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Abstract

We show that the dividend growth rate implied by the options market is informative

about (i) the expected dividend growth rate and (ii) the expected dividend risk premium.

We model the expected dividend risk premium and explore its implications for the

predictability of dividend growth and stock market returns. Correcting for the expected

dividend risk premium strengthens the evidence of dividend growth and stock market

return predictability both in- and out-of-sample. Economically, a market timing investor

who accounts for the time varying expected dividend risk premium realizes an additional

utility gain of 2.02 % per year.
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I. Introduction

The dividend growth forecast implied by the options market is informative about the

risk-adjusted expectations of future dividend growth. More specifically, the implied dividend

growth rate (ig) contains information about (i) the expected dividend growth rate and (ii)

the expected dividend risk premium. This insight raises a number of questions. For instance,

is ig mainly informative about the expected dividend growth rate or the expected dividend

risk premium? What are the theoretical implications of the expected dividend risk premium

for the predictability of dividend growth rates and aggregate stock returns?

Addressing these questions is important because a time varying expected dividend

risk premium confounds the information content of ig for the expected dividend growth

rate. Thus, it might be important to account for these variations when using ig to forecast

dividend growth. Furthermore, the logic of present value models suggests that the dividend

price (dp) ratio reveals information about the difference between expected stock returns

and expected dividend growth rates (Campbell and Shiller, 1988). To the extent that the

expected dividend growth rate is time varying, we need to correct the standard dp ratio for

these variations in order to strengthen the predictability of stock returns (Campbell, 2008).

This paper makes three contributions to the literature. First, we formally show that

ig contains information about the future (i) dividend growth rate and (ii) dividend risk

premium. Using a dataset of intraday option prices covering the period 1996–2017, we show

that 58% of the fluctuations in ig are related to the expected dividend risk premium (drp).

This leads us to conclude that the expected drp does not only move over time but it is also

an important driver of the variations in ig.
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Second, we propose a model for the expected drp. In particular, we assume that it

depends on the lagged ig and the lagged drp. Although admittedly simple, this 2-factor

model achieves a satisfactory empirical performance evidenced by an r-squared (R2) of more

than 60%. Our model predicts that the implied growth rate corrected for the expected

dividend risk premium (igcorr), a linear combination of the lagged ig and the lagged drp,

should forecast dividend growth with a slope coefficient equal to 1. We find empirical evidence

in support of this prediction. We also examine the out-of-sample performance of igcorr and

find that it yields a significantly positive out-of-sample R2 (R2
oos), while the forecasts implied

by ig do not.

Third, we develop a present value model to study the implications of the time varying

expected dividend risk premium for the predictability of aggregate stock returns. Our model

predicts that the lagged corrected dividend price (dpcorr) ratio, an affine function of (i) the

lagged standard dp ratio, (ii) the lagged ig, and (iii) the lagged drp, forecasts returns. A

regression of the 1-month stock market returns on a constant and the lagged dpcorr ratio yields

a statistically significant slope estimate. We compare the predictive ability of the standard

dp ratio, the dpig ratio of Golez (2014) (which ignores the variations in the expected dividend

risk premium) and the dpcorr ratio. Our results reveal that, of all three forecasting variables,

the dpcorr ratio is the most significant predictor of 1-month returns (t-statistic=2.15 and

R2=1.45%). Controlling for other predictors of stock market returns does not change this

conclusion. Out-of-sample, the dpcorr ratio leads to a significantly positive R2
oos. Moreover,

this positive R2
oos has economic value. Relative to a strategy based on the recursive mean,

an investor with a risk aversion coefficient equal to 4 who follows a timing strategy based

on the dpcorr ratio achieves a utility gain of 3.07% per year. In comparison, the strategy
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based on the dpig ratio delivers much smaller gains, of 1.05%, relative to the strategy based

on the recursive mean. This finding implies that accounting for the expected drp further

elevates the utility gains by 2.02%. Collectively, these results highlight the relevance of the

time varying expected drp.

Our paper is most germane to the innovative work of Golez (2014), who uses ig

to correct the standard dp ratio. In a similar vein, Bilson, Kang, and Luo (2015) and

Zhong (2016) show that the dividend yield implied by derivatives prices predicts returns. A

common feature of these studies is that they assume that dividend risk is not priced. Our

main contribution is to provide a formal treatment of the time varying expected dividend

risk premium. To do so, we develop a framework that allows us to study its implications for

the predictability of dividend growth and stock market returns.

Our paper also relates to the literature on dividend forecasting. Lintner (1956),

Marsh and Merton (1987) and Garrett and Priestley (2000) propose to use accounting data,

e.g. earnings data, to predict dividend growth rates. We complement this body of works

by showing how to obtain dividend growth forecasts from options data. Because option

contracts are (i) forward-looking and (ii) observable at higher frequencies than accounting

data, our framework could help researchers obtain more timely dividend growth forecasts,

e.g. at the daily frequency. This method could also prove very useful when performing event

studies.

Furthermore, our work contributes to a broader research agenda emphasizing that

derivatives prices are informative about risk-neutral expectations whereas, for most practical

purposes, one is interested in the physical expectations. The risk premium drives a wedge

between these two expectations. Ross (2015) and Borovicka, Hansen, and Scheinkman
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(2016), among others, discuss conditions under which it may or may not be possible to

recover the physical probability distribution from derivatives prices. Several studies rely on

historical data to pin down the dynamics of the risk premium. For instance, Piazzesi and

Swanson (2008) focus on the Fed fund futures market and propose a parsimonious time series

model for the expected risk premium. They then use their model to correct the forecasts

implied by the Fed fund futures market. Chernov (2007) and Prokopczuk and Wese Simen

(2014) show how to correct for the variance risk premium when using implied variance to

predict realized variance. Our paper is similar in spirit to these works. We posit a time

series model for the expected drp and analyze the implications of the expected drp for the

predictability of dividend growth and stock market returns.

The remainder of this paper proceeds as follows. Section II. presents our theory

and describes the dataset. Sections III. and IV. discuss our main empirical results on

the predictability of dividend growth and stock returns, respectively. Finally, Section V.

concludes.

II. Methodology and Data

This section begins by presenting our methodology. We formally show that ig contains

information about (i) the expected dividend growth rate and (ii) the expected drp. We

then propose a simple model to capture the dynamics of the expected drp and present

an empirically testable model for future dividend growth rates and stock market returns.

Finally, we introduce the dataset.
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A. Methodology

The starting point of our methodology is the put-call parity (Stoll, 1969):

pt(K) + Pt − e−rf tEQt (Dt+1) = ct(K) + e−rf tK(1)

where pt(K) is the price at time t of the put option contract of strike K that expires at the

end of the next period, i.e. t+1. Pt is the price of the underlying asset at time t. rf t denotes

the 1-period riskless rate observed at t.1 EQt (Dt+1) is the dividend that a risk-neutral (Q)

investor expects, at time t, to receive from the underlying security at expiration, i.e. at t+1.

ct(K) is the price at time t of the call option contract of strike K that expires at the end of

the next period.

In order to clearly show the link between the option prices and the next-period

dividend, we introduce the dividend strip. This financial asset entitles the holder to the

dividends paid by the underlying security during the life of the strip (van Binsbergen, Brandt,

and Koijen, 2012). We can obtain the market price of dividend strips by using two valuation

methods: the martingale valuation approach and the standard present value method.

According to the martingale valuation framework of Cox and Ross (1976) and Harrison

and Pliska (1981), we can price financial assets as if investors were risk-neutral. A direct

implication of this result is that the market price of the dividend strip equals the cash flow
1Throughout this paper, we adopt the timing convention that interest rates are given the subscripts for

the time when they are observed. As a result, our notation indicates that the interest rate is observed at t
even though it is realized at time t+ 1.
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that the risk-neutral investor expects to receive discounted to the present at the riskless rate:

STRIP t = e−rf tEQt (Dt+1)(2)

where STRIP t is the time t market price of the dividend strip expiring at the end of the

next period.

Substituting equation (1) into the expression above yields:

STRIP t = pt(K) + Pt − ct(K) − e−rf tK(3)

The standard present value approach determines the market price of assets by directly

discounting the expected cash flows (under the physical probability measure) at the expected

rate of return. The following expression formalizes this idea:

STRIP t = e−Et(drpt+1)Et(Dt+1)(4)

where Et(drpt+1) denotes the conditional expectation of the buy-and-hold rate of return on

the dividend strip. Throughout this paper, we refer to the return earned by a buy-and-hold

investor who opens a long position in the dividend strip as the dividend risk premium (drp).2,3

Et(Dt+1) is the dividend that the investor expects to receive from the underlying security at
2Strictly speaking, the discount rate is the sum of the riskless interest rate and the dividend risk premium.

Because interest rates display very little variations in the time series, we commit a slight abuse of terminology
and refer to the discount rate as the dividend risk premium. See Cochrane (2011) for a conceptually similar
approach. Note also that, in this paper, we take the drp to mean the realized (rather than expected) return
of the dividend strip. To denote the expected return of the dividend strip, we use the expression “expected
drp”.

3It is worth highlighting that, unlike the risk-free rate, the drp is only observed ex-post, i.e. at time t+1.
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t+ 1.

