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Abstract

In an extension to research into modeling a biological network of neurons this

expands the basic characteristics of an Artificial Neural Network (ANN) com-

putational model to measure functional compensation exhibited by a biological

neural network during damage or loss of structure. Whilst current research has

highlighted the availability of various technologies and methods relevant to this

area of study, none provide a sufficient description as to how fault tolerance

is measured nor how damage is evaluated. Such metrics must be consistent,

reproducible, and applicable to a plethora of neural network architectures and

techniques. Furthermore, measuring fault resilience of biologically inspired ANN

architectures provides insight into how biological networks are able to exhibit this

amazing ability.

This research brings together previous works into a comprehensive damage re-

silient ANN framework as well as, and more importantly, provides consistent

measurement of fault tolerance within this framework. The proposed set of fault

resilience metrics provides the means to evaluate the efficacy of networks which

are subjectable to damage. These metrics and their source algorithms rely on

the modification of various statistical methods and observations currently used

for network training optimization.
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Chapter 1

Introduction

Considering the ability for a biological system to recover from faults, it is believed

that studying and mimicking this quality in an Artificial Neural Network (ANN)

would not only alleviate problems in distributed ANN applications but may also

shed light on how a biological system provides this crucial ability. The ability to

optimize biologically-inspired solutions is currently not possible due to a lack of

consistent methods for appraising the efficacy of said solutions in the presence

of damage.

Previous and current work in the area of self-healing ANNs focuses either on

application-specific designs to overcome faults (e.g. algorithm specific improve-

ments) or the introduction of a generic ”watchdog” component responsible for

actively monitoring, diagnosing, and reconfiguring the network (Jin, 2010). This

active system monitor would still require prior knowledge of the problem domain

and/or would typically become a bespoke solution for the network it is meant to

diagnose. Neither are considered generic frameworks nor would they necessarily

remain faithful to the original biological inspiration of the brain (Al-Zawi et al.,
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2009).

Further, a common framework for providing damage resilience to ANNs must

take into account saliency of the networks subcomponents (i.e. neurons) when at-

tempting to recreate lost connections and preserve previously learned responses.

Neural network pruning and optimization techniques are crucial in developing

this framework (Silva et al., 2005)(Khabou and Gader, 2000)(Yuan et al., 2010).

The focus of this research is to bring together various methodologies to provide

a common framework for measuring fault recovery and resilience within a bio-

logically inspired self-healing ANN architecture. Additionally, this framework

will help to alleviate concerns and shortcomings in current self-healing ANN ap-

proaches. In providing a set of fault tolerance measurements, past and future

research into fault resilience ANNs can be compared, leading to meaningful rel-

ative evaluations of efficacy. A metric-based comparison leads to the possibility

of fault tolerant artificial neural networks being consistently optimized, resulting

in improved future research in this field.

1.1 Biological Inspiration

The brain’s ability to reorganize and reinforce its functions is paramount to

its ability to produce learned responses. As the biological brain loses neuron

cells and the connections they have made with surrounding cells (through ei-

ther damage or decay) the inherent knowledge is ultimately lost. Yet, from a

system perspective a brain can still produce similar output in spite of these

changes within its foundation. Studies into brain neurogenesis, syntapogene-

sis, and sprouting show that new cells are being made and fresh connections
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established between sensory neurons, motor neurons, and neurons within the

hippocampus. The same neuroplasticity responsible for the ability to learn and

develop is also the basis for damage recovery (Clergue and Collard, 1998)(Mul-

ligan et al., 2010)(Michel and Collard, 1996)(Stroemer et al., 1995).

Similarly, when an ANN is damaged after training it can still produce some

output (depending upon its design) but its behavior thereafter is not well under-

stood nor guaranteed. Damage to an ANN in this case refers to either missing

connections between input-hidden/hidden-output nodes or the absence of hidden

nodes altogether. When considering a distributed ANN where each node may

exist on separate hardware and connections between them cannot guarantee a

quality-of-service this structural loss presents a real problem (Steinder and Sethi,

2004)(Tang et al., 2005)(Zadeh and Seyyedi, 2011)(Lee et al., 2011). This topo-

logical consideration is also prevalent within deep neural networks, or stacked

neural networks, where each neuron in this context is a processing unit which

can be lost. Currently, there is no common set of measurements available which

aim to understand how fault resilient an ANN is, nor how well it may ”recover”

following either active or passive attempts at self-healing.

1.2 Fault Diagnosis Foundation

Starting with a review of basic, black box, system-level, fault diagnosis against

various applications and ANN implementations, the goal is to aggregate com-

monalities into a fault diagnosis framework for use in this research. This thesis

details the pros and cons associated with numerous fault diagnosis techniques

and what they mean to this research by highlighting those which are considered
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to be improbable within context of the biological inspiration mentioned earlier.

In reviewing biological inspirations, and varying fault diagnosis implementations

(both related to neural networks and not) a foundational set of features is col-

lated as the basis for fault tolerant neural network research. This foundation

includes a set of fault resilience measurements which, in reviewing existing fault

tolerant neural network research, is absent from this field of study. By and large,

the research reviewed as part of this thesis lacks any meaningful, quantifiable

comparison of fault resilience amongst methods. In some cases, detection and lo-

calization of faults are completely omitted from research efforts (Jin and Cheng,

2011)(Jin, 2010).

From there, the Affordable Neural Network (Af NN) method (Uwate and Nishio,

2005) is framed around the ability for individual neurons to participate within

ANN learning and generalization behaviors. Af NNs provide a structurally re-

dundant and passively fault tolerant framework with learning rates comparable

to traditional Multilayer Perceptrons (MLPs). Further, fault diagnosis methods

are applied to consistently quantify the level of damage the system takes when

damaged using the same error measurements captured during training as part

of the back propogation of error. These methods provide the underpinning for a

common set of fault resilience measurements and are tested in this thesis using

a selection of ANN classification and regression problems. Comparisons between

regular ANNs and ANNs utilizing the presented fault diagnosis methods is per-

formed and the implications discussed.

Designed originally to emulate the firing patterns of the human central nervous

system the Af NN technique provides a biologically inspired design for MLPs,

and, as mentioned, a truly passive fault diagnosis framework to build from. The

way they work is by, first, providing a pool of neurons in one or more hidden

4



layers. The size of the pool is selected at network design and is equal to or

greater than the number of neurons needed for the chosen application. During

training each neuron is individualy evaluated for inclusion into the processing

of the networks’ input; the result of said evaluation results in a subset of the

neurons actually pariticpating in the processing. This evaluation essentially acts

as a binary switch, one for each neuron, turning on or off that neurons’ activity

for a period of time. The method of evaluation is defined as the affordability

scalar in section 3.1.

1.3 Use of Entropy and Epochs

The calculation of information entropy within the field of machine learning is

mostly limited to providing a cost term for training optimization (Karystinos and

Pados, 2000)(Silva et al., 2005)(Khabou and Gader, 2000)(Yuan et al., 2010).

However, since this calculation is already being passed back through the net-

work, in the case of back propogation based learning, it can readily be used to

not only affect network weights but also to quantify the value of each unit within

an ANN. Similar to how Mean-squared Error (MSE) is used, entropy can now

be harnessed to evaluate the ”importance” of individual neurons and, therefore,

the impact of losing a neuron and its connections due to damage.

Measurement of epochs is a unique concept in that learning systems will at-

tempt to avoid overfitting by limiting the number of epochs to train against

in conjunction with either a target error or error difference thresholds (Haykin,

1994). What are not used thus far are the remaining epochs (i.e. the epochs not

used) as a measurement of network training efficiency. For instance, if a network
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is trained and damaged then retrained to the previously acheived MSE within an

epoch ceiling then, holding all else constant, two network configurations can be

compared with respect to how many epochs they used to acheive their targets as

a means to understanding retained value of the network between damage onset

and retraining.

1.4 Summary of Thesis Contributions

As will be detailed in the review of associated literature, no fault tolerant neural

network study currently provides a multi-faceted approach to measuring fault

resilience within an ANN framework. Furthermore, no fault tolerant neural

network study meets the requirements of the foundational feature set for this

area of study, as presented in this thesis. Specifically, this thesis proposes that

no fault tolerant neural network research previously undertaken and reviewed

herein provides a truly passive fault resilient method and no method sufficiently

quantifies the level of fault a system incurs.

By using Af NNs (Uwate and Nishio, 2005) as the basis of comparison with

respect to fault resilience measurements, the research presented in this thesis

is consistent with the biological inspirations whilst providing a foundation for

evaluating the resilience of this and similar frameworks in the future. Using error,

entropy, and epoch based calculations the contributions of the research presented

here is aimed at providing definitions for these fault resilience measurements and

evaluating them against well known, publicly available data sets. Aggregating

all of these elements, the following points summarize the contributions of this

thesis:
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1 Error-based resilience measurements have been produced and justified, which

are designed around the concept of neuronal redundancy. This use of error-

based measurement is novel because it is specific to how network error is

affected by loss of structure.

2 Entropy-based measurements will be derived for further measuring saliency of

redundant neuronal units.

3 Metrics for quantifying fault rehabilitation through the use of error, epochs,

and entropy, within a number of control settings, will be provided, through

experimental results.

4 Analysis on the effects that data set generation, and attribute distribution

therein, have on the weight distributions within an MLP and, subsequently,

the fault resilience measurements presented.

1.5 Organization of Thesis

Chapter two provides an in-depth review of relevant literature, framing this

research by highlighting relevant areas of work by others and underlining current

gaps therein. Chapter three reviews the Af NN technique and how it can be

used as a basis for a structurally redundant and fault resilient ANN with which

fault recovery measurements can be made. Chapter four provides error-based

fault recovery measurements which focus on the inherent value of individual

neurons and how the loss of these neurons affects the overall ”health” of the

ANN. Chapter five takes this further and produces two new measurements,

based on calculations of entropy and epochs, which complement the findings
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from chapter four. Chapter six discusses how data set make-up can affect not

only the ability of an ANN to train but also to sustain damage. Finally, chapters

six and seven provide conclusive statements and thoughts on future research,

respectively.
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Chapter 2

Fault Resilience in Neural

Networks - Related Research

Fault resilience measurements of Artificial Neural Networks is an area of study

which, as detailed in this chapter, is rather limited. However, each instance of

previous research share common foundations in various subjects. Section 2.1

focuses on a method by (Uwate and Nishio, 2005) for providing structural re-

dundancy to an Artificial Neural Network (ANN) called the Affordable Neural

Network (Af NN). Next, and to better understand and frame the novel con-

tributions of this thesis, section 2.2 presents foundational concepts related to

the study of neural network fault resilience. Following that, section 2.3 details

research specific to either methods for introducing fault tolerance within ANNs

or the analysis of fault tolerance within ANNs. Finally, section 2.4 details the

core hypotheses presented in this research as the basis for scientific experiments

herein.

As foundational subjects are discussed the descriptions will highlight how and
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why they are considered relevant to the area of fault tolerant ANN research.

Subsequently, constraints and considerations are captured and examined. The

analyses and descriptions of previous fault tolerant ANN implementations is

reviewed and shortcomings noted in comparison to how they relate to the un-

derlying subject matter.

This review of previously published literature will support and make evident

the problem statement which is the subject of this thesis: namely, that there

exists no set of measurements designed to capture the various facets of fault

tolerance in ANNs. For instance, previous research lack a truly passive frame-

work and, therefore, are both not biologically inspired and not computationally

acceptable (i.e. attempting to scale these methods exceeds computational capac-

ities). Alternatively, they make claims regarding natural fault tolerance of neural

networks trained using modified data sets and utilizing various neural network

architectures but are unable to provide a consistent set of metrics which quantify

this resilience effectively. In addition, these studies also suffer from their own

designs in that the fault resilience is solely dependent on the localization and

rehabilitation of fault units which suffers from temporal delay in detection and

action which are not acceptable in real-world applications.

The Af NN technique was intended to provide an Multilayer Perceptron (MLP)

model with the ability to more closely mimic the neuronal firing patterns exhib-

ited by a biological brain. In doing so, they indirectly provide a new foundation

for structural redundancy which can be analysed within the area of fault toler-

ant ANN research. With both the Af NN method and the lessons learned from

previous research regarding the measurement of faults within neural network

systems, these tools provide the framework for solving the problem statement of

this thesis.
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2.1 Affordable Neural Networks as Foundation

for Fault Resilience Measurements

Considering the various fault tolerant neural network approaches, and also the

goals of this thesis to provide fault resilience measurements for MLP applica-

tions, the work by (Uwate and Nishio, 2005) provides a method with which a

number of the foundational features, listed in section 2.2, of fault resilience are

present. Using what they call Af NNs Uwate and Nishio are neuron pool selec-

tion to produce subsets of participating neurons, within the hidden layer, at each

presentation of data to an MLP. The benefits of this approach include learning

rates comparable to a classic MLP whilst providing structural redundancy by

training duplicate, highly salient neurons within a biologically inspired design.

Most importantly, this redundancy is purely passive in nature in that loss of

neurons need not be detected for the network to continue operation; the lost

units are simply not available for selection.

The Af NN method also helps in overcoming shortcomings noted in (Bugmann

et al., 1992) and (Damarla and Bhagat, 1989) where large pools of neurons led to

low convergence rates and poor accuracy. Affordability, as described by Uwate

and Nishio, helps not only avoid this problem but also to reduce the symptoms

of being stuck in local minima. Similarly, works by (Deodhare et al., 1998) and

(Neti et al., 1990) note that distribution of weight saliency is key to fault tol-

erance; this distribution is a direct consequence of the affordability method, as

neurons are selectively participating during each propagation of weight updates.

Per (Chu and Wah, 1990), temporal delays in executing active fault resilence

frameworks introduces failure in the active fault diagnosis frameworks. The
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benefit of using Uwate and Nishio’s model is that temporal delays are never

incurred. A lost neuron is simply not available for selection during data presen-

tation and back propagation. A diagram of the Af NN architecture is presented

in figure 2.1

Affordable 
Neurons

Hidden Layer

Output Layer
Input Layer

Figure 2.1: Network model with affordable neurons as proposed by (Uwate and
Nishio, 2005).

Considering the numerous fault resilient neural network implementations re-

viewed in section 2.3, the affordable neural network technique provides a unique

opportunity in that biological inspiration, and passive redundancy are all present.

A set of fault resilience measurements built on top of and measured against the

Af NN meets all of the principle features of a fault tolerant neural network as

detailed in this thesis.

However, the study performed by (Uwate and Nishio, 2005) has a number of

shortcomings that need to be addressed before proceeding with the Af NN as
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a basis for fault resilience measurements. Namely, the study presented does

not sufficiently describe the affordability methods capability to train nor how it

works.

2.2 Foundational Research

This section captures the inspirations, problem statements, and basic methodolo-

gies related to the research of fault tolerant neural networks. First a summary

regarding the importance of the biological inspirations and studies related to

this research is presented. Brain damage studies, in particular, reinforce the

foundation for neuroplasticity and neuronal reorganization. ANNs used in brain

studies are presented in order to highlight existing fault resilience of standard

implementations. It is also important to detail how first-order biological systems

relate to high order, emergent, brain recovery. From this analysis the techniques

and constraints of fault diagnosis approaches is revealed and made available for

comparison later on. Lastly, a review of research related to data sets and net-

work optimizations focusing of the efficacy within ANNs is discussed. These

are often overlooked subjects within the fault tolerant ANN research gathered

in section 2.3 which has real implications on the effectiveness and relevance of

those measurements.

2.2.1 Brain Damage Studies

Work by V.S. Ramachandran presents the core inspiration for this research. In

his book Phantoms in the Brain (Ramachandran and Blakeslee, 1998) he covers

a plethora of brain damage studies and the resultant system-level side effects.
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In the chapter about neglect Ramachandran mentions neurogenesis (growth of

new/replacement neurons) and synaptogensis (neuronal connection reconfigu-

ration and creation) as essential functions in brain damage recovery. These

relationships (neurons and their connections) already exist in typical ANN im-

plementations, making this research a logical progression in brain biomimicry.

Use of ANNs in various fields and areas of application produces the need for

robust and damage resilient ANN implementations.

To reinforce the comments made by Ramachandran, there exists evidence in

other studies of neurogenesis in mouse and human brains (Rahman et al., 2002)(Mul-

ligan et al., 2010). Also of relevance is evidence of natural neuronal decay. These

abilities are noted as being crucial to the brain’s ability to provide adaptation

and consistent processing power in addition to brain damage recovery.

Considering these abilities it is not entirely surprising that research in natural

brain damage recovery has led to studies in assisting people undergoing neu-

roanatomic healing. Andersen et. al. (Andersen et al., 2012) detail a number

of activities in artificially accelerating natural brain damage recovery. This is

important because it provides initial results regarding the ability to mimic high

level brain damage recovery using software models.

2.2.1.1 Brain Behavior Emulation in Simulated Systems

Naturally, given these areas of research, and the implications they can have on

ANN implementations and applications, use of ANNs in studies of the brain are

of interest, along with a look into inherent fault resilience of some ANN archi-

tectures. As these studies aim to mimic brain damage or diagnose behaviors

exhibited by damage sufferers they also describe ANNs as sharing the same side
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effects of a compromised topology. These areas of research tie together the ideas

of biological brain behaviors and the behaviors of simulated software and/or

hardware implementations.

RajaRajan (RajaRajan, 2011) shows how brain damage can be diagnosed using

neural networks. The important contribution from this study is the statement

that, although computer-based neural network implementations are not nearly

as complex as their biological counterparts, they still share some of the system-

level emergent behaviors. In other words, fault resilience is a byproduct of the

complex topologies of both systems (even if the artificial implementations are

significantly less complex).

More importantly, according to RajaRajan, the complex topology and inherent

fault resilience of neural networks are based on the overlapped nature of func-

tional specialization. This means that structural redundancy, shared amongst

multiple specializations, leads to inherent fault resilience (Hu and Hirasawa,

2000). However, if overlapped modalities and dynamic, redundant topologies

are to be implemented then a new problem arises: how to manage this dynamic

topology is by separating the expected topology from the neuronal units that

are a part of it. This structural redundancy, as the basis for fault resilience, is

also expected to aid highly distributed networks (Federici, 2005). These findings

suggest that redundancy and the ability to manage it by growing, shrinking, and

reorganizing its units results in a network which can potentially mold itself to

various applications and overcome faults. The agent-based approach presented

by (Federici, 2005) provides a means of implementing the self-management of

each neuron within the context of neuronal selection. This very claim regarding

utilization of an agent-based approach to fault rehabilitation forms the basis of

most existing fault tolerant neural network implementations.
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2.2.2 System-Level Fault Diagnosis

Consider a black-box system used to provide a basic input-output relationship.

When the system is presented with a random sampling of input data from a

known dictionary it will produce a deterministic output in response. This de-

scription is directly applicable to both software and hardware applications. Civil

structures can also be subject to this analogy if, for instance, you consider weight

loading an input and quantifiable structural resistance and integrity as expected

outputs. Even a biological system, like the brain, can be described in this way.

Now, consider that any one of these systems (based on its architecture, design,

and implementation) is subject to internal faults which can alter its ability to

consistently and reliably meet its original design goal(s).

The study of system fault diagnosis is centered on mitigating the risk associ-

ated with these potential faults through detection, triage, and rehabilitation.

Further, these actions attempt to preserve the black-box methodology by ab-

stracting the existence of this diagnosis away from those that would provide

input or retrieve output from it. The following sections outline common fault

diagnosis approaches against varying applications and differing designs for im-

plementation. Applicable to this research is how they all lend to a common

fault diagnosis framework and provide technical ingenuity related to our subject

matter. These works also highlight caveats and considerations discovered dur-

ing previous research and implementations. Afterwards we begin to cover works

related to ANNs in union with fault diagnosis techniques. Finally, self healing

as a subject matter is discussed which is based heavily in the fault diagnosis

methodologies presented previously. Self healing, in itself, does not supply the

solution to a biologically inspired, damage resilient ANN implementation but
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does lead us towards more areas of study which are directly applicable.

2.2.2.1 Use of Statistical Methods in Fault Diagnosis

Detection of faults within a communications system can be highly contextually

dependent. For instance, (Steinder and Sethi, 2004) implements Bayesian reason-

ing using belief networks to determine where and if, within a TCP stack, a fault

may have occurred in a digital transmission. This determination is dependent

on a prior knowledge of system fault causation and a cause-effect relationship

dependency model. This technique focuses on the presentation of a symptom as

how it relates to an event rather than how it relates to system state, which shows

insufficient per (Steinder and Sethi, 2004). Some algorithms reviewed require all

symptoms of an event to be understood while others do not. Though multiple

algorithms are introduced (Steinder and Sethi, 2004)(Tang et al., 2005)(Nick-

elsen et al., 2009)(Zadeh and Seyyedi, 2011), the sequence of actions described

for each is common:

Initialization Initialize symptom observations to “not observed”

Symptom Observation and Analysis For every symptom observed there-

after, analyze the symptom and relate the observation to all parent and

child system components. This step utilizes a belief network designed using

prior knowledge of the system under test.

