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VECTORIAL VARIATIONAL PRINCIPLES IN L∞ AND THEIR

CHARACTERISATION THROUGH PDE SYSTEMS

BIRZHAN AYANBAYEV AND NIKOS KATZOURAKIS

Abstract. We discuss two distinct minimality principles for general supre-

mal first order functionals for maps and characterise them through solvability
of associated second order PDE systems. Specifically, we consider Aronsson’s

standard notion of absolute minimisers and the concept of ∞-minimal maps in-

troduced more recently by the second author. We prove that C1 absolute min-
imisers characterise a divergence system with parameters probability measures

and that C2 ∞-minimal maps characterise Aronsson’s PDE system. Since in

the scalar case these different variational concepts coincide, it follows that the
non-divergence Aronsson’s equation has an equivalent divergence counterpart.

1. Introduction

Let n,N ∈ N and H ∈ C2
(
Ω × RN× RN×n

)
with Ω ⊆ Rn an open set. In this

paper we consider the supremal functional

(1.1) E∞(u,O) := ess sup
O

H(·, u,Du), u ∈W 1,∞
loc (Ω;RN ), O b Ω,

defined on maps u : Rn ⊇ Ω −→ RN . In (1.1) and subsequently, we see the gradient
as a matrix map Du = (Diuα)α=1...n

i=1...n : Rn ⊇ Ω −→ RN×n. Variational problems
for (1.1) have been pioneered by Aronsson in the 1960s in the scalar case N = 1
([2]-[6]). Nowadays the study of such functionals (and of their associated PDEs
describing critical points) form a fairly well-developed area of vivid interest, called
Calculus of Variations in L∞. For pedagogical general introductions to the theme
we refer to [10, 19, 32].

One of the main difficulties in the study of (1.1) which prevents us from util-
ising the standard machinery of Calculus of Variations for conventional (integral)
functionals as e.g. in [24] is that it is non-local, in the sense that a global min-
imisers u of E∞(·,Ω) in W 1,∞

g (Ω;RN ) for some fixed boundary data g may not

minimise E∞(·,O) in W 1,∞
u (O;RN ). Namely, global minimisers are not generally

local minimisers, a property which is automatic for integral functionals. The rem-
edy proposed by Aronsson (adapted) to the vector case is to build locality into the
minimality notion:

Definition 1. Let u ∈ W 1,∞
loc (Ω;RN ). We say that u is an absolute minimiser of

(1.1) on Ω if

(1.2)
∀ O b Ω,

∀ φ ∈W 1,∞
0 (O;RN )

}
=⇒ E∞(u,O) ≤ E∞(u+ φ,O).
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In the scalar case of N = 1, Aronsson’s concept of absolute minimisers turns
out to be the appropriate substitute of mere minimisers. Indeed, absolute minimis-
ers possess the desired uniqueness properties subject to boundary conditions and,
most importantly, the possibility to characterise them through a necessary (and
sufficient) condition of satisfaction of a certain nonlinear nondivergence second or-
der PDE, known as the Aronsson equation ([9, 10, 12, 11, 13, 14, 17, 18, 20, 21, 27,
39, 44]). The latter can be written for functions u ∈ C2(Ω) as

(1.3) HP (·, u,Du) ·D
(
H(·, u,Du)

)
= 0.

The Aronsson equation, being degenerate elliptic and non-divergence when formally
expanded, is typically studied in the framework of viscosity solutions. In the above,
HP ,Hη,Hx denotes the derivatives of H(x, η, P ) with respect to the respective ar-
guments and “·” is the Euclidean inner product.

In this paper we are interested in characterising appropriately defined minimisers
of (1.1) in the general vectorial case of N ≥ 2 through solvability of associated PDE
systems which generalise the Aronsson equation (1.3). As the wording suggests and
we explain below, when N ≥ 2 Aronsson’s notion of Definition 1 is no longer the
unique possible L∞ variational concept. In any case, the extension of Aronsson’s
equation to the vectorial case reads

HP (·, u,Du) D
(
H(·, u,Du)

)
+ H(·, u,Du) [HP (·, u,Du)]⊥

(
Div
(
HP (·, u,Du)

)
−Hη(·, u,Du)

)
= 0.

(1.4)

In the above, for any linear map A : Rn −→ RN , [A]⊥ symbolises the orthogonal
projection ProjR(A)⊥ on the orthogonal complement of its range R(A) ⊆ RN . We

will refer to the PDE system (1.4) as the “Aronsson system”, in spite of the fact it
was actually derived by the second author in [28], wherein the connections between
general vectorial variational problems and their associated PDEs were first studied,
namely those playing the role of Euler-Lagrange equations in L∞. The Aronsson
system was derived through the well-known method of Lp-approximations and is
being studied quite systematically since its discovery, see e.g. [28]-[31], [34, 37].
The additional normal term which is not present in the scalar case imposes an
extra layer of complexity, as it might be discontinuous even for smooth solutions
(see [29, 31]).