Putting together equations (3) and (4), we derive the following result:

log(Et(Dt+1)) − Et(drpt+1) = log
(
pt(K) + Pt − ct(K) − e−rf tK

)
(5)

Next, we subtract log(Dt) from both sides of equation (5) and ignore the Jensen

inequality term:4

Et(∆dt+1) − Et(drpt+1) ≈ log
(
pt(K) + Pt − ct(K) − e−rf tK

)
− log(Dt)︸ ︷︷ ︸

implied growth

(6)

Et(∆dt+1) − Et(drpt+1) ≈ igt(7)

where Et(∆dt+1) denotes the time t expectation of the 1-period dividend growth rate:

Et(∆dt+1) = Et(log(Dt+1)) − log(Dt). igt denotes the dividend growth rate implied by

the options market at time t: igt = log
(
pt(K) + Pt − ct(K) − e−rf tK

)
− log(Dt).

The expression above reveals that ig is the risk-adjusted expectation of future dividend

growth. In particular, ig is positively related to the expected dividend growth and negatively

related to the expected drp. An implication of this result is that a time varying expected

drp could potentially obscure the information content of ig when predicting the expected

dividend growth.

Despite its clear insights, the expression above is merely an accounting identity that

is of limited practical use. The reason is that the terms on the left of the equality sign are
4It is standard in the literature to ignore the Jensen inequality term, e.g. Golez (2014). We conduct

a simple simulation exercise which reveals that the approximation error is small. Most important for our
objectives, it displays very little variations. A constant approximation error does not materially affect our
results since we include an intercept in all regression models.
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conditional expectations which are not directly observable. In order to obtain an empirically

testable economic model, one needs to impose a structure on how the conditional expectation

of the drp is generated.5 We simply assume that the expected drp depends on a constant,

the lagged ig, and the lagged drp (which is included in the information set at time t):

drpt+1 = φ0 + φ1igt + φ2drpt + εdrpt+1(8)

where φ0, φ1, and φ2 are the parameters to estimate.

Our assumption that ig predicts the drp is directly motivated by equation (7), which

shows that ig is negatively related to the expected drp. As a result, we expect φ1 to be

negative. The assumption that the drp depends on its lagged observation is in keeping

with previous works. Because the drp is essentially the return to a buy-and-hold trading

strategy, our modelling approach is consistent with previous studies which typically assume

that returns have an autoregressive component (van Binsbergen and Koijen, 2010; Lacerda

and Santa-Clara, 2010; Golez, 2014). Armed with the model above and the identity presented

in equation (7), we are now in a position to discuss our first proposition.

Proposition 1: The lagged corrected implied growth rate (igcorr), an affine function of (i)

the lagged implied dividend growth (ig) and (ii) the lagged dividend risk premium (drp),
5One may wonder why we do not use the expected dividend growth, derived from time series models for

example, to recover the expected drp by manipulating the identity in equation (7). We do not pursue this
approach because, if one already has an estimate of the expected dividend growth, then there is no need to
use ig (and correct for the drp). Golez (2014) shows that, in-sample, ig outperforms the model of Lacerda
and Santa-Clara (2010) which relies on historical dividend growth rates. Our aim is to further improve the
forecasting ability of ig by explicitly accounting for the expected drp.
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predicts the next-period dividend growth rate.

∆dt+1 = igt + φ0 + φ1igt + φ2drpt︸ ︷︷ ︸
expected drp correction︸ ︷︷ ︸

igcorrt

+ε∆dt+1(9)

Proof: See Appendix A.1.

This proposition presents our first empirically testable prediction: igcorr predicts

dividend growth with a coefficient loading that is not statistically distinguishable from 1.

Next, we build our forecasting model for the next-period return. Campbell and Shiller

(1988) derive the following log-linear result:

+∞∑
j=0

ρj (Et(rt+1+j) − Et(∆dt+1+j)) =
k

1 − ρ
+ dpt(10)

where rt+1+j is the return at time t+1+j. k is a constant and ρ is the linearization constant

computed as follows:

ρ =
1

1 + ed−p
(11)

Equation (10) reveals that, to the extent that the expected dividend growth rate is

time varying, the standard dividend price ratio is a noisy proxy for the expected return.

Thus, it is important to correct the standard dp ratio for the fluctuations in expected

dividend growth in order to improve the predictability of returns (Campbell, 2008). Because

Proposition 1 shows that the expected dividend growth rate depends not only on ig but also

on the expected drp, accounting for the expected drp should therefore strengthen the return
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predictability results.

We decompose the next-period return (rt+1) into an expected return component (µt)

and a forecast error (εrt+1). As is standard in the literature, e.g. Golez (2014), we assume

that expected returns and the implied growth rate follow AR(1) processes:

rt+1 = µt + εrt+1(12)

µt+1 = α0 + α1µt + εµt+1(13)

igt+1 = δ0 + δ1igt + εigt+1(14)

where all error terms have zero mean. Armed with these additional assumptions, we can

derive Proposition 2.

Proposition 2: The lagged corrected dividend price (dpcorr) ratio, which is an affine function

of (i) the lagged standard dividend price (dp) ratio, (ii) the lagged implied dividend growth

(ig), and (iii) the lagged dividend risk premium (drp), forecasts the next-period return.

(15) rt+1 = Ψ+(1−ρα1)

dpt +
igt

1 − ρδ1︸ ︷︷ ︸
dpig

+
φ1igt

1 − ρδ1

+
ρ̄φ1φ2igt

(1 − ρ̄δ1)(1 − ρ̄φ2)
+

φ2drpt
1 − ρφ2︸ ︷︷ ︸

expected drp correction


︸ ︷︷ ︸

dpcorrt

+εrt+1

Proof: See Appendix A.2.

This proposition shows that the standard dividend price ratio alone cannot satisfactorily

predict returns. Two adjustments are needed. First, one needs to account for ig to obtain

the dpig ratio (Golez, 2014). Second, one also needs to account for the time variations in the
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expected drp. By making these two adjustments, we obtain the dpcorr ratio. If one assumes a

constant expected drp, i.e. φ1 = 0 and φ2 = 0, then the dpcorr and dpig ratios are exactly the

same. Thus, by comparing the forecasting performance of the dpcorr and dpig ratios, we can

shed light on the relevance of the time variations in the expected drp for the predictability

of stock market returns. If the expected drp correction plays an important role, then the

dpcorr ratio should yield significantly better return predictability results than both the dp

and dpig ratios.

B. Data

We obtain intraday quote prices on S&P 500 index option contracts and the underlying

spot index from the Chicago Board of Options Exchange (CBOE). Our sample covers the

period from January 01, 1996 to March 31, 2017. The S&P 500 index option contracts are

of the European type and trade on the CBOE. These options have, among other, monthly

expiration dates.

We focus on a sampling frequency of 1-minute and process the dataset as follows.

First, we retain observations with non-zero bid and ask prices. Second, we only keep

observations with a positive bid–ask spread. Third, we discard observations where the

midquote price is lower than five times the minimum tick size of 0.05. Fourth, we expunge

observations with no quoted size (either on the bid or ask side). Fifth, we only keep records

observed between 10:00 AM and 2:00 PM local time similar to van Binsbergen et al. (2012).

We match each option price with the spot index price observed on the same day and at

the same time (up to the minute level). It is worth emphasizing that both the underlying
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price as well as the put and call prices are observed during these trading hours. Thus, our

analysis does not suffer from asynchronous closing times induced by the wildcard feature of

US derivatives markets.6

We proxy the riskless rate with the LIBOR curve, which we obtain from Bloomberg.

We then merge together the time series of the interest rate, the spot, and option prices. For

each trading day and option maturity, we create a 5-tuple (call option price, put option price,

strike price, spot price, and interest rate of corresponding maturity). We plug the relevant

values in equation (3) to obtain the dividend strip price. Next, we compute the median of

all these dividend strip prices following van Binsbergen et al. (2012). By aggregating across

all (i) strike prices and (ii) intraday intervals, we assuage potential concerns related to

measurement errors in the dividend strip prices. We repeat the steps above for all maturities

observed on each trading day, obtaining the term structure of dividend strips at the daily

level. From the term structure, we follow Golez (2014) and linearly interpolate the 6-month

dividend strip, which we multiply by a factor of two in order to obtain the annual dividend

strip price (STRIPA).

Two caveats are worth discussing. First, our methodology considers all strike prices in

the spirit of van Binsbergen et al. (2012). Understandably, one may wonder to what extent

are our results affected by deep in-the-money and deep out-of-the-money options. To shed

light on this, we repeat our construction of the dividend strips by focusing only on options
6As discussed in Harvey and Whaley (1992), the S&P 500 spot market closes at 3:00 PM local time

whereas trading in the derivatives market ends at 3:15 PM. This aspect introduces biases in studies that
require synchronous observations of spot and derivatives prices. Although consistent with the work of Golez
(2014), using asynchronous observations of options and spot data leads to a negative average dividend risk
premium, a finding that is difficult to rationalize from an asset pricing perspective. In contrast, by matching
the dataset at the intraday level as advocated by van Binsbergen et al. (2012), we obtain a positive dividend
risk premium. We refer the interested reader to Boguth, Carlson, Fisher, and Simutin (2012) for a study of
the impact of asynchronous observations on the properties of dividend strips.
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that are at-the-money, i.e. with a Black and Scholes (1973) delta that is in absolute value

between 0.375 and 0.625. Tables A.1 through A.6 of the online appendix present results

that are consistent with our benchmark findings. Second, as discussed in Golez (2014),

selecting the maturity of the dividend strip involves a tradeoff. On the one hand, options of

6-month maturity are typically more liquid than options of longer maturity, making them

particularly useful for predictability purposes. On the other hand, the 12-month maturity

could be useful to address concerns related to the seasonality of dividend payments (Fama

and French, 1988; Ang and Bekaert, 2007). Because our research builds on that of Golez

(2014), we closely follow the author’s method of interpolation. To be more specific, we

linearly interpolate the dividend strip price of 6-month maturity, which is then multiplied by

2 in order to annualize it. As a robustness check, we depart from the main methodology of

Golez (2014) by considering options of longer (and less liquid) maturities when constructing

the dividend strips. To this end, we linearly interpolate the 12-month dividend strip and

repeat all our main tests. Overall, Tables A.7 to A.12 of the online appendix document that,

although the results are slightly weaker than the benchmark findings, our key conclusions

are not materially affected.

