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 47 

Abstract 48 

Enteric methane (CH4) production attributable to beef cattle contributes to global greenhouse gas 49 

emissions. Reliably estimating this contribution requires extensive CH4 emission data from beef 50 

cattle under different management conditions worldwide. The objectives were to: 1) predict CH4 51 

production (g d-1 animal-1), yield [g (kg dry matter intake; DMI)-1] and intensity [g (kg average 52 

daily gain)-1] using an intercontinental database (data from Europe, North America, Brazil, 53 

Australia and South Korea); 2) assess the impact of geographic region, and of higher- and lower-54 

forage diets. Linear models were developed by incrementally adding covariates. A K-fold cross-55 

validation indicated that a CH4 production equation using only DMI that was fitted to all available 56 

data had a root mean square prediction error (RMSPE; % of observed mean) of 31.2%. Subsets 57 

containing data with ≥ 25% and ≤ 18% dietary forage contents had an RMSPE of 30.8 and 34.2%, 58 

with the all-data CH4 production equation, whereas these errors decreased to 29.3 and 28.4%, 59 

respectively, when using CH4 prediction equations fitted to these subsets. The RMSPE of the ≥ 60 

25% forage subset further decreased to 24.7% when using multiple regression. Europe- and North 61 

America-specific subsets predicted by the best performing ≥ 25% forage multiple regression 62 

equation had RMSPE of 24.5 and 20.4%, whereas these errors were 24.5 and 20.0% with region-63 

specific equations, respectively. The developed equations had less RMSPE than extant equations 64 

evaluated for all data (22.5 vs. 23.2%), for higher-forage (21.2 vs. 23.1%), but not for the lower-65 

forage subsets (28.4 vs. 27.9%). Splitting the dataset by forage content did not improve CH4 yield 66 

or intensity predictions. Predicting beef cattle CH4 production using energy conversion factors, as 67 

applied by the Intergovernmental Panel on Climate Change, indicated that adequate forage 68 

content-based and region-specific energy conversion factors improve prediction accuracy and are 69 

preferred in national or global inventories. 70 
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1. Introduction 74 

The livestock sector emits about 7.1 gigatonnes of CO2 equivalents of greenhouse gases 75 

per year, which represented approximately 14.5% of total global anthropogenic greenhouse gas 76 

emissions in 2005 (Gerber et al., 2013). Cattle emitted 4.6 gigatonnes CO2 equivalents, of which 77 

2.5 gigatonnes originated from beef and 2.1 gigatonnes from dairy cattle, whereas small ruminants 78 

and buffalos emitted 0.47 and 0.62 gigatonnes CO2 equivalents, respectively. Methane from 79 

enteric fermentation contributed about 45% of the combined CO2 equivalents emissions from the 80 

two cattle types. World-wide beef cattle systems produced 35 million tonnes of meat, whereas 81 

dairy cattle systems produced 27 million tonnes. Meat protein greenhouse gas emission intensity 82 

from beef cattle, and combined meat and milk protein intensity from dairy cattle vary from about 83 

200 to 1100, and 50 to 350 kg CO2 equivalents per kg edible protein, respectively, depending on 84 

the region of the world (Opio et al., 2013). Based on expected farming and consumer lifestyle 85 

practices and the predicted world population growth, compared to 1995, global enteric CH4 86 

emissions are predicted to increase by 70% by 2055 (Popp et al., 2010). To offset this increase and 87 

to deal with the highly variable and typically greater CH4 emission intensity of beef cattle systems, 88 

accurate prediction of beef cattle CH4 emissions across regions are urgently required.  89 

Various beef cattle CH4 prediction equations, for which a variety of diet and animal 90 

characteristics were used as covariates, based on treatments means (e.g., Ellis et al., 2009; Escobar-91 

Bahamondes et al., 2017a) or individual animal data (Ellis et al., 2007; Moraes et al., 2014) have 92 

been published. Although the use of individual animal data as applied in the latter two studies 93 

contributes to more explained variation of CH4 production due to dry matter intake (DMI) 94 

differences at the animal level, all previously mentioned studies only comprised data from specific 95 

geographical locations. In contrast to these equations, which may be appropriate for cattle systems 96 
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under similar regional conditions, the widely used Intergovernmental Panel on Climate Change 97 

(IPCC) methodology recommends a generic CH4 energy conversion factor (Ym) without any 98 

adjustment for different geographical locations (IPCC, 2014). The Ym quantifies enteric CH4 99 

emission as a fraction of the gross energy intake and discriminates between diets with forage 100 

contents of ≤ 10 and > 10% DM, with Ym being 3.0% and 6.5% of the gross energy intake, 101 

respectively. However, more complex equations accounting for dietary nutrient composition and 102 

individual animal characteristics in addition to total feed intake may perform better than those that 103 

ignore these covariates for various cattle categories (Ellis et al., 2007, 2009; Moraes et al., 2014; 104 

Santiago-Suarez et al., 2016). Therefore, more complex beef cattle CH4 prediction equations that 105 

draw from databases with a broad range of diets and geographic conditions may more accurately 106 

predict global CH4 emissions. Publications of inventories that investigated cattle enteric CH4 107 

emissions in certain countries or regions (e.g., Basarab et al., 2005; Kebreab et al., 2008; Bannink 108 

et al., 2011; Castelan-Ortega et al., 2014; Charmley et al., 2016) compared to an intercontinental 109 

evaluation (e.g., Niu et al., 2018) confirm the utility of the latter approach.  110 

The objectives of the current study were: 1) to collate an intercontinental database of enteric 111 

CH4 production of individual animal records of beef cattle; 2) to determine the key variables for 112 

predicting beef cattle enteric CH4 production (g d-1 animal-1), yield [g (kg DMI)-1] and intensity [g 113 

(kg average daily body weight gain)-1] and their respective relationships; 3) to develop and cross-114 

validate intercontinental and region-specific models, and models for lower- and higher-forage 115 

diets.  116 

 117 

2. Materials and Methods 118 

2.1 Database 119 
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The ‘GLOBAL NETWORK’ project is an international collaborative initiative of animal 120 

scientists (http://animalscience.psu.edu/fnn; accessed May 16, 2017). All animal scientists with an 121 

interest in greenhouse gas research and with access to CH4 measurements from beef cattle were 122 

invited to collaborate and contribute data to this collaborative CH4 mitigation data analysis. The 123 

resultant beef cattle CH4 database that was developed from this initiative contains 2015 individual 124 

beef cattle records from 52 studies conducted from 1969 to 2015 by research entities from Europe 125 

(n = 869 from 18 studies), North America (n = 649 from 14 studies), Brazil (n = 313 from 12 126 

studies), Australia (n = 174 from 7 studies) and South Korea (n = 10 from 1 study). The European 127 

studies were conducted in the UK (n = 313 from 7 studies), Switzerland (n = 96 from 1 study), 128 

Belgium (n = 72 from 4 studies), Ireland (n = 147 from 2 studies) and France (n = 241 from 4 129 

studies). Eleven North American studies were from the United States (n = 492), and 3 were 130 

conducted in Canada (n = 157). The database includes records of enteric CH4 production along 131 

with corresponding DMI, dietary gross energy, crude protein, ether extract (EE), neutral detergent 132 

fiber (NDF), starch, ash and forage contents, average daily body weight gain (ADG) and body 133 

weight (BW). The database comprised a broad variety of beef cattle that included growing and 134 

finishing steers, bulls and heifers, pregnant heifers, and pregnant, non-pregnant, dry and lactating 135 

beef cows. Various pure beef breeds and crossbreeds were included, viz., Aberdeen Angus, Blonde 136 

d’Aquitaine, Belgian Blue, Brahman, Brown Swiss × Limousin, Charolais, Hanwoo, Holstein × 137 

Zebu, Hereford × Angus, Luing and Nellore.  138 

The original studies in the database (complete data bibliography is provided in 139 

Supplementary information) investigated the impact of diet composition on enteric CH4 production 140 

or cattle metabolism. However, some studies tested the effect of a specific feed additive, nutrient 141 

or the use of hormone supplementation, and the data from these treatments were excluded. The 142 

http://animalscience.psu.edu/fnn
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excluded treatments included rapeseed cake and nitrate (Troy et al., 2015), limestone (Zanetti et 143 

al., 2017), Acacia tannins, maca, garlic and lupine seeds (Staerfl et al., 2012), monensin (Caetano 144 

et al., 2016, 2018), organosulfur compounds (garlic extracts) (Peiren et al., unpublished) and 145 

essential oils (Castro Montoya et al., 2015), lipids (Duthie et al., 2015), dried corn distillers grains 146 

(Hünerberg et al., 2013ab), linseed oil and protected fat (Fiorentini et al., 2014), soybean oil and 147 

protected fat (Silva et al., 2018), glycerin (Lage et al., 2016), whole soybeans (Rossi et al., 2017), 148 

monensin (Hales et al., 2012, 2013, 2014 2015, unpublished; Berndt et al., unpublished), 149 

diethylstilbestrol (Rumsey et al., 1981) and growth hormone-releasing factor (Lapierre et al., 150 

1992). After removal of data associated with the aforementioned treatments, 1413 individual 151 

records were retained.  152 

Records with missing CH4 or DMI values were removed from the database; records from 153 

respiration chambers in which two animals were housed simultaneously were combined by 154 

averaging the CH4 and DMI and all other variables regarding the two animals; records from 155 

repeated measurements within the same experimental period were averaged over the individual 156 

measurements recorded. In total, 1366 individual animal records were subsequently retained. In 157 

addition, records from growing cattle with negative ADG, and a study for which DMI varied from 158 

9.0 to 32.5 kg d-1 (Rooke et al., 2015, unpublished) were discarded from the dataset, leaving 1257 159 

records retained. Finally, studies were screened on the basis of mean CH4 yield after which two 160 

studies, for which the control treatments contained 60 and 82% forage had unrealistically low CH4 161 

yields of 10.3 and 11.3 g (kg DMI)-1 (San Vito et al., 2016; De Carvalho et al., 2016), respectively, 162 

were considered outliers and removed from the dataset. This resulted in the retention of 1248 163 

records.  164 

2.2 Model development 165 
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Production, yield and intensity of CH4 were predicted by fitting mixed-effects models 166 

according to: 167 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + ⋯ + 𝛽𝑘𝑥𝑖𝑗𝑘 + 𝑠𝑖 + 𝜀𝑖𝑗, 168 

where 𝑦𝑖𝑗 denotes the jth response variable of CH4 production (g d-1 animal-1), CH4 yield [g (kg 169 

DMI)-1] or CH4 intensity [g (kg ADG)-1] from the ith study; 𝛽0 denotes the fixed effect of intercept; 170 

𝑥𝑖𝑗1 to 𝑥𝑖𝑗𝑘 denote the fixed effects of predictor variables and 𝛽1 to 𝛽𝑘 are the corresponding slopes; 171 

𝑠𝑖 and 𝜖𝑖𝑗 denote the random effect of study and residual error, respectively, distributed as 𝑠𝑖 ~ 172 

N(0, 𝜎𝑠
2), 𝜖𝑖𝑗 ~ N(0, 𝑦𝑖𝑗𝜎𝑒

2) for CH4 production, and 𝜖𝑖𝑗 ~ N(0, 𝜎𝑒
2) for CH4 yield and intensity; 𝜎𝑠

2 173 

is the between-study variance, 𝜎𝑒
2 is the residual variance, and 𝑦𝑖𝑗𝜎𝑒

2 is the residual error variance 174 

being proportional to the dependent variable.  175 

In order to provide equations that depend on various predictor variables, eight categories of 176 

CH4 production models were developed, of which four used a fixed and another four a selected 177 

combination of covariates: DMI only (DMI_C), DMI and dietary NDF content (DMI+NDF_C), 178 

DMI and dietary starch content (DMI+STA_C), DMI and dietary EE content (DMI+EE_C); a 179 

selection of DMI and the dietary NDF, starch, forage, EE, crude protein and ash contents (Diet_C), 180 

the Diet_C covariates plus BW (Animal_C), the Animal_C covariates except DMI 181 

(Animal_no_DMI_C), and DMI, the dietary NDF and crude protein contents, and BW (Global_C). 182 

Global_C was exclusively associated with covariates that had few or no missing data points. In 183 

addition to these eight categories, CH4 production was predicted using Ym only. The mixed-effects 184 

model to estimate Ym of this GLOBAL NETWORK Tier 2 equation only included 𝑦𝑖𝑗, 𝛽0, 𝑠𝑖, and 185 

𝜖𝑖𝑗 of the previously shown model, with 𝜖𝑖𝑗 ~ N(0, 𝜎𝑒
2). According to the CH4 production models, 186 

six categories of CH4 yield prediction models were developed: dietary NDF content only 187 

(NDF_C), dietary starch content only (STA_C), dietary EE content only (EE_C); a selection of 188 
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the dietary NDF, starch, forage, EE, crude protein and ash contents (Diet_no_DMI_C), the 189 

Animal_no_DMI_C covariates, and dietary NDF, forage and crude protein contents and BW 190 

(Global_no_DMI_C). Finally, eight categories of CH4 intensity prediction models were 191 

developed: DMI_C, DMI+NDF_C, DMI+STA_C, DMI+EE_C, Diet_C, Animal_C, 192 

Animal_no_DMI_C and Global_C.  193 

Covariates that play a key role in predicting CH4 production were selected for Diet_C, 194 

Diet_no_DMI_C, Animal_C, Animal_no_DMI_C, Global_C and Global_no_DMI_C using a 195 

multistep selection approach. Model selection started with all potential covariates associated with 196 

the particular model category. Subsequently, one or more next selection steps were performed if 197 

not all records without missing values for the selected covariates were used in the previous step.  198 

A backward selection approach was applied throughout the different steps, i.e., only covariates 199 

selected in a previous step could be selected for the next step. The model selection procedure 200 

stopped when the selected covariates were the same as the ones selected in the previous step. With 201 

this procedure, a model equation was constructed based on records that contained no missing 202 

values for the final selection of covariates and data sufficiency was maximized for the development 203 

of model equations throughout the different categories. 204 

The Bayesian information criterion (BIC; e.g., James et al., 2014) was computed for all 205 

fitted models. The BIC is a well-known quantitative approach to model selection that favors more 206 

parsimonious models over more complex models by penalizing the number of parameters included 207 

in the model. Models with the smallest BIC were selected, as a smaller BIC indicates a better 208 

tradeoff between the goodness of fit and the number of model parameters. In addition, the presence 209 

of multicollinearity of fitted models was examined based on the variance inflation factor. The 210 

largest variance inflation factor among all predictor variables was considered as an indicator of 211 
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multicollinearity (Kutner et al., 2005). The identified predictor variables were removed from the 212 

model one at a time using a stringent variance inflation factor cutoff value of 3 (Zuur et al., 2010). 213 