Fault Selection and Localization Each system component calculates the prob-

ability that a particular fault event has occurred given the set of symptoms

The study by Steinder et. al. and others (Tang et al., 2005) (Nickelsen et al.,

2009) (Zadeh and Seyyedi, 2011) are relevant because they highlight a common
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method for fault diagnosis in engineering principles that is not necessarily bi-

ologically inspired given our current understanding of brain damage recovery

mentioned earlier. In particular, it is important for this research to move away

from a fault diagnosis approach which is reactionary or tries to categorize the

overall system state as a means for diagnosis. Rather, to remain biologically

inspired and mimic the elasticity of the brains functions an applicable fault di-

agnosis technique and the measurements of such a system must aim to provide

emergent damage recovery from a lower level redundancy without using bespoke

active recovery. Considering the overlapping of modalities onto one network by

reusing subcomponents it becomes incredibly difficult to design a system-level

fault diagnosis framework which aims to monitor, diagnose, and repair neurons

while considering the large number of combinations in which each neuron can be

used. Further, temporal delays in action using this paradigm suffers. If a fault

diagnosis solution is meant to be generic and account for rehabilitation of neu-

rons and their connections without knowledge of the functions they partake in

(i.e. the problem space they are being applied in) then any attempt to consider

system state and events as means for fault diagnosis would not be possible.

Taking this thread of subject matter further, work is being undertaken which

aims to marry use of belief systems with a passive, structurally redundant, fault

diagnosis (Tang et al., 2009). This is important for two reasons, as mentioned

in the paper.

First, it highlights shortcomings with regard to an active fault diagnosis ar-

chitecture (in this case, using a belief system to determine action). The most

important shortcoming is the temporal correlation between current system state

and previously observed symptoms. In a biological system, where an acceptable

state is not necessarily represented by absolute accuracy or efficiency, the time
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spent disambiguating noise from performance degradation due to structural loss

attributes to a temporal delay between symptom detection and fault diagnosis

action(s). Additionally, in an ANN this implies that the system has diverged

from the original fault state through continuous data presentation and general-

ization. The implication is that, in the least, a short term state cache would

need to be maintained and correlated to original symptom detection.

Second, the use of a belief system is highly dependent upon previously known

faults and their symptoms during design/implementation. This is not possible in

an ANN because the units which exhibit fault (neurons) do not contain context

of the system state explicitly unless altered to do so (Bolt, 1992). The fact that

two neurons with the same design and activation models can present the most

and least salient elements in a trained neural network (Cun et al., 1990b) implies

that a symptom-fault relationship at a neuronal level provides no credence to a

system-level fault resilience.

2.2.3 Network Optimization and Neuronal Selection

Having reviewed a biological inspiration, covered both basic and specialized fault

diagnosis methods the next step is providing these autonomic neural network

units with the tools needed to produce emergent fault resilience.

This tool set consists of network pruning and optimization techniques and builds

a foundation for fault resilient metrics. By using calculations, such as entropy,

artificial neurons can be measured for their resilience against their peers and

within the overall system. The content of these algorithms will be specific to

this research but will build upon the successes of similar implementations by

others.
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Together, the aim is to produce a neuron architecture whereby, during partici-

pation in training and generalization of a larger ANN, these agents can manage

their own paritipcation in such a generalization whilst the system is able to mea-

sure, in multiple ways, how fault resilient a network is and how much of that

resilience depends upon a single neuron. The goal being that neuronal measure-

ment of highly salient neurons will provide the most efficient measurement of

fault resilience.

2.2.3.1 Network Optimization

Pruning a neural network is an optimization technique used for minimizing the

size of a network whilst maintaining maximum performance. It prevents over-

fitting of a network by removing redundant neurons or neurons which have es-

sentially been trained against noise within training data. Amongst the various

techniques for implementing pruning, use of Shannon’s entropy is the best suited

for the non-invasive fault resilience this research aims to provide. In other words,

whilst other techniques leverage probing or otherwise perform calculations out-

side the normal operation of a neural network (typically with high temporal and

processing costs), the calculation of entropy can be done passively using data

already presented to the network units.

Karystinos and Pados (Karystinos and Pados, 2000) present a method for using

entropy against the problem of ANN over-fitting. Specifically, methods for using

input data sets as a means of breaking finite training data into pieces and using

probability densities of those clusters. Whilst this work highlights the benefits

of entropy as a tool for categorizing input data clusters it never really optimizes

the network structure itself (particularly after it has been trained to a certain
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degree). Karystinos and Pados also note that epochs utilized in training relates

directly to the optimization of a neural network. In other words, treating epoch

utilization as a maximization problem can also be used alongside entropy as a

means to reach maximum efficiency of a network.

Silva et. al. (Silva et al., 2005) are able to use entropy as the neuronal cost func-

tion within an ANN but admit to the sensitivity of the algorithm’s configuration

in relation to its successful implementation. In this sense, entropy is no better

than other cost functions when it comes to configuration and being contextually

agnostic but does exceed in optimization accuracy.

Khabou and Gader (Khabou and Gader, 2000), and Yuan et. al. (Yuan et al.,

2010) also use entropy as an efficient cost term in a side-by-side comparison with

a ”traditional” ANN approach using squared-error. Again, this highlights the

power of entropy as means for cost evaluation over methods but which suffers

from being a bespoke solution in real-world applications. In addition, Yuan et.

al. used Kurtosis as another method for the cost term with limited success.

Whilst this research was a less temporally heavy solution than that of Silva, it

trades that off for less accuracy in optimization.

Having seen entropy as a cost term it is important to understand how this works.

Opposed to a typical cost term (typically mean-squared error) entropy will ef-

fectively quantify cost as data compression efficiency. Considering an ANN as a

data compression system which builds a deterministic relationship between an

input dictionary and an output dictionary, entropy is the measure of uncertainty

or randomness of the input pattern given the calculated output. Unfortunately,

use of entropy also depends upon knowledge of the data density in order to be

most effective (Cun et al., 1990b)(Silva et al., 2005).
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It follows that this method need not be limited to high-level cost analysis. In

fact, (Cun et al., 1990b) successfully use entropy as a means to calculate neuron

saliency in order to prune an ANN to an optimal size. This method also places

a heavy temporal and computational burden on the system as retraining needs

to occur frequently.

Hassibi et. al. (Hassibi et al., 1993) and Zhao et. al. (Zhao et al., 2010) both

build on the work by Le Cun to provide more efficient means of performing

network pruning using entropy. Whilst these works omit specifics as to how

well their respective algorithms perform and note that not all experiments are

successful, this research still believes the use of entropy is an effective way to

provide neurons the tools to perform fault resilience measurements.

Orlowska-Kowalska and Kaminski (Orlowska-Kowalska and Kaminski, 2009) also

study use of entropy and saliency-based pruning methods. They are more in-

terested in removal of weights as opposed to nodes. Effectively, pruning is the

act of selectively damaging a neural network structure. The reason this work is

important is that it highlights the tradeoff between the two previous approaches

as being either temporally intensive or suffer from accuracy.

2.2.4 Training Set Generation and Effects on Fault Re-

silience

The last subject of literature review for the research presented here relates to

data set generation for training and testing and how they may affect the fault

resilience of a neural network. In other words, in the same way that a data set’s

generation may affect the ability for a network to learn against a specific classifi-
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cation or regression task, the measurement of fault resilience is also expected to

reflect this side effect and, therefore, fault resilience will suffer. Here we review

some literature regarding uncommon methods for data set generation, per say,

but specifically where network accuracy is affected.

The largest corollary to improperly created data sets comes in the form of imbal-

anced classes. As Liu (Liu, 2009) notes, this problem occured as far back as the

late nineties and is now making a resurgence amongst data mining and machine

learning applications. Liu goes on to describe that oversampling an undersam-

pling of classes in a data set which, particularly in instances where incorrect

sampling creates imbalances in the representation of features which are redun-

dany or irrelevant, can dramatically skew classification. The solution presented

by Liu is specific to data sets where class feature ratios are dramatically skewed

and, in those cases, a mixture of bagging and interpolation is used to overcome

the problem.

Santandar et. al. (Manoel Fernando Alonso Gadi and Mehnen, 2010) concur

with statements made by Liu with respect to data skewedness being the core

of the data set generation imbalance problem. However, in the instance where

the number of classes is not ”significantly” different across the data set then a

simple technique of character extraction can be used to generate training and

testing sets. Further, the methods for characteristic sampling can be done on a

number of elements including feature selection, variable selection, feature reduc-

tion, and attribute selection. The use of a particular method comes down to the

application and data set under investigation.

Finally, Bujang et. al. (Bujang et al., 2012) provide a description of systematic

sampling of data related to clinical studies and how the sampling technique pro-

vided improved performance towards their problem statement. Comparing this
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improved sampling method against a traditional one, based on a sampling frame,

helps to augment a situation where such a sampling technique is insufficient.

Given the various general techniques and the possibility for bespoke methods,

depending on the study being performed, the research presented here will re-

visit the concept of data sampling after initial fault resilience measurements are

made to not only validify the measurements but also to improve resilience where

applicable.

2.2.5 Summary of Foundational Research as a Basis of

Comparison

The preceding sections regarding the foundational research related to this thesis

are summarized below. The purpose of this summary is to outline a basis of

comparison for existing fault tolerant neural network research and, specifically,

how well they appropriate the various features related to this area of study.

Biological Inspiration Per the research presented with respect to brain dam-

age studies and the emulations therein, there exist a number of features

important to a simulated environment remaining biologically inspired and,

therefore, likely to account for biological system behaviors. Neurogenesis

and synaptogenesis are important to this feature in that they describe the

modular and loosely-coupled nature of the lowest level units in the brain

(Ramachandran and Blakeslee, 1998). Neuronal decay, as well as neuronal

generation, exhibit no obvious signs of specialized systems responsible for

rehabilitation (Rahman et al., 2002)(Mulligan et al., 2010).

Fault Diagnosis Implementation Whether a synthesized environment is ac-
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tive or passive in its implementation of fault diagnosis affects certain as-

pects therein. Active diagnosis entails a temporal pause in operation for

rehabilitation, as well as the need for specialized components to perform

said rehabilitation. Passive implies no such restriction but carries with it

the need for each redundant unit itself to carry some sort of specialization.

Both of these approaches have implications on both the biological inspira-

tion as well as how fault resilience is measured (Shen et al., 2011)(Dalmi

et al., 1998). Given what has been reviewed thus far regarding biological

inspiration, a passive implementation of fault diagnosis is crucial for any

eventual design of a fault tolerant neural network.

Fault Resilience Measurements As the penultimate focus of this thesis high-

lighting the shortcomings in fault resilience measurements in previous fault

tolerant neural network research is paramount. In that regard, and from

the perspective of existing research, the direct result of how the previous

foundational features are adhered to is to be discussed in section 2.3.

Error: Measurements of network accuracy directly is subjective to the

data, training, and NN method. But error is not importance (Cun et al.,

1990b)

Entropy: A better test for saliency. Some methods mentioned later say

that removing the most important neuron doesn’t have the largest effect.

This is directly due to importance being measured by error and not en-

tropy

Epochs: Most methods disregard epochs as a measurement of resilience.

But from the perspective of rehabilitation, the number of epochs utilized is

telling as to how damaged something is/was. (Karystinos and Pados, 2000)
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2.3 Fault Tolerant Neural Networks

Work by (Al-Zawi et al., 2009) provides a basic self-healing neural network frame-

work which is very similar to a basic fault diagnosis architecture mentioned

earlier. This system, like those used in common fault diagnosis implementa-

tions, uses a separate system to collect fault symptoms and effect changes to

the ”running system”. Important in this research are the two approaches in self

management of systems; integrated, expert rules are used to manage the sys-

tem (this presents the contextual, bespoke portion of the framework) and the

generic, adaptive learning part of the system. This provides a nice encapsulation

and separation of those parts of a self healing system which can be applied to

multiple solutions.

Jin (Jin and Cheng, 2011)(Jin, 2010) has already attempted to implement a self

healing ANN. The outcome is proposed to be autonomously reconfigurable but

Jin concedes that damage detection is not within scope of their studies. In the

event of failure, the faulty neuron is detected and replaced. However, the detec-

tion and replacement methods are not inspired by a biological system. Whilst

this research highlights the needs for fault resilience in ANN it does not provide

an extended analogy to the brains natural fault resilience in the same fashion

that the perceptron mimicked the neuron.

Chen et. al. (Chen et al., 1992) have generated an even more tailored, engineering-

based solution. Using methods like checksums and error correcting bit patterns,

this work presents a great solution to the problem posed but is by no means a
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generic solution for ANN self healing. Unfortunately, this implementation moves

further away from the foundational principles described in section 2.2.

A successful emulation of Alzheimer’s disease was undertaken by (Hamilton and

Micheli-Tzanakou, 1997) through first training an MLP with groups of classifi-

cation data sets. Then, damage was emulated by randomizing weights between

neurons in the various layers along with ”blurring” of input data. In the most

extreme cases neurons were removed entirely from the network. Whilst the

study results were aimed towards the implications of the presentation and onset

of Alzheimer’s disease it also implies that damaged ANNs behave similarly to

biological networks (Hamilton and Micheli-Tzanakou, 1997) in relation to gen-

eralization accuracy post damage. However, no consistent metric was provided

to explicitly quantify damage sustained and how that relates to a brain.

Segee and Carter explore the ”myth” of inherent fault tolerance of parallel dis-

tributed processing networks (Segee and Carter, 1994). In this article, Radial

Basis Function (RBF) networks and MLP networks have their inherent fault

resilience compared by utilizing a measurement of Root Mean Squared (RMS)

error. As use of RMS is a common theme for fault tolerance measurement in

follow-on studies, the definition is presented below.

RMSError =

√√√√(
1

N
)

N∑
i=1

(F (x)− F (y))2 (2.1)

where N represents the number of data vectors in one epoch, F (x) is the network

approximation of the expected output F (y). Part of the discussion presented by

Segee and Carter highlights the importance of fault injection into a network to

improve tolerance, as proposed by (Carlo H. Seq́uin, 1990).

Seq́uin and Clay, in the area of fault tolerant neural network research, present the
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most complete and comprehensive analysis amongst the research gathered in this

thesis. Published in 1990, this paper focuses on redundancy being paramount to

fault tolerance. The study is limited to stuck-at-faults, another case of having the

faulty neuron for analysis, as opposed to neurons which are completely lost (no

longer connected to the network and not participating in production of network

output) when faulty (more akin to a biological system (Rahman et al., 2002)).

Fault tolerance, in this research, is analagous to ”noise immunity” in that over-

coming faults can be acheived by training against ”noise” designed to emulate

stuck-at-zero and stuck-at-one faults. On top of this level of tolerance, a faulty

unit competition takes place in the case of emulating what Seq́uin and Clay refer

to as analog data sets (non-binary expected outcomes). The size of complexity

of the units under fault, which utilize a monitored replacement mechanism for

rehabilitation, are larger than what is considered ideal by the authors. How-

ever, increasing this complexity and, therefore, reducing the footprint of each

unit was deemed too difficult. The measurement of fault resilience in this study

is limited in two ways: first, from a system perspective, faults are limited to

those within the hidden layer. This sets the standard by which most subsequent

research pertains since faults in either input or output units constitute different

problem statements; particularly from a biological standpoint (akin to losing the

sense of touch or the ability to effect a motor response). Second, fault tolerance

measurement is primarily focused on the time it takes to train a network with

noise induction, rather than introducing faults post-training and rehabilitating.

Finally, in order to provide a limited set of recovery mechanisms, Seq́uin and

Clay introduce replaceable units which rely on monitoring and temporal redun-

dance techniques (namely, sub-unit competition using error measures).

Chu and Wah (Chu and Wah, 1990), the primary predecessor to the work by
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Seq́uin and Clay, poses and analyzes a set of methods to introduce both spatial

redundancy and temporal redundancy. This research by Chu and Wah, how-

ever, also attempts to account for output layer errors. In their approach, every

unit output is computed multiple times, each by different neurons, for compe-

tition, which leads to a tremendous temporal overhead. This approach is both

not biologically inspired, nor does it follow the passive fault diagnosis principles

expected of a structurally, or spatially, redundancy network, as noted in sec-

tion 2.2. The outcome of this work, again, reinforces that the temporal delay

introduced when executing an active self healing subsystem tends toward being

a bespoke engineering solution. However, this work also highlights that in a

structurally redundant ANN training and generalization take that much longer

because inputs need to be presented to multiple copies of the same neuron and

its connections.

Work by (Bolt, 1992) and (George Bolt, 1992) focuses only on the fault tolerance

of MLPs. In these papers, it is determined that neuronal replacement and reha-

bilitation offer more than just fault injection. Throughout the study a number

of key observations are made. First, the construction of data sets has a signifi-

cant impact on fault tolerance and general trainability. Second, and related to

the first, removal of neurons entirely negatively effects the ability to rehabilitate

with an active diagnosis system like those proposed by (Bolt, 1992)(George Bolt,

1992) and (Chu and Wah, 1990). The second conclusion reinforces the findings

collated in section 2.2; namely; true fault resilience at a neuronal level must

emulate neuronal decay and genesis, not replacement using active monitoring

techniques. The fault tolerance measurements introduced in this study are also

solely error based, despite discussion about data set effectiveness (which leads

to epochs used in training). As a result, Bolt notes that even removing the
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seemingly most important units, measured using back-propagation of error, did

not result in sudden drops of output accuracy of the network. Per the review

of works related to entropy in section 2.2 (Silva et al., 2005)(Cun et al., 1990b)

this is due to the incongruency between error and saliency.

Bugmann et. al. (Bugmann et al., 1992) presents fault resilience of a neural

network as a minimization/maximization of error. According to Bugmann the

effectivenes of one neuron can be measured if it is detected as being damaged in

some way (stuck-at type fault). However, removing this neuron causes the MLP

under test to get stuck in a local minima and unable to train. Bugmann also

goes on to try and replace faulty units once detected. The intent for replacement

is not to emulate neurogenesis but, rather, because adding too many units as a

means to provide reundancy also led the MLP into a state where it would not

converge. This study is yet another example of a fault tolerant neural network

design which relies on the detection of damaged neurons (in this instance, requir-

ing them to still be present) and only measuring fault resilience using network

error.

Damarla and Bhagat (Damarla and Bhagat, 1989) make a case that the number

of connections between the layers of an MLP is important to comparable fault

tolerance. The results of this study also highlight, similar to Bugmann et. al.,

that too many units being trained results in decreasing accuracy of the network.

Another important finding in this study is related to comparability of fault tol-

erant neural networks. This statement, in particular, will influence the selection

of data sets in this thesis.

Ahmadi et. al. (Ahmadi et al., 2009) provide a clear description of what they

believe to be three necessary features of a fault tolerant neural network. These

include fault detection, fault localization, and fault correction. The last of which
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is another active unit replacement method using like-for-like comparision of neu-

ronal error. These methods, per the foundational research presented in section

2.2 is a typical active fault diagnosis approach which is neither biologically in-

spired nor computionally acceptable. In fact, (Bettola and Piuri, 1998), a pre-

decessor study in relation to Ahmadi et. al., have already concluded that active

diagnosis results in a temporal delay in detection and action, directly contra-

dicting the three tenets provided.

Ito and Yagi (Ito and Yagi, 1994) use error correcting codes to determine output

layer fault nerons. This is a unique example in that it focuses on the output

layer of neurons only and uses error correcting codes to both detect and local-

ize faults. Once again, fault tolerance is measured using error at the output

layer only. Phatak et. al. (Phatak and Koren, 1992) (Phatak and Tchernev,

2002) (Phatak, 1999) also focus on the optimization of both weights and er-

ror within an ANN as a means for providing fault tolerance to an MLP. The

latter of which attempts to mitigate the risk of error in applying the Vapnik-

Chervonenkis theory. All-in-all these studies attempt to introduce more and

more complex calculations for minimization of error in neural network architec-

tures with no redundancy and no simulation of neuron loss akin to what is seen

in other studies presented in this thesis.

Hsu et. al. (Hsu et al., 1995) present a method for executing fault tolerance

through parallel active diagnosis and rehabilitation of neurons. The structure of

these neuronal units mimic those within the study by (Chu and Wah, 1990) in

creating what is called a ”duplication with comparison” model. An active mon-

itoring component is meant to replace faulty units using comparison of error

output. Once again, fault tolerance measurement is limited to error calculations

and goes so far as to analyse how error is distributed across neurons in the hid-
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den layer.

Deodhare et. al. (Deodhare et al., 1998) and Neti et. al. (Neti et al., 1990) also

both treat fault tolerance as a minimization problem. The unique contribution

by these two studies has to do with how they considered the weight and error

distributions within the hidden layer to be directly correlated to the presence of

fault resilience. Whilst the ANN architectures provided do not focus on neuronal

redundancy so much as training to avoid catastrophic failure from loss of a neu-

ron, as measured using error, the statements made regarding the need to evenly

distribute hidden neuron saliency relates to the extended set of measurements

captured in section 2.2 (namely, entropy).