For simplicity and in order to illustrate the main ideas in a manner which min-
imises technical complications, in this paper we restrict our attention exclusively to
regular minimisers and solutions. In general, solutions to (1.4) are nonsmooth and
the lack of divergence structure combined with its vectorial nature renders its study
beyond the reach of viscosity solutions. To this end, the theory of D-solutions intro-
duced in [34] and subsequently utilised in several works (see e.g. [1, 22, 34, 35]) offers
a viable alternative for the study of general locally Lipschitz solutions to (1.4), and
in fact it works far beyond the realm of Calculus of Variations in L∞. We therefore
leave the generalisation of the results herein to a lower regularity setting for future
work.

Additionally to absolute minimisers, for reasons to be explained later, in the
paper [30] a special case of the next L∞ variational concept was introduced (therein
for H(x, η, P ) = |P |2):

Definition 2. Let u ∈ C1(Ω;RN ). We say that u is an ∞-minimal map for (1.1)
on Ω if (i) and (ii) below hold true:
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(i) u is a rank-one absolute minimiser, namely it minimises with respect to essen-
tially scalar variations vanishing on the boundary along fixed unit directions:

(1.5)
∀ O b Ω, ∀ ξ ∈ RN
∀ φ ∈ C1

0 (O; span[ξ])

}
=⇒ E∞(u,O) ≤ E∞(u+ φ,O).

(ii) u has ∞-minimal area, namely it minimises with respect to variations which
are normal to the range of the matrix field HP (·, u,Du) and free on the boundary:

(1.6)
∀ O b Ω, ∀ φ ∈ C1(Rn;RN )
with φ>HP (·, u,Du) = 0 on O

}
=⇒ E∞(u,O) ≤ E∞(u+ φ,O).

In the above,

C1
0 (O;RN ) :=

{
ψ ∈ C1(Rn;RN ) : ψ = 0 on ∂O

}
.

Note also that when N = 1 absolute minimisers and ∞-minimal maps coincide,
at least when {HP = 0} ⊆ {H = 0}. Further, in the event that HP (·, u,Du) has
discontinuous rank on O, the only continuous normal vector fields φ may be only
those vanishing on the set of discontinuities.

In [30] it was proved that C2∞-minimal maps of full rank (namely immersions or
submersions) are∞-Harmonic, that is solutions to the so-called∞-Laplace system.
The latter is a special case of (1.4), corresponding to the choice H(x, η, P ) = |P |2:

DuD
(
|Du|2

)
+ |Du|2 [Du]⊥∆u = 0.(1.7)

The fullness of rank was assumed because of the possible discontinuity of the coeffi-
cient [Du]⊥, which may well happen even for smooth solutions (for explicit examples
see [29]). In this paper we bypass this difficulty by replacing the orthogonal pro-
jection [ · ]⊥ by the projection on the subspace of those normal vectors which have
local normal C1 extensions in a open neighbourhood:

Definition 3. Let V : Rn ⊇ Ω −→ RN×n be a matrix field and note that

R(V (x))⊥ = N(V (x)>),

where for any x ∈ Ω, N(V (x)>) is the nullspace of the transpose V (x)> ∈ Rn×N .
We define the orthogonal projection

[[V (x)]]⊥ := ProjÑ(V (x)>), [[V (·)]]⊥ : Rn ⊇ Ω −→ RN×N ,

where Ñ(V (x)>) is the reduced nullspace, given by

Ñ(V (x)>) :=
{
ξ ∈N(V (x)>)

∣∣∣ ∃ ε > 0 & ∃ ξ̄ ∈ C1(Rn;RN ) :

ξ̄(x) = ξ & ξ̄(y) ∈ N(V (y)>), ∀ y ∈ Bε(x)
}
.

It is a triviality to check that Ñ(V (x)>) is indeed a vector space and that

[[V (x)]]⊥[V (x)]⊥ = [[V (x)]]⊥,

where [V (x)]⊥ = ProjN(V (x)>). Note that the definition could be written in a
more concise manner by using the algebraic language of sheaves and germs, but we
refrained from doing so as there is no real benefit in this simple case.

The first main result in this paper is the next variational characterisation of the
Aronsson system (1.4).
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Theorem 4 (Variational Structure of Aronsson’s system). Let u : Rn ⊇ Ω −→ RN
be a map in C2(Ω;RN ). Then:

(I) If u is a rank-one absolute minimiser for (1.1) on Ω (Definition 2(i)), then it
solves

(1.8) HP (·, u,Du) D
(
H(·, u,Du)

)
= 0 on Ω.

