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Recent research has shown that high resolution observations, such as Doppler radar

radial winds, exhibit spatial correlations. High resolution observations are routinely

assimilated into convection permitting numerical weather prediction models assuming

their errors are uncorrelated. To avoid violating this assumption observation density

is severely reduced. To improve the quantity of observations used and the impact that

they have on the forecast requires the introduction of full, correlated, error statistics.

Some operational centres have introduced satellite inter-channel observation error

correlations and obtained improved analysis accuracy and forecast skill scores. Here

we present a strategy for implementing spatially correlated observation errors in an

operational system. We then provide the first demonstration of the practical feasibility

of incorporating spatially correlated Doppler radial wind error statistics in the Met

Office numerical weather prediction system.

Inclusion of correlated Doppler radial winds error statistics has little impact on the

computation cost of the data assimilation system, even with a four-fold increase in

the number of Doppler radial winds observations assimilated. Using the correlated

observation error statistics with denser observations produces increments with shorter

length scales than the control. Initial forecast trials show a neutral to positive impact on

forecast skill overall, notably for quantitative precipitation forecasts. There is potential

to improve forecast skill by optimising the use of Doppler radial winds and applying the

technique to other observation types.
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1. Introduction1

Error characteristics of atmospheric observations are complex and2

not straightforward to derive. Each meteorological instrument is3

accurate to within a given tolerance subject to its engineering4

specifications. This is called instrument error. However, in the5

context of data assimilation, there is a representation error6

that arises in addition to the instrument error. The sources of7

representation error include the variability of the observed field at8

scales different from those resolved by the assimilating dynamical9

model, observation pre-processing and/or the approximation of10

the observation operator (Janjić et al. 2017). Therefore, the total11

observation error can be expressed as the sum of the instrument12

error and a representation error. It is generally assumed that13

instrument error is uncorrelated and unbiased (any existing biases14

are assumed to have been removed). In contrast the error of15

representation is generally correlated and state dependent (Waller16

et al. 2014).17

Idealized studies have shown that incorporating correlated18

observation errors in data assimilation systems leads to a more19

accurate analysis (Stewart et al. 2013; Stewart 2010; Healy20

and White 2005) and to the inclusion of more observation21

information content (Stewart et al. 2008), particularly on small22

scales (Rainwater et al. 2015; Fowler et al. 2018). Studies with23

operational data have shown that satellite inter-channel errors24

can exhibit significant correlations (Stewart et al. 2009, 2014;25

Bormann and Bauer 2010; Bormann et al. 2010; Waller et al.26

2016a), and accounting for them in the assimilation results in27

improvements in the forecast skill score (Weston et al. 2014;28

Bormann et al. 2016; Campbell et al. 2017), but may affect the29

number of iterations required to solve the variational minimization30

problem (Tabeart et al. 2018). More recent research has shown31

that observation errors can also be spatially correlated (Waller32

et al. 2016c,a; Cordoba et al. 2017).33

The UK public weather service has an emphasis on accurate34

forecasts/nowcasts of strong convective storms which can be35

responsible for major flooding events. In response, the UK36

Met Office has an operational convection permitting numerical37

weather prediction (NWP) system using a 1.5km version of the38

Unified Model (UM) (Lean et al. 2008; Tang et al. 2013). Such39

a system requires the assimilation of new, high temporal and 40

spatial resolution observations in order to provide an initial state 41

that contains information at suitable scales (Gao and Stensrud 42

2012; Sun et al. 2014; Clark et al. 2015; Ballard et al. 2016). 43

Such observations include, for example, mode-S aircraft data (e.g. 44

de Haan and Stoffelen 2012; Strajnar et al. 2015; Lange and Janjić 45

2016), weather radar (e.g. Caya et al. 2005; Wattrelot et al. 2014; 46

Wang and Wang 2017) or high resolution AMVs (e.g. Velden et al. 47

2017). However, due to the presence of correlated errors, there 48

has been no attempt to operationally assimilate observations at a 49

high spatial density. Instead, the observations are assumed to be 50

spatially uncorrelated; the data is thinned to separation lengths 51

where this assumption is understood to be reasonable and the 52

error variances inflated to account for any neglected correlations 53

(Buehner 2010). As a result, the quantity of high resolution 54

observations, such as those provided by weather radar in the form 55

of reflectivity, radial wind (Simonin et al. 2014) and refractivity, 56

is severely reduced. This may result in a sub-optimal analysis and 57

poorer forecasts. Therefore, in order to assimilate observations at 58

a high spatial density the observation error correlations must be 59

considered. 60

This work proposes a pragmatic strategy that allows 61

the use of horizontally correlated observation errors. We 62

describe the implementation of such a strategy within the 63

Met Office operational variational assimilation scheme. Practical 64

feasibility and possible impacts are demonstrated with NWP 65

trial experiments using spatially correlated observation error for 66

Doppler radial wind. 67

First, we present the current assimilation system used at the 68

Met Office in Section 2. Subsequently, in Section 3, we describe 69

in detail the implementation of the proposed strategy that allows 70

use of correlated observation error statistics. After presenting the 71

experimental details in section 4, section 5 shows the impact 72

of the new scheme when it is applied to Doppler radial wind 73

observations for the assimilation system, the analysis and the 74

forecasts. Finally we conclude in Section 6. 75

2. The current Met Office approach 76

In this section we describe the current Met Office variational data 77

assimilation system software (VAR) and its parallelisation. We 78
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Correlated observation error statistics 3

also describe the current treatment of observation error statistics79

in the assimilation.80

2.1. The data assimilation system81

In this section we describe some pertinent features of the current82

Met Office variational data assimilation (VAR) software (Lorenc83

et al. 2000; Rawlins et al. 2007). These schemes are based on the84

incremental approach of Courtier et al. (1994) and are applicable85

to 3D-Var and 4D-Var. Here we document them following the86

notation of Ide et al. (1997).87

Given a full resolution non-linear forecast model, incremental88

variational assimilation seeks a simplified, perturbation model89

state increment δwa ∈ Rns to a full resolution guess field xg ∈90

Rn such that the analysis at full resolution xa ∈ Rn at t = T + 091

is given by92

xa = xg + S−1δwa. (1)

