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Abstract 30 

Multiple environmental factors are known to shape species distributions at the global 31 

scale, including climate and topography, but understanding current extents of 32 

occurrence and biodiversity patterns requires considering anthropogenic factors as well. 33 

Numerous studies have explored the relationship between contemporary human 34 

activities and different biodiversity metrics, but the influence of past activities, such as 35 

land-use, remains poorly understood despite being one of the oldest human impacts. 36 

Here we evaluate the role of past land-use modifications in the current distribution and 37 

conservation status of mammals worldwide using spatial data characterizing human 38 

land use from c.B.C.6000 to c.A.D.2000. First, we applied a clustering method that 39 

revealed three generalized past human land-use trajectories that represent low-, recently- 40 

and steadily-used areas widely represented across the globe. Second, we fitted boosted 41 

regression trees to predict total and threatened mammalian richness, globally and within 42 

trajectory-clusters, testing the role of environmental factors and multiple human land-43 

use metrics reflecting: total used area at different time spans, rates of land-use change, 44 

and the occurrence of remarkable land-use shifts. Environmental factors were identified 45 

as the main correlates of current mammalian richness, but several proposed metrics of 46 

past land-use were also relevant predictors. Overall, these results highlight the likely 47 

existence of a land-use legacy in some regions of the world that has influenced the 48 

distribution of extant mammals, particularly of those currently classified as threatened. 49 

Even if we cannot change that legacy, our results show that we need to account for past 50 

human impacts to understand present biodiversity patterns and, arguably, to guide future 51 

actions. 52 

 53 
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Introduction 

Threatened species are unevenly distributed across the world, with remarkable differences among 

taxonomic groups (Grenyer et al. 2006). If extinctions occurred by chance, we would expect more 

threatened species in areas with higher species richness which is, in turn, largely determined by 

latitudinal gradients in climatic conditions affecting the availability of energy and water (Hawkins 

et al. 2003, Terribile et al. 2009). However, extinctions do not occur by chance but are instead 

largely shaped by human activities, such as direct persecution or habitat modifications (Russell et 

al. 2013); and extreme climatic events, such as past ice ages or current climate change (Thuiller et 

al. 2011, Varela et al. 2015). As a result, the relationship between environmental factors, overall 

species richness, and the number of threatened species is not straightforward and shows spatial 

heterogeneity (Orme et al. 2005, Ceballos and Ehrlich 2006, Brum et al. 2013). Environmental and 

evolutionary factors define the initial, pristine pool of species within a certain area, but human 

activities can lead to threats, and eventually, local extinctions that can result in lower overall species 

richness. Therefore, the number and/or intensity of threats within a given area can affect total 

richness and the number of threatened species. 

 From a global perspective, more humanized areas, such as those with increased accessibility 

or with more space allocated to agriculture, have been associated with relatively lower species 

richness at both fine (~10 x 10km grid size) and large resolutions (~100 x 100km grid size; Martins 

et al. 2014; Torres-Romero & Olalla-Tárraga 2014). Fewer studies have explored correlates of the 

global distribution of threatened species. These studies have often used broad study units such as 

ecoregions or countries, and have linked the occurrence of threatened species with human pressures, 

measured in terms of land use or human population density (Lenzen et al. 2009, Pekin and 

Pijanowski 2012, Brum et al. 2013) and with different socioeconomic profiles (Polaina et al. 2015). 

Polaina et al. (2018) analyzed threatened species richness at a finer resolution (1x1º grid cells) and 

showed that the relationship between this biodiversity metric and land-use-change derived impacts 

varied across regions, likely reflecting different stages of human development and appropriation of 

land. In some areas, threatened species were more abundant in more impacted areas, whereas in 
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others threatened species remained in less impacted zones. On the other hand, patterns of threatened 

species distribution have been studied within the framework of spatial conservation planning, 

considering high richness as an attribute to be prioritized, but not explicitly searching for correlates 

or drivers of those patterns (Bonn et al. 2002; Grenyer et al. 2006; spatial resolutions ranging from 

~25 x 25km to ~100 x 100km grid sizes). It seems clear that whereas the most threatening activities 

are normally related to lower total species richness, the relationship between threats and threatened 

species likely varies across regions and spatial scales in more complex ways. 

 One additional but generally overlooked factor that may help explain current biodiversity 

patterns is past human pressure (Faurby and Svenning 2015). In general, human land uses develop 

from low impact extensive into high impact intensive industrial agriculture and urbanization (Foley 

et al. 2005). Since the beginning of sedentary human societies and the advent of agriculture, around 

B.C.8000-6000, the amount of land under human dominance has grown at an accelerating pace 

(Ellis 2011). Some events marked particularly notable transitions, such as the European invasions in 

the 15th century, the 19th century Industrial Revolution with its productive, technological and 

demographic shifts and, more recently, the Green Revolution that triggered the so-called 'great 

acceleration' (c.A.D.1950, Steffen et al. 2015). Throughout all this time, the evidence of human 

impacts on other mammals has become increasingly apparent. Some known examples include the 

extinctions of megafauna in the late Pleistocene-early Holocene (~B.C.8000; Sandom et al. 2014); 

the declining population trend of many European species coinciding with the decline of forested 

areas (c.A.D.1000; Kaplan et al. 2009; Crees et al. 2016); or the range contractions of many North 

American species after European settlement (Laliberte and Ripple 2004). The available evidence on 

the importance of these past human-induced events suggests past land-use modifications could help 

explain contemporary biodiversity patterns at broad scales (Loehle and Eschenbach 2012, Faurby 

and Svenning 2015). 