The opposite is true if in addition H does not depend on η ∈ RN and HP (·,Du) has
full rank on Ω.

(II) If u has ∞-minimal area for (1.1) on Ω (Definition 2(ii)), then it solves

(1.9) H(·, u,Du) [[HP (·, u,Du)]]⊥
(

Div
(
HP (·, u,Du)

)
−Hη(·, u,Du)

)
= 0 on Ω.

The opposite is true if in addition for any x ∈ Ω, H(x, ·, ·) is convex on Rn×RN×n.

(III) If u is ∞-minimal map for (1.1) on Ω, then it solves the (reduced) Aronsson
system

A∞u := HP (·, u,Du) D
(
H(·, u,Du)

)
+ H(·, u,Du) [[HP (·, u,Du)]]⊥

(
Div
(
HP (·, u,Du)

)
−Hη(·, u,Du)

)
= 0.

The opposite is true if in addition H does not depend on η ∈ RN , HP (·,Du) has
full rank on Ω and for any x ∈ Ω H(x, ·) is convex in RN×n.

The emergence of two distinct sets of variations and a pair of separate PDE
systems comprising (1.4) might seem at first glance mysterious. However, it is a
manifestation of the fact that the (reduced) Aronsson system in fact consists of two
linearly independent differential operators because of the perpendicularity between
[[HP ]]⊥ and HP ; in fact, one may split A∞u = 0 to HP (·, u,Du) D

(
H(·, u,Du)

)
= 0,

H(·, u,Du) [[HP (·, u,Du)]]⊥
(

Div
(
HP (·, u,Du)

)
−Hη(·, u,Du)

)
= 0.

Theorem 4 makes clear that Aronsson’s absolute minimisers do not characterise
the Aronsson system when N ≥ 2, at least when the additional natural assumptions
hold true. This owes to the fact that, unlike the scalar case, the Aronsson system
admits arbitrarily smooth non-minimising solutions, even in the model case of the
∞-Laplacian. For details we refer to [37].

Since Aronsson’s absolute minimisers do not characterise the Aronsson system,
the natural question arises as to what is their PDE counterpart. The next theorem
which is our second main result answers this question:

Theorem 5 (Divergence PDE characterisation of Absolute minimisers). Let u :
Rn ⊇ Ω −→ RN be a map in C1(Ω;RN ). Consider the following statements:

(I) u is a vectorial absolute minimiser for (1.1) on Ω.

(II) For any O b Ω, there exists a non-empty compact set

(1.10) K ⊆ Argmax
{

H(·, u,Du) : O
}

such that, for any Radon probability measure σ ∈ P(O) satisfying supp(σ) ⊆ K,
we have

(1.11) − div
(
HP (·, u,Du)σ

)
+ Hη(·, u,Du)σ = 0,
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in the dual space (C1
0 (O;RN ))∗.

(III) For any O b Ω, there exists a non-empty compact set K satisfying (1.10) and
such that

(1.12) HP (·, u,Du) : Dψ + Hη(·, u,Du) · ψ = 0 on K,

for any ψ ∈ C1
0 (O;RN ).

Then, (I) =⇒ (II) =⇒ (III). If additionally H(x, ·, ·) is convex for any x ∈ Ω, then
(III) =⇒ (I) and all three statements are equivalent.

The result above provides an interesting characterisation of Aronsson’s concept
of Absolute minimisers in terms of divergence PDE systems with measures as pa-
rameters. The exact distributional meaning of (1.11) isˆ

O

(
HP (·, u,Du) : Dψ + Hη(·, u,Du) · ψ

)
dσ = 0

for all ψ ∈ C1
0 (O;RN ), where the “:” notation in the PDE symbolises the Euclidean

(Frobenius) inner product in RN×n.
The idea of Theorem 5 is inspired by the paper [25] of Evans and Yu, wherein a

particular case of the divergence system is derived (in the special scalar case N = 1
for the∞-Laplacian and only for Ω = O), as well as by new developments on higher
order Calculus of variations in L∞ in [36, 38, 40].

Note that, it does not suffice to consider only Ω = O as in [25] in order to
describe absolute minimisers. For a subdomain O ⊆ Ω, it may well happen that
the only measure σ “charging” the points of O where the energy density H(·, u,Du)
is maximised is the Dirac measure at a single point x ∈ ∂O. This is for instance
the case for the standard “Aronsson solution” of the ∞-Laplacian on R2, given by
u(x, y) = |x|4/3 − |y|4/3, as well as for any other ∞-Harmonic function which is
nowhere Eikonal (i.e. |Du| is non-constant on all open subsets).