Here, S−1 is the incrementing operator; it is the generalised non-93

linear inverse of a simplification operator S which reduces the94

full model’s complexity and resolution to that of the perturbation95

(Ide et al. 1997). In the Met Office VAR schemes, where the full96

resolution non-linear model is the UM, the operator S is also97

used to simplify multiple moisture and cloud variables to a single98

variable (Rawlins et al. 2007). We find the perturbation model99

state, δwa, at t = T + 0 by minimizing a penalty function,100

J(δw) =
1

2

(
δw − δwb

)T
B−1

(
δw − δwb

)
+

1

2

(
y − yo

)T
R−1 (y − yo

)
= Jb + Jo, (2)

where δw = S(x)− S(xg) and δwb = S(xb)− S(xg), xb ∈ Rn101

is the background model state, B ∈ Rn×n is the background102

error covariance matrix and R ∈ Rp×p is the observation error103

covariance matrix. The penalty function minimizes the fit of the104

model state to the background state, Jb, and observations, Jo.105

Note that the variational problem is solved iteratively using a106

conjugate gradient method.107

108

This work was conducted using a 3D-Var assimilation system109

with a centered window using first guess at appropriate time110

(FGAT: Fisher and Andersson 2001; Lorenc and Rawlins 2005). 111

The observations yo ∈ Rp are distributed within an assimilation 112

time window [T − tw, T + tw]. The background model state is 113

provided by a previous forecast and is interpolated in time to 114

the observation time. Following Lorenc and Jardak (2018), the 115

model prediction of the observations is given by y = H(Gxg + 116

GS−1δw) where G is the linear time- and space-interpolation of 117

the model generated field to the observation location and time and 118

H is the non-linear observation operator. 119

In order to calculate the model prediction of the observations it 120

is necessary to interpolate the primary variables of the forecast 121

model and the perturbation forecast model to the observation 122

locations. Therefore, for each observation we define: 123

• The array Cx = Gxg consisting of a vertical column of 124

the primary variables of the forecast model, interpolated 125

horizontally to the observation positions, valid at the 126

observation time. 127

• The array Cw = G̃S−1δw consisting of a column of 128

the primary variables of the perturbation forecast model, 129

interpolated horizontally (and in time for 4D-VAR) to 130

the observation positions. 3D-Var treats all increments at 131

the same analysis time (in the middle of the window) 132

so G̃ incorporates a space-interpolation only; FGAT is 133

implemented by the time-interpolation to the exact time of 134

each observation, in G. 135

• The array Ĉw, the derivative of the observation penalty 136

function (Jo) with respect to the primary variables of the 137

perturbation forecast model (Cw). 138

2.2. Parallelisation 139

The current approach to the parallelisation of the VAR code 140

follows the Data Parallel paradigm (Pacheco 1997, section 2.2.3): 141

all the processing elements (PEs) carry out the same operations 142

on different portions of the data set (figure 1 top panel). The data 143

is split into a number of geographical regions; this is known as 144

Domain Decomposition. 145

For VAR, the domain decomposition splits the Cw columns 146

such that each PE has information containing all the vertical 147

levels but only for a specified area of the horizontal-plane. The 148

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



4 D. Simonin et al.

PE IDs assigned to each column of Cw are stored in the vector149

CwPE ∈ Rp.150

As the observations are assumed to be independent and151

uncorrelated, they are simply spread across processors following152

the same regional decomposition as the model information (shown153

in figure 1). In this approach, the costs of the observation154

calculations are small compared to other components because155

there are no inherent message-passing or synchronisation delays.156

This advantage outweighs the inefficient load-balancing, for the157

domains typically used. The allocated PE ID for each observation158

is stored in the vector ObsPE ∈ Rp. This strategy is applied159

to all observation types and to the model information such that160

ObsPE = CwPE .161

2.3. Treatment of observation error statistics162

Observation errors are typically assumed to be temporally163

uncorrelated, and with no correlations between observation types,164

so that R is block-diagonal. This allows Jo to be calculated165

independently for each observation type and hence reduces the166

cost of the matrix-vector products in equation (2). Also, for167

many observation types, it is assumed that the observation errors168

are independent, Gaussian white noise, so that the associated169

observation error covariance sub-matrix for a given observation170

in equation (2) is diagonal (no cross-correlation) and contains171

the sum of instrument and representation errors R = E + F172

(Lorenc et al. 2000). In this case the matrix-vector product173

simplifies to a series of scalar multiplications. There is one174

exception to this description. The current system accounts for175

correlated satellite inter-channel errors (Weston 2011; Weston176

et al. 2014). In this case, sets of observations with inter-channel177

error correlations provide information related to a single model178

column; hence the inclusion of correlated inter-channel error179

matrices is compatible with the current parallelisation strategy180

where observation and vertical model columns are distributed181

together between supercomputer processors (see Section 2.2 for182

a more detailed description). However, in the case of horizontally183

correlated observation error statistics, the existing data-structures184

do not allow the computation of the required matrix-vector185

products without excessive communication between processors.186

3. The new approach 187

In this section we describe how the current Met Office variational 188

data assimilation system software (VAR) has been adapted to 189

exploit, and allow for, horizontal correlated observation error 190

statistics. 191

3.1. Parallelisation 192

As shown in section 2.2, the assimilation system is using the same 193

domain decomposition for observations as model. However, in 194

order to make use of a full observation error covariance matrix, 195

Rs, (i.e. variance and correlation), it is necessary to gather error- 196

correlated observations, and their model equivalent, on a single 197

processor as shown in the bottom panel of figure 1. 198

To accommodate full observation error covariance matrices, 199

the parallelization has been modified for observations that have 200

mutually correlated errors. These observations are assigned to a 201

family and sent to a single PE (figure 1 bottom panel) and are no 202

longer distributed on a PE according to its geographical location 203

but according to its family instead:ObsPE 6= CwPE . If no family 204

has been defined (observations with uncorrelated errors shown 205

as blue dots in the bottom panel of 1), then the distribution of 206

the information across the numerous processors is done in the 207

traditional way (i.e domain decomposition ObsPE = CwPE). 208

If some observations are believed to be correlated and 209

associated to families, the main steps of the algorithm are: 210

• Each family of observations is assigned to a unique 211

processor, following the ObsPE assignment. 212

• The Cw’s are still distributed using the domain decomposi- 213

tion (following the CwPE assignment), to allow horizontal 214

interpolation to be a local operation on each PE. 215

• At each iteration, all the Cw’s associated with a family of 216

observations are gathered into the processor assigned to this 217

family. 218

• The observation penalty (Jo) is calculated. 219

• The last step is to redistribute the Ĉw’s to their original 220

location according to the CwPE assignment. 221

This new approach could significantly increase the communi- 222

cation between processors. However, the added communications 223

are not all-to-all; a set of lookup tables have been implemented 224

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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to ensure a ”link” between ObsPE and CwPE . This restricts225

