
Protein hydrolysate from Pterygoplichthys 
disjunctivus, armoured catfish, with high 
antioxidant activity 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Guo, Y., Michael, N., Fonseca Madrigal, J., Sosa Aguirre, C. 
and Jauregi, P. (2019) Protein hydrolysate from 
Pterygoplichthys disjunctivus, armoured catfish, with high 
antioxidant activity. Molecules, 24 (8). 1628. ISSN 1420-3049 
doi: https://doi.org/10.3390/molecules24081628 Available at 
https://centaur.reading.ac.uk/83846/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.3390/molecules24081628 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



molecules

Article

Protein Hydrolysate from Pterygoplichthys disjunctivus,
Armoured Catfish, with High Antioxidant Activity

Yuchen Guo 1, Nicholas Michael 2, Jorge Fonseca Madrigal 3, Carlos Sosa Aguirre 3 and
Paula Jauregi 1,*

1 Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Harry Nursten Building,
Reading RG6 6AP, UK; gyc19901117@googlemail.com

2 Centre for Analytical Facilities, Harborne Building, University of Reading, Reading RG6 6UR, UK;
n.michael@reading.ac.uk

3 Universidad Michoacana de San Nicolas Hidalgo, Michoacan, Morelia 58030, Mexico;
jfonseca@umich.mx (J.F.M.); csosa@biofermich.com (C.S.A.)

* Correspondence: p.jauregi@reading.ac.uk

Received: 29 March 2019; Accepted: 19 April 2019; Published: 25 April 2019
����������
�������

Abstract: Pterygoplichthys disjunctivus, locally named the armoured catfish, is a by-catch of tilapia
fishing that accounts for up to 80% of total captured fish in the Adolfo Lopez Mateos dam, in
Michoacán, México, affecting the economy of its surrounding communities. This invasive fish is
discarded by fishermen since native people do not consume it, partly due to its appearance, yet
it is rich in protein. The aim of this study was to produce hydrolysates from armoured catfish
using food-grade proteases (neutrases HT and PF and alcalase PAL) and investigate the processing
conditions (pH and temperature) that lead to a high degree of hydrolysis, antioxidant activity, and
Angiotensin I-Converting Enzyme (ACE) Inhibitory activity. No other similar research has been
reported on this underutilized fish. The antioxidant activity was measured by three different methods,
ABTS, FRAP and ORAC, with relevance to food and biological systems in order to obtain a more
comprehensive assessment of the activity. In addition, the main peptide sequences were identified.
All enzymes produced hydrolysates with high antioxidant activity. In particular, the protease HT led
to the highest antioxidant activity according to the ABTS (174.68 µmol Trolox equivalent/g fish) and
FRAP (7.59 mg ascorbic acid equivalent/g fish) methods and almost the same as PAL according to the
ORAC method (51.43 µmol Trolox equivalent/g fish). Moreover, maximum activity was obtained
at mild pH and temperature (7.5; 50 ◦C). Interestingly, the ORAC values obtained here were higher
than others previously reported for fish hydrolysates and similar to those reported for fruits such as
blueberries, apples and oranges. The peptide sequence IEE(E) was present in several peptides in both
hydrolysates; this sequence may be partly responsible for the high antioxidant activity, particularly the
one based on iron-reducing power. These findings will be relevant to the valorization of other fish/fish
muscle discards and could contribute to the production of food supplements and nutraceuticals.

Keywords: armoured catfish; enzyme hydrolysate; ABTS; ORAC; FRAP; ACE inhibition; digestibility;
peptide sequences

1. Introduction

The loricariid catfish (Pterygoplichthys disjunctivus), a species originally from South America [1], is
a commercially valuable ornamental fish all over the world, commonly used to clean fish tanks of algae.
However, the species has invaded different freshwater bodies throughout the world. In the Adolfo
Lopez Mateos dam in Michoacán, México, this invasive fish has found an appropriate habitat in which a
lack of predators and exploitation, a surplus of available food and the presence of parental care, as well
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as a long reproductive season, have produced high recruitment and successful colonization. Locally
known as the “bagre armado” or “armoured catfish,” it is a by-catch of tilapia fishing and accounts
for up to 80% of total captured fish, thereby affecting the economy of the surrounding communities,
which also depend on native species like the Balsas catfish (Ictalurus balsanus) and the redside cichlid
(Cichlasoma istlanum). This invasive fish is discarded by fishermen since native people do not consume
it, partly due to its appearance. Fishermen commonly discard these fish directly into the water and at
landing areas, generating contamination. However, this fish has a high nutritional value including a
high percentage of protein in fish muscle (90.1% of dry weight) and a rich lipid content (fatty acid
composition with 39.81% polyunsaturated fatty acids, including 13.9% DHA) [2]. Therefore, the
utilisation of these fish as a source of food ingredients with added value can result in an improvement
of the local economy. A recent study on zebra fish fed with carp by-product demonstrated a reduction
in lipid peroxidation in the muscle and brain, which shows the potential of these fish by-products as
nutraceuticals [3].