By specialising Theorems 4-5 to the scalar case N = 1, we obtain the next set
of equivalences (for simplicity stated in the C2 case only):

Corollary 6 (The scalar case N = 1). Let u ∈ C2(Ω). Suppose that H(x, ·, ·) is
convex on R × Rn and that {HP = 0} ⊆ {H = 0}. Then, all the statements below
are equivalent:

(I) u is an absolute minimiser for (1.1) on Ω.

(II) For any O b Ω, there exists a non-empty compact set K satisfying (1.10) such
that for any Radon probability measure σ ∈P(O) with supp(σ) ⊆ K, (u, σ) solves
(1.11) in the dual space (C1

0 (O))∗.

(III) For any O b Ω, there exists a non-empty compact set K satisfying (1.10) such
that u satisfies (1.12) on K, for any ψ ∈ C1

0 (O).

(IV) u solves the Aronsson equation (1.3) on Ω.

We conclude this introduction by noting that the two vectorial variational con-
cepts we are considering herein (Definitions 1-2) do not exhaust the plethora vari-
ational concepts in L∞. In particular, in the paper [43] the concept of tight maps
was introduced in the case of H(x, η, P ) = ‖P‖ where ‖ · ‖ is the operator norm
on RN×n. Additionally, in the papers [1, 35] a concept of special affine variations
was considered which also characterises the Aronsson system, in fact in the gener-
ality of merely locally Lipschitz D-solutions. Finally, in the paper [8] new concepts
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of absolute minimisers for constrained minimisation problems have been proposed,
whilst results relevant to variational principles in L∞ and applications appear in
[15, 16, 18, 26, 41, 42].

2. Proofs and a maximum-minimum principle for H(·, u,Du)

In this section we prove our main results Theorems 4-5. Before delving into that,
we establish a result of independent interest, which generalises a corresponding
result from [30].

Proposition 7 (Maximum-Minimum Principles). Suppose Let u ∈ C2(Ω;RN ) be
a solution to (1.8), such that H satisfies
(a) HP (·, u,Du) has full rank on Ω,
(b) there exists c > 0 such that(

ξ>HP (x, η, P )
)
·
(
ξ>P ) ≥ c

∣∣ξ>HP (x, η, P )
∣∣2,

for all ξ ∈ RN and all (x, η, P ) ∈ Ω× RN× RN×n.

Then, for any O b Ω we have:

sup
O

H(·, u,Du) = max
∂O

H(·, u,Du),(2.1)

inf
O

H(·, u,Du) = min
∂O

H(·, u,Du).(2.2)

The proof is based on the usage of the following flow with parameters:

Lemma 8. Let u ∈ C2(Ω;RN ). Consider the parametric ODE system

(2.3)

{
γ̇(t) = ξ>HP (·, u,Du)

∣∣
γ(t)

, t 6= 0,

γ(0) = x,

for given x ∈ Ω and ξ ∈ RN . Then, we have

d

dt

(
H(·, u,Du)

∣∣
γ(t)

)
= ξ>HP (·, u,Du) D

(
H(·, u,Du)

)∣∣
γ(t)

,(2.4)

d

dt
ξ>u

(
γ(t)

)
≥ c

∣∣∣ξ>HP (·, u,Du)
∣∣
γ(t)

∣∣∣2.(2.5)

Proof of Lemma 8. The identity (2.4) follows by a direct computation and (2.3).
For the inequality (2.5), we have

d

dt
ξ>u

(
γ(t)

)
=
(
ξ>Du

(
γ(t)

))
· γ̇(t)

=
(
ξ>Du

(
γ(t)

))
·
(
ξ>HP (·, u,Du)

∣∣
γ(t)

)
≥ c

∣∣∣ξ>HP (·, u,Du)
∣∣
γ(t)

∣∣∣2.
The lemma ensues. �

Proof of Proposition 7. Fix O b Ω. Without loss of generality, we may suppose
O is connected. Consider first the case where rk

(
HP (·, u,Du)

)
≡ n ≤ N . Then, the

matrix-valued map HP (·, u,Du) is pointwise left invertible. Therefore, by (1.8),(
HP (·, u,Du)

)−1
HP (·, u,Du) D

(
H(·, u,Du)

)
= 0
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which, by the connectivity of O, gives H(·, u,Du) ≡ const on O. The latter
equality readily implies the desired conclusion. Consider now the case where
rk
(
HP (·, u,Du)

)
≡ N ≤ n. Fix x ∈ O and a unit vector ξ ∈ Rn and consider

the parametric ODE system (2.3) of Lemma 8. By the fullness of the rank of
HP (·, u,Du)

)
, we have that∣∣ξ>HP (·, u,Du)

)∣∣ ≥ c1 > 0 on O.