All models were fitted using the lme function (Pinheiro and Bates, 2000) of R language and 214 

environment for statistical computing (R Core Team 2017; version 3.5.2).  215 

2.3 Data handling 216 

The entire database contained a wide variety of dietary forage contents (57.6 ± 29.8% DM; 217 

average ± SD), ranging from 8 to 100% DM. The database was split into a higher-forage subset 218 

containing the records with ≥ 25% forage, and a lower-forage subset containing all data with ≤ 219 

18% forage. No studies tested forage contents between 18 and 25%. Because of the small 220 

coefficient of variation, dietary starch could not be selected for the lower-forage Diet_C, 221 

Animal_C, and Animal_no_DMI_C equations. To explore the geographical impact of CH4 222 

production, all European, North American and Brazilian higher-forage data were also used as 223 

separate subsets. Because of the scarcity of data from Australia and South Korea, no specific 224 

equations for the latter two regions were developed. Data from growing and finishing cattle for 225 

which ADG was measured were selected for a growing cattle subset, which enabled the 226 

development of CH4 intensity [g (kg ADG)-1] equations. Other outliers were identified using the 227 

interquartile range method (Zwillinger and Kokoska, 2000) based on all dependent and 228 

independent variables as in Niu et al. (2018). A factor of 1.5 for extremes was used in constructing 229 

boundaries to identify outliers for dependent variables and a factor of 2.5 for independent variables. 230 

Outliers were identified only for the complete database. The CH4 intensity [g (kg ADG)-1] values 231 

were log transformed to stabilize normality before outlier identification. After removal of records 232 

with interquartile range identified outliers in the CH4 production and variables, 1021 records from 233 

114 dietary treatments and 39 studies were retained. Of these records 882 were from 104 treatments 234 
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and 38 studies in the higher-forage subset, 139 from 10 treatments and 8 studies from the UK, 235 

Ireland, France, Canada and Brazil in the low-forage subset, 307 from 28 treatments and 15 studies 236 

in the European higher-forage subset, 394 from 36 treatments and 10 studies the North American 237 

higher-forage subset, 104 from 17 treatments and 7 studies the Brazilian higher-forage subset, 72 238 

from 22 treatments and 5 studies from Australia, and 5 from 1 treatment and 1 study from South 239 

Korea. 240 

The cleaned dataset used for analysis comprised measurements of enteric CH4 emission 241 

that were obtained from respiration chambers (n = 676), the GreenFeed system (n = 87), and the 242 

sulfur hexafluoride (SF6) tracer technique (n = 258). Animals were either kept in confinement or 243 

on pasture (n = 991 vs. 30, respectively). Types of forage frequently used in higher-forage diets 244 

included fresh alfalfa, sugarcane, sugarcane bagasse, corn silage, barley straw, whole-crop barley 245 

silage, whole-crop wheat silage, grass herbage, elephant grass, grass silage, grass seed hay, grass 246 

hay wrapping, timothy and natural grassland hay. Types of forage frequently used in lower-forage 247 

diets were barley straw, wheat straw, whole-crop wheat silage, corn silage and whole-crop barley 248 

silage. Concentrate ingredients in higher-forage and lower-forage diets included dried distillers 249 

grains, barley, canola meal, soybean meal, soybean hulls, crude glycerin, corn grain, cereal by-250 

products, dehydrated alfalfa, dehydrated beet pulp, citrus pulp, wheat distillers grains, whole grain 251 

oats and minerals. 252 

2.4 Cross-validation and model evaluation 253 

 The predictive accuracy of the developed CH4 prediction models was evaluated using a 254 

leave-one-out cross-validation (e.g., James et al., 2014), in which all individual studies were 255 

consecutively taken as the testing set for model evaluation, while all remaining studies were taken 256 

as the training set for model fitting. Currently, most national enteric CH4 inventories are based on 257 
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energy conversion factors recommended by the IPCC (2006), which were evaluated, i.e., not cross-258 

validated. The IPCC models and the developed models throughout all categories were, if 259 

applicable, evaluated on the various (sub)sets using a combination of model evaluation metrics. 260 

Furthermore, equations from Yan et al. (2000, 2009) based on data from Northern Ireland, Ellis et 261 

al. (2007) based on data from North America, Ellis et al. (2009) based on data from Canada, Patra 262 

(2017) based on data from Brazil, India, Australia and Zimbabwe, Escobar-Bahamondes et al. 263 

(2017a) based on data from North America, Europe, Australia, Japan and New Zealand, Charmley 264 

et al. (2016) based on data from Australia, and the Mitscherlich equation from Mills et al. (2003) 265 

based on data from the UK were evaluated given that the covariates used in these published 266 

equations were available in the present database. Of these previously published extant equations, 267 

the equation that performed the best using our data and the single regression equation that only 268 

depended on DMI and performed the best using our data were reported in the present study. Data 269 

from studies included in the present database used for the development of these extant equations 270 

were excluded from evaluations of those extant equations to ensure independent evaluation.  271 

First, the mean square prediction error (MSPE) was calculated according to Bibby and 272 

Toutenburg (1977) as:  273 

MSPE =
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

𝑛
, 274 

where 𝑂𝑖 and Pi denote the observed and predicted value of the response variable for the ith 275 

observation, respectively, and 𝑛 denotes the number of observations. The square root of the mean 276 

square prediction error (RMSPE) was used to assess overall model prediction error. In the present 277 

study, RMSPE was expressed as a proportion of observed CH4 production, yield or intensity 278 

means. The MSPE was decomposed into mean bias (MB), slope bias (SB) and random bias to 279 

identify systematic biases, of which the MB and SB were calculated as follows: 280 
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MB =  (�̅� − �̅�)2, 281 

SB = (𝑠𝑝 − 𝑟𝑠𝑜)2, 282 

where �̅� and �̅� denote the predicted and observed means, 𝑠𝑝 denotes the standard deviation of 283 

predicted values, 𝑠𝑜 denotes the standard deviation of observed values, and 𝑟 denotes the Pearson 284 

correlation coefficient. Second, the ratio of RMSPE and 𝑠𝑜, namely RMSPE-observations standard 285 

deviation ratio (RSR), which accounts for the specific variability of the data used for evaluation 286 

(Moriasi et al., 2007), was used to compare the performance of models based on data from different 287 

(sub)sets. Smaller values of RSR indicate less variation in the prediction error compared to the 288 

standard deviation of the observations, with RSR = 1 indicating the RMSPE variance is equal to 289 

observed data variance. If RSR > 1, �̅� is a better predictor than 𝑃𝑖. Third, the concordance 290 

correlation coefficient (CCC; Lin, 1989), which quantifies both accuracy and precision based on 291 

the bias correction factor (Cb) and r by comparing the best-fit line and observations to the identity 292 

line (y = x), respectively, was calculated. The CCC is given as: 293 

CCC = r ∙ Cb,  294 

The closer the CCC of a model to 1, the better the model performance.  295 

Different forage proportion cutoff values with increments of 5% from 15 to 50% were 296 

tested to evaluate the effect of the cutoff for splitting the database into higher-forage and lower-297 

forage subsets on equation performance. Cutoff values of 0, 15, 20, 25, 30, 35, 40, 45, and 50% 298 

forage DM were used for evaluation. Per cutoff value, an RSR weighted to the number of 299 

observations for the DMI_C equation was calculated for the higher-forage and lower-forage CH4 300 

production equations, after which the optimal cutoff value could be determined. 301 

 302 

3. Results 303 
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The inclusion criterion for dietary treatment had different effects on the variables means, 304 

viz., DMI (8.13 vs. 8.06 kg d-1; cleaned vs. uncleaned averages, respectively), and NDF (35.0 vs. 305 

35.0% of DM), starch (34.0 vs. 30.5% of DM), EE (3.02 vs. 3.52% of DM), ash (6.29 vs. 7.26% 306 

of DM), and forage (51.0 vs. 58.1% of DM) content of the diet, BW (478 vs. 487 kg), CH4 307 

production (161 vs. 164 g d-1 animal-1), CH4 yield [20.0 vs. 20.4 g (kg DMI)-1], CH4 intensity [145 308 

vs. 207 g (kg ADG)-1] and Ym (6.0 vs. 6.0 % of the gross energy intake). Summary statistics for the 309 

(sub)sets of the present cleaned database that included intake, dietary nutrient composition, BW, 310 

ADG and CH4 variables are presented in Tables 1 and S1.  311 

3.1 Methane production equations 312 

The DMI_C all-data CH4 production (g d-1 animal-1) equation indicated a positive 313 

relationship of DMI with CH4 production (Eq. 1; Table 2; regression coefficient ± 2∙SE gives a 314 

rough estimate of the 95% confidence interval boundaries that correspond to a P-value of 0.05, all 315 

P-values < 0.05 were not reported). The DMI+NDF_C, DMI+STA_C and DMI+EE_C equations 316 

had positive, negative and negative regression coefficients for dietary NDF, starch and EE in 317 

relation to CH4 production, respectively (Eqns. 2-4). The RSR, which is the most appropriate 318 

statistic for evaluating equations based on different numbers of observations, for the DMI_C, 319 

DMI+NDF_C, DMI+STA_C and DMI+EE_C equations indicated similar predictive performance, 320 

whereas the CCC indicated the DMI+NDF_C equation performed better than the DMI_C and 321 

DMI+EE_C equations (0.63 vs. 0.60 and 0.61, respectively). Dietary forage content and DMI were 322 

selected for the Diet_C and Animal_C equations (Eqns. 5-6), with BW also selected for the 323 

Animal_C equation. Dietary forage and ash and BW were selected for the Animal_no_DMI_C 324 

equation (Eq. 7). The Animal_C was the best performing all-data equation developed in the present 325 

analysis, with RSR and CCC of 0.61 and 0.76, respectively. Across the developed all-data 326 
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equations, slope bias ranged from 1.01-12.7%, which was consistently associated with under-327 

prediction at the high end and over-prediction at the low end of production (Fig. 1). Overall, 328 

models with a higher number of covariates tended to have less slope bias and had less between-329 

study variance (𝜎𝑠
2 not shown).  330 

The RSR of the all-data DMI_C CH4 production equation was 0.71 (Table 3). Splitting the 331 

database into higher-forage and lower-forage subsets at cutoffs of 15 to 50% resulted in very 332 

similar weighted average RSR values of 0.68 to 0.69. The cutoff of 20% that was applied resulted 333 

in an RSR of 0.94 for the lower-forage subset at this cutoff value, whereas the cutoff values from 334 

25 to 50% had all lower RSR values for the lower-forage subset. This might suggest that the lower-335 

forage subset is a better predictor at a higher cutoff. However, the prediction of the data associated 336 

with ≤ 20% forage did not improve at cutoff values > 20% (results not shown), indicating that data 337 

with > 20% forage decreased the RSR of the lower-forage subset, but not the data associated with 338 

≤ 20% forage. Based on these differences in performance and the fact that diets containing ≤ 20% 339 

forage are commonly fed to cattle in intense feedlot production systems, the data were split at 20% 340 

forage throughout the present study, which made all lower-forage data contain ≤ 18% forage and 341 

the higher-forage ≥ 25% forage.  342 

The higher-forage CH4 production equations overlapped with the all-data equations, where 343 

DMI and dietary NDF, starch and EE in the DMI_C, DMI+NDF_C, DMI+STA_C and 344 

DMI+EE_C equations showed regression coefficients with the same sign (Eqns. 12-15; Table 4). 345 

Moreover, similar covariates were selected for the Diet_C, Animal_C and Animal_no_DMI_C 346 

equations as for the all-data equations, although the Animal_no_DMI_C equation did not contain 347 

dietary ash (Eqns. 16-18). The higher-forage equations predicted the higher-forage subset better 348 

than the all-data equations, with mean RSR of 0.62 vs. 0.66 and CCC of 0.70 vs. 0.68, respectively, 349 
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for the DMI_C, DMI+NDF_C, DMI+STA_C, DMI+EE_C, Diet_C, Animal_C and 350 

Animal_no_DMI_C equations. The developed higher-forage equations under-predicted CH4 351 

production at the high end and over-predicted it at the low end of production, with the multiple 352 

regression equations having less slope bias than the DMI_C equation (Fig. 2). In line with the all-353 

data equations, models with a higher number of covariates had less between-study variance.  354 

In accordance with the all-data and the higher-forage equations, DMI was positively related 355 

to CH4 production in the lower-forage DMI_C equation (Eq. 20; Table 5). The DMI+NDF_C, 356 

DMI+STA_C and DMI+EE_C equations indicated no significant relationships between the 357 

corresponding dietary NDF, starch and EE contents with CH4 production (Eqns. 21-23; P-values 358 

of 0.14, 0.10 and 0.57, respectively). The lower-forage DMI_C equation predicted the lower-359 

forage subset better than the all-data equations based on RSR, whereas the highest CCC of 0.35 360 

for the lower-forage subset were obtained from the all-data DMI+STA_C and Animal_C equations 361 

(Eqns. 3, 6; Table 2). Systematic bias, that is the sum of mean and slope bias, was less than 5.75% 362 

for these developed lower-forage equations (Table 5), except for the DMI+STA_C equation that 363 

had 3.70 and 20.18% mean and slope bias, respectively. The minor slope bias of the lower-forage 364 

DMI_C equation (≤ 0.03%) was due to under-prediction of CH4 production at the high end and 365 

over-prediction at the low end (Fig. 3).  366 

In contrast to the higher-forage equations, dietary NDF and starch contents in the European 367 

higher-forage DMI+NDF_C and DMI+STA_C equations were not related to CH4 production 368 

(Eqns. 29-30, Table 6; P-values of 0.20 and 0.69, respectively). Furthermore, DMI, dietary NDF 369 

and EE were selected for the Diet_C equation (Eq. 32) with BW also being selected for the 370 

Animal_C equation (Eq. 33), whereas DMI and BW, and BW were selected for the Global_C and 371 

Animal_no_DMI_C equations, respectively (Eqns. 34-35). The North American higher-forage 372 
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equations were largely in line with the higher-forage equations. However, the Animal_no_DMI_C 373 

equation also contained dietary ash (Eq. 44; Table 7) as obtained for the all-data equation, and the 374 

Global_C equation also contained dietary crude protein (Eq. 45), The European higher-forage and 375 

North American higher-forage equations under-predicted CH4 at the high end and over-predicted 376 

it at the low end of production, except for the European higher-forage DMI+EE_C equation, which 377 

under-predicted CH4 at the low end and over-predicted at the high end (Figs. 4-5). Dietary NDF 378 

and EE contents in the Brazilian higher-forage DMI+NDF_C and DMI+EE_C equations were not 379 

significantly related to CH4 production (Eqns. 49-50, Table S2; P-values of 0.28 and 0.05, 380 

respectively), the Diet_C equation contained DMI and dietary ash (Eq. 51), whereas the 381 

Animal_no_DMI_C equation contained dietary forage (Eq. 52). Slope bias varied from 9.05 to 382 