We obtain the time series of daily dividends and prices related to the S&P 500 index

from Bloomberg. We sum all the intra-month dividends to obtain the monthly dividend

payments (DM). The time series of (annualized) monthly returns is computed as:

rt+1 = 12 × log

(
Pt+1 +DM

t+1

Pt

)
(16)

where rt+1 is the 1-period annualized return. For the purpose of our empirical analysis, we
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take 1-period to mean 1-month. Pt+1 and DM
t+1 denote the stock price and the dividend

payment related to month t + 1, respectively. Pt is the stock price observed at the end of

month t.

As is standard in the literature, e.g. Ang and Bekaert (2007), we base our analysis

on dividends summed over a trailing window of 12 months (DA). Taking this step ensures

we address the issue of seasonality in the dividend series. We then compute the (annualized)

1-month dividend growth rate as follows:

∆dt+1 = 12 × log

(
DA
t+1

DA
t

)
(17)

where ∆dt+1 denotes the monthly growth rate of dividends at t + 1. DA
t+1 and DA

t are the

annual dividends for the periods ending at t+ 1 and t, respectively. Relatedly, we compute

the standard dp ratio as:

dpt = log

(
DA
t

Pt

)
(18)

We then recover the time series of ig by taking the difference between the logarithm

of the annual dividend strip and that of the annual dividend:

igt = log(STRIPA
t ) − log(DA

t )(19)

Next, we obtain the time series of the drp:

drpt+12 = log(DA
t+12) − log(STRIPA

t )(20)
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Finally, we use all sample information to estimate the parameters δ1, φ0, φ1, and φ2,

necessary to test our two propositions (see equations (9) and (15)).7 In order to obtain the

persistence of ig, i.e. δ1, we follow Golez (2014) and use successive non-overlapping annual

samples. Golez (2014) proposes this approach in order to guard against biases induced by

the (i) large overlap between consecutive observations of ig and (ii) potential measurement

errors in the implied growth series. To be more specific, we calculate the persistence of ig at

the monthly level as follows. We sample all monthly observations of ig recorded on Januaries

and estimate the model in equation (14). We repeat these steps for all 12 calendar months

and save the corresponding slope estimates and parameter variance-covariance matrices. We

then average the slope estimates and parameter variance-covariance matrices across these

different non-overlapping samples. Empirically, we find that the average estimate is equal to

0.28 (t-statistic=1.67).8 Since this average corresponds to the AR(12) persistence estimate,

we raise it to the power of 1/12 to recover the AR(1) parameter. In the data, we find

δ1 = 0.90.

The estimation of φ0, φ1, and φ2 is based on equation (8). As before, we use

non-overlapping annual samples to estimate the relevant parameters. We average the parameter

estimates (and parameter variance-covariance matrices) across all 12 possible samples of

annual data. Unlike the estimation of δ1, we do not convert the annual estimates to the

monthly level. This is because, each month, we are interested in the drp expected at the end
7When we conduct our analysis out-of-sample, we recursively estimate all parameters to make sure that

our results do not suffer from any look-ahead bias.
8Because the non-overlapping samples ignore the intermediate data, we are essentially throwing away

information. One implication of this is that the derived standard errors are likely too large, making it hard
to reject the null hypothesis (Cochrane and Piazzesi, 2005).
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of the next year.9 We find that φ0 = 0.04 (t-statistic=2.28), φ1 = −0.55 (t-statistic=−4.19),

and φ2 = 0.26 (t-statistic=1.95). Combining these parameter estimates together with the

monthly time series of ig and realized drp, we can recover igcorr (see equation (9)). Next,

we compute the linearization constant ρ̄ using the whole sample period (see equation (11)).

Similar to Golez (2014), we find ρ̄ = 0.98. Equipped with this information, we then construct

the time series of the dpig and dpcorr ratios (see equation (15)).

Figure 1 plots the dividend strip and realized dividends series. For ease of exposition,

we align the two time series (van Binsbergen et al., 2012). We can see that the dividend strip

price and the realized dividends comove positively. It is also worth noticing that the dividend

strip price appears to be more volatile than the realized dividends, indicating the presence of

a time varying expected dividend risk premium. This is important because, for the purpose

of predictability, the expected drp matters only if it varies over time. The summary statistics

reported in Table 1 show that the dividend risk premium displays a volatility of 13%.

Another interesting observation from Figure 1 is that the realized dividends are

generally higher than the corresponding dividend strip prices. An implication of this finding

is that, during our sample period, the dividend risk premium is positive as evidenced by

its average value of 4 % per year (see Table 1). This observation is in sharp contrast with

the puzzling statistics of Golez (2014) that point to a negative average drp of −3.45 % per

year.10 It is possible that the summary statistic of Golez (2014) is affected by measurement

errors since the author matches end-of-day S&P 500 derivatives data to the S&P 500 index.
9Remember that ig is informative about the growth rate expected over the next year adjusted for the

dividend risk premium. Therefore, we need the dividend risk premium expected over the same period.
10Tables 1 (Panel B) and 3 of Golez (2014) reveal that the realized and implied growth rates average

around 3.86% and 7.31%, respectively. Thus, the author’s own figures indicate a negative and economically
large annualized dividend risk premium of −3.45 %.
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This methodology is vulnerable to concerns related to the wildcard feature of US derivative

markets, induced by the fact that the derivatives market closes at 3:15 PM local time while

the spot market closes at 3:00 PM. To verify this possibility, we obtain OptionMetrics

end-of-day options data for our sample period and repeat the analysis. Our untabulated

results point to a negative dividend risk premium of around −5 % on average. This suggests

that asynchronous trading times induce substantial biases in the estimate of the dividend

risk premium, a point made by Boguth et al. (2012) among others. Because we (i) match the

intraday derivatives and spot data and (ii) aggregate across these matches, our methodology

is more robust to concerns about measurement errors (see also van Binsbergen et al. (2012)).

III. Dividend Growth Predictability

The discussion in Section II.A. shows that, if we have a good model for the expected

drp, we should be able to improve our dividend growth forecasts. Thus, a natural starting

point would be to assess the empirical performance of the forecasting model for the drp (see

equation (8)). If the model does a good job, the expected drp should be positively and highly

correlated with the subsequently realized drp.

Figure 2 displays the dynamics of the realized and expected drp. The expected

drp is the forecast generated by the following equation: Et(drpt+12) = 0.04 − 0.55igt +

0.26drpt. We observe that the two series comove strongly. Indeed, a regression of the

realized drp on a constant and the expected drp yields an insignificant intercept, a slope of

1.08 (t-statistic=7.41) and an R2 of 63.52%. We thus conclude that the 2-factor model does

a satisfactory job and proceed to analyze its implications for the predictability of dividend
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growth rates.

A. In-Sample Evidence

We start with the in-sample analysis. This investigation is motivated by Proposition

1, which posits that the lagged igcorr, a linear combination of the lagged ig and the lagged

drp, predicts the dividend growth rate. We test this prediction by regressing the time series

of 1-month dividend growth rates on a constant and the lagged predictive variable Xt:

∆dt+1 = γ0 + γ1Xt + ε∆dt+1(21)

We separately consider the scenarios where X = ig and X = igcorr.

Figure 3 displays the dynamics of both forecasting variables. We can see that ig is

generally positive and takes negative values ahead of periods of economic crises. It is worth

noting that igcorr is on average higher than ig, reflecting the effect of a positive average

expected drp. The two series exhibit very similar time series patterns. This could indicate

that, of the two factors posited for the expected drp, ig is the main driving force. These

results are consistent with the slope estimates φ1 and φ2 as well as the summary statistics

in Table 1.

Table 2 summarizes the regression results. The figures in brackets correspond to the
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Newey and West (1987) corrected test statistics.11,12 We test H0: γ1 = 0 against the 1-sided

alternative hypothesis H1: γ1 > 0. Throughout this paper, we use a significance level of 5%.

Examining the t-statistics, we can see that the null hypothesis is always rejected, suggesting

that each of the two variables predicts the dividend growth rate.

The regression results reveal that ig predicts the dividend growth rate with a slope

of 0.42. This slope estimate is important for several reasons. First, it is higher than the

slope of 0.19 reported in Golez (2014).13 The higher estimate presented in this paper is likely

due to the fact that the study of Golez (2014) suffers from an attenuation bias induced by

noisy estimates of the dividend strip, which in turn affects the accurate measurement of the

implied growth rate.

Second, the model of Golez (2014) assumes a constant expected drp, which implies

that ig should predict the future dividend growth rate with a slope of 1. Clearly, one can

formally reject the null hypothesis that the slope parameter (0.42) is equal to 1. Furthermore,

this slope estimate reveals the share of variations in ig that is attributable to the dividend
11We follow earlier studies, e.g. Rangvid (2006) and Ang and Bekaert (2007), and set the lag length equal

to h+ 1, where h denotes the forecasting horizon in months. Our results are robust to the choice of the lag
length. The simulation results of Ang and Bekaert (2007) show that the Newey and West (1987) standard
errors are well-behaved at short horizons while the Hodrick (1992) standard errors perform better than the
Newey and West (1987) standard errors at long horizons. Because our study deals with the predictability
over the next period, we focus on the Newey and West (1987) standard errors.