One option is applying an enzymatic hydrolysis for the solubilization of the protein and a further
separation step in order to enhance its nutritional and functional value [4]. The insoluble protein can
be used as animal feed, whereas the soluble protein can be used as a source of food ingredients of
high commercial value or as a nutrient for bacterial fermentation [5,6]. The main proteases involved
in the fish hydrolysis of fish protein are papain, pepsin, neutrase, alcalase, protamex, trypsin and
pronase [7–9]. Several factors are considered as key to control this complex enzymatic hydrolysis,
including the types and concentrations of proteases, pH and temperature of hydrolysis and the source
of protein [10]. Typically fish protein hydrolysis is carried out at neutral or alkaline pH conditions as
acidic conditions generally lead to lower yields and deterioration of amino acids, with a subsequent
reduction in nutritional quality.

The aim of this study was to produce hydrolysates from armoured catfish using food-grade
proteases (neutrases and alcalases) and investigate process conditions (pH and temperature) that led
to a high degree of hydrolysis, antioxidant activity, and Angiotensin I-Converting Enzyme (ACE)
Inhibitory activity. The antioxidant activity was measured by three different methods (ABTS, FRAP
and ORAC) based on different mechanisms with relevance to food and biological systems in order to
obtain a more comprehensive assessment of the activity. In addition, the main peptide structures in the
hydrolysates were determined in order to gain insight into the structure–activity relationship.

2. Results

2.1. The Degree of Hydrolysis (DH%)

The degree of hydrolysis was determined in order to determine the proteolytic activity of the
three ENMEX® proteolytic enzymes at different temperatures and pH values (Figure 1A–C) after 2 h
of hydrolysis. For HT, the degree of hydrolysis increased with pH and the highest degree of hydrolysis
was 34.51% at pH 8 and 55 ◦C. For PAL the highest degree of hydrolysis was 44.70% at pH 9.0 and
55 ◦C and the degree of hydrolysis decreased with an increase in pH and temperature. For PF, the
maximum degree of hydrolysis was 24.00%, which was achieved at pH 7 and 50 ◦C. The degree of
hydrolysis increased at an alkaline pH. Therefore, the highest degree of hydrolysis was obtained with
PAL. However, with this enzyme no maximum was determined as the value of DH% still increased
at the highest pH tested (pH 9). To conclude, the degree of hydrolysis was influenced by the type of
enzyme, pH and temperature. The values obtained here were higher than those reported for muscle
fish of different species—for example, 19.3% degree of hydrolysis in tuna dark muscle hydrolysate
with Alcalase and Neutrase [11], 15% degree of hydrolysis in hydrolysate from yellow stripe trevally
meat using Alcalase and Flavourzyme [12] and 40% degree of hydrolysis in hydrolysate of the muscle
of brownstripe red snapper produced by Alcalase or Flavourzyme [13].
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Figure 1. The degree of hydrolysis for each of the enzymes at various pH values and temperatures of 
hydrolysis: (A) HT hydrolysate; (B) PAL hydrolysate; (C) PF hydrolysate. 
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Figure 1. The degree of hydrolysis for each of the enzymes at various pH values and temperatures of
hydrolysis: (A) HT hydrolysate; (B) PAL hydrolysate; (C) PF hydrolysate.

2.2. The Antioxidant Activity of Hydrolysates

After producing the hydrolysates of Pterygoplichthys, the bioactivity of these hydrolysates was
assessed in order to explore the potential health benefits and/or value enhancement of this product.
In this study, the antioxidant activity of Pterygoplichthys hydrolysates was measured by three different
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methods, ABTS, FRAP and ORAC. These methods have been widely used in the assessment of
antioxidant activity in food and biological systems; they are based on different mechanisms of reaction
and act on different free radicals. ORAC measures the antioxidant inhibition of peroxyl radical-induced
oxidations and, thus, reflects classical radical chain breaking antioxidant activity by H atom transfer [14].
The ferric reducing antioxidant power (FRAP) measures the antioxidant power based on the reduction
of Fe3+ (complex ferric ion-TPTZ (2,4,6-tri(2-pyridyl)-1,3,5-triazine)) by the antioxidant [15]. This assay
has been used to determine the reducing power in plasma and is a reasonable screen for the ability
to maintain redox status in cells or tissues [14]; it is also widely used to assess antioxidant activity in
foods as it can be relevant to metal-mediated oxidation of foods; for instance, it has been found to
be a good test to asses oxidative deterioration in meat [16]. ABTS has been widely applied to assess
antioxidant activity in beverages and foods. In particular, the ORAC and FRAP methods are the most
relevant to antioxidant activity in vivo.

2.2.1. The Antioxidant Activity of Hydrolysates by the ABTS Method

Figure 2 shows the antioxidant activity of hydrolysates measured as their capacity for scavenging
the ABTS radical. The antioxidant activity of HT hydrolysates reached the maximum value at
174.68 µmol/g (Trolox equivalent per gram of fish) (Figure 2A). The antioxidant activity increased from
pH 6.5 to 7 but decreased at 8. The pH had a stronger effect than the temperature on the antioxidant
activity. Briefly, the antioxidant activity increased slightly when the temperature increased but reduced
after 50 ◦C. The antioxidant activity of PAL hydrolysates reached a maximum at 148.14 µmol/g
(Figure 2B) and PF hydrolysates at 131.80 µmol/g (Figure 2C). The hydrolysates of HT and PF reached
the highest antioxidant activity at the same conditions that led to the highest degree of hydrolysis,
50 ◦C/pH 7.5 and 50 ◦C/pH 7, respectively, which were mild conditions. However, for PAL hydrolysates
the highest antioxidant activity was obtained at more extreme conditions, 65 ◦C and pH 10.
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Figure 2. The antioxidant activity of hydrolysates by the ABTS method: (A) HT hydrolysate; (B) PAL
hydrolysate; (C) PF hydrolysate.