We will now show that the trajectory γ(t) reaches ∂O in finite time. To this end,
we estimate

‖Du‖L∞(O)diam(O) ≥ ‖Du‖L∞(O)

∣∣γ(t) − γ(0)
∣∣∣ ≥ ∣∣∣∣ d

dt

∣∣∣
t̂
ξ>u(γ(t))

∣∣∣∣ t,
for some t̂ ∈ (0, t), by the mean value theorem. Hence,

‖Du‖L∞(O)diam(O) ≥
∣∣∣∣ d

dt

∣∣∣
t̂
ξ>u(γ(t))

∣∣∣∣ t
=
∣∣∣ξ>Du(γ(t̂)) · γ̇(t̂)

∣∣∣ t
=
∣∣∣ξ>Du(γ(t̂)) ·

(
ξ>HP (·, u,Du)

∣∣
γ(t̂)

)∣∣∣ t
≥ c0

∣∣∣ξ>HP (·, u,Du)
∣∣
γ(t̂)

∣∣∣2t
≥ (c0c

2
1) t.

This proves the desired claim. Further, since u solves (1.8), by (2.4) of Lemma 8 it
follows that H(·, u,Du) is constant along the trajectory. Thus, if x ∈ O is chosen as
a point realising either the maximum or the minimum in O, then by moving along
the trajectory, we reach a point y ∈ ∂O such that H(·, u,Du)

∣∣
x

= H(·, u,Du)
∣∣
y
. This

establishes both the maximum and minimum principle. The proposition ensues. �

Remark 9 (Danskin’s theorem and some of its consequences). The central ingre-
dient in the proofs of Theorems 4-5 is the next consequence of Danskin’s theorem:
for any O b Ω and any u, φ ∈ C1(Ω;RN ), we have the identities

(2.6)


d

dt

∣∣∣
t=0+

E∞(u+ tφ,O) = max
O(u)

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
,

d

dt

∣∣∣
t=0−

E∞(u+ tφ,O) = min
O(u)

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
,

where

O(u) := Argmax
{

H(·, u,Du) : O
}
.

Indeed, by [24, Theorem 1, page 643] and the chain rule we have

d

dt

∣∣∣
t=0+

E∞(u+ tφ,O) =
d

dt

∣∣∣
t=0+

(
max
O

H
(
·, u+ tφ,Du+ tDφ

))
= max
O(u)

(
d

dt

∣∣∣
t=0+

H
(
·, u+ tφ,Du+ tDφ

))
= max
O(u)

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
.
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This establishes the first identity of (2.6). The second one follows through the
substitutions φ; −φ, t; −t. As a consequence, if

(2.7) E∞(u+ tφ,O) ≥ E∞(u,O), for all t ∈ R,

then directly by (2.7) and the definition of one-sided derivatives, we have

(2.8)
d

dt

∣∣∣
t=0−

E∞(u+ tφ,O) ≤ 0 ≤ d

dt

∣∣∣
t=0+

E∞(u+ tφ,O).

Therefore, by continuity, (2.8) and (2.6) yield the existence of a non-empty compact
set K = Kφ ⊆ O(u) such that

(2.9)
(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)∣∣
K

= 0.

Conversely, if (2.9) holds true for some non-empty compact set K ⊆ O(u), then by
(2.6) we have that (2.8) is true. If further H(x, ·, ·) is convex for all x ∈ Ω, then by
Lemma 10 below, t 7→ E∞(u+ tφ,O) is minimised at t = 0 and (2.7) holds true.

Lemma 10. Let f : R −→ R be a convex function. If the one-sided derivatives
f ′(0±) exist and f ′(0−) ≤ 0 ≤ f ′(0+), then t = 0 is the global minimum of f on R.

Proof of Lemma 10. By the convexity of f on R, for any fixed s ∈ R there exists
a sub-differential ps ∈ R such that

(2.10) f(t)− f(s) ≥ ps(t− s), for all t ∈ R.

For the choice t = 0 and s > 0, we have

f(s)− f(0)

s
≤ ps

and note also that since convex functions are locally Lipschitz, the set (ps)0<s<1 is
bounded. Thus, since f ′(0+) exists and is non-negative, we obtain

0 ≤ f ′(0+) ≤ lim inf
s→0+

ps < ∞.

Hence, by passing to the limit as s → 0+ in the inequality (2.10) for t > 0 fixed,
we obtain f(t)− f(0) ≥ 0. The case of t < 0 follows by arguing similarly. �

Now we may establish Theorem 4.

Proof of Theorem 4. (I) Suppose first that u is a rank-one absolute minimiser on
Ω. The aim is to show that (1.8) is satisfied on Ω. This conclusion in fact follows
by the results in [28], but below we provide a new shorter proof. To this end, fix
x ∈ Ω and ρ ∈ (0,dist(x, ∂Ω)) and let O := Bρ(x). We fix also ξ ∈ RN and choose

φ(y) := ξ
(
|y − x|2 − ρ2

)
.