2.3.1 Tabular Comparison of Fault Tolerant Studies Against

Foundational Research Features

In order to more readily deduce the gaps in current literature regarding fault

tolerant neural networks table 2.3.1 is presented. The four principle features

discussed in the foundational research section 2.2 are listed against each fault

tolerant study presented in this thesis.
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Fault Fault
Biologically Diagnosis Resilience

Study Inspiration Implementation Measurements
Al-Zawi et al. (2009) FALSE ACTIVE NONE
Jin and Cheng (2011)
Jin (2010) FALSE ACTIVE ERROR ONLY
Chen et al. (1992) FALSE ACTIVE NONE
Hamilton and
Micheli-Tzanakou (1997) TRUE NONE NONE
Segee and Carter (1994) FALSE ACTIVE ERROR ONLY
Carlo H. Seq́uin (1990) FALSE ACTIVE ERROR ONLY
Chu and Wah (1990) FALSE ACTIVE ERROR ONLY
Bolt (1992)
George Bolt (1992) TRUE ACTIVE ERROR ONLY
Bugmann et al. (1992) FALSE ACTIVE ERROR ONLY
Damarla &
Bhagat 1989 FALSE NONE ERROR ONLY
Ahmadi et al. (2009) FALSE ACTIVE ERROR ONLY
Bettola and Piuri (1998) FALSE ACTIVE ERROR ONLY
Ito and Yagi (1994) FALSE NONE ERROR ONLY
Phatak &
Koren (1992) FALSE NONE ERROR ONLY
Phatak &
Tchernev (2002) FALSE NONE ERROR ONLY
Phatak (1999) FALSE NONE ERROR ONLY
Hsu et al. (1995) FALSE ACTIVE ERROR ONLY
Deodhare et al. (1998) FALSE NONE ERROR ONLY
Neti et al. (1990) FALSE NONE ERROR ONLY

Table 2.1: Comparison of fault tolerance neural network methods and founda-
tional research areas.

2.4 Research Hypotheses

The following hypotheses are presented in order to frame the experiements un-

dertaken as part of this research.

Hypothesis 1 Networks which utilize the affordability method will
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exhibit a smaller total average Mean-squared Error (MSE) as levels

of retraining increases.

The purpose of hypothesis 1 is to capture the most common definition of fault re-

silience (Jin and Cheng, 2011)(Jin, 2010). Namely, damage of a resilient network

will spare some or all of it’s previous value or function. Naturally, the expecta-

tion is that, if neuronal redundancy is to provide fault resilience (and, therefore,

presentation of value) then the measurement of fault resilience should exhibit

this. The next hypothesis provides another perspective to this same concept.

Hypothesis 2 captures the expectation that fault resilience and preservation of

function is akin to minimizing changes to network error as neurons are removed.

Hypothesis 2 The more retraining that occurs between onsets of

damage the lower the average error lost per neuron.

The use of Af NN as the basis of neural network design within the experiments

presented in this thesis leads to another hypothesis which relates the use of

affordability to a network that does not. The basis of measuring the value of

affordability related to this hypothesis is the subject of the experiment in section

4.3.

Hypothesis 3 Networks which utilize an affordability method will

achieve a smaller average error lost per neuron through affordability

and will therefore provide more added value than an MLP which does

not provide affordability.

The last two hypotheses stem from the same concept of the number of retraining

epochs effects on rehabilitation. They stem from the research by (Al-Zawi et al.,

2009), (Jin and Cheng, 2011), and (Jin, 2010) which all discuss the effect of
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retraining epochs on neural network recuperation post-damage.

Hypothesis 4 The higher the retraining epoch ceiling the more often

the network will retrain to pre-damage levels in between onsets of

damage within the epoch ceiling.

Hypothesis 5 The expected positive effects related to hypothesis 4

are greater for an AfNN compared to the epochs needed for statically

structured MLPs.

Hypothesis 5 is similar to hypothesis 1 in that it relates the measures the effect

of affordability on fault resilience through comparison with MLPs that do not

employ affordability.

The hypotheses presented above which do not relate directly to Af NNs, namely

hypotheses 2 and 4, capture the expectations of fault resilience MLPs indepen-

dent of whether affordability is utilized. This is evidenced by the work in section

2.2. The concept of retraining MLP implementations is a previously used method

of fault recovery (Al-Zawi et al., 2009) (Jin and Cheng, 2011) (Jin, 2010). Hy-

potheses 1, 3, and 5 relate the MLP design presented by (Uwate and Nishio,

2005) to the concept of damage recuperation through retraining of redundant

neurons.

2.5 Summary

A diverse set of studies make up what is considered in this thesis as the founda-

tional features of fault tolerant neural network research. Biological inspiration, a

qualification as to how analagous a network is to a biological network, is crucial
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with respect to how an ANN handles concepts such as neurogenesis, synaptoge-

nesis, and neuronal decay. The fault diagnosis design employed by fault tolerant

neural networks falls into either active or passive methods, the former of which

immediately denounces the possibility of remaining biologically inspiration. Fi-

nally, all studies reviewed utilize fault resilience measurements based only on

error captured as part of typical supervised learning algorithms. Use of entropy

as a measurement of saliency is a natural and necessary addition to improve

understanding of the effects of faults on neural networks. Similarly, measuring

epochs needed to recover from faults as well as understanding how data sets

affect fault resilience measurements are paramount.

Of all of the fault tolerant research reviewed in this chapter, only one (Bolt,

1992)(George Bolt, 1992) succeeded in meeting at least two of the four core fea-

tures of fault resilient neural network research as described within this thesis.

None of which provide a framework upon which varying fault resilience measure-

ments can be meaningfully applied. Interestingly, the Af NN method, employed

by (Uwate and Nishio, 2005) provides a unique and feature-ready architecture

with which fault resilience measurements can be made and evaluated, despite

being designed for a completely different purpose. Before executing such exper-

iments, however, an evaluation of the Af NN technique must be performed to

better understand the inherent learning characteristics it provides.
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Chapter 3

Affordable Neural Networks

As mentioned in chapter 1, the brain’s ability to reorganize and reinforce its

functions is paramount to its ability in producing learned responses. In spite of

the biological brain losing neuron cells, and the relationships they have made

with surrounding cells, it can still produce acceptable output. Studies into brain

neurogenesis, syntapogenesis, and sprouting show that new cells are being made

and fresh connections established between sensory neurons, motor neurons, and

neurons within the hippocampus. This neuroplasticity is the foundation for pro-

ducing learned responses in the presence of a highly dynamic and structurally

redundant network (Clergue and Collard, 1998) (Mulligan et al., 2010) (Michel

and Collard, 1996) (Stroemer et al., 1995).

The highly dynamic neural network exhibited by the human brain presents

a stark contrast to that of the structurally and functionally static designs of

Artificial Neural Network (ANN) applications used in maths and engineering. It

is worth considering whether mimicking this structural redundancy in ANN ap-

plications can provide any benefit. Structural redundancy within this study
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is defined as the duplication of highly salient neurons which, in the event of

neuron loss, preserve network performance.

Various works by (Uwate and Nishio, 2005) (Uwate et al., 2007) (Uwate and

Nishio, 2010) detail numerous methods for the implementation of, what they

call, an Affordable Neural Network, which we will redefine. The inspiration

behind the Affordable Neural Network (Af NN) is based on providing an analogy

to this neuron redundancy by detailing a mechanism which can manage a sur-

plus of hidden layer neurons during training and production of learned responses.

Using a Backpropagation (BP)-based Multilayer Perceptron (MLP) with more

than the optimal number of neurons in a hidden layer, Uwate and Nishio are able

to show that convergence is not only possible but, in some cases, improved when

compared with a classic, structurally static, approach (although, the evidence of

such claims are not clearly presented) as opposed to the Af NN approach which

represents a dynamically structured approach. The efficiency and benefits of this

method are highly dependent upon the method by which an optimal number of

neurons are selected from the hidden layer but Uwate and Nishio detail the use

of chaotic oscillation as the best way of achieving affordability selection (Uwate

and Nishio, 2005).

The Af NN method provides this research with a candidate for a comparison with

respect to measuring fault resilience through its inherent structural redundancy.

In other words, comparing a regular MLP against various Af NN configurations

is imperative to producing and validating a set of measurements which quantify

fault resilience in ANNs.
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3.1 Defining Semantics

To aid in understanding the aims of this portion of our research, and to allow

a common semantic for referring to methods employed, the following definitions

are created and presented here and further described in subsequent sections:

Affordablity Refers to the ability of an Af NN in providing a pool

of neurons, a subset of which can be utilized at a given point in time for

generation of network output. This is typically within reference to the

hidden layer(s) within an Af NN whereby the number of neurons provided

is smaller than the total number of neurons in the layer.

Affordability Method The method by which neurons are selected

in order to provide affordability.

Affordability Total This term refers to a value representing the

total number of neurons used by the affordability method which are read-

ily available for selection (as opposed to neurons which are damaged or

otherwise unusable).

Affordability Target This is the number of neurons which, if avail-

able, are utilized at any given time within an Af NN. As mentioned earlier,

this is typically less than the affordability total. If the affordability total

is less than or equal to the affordability target then the network will uti-

lize zero-affordability. Only when the total is great than the target does

affordability differ from a regular MLP.

Zero-Affordability This refers to a specific affordability method

whereby all neurons are utilized at any given time. This can be viewed
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as a typical MLP configuration. The term ”zero” refers to the difference

between affordability target and total (i.e. zero-affordability is when they

are equal).

Affordable Neural Network An Artificial Neural Network which

utilizes an affordability method. For the purposes of our research, this is

typically an MLP.

Affordability Threshold During damage and/or loss of neurons,

the affordability threshold represents the point at which the Affordability

Target equals the amount of neurons available for affordability selection.

The studies carried out by Uwate and Nishio do not provide sufficient analy-

sis explaining why their preferred method works. Nor do they provide evidence

that they have achieved the most optimal solution to affordable neuron selection.

Prior to creating a set of measurements to quantify structural redundancy of the

Af NN method, this research aims to provide such explanations and a detailed

analysis against alternative affordability methods.

Building upon these earlier studies, Uwate and Nishio make claims regarding

the Af NNs ability to sustain damage (i.e. loss of structure) due to the duplica-

tion of weight values within the input-to-hidden and hidden-to-output connec-

tions (Uwate and Nishio, 2010). This misconception regarding weight magnitude

equaling saliency is the subject of LeCun’s paper on ”Optimal Brain Damage”

(Cun et al., 1990a) which presents a method for measuring the actual saliency of

a neurons connections using the second derivative of the objective function. A

modification of this measurement is presented below as the means for not only

measuring structural redundancy within an Af NN but also to compare varia-

tions of the affordability methods.
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This chapter revisits the findings by Uwate and Nishio and provides a more in-

depth analysis towards, and quantifiable comparison of, optimizing affordable

neuron selection against a defined measurement. This measurement is an ex-

tension on the saliency calculation provided by LeCun et. al and is the first

contribution of the research presented here. Further, preliminary analysis of the

various affordability methods is produced as a foundation for further chapters

in so far as providing a set of networks against which structural redundancy

measurements can be made and evaluated.

3.2 Detailed Definition of Affordability

This study (re)defines the Af NN as a feed-forward MLP utilizing an affordabil-

ity method within its hidden layer. Knowing the number of optimal neurons (i.e.

selecting an affordability target) for a given set of data and network configura-

tion is circumstantial and this research will not provide an optimization method

therein. In lieu of this omission, this research will either provide reference to

literature detailing such a configuration or provide reasoning why a number of

neurons is chosen.

The affordability total is determined during network design but the ratio of total

neurons to selectable neurons (i.e. the affordability total vs. the affordability

target) is dependent upon the training data and is determined through trial and

error. During BP training a subset of the total neurons are selected for participa-

tion whilst the rest remain non-contributory. This non-participation is preserved

when computing errors, updating weight values and computing neuron saliency.

The affordability target, by extension, is also a parameter to the system defined
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during network design and is equal to the optimal number of neurons in the

hidden layer for a classic MLP approach.

Figure 3.1 illustrates a notional construction of an Af NN. In this diagram, the

hidden layer is designated l, where ml is the affordability target in hidden layer

l and is a constant value, tl represents the affordability total in layer l. Now we

define the following

tl = ml + rl (3.1)

where rl is the difference between the affordability total and the affordability

target.

At network design, the value of rl must be greater than zero in order for afford-

ablity to exist within the network, per the definitions in section 3.1. However,

as the network sustains damage, the value of rl decreases. If the value of rl is

less than or equal to zero then affordability is lost (i.e. the network layer is now

classified as having zero-affordability).
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Figure 3.1: Neural network with affordable neurons, modified from (Uwate and
Nishio, 2005).

All neurons share the same local induction and activation functions and utilize

a back-propagation learning method. Also, early stopping is utilized for all

experiments, both during initial network training and subsequent retraining.

The target level of error for early stopping is dependent upon the error rate

achieved upon initial training which is, in turn, dependent upon the data sets

themselves. Considering a training set N, where the training vector n ∈ N, the

weighted sum for neuron j within layer l, is defined as vj(n) and its corresponding

activation is denoted ϕ (Haykin, 1994). Using this activation, the output of

neuron j (denoted yj(n)) is as shown in equation 3.2.

yj(n) = ϕ(vj(n))ψj(n) (3.2)

where 0 ≤ ψj(n) ≤ 1 represents the affordability scalar, or a value denoting

the participation switch for neuron j at presentation of training vector n. For

43



each affordability method presented in this chapter (i.e. for each variation of ψ

provided) each will return either 1 if the neuron is to participate or 0 if not.

Similarly, when performing weight updates during the feedback process, the

change in weight value between neuron i within layer l− 1 and neuron j within

layer l (denoted wij(n)) is defined as follows (Haykin, 1994)

∆wij(n) = ηδj(n)yj(n) (3.3)

where η is the learning rate and δ represents the error signal for neuron j.

It should be noted that the inclusion of the affordability scalar, ψj, into the

weight update is implied through the reuse of yj(n). Therefore, equation 3.2 is

the primary focus for implementing the Af NN algorithm and will be shown with

variance. Specifically, each of the affordability methods compared in this study

will each provide a unique definition of ψj.

The following sections define the various neuron affordability methods to be

studied. In particular, this study will revisit the random and chaotic selec-

tion methods mentioned by (Uwate and Nishio, 2005) but also provide a second

chaotic map, and a new cyclic selection rule, for comparison. Following that, the

learning results of each variant will be compared using a measurement of neuron

saliency to highlight the relative benefits of each method against the goals set

forth earlier. It is worth noting that equations 3.4 through 3.12, as written here,

are unique contributions of this study.
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3.2.1 Random Affordability

Following on from work by Uwate and Nishio, the comparison against a randomly

selected affordability model is meant to provide comparison to, and credence to-

wards, the use of a chaotic selector. In contract from Uwate and Nishio, this re-

search provides an explicit description of how random affordability is performed.

We define ψRj (n) as the random affordability variant of ψj(n) as follows

ψRj (n) =


1 if rj(n) ≥ ul(n)

0 otherwise

(3.4)

where rj(n) represents a random value associated with neuron j during the

generalization of input n, ul(n) represents the mth largest affordability value in

layer l (calculated for each neuron using affordable variants for ψj(n)), and ml

denotes the optimal number of neurons in layer l as defined in section 3.2.

The random number generator used for this study is provided by Boost libraries

(Rivera and Dawes, 2014). The seeding of the generator is done at system startup

and this one seed is shared amongst all neurons.

An example of random affordability is as follows: Given an Af NN with one

hidden layer containing four neurons with an affordability target tl equal to

two neurons, then each time data is passed to this layer two neurons will be

selected to participate while the other two will be non-contributory. This works

by assigning a random value to each of the four neurons and choosing the two

neurons with the largest values of the four. This is repeated each time data

passes forward through this layer.
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3.2.2 Chaotic Affordability

The chaotic Af NN implementation specified in (Uwate and Nishio, 2005) is de-

scribed as using a skew tent map associated with each hidden layer neuron where

all are given ”different initial values” and are updated at every learning. This

study utilizes more descriptive methods for initializing each chaotic value and

incrementing of the chaotic values. We define ψTj (n), the tent map affordability

variant of ψj(n), as follows

ψTj (n) =


1 if τj(n) ≥ ul(n)

0 otherwise

(3.5)

where τj(n) is the chaotic value associated with neuron j during generalization

of training vector n, defined below. ul(n) is carried forward from the previous

section 3.2.1 using the affordability variant ψTj (n).

τj(n) =


2τj(n−1)+1−α

1+α , if τj(n− 1) ≥ −1 and τj(n− 1) ≤ α

−2τj(n−1)+1+α
1−α , if τj(n− 1) > α and τj(n− 1) ≤ 1

(3.6)

The initial value of the selection criteria for each neuron at presentation of the

first training vector (n0) is randomly initialized between 0 and 1 as follows

τj(n0) = rand(−1...1) where τj(n0) 6= α (3.7)

where τj(n − 1) is the chaotic value for neuron j during the training vector

before vector n, denoted n−1. Similarly, the first vector within N is denoted n0.
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The first chaotic value, τj(n0), is set randomly using a pseudo-random number

generator within the Boost libraries (Rivera and Dawes, 2014). Finally, α is the

tent map input parameter designating skewness. Equation 3.6 and the setting

of α to 0.05 within this study are duplicated from Uwate and Nishio. A visual

representation of the tent map can be found in figure 3.2 (Uwate and Nishio,

2005).

A logistic map is also presented in place of the tent map in order to provide even

more data for comparison. For the logistic tent map we define ψLj (n) as follows

ψLj (n) =


1 if ιj(n) ≥ ul(n)

0 otherwise

(3.8)

where ul(n) is calculated as described in section 3.2.1 using the affordability

variant ψLj (n). The map for neuron j at presentation of vector n, ιj(n), is

defined as follows

ιj(n) = (ιj(n− 1)β)(1− ιj(n− 1)) (3.9)

where β represents the input parameter to the logistic map. This value is set to

3.83 chosen through trial and error but any value for β after the onset of chaos

(between roughly 3.5 and 4.0) will suffice. The initial value of the selection cri-

teria for each neuron at presentation of the first training vector (n0) is randomly

initialized between 0 and 1 as follows (again, rand is produced using the Boost

libraries (Rivera and Dawes, 2014)).

An example of chaotic affordability is as follows: Given an Af NN with one hid-

den layer containing four neurons with an affordability target tl equal to two
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neurons, then each time data is passed to this layer two neurons will be se-

lected to participate while the other two will be non-contributory. This works

by assigning a chaotic value to each of the four neurons and choosing the two

neurons with the largest values of the four. This is repeated each time data

passes forward through this layer.

ιj(n0) = rand(0...1) (3.10)

-1

0

1

τj(n)

-1 0 1
τj(n− 1)
α = 0.05

Figure 3.2: Visual representation of a skewed tent map with α value of 0.05

3.2.3 Cyclic Affordability

Research performed by the author has resulted in a simplified affordability

method which has the benefit of being deterministic (much like the chaotic

method) but also very consistent and understandable. Particularly, it will be

shown that providing a consistent selection of groups of neurons will improve

upon the reinforcement of a neuron’s saliency within the network. We define
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ψCj (n) as follows

ψCj (n) =


1 if γj(n) ≤ ml

0 otherwise

(3.11)

where γj represents neuron the selection criteria for neuron j as follows

γj(n) =


γj(n− 1) + 1, if γj(n− 1) < tl

0, otherwise

(3.12)

and the initial value of the selection criteria for each neuron at presentation of

the first training vector (n0) is as follows

γj(n0) = j (3.13)

where ml is the affordability target in the hidden layer l, as defined in section

3.2. We use j as the initial value for γ in order to provide unique values to

each neuron within the range 0 to t − 1, inclusively. Equations 3.11 through

3.13 provide the method for cyclic affordability which is unique to the research

carried out in this thesis.
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3.3 Comparing Affordability Methods and their

Ability to Learn

In order for an objective evaluation of structural redundancy to occur a quantifi-

able measurement must be made against all variants of the Af NN design. For

the purpose of this study, this measurement is in the form of neuron saliency

using the second derivative of the objective function. After each Af NN variant

has been trained each neuron will be measured against how salient it is towards

the networks total error. The form of this saliency measurement is based on

Optimal Brain Damage (OBD) by (Cun et al., 1990a). Whilst LeCun consid-

ered the use of entropy in order to purposefully remove the least salient items

from a neural network the same calculation can be used in determining the most

salient units.

However, a problem arises when considering the dynamic nature of the network

architecture. At any given time, a particular neuron may not be contributing

towards total error and, therefore, will have no saliency against the subsequent

output. To overcome this, the calculation of hk below is modified to include the

participation scalar ψ. This means that the saliency measure is only calculated

for neuron j for the trials in which it contributed towards the total error, mak-

ing the calculation of saliency relevant to that neuron without compromising the

method in which hk is generated within the Af NN method. This modification

is a contribution of this dissertation and used as a basis for much of the research

hereafter. The examples used in this research have only one hidden layer with

one output neuron, resulting in simpler calculation for saliency. The following

equations are used to calculate the saliency, sj, of hidden neuron j, as derived
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from (Cun et al., 1990a)

sj =
hkw

2
jk

2
,where 0 ≤ sj ≤ 1 (3.14)

where wjk represents the weight value associating hidden neuron j with output

neuron k, and hk is a sum across the entire training set N defined by

hk =
∑
n∈N

W (n) (3.15)

and W (n) is defined as

W (n) =
∂2E

∂v2k
ϕ(vk(n))ψj(n),where 0 ≤ W (n) (3.16)

where ϕ(vk(n)) is the activation of the output neuron (as there is only one in

all instances) and ψj(n) represents the affordability of neuron j. The second

derivative of the error E against the hidden layer weighted sum is as follows

∂2E

∂v2k
= 2ϕ′(vk(n))2 − 2[d(n)− ϕ(vk(n))]ϕ′′(vk(n)) (3.17)

where wjk denotes the weight connection neuron j in the hidden layer with the

(only) output neuron k and d(n) represents the desired output of the network

for trail n within set N .

