 0.0159 0.0735 0.0095 0.0250 0.0034 

1.4 to 4 C 0.0306 0.0091 0.0709 0.0197 0.0690 0.0157 0.0232 0.0053 

4 to 6.5 C 0.0294 0.0083 0.0672 0.0193 0.0666 0.0159 0.0220 0.0052 

6.5 to 9.1 C 0.0245 0.0090 0.0511 0.0214 0.0506 0.0177 0.0164 0.0057 

9.1 to 11.6 C 0.0192 0.0088 0.0375 0.0213 0.0332 0.0179 0.0113 0.0058 

11.6 to 14.2 C 0.0151 0.0092 0.0238 0.0220 0.0120 0.0188 0.0055 0.0061 

14.2 to 16.7 C 0.0127 0.0094 0.0140 0.0226 0.0012 0.0195 0.0016 0.0063 

16.7 to 19.3 C 0.0062 0.0094 -0.0008 0.0228 -0.0139 0.0200 -0.0032 0.0065 

19.3 to 21.8 C 0.0079 0.0095 0.0017 0.0232 -0.0091 0.0205 -0.0018 0.0066 

21.8 to 24.4 C 0.0069 0.0097 -0.0005 0.0240 -0.0143 0.0216 -0.0030 0.0070 

24.4 to 26.9 C 0.0199 0.0102 0.0411 0.0259 0.0285 0.0237 0.0112 0.0077 

26.9 to 29.5 C 0.0449 0.0136 0.1288 0.0378 0.1339 0.0361 0.0439 0.0119 

29.5 to 32 C 0.0822 0.0180 0.2419 0.0515 0.2438 0.0502 0.0845 0.0169 

32 to 34.6 C 0.1215 0.0259 0.3389 0.0765 0.3517 0.0741 0.1164 0.0250 

34.6 to 37.8 C 0.1772 0.0422 0.4552 0.1259 0.5625 0.1311 0.1741 0.0417 

constant 0.2516 0.0091 0.7619 0.0226 0.7856 0.0184 0.2510  0.0063 

Nobs 
8 per household per 

day 
8 per household per 

day 
8 per household per 

day 
24 per household per 

day 

 

Note: The coefficients and standard errors in panels (B) and (C) must be divided by three to 

compare them with those in panels (A) and (D).  
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Appendix B 

Figure B.1 Temperature-electricity load curve for different temperature bin widths. 
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Appendix C  

Figure C.1. Temperature-electricity load curve for different market zones in Italy.  
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Appendix D. Temperatures in 2003 and 2011 (MERRA-2 data corresponding to the locations 

covered by our sample). 

 

Figure D.1. Mean Daily Temperatures in 2003 and 2011.  

 

 
 

Figure D.2. Maximum Daily Temperatures in 2003 and 2011. 
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