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Discussion

Comment on “Wavelet spectral analysis of the free surface of turbulent
flows”, by Dolcetti and Garćıa Nava

Miguel A. C. Teixeira, Lecturer, Department of Meteorology, University of Reading, Reading, United
Kingdom
Email: m.a.teixeira@reading.ac.uk

In an interesting recent study on turbulent structures in open-channel flow and their surface
signatures, Dolcetti & Garćıa Nava (2018) (hereafter DGN18) present laboratory measurements of
stationary free surface waves propagating against a stream with mean vertical shear induced by
the boundary layer formed at the bottom of the channel. To a first approximation, the wavelength
of those waves is determined by a dispersion relation modified by the shear. To evaluate this effect,
DGN18 assume that the current profile takes the form

U(z) = U0

(z

d

)n
, (1)

where U0 is the surface current speed, d is the mean water depth, and z is the height within the
water, with z = 0 corresponding to the bottom of the stream and z = d to the mean level of the
free surface. The exponent in (1) is estimated as n = 1/3.

DGN18 calculate the wavelength of the stationary waves both for the experiments of
Horoshenkov, Nichols, Tait & Maximov (2013) and Nichols, Tait, Horoshenkov & Shepherd (2016),
and for their own experiments (where they do not measure this quantity directly) using a formula
involving modified Bessel functions (their Eq. (16)), which takes into account both surface tension
and finite water depth effects.

A formula that is much simpler but gives results of comparable accuracy is proposed here, based
on a constant-shear, deep-water gravity-wave approximation. The corresponding dispersion relation
for non-stationary waves was first derived by Craik (1968) (according to Ellingsen & Li (2017)),
but was re-derived by Shrira (1993) and Teixeira (2000). For waves aligned in the flow direction,
Eq. (4.30) of Teixeira (2000) reduces to:

σ2 + Γσ − σ2
0 = 0, (2)

where σ is the angular frequency, Γ = (dU/dz)(z = d) is the shear rate at the surface, and σ0 is the
intrinsic angular frequency of free waves unaffected by shear. For waves that propagate upstream
against the flow so as to be steady in a fixed frame of reference, σ must be replaced by −U0k0,
where k0 is the corresponding wavenumber. For pure deep-water gravity waves, σ2

0 = gk0, whence
Eq. (2) yields

k0 =
g + ΓU0

U2
0

⇒ λ0 =
2π

k0
=

2πU2
0

g

1
1 + ΓU0/g

. (3)

k0 or the wavelength λ0 are therefore obtainable in a very concise closed form. The term involving
Γ is the correction due to shear. From Eq. (1), Γ = (dU/dz)(z = d) = nU0/d, which makes Eq. (3)
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become:

λ0 =
2πU2

0

g

1
1 + nU2

0 /(gd)
⇒ λ0

d
=

2πF2

1 + nF2 , (4)

where in the latter dimensionless relation F = U0/(gd)1/2 is the Froude number. The wavelength
normalized by d therefore only depends on F, for a given n.
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Figure 1 Wavelength of stationary surface waves propagating against a sheared stream. See legend for meaning of lines and
symbols. (a) λ0 as a function of 2πU2

0 /g. Note that, from theory, λ0 should also depend on F. (b) λ0/d as a function of F.

Figure 1a shows λ0 as a function of 2πU2
0 g, as in Fig. 8 of DGN18. The filled squares and circles

were calculated using Eq. (4), whereas the open symbols are either data from Nichols et al. (2016)
(circles) or values calculated by DGN18 using their Eq. (16) with n = 1/3 (squares and triangles).
The agreement of Eq. (4) with both datasets is quite good, although n = 1/2 was assumed instead.
This is consistent with the fact that in Fig. 8 of DGN18 the values calculated from their Eq. (16)
with n = 1/2, corresponding to the lower error bars (not shown here), produce the best agreement
with the data of Horoshenkov et al. (2013).

Figure 1b shows the same data normalized by d. Since Eq. (4) predicts that λ0/d is an exclusive
function of F, the corresponding variation is denoted by lines. This means that, if the model is
accurate, each dataset should collapse to a single curve in this representation (this does not happen
in Fig. 1a, because λ0 is expected to depend on F in addition to 2πU2

0 /g – see first equation of Eq.
(4)). The experimental data of Nichols et al. (2016) naturally have considerable scatter, since it is
technically challenging to measure λ0 experimentally, but they show a trend compatible with Eq.
(4). The data from DGN18, on the other hand, follow almost perfectly a single line (because they
also result from an analytical calculation, namely Eq. (16) of DGN18), and by comparison with
(4) for n = 1/3 corroborate the good accuracy of the approximation proposed here.

It is worth mentioning that both shallow water and surface tension effects appear to be negligible
in these datasets. Based on the values of k0 estimated by DGN18 (which differ little from those
given by (4)), the lowest value taken by the wavelength is λ0 = 4.8 cm. This is still substantially
larger than the value λ0 = 1.7 cm at which the transition to waves dominated by surface tension
occurs (if relevant, this effect would show on the left limit of the graphs in Fig. 1, but is actually
undetectable). On the other hand, the lowest value of k0d provided by the dataset of Horoshenkov
et al. (2013) and Nichols et al. (2016) is 2.1, which yields only a 1.6% departure of the phase speed
magnitude relative to the deep-water approximation. This inaccuracy should be largest towards
the right end of the graphs in Fig. 1 but, again, is undetectable.
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The overall conclusion is that, as long as the gravity-wave and deep-water approximations remain
valid, Eq. (4) seems accurate enough for the purposes envisaged by DGN18. This may happen
because the shear generated by bottom friction in open-channel flow varies slowly with depth near
the free surface, as assumed in (2).

References

Craik, A. D. D. (1968). Resonant gravity-wave interactions in a shear flow. Journal of Fluid Me-
chanics, 34, 531–549.
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