2.2.2. The Antioxidant Activity of Hydrolysates by the FRAP Method

The FRAP method for antioxidant activity relies on the reduction of Fe3+ by the antioxidant and
the mechanism of action is based on electron transfer [14]. The antioxidant activity of hydrolysates
obtained by the three commercial enzymes at a range of temperatures and pH values was measured
and expressed as the ascorbic acid equivalent. The highest antioxidant activity was obtained with
HT, where the highest antioxidant activity (7.59 mg Ascorbic acid equivalent per gram of fish) was
obtained at 50 ◦C and pH 7.5 (Figure 3). This peak value was obtained in the middle range of both
temperature and pH. On the contrary, for the PF hydrolysates the highest value of antioxidant activity
(3.03 mg/g) was obtained at the highest temperature (55 ◦C) and pH (8). For PAL hydrolysates the
maximum activity (5.82 mg/g) was obtained at 60 ◦C and pH 9.5.
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Figure 3. The antioxidant activity of hydrolysates by the FRAP method: (A) HT hydrolysates; (B) PAL
hydrolysates; (C) PF hydrolysates.
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2.2.3. The Antioxidant Activity of Hydrolysates by the ORAC Method

This method has been applied for the measurement of antioxidant activity in food, especially
beverages [15]. As shown in Figure 4A, the optimum conditions for antioxidant activity by the ORAC
method with HT were pH 7.5 and 50 ◦C. The maximum value was 51.43 µmol/g, expressed as Trolox
equivalent per gram fish. The antioxidant activity reduced as the temperature increased. Similarly, the
antioxidant activity of the hydrolysates by PAL (Figure 4B) reduced as the pH and temperature were
raised, and the highest value was 55.60 µmol/g at pH 9 and 55 ◦C. A similar phenomenon occurred in
the PF hydrolysates (Figure 4C) as the highest antioxidant activity (13.60 µmol/g) was at pH 7 and
45 ◦C, although it was much lower than that in the HT and PF hydrolysates.
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2.3. The Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity of Fish Hydrolysates

The ACE inhibitory activity of bioactive peptides from Pterygoplichthys hydrolysates produced
by three commercial proteolytic enzymes was determined by using FAPGG as the substrate; only the
hydrolysate with the highest degree of hydrolysis obtained with each enzyme was assessed. The IC50,
defined as the concentration of protein/peptide required to reduce the ACE activity by half, was
reported as a measure of the effectiveness of the ACE inhibitor (hydrolysate). The IC50 values were:
11.84 mg/mL (PAL at pH 9.0 and 55 ◦C); 11.47 mg/mL (HT at pH 8.0 and 50 ◦C); 9.58 mg/mL (PF at pH
7.0 and 50 ◦C).

2.4. The Digestibility of the Hydrolysates

The digestibility of the hydrolysates with the highest degree of hydrolysis was measured by
the TCA method. The digestibility of the hydrolysates by HT, PAL and PF were 15.71% ± 2.10,
15.13% ± 2.38 and 14.95% ± 2.39, respectively.

2.5. Bioactive Peptides

In Table 1 the main peptide sequences identified in hydrolysates produced by each of the proteases
at conditions that led to the highest DH% are shown. Only sequences identified with high certainty are
included in Table 1, i.e., peptide sequences obtained with a high ion ‘score’ (how well the spectrum
matches the suggested peptide) and low ‘expected’ values (the probability of obtaining that peptide
purely by chance).

The myofibrillar proteins myosin and actin are the main proteins present in meat (muscle).
As expected, the main peptide sequences identified matched these proteins (Table 1); however, often
multiple proteins matched the same peptide sequence.
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Table 1. Main peptide sequences identified in each of the enzyme’s hydrolysates; Mr(expt) and Mr(calc)
are the experimental and calculated theoretical molecular weights; ‘Protein’ is the protein matching
that peptide.