18.9% for the developed Brazilian higher-forage equations, except for the Animal_no_DMI_C 383 

equation for which 32.9% slope bias was obtained. Equations under-predicted CH4 production at 384 

the low end and over-predicted at the high end, whereas the Animal_no_DMI_C equation showed 385 

a negative observed vs. predicted correlation (Fig. S1). Compared to the higher-forage equations, 386 

the European higher-forage, North American higher-forage and Brazilian higher-forage data were 387 

more adequately predicted by the European higher-forage (mean RSR of 0.80 vs. 0.85, mean CCC 388 

of 0.50 vs. 0.48; respectively; Tables 4, 6), North American higher-forage (mean RSR of 0.53 vs. 389 

0.57, mean CCC of 0.80 vs. 0.77; respectively; Tables 4, 7) and Brazilian higher-forage (mean 390 

RSR of 1.13 vs. 1.35, respectively; Tables 4, S2), although mean CCC indicated Brazilian higher-391 

forage data was more adequately predicted using the higher-forage than the Brazilian higher-392 

forage equations (0.17 vs. 0.11, respectively; Tables 4, S2). 393 

The IPCC (2006) Tier 2 higher-forage equation had an RSR of 0.68 and a CCC of 0.75 394 

when evaluated using all data (Eq. 9; Table 2). Predicting the higher-forage subset with this 395 
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equation resulted in RSR and CCC of 0.53 and 0.84, respectively (Eq. 9; Table 4). Despite this 396 

high accuracy of prediction of the Tier 2 approach, increased variance appeared along the unity 397 

line of the predicted vs. observed plots (Figs. 1-2). The IPCC Tier 2 (2006) lower-forage equation 398 

had an RSR of 1.38, a CCC of 0.17 and 59.6% mean bias for the lower-forage subset (Eq. 25; 399 

Table 5). The GLOBAL NETWORK Tier 2 equations with Ym of 6.1% and 6.3% (Eqns. 8, 19; 400 

Tables 2, 4) performed slightly better than the IPCC Tier 2 (2006) equation for the all-data and 401 

higher-forage (sub)sets, respectively [note that the IPCC equations were validated, the GLOBAL 402 

NETWORK equations were cross-validated], whereas the lower-forage GLOBAL NETWORK 403 

Tier 2 equation with Ym of 4.5% resulted in RSR of 0.90, a CCC of 0.43 and 0.47% of mean bias 404 

(Eq. 24) performed obviously better than the lower-forage IPCC Tier 2 equation. Although the 405 

IPCC currently uses a 10% forage cutoff, a Ym of 4.5% is still more accurate than a Ym of 3.0% for 406 

the present data, with RSR being 0.98 and 1.51, and CCC being 0.40 and 0.16 for the GLOBAL 407 

NETWORK and IPCC Tier 2 lower-forage equations, respectively (Eqns. 24-25). The European 408 

higher-forage and North American higher-forage subsets were associated with RSR of 0.66 and 409 

0.48, and CCC of 0.71 and 0.88 for the IPCC Tier 2 (2006) equation, respectively (Eq. 9; Tables 410 

6-7), whereas RSR of 1.81 and CCC of 0.21 were obtained for the Brazilian higher-forage subset 411 

(Eq. 9; Table S2). Compared to the latter equation, the GLOBAL NETWORK Tier 2 equations 412 

with Ym of 6.6 and 6.3% performed similarly based on RSR and CCC for the European higher-413 

forage and North American higher-forage subset (Eqns. 36, 46; Tables 6-7), whereas less mean 414 

bias was obtained with 1.89 vs. 3.54% and 2.51 vs. 8.70%, respectively. The Brazilian higher-415 

forage subset was better predicted when using the GLOBAL NETWORK Tier 2 approach resulted 416 

in a Ym of 5.5%, an RSR of 1.29, and a CCC of 0.28 (Eq. 53; Table S2).  417 
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Equations developed by Ellis et al. (2009), Charmley et al. (2016) and Escobar-418 

Bahamondes et al. (2017a) were among the best performing extant equations and outperformed 419 

the Yan et al. (2000, 2009), Mills et al. (2003), Ellis et al. (2007) and Patra (2017) equations for 420 

all (sub)sets. The best performing equation of Charmley et al. (2016) performed better than the 421 

all-data DMI_C equation (Eqns. 1, 10; Table 2). The all-forage equation of Escobar-Bahamondes 422 

et al. (2017a) appeared to perform most accurately among all of the equations (Eq. 11). However, 423 

only 646 data points were available for independent evaluation. Based on RSR, it did not 424 

outperform the Animal_C equation for these 646 data points. For the higher-forage subset, the best 425 

Charmley et al. (2016) and the Escobar-Bahamondes et al. (2017a) equations performed the best 426 

based on CCC (Eqns. 20, 11; Table 4), but not on RSR. The Ellis et al. (2009) equation that also 427 

depended on the NDF:starch ratio (Eq. 26; Table 5) performed the best for the lower-forage data 428 

with RSR of 0.89 and CCC of 0.41. For the European higher-forage subset, the best Charmley et 429 

al. (2016) and the Escobar-Bahamondes et al. (2017a) equations (Eqns. 37, 11; Table 6) did not 430 

perform better than the Animal_C equation when just considering RSR and CCC values, although 431 

the Animal_C equation was evaluated using fewer data points. For the North American higher-432 

forage subset, the best performing Charmley et al. (2016) equation (Eq. 47; Table 7) performed 433 

similarly to the Global_C equation based on RSR, whereas the Charmley et al. (2016) equation 434 

performed even slightly better based on CCC. Despite the accuracy of the various equations of 435 

Charmley et al. (2016) and in contrast to the Animal_C equations, the predicted vs. observed plots 436 

showed increasing variation along the unity line for all-data in particular (Fig. 1). However, the 437 

best-performing equations that were developed, which was the Animal_C equation for most 438 

subsets, did not show increasing variation along the unity line. This indicates that the best 439 

performing equations that were developed explain variation that is not captured by the Charmley 440 
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et al. (2016) equations. These higher precisions obtained from the best performing equations is 441 

also indicated by the correlation coefficients of predicted vs. observed values on which the CCC 442 

is calculated (result not shown).  443 

3.2 Methane yield equations 444 

Positive, negative and negative slope regression coefficients were obtained for the NDF_C, 445 

STA_C and EE_C all-data CH4 yield [g (kg DMI)-1] equations (Eqns. 54-56, Table S3), 446 

respectively, which aligned with the all-data CH4 production equations. The Diet_no_DMI_C and 447 

Global_no_DMI_C equations selected dietary forage (Eqns. 57-58), whereas dietary EE and ash 448 

were also selected for the Diet_no_DMI_C equation, and dietary crude protein for the 449 

Global_no_DMI_C equation. The NDF_C, STA_C, EE_C, Diet_no_DMI_C and 450 

Global_no_DMI_C equations had RSR values of 0.98, 1.06, 1.01, 0.97 and 0.96, respectively. The 451 

NDF_C, STA_C and EE_C higher-forage CH4 yield equations indicated positive, negative and 452 

negative relationships to CH4 yield, respectively (Eqns. 59-61, Table S4), whereas only dietary 453 

forage content was selected for the Diet_no_DMI_C equation (Eq. 62). The higher-forage CH4 454 

yield was associated with RSR of 1.03 to 1.21 (Table S3) when predicted by the all-data equations, 455 

whereas the higher-forage equations predicted CH4 yield of this subset with RSR values from 0.98 456 

to 1.04 (Table S4). The higher-forage equations reproduced the observed variation in CH4 yield 457 

less adequately than the all-data equations, with even a negative observed vs. predicted relationship 458 

for the higher-forage STA_C and EE_C equations (Figs. S2-S3).  459 

3.3 Methane intensity equations 460 

In contrast to the CH4 production equations, the DMI regression coefficients in the all-data 461 

DMI_C and DMI+EE_C CH4 intensity equations [g (kg ADG)-1] contained zero in their 462 

confidence intervals (P-values of 0.14 and 0.22, respectively), whereas the DMI+NDF_C and 463 
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DMI+STA_C equations had a positive regression coefficient for DMI (Eqns. 63-66; Table S5). In 464 

line with the CH4 production equations, dietary NDF, starch and EE contents in the DMI+NDF_C, 465 

DMI+STA_C and DMI+EE_C equations had positive, negative and negative relationships with 466 

CH4 intensity, respectively. Dietary forage content was selected for the Diet_C, 467 

Animal_no_DMI_C and Global_C equations (Eqns. 67-69), with DMI also being selected for the 468 

Diet_C equation and BW also being selected for the Global_C equation. The Diet_C, 469 

Animal_no_DMI_C and Global_C equations had RSR values of 0.99, 1.00 and 0.96, respectively, 470 

and appeared to predict the variation in CH4 intensity most adequately (Fig. S4), whereas the other 471 

all-data CH4 intensity equations had RSR greater than 1 and appeared to predict the variation in 472 

CH4 intensity less adequately.  473 

The higher-forage DMI_C, DMI+STA_C and DMI+EE_C equations did not indicate that 474 

DMI was related to CH4 intensity (Eqns. 70, 72-73, Table S6; P-values of 0.06, 0.52 and 0.93, 475 

respectively). Dietary NDF was positively related to CH4 intensity (Eq. 71), whereas dietary starch 476 

and EE contents were not related to CH4 intensity (Eqns. 72-73; P = 0.32). Dietary ash content 477 

was selected for the Diet_C equation (Eq. 74), whereas BW were selected for the Animal_C and 478 

Global_C equations (Eqns. 75-76), with dietary NDF also being selected for the Global_C 479 

equation. All higher-forage CH4 intensity equations had RSR ≥ 1.03. Furthermore, as also obtained 480 

for the higher-forage CH4 yield equations, the higher-forage CH4 intensity equations did not 481 

reproduce the observed variation in CH4 intensity of the higher-forage subset more adequately than 482 

the all-data CH4 intensity equations (Figs. S4-S5), which was also indicated by the RSR and CCC 483 

values.  484 

 485 

4. Discussion 486 
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Global applicability is an important attribute of prediction equations of beef cattle enteric 487 

CH4 emission. Various beef cattle systems that are applied world-wide may fit in our analysis. For 488 

more details about these beef cattle fattening systems, we refer to e.g., De Vries et al. (2015), 489 

Gerssen-Gondelach et al. (2017) and Drouillard (2018). Our database, in which data (1021 490 

individual records) from a variety of geographical regions across the world is represented, 491 

therefore, contributes to the overall robustness and global applicability of our all-data and higher-492 

forage equations in particular. Hence, CH4 production of beef cattle will be accurately predicted 493 

for data samples that represent a wider set of conditions throughout the world, which is a unique 494 

feature of the present equations. Several CH4 prediction equations for beef cattle have been 495 

published previously, but they were developed from relatively small databases and only for one 496 

specific geographic region, such as Yan et al. (2009) using 108 individual animal records from 5 497 

studies from Northern Ireland, Ellis et al. (2007) using 83 treatment means from 14 studies from 498 

North America, Ellis et al. (2009) using 872 individual animal records from 12 studies from 499 

Alberta (Canada), and Moraes et al. (2014) using individual records from 414 heifers and 458 500 

steers housed at one research station in the United States.  501 

In the present study, we collated a wide-ranging database that included a large number of 502 

studies from Europe, North America, Brazil, Australia and South Korea, which represented diverse 503 

global beef production systems. Studies from tropical areas were, however, not predominant in the 504 

present analysis, for which we refer to Charmley et al. (2016) who included studies from tropical 505 

Australia, and Patra (2017) who included studies from India, Zimbabwe, Australia and Brazil. 506 

Furthermore, Escobar-Bahamondes et al. (2017a) had a database comprising 148 treatment means 507 

from 38 studies with diets containing > 40% forage, and a database comprising 43 treatment means 508 

from 17 studies with diets containing < 20% forage. Therefore, their analysis for lower-forage 509 
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diets, in particular, included more data from more studies than ours, but their cutoff values for 510 

lower and higher forage were based on differences in microbiome composition rather than the 511 

prediction error used in the present analysis. Furthermore, their analysis did not explore 512 

intercontinental variation in beef cattle CH4 emissions and did not have the benefit of using 513 

individual animal records. Other unique strengths of the present study are the development of CH4 514 

yield and intensity equations, whereas beef cattle studies are commonly limited to only total CH4 515 

production, and the inclusion of dietary forage content as a covariate of the three CH4 emission 516 

metrics. 517 

Our database includes data obtained with different CH4 (viz., respiration chambers, 518 

GreenFeed system, SF6) and DMI (viz., weighing and estimating using marker techniques) 519 

measurement methods. The different CH4 measurement techniques have their strengths and 520 

weaknesses (Hammond et al., 2016; Hristov et al., 2018), whereas directly weighing the amount 521 

of feed offered and refusals and their dry matter content is regarded as more accurate than the 522 

ytterbium and n-alkane markers used for some studies in the present database, which may over- or 523 

underestimate DMI (Pérez-Ramírez et al., 2012). However, the development of a DMI_C CH4 524 

production equation specific for respiration chamber, GreenFeed system and SF6 subsets did not 525 

consistently improve the RSR and CCC of the corresponding subsets compared with the all-data 526 

DMI_C equation (results not shown). Furthermore, including CH4 measurement method as a 527 

covariate in the statistical model of an all-data DMI_C equation did not improve the model fit. 528 

Similar results were obtained for measurement method of DMI. Therefore, CH4 and DMI 529 

measurement methods did not have a major effect on the performance of the equations developed 530 

in the present analysis. However, the relatively high and low accuracies with which the region-531 

specific subsets could be predicted may be related to the CH4 measurement methods, because the 532 
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percentage of use of respiration chambers in the European higher-forage, North American higher-533 

forage and Brazilian higher-forage subsets differed substantially (48, 95 and 0%, respectively). 534 

Finally, statistically accounting for cattle breed or cattle type (e.g., steers, heifers, cows) was 535 

considered, but did not or not consistently improve the prediction of CH4 production throughout 536 

the subsets.  537 

Non-linear CH4 prediction equations such as the Mitscherlich equation were previously 538 

found to outperform linear equations in some studies (e.g., Mills et al., 2003; Patra, 2017). 539 

However, for the present database, fitting non-linear equations, viz., Monomolecular, Exponential, 540 

Mitscherlich and Power forms, did not result in improved prediction of CH4 production compared 541 

to the linear DMI_C equations (result not shown). The latter result is in line with the non-linear 542 

Mills et al. (2003) and Patra (2017) equations that did not outperform the linear Charmley et al. 543 

(2016) equations. This suggests that a multiple linear regression approach, as used for the 544 

development of our Animal_C and Global_C equations rather than non-linear approaches, 545 

improves the precision and accuracy of prediction of CH4 production. The utility of ADG and 546 

digestibility of EE, NDF, nitrogen, gross energy, DM and organic matter for predicting CH4 was 547 

also evaluated, but these covariates did not result in better prediction of CH4 production than 548 

achieved by the various equations that are presented.  549 

The linear regression equations of Charmley et al. (2016) that depended on DMI and 550 

outperformed our DMI_C equations were fitted using models that included more terms than just 551 

