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Summary 

Human activities in the Anthropocene are influencing the twin processes of biodiversity 

generation and loss in complex ways that threaten the maintenance of biodiversity levels 

which underpin human well-being. Yet, many scientists and practitioners still present a 

simplistic view of biodiversity as a static stock, rather than determined by a dynamic 

interplay of feedback processes that are affected by anthropogenic drivers. Biodiversity 

describes the variety of life on earth, from the genes within an organism, to ecosystem level. 

However, this article focusses on variation amongst living organisms, both within- and 

between- species. Within species, biodiversity is reflected in genetic, and consequent 

phenotypic variation between individuals. Genetic diversity is generated by germ line 

mutations, genetic recombination during sexual reproduction and immigration of new 

genotypes into populations. Across species, biodiversity is reflected in the numbers of 

different species present and also, by some metrics, in the evenness of their relative 

abundances. At this level, biodiversity is generated by processes of speciation and 

immigration of new species into an area. Anthropogenic drivers affect all these biodiversity 

generation processes, whilst the levels of genetic diversity can also feedback and affect the 

level of species diversity, and vice versa. Therefore, biodiversity maintenance is a complex 

balance of processes and the biodiversity levels at any point in time may not be at 

equilibrium.   

      A major concern for humans is that our activities are driving rapid losses of biodiversity, 

which outweigh by orders of magnitude the processes of biodiversity generation. A wide 

range of species and genetic diversity could be necessary for the provision of ecosystem 

functions and services (for definition see Braat 2016); for example in maintaining the nutrient 

cycling, plant productivity, pollination and pest control that underpin crop production. The 

importance of biodiversity becomes particularly marked over longer time periods and in 

particular under varying environmental conditions. 



       In terms of biodiversity losses, there are natural processes that cause roughly continuous 

low level losses, but there is also strong evidence from fossil records for transient events in 

which exceptionally large losses of biodiversity have occurred. These major extinction 

episodes are thought to have been caused by various large-scale environmental perturbations 

such as volcanic eruptions, sea level falls, climatic changes and asteroid impacts. From all 

these events, biodiversity has shown recovery over subsequent calmer periods, although the 

composition of higher level evolutionary taxa can be significantly altered. In the modern era, 

biodiversity appears to be undergoing another mass extinction event, driven by large-scale 

human impacts. The primary mechanisms of biodiversity loss caused by humans vary over 

time and by geographic region but include: overexploitation, habitat loss, climate change, 

pollution (e.g. nitrogen deposition) and the introduction of non-native species. It is worth 

noting that human activities may also lead to increases in biodiversity in some areas through 

species introductions and climatic changes, although these overall increases in species 

richness may come at the cost of loss of native species and with uncertain effects on 

ecosystem service delivery. Genetic diversity is also affected by human activities, with many 

examples of erosion of diversity through crop and livestock breeding or through the decline 

in abundance of wild species populations. Significant future challenges are to develop better 

ways to monitor both the drivers of biodiversity loss and biodiversity levels themselves, 

making use of new technologies, and improving coverage across geographic regions and 

taxonomic scope. Rather than treating biodiversity as a simple stock at equilibrium, 

developing a deeper understanding of the complex interactions— between environmental 

drivers, and between genetic and species diversity — is essential to manage and maintain the 

benefits that biodiversity delivers to humans, and to safeguard the intrinsic value of the 

Earth’s biodiversity for future generations. 
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The need to understand biodiversity loss  

Ever since the expansion of early humans across the planet, biodiversity has been impacted 

by our activities, although the scales of impact and the primary mechanisms of action are 

changing over time. In the early 21st Century, impacts are now so extensive that humans are 

presiding over a planetary scale re-assortment of species and over substantial losses such that 

many refer to the Anthropocene period as the Earth’s sixth mass extinction event (Barnosky 



et al. 2011). International policy initiatives such as the Convention for Biodiversity (CBD 

2010) have failed to halt the loss of biodiversity. Yet, many recent environmental studies 

suggest that devising appropriate strategies to maintain biodiversity levels will be crucial for 

maintaining human well-being in the future. As a consequence, a new paradigm in 

environmental management, spanning both the social and natural sciences, has emerged 

around the concept of natural capital accounting, where biodiversity is viewed as a ‘natural 

capital stock’ underpinning the flow of ecosystem services (Monfreda et al. 2004; Jones 

2010; Kareiva et al. 2011; Christian 2014; Helfenstein & Kienast 2014; Remme et al. 2016). 

This may increase the visibility of biodiversity in mainstream economic decisions, but a 

concurrent danger is that this framing ignores the highly dynamic and complex nature of 

biodiversity. In this article, this dynamism and complexity is explored along with the varied 

processes responsible for the generation and loss of biodiversity. These processes include 

both natural ‘background’ rates of biodiversity change that have operated in the absence of 

humans, and also the substantial interventions into these processes by human activities. 

Biodiversity is considered at both the genetic and species level, as well as the interactions 

between these levels. The overarching aim is to develop a better understanding of the 

complex processes that influence the balance between biodiversity generation and loss and 

which ultimately determine the maintenance of biodiversity levels. The topic is important 

because these biodiversity levels in turn influence the delivery and resilience of ecosystem 

services for humans. The work draws on paleoecological and contemporary ecological 

research, and provides a more nuanced view of biodiversity ‘stocks’ that will hopefully 

contribute to broader environmental management studies. 

 

What is biodiversity and how is it measured?   

Biodiversity describes the variety of life on earth, from the genes within an organism, right 

up to ecosystem level. The Convention for Biological Diversity (CBD 1992) defines 

biodiversity as “the variability among living organisms from all sources including, inter alia, 

terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they 

are part; this includes diversity within species, between species and of ecosystems”. This 

review article focusses primarily on biodiversity at the level of genes and species, rather than 

ecosystems. This is partly due to space constraints, but also because the methods to quantify 

biodiversity at these levels of the hierarchy are better developed than at the ecosystem level. 