In addition to this, it is important to keep track of the saliency against unique

neuron groupings. The following was derived for this study to calculate the sum

of hk relative to unique neuron groupings:

U(n) =
∑
j

2jψj(n) (3.18)
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where U(n) is the hidden layer neuron group identifier at presentation of vector

n.

Up ∈ U(tl) (3.19)

where is element p within set U(tl) defined as follows:

U(tl) = {1, ..., 2tl+1 − 1} (3.20)

where tl represents the affordability total in hidden layer l and U(tl) represents

the set of all unique hidden layer neuron group identifiers. From these we present

the calculation of Op, which represents the saliency of grouping p at presentation

of vector n, as follows:

Op(n, Up) =


∂2E
∂v2k

ϕ(vk(n)),where U(n) = Up,

0 otherwise

(3.21)

hp =
∑
n∈N

Op(n, Up) (3.22)

where hp represents the summed saliency against unique group p for all training

vectors in N .

The intention of tracking the saliency of each neuron, sj, is to confirm that a

structural redundancy is being produced using the Af NN method whereby sj

distributions are being replicated within the hidden layer pool. The purpose of

tracking each unique groupings saliency, hp, is to show that group selections are

more directly correlated to neuron saliency than individual selection. Together
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these two saliency measurements, sj and hk, are used to show that Af NN meth-

ods which more consistently select unique groups of neurons will exhibit more

meaningful structural redundancy of highly salient neurons.

3.3.1 Simulated Results

Two data sets are used in testing the affordability methods. The first is a repro-

duction of the x2 dataset used by (Uwate and Nishio, 2005). The other is the

well known Iris data set (IDS) (Bache and Lichman, 2013). The goal is to train

five network variants (the five affordability methods mentioned earlier) with the

two training sets for ten network configurations total.

Data Set Afford. Method Avg. Err Min Err Max Err

IDS Classic 2.96% 2.32% 3.44%

IDS Random 7.65% 5.94% 9.85%

IDS Chaos (log) 7.13% 6.31% 8.67%

IDS Chaos (tent) 7.09% 6.08% 9.49%

IDS Cyclic 3.48% 2.48% 4.57%

x2 Classic 3.0% 2.96% 3.05%

x2 Random 8.58% 7.12% 9.48%

x2 Chaos (log) 8.4% 6.43% 10.43%

x2 Chaos (tent) 8.12% 6.97% 10.09%

x2 Cyclic 6.37% 2.94% 8.47%

Table 3.1: Average error per epoch after training - results per network configu-
ration.

Table 3.1 shows, per network configuration and data set permutation, statistics
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on the average error, calculated over all trials in one epoch against a trained

network. This data shows that, with regard to error rates, each Af NN variant

produced different levels of accuracy on average. Further, whilst only somewhat

portrayed in this table through the variance of total error, the learning rates of

the affordability methods, particularly those of the random and chaotic types,

were highly erratic throughout training.

After a network is trained the saliency, sj is calculated using equation 3.14

against each neuron in the hidden layer for each network variant. This is re-

peated across twenty sessions for each affordability and for all data sets. The

distributions of the results are presented in figures 3.3 and 3.4. The number

of times a particular neuron is utilized within the network, cj, based upon its

relevant value for ψ is also retained. From this, the correlation ρ(sj, cj), is calcu-

lated between the number of times a neuron was utilized, cj, and that neurons

sj value.

Similarly, the value hp is calculated for each unique grouping of hidden layers

neurons, p, utilized during testing. A correlation, ρ(hp, cp), is also calculated be-

tween the number of times a unique group is utilized, cp, and its associated value

hp. The histogram of the ”group” correlation coefficients is presented alongside

the ”individual” correlation values, per network configuration and data set in

figures 3.5 through 3.12. They are organized by data set and affordability

method in order to compare, relative to one affordability method and one data

set, the importance of individual neuron reinforcement versus group reinforce-

ment and selection.

In comparing both datasets within figures 3.3 and 3.4, the classic, or ”zero-

affordability” model is used as a control in that its saliency measurements pro-

vide the baseline against which the random, chaotic, and cyclic affordability
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Figure 3.3: Distribution of sj (y-axis) for each affordability method, normalized
between zero and one, for the Iris Data Set
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Figure 3.4: Distribution of sj (y-axis) for each affordability method, normalized
between zero and one, for the x2 Data Set
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Figure 3.5: Histogram based on the x2 data set between frequency of random
selection, cj and cp, for the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

methods are measured.

3.3.2 Analysis and Discussion

Once a network is trained, the relationship between sj and the total error, in

relation to affordability selection, is that not selecting highly salient neurons will

lead to higher error rates. In other words, an Af NN can be viewed as a short-

term selective pruning of neurons. It follows that the neurons being selected

through an affordability method are, preferably, those with the highest saliency.
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Figure 3.6: Histogram based on the x2 data set between frequency of chaotic
selection, cj and cp, for the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

Further, a meaningful structural redundancy of neurons will ensure that neu-

rons with high values for sj are selected because there are simply more of them

(dependent upon affordability method and the selection process therein).

In terms of total error, the cyclic affordability method achieved the lowest error

of any trial when compared to the baseline static structure (classic MLP). This

method was also the only variant which satisfactorily classified all data points

in the IDS. The highest error of any trial was incurred using random affordabil-

ity which portrays erratic training and lowest average error in both data sets.

As the cyclic affordability method was designed specifically to ensure consistent
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Figure 3.7: Histogram based on the x2 data set between frequency of chaotic
selection, cj and cp, against the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

group selection it follows that a lower error rate herein supports the claim that

consistent group selection leads to lower average error after training within the

data sets and configurations of the experiments presented.

If this claim is to hold true then, in the first instance, the correlation between

group selection and group saliency, ρ(hp, cp), would need to highlight a depen-

dent relationship. Figures 3.5 through 3.12 provide this evidence. The group

correlation values, ρ(hp, cp), across all variants average above 0.5 whilst similar

calculations against individual neuron reinforcement, ρ(sj, cj), stipulate no rela-

tionship between how often a particular neuron is selected cj and how salient it
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Figure 3.8: Histogram based on the x2 data set between frequency of cyclic
selection, cj and cp, against the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

is towards the overall network error as measured by sj.

Given that unique group selection reinforcement leads to groups with high saliency,

and given the inherent relationship between group saliency hp and the saliency of

neurons within that group, it follows that the Af NN method which consistently

reinforces neuron groups across all neurons in the hidden layer will produce

meaningful structural redundancy and, therefore, lower error rates.

Along these lines, the distribution of individual sj values in figures 3.3 and 3.4

provide evidence as to the existence of structural redundancy. Looking at the

saliency distributions of the classic MLP for the IDS in figure 3.3 it can be
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Figure 3.9: Histogram based on the Iris data set between frequency of random
selection, cj and cp, against the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

discerned that three main groupings of saliency emerge. They can be viewed

as the ”near zero”, above 0.2, and above 0.5 saliency clusters within the distri-

bution. In this respect, the cyclic selection method most effectively exhibits a

healthy saliency distribution in that it is not as heavily weighted near zero as

the other variants are. Also, in terms of convergence, as mentioned earlier, the

cyclic selection method performed best of out the Af NN variants (aside from a

classic MLP approach which loses any benefit from structural redundancy). The

random and chaotic variants do not contain as many highly salient neurons and,

therefore, provide the least resistance to damage against the most important
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Figure 3.10: Histogram based on the Iris data set between frequency of chaotic
selection, cj and cp, against the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

units of the network. For the x2 data set the classic MLP distribution shows a

larger amount of highly salient neurons than any of the affordability methods,

with the random and cyclic methods being the closest.

Lastly, the differences between the results of the logistic chaotic and tent map

chaotic configurations, whilst presented in this chapter in order to provide a

meaningful comparison against the works of Uwate and Nishio, act similarly

in all data presented herein. As such, in moving forward with further experi-

ments specific to the research presented here, only one of these variations will

be maintained in order to simplify future analyses.
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Figure 3.11: Histogram based on the Iris data set between frequency of chaotic
selection, cj and cp, against the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

3.4 Summary

The biological brain inspires many aspects of engineering and computer science.

Not just with its capacity to learn but, also, its ability to do so in such a volatile

environment utilizing a mutable structure. By this, we mean, that its very cellu-

lar foundation is constantly changing and adapting whilst, normally, having no

observable effect on the ability to function.

This innate structural redundancy is of core interest to the research presented

here. Namely, in order to present and validate a set of measurements for de-

termining and quantifying fault resilience two components are needed. First, a
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Figure 3.12: Histogram based on the Iris data set between frequency of cyclic
selection, cj and cp, against the correlations, ρ(sj, cj) and ρ(hp, cp), for individuals
and unique selection groups, respectively.

modified ANN needs to be defined and understood in order to provide a meaning-

ful relative comparison of fault resilience. Second, that modified ANN is tested

for existence of basic structural redundancy, without which a relative compari-

son would yield no meaningful conclusion. The latter is predicated on the fact

that structural redundancy is the foundation of a passive fault resilience within

the biological brain (Clergue and Collard, 1998) (Mulligan et al., 2010) (Michel

and Collard, 1996) (Stroemer et al., 1995).

The purpose of this chapter is to establish a variation of ANN, namely the

Af NN, by which comparison of fault resilience can be systematically applied
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later on. However, as mentioned above, in order for this establishment to occur,

the Af NN method needs to be understood and characterized.

Thus far, it is clear that the Af NN method is able to train, similarly to a classic

MLP, and produce trained responses. The accuracy, or level of convergence re-

garding said training, varies between Af NN variant which is ideal for the overall

aims of the research presented here. It is also evident, as depicted in figures 3.3

and 3.4, that the Af NN method provides variations in the levels of saliency of

neurons in the hidden layer. These differences are the catalyst for varying levels

of structural redundancy and supports the next step in the research presented

here.

Chapter 4 provides the first set of measurements, derived from the Mean-squared

Error (MSE) calculated whilst using the Af NNs presented, towards understand-

ing and evaluating fault resilience. These measurements, as well as those pre-

sented later in this research, comprise the foundation of novel contributions

herein.
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Chapter 4

Measuring Fault Resilience:

Mean Squared Error

In chapter 3 we introduced the concept of Affordable Neural Networks (Af NNs)

and their inherent structural redundancy, the prerequisite for meaningful fault

resilience calculations. Having established that the Af NN method is able to learn

a data set to a satisfactory level (3.3), using multiple variants of the method, and

having also confirmed that some level of structural redundancy exists therein,

a new set of experiments are undertaken in order to further investigate fault

resilience.

In this chapter, the aim is to explore the measurements related to the ability of

the Af NN method to sustain damage. These measurements range from quan-

tifying error changed due to loss of neuron, using Mean-squared Error (MSE)-

based functions and can help to further evaluating the benefit of the affordabil-

ity method. In other words, where chapter 3 aimed to discover fault resilience

through the corollary of saliency of neurons, this chapter presents a more thor-
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ough quantification into various aspects of fault resilience towards providing a

set of universal measurements.

Damage, from the perspective of the Af NN method, is similar to a stuck-at-0

fault in the sense that the neuron will not contribute to the output of the net-

work nor will the damaged neurons weights be updated during back propagation.

Further, as the selection of neurons within the Af NN acts as a binary switch

on each neuron, affecting a number of neurons up to the affordability target,

neurons marked as damaged are ignored during this neuron selection.

The first step is to further test fault resilience across more data sets. Section 4.1

details the data sets chosen, and the reasons behind the selections. The reasoning

behind this lies with the goal of establishing a diverse and consistent foundation

for measuring fault resilience throughout the remainder of the research presented

in this dissertation (the works presented by Uwate and Nishio fail to provide such

comprehensive evaluation (Uwate and Nishio, 2005) (Uwate et al., 2007) (Uwate

and Nishio, 2010) ). Section 4.2 analyses measurements related to basic fault

resilience which, in this experiment, are defining and comparing the accuracy

retained and sustained through damage to the Af NN. Section 4.3 defines a new

experiment to test how the affordability method lends itself to the results of

experimental results in section 4.2 by further quantifying how the affordability

threshold affects fault resilience. Similarly, section 4.4 revisits the experimental

results presented in section 4.3 but, instead, focuses on how experimental results

compare to statically structured Multilayer Perceptrons (MLPs), holding data

sets and hidden layer size constant.

Overall, this chapter aims to take the affordability method presented in chapter

3 and further analyse how and why the method is able to provide fault resilience

and quantify the value added, therein.
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4.1 Data Sets

At this point in the study, a number of changes are made to the design of further

experiments. Specifically, whilst two chaotic variants have been presented thus

far with slightly varied results it is decided that it is not statistically significant

enough to proceed with both, as indicated in section 3.3.2. Therefore, the logis-

tic map (equation 3.9) is used for all further experiments as the chaotic variant

(refer to table 4.2 and figures 3.3 and 3.4). Although, the random affordability

is expected to behave just like another chaotic map, given the implementation

of boost (Rivera and Dawes, 2014). However, it is left in for completeness of

comparison against the source material because the results related to this Af NN

variant do provide statistically interesting deltas to those of the chaotic variant.

Alongside the changes made to the Af NN methods used, the data sets used for

further experiments are altered as well. The x2 data set is removed due to its

obvious linear separability and the lack of insight provided by results reported

in chapter 3. Three more data sets are added in its place. At first consideration,

these three new sets were chosen simply because they have similar characteristics

(discussed below) to that of the Iris data set, making calculations and compar-

isons relevant across further results. However, what we will see in the proceeding

chapters is the real effect these data sets will have on our results, regardless of

these similarities.

The three new data sets are the Combined Cycle Power Plant (CCPP), Servo,

and Balance Scale sets from the University of California, Irvine Machine Learn-

ing Repository (UCI) repository (Bache and Lichman, 2013). They all share a

common number of values per pattern, four input parameters and one output,

with the Iris data set. Also, the data in each set are taken as are and systemat-
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ically sampled to produce training and test sets with a ratio of two to one. The

pseudo-code for the training and testing set generation is found in algorithm 1.

This algorithm is presented for a number of reasons. First, for completeness in

describing the method for creating data sets for experiments herein and, sec-

ondly, as a baseline for an experiment undertaken in chapter 6 where algorithm

1 is modifed. Table 4.1 details various quantifiable comparisons between the

data sets chosen. Input and Output values are given as ranges ([...]) or sets of

values ({a, b, c}). The purpose of presenting table 4.1 is to provide a basis of

comparison for the analysis and discussion occuring later in this chapter.

With respect to maintaining the same number of neurons across all data sets,

consider the findings discussed in previous research regarding fault tolerant neu-

ral networks in section 2.3. Damarla and Bhagat (Damarla and Bhagat, 1989)

note that like-sized MLPs, with respect to the number of neurons in each layer,

are comparable. This implies that both affordability targets and totals should

be comparable across all simulations.
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Algorithm 1 Creation of Training and Testing Sets

function Normalize Data Set(dataSet)
for each inputV alueList ∈ dataSet do

maxV alue← max(inputV alueList)
minV alue← min(inputV alueList)
for each value ∈ inputV alueList do

value← (value−minV alue)/(maxV alue−minV alue)
end for

end for
for each outputV alueList ∈ dataSet do

maxV alue← max(inputV alueList)
minV alue← min(inputV alueList)
for each value ∈ inputV alueList do

value← (value−minV alue)/(maxV alue−minV alue)
end for

end for
end function

function Create Sets(aggregatedDataSet)
Normalize Data Set(aggregatedDataSet)
n← sizeof(aggregatedDataSet)
m← n mod 3
n← n−m
for i = 0 to n do

trainingSet← learningPattern[i]
trainingSet← learningPattern[i+ 1]
testingSet← learningPattern[i+ 2]
i← i+ 3

end for
for i = 0 to m do

trainingSet← learningPattern[i]
i← i+ 1

end forReturn trainingSet, testingSet
end function
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Data Sets

Iris Servo Balance CCPP

Learning

Task
Classification Regression Classification Regression

Instances in

Training
100 112 345 6403

Instances in

Testing
50 55 280 3465

Input Value 1 [7.9 to 4.3]
{A, B, C,

D, E}
{B,R,L}

[37.11 to

1.81]

Input Value 2 [4.4 to 2.0]
{A, B, C,

D, E}

{1, 2, 3,

4, 5}

[81.56 to

25.36]

Input Value 3 [6.9 to 1.0]
{A, B, C,

D, E}

{1, 2, 3,

4, 5}

[1033.3 to

992.89]

Input Value 4 [2.5 to 0.1]
{A, B, C,

D, E}

{1, 2, 3,

4, 5}

[100.16 to

25.56]

Output Value 1

{Iris Setosa

Iris Versicolour

Iris Virginica}

[7.10 to 0.13]
{1, 2, 3,

4, 5}

[495.76 to

420.26]

Table 4.1: List of attributes for each data set for comparison.

The CCPP data set is unique in that the amount of data available from the UCI

repository is five times that which is used by this experiment and considerably

more than the other data sets used in this research. It is found that attempting

to create both training and testing sets from all of the data available results in a

very lengthy learning phase, temporally, as well as metrics which are exaggerated

to the point of being devoid of any nuance between experimental configurations.

As such, the fifth data set present within the CCPP source data is the only set
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used (Bache and Lichman, 2013).

In all experiments that follow, the same number of neurons in the hidden layer

are used across all data sets. This is in spite of what would be considered

optimal for any particular set and is intentional. The motivation for this is

to provide a consistent experiment with respect to the metrics gathered whilst

constructing, training, damaging, and recuperating each network configuration

using each data set in each experiment, dependent upon the context of each

experiment therein. The reasoning here is that a like-for-like comparison regard-

ing Af NN fault resilience measures is desired above the most efficient network

configuration needed for convergence. This comparison is the basis of all future

experiments. Further, it is clear, from the results gathered thus far, that each

data set’s optimal number of neurons in the hidden layer is unique amongst the

group.

Similarly, each experiment only considers one hidden layer within each MLP

configuration for a given experiment. No analysis is performed, nor research

undertaken, to determine whether any of the data sets mentioned (Iris, Servo,

Balance Scale and CCPP) benefit from having more hidden layers. This is partly

because none of the experiments described suffer from an inability to converge

to acceptable accuracy and also because, even if more hidden layers were to pro-

vide more efficient training, the results contained herein aim to keep this element

of the experiment constant in order to focus on a relative comparison of fault

resilience, as opposed to generalization optimization.

Lastly, and to more explicitly quantify the aforementioned restrictions on hidden

layer design, the use of twelve total neurons for the affordability total (in use

cases utilizing Af NN methods) whereby the affordability target is set to eight

(dependent upon how many neurons remain within the hidden layer) will be the
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standard configuration for all experiments. Likewise, for the classic MLP con-

struction, all neurons are used in the hidden layer starting with a total of eight

and subject to structural damage (loss of neurons).

4.2 Comparing Damage Resilience Across Mul-

tiple Data Sets

Having established that the Af NN method is able to train one data set to a satis-

factory level (using multiple variants of said method) and having also confirmed

that some level of structural redundancy exists therein, the following experiment

is taken in order to further investigate. The first step in this new experiment is

to test fault resilience across more data sets. This section details the data sets

chosen, the reasons behind the selections, and also the definition of a new exper-

iment to measure fault resilience of the Af NN method after incurring damage

to it’s structure (loss of neurons and their connections).

4.2.1 Effect of Retraining on Post-Damage Error Rates

The first experiment related to evaluating damage recovery further is as follows.

Of the four affordability methods (classic, random, chaotic and cyclic) each is

trained to a target MSE (detailed in table 4.2). During training, the saliency

of each neuron is calculated per equation 3.14. Post-training, the most salient

neuron is removed from the hidden layer and retraining is performed for a set

number of epochs. During retraining, saliency and MSE are recalculated and the

process is repeated until only one neuron remains in the hidden layer, at which
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point MSE is calculated and no further pruning occurs. For reference, please

note the following equation for calculation of MSE.

MSEk =
1

N

N∑
i=0

ε̂(ν(ni))
2 (4.1)

where ν(ni) represents the nth input vector within the total number of inputs N

and n ∈ N. ε̂ is the difference between the networks output (eq. 3.2) in response

to input ν and the desired output. The number of epochs used during retraining

is one of either ten, one-hundred, or one-thousand. If the network variant is able

to retrain to the original target MSE then retraining stops early, in all cases.