DMI, which resulted in nearly unbiased predictions of CH4. Furthermore, the data Charmley et al. 552 

(2016) used were only from certain regions in Australia and may have been relatively 553 

homogeneous. The equations developed using these data may then result in accurate prediction of 554 

CH4 production based on only DMI. Therefore, the prediction bias for our various Animal_C and 555 
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Global_C equations and some potential overestimation of between-study variance that remained 556 

may vanish by the inclusion of even more covariates in the statistical model. The negligible bias 557 

obtained for the European higher-forage Animal_C equation, for which dietary crude protein and 558 

EE contents were available for all individual animal records used for fitting this model, and 559 

suggests that multiple regression equations are associated with less bias. Despite prediction biases 560 

of mixed-effects models being associated with the inclusion of the random study effect (see also 561 

White et al., 2017), which applies to models with fewer covariates in particular, omission of the 562 

random study effect will affect the inference made on the covariates and may result in type II errors 563 

(St-Pierre, 2001). Therefore, for achieving unbiased predictions, mixed-effects models are ideally 564 

applied to datasets without missing values throughout the different covariates. Such datasets will 565 

result in greater variation of the dependent variable explained by multiple fixed-effects terms and 566 

less overestimation of the random study effect.  567 

4.1 Key predictor variables 568 

Dry matter intake was the most important predictor of enteric CH4 production as it was 569 

significantly and positively related to CH4 production for all-data and the higher-forage, lower-570 

forage, European higher-forage and North American higher-forage subsets. A positive relationship 571 

between DMI and CH4 production is in agreement with previous dairy and beef cattle studies (e.g., 572 

Ellis et al., 2007; Hristov et al., 2013a; Richmond et al., 2015; Bell et al., 2016; Charmley et al., 573 

2016; Niu et al., 2018) and this is because more CH4 is produced when more substrate is available 574 

for microbial fermentation and in turn methanogenesis. In addition, all Diet_C and Animal_C 575 

models based on these five (sub)sets selected DMI for the prediction of CH4 production, and the 576 

Animal_no_DMI_C equations did not perform as well as the Animal_C equations, indicating the 577 

importance of DMI relative to other covariates.  578 
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 The positive relationship between the all-data CH4 production and dietary NDF content 579 

also aligns with previous results (e.g., Ellis et al., 2007; Yan et al., 2009; Niu et al., 2018). The 580 

coefficients of variation were 43.8, 45.4 and 30.3% for CH4 production, and 32.0, 30.6 and 8.6% 581 

for dietary NDF content for the all-data and the higher-forage and lower-forage subsets, 582 

respectively. This decrease in variation is in line with the disappearance of this positive 583 

relationship for the all-data and higher-forage vs. the lower-forage equations. Therefore, 584 

developing subsets with limited variation in forage percentage seems to have masked the positive 585 

relationship between CH4 production and dietary NDF content. Furthermore, dietary nutrient 586 

contents change at the expense of other nutrients. Dietary NDF content may increase at the expense 587 

of more rapidly fermentable carbohydrates, which is positively associated with CH4 production 588 

(Hatew et al., 2015). The latter hypothesis aligns with a model with DMI and dietary NDF and 589 

starch fitted to all data having regression coefficients that were positive, positive and not different 590 

from zero for DMI and dietary NDF and starch, respectively (result not shown). However, the 591 

lignin fraction of NDF being undegradable indicates that increased dietary NDF may not result in 592 

more CH4 production in case of high lignin contents. Warner et al. (2016) observed lower CH4 593 

production but higher CH4 yield per unit of digestible organic matter for dairy cattle fed grass 594 

silage of high lignin and NDF content, compared with grass silage of low lignin and NDF content. 595 

The observation of Na et al. (2017) who found different CH4 yields per unit of DMI for deer and 596 

goats, but not per unit of digestible DMI may also support this hypothesis.  597 

Dietary starch content is negatively related to CH4 production as it typically increases 598 

propionate production in the rumen, yielding less H2 for the reduction of CO2 to CH4 (Martin et 599 

al., 2010; Grainger and Beauchemin, 2011). The effect of dietary starch on CH4 production 600 

appeared to be less pronounced for higher-forage diets in dairy cows (Van Gastelen et al., 2015), 601 
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which may explain why no relationship between dietary starch content and CH4 production was 602 

found for the European higher-forage subset, which had the highest forage content of all subsets. 603 

Furthermore, it was suggested that a critical dietary content of starch is required to decrease CH4 604 

production (Martin et al., 2010; Van Gastelen et al., 2015), possibly more than approximately 20% 605 

of DM, and that slight differences in intakes of starch, and other major carbohydrates (e.g., 606 

hemicellulose, cellulose and lignin) cannot explain the difference in CH4 emissions of cattle (Moe 607 

and Tyrrell, 1979; Moate et al., 2018). This may also explain why no relationship between dietary 608 

starch content and CH4 production was obtained based on the European higher-forage subset. The 609 

lack of a relationship between CH4 production and dietary starch content for the lower-forage 610 

subset may be related to the small variation in starch content (coefficient of variation is 13.1%). 611 

The positive relationship that was obtained between CH4 production and dietary forage 612 

aligns with previously published studies (e.g., Yan et al., 2000; Hristov et al., 2013) stating that 613 

either increased forage or decreased concentrate proportion in the diet yielded more CH4. Johnson 614 

and Johnson (1995) referred to cattle fed more than 90% concentrate producing only half of the 615 

CH4 produced by cattle fed more common concentrate proportions, and Aguerre et al., 2011 616 

observed a linear increase in CH4 yield upon increasing dietary forage content from 47 to 68%. 617 

Nevertheless, a modeling study by Sauvant and Giger-Reverdin (2009) predicted that a decrease 618 

in CH4 yield is only observed for dietary forage contents less than 65%. Despite the latter 619 

prediction, the frequent appearance of dietary forage in the equations developed in the present 620 

study indicates dietary forage content is a decent predictor of CH4 emission, possibly more robust 621 

than dietary NDF content that was less frequently selected for the developed equations.  622 

Dietary lipid content is commonly negatively related to CH4 production (Grainger and 623 

Beauchemin, 2011). Lipids may inhibit cellulolytic bacteria, protozoal and archaeal activity, 624 
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decrease NDF digestibility, and supply non-fermentable energy to the rumen, outcomes that can 625 

decrease CH4 production (Maia et al., 2007; Beauchemin et al., 2008; Guyader et al., 2014). Long-626 

chain saturated fatty acids may have a minimal inhibitive effect on archaeal activity and CH4 627 

production, whereas fatty acids such as C12:0 and C18:3 were found to be relatively potent 628 

reducers (Machmüller and Kreuzer, 1999; Patra, 2013). Therefore, the actual decrease in CH4 629 

production obtained from lipids may depend on their fatty acid composition, although this is not 630 

confirmed by all in vivo studies (e.g., Grainger and Beauchemin, 2011). More importantly, the 631 

removal of data associated with dietary lipid and oil supplements excluded data with higher dietary 632 

EE contents, which more potently decrease CH4 production (Patra, 2013), may explain why 633 

DMI+EE_C equations did not perform better than the DMI_C equations, despite the significant 634 

relationships that were obtained for CH4 production and yield with dietary EE content.  635 

Dietary crude protein content being positively associated with the all-data CH4 yield in the 636 

present analysis aligns with the observation that dietary nitrogen content is positively related to 637 

fiber digestibility (Dijkstra et al., 1996). However, decreased CH4 production may only be 638 

observed from cattle fed a diet that is deficient in rumen degradable protein (Sutter et al., 2017). 639 

In the present study, we did not observe any relationship between crude protein content and NDF 640 

digestibility, r = 0.04. However, we did observe a correlation between crude protein content and 641 

organic matter and dry matter digestibility, r = 0.42 and r = 0.37, respectively. This is possibly due 642 

to higher starch degradability, which could not be verified because of the lack of starch 643 

degradability data. Van Lingen et al. (2018) applying a multivariate regression approach found 644 

that the methodological issues such as the structure of random-effects (co)variance matrices and 645 

the combination of fixed-effects variables affect the statistical inference regarding the relationship 646 

between dietary crude protein and CH4 production or yield. Therefore, also based on dietary crude 647 
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protein selected for only one equation, the latter relationship may not be commonly strong as well 648 

as it may not generally exist. Dietary crude protein may actually be associated with lesser CH4 649 

production when sufficient rumen degradable protein is fed so as not to limit fermentation in the 650 

rumen due to N shortage (Dijkstra et al., 2011), and may be considered a less robust predictor of 651 

CH4 production than dietary NDF and starch. 652 

A positive relationship between BW and CH4 production observed in various equations in 653 

the present analysis aligns with previous cattle research (Yan et al., 2009; Moraes et al., 2014; 654 

Escobar-Bahamondes et al., 2017a). Demment and Van Soest (1985) and Smith and Baldwin 655 

(1974) observed rumen volume and weight proportional to BW of animals. Consequently, smaller 656 

animals ingest less feed and emit less CH4 (Hristov et al., 2013b). In addition, empirical modeling 657 

(Sauvant and Nozière, 2016) and mechanistic model simulations (Huhtanen et al., 2015, 2016) 658 

indicated the DMI/BW ratio to be an important factor for CH4 yield. At similar DMI, smaller cattle 659 

tend to produce less CH4 as the passage rate from the rumen to the intestine may be higher due to 660 

a greater DMI/BW ratio. This has been confirmed in sheep for which animals yielding less CH4 661 

had smaller rumen size (Goopy et al., 2014). Therefore, BW influences DMI, and DMI and rumen 662 

volume determine the passage rate of ruminal digesta, which affects feed digestibility, rumen 663 

fermentation conditions, and ultimately CH4 production and yield.  664 

4.2 Best performing equations 665 

Various equations and model categories for predicting beef cattle CH4 emission have been 666 

applied on various subsets in the present study. The Ym models have only one parameter and are 667 

the simplest models, the DMI_C models are still fairly simple, whereas the Animal_C models are 668 

potentially the most complex. The Animal_C model commonly performed best among all models 669 

and outperformed the GLOBAL NETWORK Tier 2 equations, except for the European higher-670 
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forage subset. The DMI appeared to be the major predictor of enteric CH4 production in beef cattle, 671 

but may not always be available for individual animals on commercial farms, which points to the 672 

value of the Animal_no_DMI_C models. Using dietary forage content and BW as a covariate 673 

commonly improved the prediction of CH4 compared with a DMI_C equation. Therefore, the on-674 

farm availability of all previously mentioned variables is recommended. This availability also 675 

enables the evaluation of the effect of dietary nutrient composition on CH4 production. Moreover, 676 

the DMI+STA_C equation (Eq. 3) appeared to perform well, and might also be used for the 677 

prediction of beef cattle CH4 production, although this equation was based on fewer observations. 678 

Nevertheless, dietary starch content was never selected for the Diet_C, Animal_C, 679 

Animal_no_DMI_C and Global_C equations, whereas NDF content was, indicating that 680 

DMI+STA_C equations may be slightly less robust than Diet_C and Animal_C equations. 681 

If dietary forage content is known to be > 25%, we recommend the use of the higher-forage 682 

equations, because the RSR and CCC of these equations are lower and higher, respectively, 683 

compared to the higher-forage subset evaluation of the all-data equations. Based on their predictive 684 

performance, the higher-forage Animal_C and the Escobar-Bahamondes et al. (2017a) equations 685 

(Eqns. 17, 11; Table 4) are specifically recommended. Despite its lower precision, the Charmley 686 

et al. (2016) equation (Eq. 20) will still give an accurate estimate of CH4 production if only DMI 687 

is available. If dietary forage percentage is ≤ 18%, we recommend the Ellis et al. (2009) equations 688 

(Eqns. 26-27; Table 5). In addition, we recommend the lower-forage DMI_C or all-data 689 

DMI+NDF_C, DMI+STA_C and Animal_C equations that performed relatively well (Eqns. 20, 690 

2-3, 6; Tables 2, 5). If dietary forage content is between 18 and 25%, we suggest an all-data 691 

equation that includes dietary forage, or dietary NDF or starch, because of the forage content that 692 

is commonly related to the latter two carbohydrate fractions. The European higher-forage and 693 
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North American higher-forage equations performed somewhat better on RSR and CCC than the 694 

higher-forage equations for the European higher-forage and North American higher-forage 695 

subsets, and less systematic bias was obtained for the region-specific equations. Therefore, we 696 

most strongly recommend the Diet_C, Animal_C and Charmley et al. (2016) equations (Eq. 32-697 

33, 37; Table 6). For North American higher-forage data, the Global_C and Charmley et al. (2016) 698 

equations are recommended in particular (Eqns. 45, 47; Table 7).  699 

Models that assumed a fixed Ym, such as the IPCC and GLOBAL NETWORK Tier 2 700 

equations, performed nearly as good as the developed more complex best performing equations in 701 

most cases. The Tier 2 equations may, therefore, have a high potential for predicting beef cattle 702 

CH4 production as well, in particular for higher-forage diets, although the higher variance along 703 

the unity lines of the predicted vs. observed plots indicates a lack of precision. Moreover, the 704 

substantial mean bias that was obtained for the lower-forage subset in particular emphasizes the 705 

importance of an accurate estimate of Ym. In cases where dietary forage contents are not close to 706 

the means of the present data (sub)sets, we do not recommend the use of the Ym equations 707 

considered in the present study, but an equation that contains dietary forage, NDF or starch. A Ym 708 

of 4.5% that was obtained for lower-forage diets may be fairly accurate given a Ym of 5.2% that 709 

was reported for 42 treatments means with ≤ 17% forage (Escobar-Bahamondes et al., 2017b), and 710 

a Ym of 3.8% for 34 treatments means with ≤ 18% forage (Escobar-Bahamondes et al., 2017a). 711 

Both of these studies reported 9.5% forage on average for studies collected from multiple 712 

continents. These Ym values are all higher than the 3.0%, which the IPCC uses for ≤ 10% forage 713 

diets. The ≤ 10% forage records in the present analysis, which also had a Ym of 4.5% suggests that 714 

the Ym value for lower-forage diets used by the IPCC needs to be reconsidered. However, practices 715 

such as feeding steam-flaked corn (Hales et al., 2012) and dietary supplementation with monensin 716 
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(Appuhamy et al., 2013) may require alternative prediction as these diets may have a Ym value of 717 

3.0%. This also applies to fat supplemented diets (Grainger and Beauchemin, 2011; Patra, 2013).  718 

For CH4 yield predictions, the all-data NDF_C, Diet_no_DMI_C and Global_no_DMI_C 719 