Many articles focus exclusively on either genetic or species-level diversity but fail to 

consider the relationships between the two. Here, a more integrated approach is adopted in 



the hope that it leads towards a fuller and more holistic understanding of the implications of 

biodiversity loss. 

 

What is Species diversity? 

Species diversity reflects the number and proportional abundance of species in a given 

community. It is important to note that our estimates of species diversity often come from 

samples which are assumed to reflect true levels of overall diversity, but which will nearly 

always be imperfect or biased to some degree (Magurran 1988). The most commonly used 

metric is species richness, simply reflecting the number of unique species. However, two 

communities can have the same number of species, but one may be more diverse because it is 

more balanced in terms of species’ relative abundances, whilst in the other community some 

species are very dominant and others rare (Figure 1). Therefore, a number of diversity metrics 

have been developed to account for this, including the Shannon-Weiner Index and the Gini-

Simpson index. There are a large number of such diversity metrics, each capturing slightly 

differently the components of richness and dominance (Pielou 1975; Magurran 1988; 

Magurran 2004). Rather than treating each species as equal, other extensions of diversity 

metrics have also been developed which weight differences between species with respect to 

ecological function or phylogenetic uniqueness. Functional diversity measures quantify the 

distribution of traits in a community or the relative magnitude of species similarities and 

differences in those traits (Petchey et al. 2004; Villéger et al. 2008; Cadotte et al. 2011). 

Phylogenetic diversity captures the evolutionary distinctness between species in terms of the 

total length of branches separating them in a phylogenetic tree. There are many different 

proposed ways of calculating these metrics, some which also integrate species relative 

abundances (Rao 1982; Chao et al. 2010).  

 

 

 

Figure 1, Schematic of three communities differing in species α diversity (species type 

indicated by filled shapes). Panel A has the lowest diversity, whilst panels B and C have 



equal species richness. However, panel C has a higher diversity measured by metrics which 

incorporate evenness in abundance, such as the Shannon-Wiener index or the Gini-Simpson 

index, and it also has higher phylogenetic diversity. 

 

What is Genetic diversity? 

Genetic diversity reflects the variation in genetic composition amongst individuals within a 

population. It can be measured in a number of ways, depending on whether the traits are 

coded for by discrete allelic states or by multiple loci (‘quantitative’ traits). In the former 

case, the simplest index is allelic richness, which reflects the number of different alleles for a 

given locus within a population. Allelic diversity extends this to combine information about 

the number and relative frequency of alleles per locus, in an equivalent way to the Shannon-

Weiner index of species diversity. Heterozygosity considers the probability that two randomly 

chosen alleles in a population are different, and is similar to a Gini-Simpson Index of species 

diversity (Magurran 2004). For quantitative traits, measures include the genetic variance, 

which is the variance in a phenotypic trait due to genetic differences (Hughes et al. 2008). In 

many cases, such variance is correlated arbitrarily with the trait mean value, and so the 

coefficient of genetic variance is used to correct for this allowing comparison between groups 

with different trait means.  

 

Scale of biodiversity measurement 

Both species and genetic diversity can be measured at different spatial or temporal scales. 

Diversity measurements for a given assemblage of species (e.g. at a certain location) are 

referred to as α (alpha) diversity (Whittaker 1972). The change in genetic or species 

composition between locations or over time can also be assessed, and this turnover in 

biodiversity is termed β (beta) diversity. Finally, the overall measure of diversity across all 

communities in a larger geographic region is termed γ (gamma) diversity. Biodiversity 

change is, therefore, multifaceted and complex; for example, α diversity may increase locally 

whilst simultaneously decreasing at the regional level due to homogenisation of species 

communities (i.e. reducing β and γ diversity). 

 

The maintenance of biodiversity levels 

To understand the maintenance of the ‘stocks’ of biodiversity that are available to deliver 

important ecosystem services which underpin human well-being (Folke 2016), we need to 

understand the balance between the multiple processes of biodiversity generation and loss 



and any interactions between genetic and species diversity. Being able to monitor and 

manage these biodiversity stock levels is critically important for ecosystem management, and 

it is part of the rapidly developing field of ‘natural capital accounting’ (Monfreda et al. 2004; 

Jones 2010; Kareiva et al. 2011; Christian 2014; Helfenstein & Kienast 2014; Remme et al. 

2016). However, there is a danger that the economic concept of ‘natural capital stocks’ 

ignores the highly dynamic and complex nature of biodiversity maintenance, in which 

internal system feedbacks are common. In addition to simply mapping and accounting for 

existing biodiversity levels, it is necessary to understand the processes that lead to 

biodiversity change in order to ensure that critical biodiversity levels are maintained in the 

future (Brand 2009; Barnosky et al. 2012; Steffen et al. 2015b). A number of studies have 

attempted to predict future states of global biodiversity, but they focus nearly exclusively on 

species richness and the extinction process (Sala et al. 2000; Pereira et al. 2010). Yet, human 

activities can affect both speciation and extinction (Bull & Maron 2016), and there may be 

complex feedbacks between genetic and species diversity levels (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 2. Panel A shows a very basic conception of biodiversity stocks with reservoirs of species and genetic diversity (shaded areas in tanks) 

responsible for maintaining resilient delivery of ecosystem services. Anthropogenic actions (red arrows) are most often assumed to be reducing 

biodiversity stocks. This conception, however, ignores biodiversity generation processes (both anthropogenic and natural) and also ignores 

interactions between stocks of species and genetic diversity. Panel B is a schematic of the complex systemic relationship determining the 

maintenance of biodiversity levels. Ecosystem services depend upon stocks of species and genetic diversity, which are affected both by 

anthropogenic drivers (red arrows) and internal feedback processes (black arrows). Examples of mechanisms are provided in the table. See main 

text for further details and more examples. Note that the causal mechanisms shown in this figure are not exhaustive. 