12To make the statistical inference more robust, we compute the empirical p-values from the wild bootstrap
simulation described in the online appendix of Rapach, Strauss, and Zhou (2013). This procedure has
a number of desirable features. First, it uses the iterative methodology presented in Amihud, Hurvich,
and Wang (2008) to correct for the Stambaugh (1999) bias in a multivariate setting. This correction is
important because the Stambaugh (1999) bias is known to generate size distortions. Second, it preserves
the contemporaneous correlations across residuals. Third, it allows for general forms of conditional
heteroskedasticity. We thank an anonymous reviewer for this very helpful suggestion.

13In comparing our results to those of Golez (2014), it is worth keeping in mind that the author regresses
the monthly dividend growth rate on implied growth, which is an annualized quantity. Thus, the adapted
estimate of the 0.0157 loading on ig at the 1-month horizon shown in Table 4 of Golez (2014) corresponds
to 0.0157 × 12 ≈ 0.19 in our set-up.
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growth rate. Exploiting equation (7), we can show that:

var(igt) = cov(Et(∆dt+1) − Et(drpt+1), igt)

1 =
cov(Et(∆dt+1), igt)

var(igt)
−
cov(Et(drpt+1), igt)

var(igt)
(22)

The expression above shows that we can decompose the variation in ig into components

related to (i) the expected dividend growth and (ii) the expected drp. The first term to the

right of the equality sign is essentially the slope coefficient of a regression of the dividend

growth rate on a constant and the lagged implied growth rate.14 The second term to the

right of the equality sign is the slope estimate of a regression of the drp on a constant and

the lagged ig. Table 2 reveals that only 42% of variations in ig can be linked to the expected

dividend growth rate. One implication of this finding is that the expected drp accounts for

the remaining 58% of variations in ig. In other words, the main driving force of ig is the

expected drp, rather than the expected dividend growth rate.

If Proposition 1 holds, then we would expect to find that igcorr predicts the next-period

dividend growth with a slope of 1. Table 2 reports that igcorr enters the regression model with

a positive and statistically significant slope of 0.92. Using the t-statistic, we can formally

test the null hypothesis that this slope equals 1 as predicted by the theory. Our untabulated

analysis reveals that the slope estimate is not significantly different from 1, thus supporting

the model’s prediction.
14As Proposition 1 shows, we can express the dividend growth rate as the sum of the expected dividend

growth rate and an independent shock. Assuming that the shock is independent of ig, the slope estimate
is the same regardless of whether the dependent variable in the regression model is the realized dividend
growth or the expected dividend growth.
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B. Out-of-Sample Evidence

We now explore the predictability of dividend growth in an out-of-sample setting.

We use the last 7 years of the sample period for our out-of-sample test. Accordingly, we

use all data up to February 2009 to initially estimate φ0, φ1, and φ2 (see equation (8)).

We expand the training window by one month each time, thus recursively estimating the

parameters.15 An upshot of this approach is that there are no look-ahead biases. We consider

two distinct forecasting models. Model 1 builds on the work of Golez (2014) to arrive at

the forecast (ŷt): ŷt = igt. Model 2 uses the insights of Proposition 1 to derive the forecast:

ŷt = φ0 +(1+φ1)igt+φ2drpt. A neat feature of this out-of-sample analysis is that it directly

imposes the discipline of the theory and avoids the estimation errors typically associated

with dividend growth forecasting regressions.

We compute the out-of-sample R2 (R2
oos) of each dividend growth forecasting model:

R2
oos = 1 −

∑N
t=1(yt+1 − ŷt)

2∑N
t=1(yt+1 − ȳt)2

(23)

where yt+1 is the realization of the variable of interest at t + 1. ȳt is the recursive mean of

the variable of interest computed using all observations up to time t. N is the total number

of forecasts.

Intuitively, the R2
oos sheds light on the proportional reduction in the mean squared

error (MSE) of the forecasting model underpinning ŷt relative to that of the benchmark
15As a robustness check, we also consider a rolling window and reach similar conclusions. These results

are not tabulated for brevity.
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recursive mean. Next, we compute the MSE − F statistic of McCracken (2007):

MSE–F = N × (yt+1 − ȳt)
2 − (yt+1 − ŷt)

2

(yt+1 − ŷt)2
(24)

McCracken (2007) provides the critical values for this test statistic.

We also compute theMSE−Adj statistic of Clark and West (2007). More specifically,

we compute the time series of the variable f :

ft = (yt+1 − ȳt)
2 − (yt+1 − ŷt)

2 − (ȳt − ŷt)
2(25)

We then regress this time series on a constant and compute the corresponding t-statistic

using the Newey and West (1987) standard errors. Clark and West (2007) show that this

test statistic has an approximately standard normal distribution.

The two tests enable us to formally examine the null that the mean squared error

(MSE) of the benchmark model, i.e. the recursive mean, is smaller than or equal to that

of the competing model generating the forecast ŷt. The alternative hypothesis is that the

MSE associated with the competing model is lower than that of the recursive mean.

Table 3 reveals that igcorr yields a positive R2
oos whereas ig does not. Moreover, we

find that MSE−F = 26.22 and MSE−Adj = 2.20 for this positive R2
oos. Clearly, the large

and positive magnitude of these test statistics indicate that we can reject the null hypothesis.

Thus, the improvements in forecast accuracy achieved by igcorr are significant.
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IV. Stock Return Predictability

Having established the importance of the expected dividend risk premium correction

for the predictability of dividend growth, we now explore the implications for return predictability.

We start by examining the predictability of stock market returns in-sample and then we turn

our attention to the out-of-sample evidence.

A. In-Sample Evidence

We regress the time series of monthly returns on a constant and the lagged forecasting

variable Xt:

rt+1 = γ0 + γ1Xt + εrt+1(26)

We examine the following forecasting variables in turn: dp, dpig, and dpcorr. Comparing the

results for the first two forecasting variables sheds light on the importance of accounting for

ig. Similarly, by contrasting the results for the last two forecasting variables, we can learn

about the relevance of the expected dividend risk premium correction.

Figure 4 shows the dynamics of all 3 forecasting variables. We notice that both dpig

and dpcorr are more volatile than the standard dp ratio (see also Table 1). Moreover, they

behave in a manner that is reminiscent of ig. This is mainly due to the high magnitude

of δ1 (0.90), which gives more prominence to ig (see Proposition 2). The dp ratio shares a

correlation of 0.27 and 0.60 with the dpig and dpcorr ratios, respectively.

Table 4 reports that the slope associated with the dp, dpig, and dpcorr ratios are equal
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to 0.20, 0.05, and 0.16, respectively. To better understand the slope associated with the

dpcorr ratio, we implement the following decomposition:

cov(rt+1, dp
corr
t )

var(dpcorrt )
=

cov(rt+1, dpt)

var(dpcorrt )
+
cov(rt+1, dp

ig
t − dpt)

var(dpcorrt )
+
cov(rt+1, dp

corr
t − dpigt )

var(dpcorrt )
(27)

Empirically, the first, second, and third components to the right of the equality sign amount

to 0.05, 0.43, and −0.33, respectively. We thus conclude that adjusting for both ig and

the expected drp is necessary when using the dp ratio to forecast stock market returns.

Economically, the slope parameter γ1 in equation (26) is informative about the persistence

of expected returns, i.e. α1 (see equation (13)). As Proposition 2 shows, the slope γ1 is equal

to 1 − ρ̄α1. Since ρ̄ = 0.98, the loadings on dpig and dpcorr imply that the persistence of

expected returns is close to 0.97 and 0.86, respectively.16

We test H0: γ1 = 0 against the 1-sided alternative hypothesis, i.e. γ1 > 0. Sticking to

the 5% significance level, we reject the null hypothesis for dpcorr and dpig. This result holds

irrespective of whether we derive the critical values from the asymptotic distribution or the

wild bootstrap of Rapach et al. (2013). The finding that dpig predicts next-month’s returns

is consistent with the work of Golez (2014). Upon close examination, we notice that the

dpcorr ratio is the more significant of the two variables. Furthermore, it displays the highest

explanatory power (1.45%) of all three forecasting variables. This suggests that accounting

for the expected dividend risk premium helps improve the predictability of stock market

returns.

We investigate whether the dpcorr ratio contains information which is not included
16To get α1, we look at the slope coefficient of the return forecasting regression. Since theory predicts

that the slope equals 1 − ρ̄α1, we rearrange the expression to recover α1.
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in variables that have been shown to predict the stock market return at short forecasting

horizons. We download the time-series of the book-to-market (bm), the default spread (def),

the earnings-to-price ratio (ep), the inflation rate (infl), the net equity expansion (ntis), the

payout ratio (pay), and the level of the Treasury bill (tbill) rate from the website of Amit

Goyal. We also include the following variables that we describe in Section B of the online

appendix: the modified dp ratio (dplac) of Lacerda and Santa-Clara (2010), the change in the

federal fund rate (∆ff), the relative interest rate (rrel), the implied skewness (skew), the

sum-of-the-parts forecast (sop), the stock market variance (svar), the term spread (term),

and the variance risk premium (vrp). We sample all the control variables at the end of the

month, thus aligning them with the time series of the dpcorr ratio. The bivariate regression

results of Table 4 show that the dpcorr ratio is a robust predictor of stock market returns.

B. Out-of-sample Evidence

We now conduct our analysis out-of-sample. We estimate φ1, φ2, δ1, and ρ̄ recursively.