Enzyme Peptide Mr(expt) Mr(calc) Score Expect Protein

PAL REELNEIIEEVDEDGSGT 2032.9123 2032.9073 100 2.7 × 10−5
Troponin C

REELNEIIEEVDEDGSGTID 2261.0018 2261.0183 85 7.3 × 10−4

IAEKDEEIEQLK 1443.7383 1443.7456 79 4.9 × 10−3 Embryonic

IEELEEEIEAER 1487.6950 1487.6991 88 4.8 × 10−4 myosin heavy chain

KKAEPAPAPAPAPE 1372.7291 1372.7350 76 0.009
Embryonic

myosin
light chain

HT LAEKDEEIEQI 1315.64 1315.6507 71 0.03 Myosin heavy chain

LAEKDEEIEQIK 1443.7384 1443.7456 78 0.0056

IEELEEEIEAER 1487.6917 1487.6991 90 2.5 × 10−4

NSYEEALDHLETL 1532.6970 1532.6994 68 0.045

MDLENDKQQSEEK 1592.6925 1592.6988 68 0.03

IMDLENDKQQSEEK 1705.7735 1705.7828 80 0.0028

TERLEDEEEINAE 1575.6856
1575.6900 71 0.03

LESEVEGEQR 1174.5428
1174.5466 70 0.03

FDMFDTDGGGDISTK 1604.6567
1604.6665 109 9.5 × 10−7

REELNEIIEEVDEDGSGTID 2261.0113
2261.0183 73 0.012

SQKEDKYEEEI 1396.6302
1396.6358 82 0.015

LEKTIDDLEDELYSQ 1809.8489
1809.8520 98 6.2 × 10−5

GQKDSYVGDEAQSK 1510.6838 150.6900 97 2.3 × 10−5 Mutant beta actin (homo sapiens)

SIIDQDKSGFIEEDELKL 2078.0318 2078.0419 91 4 × 10−4 Parvalbumin

GDTDGDGKIGVDEF 1423.6112 1423.6104 88 2.2 × 10−4 Parvalbumin beta

KQFLEELLTTQ 1348.7228 1348.7238 74 0.012 Myosin light chain 2

IVGDDLTVTNPK 1270.6723 1270.6769 74 0.011 Enolase

PF DDLQAEEDKVNT 1375.6122 1375.6103 71 0.016
Myosin heavy chain

fast skeletal muscle-like
[Ictalurus punctatus]

TEEMASQDESIAK 1437.6256 1437.6293 97 3.3 × 10−5

AQRLQEAEESIEAV 1571.7776 1571.7791 71 0.029

QGEVEDLMIDVERA 1602.7473 1602.7559 86 7 × 10−4

RNAEEKAKKAITDAA 1614.8767 1614.8689 74 0.012

LEEAEGTLEHEESKI 1712.8086 1712.8104 87 7 × 10−4

EELKKEQDTSAHLER 1811.8991 1811.9013 80 0.0047

LEEAEGTLEHEESKIL 1825.8829 1825.8945 72 0.026

KRQAEEAEEQANTHLS 1839.8700 1839.8711 71 0.026

REQFEEEQEAKAELQ 1862.8581 1862.8646 86 7.6 × 10−4

EQQVDDLEGSLEQEKK 1873.8915 1873.8905 71 0.034

AEELKKEQDTSAHLER 1882.9359 1882.9384 92 0.00031

QARIEELEEEIEAERAA. +
Gln->pyro-Glu (N-term Q) 1967.9345 1967.9435 78 0.0063

KQKYEEGQAELEGAQKEA 2034.9739 2034.9857 92 2.4 × 10−4

EMEEAQERADIAESQVNK 2075.9393 2075.9429 81 0.0021

KRENKNLQQEISDLTEQI 2185.1241 2185.1338 72 0.034

KLEQQVDDLEGSLEQEKKL 2228.1563 2228.1536 89 0.00059

HELEKAKKTVETEKSEIQTA 2298.2000 2298.2067 84 0.002

RKVQHEMEEAQERADIAESQVNK 2724.3189 2724.3249 104 2 × 10−5
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Table 1. Main peptide sequences identified in each of the enzyme’s hydrolysates; Mr(expt) and Mr(calc)
are the experimental and calculated theoretical molecular weights; ‘Protein’ is the protein matching
that peptide.

Enzyme Peptide Mr(expt) Mr(calc) Score Expect Protein

EEGQAELEGAQKEARS 1730.8073 1730.8071 86 7.5 × 10−4
Myosin heavy chain,

fast skeletal muscle isoform X1
[Danio rerio]

KMEIDDLSSNMEAVAKS 1866.8692 1866.8703 86 8.2 × 10−4 Myosin heavy chain
(Seriola demirili)

SYKRQAEEAEEQANTHLS 2089.9620 2089.9664 72 0.02 Myosin heavy chain-2
[Thunnus orientalis]

AEQELLDASERVGL 1528.7728 1528.7733 71 0.027
Myosin heavy chain, fast

skeletal muscle-like
[Clupea harengus]

EADLVQIQGEVDDTVQEA 1957.9077 1957.9117 96 8.8 × 10−5 Myosin heavy chain
[Pennahia argentata]

KAISEELDHALNDMTSI 1885.9049 1885.9091 84 0.0017
Tropomyosin alpha-1 chain-like

isoform X2
[Nothobranchius furzeri]

EKTIDDLEDELYSQKLK 2066.0377 2066.0419 82 0.0028

KLEKTIDDLEDELYSQKL 2179.1241 2179.1259 87 9.1 × 10−4

KATEDELDKYSEALKDAQEKL 2423.1937 2423.2067 88 8.4 × 10−4

RALGQNPTNKDVAK 1510.8211 1510.8216 78 0.0039 Myosin light chain 1
[Thunnus thynnus]