the communication to a minimum. In addition, the dissociation226

between the ObsPE and CwPE offers the opportunity to improve227

the load balancing. Observations are rarely uniformly distributed228

across the model domain, which implies that some processors will229

have more work than others if a domain decomposition is used.230

With this new approach, families can be allocated to the least231

loaded processor and improve the overall load balancing of the232

system. The only real limitation of this approach is in the defini-233

tion of families. For observation types such as radar observations,234

or GPS, where natural groupings exist, it is relatively easy to use.235

However for observations such as geostationary satellite imagery,236

where the entire model domain is covered by one single image, the237

creation of families is more difficult. One approach for this case238

is for families to represent a section of the domain, with extra239

observations forming a halo.240

3.2. Treatment of observation error statistics241

The proposed approach for using spatially correlated errors is to242

treat each family in a similar way to the current approach for243

inter-channel correlations mentioned in section 2: Since R and its244

inverse change each assimilation due to the quality control process245

and observation availability, a Cholesky decomposition method246

is used to calculate the observation penalty, Jo as described in247

Weston et al. (2014) . This avoids the need to compute the248

inverse observation error covariance matrix directly. The method249

requires positive definite symmetric matrices, which covariance250

and correlation matrices are by definition, and is computationally251

cheaper than alternatives such as Gaussian elimination. This252

approach for handling correlated observation errors relies on the253

full R being block diagonal, otherwise it may be necessary to use254

an approximation method such as Yaremchuk et al. (2018).255

For each family it is necessary to determine the full256

spatial observation error correlation matrix C and a matrix of257

standard deviations D. For families containing fixed observations258

(observations at the same locations at each assimilation step)259

it may be possible to store a single fixed observation error260

covariance matrix. However, as mentioned earlier, due to261

quality control procedures and the intermittent nature of most262

observations, the observation error covariance matrix for each263

family will change at each assimilation step. It therefore makes 264

sense to derive C dynamically by simply providing a correlation 265

function and a pre-derived correlation length scale for each type 266

of family. For example C may be derived using, 267

Ci,j = e

(
−|∆yi,j |

Lr

)
. (3)

where for a given family, ∆yi,j is the separation distance between 268

a pair of observations yi and yj and Lr is the correlation 269

lengthscale. Similarly D is constructed using pre-derived variance 270

for each family. 271

After determining the full spatial observation error correlation 272

matrix and matrix of standard deviations, the observation error 273

covariance matrix Rf = DCD and the observation penalty (Jo) 274

can be calculated as follows: 275

1. Calculate a vector of observation minus model equivalent 276

differences dbo = (yo −H(x)). 277

2. Calculate the sensitivity q = R−1
f (yo −H(x)) using a 278

Cholesky decomposition (Golub and Van Loan 1996). 279

The Cholesky decomposition avoids the need to invert 280

the observation error matrix. Instead the sensitivity is 281

calculated by first factorizing Rf = UUT , where U is an 282

upper triangular matrix, then solving for q using forward, 283

and backward substitution. 284

3. The total observation penalty Jo for the family is calculated 285

by multiplying the sensitivity by the observation minus 286

model equivalent differences, 287

Jo =
1

2
(y −H(x))T R−1

f (y −H(x)) . (4)

The gradient of Jo needed for the variational minimisation 288

is calculated using, 289

∂Jo
∂x

= HTR−1
f

(
yo −H (x)

)
. (5)

4. Experimental details 290

The model used in this study is the operational UKV model. It is 291

a variable-resolution version of the nonhydrostatic UM (Davies 292

et al. 2005), allowing an explicit representation of convective 293
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6 D. Simonin et al.

processes as described in Lean et al. (2008). The horizontal294

grid has a 1.5-km fixed resolution on the interior surrounded295

by a variable-resolution grid that increases smoothly in size to296

4 km and has 70 vertical levels. The variable-resolution grid297

allows the downscaled boundary conditions, taken from the global298

model, to spin up before reaching the fixed interior grid. The299

initial conditions are provided from the operational 3 hourly 3D300

variational assimilation scheme that uses an incremental approach301

(Courtier et al. 1994) and is a limited-area version of the Met302

Office variational data assimilation scheme (Lorenc et al. 2000;303

Rawlins et al. 2007). The assimilation uses a vertical adaptive304

mesh that allows the accurate representation of boundary layer305

structures (Piccolo and Cullen 2011, 2012).306

The background error covariance has been derived using the307

Covariances and VAR Transforms software (Wlasak and Cullen308

2014), which is Met Office covariance calibration and diagnostic309

tool that analyses training data representing forecast errors310

using the National Meteorological Center (NMC) lagged forecast311

technique or ensemble perturbations. Here an NMC method312

has been applied to (T + 6h)− (T + 3h) forecast differences to313

diagnose variances and correlation length scales.314

For this study, we are using a 3DVar analysis system with315

first guess at appropriate time (FGAT). The background field316

is provided by a T + 3 forecast (actually time interpolated317

to observation time using fields every 30 minutes in the 3h318

observation window for FGAT). In addition to Doppler radial319

winds used at the centre of the assimilation window, the analysis320

uses hourly surface synoptic observations of temperature, wind,321

pressure, humidity and visibility, hourly wind profiler data, hourly322

satellite radiances, satellite winds and aircraft data, radiosonde323

and hourly GPS water vapour paths (note that hourly referes to324

the frequency usage of the observation) . Radar-derived surface325

precipitation rates available every 15 min are included via latent326

heat nudging from T-0.5 h to T+0.5 h and hourly cloud-cover-327

derived 3D relative humidity profiles via moisture nudging (Jones328

and Macpherson 1997; Dixon et al. 2009). The nudging was329

done over a period surrounding the analysis time, in addition to330

incremental analysis updating of the 3D-Var analysis increments.331

The Doppler radial winds are provided by 18 Doppler Weather332

radars spread over the United Kingdom. Each radar produces 5333

plan position indicator (PPI) scans every 10 minutes. The Doppler 334

radial winds are assimilated using a simple observation operator 335

where the horizontal model background winds are projected onto 336

the slant of the radar beam (vertical motion is ignored) (Simonin 337

et al. 2014). To reduce the density of the observations, multiple 338

observations are made into a single super-observation (3o by 3km) 339

and then thinned using Poisson disk sampling, as described in 340

Simonin et al. (2014). 341

The observation error correlation matrices are calculated 342

dynamically as described in section 3. In the correlation matrices 343

we only consider horizontal correlations; we neglect vertical 344

correlations as there are unlikely to be multiple observations, 345

and hence vertically correlated errors, in a single model column. 346

Instead we assume that observation errors are correlated only if 347

the observations are within a height band as described in Waller 348

et al. (2016c). This assumption results in a sparse block diagonal 349

observation error correlation matrix. Using this approach the 350

number of observations in a family cannot exceed 2000. When 351

Doppler radial wind observation errors are assumed uncorrelated, 352

the standard deviations for the control experiment are based on 353

those described in Simonin et al. (2014) and evolve with range, 354

whereas when correlation is accounted for, the standard deviations 355

and length scales Lr are based on those calculated in Waller et al. 356

(2016c). A comparison of the variances from both observation 357

error matrices (R) is shown in figure 2 as a function of height 358

for the 1o, 2o and 4o radar beams. The length scales Lr have been 359

determined by fitting Markov functions (eq. 3) to the estimated 360

horizontal correlations. We note that the length scales Lr are 361

dependent on both the height of the observation and the radar 362

beam elevation. Neither the prescribed variances nor length scales 363

differ between radars. However, due to the intermittent nature 364

of the observations, the observation error covariance matrices do 365

differ between radars; similarly, for any given radar the error 366

covariance matrices differ at each assimilation time. 367

The impact of including horizontally correlated Doppler radial 368

wind errors was investigated by running three experiments using 369

data for the period 1-20 May 2016. As shown in table 1, the 370

Control experiment uses a diagonal observation error matrix, 371

whereas both experiments Corr-R-3km and Corr-R-6km use a 372

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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correlated observation error matrix. The Control run and the Corr-373