Similar to the out-of-sample setting used for the predictability of the dividend growth rate

(see Section III.B.), we use all observations up to February 2009 as our initial training

sample period, leaving the last 7 years of data for the out-of-sample test. We exploit all the

information in our training sample to estimate the return forecasting regression shown in

equation (26). Equipped with the intercept and slope estimates, we use the last observation

of the forecasting variable (in the training sample) to predict the next-month’s return. If the

predicted return is negative, we set the forecast equal to 0 as in Campbell and Thompson

(2008). By taking this step, we impose the economic restriction that expected returns are
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non-negative.17 We repeat these steps for each month and for each forecasting variable.

Panel A of Table 5 compares the performance of different models to that of the model

based on the recursive mean once the economic restriction is implemented. We find that

the dpcorr ratio yields the highest R2
oos (R2

oos = 2.18 %). The associated MSE − F (1.92)

and MSE − Adj (1.97) statistics suggest that this improvement in forecast accuracy is

statistically significant. A similar finding emerges from Panel B of the same table, where we

do not impose any economic restrictions. Overall, this finding is consistent with our model’s

prediction: correcting for the expected drp matters.

C. The Economic Value of Return Predictability

Finally, we explore the implications of the return predictability for the portfolio

choice of an investor willing to use the dpcorr ratio as a timing signal when implementing a

quantitative strategy. In particular, the market timing strategy allocates a fraction of wealth

wt to the risky stock and the remainder to the riskless asset. The risky asset has expected

return µt and expected volatility σ̂t. The riskless asset yields a return rf t. We assume that

the investor has a quadratic utility function with a coefficient of relative risk aversion of γ,

thus giving rise to the following optimization problem:18

max
wt

wtµt + (1 − wt)rf t −
γ

2
w2
t σ̂

2
t(28)

17We thank a referee for suggesting this analysis.
18The optimization problem of an investor with quadratic utility is equivalent to maximizing a linear

combination of mean and variance. This is true irrespective of the distribution of asset returns. We refer
the interested reader to Campbell and Viceira (2002) for an excellent treatment of this topic.
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The optimal allocation to the risky asset is given by:

wt =
µt − rf t
γσ̂2

t

(29)

For each return forecasting model, we compute the expected return on the risky asset

and use equation (29) to compute the weights. If the expected return is negative, we set it

equal to 0 before computing the weights. By doing so, we align the out-of-sample statistical

analysis (R2
oos) with our economic value exercise. We use the 1-month LIBOR rate as our

proxy for the riskless rate.19 We use all monthly returns data available in the recursive

window to estimate the variance of the stock returns.20 Finally, we consider different values

for the coefficient of risk aversion, e.g. 2, 4, 6, 8 and 10. Equipped with the portfolio weights

and the time series of realized stock returns, we compute the time series of realized portfolio

returns.

We then analyze the certainty equivalent rate of return (CE), which is the risk-free

rate of return that the investor is willing to accept rather than following a risky market

timing strategy:

CE = r̄p −
γ

2
σ2
p(30)

19As previously discussed, it is standard in the derivatives pricing community to proxy the interest rate
with the LIBOR rate. Consistent with this practice, and thus the earlier part of our study, we use the
1-month LIBOR rate as the risk-free rate proxy. Because the return predictability literature also analyzes
the 3-month Treasury bill rate, e.g. Goyal and Welch (2003), one may wonder what impact, if any, does
the proxy for the riskless rate have on our portfolio results. To investigate this, we obtain the time series of
3-month Treasury bill rates from the website of the Federal Reserve of St. Louis and repeat our analysis.
Untabulated results show that the riskless rate proxy has very little bearing on our results.

20In our analysis, we rely on the standard variance estimator. As a robustness check, we also analyze an
exponentially weighted moving average (EWMA) model and obtain very similar results.
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where r̄p is the average of the realized portfolio returns. σp is the realized volatility of the

portfolio returns. All other variables are as previously defined.

Table 6 enables us to answer the following question: How much would an investor

pay in order to switch from a quantitative strategy that is based on the recursive mean to a

timing strategy that relies on the dpcorr ratio? Our results indicate that an investor with a

risk aversion coefficient equal to 4 would pay up to 3.07% per year. This fee speaks directly

to the importance of accounting for (i) the implied growth rate and (ii) the expected dividend

risk premium. In order to understand the contribution of each component to this result, we

also examine the timing strategy based on the dpig ratio. Computing the difference between

the certainty equivalent rate of return of the timing strategy based on the dpig ratio and that

of the strategy based on the recursive mean, we find that, for the same investor, the dpig

ratio leads to a smaller utility gain of 1.05% per year. This result reveals that accounting

for the expected dividend risk premium further elevates the utility gain by 2.02 percentage

points from 1.05% to 3.07%. We reach qualitatively similar conclusions for other values of

the risk aversion coefficient. As an additional check, we also compute the difference between

the annualized Sharpe ratio (SR) associated with a given timing strategy and that of the

recursive mean. This analysis is interesting because the Sharpe ratio is independent of the

risk aversion parameter.21 The penultimate row of Table 6 shows that the dpcorr ratio leads

to the highest improvement in SR, confirming that the expected dividend risk premium

correction is economically valuable.
21We thank an anonymous reviewer for suggesting this analysis.
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D. Additional Analyses

1. Annual Data

The theoretical derivation in equation (15) links the return observed over the next

period, i.e. t + 1, with the dpcorr ratio constructed using all information from the current

period t. The summation of dividends over the past twelve months used to compute the dp

ratio (and related quantities) is not well-aligned with the model since all variables should be

measured over the same interval. One concern that arises from this is that the magnitude of

the predictive slope associated with the dpcorr ratio may be the result of mixing annualized

dividends with monthly stock prices and returns.22 To explore this possibility, we repeat

our return forecasting analysis using 12 successive non-overlapping annual samples. To be

more precise, each non-overlapping annual sample consists of observations recorded during a

particular month only, e.g. January. We use each of the 12 samples to estimate the following

return forecasting regression:

rt+12 = γ0 + γ1Xt + εrt+12(31)

where rt+12 is the annual return realized at t+12. For each of the 12 non-overlapping annual

samples, we save the parameter estimates and the associated variance-covariance matrices.

Next, we average the parameter estimates as well as the variance-covariance matrices across

all 12 annual samples in order to obtain the slope parameter estimate and standard error

associated with each forecasting variable. The average slope parameters associated with

the dp, dpig, and dpcorr ratios are equal to 0.27 (t-statistic=1.76), 0.21 (t-statistic=2.48),
22We thank an anonymous reviewer for this valuable comment.
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and 0.28 (t-statistic=2.20), respectively. The associated R2 is equal to 6.64%, 8.00%, and

8.22% for the regression that includes the dp, dpig, and dpcorr ratios, respectively. Given

the limited size of each annual sample, we caution that the explanatory power should be

interpreted carefully.

We test the null hypothesis that the slope estimate associated with the dpcorr ratio

obtained using non-overlapping annual data (0.28) is equal to that obtained using monthly

data as in our benchmark analysis (0.16). The untabulated analysis reveals that we cannot

reject this null hypothesis for the dpcorr ratio (t-statistic=0.93). Turning to the slope

associated with the dpig ratio, we observe a marked difference from 0.05 in our benchmark

specification to 0.21, when using annual non-overlapping samples. Our untabulated test

suggests that we can reject the null hypothesis that the two estimates are equal at the 10%

significance level (t-statistic=1.77). The contrast between the two estimates is reminiscent

of the work of Golez (2014) who documents a slope of 0.08 when using monthly returns data

and an estimate of around 0.27 when using non-overlapping annual samples.23

2. Variance Decomposition

For a better interpretation of our results, we investigate the drivers of the dp ratio

variation. Equation (A.11) of the online appendix enables us to decompose the variations in

23Table 5 of Golez (2014) reports a slope of 0.0073 for the dpig at the monthly forecasting horizon. Thus,
the annualized slope is equal to 0.0073×12 ≈ 0.08. Column 3 of Table 8 reports that the expected returns
have a persistent parameter equal to 0.7487 on average when using non-overlapping annual samples. Since
the slope parameter is given as 1 minus the product of the persistence and ρ̄, we have 1−0.7487×0.98 ≈ 0.27.
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the dp ratio into components linked to discount rates (dr) and cash flows (cf):

dpt = k1 +
µt

1 − ρα1︸ ︷︷ ︸
drt

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt −

φ2

1 − ρφ2

drpt︸ ︷︷ ︸
cf t

(32)

dpt = k1 + drt − cf t(33)

Using the parameters φ1, ρ, δ1, φ2 and the time-series of ig and drp, we can compute the

cash flow channel.

Straightforward calculations imply the following variance decomposition of the dp

ratio:

1 =
cov(drt, dpt)

var(dpt)
− cov(cf t, dpt)

var(dpt)
(34)

Economically, the contribution of the cash flow channel to the variations of the dp

ratio is linked to the slope estimate of the regression of the cash flow channel on a constant

and the dp ratio. In the data, we find that the covariation of the cash flow channel with the

dp ratio accounts for 20.52% of the variations in the dp ratio. As a result, the covariation of

the discount rate channel with the dp ratio accounts for 120.52% of the variations in the dp

ratio. These results are qualitatively similar to those of Golez (2014) who report statistics

of 34.22% and 134.22% for the covariance of the dp ratio with the cash flow and discount

rate channels relative to the variations in the dp ratio, respectively. We thus conclude that

most of the variations in prices arise from fluctuations in discount rates.
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V. Conclusion

We show that the dividend growth rate implied by the options market contains

information about (i) the expected dividend growth rate and (ii) the expected dividend

risk premium. We propose a simple model for the expected drp and study its implications

for the predictability of dividend growth and stock market returns.