Due to there being four affordability methods and, for each method, three levels

of retraining run against four separate data sets, forty-eight total configurations

are being compared in this experiment. Further, each of the configurations are

run ten times and the results averaged. This is because the networks’ weights are

always randomized and there are some runs that result in skewed measurements

where the retraining occurs faster or slower than on average.

y′k =
1

10

∑
10

MSEk (4.2)

Here, y′k represents the average MSE for output neuron k over ten runs, as

described above. Similarly, the average MSE for a neuron in the hidden layer,

denoted y′j, is defined as follows.

y′j =
1

10

∑
10

MSEj (4.3)

The relationship between MSEj and MSEk is in relation to a standard back
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propagation of error. The values for y′k and y′j are calculated each time a neu-

ron is removed after some level of retraining. In this respect, the designation

used to describe the value of y′k against a network with g neurons remaining in

the hidden layer is y′k,g. The following equation represents the average value for

MSE lost per neuron removed, or the mean-summed difference in MSE, denoted

dMSE.

dMSE =
1

tl − 1

tl∑
g=2

y′g,1 − y′g−1,1z′g = y′g,k where k = 1 (4.4)

where tl (eq. 3.1) represents the total number of neurons (prior to damage) of

the network (this value is twelve for all but the classic MLP which only has

eight). Finally, the total averaged, tMSE, across all neurons lost is represented

as follows.

tMSE =
1

tl − 1

tl−1∑
g=1

y′g,k (4.5)

Given these equations, specifically 4.4 and 4.5, we are ready to make a hypothesis

regarding the behaviors of the affordable network configurations under experi-

mentation. The following redefines hypothesis 1 (section 2.4, page 34) using the

equations above.

Hypothesis 6 Networks which utilize the affordability method will

exhibit a smaller total average MSE as levels of retraining increases,

measured using equation 4.5.

As stated earlier in section 4.2, the most salient neuron is removed as the mech-
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anism for introducing damage. This is intended to cause the most disruption

possible. The varying levels of retraining (i.e. the number of epochs used be-

tween onsets of damage) allow the saliency landscape of the remaining neurons

to cope with the loss of the previously most valuable neuron therein, measured

using eq. 3.14. Part of this experiment, alongside studying the data with re-

spect to hypothesis 6 is to also gather understanding into how the average MSE

lost per neuron removed relates to our expectations. Towards this end, another

hypothesis is provided based on hypothesis 2 (section 2.4, page 34).

Hypothesis 7 The more retraining that occurs between onsets of

damage the lower the average error lost per neuron, measured using

equation 4.4.

Hypothesis 7 captures the expectation that fault resilience and preservation of

function is akin to minimizing changes in y′k as neurons are removed.

4.2.2 Simulated Results

The first table presented (table 4.2) captures the setup and training results

against all four data sets with each of the four Af NN variants prior to damage.

Of note are the data set and Af NN variants pairings which are able to train

”early”. That is, to say, when the pairing is able to meet the target MSE before

the maximum epochs are reached. The reasoning behind providing this table is

both for completion and as a baseline for data presented from here on. Without

knowing how well each network configuration and data set combination was able

to initially perform prior to damage, the comparisons therein would be incom-

plete.
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Table 4.3 is presented to demonstrate hypotheses 6 and 7. The data therein

presents is directly related to both equations 4.4 and 4.5 against each of the

data set and affordablility method combinations.
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Target y′k Max Epochs Learn Rate y′k Acheived Epochs Used

Ir
is

Classic 0.01 1500 0.23 0.01 250

Random 0.01 1500 0.23 0.01 1500

Chaotic 0.01 1500 0.23 0.01 1500

Sequential 0.01 1500 0.23 0.01 350
B

al
an

ce

Classic 0.01 1500 0.23 0.02 1500

Random 0.01 1500 0.23 0.03 1500

Chaotic 0.01 1500 0.23 0.03 1500

Sequential 0.01 1500 0.23 0.01 1500

S
er

vo

Classic 0.02 1500 0.23 0.02 209

Random 0.02 1500 0.23 0.02 461

Chaotic 0.02 1500 0.23 0.02 516

Sequential 0.02 1500 0.23 0.02 254

C
C

P
P

Classic 0.01 1500 0.23 0.01 1

Random 0.01 1500 0.23 0.01 5

Chaotic 0.01 1500 0.23 0.01 6

Sequential 0.01 1500 0.23 0.01 1

Table 4.2: Results of training all four data sets against all four Af NN variants prior to damage.
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tMSE dMSE

10 100 1000 10 100 1000
Ir

is

Classic 0.0198 0.0143 0.0133 0.0047 0.0035 0.0033

Random 0.0182 0.0156 0.0136 0.0028 0.0025 0.0024

Chaotic 0.0216 0.0154 0.0127 0.0032 0.0023 0.0020

Sequential 0.0208 0.0147 0.0137 0.0027 0.0021 0.0024

S
er

vo

Classic 0.0178 0.0136 0.0138 0.0028 0.0016 0.0024

Random 0.0187 0.0168 0.0148 -0.0004 0.0021 0.0032

Chaotic 0.0187 0.0178 0.0147 -0.0004 0.0027 0.0032

Sequential 0.0158 0.0136 0.0133 0.0001 0.0010 0.0021

B
al

an
ce

Classic 0.0344 0.0288 0.0311 0.0083 0.0081 0.0074

Random 0.0269 0.0263 0.0239 0.0014 0.0027 0.0013

Chaotic 0.0294 0.0272 0.0264 0.0041 0.0029 0.0032

Sequential 0.0344 0.0278 0.0266 0.0079 0.0067 0.0057

C
C

P
P

Classic 0.0033 0.0035 0.0032 5E-05 5E-05 -6E-05

Random 0.0045 0.0043 0.0043 3E-05 -2E-05 7E-06

Chaotic 0.0044 0.0042 0.0043 2E-05 -6E-05 3E-05

Sequential 0.0034 0.0033 0.0033 4E-05 6E-06 2E-05

Table 4.3: dMSE and tMSE results against affordability method and data set
showing values for three levels of post-damage retraining.

4.2.3 Analysis and Discussion

We begin with an analysis of table 4.2. Starting with the Iris data set it is shown

that all network configurations are able to achieve the target average accuracy

as measured by equation 4.2. This is also true for the CCPP and Servo data

sets. The only exception, in this regard, is with the balance data set which, in

78



the current experiment configuration, the four network configurations achieved

varying levels of initial average accuracy, as depicted in table 4.2; with values

ranging between 0.01 and 0.03.

Also of interest is a look into the number of epochs needed for each of these

configurations to achieve the listed error rates. For the Iris data set the classic

and sequential configurations are able to terminate training early, at 250 and

350 epochs, respectively. However, the chaotic and random cases must utilize all

of the available epochs to reach the desired goal. The implication, based on the

data presented within the system of this experiment, is that one epoch of train-

ing provides more value to the sequential and classic variants as compared to the

chaotic and random. This observation is of interest with respect to hypotheses

7 and 6 which are concerned with measuring the added value of retraining post-

damage. The CCPP and Servo data sets also depict early terminations with

the classic and sequential cases, once again, depicting the higher average value

added per epoch of training.

Lastly, the Balance data set portrays a data set which is seemingly difficult to

train against, as depicted by both the utilization of all available epochs and the

inability, in nearly all cases (barring the sequential variant), to achieve the target

y′k.

The remainder of analysis and discussion for this section will be split into two

parts, one for each of the hypotheses presented. First, tMSE values across all

configurations are examined with respect to hypothesis 6 to ascertain how vary-

ing levels of retraining affect MSE, on average. Next, examination of dMSE

in relation to hypothesis 7 towards understanding whether or not basic fault

resilience exists through measurement of average MSE introduced, per neuron

lost, in all configurations.
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4.2.3.1 Total Average MSE

The Iris data set holds true in all cases in that, per the values presented in

table 4.3, measurements of tMSE meet the expectation captured in hypoth-

esis 6. As does the Servo data set. The Balance data set did not hold true

in the Classic MLP variant in that error increased between one-hundred and

one-thousand epochs. The CCPP data set did not hold true in both the clas-

sic and sequential variants. The former increase from 0.0033 to 0.0035 between

ten and one-hundred, going back down to 0.0032 in the one-thousand level of

retraining. The latter increased from 0.0042 to 0.0043 between one-hundred and

one-thousand epochs.

All in all, hypothesis 7 holds true in most cases. This is to say that, in regards

to these data sets and affordability configurations, higher levels of retraining

between removal of neurons does indeed have a positive impact on how well the

networks are able retain value as measured using tMSE (eq. 4.5). These exper-

imental results do not, however, detail whether or not the affordability method

provides more or less fault resilience than the classic MLP, as will be the subject

of proceeding experiments.

4.2.3.2 MSE Per Neuron Lost

The Iris data set holds true with respect to hypothesis 7 in all cases but the

sequential data set. In this instance, one-thousand epochs of retraining loses

value as shown by the increased average error per neuron lost. However, the
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dMSE value for this case is lower than the average for this data set at this level

of retraining. In other words, it is more accurate to describe the one-hundred

epoch case for the sequential configuration as outperforming the other configu-

rations at this level of retraining as opposed to claiming that the one-thousand

epochs of retraining is underperforming.

The servo data set, in all cases, did not meet the expected outcome. The classic

network configuration, at least, saw improvement between ten and one-hundred

levels of retraining; worsening thereafter. The other three configurations, ran-

dom, chaotic, and sequential, all strictly lost value (gained error per neuron lost

as the epoch ceiling increased) throughout the experiment as measured using

equation 4.4.

The balance data set failed to satisfy hypothesis 7 for the random and chaotic

cases, whilst meeting expectation for both the classic and sequential. With re-

spect to the random affordability configuration the outcome seems akin to that

of the sequential configuration of the Iris data set results; the results associated

with ten epochs of retraining has drastically outperformed the remaining config-

urations leading to the result described. As for the chaotic variant, the increase

of dMSE between one-hundred and one-thousand epochs of retraining, whilst

in line with the smallest change between levels of retraining against this data

set, is enough to warrant a failing condition.

Finally, the CCPP data set, like the balance data set, fails to meet expectation

in both the random and chaotic variants. However, the values of dMSE are so

small in this test that the results vary between positive and negative average

MSE per neuron lost. Overall, due to the drastically small margin of change ex-

hibited against this data set, the hypothesis is neither satisfied nor contradicted

within the data presented.
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4.3 Measuring Value Added Through Afford-

ability

The affordability method exhibits, thus far and with respect to the data sets

studied, a level of retained value in the presence of damage as measured using

equations 4.5 and 4.4 in relation to the experiment in section 4.2. This ex-

periment aims to further elucidate whether the results documented are due to

the redundancy provided by the affordability method or, perhaps, whether the

data sets and neuron selection method are the cause. To do so, the affordability

threshold (reference definitions in section 3.1, page 39) is used to discriminate

the measurement of fault resilience. In doing so, it is expected that the value

retained in the presence of damage above the affordability threshold will equal

or exceed the retained value below it and the following experiement is designed

accordingly.

4.3.1 Determining the Value of Affordability

Building upon the equations presented in section 4.2 the following functions

are provided to measure fault resilience value with respect to the affordabil-

ity threshold discriminator. The value for y′k (4.2) is averaged with respect to

neurons remaining both above and below the affordability threshold as follows:

AMSE =
1

r

t∑
j=m

y′j, where m > t (4.6)
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where r comes from equation 3.1.

BMSE =
1

m

m∑
j=1

y′j, where m > t (4.7)

where AMSE, the mean-squared error above the affordability threshold, is the

rolled-up MSE for each of the neurons in the hidden layer above t. Similarly,

BMSE is the rolled-up MSE average below the threshold, inclusive of the

affordability threshold value. Finally:

∆MSE = AMSE −BMSE (4.8)

where ∆MSE represents the difference between quantities AMSE and BMSE,

as defined in equations 4.6 and 4.7. The range of possible values are ∆MSE ∈

0, 1. As such, since the classic MLP does not provide any affordability the as-

sumed cumulative average error (i.e. AMSE) is set to one. This measure is

unique in that the sign of the value indicates whether or not the network ben-

efits, on average, from the affordability method (i.e. extra neurons above the

threshold are out-performing neurons within a damaged, non-affordable, net-

work). A negative value indicates less error, whilst a positive one indicates more

with respect to the values above and below the affordability threshold.

The existence of structural redundancy through the affordability method pro-

vides quantifiable value added, as measured by Delta Mean-squared Error (∆MSE)

(eq. 4.8), when compared to network not utilizing affordability. The expecta-

tions of the experiment can be described with the following (a redefinition of

hypothesis 3; section 2.4, page 34)
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Hypothesis 8 Networks which utilize an affordability method will

achieve ∆MSE < 0 (equation 4.8) at all levels of retraining, and,

therefore will provide more added value than an MLP which does not

provide affordability.

4.3.2 Simulated Results

Table 4.4 depicts the results of the current experiment. This table is organized to

show the value of ∆MSE (eq. 4.8) against each of the affordability configuration

and data set combinations. Each column in the table corresponds to various

levels of retraining. The organization of this information is designed such that

an analysis against hypothesis 8 is readily made.

As for how to interpret the value of ∆MSE presented in table 4.4 the key is in

understanding the difference between AMSE (eq. 4.6) and BMSE (eq. 4.7) and

what this may reveal about how the existence of an affordability threshold affects

fault resilience. It is expected, in this experiment, as captured in hypothesis 8,

that a negative value for ∆MSE equates to a particular data set and configura-

tion for which affordability provides added value to the network in the form of

fault resilience. It does not, however, indicate that the average MSE above or

below the affordability threshold are devoid of value. It indicates that, as the

network loses neurons and becomes more akin to a regular MLP, value is lost by

losing affordability. The opposite is also true in that a positive value for ∆MSE

indicates that the existence of affordability provided a net loss of value (or net

gain in error) as compared to the same network after reading zero affordability.
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∆MSE

10 100 1000

Ir
is

Classic 0.9763 0.9854 0.9877

Random -0.0040 0.0012 -0.0003

Chaotic -0.0056 -0.0016 -0.0012

Sequential 0.0073 0.0031 -0.0013

S
er

vo

Classic 0.9816 0.9861 0.9867

Random 0.0006 0.0025 -0.0030

Chaotic 0.0007 0.0022 -0.0016

Sequential 0.0041 0.0011 -0.0017

B
al

an
ce

Classic 0.9576 0.9724 0.9709

Random 0.0031 0.0049 0.0017

Chaotic -0.0008 0.0027 -0.0006

Sequential 0.0023 0.0027 -0.0039

C
C

P
P

Classic 0.9969 0.9968 0.9971

Random 0.0046 0.0033 0.0031

Chaotic 0.0047 0.0045 0.0044

Sequential 0.0012 0.0012 0.0012

Table 4.4: ∆MSE results against affordability method and data set showing
values for three levels of post-damage retraining.

4.3.3 Analysis and Discussion

It is worth mentioning again, as noted in section 4.3.2, that within the current

experiments, once an Af NN loses enough neurons (in this case, four) and the

network size goes below the affordability threshold, it essentially becomes a clas-

sic MLP. This means that, when reviewing fault resilience measurements, there

is merit in both the results produced above and below the affordability threshold
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(revisit definition in section 3.1).

Given that each affordability method is able to converge to near classic MLP

levels as mentioned earlier and evidenced by table 4.2, the results support that

a pre-damaged and pre-trained Af NN holds similar potential value as that of

a classic MLP in all cases except those noted against the Balance data set. As

damage is sustained, the existence of affordable selection and, thereby, struc-

tural redundancy, which provides (in all but the cases mentioned) similar value

to that of a classic MLP, is the basis for fault resilience. In other words, fault

resilience is, in this experiment, the measurement of how much value the afford-

ability method retains as measured by equation 4.8 and described in hypothesis

8. Where this assumption is tested is in the comparison of varying levels of

retraining between onsets of damage, as per previous experiments, which is ex-

pected to affect the value of ∆MSE.

If hypothesis 8 is true then, at all levels of retraining, the value depicted by

∆MSE should be less than zero. The error accumulated above the threshold

should be less than that of below the threshold. It should also be noted that the

Classic MLP is not expected to provide a ∆MSE value less than zero since it

does not contain affordability, by definition in section 3.1. If ∆MSE were to be

positive then the affordability method, within the context of network damage,

provides less accuracy above the affordability threshold compared to that of a

regular MLP and, therefore, the cost of redundancy negates any potential fault

resilience within the context of this experiment. From looking at table 4.4 it is

clear that this is not the case.

Before discussing each data set and affordability variant combinations individu-

ally it is important to state that, per hypothesis 8, the only experimental con-

figuration that illustrates the behaviors expected is chaotic affordability for the
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Iris data set. In no other instance did all three levels of retraining meet the

expectation of hypothesis 8. This means that, in the first instance, optimization

of ∆MSE is dependent epon the level of retraining that occurs.

The classic MLP, in all cases, depicts a positve value for ∆MSE, as expected

since no affordability exists. Of note is that the value does worsen in that against

the Iris and Servo data set cases, the values for ∆MSE gets closer to one as

levels of retraining increases. Given that AMSE is one for these cases the con-

clusion is that BMSE is worsening and levels of retraining increases. This is

not true for the Balance and CCPP cases where values fluctuate. The reason

this is of interest, and as an observation regarding the measurement of ∆MSE

in general, is that the value for BMSE for both the Iris and Servo data sets

decreased as training epochs increased, which reflects the findings in table 4.3.

However, because the aforementioned measurement is in relation to affordability

and the value added therein, a value of one for AMSE in all cases results in an

overall increasing trend in the value measured.

Considering the Af NN methods against the Iris data set, the random and chaotic

variants both failed to meet the hypothesis. The random affordability method

exhibited negative values for the ten and one-thousand level of retraining and

the chaotic method provided negative values for all three. The sequential data

set, similarly, provided positive values for ten and one-hundred levels but met

the expectation of hypothesis 8 for the one-thousand epoch case.

The Servo data set tells a different story. The random, chaotic, and sequen-

tial all fail to meet the hypothesis for ten and one-hundred levels of retraining

but, conversely, succeed by providing negative values for ∆MSE against one-

thousand level of training. The Balance data set is similar in that the chaotic

and sequential cases exhibit some negative values. However, the random variant
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is the first instance whereby all levels of retraining exhibit positive values for

∆MSE. The CCPP data set also provides a positive result in all three of the

affordability methods tested.

In light of these results it seems as though the expectation, as set out by hy-

pothesis 8 is not always correct. It may be safer to assume that some level of

retraining can be applied to the affordability method to optimize the value added

in using such a method, as measured using ∆MSE but that simply applying the

algorithm will not guarantee such an outcome. Attempts to maximize afford-

ability, whilst of interest, is beyond the scope of this dissertation; this research

is only concerned with how to measure this value, not optimize it. What needs

to be investigated further is whether or not the data itself has led to this result

or if the algorithm utilized is simply variable with respect to numbers of retri-

naing epochs. Also, is a hetero-relative comparison of an affordability variant

against itself the same of comparing the value of affordability against statically

sized MLPs. That is to say, as a network is damaged, reaches zero affordability,

and continues to lose neurons thereafter, are the results discussed in this sec-

tion affected by the levels of retraining above the affordability threshold? Or,

alternatively, will the results hold true when comparing against MLPs which are

constructed to have a static number of neurons in the hidden layer, randomly

initialized, and trained?
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4.4 Comparison of Fault Resilience using MSE

Against Structurally Static Controls

As mentioned in this chapter’s introductory section, our next experiment at

this point in the research presented here is to further analyze the data gathered

surrounding the MSE metrics thus far. The findings related to the experiment

discussed in section 4.3.3 find positive early results with respect to the existence

of fault resilience within the Af NN method. However, what is not clear is

whether the network performance which led to this discovery is unique to the

Af NN method or not. Specifically, it is worth analyzing whether or not the same

levels of accuracy can be obtained in statically structured networks compared

to Af NNs which have been damaged and re-trained. Details of this experiment

are presented below.

4.4.1 Experiment Design

For this experiment, the data used in section 4.3 is reused but compared against

a new set of data. The MSE values represented in table 4.3 are compared against

MSE values obtained from statically structured MLPs. These MLPs are given

hidden layer sizes between one and eleven and compared against the equivalent

Af NN variants during retraining (e.g. when an Af NN variant is damaged to

the point of having only six neurons in its hidden layer then it will be compared

to a statically structured MLP with six neurons in its hidden layer). The MSE

values obtained in this experiment are also averaged over multiple runs, as in

the previous experiment in section 4.3.
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dMSEstatic =
1

tl − 1

tl∑
g=2

y′g,static − y′g−1,static (4.9)

where tl (eq. 3.1) represents the total number of neurons (prior to damage) of the

network (this value is twelve for all but the classic MLP which only has eight).

y′g,static represents the output of a statically structured MLP with g neurons in its

hidden layer (the output neuron count is always one, as with the Af NN models

so we, therefore, omit k for simplicity). Finally, the total averaged MSE across

all neurons lost is represented as follows.

tMSEstatic =
1

tl − 1

tl−1∑
g=1

y′g,static (4.10)

The purpose behind the introducion of equations 4.9 and 4.10 within the research

presented here is to provide another metric for determining the fault resilience

of the Af NN method. Consider that, in the previous experiment presented

in section 4.3, the focus is strictly on the MSE value during retraining. This

is, essentially, a comparison of absolute MSE achievable at various levels of

damage. However, damage can also be simply viewed as a restriction to the

internal structural capacity of an MLP as opposed to hollistically measuring

loss of accuracy. Considering this, there is no basis of comparison to determine

whether a regular MLP of a particularly sized hidden layer would be able to

achieve a higher or lower MSE and, in turn, whether or not the Af NN method

is actually under or over performing with respect to the MSE levels reached.