R-6km experiment use a 6km thinning distance whereas the Corr-374

R-3km experiment uses a 3km thinning distance. We note that the375

Control run and the Corr-R-6km experiment use the same set of376

observations; therefore, comparisons between these experiments377

allow us to determine the impact of including spatially correlated378

observation errors in the system. Comparisons between the Corr-379

R-6km and Corr-R-3km experiments allow us to assess the impact380

of including denser observations (permitted by the inclusion of the381

correlated errors). Results from an additional experiment using382

the control’s set-up with 3km thinning instead of 6km will be383

presented periodically to add context. This experiment (Diag-R-384

3km) is known to be sub-optimal with the analysis degraded385

compared to the control. Comparison to the other experiments386

will positively bias the impact of correlated observation error;387

therefore, the authors limit the discussion of this experiment in388

the manuscript.389

5. Initial Results390

The initial impact of including the correlated observation error391

when assimilating Doppler radial wind has been assessed in three392

ways. First, we consider the computational performance of the393

system and its operational viability. Then we consider the relative394

impact on analysis and innovation accuracy by considering395

observation-minus-analysis and observation-minus-background396

statistics. Finally general forecast performance and specific397

quantitative precipitation forecast verification are presented.398

5.1. Variational data assimilation system performance399

This section focuses on the performance of the variational data400

assimilation system (VAR) during the trial.401

Both the Control and Corr-R-6km experiments used a thinning402

distance of 6km, which yield an average of 2000 Doppler403

radial wind observations per cycle. The Corr-R-3km experiment,404

however, use a reduced thinning distance of 3km, which405

provides on average four times more (8000) Doppler radial wind406

observations per assimilation cycle.407

Table 2 shows the average iteration and evaluation count for408

each experiment. The iteration and evaluation count from each409

run are very similar. (Note that one evaluation is one calculation410

of the penalty function, and one iteration is equivalent to one cycle 411

of the minimisation algorithm). This result is most significant 412

when considering that the Corr-R-3km experiment used four 413

times more Doppler radial wind observations. When comparing 414

the mean iteration/evaluation count to the standard deviation we 415

find that for all experiments there are substantial differences 416

observed between different assimilations. The large variance is 417

expected since we are using a regional data assimilation system 418

where the total number of observations can change significantly 419

depending on the time of assimilation (e.g. day vs. night). We note 420

that when comparing timeseries of iteration/evaluation counts 421

there are minimal differences between the three experiments (not 422

shown) and all follow a diurnal cycle. 423

Table 2 also shows the average and standard deviation of 424

the of observation and background penalty values (Jo and Jb 425

respectively). The changes in the mean value of Jo and Jb 426

suggest that the overall observation weight is reduced and more 427

importance is given to the background information as shown from 428

theoretical studies by Seaman (1977) or Stewart et al. (2008). 429

This is evident when Corr-R-6km is compared to the Control as 430

both experiments use the same observation count. Corr-R-6km 431

has an increased (reduced) observation (background) penalty. As 432

values of Jo and Jb are affected by the observation count, Corr-R- 433

3km needs to be compared to a Control experiment using 3km 434

thinning (Diag-R-3km ). The comparison of Corr-R-3km with 435

Diag-R-3km gives similar results to the Corr-R-6km/Control 436

comparison. The mean values of Jo and Jb for Diag-R-3km are 437

equal to 9679.28 and 2277.59 respectively, whereas for Corr-R- 438

3km these values are equal to 10134.63 and 2050.53. The decrease 439

in background penalty between Diag-R-3km and Corr-R-3km 440

more or less matches the increase in observation penalty between 441

the two experiments. 442

Table 3 shows the performance of the assimilation over 443

the trial period, as well as over 10 iterations, for the three 444

experiments. Comparing the experiments we see that the increased 445

communication did not impact on the performance of the code. 446

The cost of computing Jo is minimal compared to that of J as 447

wells as the wall-clock time. The cost of Jo remains minimal and 448

there is little change in the total cost of J even when correlated 449

observation error are used and observation count is increased. 450
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Overall results show that the proposed strategy to introduce451

correlated observation error statistics does not diminish the com-452

putational performance of the assimilation system. Furthermore,453

denser observations with correlated errors can be assimilated454

without increasing the computational cost.455

5.2. Impact on the analysis456

Residual (O −A) and innovation (O −B) statistics provide457

a quantitative measurement of the impact of the correlated458

observation error upon the analysis for individual observation459

types. The O −A are retrieved from the assimilation system as460

the residual at the end of the minimisation. First, we note that461

the mean bias from the innovation or the residual for this Doppler462

radial wind will always tend toward zero for a large quantity of463

observations due to the radial nature of the observation (Salonen464

et al. 2007). Instead figure 3 shows theO −B andO −A standard465

deviation (σO−B and σO−A hereafter) from the Control, Corr-R-466

6km and Corr-R-3km as a timeseries for each cycle over the of467

the trial. The time series of Doppler radial wind’s σO−B , yield468

similar results, with mean σO−B over the length of the trial for469

the Control, Corr-R-6km and Corr-R-3km is equal to 2.77, 2.76470

and 2.73 respectively. Here the background is a T + 3 forecast471

from the previous cycle (3 hourly data assimilation system). More472

pronounced differences between the control and the experiments473

are visible in the Doppler radial wind’s σO−A (figure 3). In474

the case of Corr-R-6km (figure 3-a), the values of σO−A are475

consistently slightly higher than those for the Control. In the case476

of Corr-R-3km (figure 3-b) the σO−A are comparable to the values477

yielded by the Control.478

The differences in σO−A between the two runs with identical479

observation count (i.e. Control and Corr-R-6km) confirm the480

results of the previous section. Despite the fact that the observation481

error matrix used in Corr-R-6km had smaller or equivalent482

variance compared to those prescribed for the Control experiment483

(figure 2), the weight of the Doppler radial wind observations484

was reduced in Corr-R-6km. This in turn reduces the fit to the485

observations and increases analysis error. This increase in analysis486

error is not seen in the Corr-R-3km’s experiment where the σO−A487

shows similar values compared to the Control. The reduction in488

the observation weighting has been reversed by the increased489

observation count. This is supported by considering the additional 490

Diag-R-3km experiment, where σO−A is consistently lower 491

(mean value of 1.20) compared to the Control (mean value of 492

1.57). 493

Before considering the impact on other observation types, 494

we first consider how the structured wind increments may have 495

been modified by the introduction of correlated observation error. 496

Figure 4 shows the mean length scale, the mean variance and 497

maximum values of the zonal wind increment at each model level 498

over the trial. Length scale is simply defined as the fourth root 499

of the ratio of the variance of a field (φ) and the variance of 500

its Laplacian (calculated using a second-order finite difference 501

approximation) (Descombes et al. 2015); that is 502

L =

(
8 · variance(φ)

variance(∇2φ)