CH4 yield equations (Eqns. 54, 57-58) had RSR values < 1 and are suitable for use if dietary forage 720 

content is unknown. The Global_no_DMI_C equations may also be used if dietary forage content 721 

is known to be ≤ 18%. The higher-forage Diet_no_DMI_C CH4 yield equation is the only equation 722 

to consider for forage contents > 25% (Eq. 62; Table S4), based on RSR values > 1 for the other 723 

higher-forage CH4 yield equations. For forage contents between 18 and 25% we recommend an 724 

all-data equation with RSR < 1 and the highest CCC value when evaluated with all data, which is 725 

the Global_no_DMI_C yield equation (Eq. 58). Given that all CH4 intensity equations were 726 

associated with an RSR value > 1 for the higher- and lower-forage subsets, we recommend the 727 

observed average values of 108 and 161 [g (kg ADG)-1] for dietary forage contents of ≤ 18% and 728 

≥ 25%, respectively. For dietary contents between 18 and 25% or if forage content is unknown we 729 

recommend the all-data Global_C equation (Eq. 69; Table S5).  730 

 731 

5. Conclusion 732 

Our analysis is based on the large GLOBAL NETWORK dataset comprising data from 733 

several continents and a wide variety of forage contents. As observed previously, DMI is the key 734 

factor for predicting beef cattle enteric CH4 production. Non-linear models with DMI as the only 735 

independent variable did not outperform their counterpart linear models. However, linear models 736 

depending on DMI and dietary forage content or these two covariates plus BW commonly had an 737 

improved predictive ability. Separate equations for lower-forage (≤ 18%) and higher-forage (≥ 738 

25%) data also improved predictive ability. Model evaluation specific to European higher-forage, 739 
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North American higher-forage and Brazilian higher-forage diets compared with that of 740 

intercontinental higher-forage diet models suggests that overall enteric CH4 production is more 741 

accurately predicted by region-specific models, although in many cases the best intercontinental 742 

and region-specific models may perform similarly. The equations developed in the present study 743 

commonly had higher precision and less prediction error with similar accuracy compared to the 744 

extant equations that were evaluated. Evaluation of CH4 emission conversion factors indicated that 745 

region-specific and in particular dietary forage content-based Ym values are required for adequately 746 

predicting beef cattle CH4 production in national or global inventories.   747 



34 

 

Acknowledgments  748 

Authors gratefully acknowledge project funding from the USDA National Institute of Food and 749 

Agriculture Federal Appropriations under Project PEN 04539 and Accession number 1000803; the 750 

Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI)’s 751 

‘GLOBAL NETWORK’ project and the ‘Feeding and Nutrition Network’ 752 

(http://animalscience.psu.edu/fnn) of the Livestock Research Group within the Global Research 753 

Alliance for Agricultural Greenhouse Gases (www.globalresearchalliance.org); the Sesnon 754 

Endowed Chair program (UC Davis); the Swiss Federal Office of Agriculture, Berne, Switzerland; 755 

AHDB Beef and Lamb, the Scottish Government, Defra and the devolved administrations through 756 

the UK Agricultural Greenhouse Gas Inventory Research Platform; French National Research 757 

Agency through the FACCE-JPI program (ANR-13-JFAC-0003-01); the Cooperative Research 758 

Program for Agriculture Science, (Project No. PJ013448012018), RDA, Republic of Korea; the 759 

Australian Government Department of Agriculture, Fisheries and Forestry (Carbon Farming 760 

Futures Action on the Ground program; AOTGR2-0400); the financial support of the Reducing 761 

Emissions from Livestock Research Program, the National Livestock Methane Program, Meat and 762 

Livestock Australia, CSIRO and Ridley AgriProducts Pty, Ltd; the Institute of Science and 763 

Technology in Animal Science (INCTCA 465377/2014-9), the Department of Agriculture, Food 764 

and the Marine (DAFM), Ireland (AGRI-I project); European Commission through SMEthane 765 

(FP7‐SME‐262270); Beef Cattle Research Council of the Canadian Cattlemen’s Association; the 766 

Cofund for Monitoring & Mitigation of Greenhouse Gases from Agri- and Silvi-culture (FACCE 767 

ERA-GAS)’s project Capturing Effects of Diet on Emissions from Ruminant Systems and the 768 

Dutch Ministry of Agriculture, Nature and Food Quality (AF-EU-18010 & BO-4400159-01).  769 

http://www.globalresearchalliance.org/


35 

 

References 770 

Aguerre, M.J., Wattiaux, M.A., Powell, J.M., Broderick, G.A., Arndt, C., 2011. Effect of forage-771 

to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and 772 

ammonia, lactation performance, and manure excretion. J. Dairy Sci. 94, 3081-3093. 773 

https://doi:10.3168/jds.2010-4011 774 

Appuhamy, J.A.D.R.N., Strathe, A.B., Jayasundara, S., Wagner-Riddle, C., France, J., Dijkstra, J., 775 

Kebreab E., 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-776 

analysis. J. Dairy Sci. 96, 5161-5173. https://doi.org/10.3168/jds.2012-5923 777 

Bannink, A., Schijndel, M.W. van, Dijkstra, J., 2011. A model of enteric fermentation in dairy 778 

cows to estimate methane emission for the Dutch National Inventory Report using the 779 

IPCC Tier 3 approach. Anim. Feed Sci. Technol. 166-167, 603-618. 780 

https://doi.org/10.1016/j.anifeedsci.2011.04.043 781 

Basarab, J.A., Okine, E.K., Baron, V.S., Marx, T., Ramsey, P., Ziegler, K., Lyle, K., 2005. 782 

Methane emissions from enteric fermentation in Alberta’s beef cattle population. Can. J. 783 

Anim. Sci. 85, 501-512. https://doi.org/10.4141/A04-069 784 

Beauchemin, K.A., Kreuzer, M., O’Mara, F.O., McAllister, T.A., 2008. Nutritional management 785 

for enteric methane abatement: a review. Austr. J. Exp. Agric. 48, 21-27. 786 

https://doi.org/10.1071/EA07199 787 

Bell, M., Eckard, R., Moate, P.J., Yan, T., 2016. Modelling the effect of diet composition on enteric 788 

methane emissions across sheep, beef cattle and dairy cows. Animals, 6, 54. 789 

https://doi.org/10.3390/ani6090054 790 

https://doi:10.3168/jds.2010-4011
https://doi.org/10.3168/jds.2012-5923
https://doi.org/10.1016/j.anifeedsci.2011.04.043
https://doi.org/10.4141/A04-069
https://doi.org/10.1071/EA07199
https://doi.org/10.3390/ani6090054


36 

 

Benchaar, C., Hassanat, F., Martineau, R., Gervais, R., 2015. Linseed oil supplementation to dairy 791 

cows fed diets based on red clover silage or corn silage: Effects on methane production, 792 

rumen fermentation, nutrient digestibility, N balance, and milk production. J. Dairy Sci. 793 

98, 7993-8008. https://doi.org/10.3168/jds.2015-9398 794 

Bibby, J., Toutenburg, T., 1977. Prediction and Improved Estimation in Linear Models. John 785 795 

Wiley Sons, Chichester. 796 

Castelan-Ortega, O.A., Ku-Vera, J.C., Estrada-Flores, J.G., 2014. Modeling methane emissions 797 

and methane inventories for cattle production systems in Mexico. Atmosfera 27, 185-191. 798 

https://doi.org/10.1016/S0187-6236(14)71109-9 799 

Charmley, E., Williams, S.R.O., Moate, P.J., Hegarty, R.S., Herd, R.M., Oddy, V.H., Reyenga, P., 800 

Staunton, K.M., Anderson, A., Hannah, M.C. 2016. A universal equation to predict 801 

methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 56, 169-180. 802 

https://doi.org/10.1071/AN15365 803 

Demment, M.W., Van Soest, P.J., 1985. A nutritional explanation for body-size patterns of 804 

ruminant and non-ruminant herbivores. American Naturalist 125, 641-672. 805 

https://doi.org/10.1086/284369 806 

Dijkstra, J., France, J., Assis, A.G., Neal, H.D.St.C., Campos, O.F., Aroeira, L.J.M., 1996. 807 

Simulation of digestion in cattle fed sugarcane: prediction of nutrient supply for milk 808 

production with locally available supplements. J. Agric. Sci. 127, 247-260. 809 

https://doi.org/10.1017/S0021859600078023 810 

https://doi.org/10.3168/jds.2015-9398
https://doi.org/10.1016/S0187-6236(14)71109-9
https://doi.org/10.1071/AN15365
https://doi.org/10.1086/284369
https://doi.org/10.1017/S0021859600078023


37 

 

Dijkstra, J., Oenema, O., Bannink, A., 2011. Dietary strategies to reducing N excretion from cattle: 811 

Implications for methane emissions. Curr. Opin. Environ. Sustain. 3, 414-422. 812 

https://doi.org/10.1016/j.cosust.2011.07.008 813 

Drouillard, J.S., 2018. Current situation and future trends for beef production in the United States 814 

of America - A review. Asian-Australas. J. Anim. Sci. 31, 1007-1016. 815 

https://doi.org/10.5713/ajas.18.0428 816 

Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K., France, J., 2007. Prediction 817 

of methane production from dairy and beef cattle. J. Dairy Sci. 90, 3456-3467. 818 

https://doi.org/10.3168/jds.2006-675 819 

Ellis, J.L., Kebreab, E., Odongo, N.E., Beauchemin, K.A., McGinn, S., Nkrumah, J.D., Moore, 820 

S.S., Christopherson, R., Murdoch, G.K., McBride, B.W., Okine, E.K., France, J., 2009. 821 

Modeling methane production from beef cattle using linear and nonlinear approaches. J. 822 

Anim. Sci. 87, 1334-1345. https://doi.org/10.2527/jas.2007-0725 823 

Escobar-Bahamondes, P., Oba, M., Beauchemin, K.A., 2017a. Universally applicable methane 824 

prediction equations for beef cattle fed high- or low-forage diets. Can. J. Anim. Sci. 97, 825 

83-94. https://doi.org/10.1139/cjas-2016-0042 826 

Escobar-Bahamondes, P., Oba, M., Beauchemin, K.A., 2017b. An evaluation of the accuracy and 827 

precision of methane prediction equations for beef cattle fed high-forage and high-grain 828 

diets. Animal 11, 68-77. https://doi.org/10.1017/S175173111600121X 829 

Gastelen, S. van, Antunes-Fernandes, S.C., Hettinga, K.A., Klop, G., Alferink, S.J.J., Hendriks, 830 

W.H., Dijkstra, J., 2015. Enteric methane production, rumen volatile fatty acid 831 

concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed 832 

https://doi.org/10.1016/j.cosust.2011.07.008
https://doi.org/10.5713/ajas.18.0428
https://doi.org/10.3168/jds.2006-675
https://doi.org/10.2527/jas.2007-0725
https://doi.org/10.1139/cjas-2016-0042
https://doi.org/10.1017/S175173111600121X


38 

 

grass silage- or corn silage-based diets. J. Dairy Sci. 98, 1915-1927. 833 

https://doi.org/10.3168/jds.2014-8552 834 

Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G, 835 

2013. Tackling climate change through livestock – A global assessment of emissions and 836 

mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), 837 

Rome. 838 

Gerssen-Gondelach, S.J., Lauwerijssen, R.B.G., Havlík, P., Herrero, M., Valin, H., Faaij, A.P.C., 839 

Wicke, B., 2017. Intensification pathways for beef and dairy cattle production systems: 840 

Impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 841 

240, 135-147. https://doi.org/10.1016/j.agee.2017.02.012 842 

Goopy, J., Donaldson, A., Hegarty, R., Vercoe, P., Haynes, F., Barnett, M., Oddy, V., 2014. Low-843 

methane yield sheep have smaller rumens and shorter rumen retention time. Brit. J. Nutr. 844 

111, 578-585. https://doi.org/10.1017/S0007114513002936 845 

Grainger, C., Beauchemin, K.A., 2011. Can enteric methane emissions from ruminants be lowered 846 

without lowering their production? Anim. Feed Sci. Technol. 166-167, 308-320. 847 

https://doi.org/10.1016/j.anifeedsci.2011.04.021 848 

Guyader, J., Eugène, M., Nozière, P., Morgavi, D., Doreau, M., Martin, C., 2014. Influence of 849 

rumen protozoa on methane emission in ruminants: A meta-analysis approach. Animal 8, 850 

1816-1825. https://doi.org/10.1017/S1751731114001852 851 

Hammond, K.J., Crompton, L.A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D.R., O’Kiely, P., 852 

Kebreab, E., Eugène, M.A., Yu, Z., Shingfield, K.J., Schwarm, A., Hristov, A.N., 853 

Reynolds, C.K., 2016. Review of current in vivo measurement techniques for quantifying 854 

https://doi.org/10.3168/jds.2014-8552
https://doi.org/10.1016/j.agee.2017.02.012
https://doi.org/10.1017/S0007114513002936
https://doi.org/10.1016/j.anifeedsci.2011.04.021
https://doi.org/10.1017/S1751731114001852


39 

 

enteric methane emission from ruminants. Anim. Feed Sci. Technol. 219, 13-30. 855 

https://doi.org/10.1016/j.anifeedsci.2016.05.018 856 

Hales, K.E., Cole, N.A., MacDonald, J.C., 2012. Effects of corn processing method and dietary 857 

inclusion of wet distillers grains with solubles on energy metabolism, carbon-nitrogen 858 

balance, and methane emissions of cattle. J. Anim. Sci. 90, 3174-3185. 859 

https://doi.org/10.2527/jas.2011-4441 860 

Hatew, B., Cone, J.W., Pellikaan, W.F., Podesta, S.C., Bannink, A., Hendriks, W.H., Dijkstra, J., 861 

2015. Relationship between in vitro and in vivo methane production measured 862 

simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. 863 

Feed Sci. Technol. 202, 20-31. https://doi.org/10.1016/j.anifeedsci.2015.01.012 864 

Hristov, A.N., Oh, J., Firkins, J., Dijkstra, J., Kebreab, E., Waghorn, G., Makker, M.P.S., 865 

Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., Tricarico, J.M., 2013a. 866 

SPECIAL TOPICS - Mitigation of methane and nitrous oxide emissions from animal 867 

operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91, 5045-5069. 868 

https://doi.org/10.2527/jas.2013-6583 869 

Hristov, A.N., Ott, J., Tricarico, J.M., Rotz, A., Waghorn, G., Adesogan, A.T., Dijkstra, J., Montes, 870 

F., Oh, J., Kebreab, E., Oosting, S.J., Gerber, P.J., Henderson, B., Makker, H.P.S., Firkins, 871 

J., 2013b. SPECIAL TOPICS - Mitigation of methane and nitrous oxide emissions from 872 

animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 873 

91, 5095-5113. https://doi.org/10.2527/jas.2013-6585 874 

Hristov, A.N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A.R., Boland, T., Brito, A.F., 875 

Casper, D., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, Ph.C., Haque, M.N., 876 

https://doi.org/10.1016/j.anifeedsci.2016.05.018
https://doi.org/10.2527/jas.2011-4441
https://doi.org/10.1016/j.anifeedsci.2015.01.012
https://doi.org/10.2527/jas.2013-6583
https://doi.org/10.2527/jas.2013-6585