Processes of biodiversity generation 

The generation of genetic diversity 

Genetic diversity is generated ultimately by germ-line mutations (i.e. in those cells which 

carry DNA to be passed on to future generations), involving the insertion, substitution or 

deletion of nucleotide bases during DNA replication (Pray 2008). Mutation rates per genome 

assessed in laboratory studies show similar rates within broad groups of organisms, but large 

differences among groups. For example, Drake et al. (1998) found rates of 3.33 x 10-3 per 

genome per replication in microbes, 0.1-1 for viruses, and 0.1-100 per sexual generation in 

higher eukaryotes (but the same mutation rate as microbes per effective genome, which 

excludes the fraction of the genome in which most mutations are neutral).  Many of these 

mutations in gene-coding regions of the genome are deleterious in that they reduce the fitness 

of the organism (i.e. its survival and/or chances of reproducing) and therefore they do not 

exist in a population for very long. Other mutations have neutral effects, especially if they 

occur in a gene whose function is required only rarely or is redundant, or in parts of the DNA 

that do not code for genes (such as introns and intergenic regions). A very few mutations 

have positive effects on the fitness of an individual and therefore will often tend to increase in 

frequency in a population.  

      In addition to the generation of new genetic diversity through mutation, in sexually 

reproducing organisms new combinations of genes arise through recombination. This process 

involves the exchange of genetic material between the maternal and paternal chromosomes 

during cell division to produce gametes (meiosis). Although not adding to the basic diversity 

of genes in a population, sexual selection leads to new combinations of genes that produce 

different phenotypes (measurable traits of an individual reflecting gene-environment 

interactions). The rates of innovation of new phenotypes arising from sexual reproduction are 

typically much higher than through mutation (Barrick & Lenski 2013). This ability to 

generate new diversity has been suggested to partly explain the success of the strategy 

amongst eukaryotic organisms (Muller 1932; Crow 1994; Burt 2000; but see Gorelick & 

Heng 2011), for example, increasing the capacity to evolve adaptations to resist parasites 

(Hamilton et al. 1990).  

     Genetic diversity provides the fuel for natural selection to drive changes in the traits of a 

population. This occurs through the biotic or abiotic environment imposing unequal fitness 

costs across the (genetically different) individuals of a population. The loss of individuals 

from a population then leads to erosion of this genetic diversity; although the particular type 

of natural selection can have different effects, which may be more or less temporary (Bulmer 



1971). Stabilising selection involves higher fitness for individuals with intermediate 

phenotypic trait values, leading to loss of individuals with genes coding for extreme 

phenotypes, and thus reducing genetic variance in a population. Diversifying selection, in 

contrast, involves higher fitness for individuals with both higher and lower phenotypic trait 

values and lower fitness for intermediate phenotypes, thus increasing genetic variation. 

Directional selection, involves a higher fitness for either high or low values of a trait, thus 

initially reducing genetic diversity but with potential recovery of genetic variance around 

higher or lower mean phenotypic trait values (Bulmer 1971). 

      The immigration of individuals into a population can also affect genetic diversity by 

introducing new genes into a population (‘gene flow’; Slarkin 1985), which may increase in 

frequency if they increase individual fitness in the new environment. At the regional scale, 

however, gene flow can reduce β-diversity by reducing genetic differentiation between 

populations that would arise through local adaptation (Austerlitz et al. 2000; Lenormand 

2002; but see Tigano & Friesen 2016).  

     In summary, these combined processes: DNA mutation, recombination under sexual 

reproduction, and population-level migration all combine to generate genetic diversity within 

populations. In some cases, the resulting phenotypic variation in populations can be 

substantial even outweighing differences between species.  

 

The generation of species diversity 

New species are created through the process of speciation which involves evolution of 

reproductive isolation, i.e. genetically-based barriers to gene exchange, which typically 

involves initial spatial separation between different populations (Fitzpatrick et al. 2009; 

Schluter & Pennell 2017). Whilst populations are separated, natural selection or genetic drift 

can lead to reproductive isolation, and even if the two lineages meet again in sympatry they 

will then most often continue to diverge in terms of genetic composition and phenotypes. 

Rates of diversification vary between species groups, with plants showing median rates of 

0.06 new species per species per million years, 0.15 for birds, and 0.07 for mammals (Pimm 

et al. 2014). The rate of these speciation events are determined by the rate of evolution of 

reproductive isolation, which is in turn affected by standing genetic variation and the rate of 

new mutations (Schluter & Conte 2009).  Demographic and metapopulation processes play a 

role by affecting the likelihood of establishment of new populations, persistence rates of new 

populations, and rate of establishment of sympatry after reproductive isolation is complete 

(Schluter & Pennell 2017). Because the physical and abiotic environment of populations 



influences these factors, there arises variation in speciation rates across geographic space as 

well as over evolutionary time. For example, there is a broad pattern of increased species 

diversity in lower latitudes, closer to the tropics, which is consistent across most species 

groups (Mittelbach et al. 2007), and some authors believe this may be partly driven by 

latitudinal gradients in extinction rates. Higher temperatures in the tropics may lead to higher 

metabolic rates in ectothermic species, shorter generation times and more rapid genetic 

divergence between populations. However, a number of studies contradict this claim, 

suggesting that speciation rates in groups such as birds and mammals could be highest in the 

temperate zone (Schluter & Pennell 2017). However, this counter argument only holds for the 

speciation rate per species. Because there are many more species in the tropics the absolute 

rate of species production is thought to be higher in these locations (Schluter & Pennell 

2017). Some authors have speculated that speciation rate might decline at higher diversities 

as resources become depleted (the ‘ecological controls’ model; Rabosky & Hurlbert 2015; 

Schluter & Pennell 2017), whilst others have suggested that species themselves are resources 

that could speed up speciation rates (the ‘diversity begets diversity’ model; Whittaker 1977). 