)1/4

. (6)

We note that the mean increment can be related to systematic 503

error in either observations or the model (Rodwell and Palmer 504

2007). However it has been shown that the Doppler radial wind 505

observations used here are unbiased (Simonin et al. 2014). When 506

the correlated observation error covariance matrix is introduced 507

(Corr-R-6km) the zonal wind increment becomes smoother 508

with smaller extremes at all model levels. The introduction of 509

correlation acts as a low-pass filter, reducing the weight from 510

individual observations and increasing the importance of the 511

background information. This is consistent with the results from 512

the σO−A. However, increasing the observation density (Corr-R- 513

3km) counterbalances the effect of the correlated R, by increasing 514

the amplitude and the variance of the increment values at all 515

levels so that the values are closer to the Control experiment. It 516

produces increments with smaller length scales than the Control 517

from the assimilation of denser observations which are more able 518

to represent smaller scale features. 519

We now consider the impact from the introduction of the 520

correlated observation error covariance matrix for the Doppler 521

radial wind on the fit to other observations assimilated during 522

the trial. Figure 5 shows the trial average ratio of σO−A and 523

σO−B , between the experiments and the Control for all the wind 524

observation types used in the trial. The error bars shown in 525

figure 5 and subsequent figures, represent the 95% confidence 526

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls
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level. Due to high statistical variability between cycles, one should527

only consider the significant values to assess the impact. Most528

trial average innovation and residual standard deviations from the529

Corr-R-6km and Corr-R-3km yield smaller values compared to530

the Control, with Corr-R-3km outperforming Corr-R-6km. This531

trend is not completely homogeneous with, for example, mixed532

impact for the scatterometer wind (not statistically significant).533

Although not significant, the O −A and O −B from Corr-R-534

6km, exhibit a degradation for meridional wind from Sonde535

and Aircraft respectively. Note that Sonde U and V account536

for radiosonde profiles as well as wind-profiler observations.537

For all wind observations, the additional Diag-R-3km produces538

innovation and residual values (figure 5) that never improve539

upon the results of either the Corr-R-6km or Corr-R-3km.540

Furthermore, the innovation and residual values are significantly541

worse compared to the Control, with a decrease in analysis and542

background accuracy reaching 1% and more on a few occasions.543

For example, compared to the Control, U and V wind from544

Sonde are degraded by 2% in the σO−A and at least 0.5% in the545

σO−B . Note that Corr-R-3km shows an improvement of 0.5% in546

the σO−A and at least 0.75% in the σO−B .547

The reduction in analysis error and improved innovations548

are equally visible when considering the results from satellite549

observations (figure 6). Again the general impact is stronger for550

Corr-R-3km. For the rest of the surface and upper-air observations551

(figure 7), the impact seen when considering Corr-R-6km is552

very much neutral, whereas Corr-R-3km still shows benefit.553

The statistics for relative humidity and potential temperature554

observations from sonde are neutral to negative in the σO−A (7-a),555

but improve in the σO−B (7-a). Again the additional Diag-R-3km556

(not shown) produces residual values that are worse compared to557

the Control with a maximum increase of 3% for relative humidity.558

Also, the σO−B do not outperform the Corr-R-6km or Corr-R-559

3km experiments. For satellite observations, Diag-R-3km has560

small overall improvement in comparison to the Control (0.3%561

in σO−B). However, Corr-R-6km or Corr-R-3km experiments are562

still significantly superior.563

We now summarize the results from this section. From the564

analysis of O −B and O −A it is clear that the introduction of565

correlated observation error for the Doppler radial winds had a566

general benefit in reducing the analysis error. From the results 567

of the residual statistics (σO−A) and the shape of the wind 568

increments, we see that the introduction of correlated observation 569

error has a multi faceted effect (Daley 1991). The changes 570

in the σO−A from Corr-R-6km experiment compared to the 571

Control, as well as the observation and background penalty values, 572

demonstrated that the Control experiment settings were producing 573

an analysis that was over-fitting the Doppler radial wind. The 574

use of a diagonal observation-error covariance matrix when 575

observation errors are clearly horizontally correlated (Waller et al. 576

2016c) produced a suboptimal analysis (Liu and Rabier 2003). 577

When the observation errors are correlated with a length scale 578

of 20-30km (Waller et al. 2016c), thinning the data to a 6km 579

spacing does not result in negligible error correlations between 580

assimilated observations. By introducing correlated observation 581

error statistics in the assimilation algorithm (Corr-R-6km), the 582

assimilation algorithm acts like a low-pass filter on the observation 583

increments. Reducing the thinning distance shows benefit only 584

when the correlation in the observation errors are accounted 585

for as demonstrated by results from Corr-R-3km. Omitting 586

the correlation when using a dense network of observations, 587

only produces a sub-optimal system, where dense observations 588

are over-fitted and the general analysis error is increased. By 589

contrast accounting for correlation when using a dense network 590

of observations, increases the potential number of neighbour 591

observations yj to an observation yi, allowing for synergy 592

between more pairs of observations, as described by Fowler et al. 593

(2018), as well as allowing the information content from smaller 594

scales to be exploited. This transforms the assimilation algorithm 595

and allows it to behave more like a high pass filter compared to 596

the Corr-R-6km setting. 597

We support these results using simple model experiments 598

(details are given in the appendix). We designed three experiments 599

to imitate the changes in observation density between the Control, 600

Corr-R-6km and Corr-R-3km experiments. Figure 8 shows the 601

eigenvalues of the analysis error covariance matrix in observation 602

space for the three simple model experiments: 603

• The Control experiment is qualitatively similar to the 604

simple model experiment shown as a black curve in 605
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figure 8. Here the simple model is using a diagonal606