40 

 

Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., 877 

Moate, P.J., Muetzel, S., Muñoz, C., Peiren, N., Powell, J.M., Reynolds, C.K., Schwarm, 878 

A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yáñez-Ruiz, D.R., Yu, Z., 2018. 879 

Symposium review: Uncertainties in enteric methane inventories, measurement techniques, 880 

and prediction models. J. Dairy Sci. 101, 6655-6674. https://doi.org/10.3168/jds.2017-881 

13536 882 

Huhtanen, P., Ramin, M., Udén, P., 2015. Nordic dairy cow model Karoline in predicting methane 883 

emissions: 1. Model description and sensitivity analysis. Livest. Sci. 178, 71-80. 884 

https://doi.org/10.1016/j.livsci.2015.05.009 885 

Huhtanen, P., Ramin, M., Cabezas-Garcia, E.H., 2016. Effects of ruminal digesta retention time 886 

on methane emissions: a modelling approach. Anim. Prod. Sci. 56, 501-506. 887 

https://doi.org/10.1071/AN15507 888 

IPCC (2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental 889 

Panel on Climate Change, IGES, Kanagawa, Japan. 890 

IPCC (2014. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the 891 

Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, 892 

M., Troxler, T.G. (eds) IPCC, Switzerland. 893 

James, G., Witten, D., Hastie, T., Tibshirani, R., 2014. An introduction to statistical learning: With 894 

applications in R. Springer New York, US. 895 

Johnson, K.A., Johnson, D.E., 1995. Methane emissions from cattle. J. Anim. Sci. 73, 2483-2492. 896 

https://doi.org/10.2527/1995.7382483x 897 

https://doi.org/10.3168/jds.2017-13536
https://doi.org/10.3168/jds.2017-13536
https://doi.org/10.1016/j.livsci.2015.05.009
https://doi.org/10.1071/AN15507
https://doi.org/10.2527/1995.7382483x


41 

 

Kebreab, E., Johnson, J.A., Archibeque, S.L., Pape, D., Wirth, T., 2008. Model for estimating 898 

enteric methane emissions from United States dairy and feedlot cattle. J. Anim. Sci. 86, 899 

2738-2748. https://doi.org/10.2527/jas.2008-0960 900 

Kutner, M.H., Nachtsheim, C., Neter, J., Li, W., 2005. Applied linear statistical models. Boston: 901 

McGraw-Hill Irwin. New York, US.  902 

Lin, L.I., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 903 

255-268. https://doi.org/10.2307/2532051 904 

Lingen H.J., van, Fadel, J.G., Bannink, A., Dijkstra, J., Tricarico, J., Pacheco, D., Casper, D.P., 905 

Kebreab, E., 2018. Multi-criteria evaluation of dairy cattle feed resources and animal 906 

characteristics for nutritive and environmental impacts. Animal 12, s310-s320. 907 

https://doi.org/10.1017/S1751731118001313 908 

Machmüller, A., Kreuzer, M., 1999. Methane suppression by coconut oil and associated effects on 909 

nutrient and energy balance in sheep. Can. J. Anim. Sci. 79, 65-72. 910 

https://doi.org/10.4141/A98-079 911 

Maia, M.R.G., Chaudhary, L.C., Figueres, L., Wallace, R.J., 2007. Metabolism of polyunsaturated 912 

fatty acids and their toxicity to the microflora of the rumen. Anton. Leeuw. 91, 303-314. 913 

https://doi.org/10.1007/s10482-006-9118-2 914 

Martin, C., Morgavi, D.P., Doreau, M., 2010. Methane mitigation in ruminants: from microbe to 915 

the farm scale. Animal 4, 351-365. https://doi.org/10.1017/S1751731109990620 916 

Mills, J.A.N., Kebreab, E., Yates, C.M., Crompton, L.A., Cammell, S.B., Dhanoa, M.S., Agnew, 917 

R.E., France, J, 2003. Alternative approaches to predicting methane emission from dairy 918 

cows. J. Anim. Sci. 81, 3141-3150.  https://doi.org/10.2527/2003.81123141x 919 

https://doi.org/10.2527/jas.2008-0960
https://doi.org/10.2307/2532051
https://doi.org/10.1017/S1751731118001313
https://doi.org/10.4141/A98-079
https://doi.org/10.1007/s10482-006-9118-2
https://doi.org/10.1017/S1751731109990620
https://doi.org/10.2527/2003.81123141x


42 

 

Moate, P.J., Williams, S.R.O., Deighton, M.H., Hannah, M.C., Ribaux, B.E., Morris, G.L., Jacobs, 920 

J.L., Hill, J., Wales, W.J., 2019. Effects of feeding wheat or corn and of rumen fistulation 921 

on milk production and methane emissions of dairy cows. Anim. Prod. Sci. 59, 891-905. 922 

https://doi.org/10.1071/AN17433 923 

Moe, P.W., Tyrrell, H.F., 1979. Methane production in dairy cows. J. Dairy Sci. 62, 1583-1586. 924 

https://doi.org/10.3168/jds.S0022-0302(79)83465-7 925 

Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., Kebreab, E., 2014. Prediction of enteric 926 

methane emissions from cattle. Glob. Change Biol. 20, 2140-2148. 927 

https://doi.org/10.1111/gcb.12471 928 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. 929 

Model evaluation guidelines for systematic quantification of accuracy in watershed 930 

simulations. T. ASABE 50, 885-900. https://doi.org/10.13031/2013.23153 931 

Na, Y., Li, D.H., Lee, S.R., 2017. Effects of dietary forage-to-concentrate ratio on nutrient 932 

digestibility and enteric methane production in growing goats (Capra hircus hircus) and 933 

Sika deer (Cervus nippon hortulorum). Asian-Australas. J. Anim. Sci. 7, 967-972. 934 

https://doi.org/10.5713/ajas.16.0954 935 

Niu, M., Kebreab, E., Hristov, A.N., Oh, J., Arndt, C., Bannink, A., Bayat, A.R., Brito, A.F., 936 

Boland, T., Casper, D.P., Crompton, L.A., Dijkstra, J., Eugène, M.A., Garnsworthy, Ph.C., 937 

Haque, M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Maden, 938 

J., Martin, C., McClelland, S.C., McGee, M., Moate, P.J., Muetzel, S., Muñoz, C., O’Kiely, 939 

P., Peiren, N., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, 940 

M.R., Yáñez-Ruiz, D.R., Yu, Z., 2018. Prediction of enteric methane production, yield and 941 

https://doi.org/10.1071/AN17433
https://doi.org/10.3168/jds.S0022-0302(79)83465-7
https://doi.org/10.1111/gcb.12471
https://doi.org/10.13031/2013.23153
https://doi.org/10.5713/ajas.16.0954


43 

 

intensity in dairy cattle using an intercontinental database. Glob. Change Biol. 24, 3368-942 

3389. https://doi.org/10.1111/gcb.14094 943 

Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, 944 

B., Steinfeld, H., 2013. Greenhouse gas emissions from ruminant supply chains – A global 945 

life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), 946 

Rome. 947 

Patra, A.K., 2013. The effect of dietary fats on methane emissions, and its other effects on 948 

digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. 949 

Livest. Prod. Sci. 155, 244-254. https://doi.org/10.1016/j.livsci.2013.05.023 950 

Patra, A.K., 2017. Prediction of enteric methane emission from cattle using linear and non-linear 951 

statistical models in tropical production systems. Mitig. Adapt. Strateg. Glob. Change 22, 952 

629-650. https://doi.org/10.1007/s11027-015-9691-7 953 

Pérez-Ramírez, E., Peyraud, J.L., Delagarde, R., 2012. N-alkanes v. ytterbium/faecal index as two 954 

methods for estimating herbage intake of dairy cows fed on diets differing in the 955 

herbage:maize silage ratio and feeding level. Animal 6, 232-244. 956 

https://doi.org/10.1017/S1751731111001480 957 

Pinheiro, J.C., Bates, D.M., 2000. Mixed-effects models in S and S-PLUS. Springer Verlag, New 958 

York, Inc. 959 

Popp, A., Lotze-Campen, H., Bodirsky, B., 2010. Food consumption, diets shifts and associated 960 

non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451-961 

462. https://doi.org/10.1016/j.gloenvcha.2010.02.001 962 

https://doi.org/10.1111/gcb.14094
https://doi.org/10.1016/j.livsci.2013.05.023
https://doi.org/10.1007/s11027-015-9691-7
https://doi.org/10.1017/S1751731111001480
https://doi.org/10.1016/j.gloenvcha.2010.02.001


44 

 

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for 963 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 964 

Richmond, A.S., Wylie, A.R.G., Laidlaw, A.S., Lively, F.O., 2015. Methane emissions from beef 965 

cattle grazing on semi-natural upland and improved lowland grasslands. Animal 9, 130-966 

137. https://doi.org/10.1017/S1751731114002067 967 

Santiago-Suarez, B., Moraes, L.E., Appuhamy, J.A.D.R.N., Pellikaan, W.F., Casper, D.P., 968 

Tricarico, J., Kebreab, E., 2016. Prediction and evaluation of enteric methane emissions 969 

from lactating dairy cows using different levels of covariate information. Anim. Prod. Sci. 56, 970 

557-564. https://doi.org/10.1071/AN15496 971 

Sauvant, D., Giger-Reverdin, S., 2009. Modélisation des interactions digestives et de la production de 972 

méthane chez les ruminants. (In French.) INRA Prod. Anim. 22, 375-384. 973 

Sauvant, D., Nozière, P., 2016. Quantification of the main digestive processes in ruminants: the 974 

equations involved in the renewed energy and protein feed evaluation systems. Animal 10, 975 

755-770. https://doi.org/10.1017/S1751731115002670 976 

St-Pierre N.R., 2001. Invited Review: Integrating quantitative findings from multiple studies using 977 

mixed model methodology. J. Dairy Sci., 84, 741-755. https://doi.org/10.3168/jds.S0022-978 

0302(01)74530-4 979 

Sutter, F., Schwarm, A., Kreuzer, M., 2017. Development of nitrogen and methane losses in the 980 

first eight weeks of lactation in Holstein cows subjected to deficiency of utilisable crude 981 

protein under restrictive feeding conditions. Arch. Anim. Nutr. 71, 1-20. 982 

https://doi.org/10.1080/1745039X.2016.1258880 983 

https://www.r-project.org/
https://doi.org/10.1017/S1751731114002067
https://doi.org/10.1071/AN15496
https://doi.org/10.1017/S1751731115002670
https://doi.org/10.3168/jds.S0022-0302(01)74530-4
https://doi.org/10.3168/jds.S0022-0302(01)74530-4
https://doi.org/10.1080/1745039X.2016.1258880


45 

 

Vries, M. de, Middelaar, C.E. van, Boer, I.J.M. de, 2015. Comparing environmental impacts of 984 

beef production systems: A review of life cycle assessments. Livest. Sci. 178, 279-288. 985 

https://doi.org/10.1016/j.livsci.2015.06.020 986 

Warner, D., Hatew, B., Podesta, S.C., Klop, G., van Gastelen, S., van Laar, H., Dijkstra, J., 987 

Bannink, A., 2016. Effects of nitrogen fertilisation rate and maturity of grass silage on 988 

methane emission by lactating dairy cows. Animal 10, 34-43. 989 

https://doi.org/10.1017/S1751731115001640 990 

White, R.R., Roman-Garcia, Y., Firkins, J.L., VanDeHaar, M.J., Armentano, L.E., Weiss, W.P., 991 

McGill, T., Garnett, R, Hanigan, M.D., 2017. Evaluation of the National Research Council 992 

(2001) dairy model and derivation of new prediction equations. 1. Digestibility of fiber, 993 

fat, protein, and non-fiber carbohydrate. J. Dairy Sci. 100, 3591-3610. 994 

https://doi.org/10.3168/jds.2015-10800 995 

Yan, T., Agnew, R.E., Gordon, F.J., Porter, M.G., 2000. Prediction of methane energy output in 996 

dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64, 253-263. 997 

https://doi.org/10.1016/S0301-6226(99)00145-1 998 

Yan, T., Porter, M.G., Mayne, C.S., 2009. Prediction of methane emission from beef cattle using 999 

data measured in indirect open-circuit respiration calorimeters, Animal 3, 1455-1462. 1000 

https://doi.org/10.1017/S175173110900473X 1001 

Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common 1002 

statistical problems. Methods Ecol. Evol. 1, 3-14. https://doi.org/10.1111/j.2041-1003 

210X.2009.00001.x 1004 

https://doi.org/10.1016/j.livsci.2015.06.020
https://doi.org/10.1017/S1751731115001640
https://doi.org/10.3168/jds.2015-10800
https://doi.org/10.1016/S0301-6226(99)00145-1
https://doi.org/10.1017/S175173110900473X
https://doi.org/10.1111/j.2041-210X.2009.00001.x
https://doi.org/10.1111/j.2041-210X.2009.00001.x


46 

 

Zwillinger, D., Kokoska, S., 2000. CRC Standard Probability and Statistics Tables and Formulae, 1005 

CRC Press, Boca Raton, US. 1006 



47 

 

Table 1. Variable summary statistics for all data, higher-forage (data associated with a forage content ≥ 25%), lower-forage (data associated with a forage content 1007 

≤ 18%), European higher-forage (EUR-HF) and North American higher-forage (NrAm-HF) entries of the GLOBAL NETWORK beef cattle database.  1008 

 All data (n = 1021) 
 

Higher-forage (n = 882)  Lower-forage (n = 139)  EUR-HF (n = 307)  NrAm-HF (n = 394) 

Item* Mean Min Max SD 
 

Mean Min Max SD  Mean Min Max SD  Mean Min Max SD  Mean Min Max SD 

DMI (kg d-1) 8.13 2.26 17.5 2.82 
 

7.81 2.26 17.5 2.86 
 

10.1 4.77 15.6 1.89  9.46 3.17 15.7 2.12  6.16 2.26 14.1 2.51 

GEI (MJ d-1) 150 42.6 317 53.7 
 

144 42.6 317 53.1 
 

191 88.2 300 37.1 
 

177 57.8 299 42.0 
 

114 42.6 254 45.4 

Diet composition (% of DM) 

CP 14.6 6.19 22.5 2.56  14.6 6.19 21.3 2.60  14.6 11.4 22.5 2.35  14.3 7.80 19.2 1.84  15.6 10.0 21.3 2.52 

EE 3.02 0.372 7.02 1.20  2.87 0.372 7.02 1.05  3.90 0.377 5.63 1.57  3.65 0.372 5.80 1.40 
 

2.58 0.669 5.50 0.825 

Ash 6.29 3.22 13.7 2.11  6.52 3.22 13.7 2.13  4.85 3.50 8.00 1.24  6.06 3.40 11.4 1.80  6.51 3.22 13.7 2.29 