These viewpoints can be partly reconciled by the consideration of non-linear relationships 

between speciation rate and number of existing species in a location. When there are only a 

relatively small number of species, speciation rates are high. However, as species numbers 

approach some carrying capacity, determined by the number of unoccupied ecological niches, 

the speciation rate slows and/or becomes matched by higher extinction rates. Thus, speciation 

rates show positive but saturating relationship with species number, analogous to density 

dependent population growth rates in single species (and so instead referred to as ‘diversity 

dependence’; Marshall & Quental 2016). A large number of studies support this diversity 

dependence hypothesis (Marshall & Quental 2016); although it is increasingly recognised 

that carrying capacities can change through time (Ezard & Purvis 2016; Marshall & Quental 

2016). For example, new evolutionary innovations in a clade, or changes to the environment 

can open up new resources, leading to sudden jumps in carrying capacity (Erwin 2012; 

Marshall & Quental 2016). Some authors have also raised the point that in many cases 

species diversity may be well below carrying capacity for any meaningful diversity 

dependence to be imposed; for example, they point to how new introductions of species (e.g. 

through human-mediated invasion, or assisted colonisation), do not always cause extinction 

of local native species (Harmon & Harrison 2015). 

     Although speciation is the ultimate driver of new species, the process of species 

immigration also influences the diversity of species in any given region, as demonstrated by 



MacArthur and Wilson in their studies on island biogeography (1967). They predicted that 

smaller and more isolated islands would have lower species richness, in part because they had 

lower rates of immigration, a prediction that is supported by some empirical studies, although 

since its inception, the theory has been further refined (e.g. Brown & Kodric-Brown 1977; 

Gilbert 1980; Brown & Lomolino 2000).  

 

Interactions between genetic and species diversity  

The interactions between genetic and species diversity are important because the impacts of 

an environmental driver can propagate across the hierarchical levels of biodiversity. In light 

of such dynamism many ecological systems may not be at equilibrium, thereby confounding 

the treatment of biodiversity as a simple standing stock.  

      With regards to the relationship between species richness and average genetic diversity 

within populations of those species, overall there appears to be a positive correlation. For 

example, Vellend and Geber (2005) analysed 17 datasets and found evidence of positive 

correlations, especially on island ecosystems. There are a number of possible mechanisms 

driving these correlations. First, both species diversity and genetic diversity may be affected 

by a shared driver, such as environmental heterogeneity. So, in the island systems considered 

by Vellend and Geber (2005), on larger islands there may be both a wider range of abiotic 

conditions and geographical features which separate populations, leading to higher species 

diversity (Stein et al. 2014) and larger genetic diversity through both local adaptation 

(Kawecki & Ebert 2004) and genetic drift (Vellend & Geber 2005). Beyond this indirect 

relationship driven by shared environmental drivers, genetic diversity can also have direct 

effects on species diversity. High genetic diversity can lead to lower extinction rates of 

species because adaptive genetic variance in a population increases the likelihood of 

population persistence under perturbations such as those caused by weather and disease 

(Reusch et al. 2005; Hughes et al. 2008; Sgrò et al. 2011; Forsman & Wennersten 2015). 

Higher genetic diversity may also lead to greater stability in food webs (Moya-Laraño 2011). 

Furthermore, genetic variation in the keystone species of a community can provide more 

ecological niches for interacting species (Hersch-Green et al. 2011) and can drive 

diversifying selection on other species (Vellend & Geber 2005). The relationship between 

species richness and genetic diversity can also operate in the reverse direction, whereby 

species diversity has direct effects on genetic diversity. For example, higher overall (γ) 

species richness that is spatially structured (i.e. different communities in different locations) 

may lead to local adaption to competitors in each neighbourhood, thus increasing genetic 



diversity at the larger spatial scale (i.e. gamma genetic diversity; Vellend & Geber 2005). 

However, an opposing mechanism may also operate if higher local species richness means 

that population sizes of each species are smaller (e.g. due to some kind of ceiling on the total 

number of individuals of all species in a community based on energy limitation); then genetic 

variability, which declines under small population sizes, could be lower (Vellend & Geber 

2005). However, this expectation does not match with the observed positive correlations 

between genetic and species diversity which is often observed (Vellend & Geber 2005; 

Struebig et al. 2011).  

 

Modification of natural biodiversity generation processes by humans    

Anthropogenic drivers can interfere with biodiversity generation processes in a number of 

ways. For example, human activities are known to have strong impacts on evolutionary 

change in other species (Stockwell et al. ; Hendry et al. 2008), and may commonly affect 

speciation rates (Bull & Maron 2016). Introduction of species to distant countries with very 

different environments, and little gene flow back to original populations, may lead to genetic 

divergence and ultimately speciation (Thomas 2013). Furthermore, high rates of hybridisation 

between introduced and native species may further accelerate this process. This has led to the 

provocative suggestion that human-induced speciation could result in a net increase in the 

number of species on Earth even whilst we are losing irreplaceable populations, races, 

species and evolutionarily distinct taxa (Thomas 2013; Thomas 2015). However, the 

proportion of hybrids that have resulted in speciation has yet to be adequately quantified 

(Mallet 2007; Abbott et al. 2013). 

      Domestication of plants and animals (e.g. crops, livestock and pets) can lead in some 

cases to populations which cannot interbreed and are effectively new species (Thomas 2015), 

as well as driving accelerated evolution in pests and diseases (Palumbi 2001; Gladieux et al. 