observation error covariance but the true observation error607

covariance contains some correlation and the state is half608

observed.609

• The Corr-R-6km experiment has a similar character to the610

simple model experiment shown as a gray curve in figure 8,611

where a correlated observation error covariance is used and612

the state is half observed.613

• The Corr-R-3km experiment is qualitatively similar to the614

simple model experiment shown as a black dashed curve in615

figure 8. A correlated observation error covariance is used616

and the state is fully observed.617

Figure 8 shows that assimilating observations with the correct618

error statistics reduces the analysis uncertainty at all scales619

compared to the case when the observation error correlations are620

neglected. However, in the case where the observation density is621

coarse, most of the reduction in analysis uncertainty is seen at622

large scale (grey curve of figure 8). Increasing the observation623

sampling when correlated observation errors are used, further624

reduces the analysis uncertainty. However, this time the additional625

reduction in uncertainty takes effect at small scales (dashed626

curve of figure 8), which is consistent with the analysis of our627

experiments.628

5.3. Forecast performance629

This section focuses on the impact on the forecast from the630

introduction of Doppler radial wind’s correlated observation error.631

5.3.1. Overall forecast performance632

In order to quantify forecast skill of a variable such as temperature,633

wind or cloud cover it is possible to check the root mean square634

(RMS) or the equitable threat score (ETS) difference (Ebert et al.635

2003) between an observed quantity and its forecast equivalent at636

a range of lead times, from T+6 to T+36 at 6-hour intervals. The637

forecast value at observation locations is calculated from a simple638

bilinear interpolation of the forecast taking a distance-weighted639

average of the four surrounding grid point values. From the values640

derived following the above process an index that summarizes this641

skill score can be determined so as to make it easier to tell how a642

given trial experiment is performing with respect to the Control.643

The Met Office’s UK NWP Index is defined as a weighted 644

average of T+6 to T+36 skill scores over the UK domain, for 1.5m 645

temperature, 10m wind (speed and direction), precipitation (equal 646

to or greater than 0.5, 1.0 and 4.0 mm over the preceding 6 hours), 647

total cloud amount (equal to or greater than 2.5, 4.5 and 6.5 oktas), 648

cloud base height (given at least 2.5 oktas and equal to or less than 649

100, 500 and 1000 m above ground) and near-surface visibility 650

(equal to or less than 200, 1000 and 4000 m). 651

Table 4 shows the results of the surface verification as 652

percentage of improvements. For the Corr-R-6km UK NWP 653

index changes by −0.005% compared to the Control run. For 654

the Corr-R-3km UK NWP index changes by +0.021% compared 655

to the Control run. Neither trial presents statistically significant 656

differences in skill with respect to the Control run. 657

5.3.2. Impact on precipitation 658

So far we have concentrated our effort on the validation of 659

the forecast performance overall. However, one of the main 660

motivations of convective-scale assimilation is to improve short- 661

term quantitative precipitation forecasts (QPF). Verification 662

methods have conventionally been designed to assess the model 663

forecast at point locations only. However, the temporal and 664

spatial intermittent nature of a parameter such as rain makes 665

these approaches unsuitable in general (Droegmeier 1997). This 666

problem is amplified in this study because the 1.5 km model 667

resolution is high enough to represent small-scale features and 668

local variability. In response to this problem, a growing list of 669

methods to verify precipitation forecasts based on the physical 670

realism or spatial closeness to observations have been developed 671

(Gilleland et al. 2009). Some techniques have concentrated on 672

object verification (Ebert and MacBride 2000; Davis et al. 2006; 673

Johnson and Wang 2013) by classifying rain features according to 674

their characteristics. Other methods have focused on the spatial 675

error and one such score is the Fractions Skill Score (FSS) 676

introduced by Roberts and Lean (2008). The FSS provides a 677

measure of the spatial agreement between two fields by comparing 678

the fractional differences in the coverage of rain over differing 679

sized squares (neighborhoods) centered at every grid square. More 680

about the definition and use of the FSS can be found in the 681

original paper by Roberts and Lean (2008) and then subsequently 682
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in Roberts (2008), Mittermaier and Roberts (2010) or Skok683