In light of this, we redefine hypotheses 1 and 2 (section 2.4, page 34) again as

follows.
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Hypothesis 9 Networks which utilize the affordability method will

exhibit a smaller total average MSE as levels of retraining increases,

relative to statically structured MLPs, measured using equations 4.10

and 4.5.

Hypothesis 10 The more retraining that occurs after onset of dam-

age the lower the average delta error lost per neuron, as compared to

a statically structured MLP, measured using equations 4.9 and 4.4.

This experiment is designed to show that the Af NN method exhibits fault re-

silience as evidenced by a lower MSE when compared to a statically structured

network of the same size. In other words, as the Af NN networks are damaged

(after initial training) they perform as well or better than a network of the

damaged Af NN size, thereby providing equal or greater value post-damage.

4.4.2 Simulated Results

Table 4.5 depicts the results of the current experiment. The results from exper-

iment 4.2 are repeated here for ease of comparison. The reason for providing

both sets of results (tMSE, tMSEstatic, dMSE, and dMSEstatic) is to better

characterize the fault resilience of the Af NN method with respect to hypotheses

9 and 10. To describe it another way, the hypotheses are concerned with how the

Af NN method compares against statically structured MLPs of equivalent sizes

and, relative to that, whether the Af NN method, at some point, loses enough

value to warrant the use of statically structured MLPs or not.
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tMSE dMSE

10 100 1000 10 100 1000
Ir

is

Classic 0.0198 0.0143 0.0133 0.0047 0.0035 0.0033

Random 0.0182 0.0156 0.0136 0.0028 0.0025 0.0024

Chaotic 0.0216 0.0154 0.0127 0.0032 0.0023 0.0020

Sequential 0.0208 0.0147 0.0137 0.0027 0.0021 0.0024

S
er

vo

Classic 0.0178 0.0136 0.0138 0.0028 0.0016 0.0024

Random 0.0187 0.0168 0.0148 -0.0004 0.0021 0.0032

Chaotic 0.0187 0.0178 0.0147 -0.0004 0.0027 0.0032

Sequential 0.0158 0.0136 0.0133 0.0001 0.0010 0.0021

B
al

an
ce

Classic 0.0344 0.0288 0.0311 0.0083 0.0081 0.0074

Random 0.0269 0.0263 0.0239 0.0014 0.0027 0.0013

Chaotic 0.0294 0.0272 0.0264 0.0041 0.0029 0.0032

Sequential 0.0344 0.0278 0.0266 0.0079 0.0067 0.0057

C
C

P
P

Classic 0.0033 0.0035 0.0032 5E-05 5E-05 -6E-05

Random 0.0045 0.0043 0.0043 3E-05 -2E-05 7E-06

Chaotic 0.0044 0.0042 0.0043 2E-05 -6E-05 3E-05

Sequential 0.0034 0.0033 0.0033 4E-05 6E-06 2E-05

tMSEstatic dMSEstatic

10 100 1000 10 100 1000

Iris 0.0518 0.0212 0.0120 0.0001 0.0031 0.0035

Servo 0.0223 0.0187 0.0112 -9E-05 0.0006 0.0009

Balance 0.0990 0.0279 0.0266 0.0008 0.0059 0.0052

CCPP 0.0024 0.0020 0.0020 0.0008 0.0007 0.0007

Table 4.5: dMSEstatic and tMSEstatic results against affordability method and
data set showing values for three levels of post-damage retraining.
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4.4.3 Analysis and Discussion

The analysis and discussion is split into the following sub-sections. First, a dis-

cussion regarding hypothesis 9 and the comparison between tMSE and tMSEstatic.

Next, a similar description of results regarding the differences between dMSE

and dMSEstatic. The goal is not necessarily to determine a ”winner” concerning

overall error rates or average error differences per configuration, but to better

understand how closely the Af NN method mimics a non-damage MLP configu-

ration to further explore fault resilient characteristics of the Af NN method.

4.4.3.1 Statically Structured MLP Averate Total MSE

With regards to all four data sets, the values for tMSEstatic are decreasing as

epochs increase. The only exception is in respect to the CCPP data set where

there is no difference between the one-hundred and one-thousand epoch cases.

Comparing these results against those presented in section 4.2 (and again here

in table 4.5) there exist two attributes of note. First, analyzing how well the

affordable networks fair against their statically structured relatives (tMSE vs

tMSEstatic). Secondly, understanding whether or not the particular data set vs.

epochs of training configurations are consistent between the two measurements

with respect to increasing, or decreasing, error rates. For instance, analysis

of the Iris data set shows that, for the ten epochs of retraining/training, the

Af NN methods outperform the statically structured MLP. This is also true for

the one-hundred epoch case. For the one-thousand epoch case, the statically

structured MLP out performs, on average, the Af NN method with respect to

tMSE. This same scenario plays out again with the servo data set. The balance

data set exhibits major improvements on the side of the Af NN method for the
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ten epochs of retraining case. The one-hundred and one-thousand cases see

values on the side of the Af NNs are within 0.001 of the static MLP but not

for the classic Af NN. Lastly, the CCPP data set failed to meet the levels of

accuracy (shown by a higher total average MSE) for all levels of epochs vs. the

static MLP configuration.

4.4.3.2 Statically Structured MLP Average Error Per Neuron Lost

In both the Iris and Servo data sets, the value for dMSEstatic worsens as epochs

increase. However, the value cannot be taken in isolation as this may be more

of an indication that, as evidenced by the tMSEstatic, the overall network per-

formance is increasing and, therefore, the range of error across the entire config-

uration set, and subsequently, the differences between them, is more dramatic.

In other words, we can see from tMSEstatic that the average error is decreasing

as epochs increase. The increase in average error per each neuron in the hidden

layer indicates that the range of MSE values across all tl possibilities is larger.

This in itself warrants discussion. What is of more importance is a comparison

to the Af NN variations from section 4.2 that is represented again in table 4.5.

For the Iris data set, the values for dMSE decreased as epochs increased in all

but the sequential variant case. On the contrary, the Servo data set exhibited

increasing values aside from the classic variation. The question now becomes,

are these results indicative of an algorithmic side effect or, perhaps, the data sets

tendencies to be trained more effectively at certain hidden layer sizes. As for the

Balance data set, and in line with results from the experiment in section 4.3.2,

the results are inconsistent and will require further investigation. Lastly, the

CCPP data set once again exhibits a capacity to hardly be affected by changes
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in number of epochs. This is still believed to be a result of the large number of

training patterns in the data set itself but will also require investigation later in

this dissertation (see experiment in section 5.1).

4.5 Summary

Chapter 3 introduces the concept of Af NNs and their inherent structural re-

dundancy. The results of experiments therein help to support the affordability

method, to a degree. It is clear that Af NNs can train as well as a regular MLP

with little added overhead (see section 3.2). It is also evident that the way groups

are selected using this method is critical to its training performance and poten-

tial retraining post-damage (3.3.2). With a foundation upon which structural

redundancy exists the next step in this research is to measure fault resilience.

This is where chapter 4 begins. Our first experiment in section 4.2 investigates

the basic premise of fault resilience. Namely, as a network loses neurons how

does that affect it’s performance with respect to generalizing previously trained

responses to various data sets. The results are positive in that the Af NN vari-

ants all exhibit some level of a priori knowledge retention. What is not clear

is why the Servo data set exhibited inconsistent results and also whether the

affordability method provides more, or less, resilience than a regular MLP which

is also subjected to removal of neurons.

In section 4.3 the experiment is designed to highlight the benefit and added

value of affordability. A measurement is introduced (equation 4.8) which di-

rectly addresses the calculation of value added by the affordability method as

compared to the classic MLP. By focusing on the difference of potential value
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of an Af NN both above and below the afforadbility threshold, it becomes clear

that the surplus of neurons in the hidden layer do indeed help to retain accu-

racy. Once again, however, the questions arises as to whether or not the slight

inconsistencies in some of the results presented are due to nuances of the data

sets or a fault of the algorithm employed. The direction to be taken, as a result

of these inquiries, will be explored in the next chapter.

Finally, the last experiment presented in section 4.4 aims to more accurately

describe the level of inherent fault resilience of the affordability method using a

comparison of MSE against statically structured MLPs. The intention here is

two fold. Firstly, to discover a stronger corollary which will help in determining

whether or not the data sets or the algorithms employed are responsible for the

fault resilience observable in section 4.3. Second, knowing not only how Af NNs

relate to classic MLPs under damage but also how all variants, including the

classic MLP compare to statically structured networks without a pre-disposed

saliency map, with respect to training convergence and accuracy. The outcome

of this first experiment is mostly positive. Indeed, most cases portray a clear

benefit of the Af NN method in these regards. Similarly, comparing the results of

the experiments in sections 4.3 and 4.4 once again provides evidence of retained

saliency through damage and retraining, as was expected from the saliency mea-

surements made in chapter 3.

However, two problems arise. Firstly, the classic variant is also performing well

experiment 4.4. There is no benefit to using Af NNs if a regular MLP already ex-

hibits comparable fault resilience without extra affordability calculations. This

is answered, primarily, through the existence of fault resilience above the afford-

ability threshold which does not exist in the classic variant; however, stronger

evidence of benefit is preferable. Secondly, the servo data set, which depicts
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positive results in section 4.3.3, does not perform to expectation as discussed

in section 4.2. Specifically, only the classic and sequential variants portray an

above 1.0 ratio, on average. Also, across all data sets, the amount of retraining

seems to not positively correlate with higher ratios. If the Mean-squared Accu-

racy (MSA) ratios are comparable to statically structured MLPs then what is

the benefit of the affordability method in this regard?

It is also worth discussing the effect that removing the most salient neuron has on

the rate of false positives and negatives in relation to network output. False neg-

ative cases may occur as a result of not retraining enough or having the removal

of neurons lead the network to get stuck in minima, for instance. This is based on

the fact that by constantly removing the most salient neurons the networks are

not allowed to create a saliency landscape dramatic enough to provie all positive

classes and, instead, produce false negatives. False positives are also at risk of

being effected by neuron removal in that the removal of neurons could instantly

create a false positive case that is not ”trained away” through re-training. This

subject will not be investigated further in this thesis but merits investigation

otherwise.

Chapter 5 takes a different look at the potential value retained within an Af NN

under damage. The number of epochs used to reach the levels of accuracy

discussed at length in this chapter also tells a story about how a network is

performing. Similarly, the use of MSE in itself makes assumptions regarding the

disribution of the data sets under test and, therefore, experiments in the next

chapter are performed using calculation of entropy. These two experiments will

help to further elucidate the gap between a data sets contribution to measure-

ments of fault resilience and the actual capacity of the affordability method to

retain value in the presence of damage.
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Chapter 5

Measuring Fault Resilience:

Epochs and Entropy

At this point in the research the fault resilience of the Affordable Neural Net-

work (Af NN) method has been measured using variations of error calculations

with respect to hypotheses 6 through 10. Specifically, chapter 4, and the hy-

potheses contained therein, exhibit positive yet inconsistent results with resepect

to the ability of the Af NN method to sustain damage using four data sets cho-

sen. The current chapter focuses on these shortcomings in two ways.

First, by understanding the number of epochs utilized in the previous experi-

ments it is expected that some of the behaviors observed will be better under-

stood and help to further distinguish the effect of the data set on the analyses

presented. Second, the use of entropy as a calculation of network accuracy pro-

vides an alternative to Mean-squared Error (MSE), further corroborating the

value provided by the Af NN method.

These calculations, whilst focusing on the experimental data presented against
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the various configurations and data sets previously in use for chapters 4 and 3,

introduce further measurements which are key to measuring and analyzing fault

resilience in neural networks.

5.1 Comparing Epochs Required for Effective

Retraining

Having established that fault resilience exists within the affordability method,

this experiment is designed to further quantify the usefulness of the Af NN

method with respect to inherent fault resilience. To do this, we will be using

the same experiment configuration as that of section 4.4 (page 89). However,

instead of analyzing MSE, the focus will be examining the number of epochs

actually used to retrain each affordability variant.

5.1.1 Experiment Design

The primary goal of this experiment can be described using the following exam-

ple. If it can be shown in the servo data set from the experiment in section 4.4

that both the static and affordable cases are able to train to the target MSE

without utilizing all of the allowable epochs, then it cannot necessarily be as-

sumed that the method exhibits the fault resilience expected but, rather, the

data lends itself to being trained too easily, thereby skewing the results; provid-

ing an inconclusive analysis. This would make sense, given that the experiments

from chapter 4 showed positive results in relation to hypothesis 8 (section 4.3,

page 84) and therefore, merits investigation.
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What this example illustrates is a scenario whereby comparing MSE alone,

whether against static variants or across levels of retraining, may not reveal

improvement as measured using the various methods presented in chapter 4 be-

cause of how the data sets are constructed and, subsequently, how quick it is for

a network to meet the target MSE as measured using utilized retraining epochs.

The secondary purpose of this experiment is to further quantify the benefit of

retraining between onsets of damage. It is expected that the epoch training ceil-

ing positively affects the resilience of the network during further damage. This

is captured in hypothesis 4. The reasoning here is purely within the confines

of the data gathered thus far and within the constraints of the experiments.

Referring to the analysis in section 4.2 it can be seen that, when comparing

the one-hundred and one-thousand epochs of retraining values for tMSE, the

network performance, in some cases, improves before encountering degradation

due to a lack of total neurons in the network. This trend, along with the overall

results of the experiment in section 4.2 shows the benefit of higher epoch ceil-

ings. Understanding whether or not the number of epochs actually needed is less

than the ceiling is paramount to these observations as the results may further

exemplify the benefits of the Af NN method.

Further, the retraining rates related to epochs needed for statically structured

Multilayer Perceptrons (MLPs) are also of interest to this study. Namely, the

experimental results within section 4.4 are predicated on a comparison with

statically structured MLPs; it is, therefore, important to understand how those

results may be revisited with the results presented here. This expectation is

captured by hypothesis 5 (section 2.4, page 35).
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5.1.2 Simulated Results

This experiment will diverge from representing MSEs and, instead, depict epochs

actually used during retraining in relation to the epoch ceilings used in the exper-

iment. The values presented in table 5.1 represent the number of configurations

(one configuration per each neuron lost) in which the network was able to retrain

to pre-damage levels within the maximum epochs allowable. The total number

of configurations, therefore, will always be one less than the affordability total,

as defined in section 3.1 (page 39). For the classic network variants, the number

of configurations is seven. For the remaining configurations (random, chaotic,

sequential, and static) the maximum is eleven. The epoch maximums are in

relation to the various levels of retraining used in previous experiments (i.e. ten,

one-hundred, or one-thousand maximum epochs). All configurations are being

trained to the specified maximum number of epochs or the target y′k as specified

in table 4.2, whichever comes first. Also, as in previous experiments, the results

for each variants are averaged across ten runs. Table 5.1 exhibits the results of

the current experiment.

Alongside the rolled-up values for average epochs against all levels of retraining,

figures 5.1 through 5.4 are presented to further clarify the behavior regarding

how levels of retraining affect the ability for the Af NN method to retrain within

the various epoch maximums.
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10 100 1000

Ir
is

Classic 1 6 6

Random 0 8 10

Chaotic 0 8 10

Sequential 6 9 10

Static 0 0 0

B
al

an
ce

Classic 0 1 3

Random 0 0 1

Chaotic 0 0 1

Sequential 0 1 4

Static 0 0 0

S
er

vo

Classic 0 6 10

Random 0 5 10

Chaotic 0 5 10

Sequential 7 10 10

Static 0 0 10

C
C

P
P

Classic 7 7 7

Random 11 11 11

Chaotic 11 11 11

Sequential 11 11 11

Static 0 0 0

Table 5.1: Number of configurations for which the specified network type and
data set configuration was able to retrain within the epoch maximums.
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Figure 5.1: Comparison of epochs used across four Af NN variants using the Iris
data set during damage retraining (10, 100, and 1000 epochs).
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Figure 5.2: Comparison of epochs used across four Af NN variants using the
Balance data set during damage retraining (10, 100, and 1000 epochs).
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Figure 5.3: Comparison of epochs used across four Af NN variants using the
Servo data set during damage retraining (10, 100, and 1000 epochs).
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Figure 5.4: Comparison of epochs used across four Af NN variants using the
CCPP data set during damage retraining (10, 100, and 1000 epochs).
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5.1.3 Analysis and Discussion

As described in section 5.1.1 and summarized by hypotheses 4 and 5 the ex-

pectations are two-fold. First, the higher level of retraining that occurs, the

better the network will perform as more damage is encountered. This is mea-

sured using MSE, as in previous experiments and, likewise, the data presented

in section 5.1.2 depict this in showing how many epochs were actually utilized,

in all scenarios, to reach the target MSE post-damage. Second, in order to fur-

ther explore the failures related to previous experiments, it is worth determining

whether those failures are on the part of the affordability algorithm or the data

set itself. In this way, recording the epochs used at varying levels of damage help

to make this distinction.

The most interesting and relevant finding, considering the results presented for

the current experiment, relates to that of the statically structured MLPs. In

all cases but one, the static structures require all of the epochs alloted to meet

(or come close to) the target MSE. This, coupled with the observation that

the Af NN variants were able to retrain in less epochs, is a continuation of the

method described with respect to the existence of measureable fault resilience.

What this means is that, against a statically structured MLP of the same size as

a damaged Af NN, the Af NN contains a level of fault resilience which, in some

cases, exceeds training a network from scratch (e.g. using a statically structured

network) measured by epochs needed to meet target y′k. Also, because the stat-

ically structured MLPs and the Af NN variants use the same data at all sizes

(i.e. neurons in the hidden layer) the impact of the data set on the results is

effectively ignored. In other words, using fewer epochs to retrain, on average, as

compared to statically structured MLPs are truly indicative of retained value as
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a result of the affordability method and not how well a data set can be learned.

The discussion now moves onto a detailed comparisons against each data set to

understand the differences between fault resilience inherent to the MLP against

that of the Af NN. It should be noted, however, that in all cases any level of

retraining above the affordability threshold indicates fault resilience that would

not exist within the classic Af NN variant. This is because the classic configura-

tion, by definition, utilizes zero affordability, per section 3.1.

5.1.3.1 Iris Data Set

In the first instance, an immediate conclusion can be drawn from the static

versus maximum epoch percentages strictly within the parameters of this exper-

iment. Namely that, per the values presented in table 5.1, the static variants use

all available epochs in all cases, as mentioned earlier in this section. This is to

say that the Af NN outperforms the static MLP constructs in all configurations.

The value added by the Af NN method is that starting from scratch (e.g. with

a statically structured MLP), at any of the hidden layer size variations tested,

the Af NN method is able to train back to pre-damage levels within the epoch

ceiling. This, in and of itself, is one of the core tenants of fault resilience as

captured back in chapter 4 with hypothesis 7. The relationship here is one of

understanding that target MSE is achievable in fewer epochs. Moving onto a

more homogeneous comparison of Af NN variants, table 5.1 depicts an interest-

ing trend in relation to the expectations related to hypothesis 5. Specifically,

as the epoch ceiling is raised, the number of Af NN variants able to retrain to

target MSEs without utilizing the entire epoch window also raises from seven

at ten epochs to thiry-six at one-thousand. This is an indication that the more
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retraining that occurs between onsets of damage positively affects the ability

for the Af NN method to retrain following further damage. The classic Af NN

configuration, in this regard, performed the worst in two of the three epoch

window sizes, acheiving the pre-ceiling retraining target only six times at both

one-hundred and one-thousand epoch ceilings. The random, chaotic, and se-

quential variants performed similarly between one-hundred and one-thousand

epochs of retraining, coming in at around eight and ten, respecitvely. For the

ten epochs of retraining case, the sequential variant depicts a much higher value

added compared to the other variants at this level. Looking at the graphs in

figure 5.1 reveals where the value added is placed within the previously discussed

results.

5.1.3.2 Balance Data Set

The results relating to the Balance data set are not positive with respect to

hypotheses 4 and 5. Whilst the retraining epoch ceiling increase does correlate

to increase of cases where networks are able to retrain within the epoch ceil-

ing, the increases are negligible (less than or equal to one). Also, specifically

with respect to hypotheses 5, whilst the statically structured MLP was unable

to retrain within the specified windows even once within all cases, the classic

and sequential variants were only able to do so once and the random and chaotic

only once for the one-hundred and one-thousand cases, respectively. Overall, the

indiciations here by the data presented for this experiment depict a data set for

which retaining value betwen damage is difficult. Whether this is because of the

data set itself or whether it is a fault of the algorithm is still to be investigated

and, as such, is the topic of chapter 6 whereby the Balance data set is analyzed
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and relevant experiments re-run.

For the ten epoch case there was no value distinguishable between any of the net-

works being compared. In fact, all variants, including the statically structured

MLP, were unable to retrain within the epoch ceiling during damage retraining.

For the one-hundred and one-thousand cases the classic and sequential variants

provided some extra value between four and eight neurons remaining, as de-

picted by figure 5.1.2. The random and chaotic variants also provided some

fault resilience in the one-thousand epoch case around seven neurons remaining

per table 5.1. This is not entirely surprising given the results related to hypoth-

esis 8. It is expected that this behavior is related to the same cause which leads

to those results.