KKAEPAPAPAPAPE 1372.7315 1372.7350 76 0.0087

SSSSLEKSYELPDGQVI 1837.8938 1837.8945 71 0.032 Alpha-smooth muscle
actin-rabbit (fragment)

SSSSLEKSYELPDGQVIT 1938.9372 1938.9422 71 0.038

AVFDISNADRLGSSEVDQV 2020.9632 2020.9702 82 0.0027 Creatine kinase M-type
[Gekko japonicus]

GDFSADQIEDFKEA 1612.6844 1612.6893 76 0.0031
Myosin light chain 1/3, skeletal

muscle isoform
[Cynoglossus semilaevis]

3. Discussion

3.1. Bioactivity

The hydrolysis of protein by the three enzymes resulted in the generation of peptides with
antioxidant activity. PAL produced the hydrolysate with the highest degree of hydrolysis, yet HT
produced the hydrolysate with the highest antioxidant activity according to all methods except ORAC
(Figure 4); PAL hydrolysate was slightly superior, although similar ORAC results were obtained with
HT. These results are in accordance with those reported as the highest degree of hydrolysis was obtained
with the alcalase, whilst the highest antioxidant activity was obtained with the neutralase [17,18].
Moreover, with HT maximum antioxidant activity was obtained at the same conditions, pH 7.5 and
50 ◦C, according to the three methods. The mild conditions in which maximum activity were achieved
was another advantage of HT compared to PF and PAL enzymes; this is illustrated in Figure 5, where
maximum antioxidant activities for each enzyme and conditions are shown for the ABTS method.
Overall, the antioxidant activity based on the ABTS method was superior to that reported for other
fish hydrolysates, e.g., 48 µmol/g hydrolysate from the unicorn leatherjacket, DH 40% [19] and was
comparable to the value reported for plant-derived extracts, e.g., artichoke extract, 92 µmol/g [20];
blackcurrant extract, 156–196 µmol/g (results from our group, not published); and grape marc extract,
193–485 µmol/g [21].

According to the ORAC method, the highest antioxidant activity was found in the HT (51.43µmol/g)
and PAL (55.60 µmol/g) hydrolysates. These activities were much higher than those reported for
hydrolysates from alkaline-aided channel catfish by a Bacillus protease (16µmol/g, which was close to the
activity of PF hydrolysates) [22]. Interestingly, the ORAC values obtained here were comparable to those
reported for several fruits: in particular, blueberry (48.26 +/−6.49 µmol/g), apple (45.92 +/−2.01 µmol/g),
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pomegranate (44.79 +/−3.78 µmol/g), orange (28.87 +/−7.17 µmol/g) and red grape (26.05 +/−4.87 µmol
of TE/g) [23].

Based on the above results, it was concluded that HT would be the best enzyme to take the
process further.
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Figure 5. Maximum antioxidant activities obtained for each enzyme according to the three antioxidant
activity methods: ABTS (µmol Trolox/g fish), FRAP (mg ascorbic acid/g fish) and ORAC (µmol Trolox/g
fish); numbers over ABTS bars indicate T/pH conditions for hydrolysate production.

Similar ACE inhibitory activity was obtained with all proteases, and they were close to those
reported for hydrolysates from brownstripe red snapper by commercial alcalase (IC50 around
10.0 mg/mL) [13] but lower than that obtained from thornback ray (Raja clavata) muscle by Alcalase and
Neutrase (around 1.0 mg/mL) [18]. However, that hydrolysate was obtained over a longer hydrolysis
time (4 h) than the one produced here (2 h). Also, the hydrolysates obtained here were raw hydrolysates
that underwent no further processing; it is known that smaller peptides have higher ACE inhibitory
activity and, therefore, further processing by ultrafiltration can render hydrolysates more potent.

3.2. Peptide Structure–Activity Relationship

The exact mechanism of antioxidant activity by peptides is not fully understood, yet they have
been shown to act as lipid peroxidation inhibitors, scavengers of free radicals and chelators of transition
metal ions [24].

Hydrophobic amino acids such as the aliphatic amino acids (Val (V), Leu (L) and Ileu (I)) will
enhance the solubility of peptides in lipids and will facilitate access to hydrophobic radicals and
hydrophobic PUFAs [24]. Also, aromatic amino acids (His (H) or Tyr (Y)) can donate protons to
electron-deficient radicals, which results in them having radical scavenging properties. Acidic and
basic groups in the side chain of amino acids (Asp (D), Glu (E), Hys (H), Arg (R), Lys (K)) can act as
metal chelators and H donors.

The highest antioxidant activity was found in the hydrolysate by HT (Figure 5). It is interesting
to note that most of the peptides identified in this hydrolysate (Table 1) contain several acidic amino
acids in their sequences: in particular, glutamic acid (E) and aliphatic amino acids (Ala(A), Ileu (I),
Leu (L)). These sequences were found in both PAL and HT hydrolysates, which had the highest FRAP
activity. In particular, the sequence IEE(E) is repeated in several peptides in both hydrolysates (Table 1).
This combination of aliphatic and acid amino acids was also found in the peptide LEELEEELEGCE
from frog skin, which showed high antioxidant activity [17]. According to these authors, the IC50
(concentration of peptide at 50% inhibition) for the purified peptide against a range of free radicals
was from 12.8 to 32.6 µM; this would be equivalent to about 1000 µM Trolox for 50% inhibition against
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ABTS radical. It is expected that acidic amino acids would be effective at iron reduction (as measured
by FRAP), in a similar manner to ascorbic acid [25]

On the other hand, the peptides in the PF hydrolysate contain more aromatic amino acids than
the peptides in the other two hydrolysates and some peptides rich in hystidine (H). This hydrolysate
had the lowest FRAP activity, which correlates well with the lower presence of acidic amino acids in
the peptide sequences as compared to HT and PAL hydrolysates.