(2015). Here the two fields of hourly accumulations of surface684

precipitation are from the forecast itself and the radar composite685

of derived rain rate.686

Figure 9 shows the difference in fraction skill score between687

the experiments (Corr-R-6km: figure 9-a; Corr-R-3km: figure 9-688

b) and the Control as a Hinton diagram for different forecast lead689

times and different thresholds of hourly rainfall accumulation. The690

sign and the amplitude of the change in FSS values (∆FSS) are691

shown with the color and size of the square respectively: positive692

values (positive impact) are shown as grey squares, whereas693

negative values (negative impact) are shown as black squares.694

The introduction of the correlated observation error only (Corr-695

R-6km) does not show any real impact on precipitation (figure696

9-a). The ∆FSS values are small (max|∆FSS| = 0.009) with an697

almost homogeneous distribution of positive and negative impact.698

The results are more promising when the correlated observation699

error is introduced in association with an increase in observation700

density (figure 9-b). The ∆FSS values are larger compared to701

the previous comparison, but more importantly, a positive impact702

can be seem until T + 7 forecast lead time. The biggest positive703

impact is found for low threshold values (e.g. 0.2mmh−1 and704

90th percentile).705

Note that the FSS values for the Control forecasts, for a706

neighbourhood size of 41 grid boxes, were all well above 0.6707

indicating an already skillful forecast; although little impact can708

be seen over the entire period of the fully cycled trial, individual709

cycles do show some improvements. Figure 10 gives an example710

of the sort of differences that can be seen and shows an hourly711

accumulated precipitation T + 3 forecast valid at 1500 UTC on712

the 7th of April 2016, for Control, Corr-R-6km, and Corr-R-3km.713

During the 7th of April 2016, a band of showers developed and714

moved southwards, producing heavy precipitation on the east and715

central part of the UK. Compared to the observed radar derived716

hourly rain accumulation (figure 10-a), the Control (figure 10-b)717

produced showers that were typically too sparse and locally far too718

intense. The Corr-R-6km improved the shower coverage, but the719

real benefit of including correlated observation error is visible in720

the Corr-R-3km experiment (figure 10-d), where shower coverage721

and intensity was noticeably improved. This is supported by the 722

FSS value shown in figure 10-e and f. 723

The improvement seen in this particular forecast can be 724

attributed to the change in observation weight. When accounting 725

for correlated observation error the observation uncertainty 726

information is no longer mutually independent. This results in a 727

small down-weighting of the observations as demonstrated by the 728

Corr-R-6km experiment (Figure 4). This effect results in a small 729

benefit to the forecast and FSS (Figure 10c and e) as the Control 730

experiment was over-fitting the Doppler radial wind producing 731

broad analysis increments (Figure 4). Increasing the observation 732

density in conjunction with correlated observation errors negates 733

the smoothing effect seen in Corr-R-6km. The use of more 734

accurate error statistics enables an improved representation of the 735

small scale information content from the observation resulting in 736

a more balanced analysis increment (Figures 4 and 8). Over time 737

the small scale information propagates through the system and 738

produces improved forecasts as seen in Figures 10d. 739

6. Conclusions 740

In this work, we provide a pragmatic strategy that allows 741

the use of correlated observation errors in a high dimensional 742

data assimilation system. We describe the implementation of 743

this strategy in the Met Office system and then present a study 744

demonstrating the practical feasibility of including horizontally 745

correlated Doppler radial wind observation error statistics and 746

its impact using an operational NWP system. The new strategy 747

was achieved by altering the usual Data Parallel paradigm; rather 748

than distributing observations with correlated errors using a 749

domain decomposition, the observations are instead distributed 750

in families that have mutually correlated errors as described in 751

section 3.1. The second significant change relates to the actual 752

use of the horizontally correlated observation errors statistics in 753

the derivation of the observation penalty. This was implemented 754

following the description presented in section 3.2. 755

A trial has been run for 20 days using the Met-Office UKV 756

model configuration and 3D-Var, including a Control experiment 757

with the operational settings (diagonal R), an experiment using 758

the operational settings with a correlated observation error 759
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covariance matrix, and an experiment using correlated observation760

error statistics with increased observation density.761

Analysis of the impacts from the introduction of Doppler radar762

radial wind horizontal correlated observation errors on the data763

assimilation system and forecast skill have also been presented.764

The introduction of correlated observation error has changed the765

response from the variational system as follows:766

• Introducing horizontal correlated observation errors767

improves the O −A and O −B statistics in both768

experiments. This suggests that the Control settings769

with a diagonal observation error covariance matrix causes770

the assimilation to over-fit Doppler radial observations.771

• The positive impact of the introduction of correlated772

observation error is stronger on the O −A and O −B773

statistics when dense observations are used. We showed774

that introducing the correlated observation error, whilst775

keeping the observation density fixed, has little impact776

on the analysis uncertainty at the small scales. However777

this is remedied by increasing the observation density778

that introduces additional observation information at small779

scales.780

• The inclusion of correlated observation error statistics781

allows dense observations to be assimilated without782

detriment to the analysis quality.783

• We showed that by accounting for the correlation in784

the Doppler radial wind observation error, observation785

density can be increased without any degradation to the786

computational speed of the assimilation system.787

Our results suggest that the use of a diagonal R (Control788

experiment) created a suboptimal system, where a 6km789

observation thinning distance was too dense (e.g. Liu and Rabier790

(2003) or Stewart et al. (2008)). As shown for example by Daley791

(1991) or Fowler et al. (2018) the system’s responses to correlated792

observation error are complex and make use of observation793

information at specific scales. However, we showed that the794

general behavior of the data assimilation system is comparable795

to what can be expected using a simple model.796

The impact on the forecast is more subtle. A small positive797

signal can be seen when the observations are compared to the798

model background within the assimilation system. This indicates 799

that the impact on the forecast lasts long enough to improve the 800

model background and consequently benefit the assimilation in 801

a cycling NWP system. Regarding the conventional verification 802

scores, the results indicate that over the length of the forecast there 803

is a small positive impact, if any. A stronger signal is visible in 804

the QPF scores. A positive impact can be seem until a forecast 805

lead time of T + 7. The biggest positive impact is found at low 806

threshold values, which implies an improvement in the location of 807

the rain. For all verification scores, the increase in the observation 808

density yields better results. 809

To the best of our knowledge this is the first operational 810

implementation of horizontal correlation observation errors in 811

a data assimilation system for numerical weather prediction. 812

Despite a marginal impact on the forecast, the introduction 813

of the correlated observation error allows the assimilation to 814

make better use of the observations by allowing the assimilation 815

of very dense observation networks, such as radar, without 816

any cost (no significant increase of wall clock time) to the 817

assimilation. We note that we have only considered the impact 818

for a single case study (20 days). Furthermore, the only alteration 819

in the experiments has been the inclusion of the correlated 820

observation errors. Further studies are required to analyse the 821

impact for different meteorological conditions. Improved settings 822

for operational parameters associated with Doppler radial wind 823

assimilation may also benefit the forecast. This may include 824

testing for statistical consistency of background and observation 825

errors using the diagnostic of (Desroziers et al. 2005). In addition, 826

since this work, the Met-Office operational system for convective 827

scale numerical weather prediction system has been upgraded to 828

4D-VAR. Therefore this system is now being extended to the 4D- 829

VAR framework. 830

Appendix 831

Here we present a simple example to help explain the results given 832

in Section 5. 833

In statistical linear estimation theory, the analysed state, xa, is 834

given by 835

xa = xb + δxa = xb + K̃dob , (7)
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where δxa is the analysis increment, xb is the background state,836

dob the innovation vector,837

dob = yo −Hxb, (8)

and K̃ the gain matrix,838

K̃ = B̃HT (HB̃HT + R̃)−1. (9)

The matrices B̃ and R̃ are the assumed background and839

observation error covariance matrix respectively.840

To understand the impact on the analysis of using a sub-optimal841

observation error correlation matrix we consider the analysis842

error covariance matrix, A. If we know the exact background843

error statistics, B̃ = B, but are knowingly using an incorrect844

observation error covariance matrix, R̃ 6= R then the analysis845

error covariance matrix is given by,846

A = (I− K̃H)B + K̃(R− R̃)K̃T . (10)

We consider the impact on the analysis error covariance using847

three simple model experiments. We assume that our background848

is evaluated on 128 equally spaced points in a 1D periodic849

domain, (-32π,32π]. In order to compare with the results given850

in Section 5 we consider two different observation operators, one851

in which the full state is observed and one where the state at852

every other grid point is observed. We further assume that the853

true observation and background error statistics are homogeneous854

and are defined, as in Waller et al. (2016b), using a second order855

auto regressive function with length scales 5 and 10 respectively.856

For our first experiment we assume that we observe half the state857

and only know the observation error variance and hence neglect858

the correlations i.e. R̃ = I. For the second experiment we observe859

half the state, but this time use the correct R matrix. Finally we860

increase the observation density and observe all grid points and861

assume the correct R matrix.862

In all three experiments the matrices R, R̃ and HBHT are863

circulant matrices. Since the sums, products and inverses of864

circulant matrices are circulant, HAHT is also circulant. The865

eigenvalues of circulant matrices are positive and can be found866

using a discrete Fourier transform and consequently may be 867

ordered according to wave number. In this case the order of 868

the eigenvalues has a relation to the scales in the analysis error 869

in observation space. Therefore, the eigenvalues of the analysis 870

error covariance in observation space allows us to understand 871

the uncertainty we have at different scales in the analysis in 872

observation space. The kth eigenvalue, φk, of a circulant matrix 873

C ∈ RN×N associated with frequency ωk = 2πk
∆xN

, and sampling 874

interval ∆x, is, 875

φk =

N−1∑
n=0

cne
− 2πkni

N , (11)

where cn is the nth coefficient of the first row of the circulant 876

matrix. In our experiments, due to the different number of 877

observations, the size of HAHT changes. However, by analysing 878

the results as a function of wavenumber we can compare 879

physically consistent quantities. The results for our experiments 880

are plotted in Figure 8 and discussed in Section 5. 881
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Table 1. Experiment details

Experiment Doppler wind observation
error matrix

Doppler wind super-observation
thinning distance

Control Diagonal observation error
matrix (Operational)

6 km

Corr-R-6km Correlation observation
error matrix

6 km

Corr-R-3km Correlation observation
error matrix

3 km

Diag-R-3km Diagonal observation error
matrix (Operational)

3 km

Table 2. Trial average (µ) and standard deviation (σ) of various parameters measuring the performance of the assimilation system.