5.1.3.3 Servo Data Set

Per the results presented in table 5.1, and with respect to the statically structured

MLP the Servo data set acts much like the Iris in all cases but one. The one-

thousand epochs of retraining exhibited the only case whereby the statically

structured network was able to train to the target MSE in less than the maximum

number of epochs. This instance provides the only case where retraining of an

Af NN variant did not provide better value than creating a statically structured

network for all cases above seven neurons remaining as depicted by figure 5.1.2.

The classic, random, and chaotic Af NN variants, per table 5.1, all followed

nearly the exact same value increases alongside epoch ceiling increases; values of

roughly zero, to five, to ten across the board for all three. The sequential variant

performed the best overall with respect to the values in the afrorementioned

table of results, particularly in the one-thousand and one-hundred cases where
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the configuration was able to retrain within the epoch ceiling ten out of eleven

times in both cases.

All configurations, including the statically structured MLP, as mentioned earlier

in this section, were able to retrain over ninety percent of the time within the

epoch ceiling.

5.1.3.4 CCPP Data Set

This data set is unique in that, because the number of training patterns is so

large, every Af NN variant (including the classic) is able to retrain within one

epoch in all cases as depicted in figure 5.4. The statically structured MLP,

however, still require all epochs in training towards the target MSE at all levels,

per the results presented in table 5.1. Also, as seen in the aforementioned table,

out of the Af NN variants the classic performed the worst with a seven across all

epoch ceiling configurations. The random, chaotic, and sequential Af NN types

were able to retrain within the epoch ceilings, at all levels, one-hundred percent

of the time. This is a resounding positive for the ability of the Af NN method

to retain value throughout damage and retraining, despite the lack of positive

trending of values as expected in our hypotheses.

5.2 Comparing Entropy of Neurons

Fault resilience measurements, thus far, include comparisons of MSE, epochs

required for retraining within three maximum levels, and comparison of accu-

racy against statically structured MLPs which have sustained no damage. All

three experiments support, in some way, the expectation that the Af NN method
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provides a level of fault resilience above and beyond what is normally present

within a typical MLP under damage. Whilst there exist some negative results

with respect to expected behaviors, the evolution of further experiments help

to investigate these failings in more detail. In particular, if the failings thus far

need to be understood under the scope of whether the affordability algorithm or

the data sets themselves are at fault.

The next step in the experimental investigation is to understand how well each

Af NN is able to learn the data sets under test. Whilst MSE is a common way

to measure error in training, works by (Cun et al., 1990a) remind that magni-

tude does not equal saliency. If the goal is to accurately determine how well a

network is encoding a data set then entropy is the more accurate measurement.

In other words, use of entropy as opposed to MSE, which makes assumptions

about the probability distribution of the data sets themselves, will more accu-

rately describe saliency of each neuron.

As mentioned in section 4.1, all data sets utilize the same values for affordability

total and target despite what would be optimal for the data set. Results for

previous experiments portray this in the way that each data set is trained to

various levels of efficiency and benefit from a varying number of neurons in the

hidden layer. Use of entropy, in this instance, should help to further understand

how much the results thus far are tied to data sets vs. the algorithms presented.

5.2.1 Experiment Design

As a network trains post-damage the MSE improves inconsistently across all

data sets. If the Af NN method and associated algorithms actually provide fault

resilience then a measurement of entropy should also show improvement during
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retraining. Much like previous experiments, the data is organized into a table

depiciting the values for both the total average entopy, tĤ(E) (eq. 5.5), and the

average entropy difference, dĤ(E) (eq. 5.4), both defined below, alongside each

data set and Af NN variant in the study.

The calculation of entropy comes directly from works by (Silva et al., 2005) as

follows:

Ĥ(E) = − 1

N

N∑
n=1

logf̂(e(n)) (5.1)

where E is the error (difference) random variable. Also, our estimation of error

is not based on analysis of the data sets distribution. As we don’t know the

distribution of the error variable, we must rely on nonparametric estimates. For

the estimation of f(x) we use the nonparametric kernel estimator

f̂(e(n)) =
1

Nh

N∑
l=1

K(
e(n)− e(l)

h
) (5.2)

where h is the smoothing parameter of the standard Gaussian kernel K given by

K(x) =
1√
2π
exp(−1

2
x2) (5.3)

Given these functions we will now revisit and modify equations 4.4 and 4.5 from

section 4.2 as follows.

dĤ(E) =
1

tl − 1

tl∑
g=2

Ĥg(E)− Ĥg−1(E) (5.4)

113



Where Ĥg(E) represents the value of Ĥ(E) for the single output neuron of the

network when g neurons remain in the hidden layer. Finally, the total averaged

entropy across all neurons lost is represented as follows.

tĤ(E) =
1

tl − 1

tl−1∑
g=1

Ĥg(E) (5.5)

As this is a measurement of entropy, a value of zero for Ĥ(E) implies that the

probabilities of the data set outcomes are fully characterized by the network and,

therefore, the network can predict results with one-hundred percent accuracy.

Similarly, a high value for entropy implies that the values being given to the

network for training, and the expected results compared against, are not encoded

with any level of predictability or, rather, have an equal probability of occuring

from the perspective of the network.

The expectations of this experiment are very similar to those within section 5.1.1.

The more a network retrains the better it performs but, this time, measured

through entropy. We expect the following hypotheses to hold true. First, a

redefinition of hypothesis 1 (section 2.4, page 34).

Hypothesis 11 Networks which utilize the affordability method will

exhibit a smaller total average entropy as levels of retraining in-

creases, measured using equation 5.5.

Similarly, redefinition of hypothesis 2 stated in 2.4, page 34 follows,

Hypothesis 12 The more retraining that occurs between onsets of

damage the lower the average entropy lost per neuron, measured using
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equation 5.4.

5.2.2 Simulated Results

The results presented herein are formatted similarly to those within section 4.2

due to the similarities in value derivation and applicability. Per hypotheses 11

and 12 table 5.2 is presented. The data therein presents is directly related to

both equations 5.4 and 5.5 against each of the data set and affordablility method

combinations.

5.2.3 Analysis and Discussion

As the experiment presented here in section 5.2 mimics that of section 4.2,

our results will be concerned not just with how tĤ(E) and dĤ(E) increase or

decrease in relation to our expectations captured in hypotheses 11 and 12, but

also with how the behavior and trends of the results herein mimic those of the

latter experiment. In other words, do the calculations of entropy mimic those of

MSE such that the total and average values over all configurations and data sets

within each experiment portray a similar set of results? Likewise, the analysis

and discussion presented here will be broken down in two sections; the first being

in regards to the total averaged entropy (eq. 5.5) and the second in relation to

the calcuation of average entropy lost (or gained) per neuron lost (eq. 5.4).
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tĤ(E) dĤ(E)

10 100 1000 10 100 1000

Ir
is

Classic 0.4960 0.4620 0.4573 -0.0420 -0.0318 -0.0304

Random 0.5162 0.4831 0.4595 -0.0190 -0.0107 -0.0142

Chaotic 0.5337 0.4746 0.4568 -0.0145 -0.0144 -0.0128

Sequential 0.5118 0.4756 0.4593 -0.0019 -0.0123 -0.0168

S
er

vo

Classic 0.4739 0.4559 0.4366 -0.0151 -0.0149 -0.017

Random 0.5077 0.4751 0.4425 0.0006 -0.0004 -0.0025

Chaotic 0.5072 0.4782 0.4399 0.0002 -0.0019 -0.0023

Sequential 0.4712 0.4408 0.4311 -0.0044 -0.0067 -0.0091

B
al

an
ce

Classic 0.5383 0.5162 0.5189 -0.0212 -0.0155 -0.0300

Random 0.551 0.5373 0.5294 -0.0032 0.0002 -0.0029

Chaotic 0.5592 0.5411 0.5127 -0.0007 0.0007 -0.0024

Sequential 0.5691 0.5443 0.5008 -0.0011 -0.0040 -0.0029

C
C

P
P

Classic 0.3543 0.3545 0.3561 -0.0100 -0.0112 -0.0108

Random 0.3703 0.3679 0.3718 0.0002 -0.0006 0.0014

Chaotic 0.3698 0.3693 0.3698 -0.0001 0.0005 -0.0003

Sequential 0.3603 0.3581 0.3591 -0.0033 -0.0037 -0.0032

Table 5.2: dĤ(E) and tĤ(E) results against affordability method and data set
showing values for three levels of post-damage retraining.

5.2.3.1 Total Average Entropy

With respect to hypothesis 11 and the calculation of tĤ(E) for each data set

and Af NN combination holds true. To clarify, all cases presented in table 5.2

with respect to the calcuation of tĤ(E) exhibit decreasing values associated with

higher epoch retraining ceilings. These results do not match those within sec-

tion 4.2 in that, within the previous experiment, the balance and servo data sets
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were inconsistent and not strictly decreasing in error in all cases. This outcome,

however, is not entirely unexpected. Recall that in section 5.2 it is noted that

the calculation of entropy makes no assumptions regarding the distribution of

information within the testing and training sets. Rather, it aims to efficiently

capture saliency of the information, rather than optimize against error magni-

tude. However, this does not mean that the values of entropy contradict those

of MSE nor are they without fault. The kernel estimation is an assumption

made during this calculation which provides its own assumptions (eq. 5.3). On

the contrary, the values presented in this experiment help to supplement the

analysis of results from section 4.2 by providing another dimension of fault re-

silience measurement. In particular, the abilities for the various data sets to

be efficiently trained against and, subsequently, retain value during damage, are

revisited here.

It should be noted that these networks within the current experiment are still

being trained and evaluated, with respect to early termination and target ac-

curacy, using MSE. The calculation of Ĥ(E) is performed on top of those for

MSE, not in place of. In other words, despite not meeting the expectations of

hypothesis 6 in section 4.2, the same experimental configuration for which we

also calculate Ĥ(E) depicts a network which is benefitting from epoch ceiling

increases as measured using equation 5.5.

As for any caveats to the above conclusions, it should be noted that whilst the

CCPP data set did not present strictly increasing value retained as the epoch

ceiling increased, the values themselves are so neglibly different (going from an

average of 0.364 at ten epochs, to 0.363 at one-hundred, and back to 0.364 at one-

thousand) that they are viewed by the authors of the research presented here as

having no difference in the grand scheme. In fact, it can be ascertained that the
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CCPP data set, as exhibited in earlier experiments, is simply easier to trained

against due to the large number of training patterns and characterizations of the

data itself.

5.2.3.2 Entropy Per Neuron Lost

The reason we also view entropy lost (or gained) per neuron removed during

damage and retraining is not to corroborate the findings related to calculation

of total average entropy (reference eq. 5.5, page 114) but, instead, to measure

how the total average entropy changes throughout the experiment. Interestingly,

the Iris data set, which has provided positive results in nearly every experiment,

fails to meet the expectations of hypothesis 12. This is to say that the saliency

lost per neuron removed against the Iris data set increases (i.e. saliency is lost,

per neuron removed, as the epoch ceiling increases) throughout the experiment

in all Af NN variants. This does not mean value is not retained and, therefore,

fault resilience is lacking. Again, this data set is proven reliable in previous

experiments. The conclusion to be drawn here is that the data set itself is leading

to this condition of failure. This is a conclusion that can only be drawn after

having looked at all of the experimental results, and therefore the measurements

of fault resilience made, throughout this dissertation. If anything, this result

strengthens the use of these measurements as a means to hollistically calculate

fault resilience of an MLP.

The Servo data set provides positive results with respect to hypothesis 12. The

Balance data set, however, does not follow the hypothesis in all cases. For the

classic configuration, the value for dĤ(E) increases from -0.0212 to -0.0155,

before decreasing again at the one-thousand epoch case to -0.0300. Similarly,
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the random and chaotic variants increase then decrease across the three epoch

levels. The chaotic variant was different in that it decreased from -0.0011 to -

0.0040 before increasing to -0.0029. The Balance data set also portrays the most

dramatic changes against this measurement throughout the three epoch levels

amongst all of the data sets presented.

Lastly, the CCPP data set, much as it has with respect to dMSE, does not

portray strictly decreasing values for dĤ(E) in table 5.2. The difference here is,

the results are no longer negligible. For instance, the values for dĤ(E) across all

levels of retraining for the random Af NN variant changed, on average, 0.0006.

This is not far off from that of the chaotic Af NN in relation to the Iris data

set which depicts an average change of 0.0009. Certainly, the average change,

per data set and Af NN combination, across the entire experiment, is just 0.0019

with values ranging from 0 to 0.0075. Therefore, the CCPP data set also fails

to meet the expectations of hypothesis 12.

5.3 Summary

Chapters 3 and 4 lay a foundation of measuring fault resilience, using the Af NN

method, and its variations described therein, as a medium. Section 4.5 summa-

rizes the results that lead to this chapter. In particular, section 4.2 quantifies

fault resilience within the Af NN method by measuring how MSE changes as

both the epoch ceiling increases and neurons are removed. Section 4.3 builds

upon that by measuring, specific to the Af NN method, how much value the af-

fordability threshold provides. Lastly, section 4.4 compares previously captured

and presented MSE results against those of statically structured MLPs, the con-
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trol within an experiment of constantly shifting hidden layer sizes and selection

methods.

Coming out of those experiments we have a set of measurements, solely based

on MSE in one form or another, which aim to quantify and understand just how

much value is gained and retained by the Af NN in the presence of faults. Along

this journey it is clear that results are not consistent across all data sets and

Af NN variants. Specifically, each data set and variant are expected to provide

unique measurable results per the hypotheses presented so far in the research

presented here. On the contrary, a set of hypotheses are constructed through-

out these experiments to capture expected generic behaviors against specific

measurements under the assumption that fault resilience exists. Also, these hy-

potheses are, primarily, met with positive outcomes.

Coming into chapter 5 the goal is to two-fold. First, to further corroborate the

results within the previous chapter using measurements other than those based

on MSE. Second, to help to understand the outcomes within the previous chap-

ter which did not strictly meet the hypotheses defined therein. Further, these

measurements are based on the same trials used in the previous chapter, i.e. the

trial construction and executions are still based on MSE as to keep the results

relatable between experiments.

Section 5.1 looks at the epochs actually used within the previously run exper-

iments in chapter 4. The aim is to understand whether results based on MSE

were effected by early termination of retraining due to meeting the target MSE

early. Furthermore, in any instance where this has occured, then the goal is

understanding exactly how often and whether or not this behavior can help to

further understand fault resilience. Indeed, hypotheses 4 and 5 are constructed

to capture the expectations related to this behavior. Namely, as the epoch ceil-
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ing increases, and networks are given more epochs with which to retrain, further

damage is more readily sustained as depicted by subsequently lower epoch uti-

lization as more neurons are removed. In practice, it is clear that this measure-

ment does provide a valuable datum with which to understand fault resilience

and, specifically, the Balance data set, which provids inconsistent results in the

previous chapter, also fails to meet hypotheses 4, 5, 11, and 12.

Finally, section 5.2 mimics the experiment in section 4.2, but using a calculation

based on saliency as opposed to error, in order to provide more dimensionality to

what is described in this earlier section as the most common definition of fault

resilience, as per section 4.2. Indeed, it is expected, and captured in hypothe-

ses 11 and 12 that, as damage is sustained and the networks are retrained, a

measureable change in entropy should exist and that measurement should de-

pict systems which are able to retain and reinforce saliency as retraining occurs

between onsets of damage.

Moving on from these two experiments the conclusion is that the existence of

fault resilience is further quantified and understood using the measurements of

epochs used and entropy. However, in line with the same negative results from

chapter 4, the Balance (and to some degree the Servo) data set consistently ex-

hibits the lack of ability to retain value and, therefore, exhibit fault resilience.

A common theme throughout the research presented here is to understand

whether or not the algorithm (Af NN) or the data are the cause of our results.

The next chapter in this research is designed to look at exactly what, if any-

thing, within the data sets may be contributing to the cases where results do not

meet expectations. In doing so, characteristics of the data sets will be evaluated

and, where needed, changed and experiments re-run to understand the effect of

changing said characteristics. It is expected that this exercise will finally help to
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distinguish, with respect to the few questions remaining, where and how the data

set is responsible for measureable fault resilience and where the Af NN method

takes credit.
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Chapter 6

Further Analysis of Data Set

Effects on Fault Resilience

At this stage of the research presented here, nearly all observations provide posi-

tive corollary to the claims made regarding the Af NN methods ability to exhibit

fault resilience within the data sets and constraints of the experiements herein.

However, a few observations remain.

The purpose of this chapter is not to necessarily improve the outcomes presented

previously by increasing descreasing error, entropy, and epochs needed for recu-

peration but, rather, to investigate how the make-up of the training and test

configurations related to the Servo and Balance data sets may have contributed

to the preceding results. In doing so, the goal is to understand how the data itself

affects the measurement of fault resilience thus far. To do this, the experiments

presented herein will analyse and modify the training and test setups, recording

the change in results after re-running experiments presented previously in this

dissertation. Furthermore, the ability to affect the results of previously calcu-
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lated fault resilience measurements within this chapter will help to validate the

use of the novel metrics presented as part of this dissertation.

6.1 The Balance Scale Data Set

The first step taken in this experiment is to review the steps taken, thus far, to

generate our training and test sets for previous experiments. The Balance Scale

data set, also known throughout this research as the Balance data set, comes

from the University of California, Irvine Machine Learning Repository (UCI)

repository (Bache and Lichman, 2013). Information for the four input attributes,

and the output classification, are as follows (duplicated from table 4.1, page 70):

• Class Name: 3 possibilities (L, B, R)

• Attribute 1: Left-Weight, 5 possibilities (1, 2, 3, 4, 5)

• Attribute 2: Left-Distance, 5 possibilities (1, 2, 3, 4, 5)

• Attribute 3: Right-Weight, 5 possibilities (1, 2, 3, 4, 5)

• Attribute 4: Right-Distance, 5 possibilities (1, 2, 3, 4, 5)

The listed class name and attribute values represent the raw data contained

within the balance data set prior to any normalization or alteration. Normal-

ization, per algorithm 1 during the ”Normalize Data Set” step, is performed by

turning each attribute and the output classification to numeric values, ranging

from 0.1 to 0.9. Then, using a simplistic three to one division whereby, given

the state of the data set from the UCI repository, the data vectors are chosen

sequentially and placed into training and testing sets by first moving three to

training and another to test until all data is allotted. This method relies heavily
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on the organization of the raw data set itself. The resulting normalized values

were as follows:

• Class Name: (0.1, 0.5, 0.9)

• Attribute 1: (0.1, 0.3, 0.5, 0.7, 0.9)

• Attribute 2: (0.1, 0.3, 0.5, 0.7, 0.9)

• Attribute 3: (0.1, 0.3, 0.5, 0.7, 0.9)

• Attribute 4: (0.1, 0.3, 0.5, 0.7, 0.9)

The reason for introducing this level of detail is towards understanding the anal-

ysis performed on the test and training sets. Specifically, an analysis of how each

attribute and the output classification were represented between the testing and

training sets shows a large discrepancy. Please see figures 6.1 and 6.2. These

figures provide a visual representation of each attribute distribution against each

output class. In other words, for each possible output class, the applicable den-

sity represents the skewness of each attribute. Per the definition of data set

skewness presented by (Liu, 2009), an imbalanced data set is one in which fea-

tures, or attributes, are over or under represented in comparison to the output

classifications.

Within the aforementioned figures, it is provided, per the value frequency against

each input attribute and output classification, that not all value are represented

consistently between the training and testing sets. In particular, attribute 1 and

the output class require redistribution to be consistently represented. The first

two possible values for attribute 1, the values of 0.1 and 0.3, are nonexistent

in the training set. Conversely, representation of values 0.5 and 0.9 are omitted

from the testing set for attribute 1. Similarly, the training set is over-representing
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0.1 0.3 0.5 0.7 0.9

Attribute 1 0 0 0.275362319 0.362318841 0.362318841

Attribute 2 0.144927536 0.202898551 0.217391304 0.217391304 0.217391304

Attribute 3 0.188405797 0.202898551 0.202898551 0.202898551 0.202898551

Attribute 4 0.2 0.2 0.2 0.2 0.2

Output Class 0.637681159 0 0.075362319 0 0.286956522
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Balance Training Data Set Distribution

Figure 6.1: Distribution of the four input attributes across the Balance data
training set.

0.1 0.3 0.5 0.7 0.9

Attribute 1 0.362318841 0.362318841 0.086956522 0 0

Attribute 2 0.217391304 0.15942029 0.144927536 0.144927536 0.144927536

Attribute 3 0.173913043 0.15942029 0.15942029 0.15942029 0.15942029

Attribute 4 0.162318841 0.162318841 0.162318841 0.162318841 0.162318841

Output Class 0.197101449 0 0.066666667 0 0.547826087
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Balance Testing Data Set Distribution

Figure 6.2: Distribution of the four input attributes across the Balance data
testing set.
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the value of 0.1 for the output class and the testing set is over-representing the

value of 0.9.

By redistributing the data so that these two value sets are more consistently

represented it is expected that the experiment outcomes for experiments in sec-

tions 4.2, 4.3, 5.1 and 5.2, are affected. Figures 6.3 and 6.4 are presented for

completeness and portray how the redistribution of Balance data into testing

and training sets affected the frequency of possible values for input attributes

and output classification. The proceeding sections in this chapter detail the out-

comes pertaining to re-running the aforestated experiments.