2011). Novel ecosystems created by human activities (e.g. by altering land use and climate 

and through the introduction of new species) often lead to significant losses of species 

diversity (Butchart et al. 2010; Newbold et al. 2015), but in some cases there is evidence that 

the new introductions can offset species local extinctions (Mascaro et al. 2012; Vellend et al. 

2013). These novel ecosystems also lead to significantly different abiotic and biotic 

evolutionary pressures on species, leading to trait changes in multiple interacting species 

(Palkovacs et al. 2012), and in some cases potentially driving speciation events (e.g. as 

shown in mosquitoes Byrne & Nichols 1999). The large-scale alteration of landscapes 

through habitat fragmentation is well known to affect gene flow (Storfer et al. 2010). Habitat 



losses can lead to remaining patches becoming more isolated and suffering more from edge 

effects. Ultimately, this increased isolation has the potential to lead to genetic divergence into 

separate species, as suggested for a mesoamerican damselflies by Feindt et al (2014). With 

regards to future human impacts, emerging technologies such as genetic modification (Bull & 

Maron 2016) and ‘de-extinction’ (Sherkow & Greely 2013) could potentially lead to the 

generation of entities which are, technically, new species.  

     The processes detailed above are all speculated to lead to human-driven increases in 

speciation rates, but it is also possible that human activities could suppress natural speciation 

rates (Bull & Maron 2016). The most obvious factor is the large reductions in average 

abundance of species that human activities cause, e.g. through habitat loss, overexploitation, 

nitrogen deposition and introduction of invasive species (Newbold et al. 2015; Newbold et al. 

2016). This is likely to reduce the genetic diversity within species (Pichler & Baker 2000; 

Allentoft & O’Brien 2010a; Struebig et al. 2011), reducing the pool of standing adaptive 

genetic variation. Furthermore, these drivers can lead to the reduction in species’ 

geographical ranges, leading to concurrent reductions in the likelihood of speciation 

(Rosenzweig 2001). 

 

Processes of biodiversity loss 

Natural processes of biodiversity loss 

Biodiversity losses occur continuously even in the absence of human interventions. Natural 

and sexual selection lead to the loss of genetic adaptive variation, albeit if this is only 

temporary (Bulmer 1971). At the species level, the ‘background’ extinction rate of species 

(i.e. during periods outside mass extinction events) was once estimated to be about 1 

extinction event per million species-years (E/MSY), but this has now been revised as being 

too high (Pimm et al. 2014). Alroy et al. (1996) found a rate of 0.17 extinctions of genera per 

million genera-years. Harnik et al. (2012) found a rate of 0.06 genera extinctions per million 

genera-years for cetaceans, 0.04 for marine carnivores, and 0.001 and 0.01 for a range of 

marine invertebrates.   

    During certain geological periods rates of biodiversity loss have vastly exceeded these 

background rates. Five particularly notable events are known as the five ‘mass extinction’ 

events. These events occurred in the Late Ordovician, Late Devonian (Frasnian–Famennian), 

Late Permian, Late Triassic and end-Cretaceous periods (Raup & Sepkoski 1982; McGhee et 

al. 2004). The causes of these events are unclear, although all are associated with evidence 

for climatic changes, including both rapid global warming and cooling (Twitchett 2006). 



Other, non-mutually exclusive explanations are asteroid impact, ocean stagnation (reduced 

upwelling and loss of surface productivity), volcanic eruptions, catastrophic methane release 

and sea level changes. For example, an asteroid impact is thought to be largely responsible 

for the mass extinction event in the end-Cretaceous period around 66 million years ago. 

However, recent evidence suggests that dinosaurs may have been in decline, with speciation 

rates falling below extinction rates, for tens of millions of years before this final catastrophic 

event, although the cause for this is unknown (Sakamoto et al. 2016). The most severe event 

was the Late Permian event which saw around 62% of terrestrial and 48% of marine family-

level biodiversity wiped out (Benton 1995). From all these events, biodiversity has shown 

recovery over subsequent calmer periods, although the composition of higher-level 

evolutionary taxa can by altered significantly (Kauffman & Harries 1996; Solé et al. 2002). 

 

Acceleration of biodiversity loss by humans 

Although loss of genetic diversity and extinction of species are natural phenomena, the 

activities of humans appear to have rapidly accelerated rates of biodiversity loss (Pimm et al. 

2014). Current rates of rates of extinction may be over 1000 times the background rate of 

extinction (Pimm et al. 2014; Ceballos et al. 2015). Furthermore, many species are threatened 

with extinction in the near future. For example, nearly 32 % of the world's amphibian species, 

and 22% of the world’s mammal species are known to be threatened or already recently 

extinct (IUCN 2017). The likelihood of extinction depends on phylogeny and species traits, 

with much research aimed at attempting to understand which types of species are most 

vulnerable (McKinney 1997; Payne et al. 2016). For example, large bodied mammals and 

birds are about three times more likely to be threatened than small bodied species (Tilman et 

al. 2017), low-fertility preference plant species are more likely to be outcompeted under 

nitrogen deposition (Isbell et al. 2013), whilst in the marine environment calcifying reef-

forming corals are more likely to be threatened due to ocean acidification (Anthony et al. 

2008). Across species groups, amphibians tend to be more threatened than mammals and 

reptiles, with birds showing lowest levels of threat; insects have generally been poorly 

studied, but recent estimates suggest high levels of decline (e.g. 33% declining with an 

overall 45% mean abundance decline; Dirzo et al. 2014). The patterns of threat to species 

also vary across geographic regions; for example 80% of amphibians are threatened or extinct 

in the Dominican Republic, Cuba, and Jamaica, and 92% in Haiti (IUCN 2017). Areas with 

very high biodiversity (and large number of unique, endemic species) which also face high 



levels of threat have been identified as ‘hotspots’ for the focus of high priority conservation 

action (Myers et al. 2000). 