Then, φ ∈ C1
0

(
B̄ρ(x); span[ξ]

)
and by invoking Remark 9, we obtain

(2.11) ξ>
(

2HP (·, u,Du)
∣∣
xρ

(xρ − x) + Hη(·, u,Du)
∣∣
xρ

(
|xρ − x|2 − ρ2

))
= 0,

for some point xρ with |xρ − x| ≤ ρ which lies in the argmax set

(Bρ(x))(u) = Argmax
{

H(·, u,Du) : B̄ρ(x)
}
.

If xρ lies in the interior of Bρ(x), then it is an interior maximum and therefore

D
(
H(·, u,Du)

)∣∣
xρ

= 0.
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This means that (1.8) is satisfied at xρ. If xρ lies on the boundary of Bρ(x), then
this means that

∀ y ∈ B̄ρ(x), we have H(·, u,Du)
∣∣
y
≤ H(·, u,Du)

∣∣
xρ
.

The above can be rewritten as

B̄ρ(x) ⊆ H(xρ) :=
{

H(·, u,Du) ≤ H(·, u,Du)
∣∣
xρ

}
,

and note also that xρ ∈ ∂Bρ(x)∩∂H(xρ). Hence, the sublevel set H(xρ) satisfied an
interior sphere condition at xρ. If D

(
H(·, u,Du)

)∣∣
xρ

= 0 then (1.8) is again satisfied

at xρ. If on the other hand

D
(
H(·, u,Du)

)∣∣
xρ
6= 0

then ∂H(xρ) is a C1 manifold near xρ and the gradient above is the normal vector
at the point xρ. Due to the interior sphere condition, this implies that this is also
the normal vector to the sphere ∂Bρ(x) at xρ. Thus, there exists λ 6= 0 such that

(2.12) xρ − x = λD
(
H(·, u,Du)

)∣∣
xρ
.

By inserting (2.12) into (2.11) and noting that |xρ − x| = ρ, we infer that

2λ ξ>
(

HP (·, u,Du)D
(
H(·, u,Du)

))∣∣
xρ

= 0.

By dividing by 2λ and letting ρ → 0, we deduce that (1.8) is satisfied at the
arbitrary x ∈ Ω.

Conversely, suppose that u satisfies (1.8) on Ω, together with the additional
assumptions of the statement. Fix O b Ω and φ ∈ C1

0 (O; span[ξ]). Without loss
of generality, we may suppose O is connected. Since φ = (ξ>φ)ξ, for convenience
we set g := ξ>φ and then we may write φ = gξ with g ∈ C1

0 (O). Then, the
matrix-valued map HP (·,Du) is pointwise left invertible. Therefore, by (1.8)(

HP (·,Du)
)−1

HP (·,Du) D
(
H(·,Du)

)
= 0 on O,

which, by the connectivity of O, gives

H(·,Du) ≡ const on O.

Since g ∈ C1(Rn) with g = 0 on ∂O, there exists at least one interior critical point
x̄ ∈ O such that Dg(x̄) = 0. By the previous, we have

E∞(u,O) = H
(
x̄,Du(x̄)

)
= H

(
x̄,Du(x̄) + ξ ⊗Dg(x̄)

)
= H

(
x̄,Du(x̄) + Dφ(x̄)

)
≤ sup

x∈O
H
(
x,Du(x) + Dφ(x)

)
= E∞(u+ φ,O).

The conclusion ensues.

(II) Suppose that u has ∞-minimal area. Fix x ∈ Ω and ρ ∈ (0,dist(x, ∂Ω)). Fix

ξ ∈ Ñ
(

HP (·, u,Du)>
∣∣
x

)
,
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noting also that by Definition 3 the above set is the reduced nullspace of HP (·, u,Du)>

at x. This implies that there exists a C1 extension ξ̄ ∈ C1(Rn;RN ) such that
ξ̄(x) = ξ and (ξ̄)>HP (·, u,Du) = 0 on the closed ball B̄ε(x) for some ε ∈ (0, ρ). By
differentiating the relation (ξ̄)>HP (·, u,Du) = 0 and taking its trace, we obtain

(2.13) ξ̄ · div
(
HP (·, u,Du)

)
+ Dξ̄ : HP (·, u,Du) = 0,

on B̄ε(x). Since u has ∞-minimal area and ξ̄ is an admissible normal variation, by
Remark 9 it follows that

(2.14)
(
ξ̄ ·Hη(·, u,Du) + Dξ̄ : HP (·, u,Du)

)∣∣∣
xε

= 0

for some xε ∈ (Bε(x))(u), where

(Bε(x))(u) = Argmax
{

H(·, u,Du) : B̄ε(x)
}
.