4. Materials and Methods

4.1. Materials

The Pterygoplicgthys samples are supplied by the University of Michoacan of San Nicolas
de Hidalgo (Morelia, Mexico). The enzymes were supplied by ENMEX (Tlalnepantla de Baz,
Mexico): two neutrases, HT Proteolitic ® L200 (HT), and Proteasa Fungal (PF) and one alcalase,
PAL®660 (PAL). The following chemicals were purchased from Sigma Aldrich® (Gillingham,
UK): Bis-tris Propane (B6755); O-phthaldialdehyde (OPA, P1378); Sodium-dodecyl-sulphate
(SDS) (L3771); Dithiothreitol 99% (DTT, D0632); Potassium persulfate (216224) was purchased
from Sigma Aldrich®; 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS, A1888); 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ, T1253); Ferric Chloride Hexahydrate
(F2877); Sodium Acetate Trihydrate (S8625); Glacial Acetic Acid (320099); Disodium fluorescein
(F6377); 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH, 440914); Sodium chloride
[NaCl] > 99.5% (S7653); Tris (hydroxymethyl) methylamine (T1503); Angiotensin-converting enzyme
(ACE, A6778; Hydrochloric acid 36.5–38.0%, (H1758); FAPGG—N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly
≥98% (F7131); Glycerol solution 86–89% (49781); Trichloroacetic acid (TCA, T6399).

4.2. Methods

4.2.1. The Preparation and Pre-Treatment of Fish Protein Hydrolysis

The preparation of armoured catfish (Pterygoplichthys disjunctivus) hydrolysates is described in
Figure 6. Five grams of fish fillet were cut into small pieces and added into 50 mL 0.1M Bis-tris
Propane buffer (pH 11). Then the pH of each sample was adjusted to the target pH as described in
Table 2. The 0.2% w/v (v/v) enzyme was added into the sample and the incubation started at a specific
temperature for 120 min. Every 30 min, the pH of the sample was recorded and adjusted back to the
starting pH. At the end of hydrolysis, the pH was measured and hydrolysis was ended by immersing
the sample in a 90 ◦C water bath for 10 min to inactivate the enzyme (note: the temperature of the
sample reached 85 ◦C). The pH of the sample was changed to pH 7. The sample was cooled down in an
ice bath to room temperature and centrifuged at 4000 g at 10 ◦C for 20 min in a Thermo Multifuse 3SR+

(Thermo Fisher Scientific, Hemel Hempsted, UK). The supernatant was collected in a 5-mL sterile
plastic bottle and stored at −20 ◦C for further analysis.
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Table 2. Conditions for each of the enzymes.

Enzyme Temperature (◦C) pH #%(w/v) Time (min)

HT PROTEOLITIC®L 200 45 50 55 6.5 7.5 8.0 0.2% 120

PAL®660 55 60 65 9.0 9.5 10.0 0.2% 120

Proteasa Fungal 45 50 55 6.0 7.0 8.0 0.2% 120

#%w/v is the enzyme (mass) to buffer solution volume ratio as a percentage.

4.2.2. Experimental Design

A 32 factorial design was applied where the two dependent variables were pH and temperature
and each was studied at three levels (−1, 0, 1); the experimental conditions are shown in Table 2.
Each experiment was carried out once for each enzyme, but the antioxidant activity was measured in
triplicate and the ACEi% in duplicate.

4.2.3. Determination of the Degree of Hydrolysis

The degree of hydrolysis was determined by applying the o-phthaldialdehyde (OPA) method [26]
with some modifications. The concentration of samples was kept between 250 and 500 µg mL−1.
To prepare 200 mL of solution, 7.620 g of di-sodium tetraborate decahydrate and 200 mg of
sodium-dodecyl-sulfate (SDS) were dissolved completely in 150 mL of water until homogenised
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in a flask of 250 mL. Separately, 160 mg of O-Phthaldialdehyde (OPA) were dissolved in 4 mL of ethanol
in a 10-mL flask then transferred to the solution mentioned above, rinsing the small flask completely
with deionized water. Then 176 mg of Dithiothreitol 99.0% (DTT) were added to the solution and
stirred; this was transferred into a 200-mL volumetric flask and filled up to 200 mL with deionized
water. Standard or samples (200 µL) were added into 1.5 mL OPA reagent in 2-mL acryl cuvettes
and after 2 min incubation the absorbance was measured by a UV-Vis Spectrophotometer (Ultrospec
® 1100 pro, GE Healthcare, Amersham, UK) at 340 nm.