Our empirical analysis establishes that accounting for the expected drp strengthens

the predictability of dividend growth and stock market returns. Our main results hold both

in- and out-of-sample. Analyzing the implication of our results for the portfolio choice of an

investor, we find that a market timing investor who accounts for the time varying expected

dividend risk premium realizes an additional utility gain of 2.02% per year. Overall, our

study highlights, both theoretically and empirically, the importance of the expected dividend

risk premium for the predictability of dividend growth and stock market returns.
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Table 1: Summary Statistics

This table reports the summary statistics of several time series. ∆d denotes the time series of
(annualized) monthly dividend growth. r denotes the time series of (annualized) monthly S&P 500
returns. This corresponds to the return of the trading strategy that buys the index, collects the
dividends paid over the next month and sells the index at the end of the following month. ig relates
to the implied growth rate. drp refers to the dividend risk premium. dp is the standard dividend
price ratio. igcorr is the dividend risk premium corrected implied growth rate. dpig relates to the
growth adjusted dividend price ratio. dpcorr denotes the corrected dividend price ratio. The column
entitled “Mean” reports the average of the time series [name in row]. Similarly, “Std”, “Skew”, and
“Kurt” relate to the standard deviation, skewness, and kurtosis of the series [name in row]. AR(1)
reports the first order autocorrelation. Finally, “Nobs” shows the number of observations.

Mean Std Skew Kurt AR(1) Nobs

∆d 0.06 0.05 -0.60 5.56 0.19 231
r 0.07 0.16 -0.78 4.32 0.08 231
ig 0.01 0.15 -2.17 11.06 0.77 231
drp 0.04 0.13 2.01 11.16 0.69 231
dp -4.04 0.22 0.22 3.81 0.98 231
igcorr 0.06 0.07 -1.94 9.84 0.81 231
dpig -3.93 1.33 -2.29 11.84 0.79 231
dpcorr -4.00 0.42 -2.28 10.58 0.87 231

Table 2: The In-Sample Predictability of Dividend Growth

This table summarizes the results of the predictability of 1-month dividend growth. We regress the
time series of dividend growth on a constant and a lagged predictive variable. We consider two
distinct predictive variables. The first one, ig, is the implied dividend growth rate. The second
predictor, igcorr, is the expected dividend risk premium corrected implied growth rate: igcorrt =

φ0 + (1 + φ1)igt + φ2drpt. In the data, we find that φ0 = 0.04, φ1 = −0.55, and φ2 = 0.26. Armed
with these parameters, we can construct igcorr. Although all regressions are estimated with an
intercept, we report the slope estimates only. The entries in parentheses indicate the Newey–West
(1987) adjusted t-statistics computed with 2 lags. The figures in square brackets relate to the
bootstrapped p-values computed as in Rapach et al. (2013). R2 is the r-squared of the regression
model.

ig
0.42
(5.09)
[0.00]

igcorr
0.92
(4.47)
[0.00]

R2 16.15% 17.56%
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Table 3: The Out-of-Sample Predictability of Dividend Growth

This table presents the out-of-sample R2 (R2
oos) linked to the predictability of 1-month dividend

growth by the variable [name in column]. The benchmark model is the recursive mean. We consider
two alternative models. Our first model derives the forecast (ŷt) as follows: ŷt = igt. Our second
model derives the forecast as: ŷt = φ0 + (1 + φ1)igt + φ2drpt. This forecast corresponds exactly
to igcorrt . We use an expanding training window to estimate the parameters φ0, φ1, and φ2.
MSE−F andMSE−Adj denote the McCracken (2007) and Clark and West (2007) test statistics,
respectively. The critical values of the MSE−F statistic are 3.18, 1.55, and 0.80 at the 1%, 5%,
and 10% significance levels, respectively. The critical values for the MSE − Adj test statistic are
2.33, 1.65, and 1.28 at the 1%, 5%, and 10% significance levels, respectively. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively.

ig igcorr

R2
oos -3.20% 23.57%

MSE − F -2.67 26.22***
MSE −Adj 1.60* 2.20**
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Table 4: The In-Sample Predictability of Returns

This table summarizes the results of the predictability of monthly returns. We regress the time series
of returns on a constant and the lagged predictive variable. We consider three main predictive
variables. The first one, dp, is the standard dividend price ratio. The second predictor, dpig,
is the implied growth augmented dividend price ratio: dpig = dpt + igt

1−ρδ1 . The third predictor,

dpcorr, is the corrected dividend price ratio: dpcorr = dpt + (1+φ1)igt
1−ρδ1 + ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2) + φ2drpt
1−ρφ2

.
Using the following information, φ1 = −0.55, ρ̄ = 0.98, δ1 = 0.90, and φ2 = 0.26, we compute
the relevant forecasting variables. We also consider several control variables discussed in the text:
dplac, bm, def , ∆ff , ep, infl, ntis, pay, rrel, skew, sop, svar, tbill, term, and vrp. Although
all regressions are estimated with an intercept, we report the slope estimates only. The entries in
parentheses indicate the Newey–West (1987) adjusted t-statistics computed with 2 lags. The figures
in square brackets relate to the bootstrapped p-values computed as in Rapach et al. (2013). R2 is
the r-squared of the regression model.

dp
0.20
(0.80)
[0.23]

dpig
0.05
(1.96)
[0.03]

dpcorr
0.16 0.15 0.19 0.15 0.15 0.15 0.16 0.20 0.16 0.13 0.16 0.15 0.15 0.18 0.18 0.15
(2.15) (2.02) (1.99) (2.09) (1.94) (1.76) (2.11) (2.80) (2.17) (1.80) (2.13) (2.07) (2.02) (2.38) (2.47) (2.06)
[0.02] [0.03] [0.03] [0.03] [0.04] [0.06] [0.03] [0.01] [0.02] [0.05] [0.02] [0.03] [0.03] [0.01] [0.01] [0.03]

dplac
0.00
(0.39)
[0.37]

bm
-0.26
(-0.46)
[0.34]

def
5.60
(0.71)
[0.26]

∆ff
13.30
(1.26)
[0.12]

ep
0.02
(0.17)
[0.45]

infl
5.79
(0.62)
[0.28]

ntis
4.54
(1.52)
[0.08]

pay
-0.01
(-0.06)
[0.48]

rrel
9.54
(1.53)
[0.08]

skew
0.01
(0.84)
[0.22]

sop
0.33
(0.17)
[0.44]

svar
-1.39
(-2.02)
[0.03]

tbill
1.21
(0.74)
[0.25]

term
-3.27
(-1.11)
[0.15]

vrp
0.18
(0.07)
[0.48]

R2 0.64% 1.36% 1.45% 1.60% 1.53% 1.95% 2.39% 1.48% 1.61% 3.74% 1.45% 2.77% 1.61% 1.48% 3.20% 1.63% 1.86% 1.46%
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Appendix to

“The Predictive Power of the Dividend

Risk Premium”
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Will be Provided as Online Appendix
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A Proofs

This appendix presents the detailed proof of the propositions presented in the main

text. In order to facilitate the exposition of the derivations, it is useful to re-state our main

assumptions:

rt+1 = µt + εrt+1(A.1)

µt+1 = α0 + α1µt + εµt+1(A.2)

igt+1 = δ0 + δ1igt + εigt+1(A.3)

drpt+1 = φ0 + φ1igt + φ2drpt + εdrpt+1(A.4)

where all error terms are i.i.d with zero mean.

A.1 Proposition 1

To derive the first proposition of our model, we start from the accounting identity

linking together the expected dividend growth rate, the expected drp and the implied growth

rate:

Et(∆dt+1) − Et(drpt+1) = igt

This implies that:

Et(∆dt+1) = Et(drpt+1) + igt

= Et(φ0 + φ1igt + φ2drpt + εdrpt+1) + igt
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Et(∆dt+1) = φ0 + (1 + φ1)igt + φ2drpt(A.5)

Recall that the realized dividend growth can be decomposed into an expected component

and a shock:

∆dt+1 = Et(∆dt+1) + ε∆dt+1(A.6)

∆dt+1 = φ0 + (1 + φ1)igt + φ2drpt + ε∆dt+1(A.7)

This completes the proof of Proposition 1. �

A.2 Proposition 2:

For ease of exposition, let us restate equation (10) from the manuscript:

+∞∑
j=0

ρj (Et(rt+1+j) − Et(∆dt+1+j)) =
k

1 − ρ
+ dpt(A.8)

Using equations (A.1) and (A.2), we can compute the first summation term on the

left-hand side of equation (A.8):

+∞∑
j=0

ρjEt(rt+1+j) ≡ kr +
+∞∑
j=0

ρjαj1µt

+∞∑
j=0

ρjEt(rt+1+j) ≡ kr +
µt

1 − ρα1

(A.9)

where kr is a constant that depends on α0 and α1.

Similarly, we combine the result of Proposition 1 (equation (A.7)) together with
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equations (A.3) and (A.4) to compute the infinite sum of expected dividend growth rates:

+∞∑
j=0

ρjEt(∆dt+1+j) = k∆d +
+∞∑
j=0

ρj

[
δj1(1 + φ1) + φ1φ2

δj1 − φj2
δ1 − φ2

]
igt +

+∞∑
j=0

ρjφj+1
2 drpt

+∞∑
j=0

ρjEt(∆dt+1+j) ≡ k∆d +

[
1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt +

φ2drpt
1 − ρφ2

(A.10)

where k∆d is a constant that depends on δ0, δ1, φ0, φ1 and φ2.