NDF 35.0 17.2 73.9 11.2  36.6 17.2 73.9 11.2  24.7 19.8 33.3 3.12  37.5 26.1 68.4 7.25  32.9 17.5 67.8 9.76 

ADF 19.3 6.92 50.8 8.13  20.6 7.50 50.8 8.06  11.6 6.92 14.5 1.99  21.7 14.0 40.3 5.15 
 

17.5 7.50 36.5 7.28 

STA 34.0 2.50 64.1 13.6  32.2 2.50 64.1 14.3  42.0 32.0 56.9 4.52  25.3 2.50 40.3 10.3  41.2 16.8 64.1 12.6 

For   51.0 8.0 100 27.7  57.7 25.0 100 24.0  9.8 8.0 18.1 3.18  64.6 31.0 100 16.9  47.9 25.0 100 23.6 

ADG (kg d-1) 1.25 0.060 3.38 0.431  1.19 0.060 3.38 0.438  1.46 0.552 2.22 0.330  1.22 0.088 1.99 0.348 
 

NA NA NA NA 

BW (kg) 478 133 791 148  454 133 791 144  625 376 734 76.5  571 133 791 128  391 196 699 116 

Methane emissions 

CH4 (g d-1) 161 37.0 372 70.5  162 37.0 372 73.5  153 45.1 310 46.4  215 40.9 372 71.8  125 37.0 313 57.5 

CH4/DMI (g kg-1) 20.0 6.29 35.1 5.05  20.7 6.29 35.1 4.75  15.2 7.50 30.9 4.29  22.5 6.64 35.1 5.19  20.3 6.29 33.3 4.21 

CH4/ADG (g kg-

1) ♪ 4.98 3.31 6.68 0.522 
 

5.08 3.31 6.68 0.528 
 

4.68 3.84 5.71 0.362 
 

5.20 3.31 6.68 0.517 

 

NA NA NA NA 

Ym (% of GEI)§ 6.0 1.9 10.4 1.5  6.3 1.9 10.4 1.4  4.5 2.3 8.7 1.2  6.7 2.0 10.3 1.5  6.2 1.9 10.4 1.3 

*DM = dry matter, DMI = dry matter intake, GEI = gross energy intake, CP = dietary crude protein, EE = dietary ether extract, NDF = dietary neutral detergent fiber, 1009 

ADF = dietary acid detergent fiber, STA = dietary starch, For = dietary forage, ADG = average daily body weight gain, BW = body weight. 1010 

‡Min = minimum, Max = maximum, SD = standard deviation. 1011 

♪ ln transformed values. 1012 

§Methane conversion factor (%): energy of CH R4R as a proportion of GEI; the specific energy of CHR4R is 55.65 MJ kg-1.  1013 
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Table 2. All-data CHR4R emission (g d-1 animal-1) prediction equations for various categories and model performance across the data (sub)sets 1014 

based on root mean square prediction error (RMSPE; % of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB 1015 

and SB; % of mean square prediction error), and concordance correlation coefficient (CCC).  1016 

 Model development   Model performance 

Eq. 

 

Category§ 

 

Prediction equation* 

 

 n† 

 

(Sub)set‡ 

 

pǂ RMSPE, 

% 

RSR 

 

MB, 

% 

SB, 

% 

CCC 

 

[1] DMI_C 54.2 (7.6) + 12.6 (0.6) × DMI  1021 All-data 991 31.2 0.71 0.69 12.55 0.60 

Higher-forage 852 30.8 0.67 3.86 27.26 0.64 

Lower-forage 139 33.9 1.12 34.96 0.59 0.27 

[2] DMI+NDF_C –16.4 (9.0) + 12.1 (0.6) × DMI + 

2.10 (0.16) × NDF 

 1021 All-data 991 31.4 0.71 0.92 1.99 0.63 

Higher-forage 852 31.8 0.69 1.82 2.81 0.65 

Lower-forage 139 28.7 0.94 3.45 2.10 0.32 

[3] DMI+STA_C 126 (11) + 11.5 (0.9) × DMI – 

1.75 (0.16) × STA 

 704 All-data 704 28.9 0.71 6.09 1.01 0.65 

Higher-forage 575 28.7 0.70 13.87 1.80 0.68 

Lower-forage 129 30.1 0.96 15.77 0.64 0.35 

[4] DMI+EE_C 83.0 (9.8) + 11.9 (0.6) × DMI – 

7.31 (1.69) × EE 

 754 All-data 754 29.4 0.71 1.35 8.83 0.61 

Higher-forage 644 29.2 0.67 0.08 19.59 0.64 

Lower-forage 110 30.3 1.21 37.59 4.20 0.25 

[5] Diet_C –0.767 (7.493) + 12.0 (0.5) × DMI 

+ 1.12 (0.06) × For 

 1021 All-data 991 29.5 0.67 2.39 1.24 0.70 

Higher-forage 852 29.5 0.64 1.30 2.12 0.72 

Lower-forage 139 29.8 0.98 17.57 0.30 0.32 

[6] Animal_C, Global_C  1003 All-data 991 26.9 0.61 2.20 1.37 0.76 

All-data♪,♯ 646 22.5 0.52 3.05 0.41 0.84 
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–28.3 (8.3) + 10.3 (0.6) × DMI + 

1.12 (0.06) × For + 0.0885 

(0.0150) × BW 

Higher-forage 852 26.8 0.58 2.00 1.83 0.78 

Lower-forage 139 27.8 0.91 3.72 0.65 0.35 

[7] 

 

Animal_no_DMI_C 6.03 (10.40) + 1.25 (0.07) × For – 

2.29 (0.77) × Ash + 0.212 (0.015) 

× BW 

 992 All-data 991 30.9 0.70 0.55 1.98 0.65 

Higher-forage 852 30.9 0.67 0.23 3.04 0.68 

Lower-forage 139 31.3 1.03 5.86 3.26 0.11 

[8] GLOBAL 

NETWORK Tier 2  

[0.061 (0.001) × GEI] / 0.05565  1021 All-data  991 28.5 0.64 0.59 0.27 0.75 

All-data♪,♫ 991 28.3 0.64 0.23 0.87 0.76 

[9] IPCC Tier 2 (2006) ¶ (0.065 × GEI) / 0.05565  - All-data♪ 991 29.9 0.68 7.97 3.04 0.75 

[10] Charmley et al. (2016)  –6.10 + 20.6 × DMI   All-data♪,ǁ 939 28.9 0.66 0.00 1.15 0.74 

[11] Escobar-Bahamondes 

et al. (2017a) 

–35.0 + 0.08 × BW + 1.2 × For – 

69.8 × EEI^3 + 3.14 × GEI 

  All-data♪,♯ 646 23.2 0.54 11.66 2.12 0.85 

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.  1017 

* Equations are presented with regression coefficient standard errors in parenthesis; DMI = dry matter intake (kg d-1), NDF = dietary neutral 1018 

detergent fiber (% of DM), STA = dietary starch (% of DM), EE = dietary ether extract (% of DM), Ash = dietary ash (% of DM), For = dietary 1019 

forage (% of DM), BW = body weight (kg), GEI = gross energy intake (MJ d-1), EEI = ether extract intake (kg d-1). 1020 

†n = number of observations used to fit model equations  1021 

‡All-data = all data collected for analysis, Higher-forage = data associated with a forage content ≥ 25%, Lower-forage = data associated with a 1022 

forage content ≤ 18%. 1023 

ǂp = numbers of observations used for model evaluation.  1024 

¶IPCC = Intergovernmental Panel on Climate Change. 1025 

♪Performance was evaluated, not cross-validated. 1026 
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♫No independent evaluation. 1027 

ǁThe 991 data points minus data from Tomkins et al. (2011) and Kennedy and Charmley (2012) to ensure independent evaluation. 1028 

♯The 991 data points minus data from Pinares-Patiño et al. (2003), Chaves et al. (2006), McGeough et al. (2010ab), Doreau et al. (2011), Staerfl 1029 

et al. (2012), Hünerberg et al. (2013ab) and Troy et al. (2015) to ensure independent evaluation.  1030 
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Table 3. Root mean square prediction error-standard-deviation-ratio (RSR) of the DMI_C CHR4R production (g d-1) equations based on lower-forage 1031 

(≤ forage content cutoff) and higher-forage (> forage content cutoff) subsets, their number of observations (n), and the average RSR weighted to 1032 

the number of higher- and lower-forage observations (All) for various diet forage content cutoff values to split the entire dataset into lower-forage 1033 

and higher-forage subsets. 1034 

(Sub)set  Forage content cutoff (% of DM) 

  0 15 20 25 30 35 40 45 50 

Higher-forage  NA 0.65 0.64 0.65 0.68 0.68 0.69 0.70 0.62 

n  NA 902 882 783 672 664 602 579 474 

Lower-forage  NA 0.95 0.94 0.78 0.69 0.70 0.68 0.68 0.73 

n  NA 119 139 238 349 357 419 442 547 

All  0.71 0.68 0.68 0.68 0.69 0.69 0.69 0.69 0.68 

  1035 
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Table 4. Higher-forage CHR4R emission (g d-1 animal-1) prediction equations for various categories and model performance across the data subsets 1036 

based on root mean square prediction error (RMSPE; % of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB 1037 

and SB; % of mean square prediction error), and concordance correlation coefficient (CCC).  1038 

 Model development  Model performance 

Eq. 

 

Category§ 

 

Prediction equation* 

 

n† 

 

(Sub)set‡ 

 

pǂ RMSPE, 

% 

RSR 

 

MB, 

% 

SB, 

% 

CCC 

 

[12] DMI_C 52.8 (7.5) + 13.8 (0.6) × DMI 882 Higher-forage 852 29.3 0.64 0.28 22.78 0.68 

EUR-HF 307 29.3 0.88 26.42 15.91 0.43 

    NrAm-HF 394 27.3 0.59 16.37 27.26 0.75 

    BRZ-HF 75 26.1 1.40 31.70 22.96 0.23 

[13] DMI+NDF_C 23.8 (9.1) + 13.5 (0.6) × DMI + 

0.844 (0.165) × NDF 

882 Higher-forage 852 29.1 0.64 0.20 17.83 0.69 

EUR-HF 307 29.0 0.87 27.08 14.11 0.45 

    NrAm-HF 394 25.2 0.55 13.46 21.70 0.80 

    BRZ-HF 75 24.9 1.34 24.24 26.05 0.25 

[14] DMI+STA_C 

 

83.4 (11.4) + 13.6 (0.8) × DMI – 

0.594 (0.161) × STA 

575 Higher-forage 575 26.6 0.65 1.42 16.37 0.68 

EUR-HF 273 26.0 0.93 21.41 4.37 0.35 

   NrAm-HF 269 24.7 0.56 16.08 20.02 0.78 

   BRZ-HF 14 29.2 2.47 77.05 9.49 -0.04 

[15] DMI+EE_C 66.4 (9.5) + 13.3 (0.6) × DMI – 

3.69 (1.56) × EE 

644 Higher-forage 644 27.8 0.64 1.32 15.45 0.69 

EUR-HF 122 26.1 1.00 43.22 6.45 0.39 

NrAm-HF 394 28.4 0.61 18.29 28.79 0.73 

    BRZ-HF 104 24.0 1.33 30.48 19.06 0.23 

[16] Diet_C 882 Higher-forage 852 27.9 0.61 0.49 15.52 0.72 



53 

 

23.4 (8.1) + 13.2 (0.5) × DMI + 

0.571 (0.080) × For 

EUR-HF 307 27.9 0.84 25.38 12.04 0.49 

NrAm-HF 394 23.1 0.50 8.40 17.91 0.83 

    BRZ-HF 75 22.6 1.21 14.48 25.25 0.28 

[17] 

 

Animal_C, Global_C 

 

–6.41 (8.31) + 11.3 (0.6) × DMI + 

0.557 (0.077) × For + 0.0996 

(0.0142) × BW 

864 

 

Higher-forage 852 24.6 0.54 0.80 14.74 0.80 

Higher-forage♯ 567 21.2 0.47 0.11 10.43 0.86 

EUR-HF 307 24.5 0.73 18.25 11.11 0.61 

NrAm-HF 394 20.3 0.44 3.82 11.92 0.88 

    BRZ-HF 75 21.2 1.14 1.36 27.11 0.22 

[18] Animal_no_DMI_C 

 

17.9 (10.4) + 0.732 (0.091) × For + 

0.226 (0.015) × BW 

 

864 

 

Higher-forage 852 30.8 0.67 0.01 13.23 0.65 

EUR-HF 307 26.3 0.79 14.80 11.89 0.52 

NrAm-HF 394 33.1 0.72 18.90 5.82 0.65 

    BRZ-HF 75 27.0 1.45 31.74 25.94 -0.14 

[19] GLOBAL 

NETWORK Tier 2 

[0.063 (0.002) × GEI] / 0.05565 882 Higher-forage 852 24.6 0.54 2.12 1.37 0.82 

Higher-forage♪,♫ 852 24.0 0.52 0.14 0.62 0.83 

[9] IPCC Tier 2 (2006) ¶ (0.065 × GEI) / 0.05565 - Higher-forage♪ 852 24.1 0.53 1.19 0.06 0.84 

[20] Charmley et al. 

(2016) 

21.0 × DMI  Higher-forage ♪,ǁ 829 25.4 0.57 0.10 0.05 0.81 

[11] Escobar-Bahamondes 

et al. (2017a) 

–35.0 + 0.08 × BW + 1.2 × For – 

69.8 × EEI^3 + 3.14 × GEI 

 Higher-forage♪,♯ 567 23.1 0.51 9.61 1.56 0.86 

§ Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.  1039 

* Equations are presented with regression coefficient standard errors in parenthesis; DMI = dry matter intake (kg d-1), NDF = dietary neutral 1040 

detergent fiber (% of DM), STA = dietary starch (% of DM), EE = dietary ether extract (% of DM), For = dietary forage (% of DM), BW = body 1041 

weight (kg), GEI = gross energy intake (MJ d-1), EEI = ether extract intake (kg d-1). 1042 

†n = number of observations used to fit model equations.  1043 
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‡Higher-forage = data associated with a forage content ≥ 25%, EUR-HF = European data associated with a forage content ≥ 25%, NrAm-HF = 1044 

North American data associated with a forage content ≥ 25%, BRZ-HF = Brazilian data associated with a forage content ≥ 25%. 1045 

ǂp = numbers of observations used for model evaluation.  1046 

¶IPCC = Intergovernmental Panel on Climate Change. 1047 

♪Performance was evaluated, not cross-validated. 1048 

♫No independent evaluation. 1049 

ǁThe 852 data points minus data from Tomkins et al. (2011) and Kennedy and Charmley (2012) to ensure independent evaluation. 1050 

♯The 852 data points minus data from Pinares-Patiño et al. (2003), Chaves et al. (2006), McGeough et al. (2010ab), Doreau et al. (2011), Staerfl 1051 

et al. (2012), Hünerberg et al. (2013ab) and Troy et al. (2015) to ensure independent evaluation.  1052 
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Table 5. Lower-forage CHR4R emission (g d-1 animal-1) prediction equations and model performance using the lower-forage subset based on root 1053 

mean square prediction error (RMSPE; % of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of 1054 

mean square prediction error), and concordance correlation coefficient (CCC).  1055 

 Model development  Model performance 

Eq. 