Deionised water was used as a blank and a serine dilution was used as standard. The DH was
calculated using the following equation:

DH% =
h

htot
× 100%, (1)

where DH% is the degree of hydrolysis in percentage, h (meqv g−1) is the number of hydrolysed bonds
and htot is the total number of peptide bonds per protein equivalent; htot is dependent on the protein
source and for fish, htot is 8.6 meqv g−1. The value of h was obtained by applying the equations below:

h =
(Serine·NH2 − β)

(α)
(2)

Serine·NH2 =
(ODsample −ODblank)

(ODstandard −ODblank)
∗ 0.9516 meqv L−1

×
D
P

(3)

where serine-NH2 = meqv serine NH2 g−1 protein; D = dilution factor; P = protein concentration in
sample (g L−1).

4.2.4. Determination of Antioxidant Activity of Hydrolysates

The ABTS Free Radical Scavenging Activity Assay

The total antioxidant activity of samples was measured by ABTS assay at 734 nm, with some
modifications from that reported [27]. The ABTS•+ stock solution was prepared by mixing 5 mL
ABTS solution (7 mM) and 88 µL potassium persulfate (140 mM K2S2O8) solution together. Then, the
mixture was stored in the dark at room temperature for at least 16 h prior to use. The working solution
of the ABTS•+ was obtained by diluting the ABTS•+ stock solution with phosphate-buffered saline
(PBS pH 7.4) to an absorbance of 0.70 ± 0.02 at 734 nm. Twenty microliters of samples were added into
2 mL ABTS•+ working solution, and the solution was homogenised by 1 min vortex. The solution was
then incubated in the dark for 6 min, and the absorbance (ABSsample/standard) was recorded at 734 nm
using a UV-Vis Spectrophotometer (Ultrospec ® 1100 pro). The absorbance of the ABTS•+ working
solution was measured at the same wavelength and used as a control (ABScontrol). The PBS was used
as a blank. The (scavenging) activity was measured based on the difference between ABScontrol and
ABSsample. A standard curve of trolox (0–2000 µM) against scavenging activity was constructed in
order to relate scavenging activity to Trolox equivalents. The antioxidant activity was expressed as
µmol Trolox equivalent/g fish.

The Ferric Reducing Antioxidant Power (FRAP) Assay

The total antioxidant activity of samples was determined through ferric reducing antioxidant
power (FRAP) [28]. The stock solution of FRAP method included: 25 mL acetate buffer (300 mM),
2.5 mL 2,4,6-tripyridyl-s-triazine (TPTZ) solution (10 mM in 40 mM HCl), and 2.5 mL ferric chloride
hexahydrate aqueous solution (20 mM). Then, 10 µL of the sample/standard were added into 300 µL
FRAP reagent in a microcentrifuge tube and vortexed for 10 s. Then 100 µL of this mixture, in triplicate,
were transferred into the microwell plate (96-well, NUNC, FB) and absorbance was measured at 595 nm
by a computer-controlled Tecan Microplate reader (Tecan Ltd., Reading, UK). Results were expressed
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as ascorbic acid equivalent (AAE) using an ascorbic acid (0.001761 mg/mL–0.1761 mg/mL) standard
curve (The absorbance = 1.8877×AA concentration− 0.0013, R2 = 0.9923).

The Oxygen-Radical Absorbing Capacity (ORAC) Assay

The total antioxidant activity of samples was also measured by oxygen-radical absorbing capacity
(ORAC) method, based on previously reported methods [29,30]. A 96-well plate and a Tecan Genius
plate reader were used for the fluorescence measurements. The emission and excitation wavelengths
were set to 535 and 485 nm, respectively, at 37 ◦C. Twenty-five microliters of the samples were mixed
with 150 µL disodium fluorescein (96 nM in phosphate buffer pH 7.4). Then, a volume of 75 µL
2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH, 153 Mm kept in ice) was added to initiate the
oxidation reaction. The kinetic fluorescence reading of the samples was recorded for 30 cycles with a
60 s per cycle setting. The antioxidant capacity was expressed as the area under the curve (AUC) by
applying Equation (4) below:

AUC = 1 + RFU1/RFU0 + RFU2/RFU0 + RFU3/RFU0 + . . .+ RFUn/RFU0 (4)

where RFU0 = relative fluorescence units at time point zero; RFUn = relative fluorescence units at
time points;

A Trolox standard solution and subsequent dilutions (3.125–50 µM) were prepared to construct a
calibration curve and PBS buffer was used as a blank. The antioxidant capacity of the sample was
expressed as Trolox equivalents (µmol Trolox/g fish).