     Global extinctions of species are, however, only really the tip of the iceberg of human-

mediated impacts on biodiversity. Species do not become extinct until all local populations 

are extirpated, so the rates of local species’ population loss (affecting α-diversity) can be 

many times higher than global extinction rate, potentially around three orders of magnitude 

higher (Hughes et al. 1997). From a recent analysis of hundreds of monitoring studies, 

Newbold et al. (2015) estimated average declines in population size of around 11% globally, 

and 39.5% in the worst affected habitats. A contrasting estimate from the WWF Living Planet 

Index (2016) puts the figure much higher at 58% decline in population sizes in the last four 

decades. The discrepancy is at least partly to do with the different sampling regimes of the 

two studies, and the extent to which they are standardised to represent global land use or 

habitat distributions. The debate about the extent of local biodiversity change permeates 

much more widely in the ecological literature (Gonzalez et al. 2016; Isbell et al. 2017). 

Whilst many studies clearly show local loss of species diversity, for example, in areas 

converted to intensive cropland or pasture (Newbold et al. 2015), other studies suggest no net 

loss, or even increases in local species richness, mainly due to the introduction of new species 

from elsewhere (Sax & Gaines ; Vellend et al. 2013). For example, Dornelas et al. (2014) 

analysed 100 time series across different global biomes and did not detect a systematic loss of 

α-diversity. However, there were losses of β-diversity, potentially reflecting homogenisation 

of species communities. Even though α-diversity may be stable in some cases, this does not 

mean we should not monitor and respond to the substantial community changes under 

anthropogenic drivers. Although the maintenance of total biodiversity levels is important, it is 

not the only relevant indicator for ecosystem management- the specific composition of these 

biological communities also affects the capacity to deliver ecosystem services (Lavorel & 

Garnier 2002; Suding et al. 2008). High intensity anthropogenic land use tends to affect more 

habitat specialist species that may be of conservation concern (Warren et al. 2001). In some 

cases, rare species may be particularly important for ecosystem services (Mouillot et al. 

2013; but see Kleijn et al. 2015). It is also questionable whether introduced species will be 

able to carry out the same ecosystem services as lost native species (Wardle et al. 2011; 

Oliver et al. 2015b).  Homogenisation of biodiversity (i.e. reduction of β-diversity across 

sites) also has the potential to reduce the stability of ecosystem services at a regional scale 

(Wang & Loreau 2014).  



      In addition to, and partly caused by the loss of abundance, the genetic diversity of 

species’ populations is also often eroded by anthropogenic activities, although this is more 

poorly studied and reported. Studies that have quantified genetic diversity have tended to be 

focus on livestock, crops or fisheries. For example, Smith et al. (1991) reported on significant 

losses of genetic diversity in orange roughy Hoplostethus atlanticus fish stocks through 

overfishing, especially through the loss of older and more heterozygous individuals. Similar 

losses in genetic diversity have been reported in New Zealand snapper Pagrus auratus 

(Hauser et al. 2002) and North Sea cod Gadus morhua and many other species (Allendorf et 

al. 2008; Pinsky & Palumbi 2014), although genetic diversity recovered in the cod species 

after heavy overexploitation was halted allowing recovery of population levels (Hutchinson 

et al. 2003). Within terrestrial crop plants and livestock, although breeding and domestication 

has led to broader phenotypic differences between races (Thomas 2015), in many cases 

diverse native breeds are replaced by a small number of highly productive breeds (EEA 

2015). In addition, for several species or breeds there is evidence that genetic diversity has 

declined over time (e.g. soybean, Hyten et al. 2006;  and wheat, Bonnin et al. 2014), whilst in 

others it seems to have been retained (e.g. apples; Gross et al. 2014). In wild species, there 

are many studies considering spatial patterns and taxonomic patterns in genetic diversity (e.g. 

Garner et al. 2005; Allentoft & O’Brien 2010b; Miraldo et al. 2016) but studies of trends 

over time are rare. Where studies exist, patterns are mixed; for example, genetic diversity in 

wild cheetah populations has declined over time (Terrell et al. 2016), whilst a long-term 

study in wild bumblebees suggested stability in genetic diversity over the last century (Maebe 

et al. 2016). 

 

The potential impacts of biodiversity loss for humans 

Species diversity and ecosystem functions and services 

What are the potential consequences of the substantial species re-assortment and biodiversity 

losses now occurring in the Anthropocene? Human health and well-being is strongly 

dependent upon biological communities. Ecosystem services comprise the ways in which 

natural ecosystems meet the demand from human needs and wants, the benefits, and the 

various types of values to humans (Folke 2016). They include direct provisioning of food and 

building materials and regulatory processes such as climate regulation and pollination (Mace 

et al. 2012). In addition, species provide cultural services which underpin recreational, 

aesthetic and spiritual benefits of engaging with nature (Church & et al. 2011; Clark et al. 