This experiment is, by no means, an exhaustive optimization of training and test-

ing set generation towards minimizing neural network MSE or epochs required

for training. However, any change in the outcome of previously run experiments

through alteration of training and testing set generation, particularly positive

change, is considered relevant enough for this study against the data set and ex-

perimental constructions herein. Consequentially, assuming a change does occur,

the findings presented here form a basis for further inquiry related to training

Af NNs in future research and how to perform said optimizations.

6.1.1 Experiment Design

In this experiment, the hypotheses of previous experiments are revisited in con-

junction with a different training and testing data distribution, against the Bal-

ance data set. Simulated results tables are also presented, alongisde previous

results, for comparison. No changes were made to the Af NN method, the neu-

ron selection processes used during training and testing, nor the measurements
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0.1 0.3 0.5 0.7 0.9

Attribute 1 0.24057971 0.24057971 0.243478261 0.156521739 0.11884058

Attribute 2 0.214492754 0.205797101 0.194202899 0.191304348 0.194202899

Attribute 3 0.202898551 0.2 0.202898551 0.197101449 0.197101449

Attribute 4 0.2 0.2 0.202898551 0.197101449 0.2

Output Class 0.428985507 0 0.037681159 0 0.533333333
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Balance Training Data Set Redistribution

Figure 6.3: Distribution of the four input attributes across the Balance data
training set.

0.1 0.3 0.5 0.7 0.9

Attribute 1 0.12173913 0.12173913 0.11884058 0.12173913 0.12173913

Attribute 2 0.12173913 0.12173913 0.11884058 0.12173913 0.12173913

Attribute 3 0.12173913 0.12173913 0.11884058 0.12173913 0.12173913

Attribute 4 0.12173913 0.12173913 0.11884058 0.12173913 0.12173913

Output Class 0.255072464 0 0.095652174 0 0.255072464

0

0.05

0.1

0.15

0.2

0.25

0.3

Va
lu

e 
Fr

eq
ue

nc
y

Balance Testing Data Set Redistribution

Figure 6.4: Distribution of the four input attributes across the Balance data
testing set.
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of MSE, entropy, or epochs. The only differences relate to those made to training

and testing set construction mentioned above.

The hypotheses under re-test are as follows: hypothesis 6 (page 74), hypothesis

7 (page 75), hypothesis 8 (page 84), hypothesis 9 (page 91), hypothesis 10 (page

91), hypothesis 4 (page 35), hypothesis 5 (page 35), hypothesis 11 (page 114),

and hypothesis 12 (page 115).

In summary, hypotheses 6 and 7 relate MSE and fault resilience. Hypotheses

8 is concerned with ∆MSE. Hypotheses 9 and 10 are in relation to statically

structured MLP behavior, measured using MSE against afforadable variants.

Hypothesis 4 and 5 are in reference to the number of epochs used during re-

training. Finally, hypotheses 11 and 12 relate to the calculation of entropy in

measuring fault resilience.

6.1.2 Simulated Results

Results will show the before and after distributions of the Balance data set.

Table 6.1 compares results against experiment 4.2 (see page 78) against the new

distribution of the Balance data set. Similarly, table 6.2 compares results against

experiment 4.3 (see page 85), table 6.3 compares results against experiment 4.4

(see page 92), and table 6.4 compares results against experiment 5.2 (see page

116). Lastly, figure 6.5 depcits the epochs used, per neurons remaining, as

compared to the results from section 5.1.2 (see figures 5.1 to 5.4 on page 103).
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Figure 6.5: Comparison of epochs used across four Af NN variants using the
Balance data set during damage retraining (10, 100, and 1000 epochs).
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tMSE dMSE

10 100 1000 10 100 1000
4.

2
R

es
u
lt

s Classic 0.0344 0.0288 0.0311 0.0083 0.0081 0.0074

Random 0.0269 0.0263 0.0239 0.0014 0.0027 0.0013

Chaotic 0.0294 0.0272 0.0264 0.0041 0.0029 0.0032

Sequential 0.0344 0.0278 0.0266 0.0079 0.0067 0.0057

N
ew

R
es

u
lt

s Classic 0.0178 0.0143 0.0140 0.0038 0.0030 0.0027

Random 0.0143 0.0122 0.0120 0.0012 0.0010 0.0008

Chaotic 0.0142 0.0134 0.0121 0.0013 0.0009 0.0008

Sequential 0.0144 0.0131 0.0121 0.0032 0.0028 0.0026

Table 6.1: dMSE and tMSE results against affordability method and experi-
ment revision showing values for three levels of post-damage retraining.

∆MSE

10 100 1000

4.
3

R
es

u
lt

s Classic 0.9576 0.9724 0.9709

Random 0.0031 0.0049 0.0017

Chaotic -0.0008 0.0027 -0.0006

Sequential 0.0023 0.0027 -0.0039

N
ew

R
es

u
lt

s Classic 0.9784 0.9862 0.9870

Random -0.0043 -0.0034 -0.0033

Chaotic -0.0042 -0.0047 -0.0034

Sequential 0.00000 -0.0013 -0.0024

Table 6.2: ∆MSE results against affordability method and experiment revision
showing values for three levels of post-damage retraining.

6.1.3 Analysis and Discussion

Table 6.1 depicts results akin to those in section 4.2. The intended outcome

of the experiment, as detailed previously, is to have strictly increasing tMSE
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tMSEstatic dMSEstatic

10 100 1000 10 100 1000

4.4 Results 0.0990 0.0279 0.0266 0.0008 0.0059 0.0052

New Result 0.0629 0.0146 0.0118 0.0024 0.0032 0.0033

Table 6.3: dMSEstatic and tMSEstatic results against affordability method and
experiment revision showing values for three levels of post-damage retraining.

tĤ(E) dĤ(E)

10 100 1000 10 100 1000

5.
2

R
es

u
lt

s Classic 0.5383 0.5162 0.5189 -0.0212 -0.0155 -0.0300

Random 0.551 0.5373 0.5294 -0.0032 0.0002 -0.0029

Chaotic 0.5592 0.5411 0.5127 -0.0007 0.0007 -0.0024

Sequential 0.5691 0.5443 0.5008 -0.0011 -0.0040 -0.0029

N
ew

R
es

u
lt

s Classic 0.4710 0.4513 0.4473 -0.0456 -0.0282 -0.0236

Random 0.4496 0.4376 0.4333 -0.0162 -0.0161 -0.0146

Chaotic 0.4471 0.4365 0.4333 -0.0166 -0.016 -0.0145

Sequential 0.462 0.4441 0.4356 -0.0184 -0.0143 -0.0142

Table 6.4: dĤ(E) and tĤ(E) results against affordability method and experi-
ment revision showing values for three levels of post-damage retraining.

values and decreasing dMSE values as epochs increase. Previously, the results

failed to meet this intent for the classic variant, in the case of tMSE, and the

classic, random, and chaotic variants with respect to dMSE. Currently, all val-

ues across both metrics now behave as expected. Further, the metrics themselves

are lower overall. Due to the relationship of MSE to the calculations themselves,

per equations 4.4 and 4.5, this behavior is the result of MSE values having a

smaller difference above and below the affordability threshold and the MSE val-

ues themselves being lower. As expected, rectifying the imbalance of data in the

training and testing sets has not only improved the metrics but, at it’s founda-
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tion, the ability for the Af NN variants to train against the data.

A similar situation applies to tables 6.2 and 6.3. For calculations against ∆MSE

previous failures exist in all Af NN variants such that not all metrics gathered

are negative and, therefore, the network is retaining value in relation to the af-

fordability threshold. The current metrics satisfy the expectation of hypothesis

8 in all cases but the sequential ten epoch configuration. However, whilst the

value is not negative, it is also not necessarily positive and for the purposes of

this analysis does not strictly provide a failing case. tMSEstatic and dMSEstatic

decreased in overvall absolutely value and now both meet hyptheses 10 and 5.

The only outlier with respect to this claim is that of the ten epoch dMSEstatic

case where the value moves from 0.0008 to 0.0024 between the results in sec-

tion 4.4 and those presented in this chapter. Whilst this is outside the scope

of evaluation it is still an interesting point which can be researched further to

determine whether this is a direct result of the imbalanced data set or whether

this is simply the result of averaging results containined an outlier trial.

Entropy calculations presented in table 6.4 also depict improvement. Mimicking

the initial results related to tMSE, the classic variant tĤ(E) calculation fails

within section 5.2. Against dĤ(E), all variants fail in the aforementioned earlier

results. Revisiting hypotheses 11 and 12 are both expected to decrease as time

goes one. The recent results utilizing the redistributed Balance data set exhibit

a positive outcome for all variants and both measurements, tĤ(E) and dĤ(E).

The max absolute range of values for tĤ(E) per epoch level have reduced to

0.0264 compare to 0.0683, both against the sequential variant. This decrease in

entropy variability alongside decreased entropy absolute values also supports a

conclusion that these affordability variants are able to retain more value during

fault utilizing the re-distributed data set.
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Finally, figure 6.5 illustrate results more closely relatable to those of the Iris and

Servo data sets from the results of the experiment in section 5.1. In other words,

within the construction of this experiment, the statically structured congigura-

tion makes use of all available epochs in all cases. Next, the classic variant is

utilizes the most epochs otherwise. The chaotic, random, and sequential variants

all follow a similar pattern of epochs utilized as the epoch ceiling increases. The

chaotic and random variants, in particular, require very few epochs between nine

and two neurons remaining, inclusively, with respect to the one-hundred epoch

case; the sequential variant only failing to match this at eight and nine neurons

remaining. Similarly, the one-thousand epoch case exhibits positive results for

these three variants, the sequential being slightly less efficient in this regard, but

all much improved compared to the results in section 5.1.

In addition to simply meeting the intention of hypothesis 5 the results from the

current experiment are a stark contrast to those presented in section 5.1 where

utilization of a number of epochs less than the allowed maximum in all configu-

rations is rare and not once did these experimental constructions require half or

less of the allowable limit.

These results, within the scope of the experimental configurations, provides a

quantifiable assessment regarding the robustness of the metrics utilzed in con-

junction with the hypothetical constructions. Per the changes in experimental

results related to a redistribution of the data set and the subsequent conclusions

with respect to the relevant experimental hypotheses the metrics are validated

insofar as they, firstly, did not change indiscriminantly nor remain the same and,

secondly, are altered in a predictable manner. Similarly, the new experimental

results against the redistributed data set now conform to the behaviors of ex-

perimental results from previous chapters with respect to the other data sets
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evaluated.

6.2 Summary

Coming into chapter 6 the novel fault resilient metrics presented in this research

provide numerous results with respect to the inherent fault resilience of the

Af NN method. Namely, four data sets combined over four affordable variant

and epoch limit configurations are tested against metrics derived from MSE,

epochs, and entropy. However, the Balance data set in particular fails to meet

the expectations related to the various hypotheses associated with the aforemen-

tioned metrics. This provides an opportunity for the research presented here to

investigate, as well as validate, the ability of these metrics to meet their in-

tended purpose. In other words, in investigating these failing cases against the

Balance data set, and subsequently altering the applicable training and testing

sets therein, this research is able to demonstrate the value provided by using the

fault resilience measurements presented.

Analysis into the training and testing set make-up shows an imbalance of classes.

Rebalancing these sets and re-running all relevant experiments leads to the com-

parison of old and new results as presented in section 6.1.2. The results, in all

cases across the duplicated experimental results, now meet the hypotheses de-

signed to capture the related expectations. Specifically, calculations of tMSE

and dMSE, both against classic variants and statically structured MLPs, now

increase and decrease, respective to the calculations, as expected by hypotheses

7, 6, 9, and 10. ∆MSE calculations now meet the intended result per hypothe-

sis 8. Epoch utilization, per hypothesis 5 improved. Finally, tĤ(E) and dĤ(E)
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values now satisfy hypotheses 11 and 12.

Discovering the imbalance in the training and testing sets and rectifying it car-

ries an expectation that basic MLP training will improve. The success against

duplicated experimental metrics, as compared to those presented earlier in this

dissertation, in turn, is also expected. Fulfilling this expectation also validates

the metrics themselves, corroborating that they are predictably consistent with

our assumptions.
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Chapter 7

Conclusion

The research presented in this thesis provides a novel and consistent set of mea-

surements of neural network fault resilience utilizing a modified MLP technique,

namely the Af NN presented by (Uwate and Nishio, 2005), as a biologically in-

spired framework on which these measurements can be performed. In doing so,

steps are taken towards understanding the inherent fault resilience of the human

brain. The incremental discoveries of each chapter are described below.

7.1 Incremental Experimental Summaries

Chapter 3 reviews the Af NN technique and how it can be used as a basis for a

structurally redundant and fault resilient MLP with which fault recovery mea-

surements can be made. Therein, the results support the claim that the Af NN

method is able to train, similarly to a classic MLP, and produce trained re-

sponses. Amongst the Af NN variants the levels of accuracy vary and, sub-

sequently, their inherent fault resilience measurements are affected. It is also
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evident, as depicted in figures 3.3 (page 55) and 3.4 (page 55), that the Af NN

method provides varying levels of saliency of neurons in the hidden layer amongst

the affordability variants. These differences are the catalyst for varying levels

of structural redundancy and, therefore, provide the perfect application of fault

resilience measurements presented in the next chapter.

Chapter 4 takes the first steps into novel measurements of fault resilience. After

expanding the experimental configurations in section 4.1 the first measurement,

based on MSE is presented in section 4.2. The outcome of this first experiment

provides positive early results which corroborate with the basic training results

from the previous chapter. An altered MSE-based measurment is provided in

the following section and followed up with a third experiment comparing MSE

against controlled MLPs. The outcomes of these experiments all provide repro-

ducible and quantifiable evidence of fault resilience within the Af NN variants

and configurations tested. The inability for certain data sets to acheive expected

levels of fault tolerance only helps to embolden the techniques presented.

To further diversify and provide credence to the methods presented, chapter 5

introduces new experiments and calculations where entropy and epochs help to

further provide more perspective on measureable fault resilience. The results,

once again, are consistent and confirm the results presented in previous chapters.

In other words, the configurations which acheived higher levels of fault tolerance,

as measured using the algorithms presented in this research, maintain positive

results with respect to their associated hypotheses against these experiments.

Similarly, those configurations which performed poorly in previous experiements

still fail to meet the expectations of the hypotheses presented.

The value of measurements is endorsed not only by satisfying experiemental ex-

pectations but also when said expectations are not met so long as the metrics
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are consistent and reproducible. The last chapter of novel research presented in

this thesis, chapter 6, challenges the metrics presented previously in an effort

to validate them. By revisiting the generation of data sets this research not

only confirms the relationship between generalization error, as is inherent to the

derivation of the calculations, but also provides an explanation as to, at least in

part, why previous experiements have failed. The change in metrics calculated in

conjunction with a change in data set generation is a positive test of the research

presented.

7.2 Summary of Contributions

Overall, within the scope of the experiments presented herein, the results support

a number of contributions made previously in this thesis. They are as follows:

1 Error-based resilience measurements have been produced and justified, which

are designed around the concept of neuronal redundancy (see 4.5, page 95).

This use of error-based measurement is novel because it is specific to how

network error is affected by loss of structure.

2 Entropy-based measurements have been derived for further measuring saliency

of redundant neuronal units (see 5.3, page 119).

3 Metrics for quantifying fault rehabilitation through the use of error, epochs,

and entropy, within a number of control settings, have been provided,

through experimental results.

4 Analysis on the effects that data set generation, and attribute distribution

therein, have on the weight distributions within an MLP and, subsequently,

139



the fault resilience measurements presented. (see 6.2, page 135).

Given these contributions, the field of fault resilient neural networks can begin to

make meaningful comparisons between methods. In other words, of the studies

listed in section 2.3 (page 26) which solely utilize a measurement of Root Mean

Squared (RMS) for comparing network outputs during damage detection, a more

direct metric designed to accomodate the existence of redundancy is now avail-

able. Subsequent analyses using these contributed metrics can lead to more rel-

evant discussions regarding the efficacy of fault resilience frameworks. Similarly,

previous and future research which utilize detection and replace fault diagnosis

technique (active diagnosis and recovery) can also apply these measurements,

particularly those related to entropy of redundant units, to augment otherwise

ambiguous results regarding removal of neurons and subsequent network behav-

iors (Chen et al., 1992) (Chu and Wah, 1990) (Bolt, 1992) (George Bolt, 1992).

Through more rigourous quantification of fault tolerance in experimental re-

search the solutions therein can be optimized for saliency distribution, rehabili-

tation cost, and levels of redundancy. These discriminating metrics can help to

consolidate an otherwise broad and incomparable field of study, wrought with

bespoke solutions and lacking in quantifiable comparison of approaches. The

contributions of this thesis are a much needed addition towards fulfilling this

next step of fault resilient neural network research.
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Chapter 8

Further Research

As this dissertation presents a set of tools it is expected that the application

and extension of these methods are far reaching. Potential extensions to this

research, in the opinion of the author, can be categorized as either utilization

of the metrics or, alternatively, modification of the experiments presented and

configurations.

The following sections address potential avenues of further research based on

this thesis.

8.1 Amendments and Alterations to Experimen-

tation

One of the more readily available alterations to the current experiments relates

to the various configuration selections which are chosen either through trial and

error or arbitrarily, as they do not necessarily affect the outcome of the experi-
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ments: namely, the affordability thresholds and affordability totals chosen across

the various investigations. The metrics themslves are dynamic in this regard and

are easily applied to varying configurations.

The selection of data sets is also a natural step to take in expanding this re-

search. Using data sets with similar numbers of input and output parameters

is a matter of convenience for the research presented here. However, for the

Affordable Neural Network (Af NN) method in particular, new data sets would

provide interesting next steps after this research.

Another line of inquiry which follows from the research presented here is whether

or not the metrics provided as novel contribution can be expanded upon. Mea-

surements not based on Mean-squared Error (MSE), entropy, and epochs could,

in theory, help to augment and generalize those provided here. Indeed, in apply-

ing the concepts provided here it may be more appropriate to generate similar

metrics specific to the target architecture in a case where a non-Multilayer Per-

ceptron (MLP) configuration is employed.

The effect of neuron removal on false positives and negatives is also a subject

brought up in section 4.5 of this thesis that merits further investigation.

8.2 Application of Fault Resilience Metrics

Use of only MLPs within the research presented here is motivated by the exten-

sion of previous work regarding the Af NN and providing a meaningful compari-

son. However, the method itself can and should be applied to different Artificial

Neural Network (ANN) architectures. Radial basis functions and support vector

machines, due to their similar construction to an MLP are interesting choices.
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Similarly, application of these principles to Deep Neural Network (DNN) archi-

tectures may help to understand and better utilize a topology that is inherently

dynamic and distributed (Baral et al., 2018)(Koutsoukas et al., 2017).

Fault tolerant neural networks utilizing Radial Basis Functions (RBFs) or Support

Vector Machines (SVMs) are valid in the field of fault tolerant and self-healing

ANNs (Arisariyawong and Charoenseang, 2002). The fault resilience metrics are

readily applicable to these types of systems as well.

Neural network pruning techniques, particularly those based on saliency mea-

surements (Cun et al., 1990b)(Zhao et al., 2010), relate to the resilience mea-

surements presented in this thesis. It is worth investigating whether the af-

fordability method could also be used as a method for neurogenesis. With a

sufficiently large neuron pool, increasing the affordability target during or post

training is comparable to neurogenesis studies by (Michel and Collard, 1996)(Jin

and Cheng, 2011)(Jin, 2010) without needing a method for neuron replacement

or generation. Further, increasing the number of participating neurons using the

affordability method could be optimized to discover optimal hidden layer sizes

for given data sets.

8.3 Analysing and Optimizing Data Set Fea-

tures

Chapter 6 aimed at revisiting one data set with a view to alter the results

of previous experiments. This experiment is predicated on the assertions of

previous research regarding the distribution of weights within neural networks

being a direct consequence of data set attribute sampling (Liu, 2009)(Manoel
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Fernando Alonso Gadi and Mehnen, 2010). In further research it is possible to

perform more thorough analysis as to other statistical aspects of training data

sets and whether or not the fault resilience metrics contributed by this research

can be used in optimizing such characteristics.

8.4 Building a Strictly Passive Fault Tolerant

Neural Network

Finally, it is the personal interest of the author that the introduced metrics and

Af NN descriptions be extended to include active self-healing elements utilizing

Intelligent Agent (IA) principles in the similar fashion to how neuronal selection

is described. Such a system could make measurements of saliency and error as

the neuronal level and, potentially, autonomously evaluate themselves against

peer units to determine self importance. An ANN framework comprised of IA

neuron units which can autonomously self-select and self-replicate based on their

own isolated fault resilience measurements can lead to scalable and passive fault

adaptive systems.

Works that focus on find-and-replace fault recovery paradigms, which subse-

quently suffer from an inability to detect faults without temporal cost (Jin and

Cheng, 2011)(Chen et al., 1992), can be reimagined using the metrics contributed

by this dissertation as a basis of IA behaviors.
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