By (2.13)-(2.14), we infer that

ξ̄(xε) ·
(

div
(
HP (·, u,Du)

)
− Hη(·, u,Du)

)∣∣∣
xε

= 0

and by letting ε→ 0, we deduce that

ξ ·
(

div
(
HP (·, u,Du)

)
− Hη(·, u,Du)

)∣∣∣
x

= 0,

for any ξ ∈ Ñ
(
HP (·, u,Du)>

∣∣
x

)
. Hence, u satisfies (1.9) at the arbitrary x ∈ Ω.

Conversely, suppose that u solves (1.9) on Ω. Fix O b Ω and φ ∈ C1(Rn;RN )
such that φ>HP (·, u,Du) = 0 on O. Note further that by the continuity up to the
boundary of all functions involved, the latter identity in fact holds on O. By the
satisfaction of (1.9) and Definition 3, it follows that

φ ·
(

div
(
HP (·, u,Du)

)
− Hη(·, u,Du)

)
= 0,

on O ⊆ Ω. By differentiating φ>HP (·, u,Du) = 0, we obtain

φ · div
(
HP (·, u,Du)

)
+ Dφ : HP (·, u,Du) = 0,

on O. By the above two identities, we deduce

φ ·Hη(·, u,Du) + Dφ : HP (·, u,Du) = 0

on O. Since O(u) ⊆ O, Remark 9 yields that u is a critical point since the left
and right derivative of E∞(u + tφ,O) at t = 0 coincide and vanish. Since by
assumption H(x, ·, ·) is convex on RN×RN×n, it follows that E∞(·,O) is convex on
W 1,∞(O;RN ). Hence, the critical point u is in fact a minimum point for this class
of variations. This establishes our claim.

(III) This is an immediate corollary of items (I) and (II). �

Now we conclude by establishing Theorem 5.

Proof of Theorem 5. (I) =⇒ (II): If u is an absolute minimiser, then by Remark
9, there exists a compact set K ⊆ O(u) ⊆ O (where possibly K is a singleton set)
such that (

HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ
)∣∣∣

K
= 0.

Then, for any Radon probability measure σ ∈P(O) with supp(σ) ⊆ K, we haveˆ
O

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
dσ = 0
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for all φ ∈ C1
0 (O;RN ). Hence, we have shown that

−div
(
HP (·, u,Du)σ

)
+ Hη(·, u,Du)σ = 0,

in the dual space (C1
0 (O;RN ))∗.

(II) =⇒ (III): By assumption there exists a non-empty compact set K ⊆ O(u) such
that ˆ

O

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
dσ = 0

for all φ ∈ C1
0 (O;RN ) and all Radon probability measures σ ∈P(O) with supp(σ) ⊆

K. Fix any x̄ ∈ K. By choosing the Dirac measure σ̄ ∈P(O) given by

σ̄ := δx̄

which evidently satisfies supp(σ̄) = {x̄} ⊆ K, we obtain(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)∣∣∣
x̄

=

ˆ
O

(
HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ

)
dσ̄

= 0,

for any x̄ ∈ K. The conclusion ensues.

(III) =⇒ (I): By assumption we have

HP (·, u,Du) : Dφ + Hη(·, u,Du) · φ = 0,

on the non-empty compact set K ⊆ O(u). By Remark 9 and Lemma 10, this implies
u is in fact a minimum point and this completes the proof. �
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18, 495–517 (2001).
15. M. Bocea, V. Nesi, Γ-convergence of power-law functionals, variational principles in L∞ and

applications, SIAM J. Math. Anal. 39, 15501576 (2008).

16. M. Bocea, C. Popovici, Variational principles in L∞ with applications to antiplane shear and
plane stress plasticity, Journal of Convex Analysis Vol. 18 No. 2, (2011) 403-416.

17. T. Champion, L. De Pascale, Principles of comparison with distance functions for absolute
minimizers, J. Convex Anal. 14, 515541 (2007).

18. T. Champion, L. De Pascale, F. Prinari, Γ-convergence and absolute minimizers for supremal

functionals, COCV ESAIM: Control, Optimisation and Calculus of Variations (2004), Vol.
10, 1427.

19. M. G. Crandall, A visit with the ∞-Laplacian, in Calculus of Variations and Non-Linear

Partial Differential Equations, Springer Lecture notes in Mathematics 1927, CIME, Cetraro
Italy 2005.

20. M. Crandall, An Efficient Derivation of the Aronsson Equation, Archive for Rational Me-

chanics and Analysis 167 (4), 271279 (2003).
21. M.G. Crandall, L.C. Evans, R. Gariepy, Optimal Lipschitz extensions and the infinity Lapla-

cian, Calc. Var. PDE 13, 123139 (2001).