 

Category§ 

 

Prediction equation* 

 

n† 

 

(Sub)set‡ 

 

pǂ RMSPE, 

% 

RSR 

 

MB, 

% 

SB, 

% 

CCC 

 

[20] DMI_C, Diet_C, 

Animal_C, 

Global_C 

46.6 (19.4) + 9.54 (1.80) × DMI 139 Lower-forage 139 28.4 0.94 4.81 0.03 0.26 

[21] DMI+NDF_C 

 

112 (47) + 9.46 (1.79) × DMI – 2.58 

(1.72) × NDF 

139 Lower-forage 139 29.3 0.96 4.74 1.34 0.25 

[22] DMI+STA_C 42.0 (38.9) + 9.85 (1.88) × DMI + 

0.0331 (0.7546) × STA 

129 Lower-forage 129 34.5 1.11 3.70 20.18 0.23 

[23] DMI+EE_C 57.0 (18.1) + 8.84 (1.74) × DMI – 

1.17 (2.03) × EE 

110 Lower-forage 110 24.1 0.96 4.54 1.22 0.26 

       

[24] GLOBAL 

NETWORK Tier 2 

[0.045 (0.002) × GEI] / 0.05565 139 

 

Lower-forage 139 27.9 0.92 3.13 3.02 0.39 

Lower-forage♪,♫ 139 27.3 0.90 0.47 3.99 0.43 

Lower-forage♪,ǁ 101 25.2 0.98 2.27 12.91 0.41 

[25] IPCC Tier 2 (2006) 

Lower-forage¶ 

(0.030 × GEI) / 0.05565 - Lower-forage♪ 139 42.1 1.38 59.60 0.08 0.17 

 Lower-forage♪,ǁ  101 39.0 1.51 64.08 0.35 0.16 

[26] Ellis et al. (2009); 

Eq. N 

48.2 + 14.1 × DMI – 20.5 ×  

(STA/NDF) 

 Lower-forage♪ 129 27.8 0.89 0.26 2.04 0.41 

[27] Ellis et al. (2009); 

Eq. A 

41.2 + 12.0 × DMI  Lower-forage♪ 139 27.9 0.92 6.19 0.15 0.34 



56 

 

§Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section; no 1056 

Animal_no_DMI_C equation available.  1057 

*Equations are presented with regression coefficient standard errors in parenthesis; DMI = dry matter intake (kg d-1), NDF = dietary neutral 1058 

detergent fiber (% of DM), STA = dietary starch (% of DM), EE = dietary ether extract (% of DM), GEI = gross energy intake (MJ d-1). 1059 

†n = number of observations used to fit model equations.  1060 

‡Lower-forage = data associated with a forage content ≤ 18%.  1061 

ǂp = numbers of observations used for model evaluation.  1062 

¶IPCC = Intergovernmental Panel on Climate Change.  1063 

♪Performance was evaluated, not cross-validated. 1064 

♫No independent evaluation. 1065 

ǁA subset containing ≤ 10% forage records only was used (as recommended by the IPCC, 2006)   1066 
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Table 6. European higher-forage CHR4R emission (g d-1 animal-1) prediction equations for various categories and model performance based on root 1067 

mean square prediction error (RMSPE; % of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and SB; % of 1068 

mean square prediction error), and concordance correlation coefficient (CCC).  1069 

 Model development   Model performance 

Eq. 

 

Category§ 

 

Prediction equation* 

 

n† 

 

(Sub)set‡ 

 

pǂ RMSPE, 

% 

RSR 

 

MB, 

% 

SB, 

% 

CCC 

 

[28] DMI_C 60.5 (16.4) + 15.0 (1.4) × DMI 307 EUR-HF 307 26.3 0.79 4.86 15.69 0.48 

[29] DMI+NDF_C 

 

38.1 (23.3) + 14.9 (1.4) × DMI + 0.598 

(0.470) × NDF 

307 EUR-HF 307 25.9 0.77 5.21 13.15 0.51 

[30] DMI+STA_C 

 

92.4 (21.7) + 11.7 (2.0) × DMI + 0.113 

(0.285) × STA 

273 EUR-HF 273 25.6 0.92 9.92 2.20 0.30 

[31] DMI+EE_C 

 

133 (34) + 14.5 (2.0) × DMI – 18.4 (6.6) 

× EE 

122 EUR-HF 122 23.7 0.91 1.86 13.87 0.54 

[32] Diet_C –20.9 (43.6) + 14.3 (2.0) × DMI + 4.04 

(1.06) × NDF – 15.4 (3.8) × EE 

122 EUR-HF 122 18.4 0.70 5.57 0.97 0.70 

[33] Animal_C  –102 (40.5) + 11.6 (2.1) × DMI + 3.74 

(0.79) × NDF – 11.1 (3.0) × EE + 0.164 

(0.054) × BW 

122 EUR-HF 122 16.7 0.64 3.49 0.00 0.75 

 EUR_HF♯ 109 15.5 0.58 1.31 0.13 0.79 

[34] Animal_no_DMI_C 34.1 (18.7) + 0.287 (0.028) × BW 307 EUR-HF 307 27.0 0.81 10.37 3.73 0.50 

[35] Global_C 24.3 (17.7) + 9.37 (2.06) × DMI + 0.153 

(0.040) × BW 

307 EUR-HF 307 24.5 0.73 8.88 11.91 0.58 

[36] GLOBAL 

NETWORK Tier 2 

[0.066 (0.003) × GEI] / 0.05565 307 EUR-HF 307 22.9 0.69 7.03 2.04 0.68 

EUR-HF♪,♫ 307 21.8 0.65 1.89 1.34 0.71 
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[9] IPCC Tier 2, 2006¶ (0.065 × GEI) / 0.05565 - EUR-HF♪ 307 22.0 0.66 3.54 1.61 0.71 

[37] Charmley et al. 

(2016) 

–15.3 + 24.7 × DMI  
 

EUR-HF♪ 307 21.9 0.66 0.61 0.16 0.72 

122 19.7 0.75 2.09 3.18 0.66 

[11] Escobar-

Bahamondes et al. 

(2017a) 

–35.0 + 0.08 × BW + 1.2 × For – 69.8 × 

EEI^3 + 3.14 × GEI 
 

EUR-HF♪,♯ 109 16.0 0.60 0.61 0.37 0.77 

§Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.  1070 

*Equations are presented with regression coefficient standard errors in parenthesis; DMI = dry matter intake (kg d-1), NDF = dietary neutral 1071 

detergent fiber (% of DM), STA = dietary starch (% of DM), EE = dietary ether extract (% of DM), BW = body weight (kg), GEI = gross energy 1072 

intake (MJ d-1), EEI = ether extract intake (kg d-1). 1073 

†n = number of observations used to fit model equations. 1074 

‡EUR-HF = European data associated with a forage content ≥ 25%. 1075 

ǂp = numbers of observations used for model evaluation.  1076 

¶IPCC = Intergovernmental Panel on Climate Change. 1077 

♪Performance was evaluated, not cross-validated. 1078 

♫No independent evaluation.1079 
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♯ The 307 data points minus data from Pinares-Patiño et al. (2003), McGeough et al. (2010ab), Doreau et al. (2011), Staerfl et al. (2012) and Troy 1080 

et al. (2015) to ensure independent evaluation.  1081 
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Table 7. North American higher-forage CHR4R emission (g d-1 animal-1) prediction equations for various categories and model performance based 1082 

on root mean square prediction error (RMSPE; % of mean), RMSPE-observations-standard-deviation-ratio (RSR), mean and slope bias (MB and 1083 

SB; % of mean square prediction error), and concordance correlation coefficient (CCC).  1084 

 Model development   Model performance 

Eq. 

 

Category§ 

 

Prediction equation* 

 

n† 

 

(Sub)set‡ 

 

pǂ RMSPE, 

% 

RSR 

 

MB, 

% 

SB, 

% 

CCC 

 

[38] DMI_C  33.9 (7.7) + 14.7 (0.6) × DMI 394 NrAm-HF 394 25.3 0.55 0.00 26.45 0.78 

[39] DMI+NDF_C 1.58 (8.30) + 14.2 (0.6) × DMI + 1.05 

(0.16) × NDF 

394 NrAm-HF 394 23.8 0.52 0.02 16.29 0.82 

[40] DMI+STA_C 

 

89.7 (10.7) + 14.2 (0.8) × DMI – 1.17 

(0.17) × STA 

269 NrAm-HF 269 21.4 0.49 1.90 9.73 0.84 

[41] DMI+EE_C 

 

43.7 (8.8) + 14.7 (0.6) × DMI – 3.72 

(1.52) × EE 

394 NrAm-HF 394 25.0 0.54 0.01 25.47 0.78 

[42] Diet_C 7.41 (7.12) + 14.1 (0.6) × DMI + 0.632 

(0.069) × For  

394 NrAm-HF 394 22.2 0.48 0.01 11.10 0.85 

[43] Animal_C,  –15.1 (7.5) + 12.7 (0.6) × DMI + 0.644 

(0.066) × For + 0.0779 (0.0134) × BW 

394 NrAm-HF 394 20.1 0.43 0.02 6.12 0.88 

[44] Animal_no_DMI_C 14.0 (12.3) + 0.965 (0.104) × For + 

0.207 (0.018) × BW – 3.02 (0.95) × Ash 

394 NrAm-HF 394 32.2 0.70 0.32 5.45 0.63 

[45] Global_C –38.8 (10.9) + 12.7 (0.6) × DMI + 0.605 

(0.066) × For + 1.61 (0.56) × CP + 

0.0779 (0.0133) × BW 

394 NrAm-HF 394 20.0 0.43 0.04 3.03 0.89 

[46] GLOBAL 

NETWORK Tier 2 

[0.063 (0.003) × GEI] / 0.05565 394 NrAm-HF 394 21.9 0.48 0.81 0.03 0.87 

NrAm-HF♪,♫ 394 21.4 0.46 2.51 0.02 0.88 

[9] IPCC Tier 2, 2006¶ (0.065 × GEI) / 0.05565 - NrAm-HF♪ 394 22.2 0.48 8.70 0.50 0.88 

[47] Charmley et al. 

(2016) 

20.5 × DMI  NrAm-HF♪ 394 20.0 0.43 0.45 0.02 0.90 

§Category acronyms (e.g., DMI_C) are explained in the ‘Model development’ subsection of the ‘Methods and Materials’ section.  1085 
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*Equations are presented with regression coefficient standard errors in parenthesis; DMI = dry matter intake (kg d-1), NDF = dietary neutral 1086 

detergent fiber (% of DM), STA = dietary starch (% of DM), EE = dietary ether extract (% of DM), For = dietary forage (% of DM), GEI = gross 1087 

energy intake (MJ d-1), BW = body weight (kg). 1088 

†n = number of observations used to fit model equations.  1089 

‡NrAm-HF = North American data associated with a forage content ≥ 25%. 1090 

ǂp = numbers of observations used for model evaluation.  1091 

¶IPCC = Intergovernmental Panel on Climate Change. 1092 

♪Performance was evaluated, not cross-validated. 1093 

♫No independent evaluation.1094 
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Figure 1. Observed vs. predicted plots for all-data methane emission (g d-1 animal-1) prediction 1095 

equations for the different categories, viz., dry matter intake (DMI_C), dry matter intake and 1096 

neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), dry matter 1097 

intake and ether extract (DMI+EE_C), diet (Diet_C), animal (Animal_C), animal without DMI 1098 

(Animal_no_DMI_C), GLOBAL NETWORK Tier 2, IPCC Tier 2 (2006), and the extant 1099 

Charmley et al. (2016) and Escobar-Bahamondes et al. (2017) equations. The gray and black 1100 

solid lines represent the fitted regression line for the relationship between observed and predicted 1101 

values, and the identity line (y = x), respectively. 1102 

 1103 

Figure 2. Observed vs. predicted plots for higher-forage methane emission (g d-1 animal-1) 1104 

prediction equations for the different categories, viz., dry matter intake (DMI_C), dry matter 1105 

intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), 1106 

dry matter intake and ether extract (DMI+EE_C), diet (Diet_C), animal (Animal_C), animal 1107 

without DMI (Animal_no_DMI_C), GLOBAL NETWORK Tier 2, IPCC Tier 2 (2006), and the 1108 

extant Charmley et al. (2016) and Escobar-Bahamondes et al. (2017) equations. The gray and 1109 

black solid lines represent the fitted regression line for the relationship between observed and 1110 

predicted values, and the identity line (y = x), respectively.  1111 

 1112 

Figure 3. Observed vs. predicted plots for lower-forage methane emission (g d-1 animal-1) 1113 

prediction equations for the different categories, viz., dry matter intake (DMI_C), dry matter 1114 

intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch (DMI+STA_C), 1115 

dry matter intake and ether extract (DMI+EE_C), GLOBAL NETWORK Tier 2, IPCC Tier 2 1116 

(2006), and the extant Ellis et al. (2009) equations. The gray and black solid lines represent the 1117 
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fitted regression line for the relationship between observed and predicted values, and the identity 1118 

line (y = x), respectively. 1119 

 1120 

Figure 4. Observed vs. predicted plots for European higher-forage methane emission (g d-1 1121 

animal-1) prediction equations for the different categories, viz., dry matter intake (DMI_C), dry 1122 

matter intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch 1123 

(DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), dietary (Diet_C), animal 1124 

(Animal_C), animal without DMI (Animal_no_DMI_C), global (Global_C), GLOBAL 1125 

NETWORK Tier 2, and IPCC Tier 2 (2006), and the extant Charmley et al. (2016) and Escobar-1126 

Bahamondes et al. (2017) equations. The gray and black solid lines represent the fitted 1127 

regression line for the relationship between observed and predicted values, and the identity line 1128 

(y = x), respectively.  1129 

 1130 

Figure 5. Observed vs. predicted plots for North American higher-forage methane emission (g d-1 1131 

animal-1) prediction equations for the different categories, viz., dry matter intake (DMI_C), dry 1132 

matter intake and neutral detergent fiber (DMI+NDF_C), dry matter intake and starch 1133 

(DMI+STA_C), dry matter intake and ether extract (DMI+EE_C), dietary (Diet_C), animal 1134 

(Animal_C), animal without DMI (Animal_no_DMI_C), global (Global_C), GLOBAL 1135 

NETWORK Tier 2 (2006), IPCC Tier 2 (2006), and the extant Charmley et al. (2016) equation. 1136 

The gray and black solid lines represent the fitted regression line for the relationship between 1137 

observed and predicted values, and the identity line (y = x), respectively. 1138 