4.2.5. Determination of the Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity of
Fish Hydrolysates

The ACE inhibitory activity (ACEi%) of the fish protein hydrolysates was determined according
to the methods reported [31,32] and with some modifications. The tripeptide N-[3-(2-furyl)
acryloyl]-Lphenylalanyl-glycyl-glycine (FAPGG) was used as the substrate of the interaction with ACE
in a 96-well microplate at 37 ◦C. Briefly, 150 µL of 88 mM FAPGG in Tris-HCl (50 mM, pH 7.5 and
300 mM NaCl) buffer were mixed with 10 µL of ACE enzyme (0.25 mU in 50% Tris-HCl buffer and
50% glycerol) and 10 µL of the sample. The kinetics of absorbance of the mixture was monitored at
wavelength 340 nm for 30 min at 1-min interval by the Tecan plate reader. The slope of decreasing
absorbance of the samples was the indicator of the enzyme activity; therefore, the inhibitory activity of
each hydrolysate was calculated by Equation (5):

ACE Inhibitory (%) =

(
1−

ρi

ρ0

)
(5)

where ρi is the slope in the presence of hydrolysate (inhibitor) and ρ0 is the slope with deionized water.
Also, in order to compare different inhibitors (hydrolysates), the IC50 value, which is defined as the
protein concentration required to inhibit 50% of the ACE enzyme activity, was determined.

4.2.6. The Digestibility of the Hydrolysates

The in vitro digestibility of the sample was determined by previously reported methods [33,34].
The hydrolysate was mixed with 20% trichloroacetic in the ratio of 50:50 and then incubated at room
temperature for 30 min. After incubation, the sample was centrifuged for 10 min at 4 ◦C and 3000 g.
The supernatant was collected and the soluble protein concentration was determined by bicinchoninic
acid assay. The digestibility of the hydrolysate was expressed as the percentage of soluble protein in
relation to total protein.

Total protein in fish was measured as 19.8% wet weight. Protein determination was carried out
through the evaluation of the total nitrogen using a Scorpio Scientific Kjeldahl unit (Neocitec, Mexico
City, Mexico) and following the certified method NMX-F-608-NORMEX-2011. The conversation factor



Molecules 2019, 24, 1628 16 of 18

was 6.25. The sample (1 g) was subjected to acid digestion using sulfuric acid; the product was taken
to an automatic distiller. The distilled sample was titrated with 0.1 N hydrochloric acid.

4.2.7. Identification of Peptides

Hydrolysates produced by each of the enzymes at the conditions that led to maximum hydrolysis
were chosen for further analysis to identify the main peptide sequences.

Samples (10 µL) were injected on a Thermo Scientific Accela HPLC system interfaced to a Thermo
Scientific LTQ Orbitrap XL mass spectrometer. The column was a Thermo Scientific Hypersil Gold C18
50 × 2.1 mm with particles of 1.9 microns in size and pores of 175 Å. Mobile Phase A was water and
Mobile Phase B was acetonitrile; both contained 0.1% formic acid. The gradient was 0–2 min held on
5%B; 2–20 min 5–20%B; 20.1–23 min held on 80%B; 23.1–30 min held on 5%B. An electrospray ionisation
(ESI) source operating in positive ion mode was used. The salient source settings were: Capillary
temperature 300 ◦C, Sheath and Aux nitrogen gas flow 45 and 10 arbitrary units, respectively. Source
voltage; 4 kV, Capillary voltage; 31, Tube Lens; 131. The instrument was operating a data-dependent
acquisition (DDA). Scan event 1 was acquiring full-scan MS over the m/z range 400–2000, at resolution
30,000 in the Orbitrap. Scan event 2 was acquiring LTQ ion trap Collision-Induced Disassociation
(CID) of significant multiply charged peaks found in scan event 1, which were scanned out in the LTQ
ion trap.

Mascot Generic Format (MGF) files were generated from the Thermo Raw files using ProteoWizard
3.0.11148 32 bit and these were searched using an in-house Mascot server v2.5.0 (Matrix Science Ltd.,
London, UK). Search parameters were: peptide mass 10 ppm, fragment mass 0.6 Da; No enzyme;
Variable modifications: Acetyl (Protein N-term),Gln->pyro-Glu (N-term Q),Oxidation (M); Database:
NCBInr 20160712; Taxonomy: Chordata (vertebrates and relatives). Reports were formatted with the
“expected cutoff” set to 0.05.

4.2.8. Statistical Analysis

All the measurements were carried out at least in duplicate. The analysis of variance was done
by XLSTAT v20.1 for comparison among samples with different treatments (i.e., different enzymes
and/or the same enzyme but different pH and temperature conditions). The confidence level was set
to p ≤ 0.05.

5. Conclusions

For the first time, the production of a protein hydrolysate from armoured catfish (Pterygoplichthys
disjunctivus) by a range of proteases has been investigated. High antioxidant activity was obtained
in the hydrolysates produced by the three enzymes. In particular, HT led to the highest antioxidant
activity according to the ABTS and FRAP methods and almost the same as PAL according to the ORAC
method. Moreover, a further advantage of using HT was that the best results were obtained under mild
temperature and pH conditions. Interestingly, the ORAC values obtained here were higher than others
previously reported for fish hydrolysates and similar to those reported for fruits such as blueberries,
apples and oranges. Moreover, both PAL and HT hydrolysates contained peptide sequences rich in
glutamic acid and aliphatic amino acids such as alanine, leucine and isoleucine. In particular, the
sequence IEE(E) was present in several peptides in both hydrolysates; this sequence may be partly
responsible for the high antioxidant activity, particularly for the activity based on the iron reducing
power (FRAP method). Overall, these results show that this underused fish is an important source of
antioxidant peptides that can be developed further as food supplements and/or natural antioxidants in
food formulations.
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