Experiments
Iteration count Evaluation count Jb Jo
µ σ µ σ µ σ µ σ

Control 27.4 15.1 40.8 23.5 1752.16 526.1 9207.53 2707.16
Corr-R-6km 27.7 14.6 41.6 22.8 1722.43 500.37 9235.66 2732.84
Corr-R-3km 28.2 14.4 40.9 21.6 2050.53 761.25 10134.63 3175.32
Diag-R-3km 29.1 14.9 41.5 23.8 2277.59 910.74 9679.28 2900.41

Table 3. Computational cost in seconds. The first row shows the trial average wall-clock time (W (trial)). Subsequent rows show the average wall-clock time
(W (10)), the average cost for calculating J (J(10)), and the average cost for calculating Jo (J(10)

o ), over 10 iterations for the 12 Z run on the 7th of April 2016.

Control Corr-R-6km Corr-R-3km

W
(trial) [s] 272 293 288

W
(10) [s] 73 72 73

J
(10) [s] 22.16 23.83 23.43
J

(10)
o [s] 0.81 2.21 2.23

Table 4. Surface verification scores and UK NWP index. All the values are presented as a percentage (positive values show improvement over the Control).

Score Corr-R-6km Corr-R-3km
Visibility +0.027 + 0.046
Precipitation -0.063 -0.050
Cloud cover +0.047 +0.012
Cloud base height -0.013 -0.005
1.5m temperature -0.014 +0.005
10 m wind +0.010 +0.013
UK index -0.005 +0.021
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Assigned to PE1
0 obs. with correlated error

6 obs. with uncorrelated error

Assigned to PE2
29 obs. with correlated error 

2 obs. with uncorrelated error
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0 obs. with correlated error 
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PE-1 PE-3

PE-2 PE-4

Full domain

Domain 
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Family of correlated 
observation
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0 obs. with correlated error 
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5 obs. with correlated error 

2 obs. with uncorrelated error
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9 obs. with correlated error 
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Assigned to PE4
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Observations with 
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Figure 1. Example of the observation parallelisation in VAR for two observation types (uncorrelated and correlated error) with a 4 PE decomposition. (a) Conventional
approach, i.e. without accounting for the horizontal correlation of the observation error. Each observation (with uncorrelated and correlated errors) is distributed between
the 4 PE according to its geographical location. (b) The new approach i.e. accounting for the horizontal correlation of the observation error. As before, each observation with
uncorrelated error statistics is distributed between the 4 PE according to its geographical location. However, this time all the observations with mutually correlated errors
are assigned to a single family and sent to PE 2 regardless of their physical location. In both panels the model columns (Cw) are distributed according to their geographical
location. This implies that the distribution of each Cw and observation is equivalent in (a) that is ObsPE = CwPE , and different in (b) i.e: ObsPE 6= CwPE .
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Figure 2. Error variance as function of height for three radar’s beam elevation (1o, 2o and 4o). (Grey curve) operational error variance used in the Control experiment
when the observation error covariance matrix is assumed to be diagonal. (Black curve) error variance for the diagnosed correlated observation error covariance matrix.
(Black dash curve) weighted least square fit of the error variance for the diagnosed correlated observation error covariance matrix used in the Corr-R-6km and Corr-R-3km
experiments.
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Figure 3. Time series standard deviation of Doppler radial wind O − A (a,b) and O − B(c,d) for the Control and Corr-R-6km (a,c) and for the Control and Corr-R-3km
(b,d). In both panels the Control is in black and the experiment in grey.
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Figure 4. Trial average (a) maximum (b) variance and (c) length-scale (eq 6) for the zonal wind increment against model levels. (Black Curve) Control experiment; (grey
curve) Corr-R-6km experiment and (black dash curve) Corr-R-3km experiment.
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Figure 5. Wind observations (a)O − A and (b)O − B trial average standard deviation ratio between the experiments and the Control expressed as percentage and scaled

to show positive impact as negative values (i.e.
σ(O−A)exp
σ(O−A)ctrl

− 1 and
σ(O−B)exp
σ(O−B)ctrl

− 1). In black exp =Corr-R-6km, in dark grey exp =Corr-R-3km and in light grey

exp =Diag-R-3km . The error bars represent the 95% confidence level.
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Figure 6. Similar to 5 but for Satellite observations. In black exp =Corr-R-6km and in dark grey exp =Corr-R-3km.
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Figure 7. Similar to 6 but for the rest of the observations used.
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Figure 8. Panel (a) shows the eigenvalues of the analysis error covariance matrix (φk) in observation space (see appendix for details) against wavenumber. Insert (b)
shows φk in log space for wavenumber ranging from 20 to 35. (Black curve) Φk using a diagonal observation error covariance when the true observation error covariance
contains some correlation with the state being half observed. (Grey curve) φk using a correlated observation error covariance with the state being half observed. (Black
dashed curve) φk using a correlated observation error covariance with the state being fully observed.
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Figure 9. Hinton diagram showing the trial average FSS differences between the Corr-R-6km and the Control experiment (a) and between the Corr-R-3km and the Control
experiment (b) for different forecast lead time and hourly rainfall accumulation thresholds with a neighborhood size of 41 grid-boxes. The sign and the amplitude of
the change in FSS are shown with the color and size of the square respectively: positive values (positive impact) are shown as gray squares, whereas negative values
(negative impact) are shown as blacks square. The rainfall accumulation thresholds on y-axis are 0.2mmh−1 (abs:0.2), 1.0mmh−1 (abs:1), 2.0mmh−1 (abs:2), the
90th percentiles (freq:0.1) and the 99th percentiles (freq:0.01).
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Figure 10. Hourly accumulated precipitation forecasts for 1500 UTC on the 7th of April 2016, for Control [b], Coor-R-6km [c] and Coor-R-3km [d] at T+3. Panel [a]
shows the observed radar derived hourly rain accumulation at 1500 UTC. Panels [e] and [f] show the FSS as a function of neighbourhood size for the forecast experiments
using thresholds of 0.2mm/h and top 5% (95th percentile) respectively.
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