Substituting equations (A.9) and (A.10) into equation (A.8) yields:

dpt = − k

1 − ρ
+

+∞∑
j=0

ρj (Et(rt+1+j) − Et(∆dt+1+j))

= − k

1 − ρ
+ kr − k∆d︸ ︷︷ ︸
k1

+
µt

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt −

φ2drpt
1 − ρφ2

dpt ≡ k1 +
µt

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt −

φ2

1 − ρφ2

drpt

(A.11)

Similarly, we can express the next-period dividend price ratio as:

dpt+1 = k1 +
µt+1

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt+1 −

φ2

1 − ρφ2

drpt+1

Using equations (A.3) and (A.4), we can show that:

dpt+1 = k1 +
µt+1

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt+1 −

φ2

1 − ρφ2

drpt+1

= k1 +
α0 + α1µt + εµt+1

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
(δ0 + δ1igt + εigt+1)
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− φ2

1 − ρφ2

(φ0 + φ1igt + φ2drpt + εdrpt+1)

= k1 +
α0

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
δ0 −

φ0φ2

1 − ρφ2︸ ︷︷ ︸
k2

+
α1µt + εµt+1

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
(δ1igt + εigt+1) − φ1φ2igt

1 − ρφ2

−
φ2

2drpt + φ2ε
drp
t+1

1 − ρφ2

≡ k1 + k2 +
α1µt

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
δ1igt −

φ1φ2igt
1 − ρφ2

− φ2
2drpt

1 − ρφ2

+
εµt+1

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
εigt −

φ2ε
drp
t+1

1 − ρφ2︸ ︷︷ ︸
εdpt+1

≡ α1k1 +
α1µt

1 − ρα1

−
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
(α1 + δ1 − α1)igt

− φ1φ2igt
1 − ρφ2

− α1 + φ2 − α1

1 − ρφ2

φ2drpt + k2 + (1 − α1)k1 + εdpt+1

dpt+1 = k2 + (1 − α1)k1 + α1dpt −
[

1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
(δ1 − α1)igt(A.12)

− φ1φ2igt
1 − ρφ2

− φ2 − α1

1 − ρφ2

φ2drpt + εdpt+1

Following the steps of Campbell and Shiller (1988), it is straightforward to show that:

rt+1 ≈ k + ∆dt+1 + dpt − ρdpt+1(A.13)

The final step of the proof consists in substituting equations (A.7), (A.11) and (A.12)

into equation (A.13):

rt+1 = Et
(
k + ∆dt+1 + dpt − ρdpt+1

)
+ εrt+1

= k + φ0 + (1 + φ1)igt + φ2drpt + dpt − ρ (k2 + (1 − α1)k1) + εrt+1
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− ρ

(
α1dpt −

[
1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
(δ1 − α1)igt −

φ1φ2igt
1 − ρφ2

− φ2 − α1

1 − ρφ2

φ2drpt

)
= k + φ0 − ρ (k2 + (1 − α1)k1)︸ ︷︷ ︸

Ψ

+(1 − ρα1)

(
dpt +

[
1 + φ1

1 − ρδ1

+
ρ̄φ1φ2

(1 − ρ̄δ1)(1 − ρ̄φ2)

]
igt

)

+ (1 − ρα1)

(
φ2drpt
1 − ρφ2

)
+ εrt+1

We thus obtain:

rt+1 ≡ Ψ + (1 − ρα1)

(
dpt +

1 + φ1

1 − ρδ1

igt +
ρ̄φ1φ2igt

(1 − ρ̄δ1)(1 − ρ̄φ2)
+

φ2

1 − ρφ2

drpt

)
︸ ︷︷ ︸

dpcorr

(A.14)

+ εrt+1

This completes the proof of Proposition 2. �
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B Additional Control Variables

• dplac: We compute the dplac ratio as in Golez (2014):

(B.1) dplac = dpt +
∆d̄t

1 − ρ

where ∆d̄t is the average dividend growth rate over the past year.

• ∆ff : We construct ∆ff as the 1-month change in the federal fund rate as in Maio

(2014).

• rrel: The rrel measure is the difference between the 3-month Treasury bill rate and

its last four-quarter average as in Maio (2013). We obtain all interest rate data from

the FRED database of the Federal Reserve Bank of St. Louis.

• skew: We download the time-series of the implied skewness from the website of the

CBOE.

• sop: We implement the sum-of-part method with no multiple growth. The forecast

is given as r̂t+1 = dpt + ḡet where ḡet is the average earnings growth rate at time t

computed using a trailing window of 20 years as in Ferreira and Santa-Clara (2011).

• svar: Following Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011),

we construct svar as the sum of the squared (1) 5-minute intraday returns and (2) the

close-to-open (overnight) returns observed that month. We annualize the monthly svar
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by multiplying it with 12. All calculations are based on the intraday dataset from the

CBOE.

• term: Following Maio (2013), we construct term as the difference between the yields

on the 10-year and the 1-year US Treasury bonds. The data come from the FRED

database.

• vrp: The vrp is defined as the difference between the (1) physical and (2) risk-neutral

expectations of next-month’s variance. We proxy the risk-neutral expectation of variance

with the squared value of the VIX, which we obtain from Bloomberg. In order to

compute the physical expectation of the (annualized) realized variance of the index

returns, we closely follow the empirical framework of Drechsler and Yaron (2011).

Briefly, we regress the monthly time series of svar on a constant, the lagged svar, and

the lagged squared value of the VIX. We use the fitted value from this model as the

physical expectation of realized variance.
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Table A.1: Summary Statistics: At-the-Money Options

This table reports the summary statistics of several time series. ∆d denotes the time series of
(annualized) monthly dividend growth. r denotes the time series of (annualized) monthly S&P 500
returns. This corresponds to the return of the trading strategy that buys the index, collects the
dividends paid over the next month and sells the index at the end of the following month. ig relates
to the implied growth rate. In constructing the dividend strip, we only consider options that are
at-the-money, i.e. with a Black and Scholes (1973) delta that is in absolute value between 0.375
and 0.625. drp refers to the dividend risk premium. dp is the standard dividend price ratio. igcorr

is the dividend risk premium corrected implied growth rate. dpig relates to the growth adjusted
dividend price ratio. dpcorr denotes the corrected dividend price ratio. The column entitled “Mean”
reports the average of the time series [name in row]. Similarly, “Std”, “Skew”, and “Kurt” relate to
the standard deviation, skewness, and kurtosis of the series [name in row]. AR(1) reports the first
order autocorrelation. Finally, “Nobs” shows the number of observations.

Mean Std Skew Kurt AR(1) Nobs

∆d 0.06 0.05 -0.60 5.56 0.19 231
r 0.07 0.16 -0.78 4.32 0.08 231
ig 0.01 0.15 -2.05 10.40 0.78 231
drp 0.04 0.13 1.92 10.40 0.70 231
dp -4.04 0.22 0.22 3.81 0.98 231
igcorr 0.06 0.07 -1.92 9.65 0.81 231
dpig -3.94 1.37 -2.18 11.22 0.79 231
dpcorr -4.00 0.41 -2.20 10.14 0.87 231

Table A.2: The In-Sample Predictability of Dividend Growth: At-the-Money
Options

This table summarizes the results of the predictability of 1-month dividend growth. We regress the
time series of dividend growth on a constant and a lagged predictive variable. We consider two
distinct predictive variables. The first one, ig, is the implied dividend growth rate. The second
predictor, igcorr, is the expected dividend risk premium corrected implied growth rate: igcorrt =

φ0 + (1 + φ1)igt + φ2drpt. In constructing the dividend strip, we only consider options that are
at-the-money, i.e. with a Black and Scholes (1973) delta that is in absolute value between 0.375
and 0.625. In the data, we find that φ0 = 0.04, φ1 = −0.58, and φ2 = 0.24. Armed with these
parameters, we can construct igcorr. Although all regressions are estimated with an intercept,
we report the slope estimates only. The entries in parentheses indicate the Newey–West (1987)
adjusted t-statistics computed with 2 lags. The figures in square brackets relate to the bootstrapped
p-values computed as in Rapach et al. (2013). R2 is the r-squared of the regression model.

ig
0.40
(5.27)
[0.00]

igcorr
0.97
(4.54)
[0.00]

R2 15.56% 17.23%
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Table A.3: The Out-of-Sample Predictability of Dividend Growth:
At-the-Money Options

This table presents the out-of-sample R2 (R2
oos) linked to the predictability of 1-month dividend

growth by the variable [name in column]. The benchmark model is the recursive mean. We consider
two alternative models. Our first model derives the forecast (ŷt) as follows: ŷt = igt. Our second
model derives the forecast as: ŷt = φ0 + (1 + φ1)igt + φ2drpt. This forecast corresponds exactly
to igcorrt . In constructing the dividend strip, we only consider options that are at-the-money, i.e.
with a Black and Scholes (1973) delta that is in absolute value between 0.375 and 0.625. We
use an expanding training window to estimate the parameters φ0, φ1 and φ2. MSE − F and
MSE −Adj denote the McCracken (2007) and Clark and West (2007) test statistics, respectively.
The critical values of the MSE − F statistic are 3.18, 1.55, and 0.80 at the 1%, 5%, and 10%
significance levels, respectively. The critical values for the MSE − Adj test statistic are 2.33,
1.65, and 1.28 at the 1%, 5%, and 10% significance levels, respectively. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% significance levels, respectively.

ig igcorr

R2
oos -12.30% 21.53%

MSE − F -9.42 23.59***
MSE −Adj 1.51* 2.12**
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Table A.4: The In-Sample Predictability of Returns: At-the-Money Options

This table summarizes the results of the predictability of monthly returns. We regress the time series
of returns on a constant and the lagged predictive variable. We consider three main predictive
variables. The first one, dp, is the standard dividend price ratio. The second predictor, dpig,
is the implied growth augmented dividend price ratio: dpig = dpt + igt