22. G. Croce N. Katzourakis, G. Pisante, D-solutions to the system of vectorial Calculus of
Variations in L∞ via the singular value problem, Discrete and Continuous Dynamical Systems

37:12, 6165-6181 (2017).
23. B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd Edition, Volume 78, Applied

Mathematical Sciences, Springer, 2008.

24. J.M. Danskin, The theory of min-max with application, SIAM Journal on Applied Mathemat-
ics 14, 641 - 664 (1966).

25. L.C. Evans, Y. Yu, Various properties of solutions to the Infinity-Laplacian equation, Com-

munications in PDE 30:9, 1401 - 1428 (2005).
26. A. Garroni, V. Nesi, M. Ponsiglione, Dielectric breakdown: optimal bounds, Proceedings of

the Royal Society A 457, issue 2014 (2001).

27. R. Jensen, Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient, Arch.
Rational Mech. Analysis 123 (1993), 51-74.

28. N. Katzourakis, L∞ Variational Problems for Maps and the Aronsson PDE System, J. Dif-

ferential Equations 253 (7), 2123-2139 (2012).
29. N. Katzourakis, Explicit 2D ∞-Harmonic Maps whose Interfaces have Junctions and Cor-

ners, Comptes Rendus Acad. Sci. Paris, Ser.I, 351, 677 - 680 (2013).
30. N. Katzourakis, ∞-Minimal Submanifolds, Proceedings of the AMS 142, 2797-2811 (2014).

31. N. Katzourakis, On the Structure of ∞-Harmonic Maps, Communications in PDE 39:11, 2091
- 2124 (2014).

32. N. Katzourakis, An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Ap-

plications to Calculus of Variations in L∞, Springer Briefs in Mathematics, 2015, DOI

10.1007/978-3-319-12829-0.
33. N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-

uniqueness theorems, Journal of Differential Equations 23, 641 - 686 (2017).
34. N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial Cal-

culus of Variations in L∞, Calculus of Variations and PDE 56 (1), 1 - 25 (2017) (DOI:

10.1007/s00526-016-1099-z).

35. N. Katzourakis, A New Characterisation of ∞-Harmonic and p-Harmonic Mappings via
Affine Variations in L∞, Electronic Journal of Differential Equations 2017:29, 1 - 19 (2017).

36. N. Katzourakis, R. Moser, Existence, Uniqueness and Structure of Second Order Absolute
Minimisers, Archives for Rational Mechanics and Analysis, published online 06/09/2018,

DOI: 10.1007/s00205-018-1305-6.



VECTORIAL VARIATIONAL PRINCIPLES IN L∞ 13

37. N. Katzourakis, G. Shaw, Counterexamples in Calculus of Variations in L∞ through the

vectorial Eikonal equation, Comptes Rendus Mathematique Ser. I 356:5 (2018), 498-502,

https://doi.org/10.1016/j.crma.2018.04.010.
38. N. Katzourakis, T. Pryer, 2nd order L∞ variational problems and the ∞-Polylaplacian,

Advances in Calculus of Variations, Published Online: 27-01-2018, DOI: https://doi.org/

10.1515/acv-2016-0052.
39. Q. Miao, C. Wang, Y. Zhou, Uniqueness of Absolute Minimizers for L∞-Functionals Involving

Hamiltonians H(x, p), Archive for Rational Mechanics and Analysis 223 (1), 141-198 (2017).

40. G. Papamikos, T. Pryer, A Lie symmetry analysis and explicit solutions of the two-
dimensional ∞-Polylaplacian, Studies in Applied Mathematics, Online 17 September 2018,

https://doi.org/10.1111/sapm.12232.

41. F. Prinari, On the lower semicontinuity and approximation of L∞-functionals, NoDEA 22,
1591 - 1605 (2015).

42. A.N. Ribeiro, E. Zappale, Existence of minimisers for nonlevel convex functionals, SIAM J.
Control Opt., Vol. 52, No. 5, (2014) 3341 - 3370.

43. S. Sheffield, C.K. Smart, Vector Valued Optimal Lipschitz Extensions, Comm. Pure Appl.

Math. 65(1), 128 - 154 (2012).
44. Y. Yu, Viscosity solutions of Aronssons equations, Arch. Ration. Mech. Anal. 182, 153180

(2006).

B.A.: Department of Mathematics and Statistics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, United Kingdom
E-mail address: b.ayanbayev@pgr.reading.ac.uk

N.K.: (corresponding author) Department of Mathematics and Statistics, University
of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, United Kingdom

E-mail address: n.katzourakis@reading.ac.uk


	1. Introduction
	2. Proofs and a maximum-minimum principle for H(,u,Du)
	References