2014). Even if not direct service providers themselves, many species provide supporting 



services, which means that other service-providing species depend upon them (e.g. by using 

them as food sources). Because of these extensive human dependencies on species, a loss of 

species diversity can mean negative impacts on prosperity, human health and well-being 

(Cardinale et al. 2012; Mace et al. 2012; Dirzo et al. 2014; Gascon et al. 2015). For example, 

many empirical studies have examined the relationship between species diversity and 

ecosystem functions. These ecosystem functions are the ecological processes that are 

precursors to the delivery of ecosystem services, the latter often additionally involving the 

contributions of work, technology, institutions, energy, and materials from the human system 

(Folke 2016). Much research in this area began by focusing on plant species diversity and 

productivity (e.g. total biomass), a function which can underpin crop production or forage for 

cattle (Tilman et al. 1994a; Tilman et al. 2014), but studies are now increasingly exploring 

biodiversity-ecosystem function relationship at large spatial and temporal scales and for 

multiple functions (Hector & Bagchi 2007; Maestre et al. 2012; Lefcheck et al. 2015; Oliver 

et al. 2016; Isbell et al. 2017). These studies have often found positive non-linear 

relationships, in which ecosystem functions are higher in species mixtures of higher diversity, 

but where this effect begins to level off and saturate after a certain diversity is reached 

(Balvanera et al. 2006; O'Connor et al. 2017). There are several suggested mechanisms 

underlying these relationships, one is the increased likelihood of including a particularly 

high-performing species in an assemblage as species diversity increases (often termed 

‘selection’ effects; Loreau & Hector 2001), another is the potential for multiple species in a 

mixture to perform better through partitioning of resources or facilitation effects 

(‘complementarity’). When considering the delivery of ecosystem functions over time, there 

is an additional effect that asynchrony in species dynamics, caused through differential 

responses to environmental changes or through internal competition dynamics, can lead to 

more stable functioning in higher species diversity mixtures (Loreau & de Mazancourt 2013). 

Finally, when considering multiple functions simultaneously, a mixture of species can lead to 

more functions being delivered above some minimum threshold (the ‘jack-of-all-trades’ 

effect; van der Plas et al. 2016). These mechanisms mean that the loss of species from a 

community can lead to loss of function, although the exact functional traits of the species lost 

determines the type and extent of the lost function (Díaz et al. 2013). Although a growing 

research base is improving understanding of these functional traits (Díaz et al. 2013; Evans et 

al. 2013) we are still a long way from accurately predicting how ecosystem functions and 

services will change in response to environmental change (Lavorel & Garnier 2002; Hooper 

et al. 2012). In the face of such uncertainty a precautionary principle may be advisable. As 



ecologist Aldo Leopold (1987-1948) once stated: “To keep every cog and wheel is the first 

precaution of intelligent tinkering”. Of course, maintaining all species in all locations in 

which they occur would have substantial opportunity costs; for example, being able use that 

land to grow food or produce energy. Therefore, a critical scientific challenge of the 21st 

century, is to improve our scientific understanding of environmental risk to inform the 

preservation and management of biodiversity in concert with meeting other human needs 

(Oliver 2016). 

 

The role of genetic diversity in ecosystem services 

In addition to the loss of species through extinction, the erosion of genetic diversity in species 

populations that remain can also impact ecosystem services and human well-being. Genetic 

diversity is a primary cause of phenotypic (physiological, morphological and behavioural) 

variation between individuals, which in turn affects ecological functions and the contribution 

to ecosystem services. In response to environmental perturbations, ecological functions may 

be less resistant when population genetic diversity is lower (Reusch et al. 2005; Hughes et al. 

2008; Sgrò et al. 2011; Forsman & Wennersten 2015). Thus, for example, crops with higher 

genetic diversity often tend to produce higher or more stable yields due to decreased damage 

by diseases and herbivores (Smithson & Lenne 1996; Hughes et al. 2008). Although they are 

less frequently considered, the mechanisms underpinning these positive effects of genetic 

diversity are likely to be similar to those at the species level (i.e. selection effects, 

complementarity, asynchrony, and ‘jack-of-all-trades’). Selection effects may operate, 

whereby populations of higher genetic diversity are more likely to contain genotypes which 

are particularly dominant for a given function. Furthermore, there may be complementarity 

effects, whereby diverse populations more effectively exploit a particular resource (Reusch et 

al. 2005; Hughes et al. 2008; Sgrò et al. 2011; Forsman & Wennersten 2015). Although 

untested, ‘jack-of-all-trades’ effects might also be expected to operate, whereby diverse 

mixtures of genotypes would carry out more ecological functions above some minimum 

threshold. 

 

Increased importance of biodiversity over longer time scales 

Both genetic and species diversity are known to be important for ecological functioning 

under the environmental conditions at any given point in time. However, their importance 

may become even greater under longer time scales in which environmental perturbations (e.g. 

extreme weather events) are more likely, and where mean environmental conditions may shift 



(e.g. under chronic drivers such as climate warming or nutrient deposition). In these cases, 

species, or genotypes of species, that are currently dominant and provide essential ecological 

functions may fare less well under the new environmental conditions, and other 

species/genotypes may be needed to step up and deliver functions. For example, under 

climatic warming and increased extreme events such as drought, specific pollinators species 

may decline (Ives et al. 1999; Yachi & Loreau 1999; Loreau et al. 2003; Devictor et al. 2012; 

Oliver et al. 2015c; Oliver et al. 2017), and only if regional species pools are large enough 

will they be able to provide species to replace the lost pollination function. Therefore, there is 

an ‘insurance’ effect provided by higher genetic and species diversity, and biodiversity 

increases the resilience of ecosystem functions to environmental change (i.e. a better capacity 

to resist or recover rapidly from environmental perturbations, thereby maintaining function 

above a socially acceptable level; Oliver et al. 2015a; Folke 2016). Therefore, the importance 

of biodiversity is context-dependent, and the longer the time window of interest (containing a 

wider range of environmental conditions) the more biodiversity is needed to ensure resilience 

of ecosystem functions and services (Oliver 2016). 