1−ρδ1 . In constructing the
dividend strip, we only consider options that are at-the-money, i.e. with a Black and Scholes
(1973) delta that is in absolute value between 0.375 and 0.625. The third predictor, dpcorr, is the
corrected dividend price ratio: dpcorr = dpt+

(1+φ1)igt
1−ρδ1 + ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2) + φ2drpt
1−ρφ2

. Using the following
information, φ1 = −0.58, ρ̄ = 0.98, δ1 = 0.90, and φ2 = 0.24, we compute the relevant forecasting
variables. We also consider several control variables discussed in the text: dplac, bm, def , ∆ff ,
ep, infl, ntis, pay, rrel, skew, sop, svar, tbill, term, and vrp. Although all regressions are
estimated with an intercept, we report the slope estimates only. The entries in parentheses indicate
the Newey–West (1987) adjusted t-statistics computed with 2 lags. The figures in square brackets
relate to the bootstrapped p-values computed as in Rapach et al. (2013). R2 is the r-squared of the
regression model.

dp
0.20
(0.80)
[0.24]

dpig
0.05
(2.02)
[0.03]

dpcorr
0.16 0.16 0.20 0.16 0.15 0.16 0.16 0.21 0.16 0.14 0.16 0.16 0.16 0.19 0.19 0.16
(2.24) (2.11) (2.12) (2.19) (2.04) (1.85) (2.20) (2.89) (2.27) (1.89) (2.23) (2.17) (2.14) (2.49) (2.57) (2.16)
[0.02] [0.03] [0.03] [0.02] [0.03] [0.04] [0.02] [0.00] [0.02] [0.04] [0.02] [0.02] [0.03] [0.01] [0.01] [0.02]

dplac
0.00
(0.39)
[0.36]

bm
-0.30
(-0.52)
[0.32]

def
5.63
(0.72)
[0.26]

∆ff
13.26
(1.26)
[0.13]

ep
0.02
(0.17)
[0.45]

infl
5.70
(0.60)
[0.30]

ntis
4.60
(1.54)
[0.08]

pay
-0.01
(-0.07)
[0.48]

rrel
9.47
(1.52)
[0.08]

skew
0.01
(0.84)
[0.22]

sop
0.34
(0.18)
[0.44]

svar
-1.40
(-2.04)
[0.03]

tbill
1.23
(0.76)
[0.25]

term
-3.29
(-1.12)
[0.16]

vrp
0.18
(0.07)
[0.47]

R2 0.64% 1.45% 1.56% 1.71% 1.67% 2.06% 2.50% 1.58% 1.71% 3.91% 1.56% 2.86% 1.73% 1.59% 3.34% 1.74% 1.98% 1.57%
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Table A.7: Summary Statistics: Alternative Interpolation

This table reports the summary statistics of several time series. ∆d denotes the time series of
(annualized) monthly dividend growth. r denotes the time series of (annualized) monthly S&P 500
returns. This corresponds to the return of the trading strategy that buys the index, collects the
dividends paid over the next month and sells the index at the end of the following month. ig relates
to the implied growth rate. In constructing the annual dividend strip, we directly interpolate the
12-month maturity. drp refers to the dividend risk premium. dp is the standard dividend price
ratio. igcorr is the dividend risk premium corrected implied growth rate. dpig relates to the growth
adjusted dividend price ratio. dpcorr denotes the corrected dividend price ratio. The column entitled
“Mean” reports the average of the time series [name in row]. Similarly, “Std”, “Skew”, and “Kurt”
relate to the standard deviation, skewness, and kurtosis of the series [name in row]. AR(1) reports
the first order autocorrelation. Finally, “Nobs” shows the number of observations.

Mean Std Skew Kurt AR(1) Nobs

∆d 0.06 0.05 -0.60 5.56 0.19 231
r 0.07 0.16 -0.78 4.32 0.08 231
ig 0.00 0.15 -2.29 11.36 0.84 231
drp 0.05 0.11 2.59 14.70 0.75 231
dp -4.04 0.22 0.22 3.81 0.98 231
igcorr 0.06 0.08 -2.19 10.59 0.86 231
dpig -4.00 1.17 -2.46 12.65 0.86 231
dpcorr -4.01 0.47 -2.56 12.49 0.90 231

Table A.8: The In-Sample Predictability of Dividend Growth: Alternative
Interpolation

This table summarizes the results of the predictability of 1-month dividend growth. We regress the
time series of dividend growth on a constant and a lagged predictive variable. We consider two
distinct predictive variables. The first one, ig, is the implied dividend growth rate. The second
predictor, igcorr, is the expected dividend risk premium corrected implied growth rate: igcorrt =

φ0 + (1 + φ1)igt + φ2drpt. In constructing the annual dividend strip, we directly interpolate the
12-month maturity. In the data, we find that φ0 = 0.04, φ1 = −0.49 and φ2 = 0.25. Armed with
these parameters, we can construct igcorr. Although all regressions are estimated with an intercept,
we report the slope estimates only. The entries in parentheses indicate the Newey–West (1987)
adjusted t-statistics computed with 2 lags. The figures in square brackets relate to the bootstrapped
p-values computed as in Rapach et al. (2013). R2 is the r-squared of the regression model.

ig
0.45
(4.86)
[0.00]

dpcorr
0.86
(4.51)
[0.00]

R2 18.13% 18.66%
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Table A.9: The Out-of-Sample Predictability of Dividend Growth: Alternative
Interpolation

This table presents the out-of-sample R2 (R2
oos) linked to the predictability of 1-month dividend

growth by the variable [name in column]. The benchmark model is the recursive mean. We consider
two alternative models. Our first model derives the forecast (ŷt) as follows: ŷt = igt. Our second
model derives the forecast as: ŷt = φ0 + (1 + φ1)igt + φ2drpt. This forecast corresponds exactly to
igcorrt . In constructing the annual dividend strip, we directly interpolate the 12-month maturity.
We use an expanding training window to estimate the parameters φ0, φ1, and φ2. MSE − F and
MSE −Adj denote the McCracken (2007) and Clark and West (2007) test statistics, respectively.
The critical values of the MSE − F statistic are 3.18, 1.55, and 0.80 at the 1%, 5%, and 10%
significance levels, respectively. The critical values for the MSE − Adj test statistic are 2.33,
1.65, and 1.28 at the 1%, 5%, and 10% significance levels, respectively. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% significance levels, respectively.

ig igcorr

R2
oos 0.56% 22.52%

MSE − F 0.49 25.00***
MSE −Adj 1.54* 2.02**
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Table A.10: The In-Sample Predictability of Returns: Alternative Interpolation

This table summarizes the results of the predictability of monthly returns. We regress the time
series of returns on a constant and the lagged predictive variable. We consider three main predictive
variables. The first one, dp, is the standard dividend price ratio. The second predictor, dpig, is
the implied growth augmented dividend price ratio: dpig = dpt + igt

1−ρδ1 . In constructing the annual
dividend strip, we directly interpolate the 12-month maturity. The third predictor, dpcorr, is the
corrected dividend price ratio: dpcorr = dpt+

(1+φ1)igt
1−ρδ1 + ρ̄φ1φ2igt

(1−ρ̄δ1)(1−ρ̄φ2) + φ2drpt
1−ρφ2

. Using the following
information, φ1 = −0.49, ρ̄ = 0.98, δ1 = 0.89, and φ2 = 0.25, we compute the relevant forecasting
variables. We also consider several control variables discussed in the text: dplac, bm, def , ∆ff ,
ep, infl, ntis, pay, rrel, skew, sop, svar, tbill, term, and vrp. Although all regressions are
estimated with an intercept, we report the slope estimates only. The entries in parentheses indicate
the Newey–West (1987) adjusted t-statistics computed with 2 lags. The figures in square brackets
relate to the bootstrapped p-values computed as in Rapach et al. (2013). R2 is the r-squared of the
regression model.

dp
0.20
(0.80)
[0.23]

dpig
0.05
(1.77)
[0.05]

dpcorr
0.14 0.13 0.16 0.13 0.13 0.14 0.14 0.16 0.14 0.11 0.14 0.14 0.12 0.16 0.16 0.14
(2.15) (2.02) (1.81) (1.95) (1.93) (1.84) (2.11) (2.43) (2.18) (1.71) (2.12) (2.10) (1.81) (2.18) (2.38) (2.10)
[0.02] [0.03] [0.06] [0.04] [0.04] [0.05] [0.03] [0.01] [0.02] [0.06] [0.02] [0.02] [0.05] [0.02] [0.02] [0.03]

dplac
0.00
(0.27)
[0.41]

bm
-0.20
(-0.33)
[0.39]

def
4.50
(0.56)
[0.31]

∆ff
13.17
(1.25)
[0.12]

ep
0.01
(0.08)
[0.47]

infl
5.21
(0.57)
[0.31]

ntis
4.02
(1.36)
[0.11]

pay
0.01
(0.07)
[0.47]

rrel
9.16
(1.50)
[0.08]

skew
0.01
(0.80)
[0.23]

sop
0.09
(0.05)
[0.47]

svar
-1.30
(-1.82)
[0.05]

tbill
1.00
(0.59)
[0.30]

term
-3.12
(-1.03)
[0.18]

vrp
0.07
(0.03)
[0.49]

R2 0.64% 1.32% 1.44% 1.51% 1.49% 1.76% 2.37% 1.45% 1.57% 3.30% 1.45% 2.63% 2.63% 1.45% 2.94% 1.57% 1.82% 1.44%
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