 

Recent responses to mitigate anthropogenic-driven biodiversity loss 

What has been the global policy response to the global biodiversity losses and changes 

outlined in this article? The Convention of Biological Diversity (CBD) is an international 

treaty signed by over 160 countries, with the aim of addressing biodiversity loss. In 2002, 

these countries committed to “to achieve by 2010 a significant reduction of the current rate 

of biodiversity loss”. This target was not achieved — an analysis in 2010 by Butchart et al.  

found that that biodiversity has continued to decline over the past four decades, with eight out 

of 10 state indicators showing negative trends. After 2010, CBD targets were revised with a 

set of ‘Aichi’ targets set for 2020 (CBD 2010). Again, the aim was to prevent further 

biodiversity loss, with the target that “By 2020 the extinction of known threatened species has 

been prevented and their conservation status, particularly of those most in decline, has been 

improved and sustained” (Aichi Target 12). However, in the face of existing species trends 

achieving this target by 2020 looks unlikely (Dirzo et al. 2014; Newbold et al. 2015; WWF 

2016). The CBD targets also recognise genetic diversity stating that “By 2020, the genetic 

diversity of cultivated plants and farmed and domesticated animals and of wild relatives, 

including other socio-economically as well as culturally valuable species, is maintained, and 

strategies have been developed and implemented for minimizing genetic erosion and 

safeguarding their genetic diversity”. However, there are very few studies which have 



measured trends in genetic diversity in wild species, so it is not possible to assess whether 

safeguarding genetic diversity has been achieved. 

      It is easy to criticise these global targets but their lack of achievement is a mark against 

the whole of human society, not just national governments. Addressing biodiversity loss 

means tackling the primary drivers of declines. Anthropogenic biodiversity loss is not a new 

phenomenon; it has been occurring ever since the expansion of early humans across the 

planet. For example, hunting by humans and habitat change (e.g. land clearing by fire) is 

likely to have been instrumental in the widespread extinction of megafauna in the 

Pleistocene, even though factors such as natural climatic change may have had an additional 

role (Miller et al. 1999; Barnosky et al. 2004; Miller et al. 2005; Dale Guthrie 2006). Since 

then, a whole new suite of anthropogenic drivers have been added (e.g. nitrogen and 

phosphorus pollution) and biodiversity declines have accelerated (Steffen et al. 2015a). A 

meta-analysis of hundreds of experiments and observations by Murphy et al. (Murphy & 

Romanuk 2014), concluded that land-use change and species invasions have had the greatest 

impact in driving local species losses, followed by habitat loss, nutrient addition and 

increases in temperature. Notably, human-driven climate change is not thought to be a 

primary cause of past and current extinctions, but that could change dramatically in the future 

with greater rates of climate warming (Urban 2015), especially when extreme events are 

factored into projections (Oliver et al. 2015c) and in light of synergistic interactions between 

climate and land use change and biodiversity (Oliver & Morecroft 2014; Oliver et al. 2017). 

 

Synthesis and Future challenges  

To prevent damaging consequences of accelerated biodiversity loss caused by human 

activities we need to better understand and monitor changes in biodiversity. This includes 

understanding the drivers of biodiversity change (including processes of biodiversity 

generation as well as loss), as well as the interactions between species and genetic diversity. 

A recent focus on ecosystem services in environmental management literature and policy has 

driven rapid development of socioeconomic research into natural capital and biodiversity 

accounting. Under this new paradigm, biodiversity is increasingly referred to as a ‘natural 

capital stock’ underpinning the flow of ecosystem services. However, there is a danger that 

this ignores the highly dynamic and complex nature of biodiversity. First, biodiversity is 

composed of both genetic and species diversity, although the former is nearly always ignored 

in ecosystem accounting. Second, interactions between the stocks of genetic and species 

diversity are common, as well as internal feedback mechanisms, and so biodiversity levels 



may not be at equilibrium. For example, extinction debts are known in many ecological 

systems whereby biodiversity loss continues long (sometimes decades) after initial drivers of 

change are removed (Tilman et al. 1994b; Kuussaari et al. 2009; Gonzalez 2013). Third, 

human activities drive biodiversity generation processes, not exclusively biodiversity 

extinctions.  

     Researchers differ in how they see this balance of generation and erosion playing out in 

the future. Some see an emerging period of novel biodiversity generation, through rapid re-

assortment of species around the globe, hybridisation between alien and native species, and 

novel ecosystems driving new evolutionary change, along with new technologies such as 

genetic modification; all leading to rapid speciation rates. On the contrary, other researchers 

predict further catastrophic extinctions in genetic diversity, population abundance and species 

diversity, which will dwarf the processes generating biodiversity. Many fear this will lead to 

loss of ecosystem services and will have severe impacts on humans, as well as the ethical 

implications of biodiversity destruction. However, what all these researchers do seem to have 

consensus upon is the primary role of humans in driving extensive changes to genetic and 

species diversity and the re-assortment of species composition on a planetary scale. It is now 

abundantly clear that biodiversity generation and speciation have been irreversibly altered 

under human activities on a scale which justifies the naming of the Anthropocene era. To 

understand the impacts of these substantial interventions and to manage their impacts wisely 

we need to address critical gaps in our knowledge. We need to better understand drivers of 

biodiversity change and how these vary across regions and over time, and we need better 

ways to monitor biodiversity change. This biodiversity monitoring needs to be at both the 

species and genetic level, across different global environments and across different scales 

(i.e. α β and γ diversity change). It must not be restricted to just a subset of charismatic 

groups which may not be representative of importance functional units. Harnessing new 

technologies, such as remote sensing and metagenomics, as well as participatory (e.g. citizen 

science) monitoring schemes will be necessary to address this challenge (Ji et al. 2013; 

Kuenzer et al. 2014; Thomsen & Willerslev 2015). Finally, we also need to better understand 

the interactions between species and genetic diversity in order to develop a more 

comprehensive understanding of dynamic biodiversity stocks. Only by developing such 

knowledge can we manage ecosystems in such a way that the ecosystem services that 

underpin human well-being are safeguarded and in which the intrinsic value of the Earth’s 

biodiversity is preserved for future generations.  
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