How past human activities influence current species richness distribution remains largely 

unexplored at broad scales, partly because data have only recently become available (Goldewijk et 

al. 2010, Kaplan et al. 2011). Therefore, studies exploring the correlation between past human 
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activities and current distribution at the macroecological scale are very scarce, although some have 

demonstrated that these indicators may improve the understanding of present patterns of species 

distribution (Dullinger et al. 2013). Although the effects of past land-use change on current 

biodiversity distribution are indirect, mediated by unknown or uncertain past species' distributions; 

finding correspondences between both factors would provide evidence of an extinction debt. Thus, 

current biodiversity patterns would actually be an inflated picture of what it will come in the future, 

increasing current concerns regarding the sixth mass extinction (Ceballos et al. 2017, WWF 2018).  

Our study aims to provide an understanding of how past human land use relates with current 

global mammalian biodiversity patterns. We used terrestrial mammals as a model study group 

because their present conservation status (IUCN 2014) and their past dynamics of decline (e.g. 

Turvey & Fritz 2011; Prescott et al. 2012) are generally well known. First, we proposed a new 

application of an approach to identify generalized trajectory-clusters areas on the common history 

of human land-use expansion or reduction according to estimated changes in the portion of land 

classified as used by humans at different time spans ranging from c. B.C.6000 to c. A.D.2000. 

Second, we proposed and tested how diverse metrics characterizing past land use and the defined 

trajectory-clusters can contribute to our understanding of the current distribution of total 

mammalian richness, number of threatened species and proportion of threatened species, globally 

and within each trajectory-cluster. The proposed metrics reflect three processes we hypothesize 

could affect current observed distribution of mammals richness: (1) proportion of human-used land 

at different time spans, if there is a time lag between human pressure and species response, past 

human land use extent may explain species richness distribution better than present land use; (2) 

rates of land-use change, if rapid changes limit the ability of species to respond via adaptation, areas 

that had been modified at a faster pace may have fewer and more threatened species today; and (3) 

remarkable land-use events, if abrupt past human impacts, even if later reversed, have lasting and 

irreversible effects, areas in which extensive land use occurred in the past may have fewer total and 

more threatened species.  
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Material and Methods 

Data sources and selection 

Data of mean proportion of land use per unit area at different time spans were obtained from Ellis et 

al. (2013; available at http://ecotope.org/products/datasets/used_planet/). We chose the KK10 model 

(Kaplan et al. 2011), which assumes that humans tend to use land more intensively –against 

extensively– when population density is high and land scarce (Boserup 1965). This model is 

considered as more realistic than the alternative HYDE (Goldewijk et al. 2010), which provides 

predictions based only on nearly linear relationships between population and surface of used land 

(Ellis et al. 2013). We considered the 10 time breaks available within the selected dataset: 

B.C.6000, B.C.3000, B.C.1000, A.D.0, A.D.1000, A.D.1500, A.D.1750, A.D.1900, A.D.1950 and 

A.D. 2000. From the original 5-arc-minute resolution (~10 km), mean values were averaged for a 

110 x 110 km grid (≈ 12,100 km²) in a Behrmann cylindrical equal area projection. Grid-cells with 

an emerged area smaller than 10,000 km2 were excluded to avoid comparing grid-cells with very 

unequal areas. Working at finer resolutions without overestimating species richness would not be 

possible using available species geographic range data (Hurlbert and Jetz 2007). The portion of 

present human land use (per grid-cell) was used as an indicator of current land-use pressure, given 

its known importance as an anthropogenic driver of habitat loss and deterioration (Foley et al. 

2005). For the purpose of the present work, it was represented as the value of human land use at 

c.A.D.2000, the most recent time break available on this data source. We considered several past 

land-use metrics based on the three hypotheses presented in the introduction: (1) proportions of 

human-used land at each of the 10 time spans, (2) rates of land-use change for different time 

periods, and (3) remarkable land-use events. The proportion of land intended for human use at each 

time break is directly provided by the KK10 model (Kaplan et al. 2011). Land-use rates of change 

were calculated as the difference in the portion of a grid-cell defined as used in a given time period 

standardized per 1000 elapsed years. Time periods were defined based on available time spans and 

aimed to capture major historical land-use periods at our spatial resolution and extension: 

prehistoric (c.B.C.6000-c.A.D.0), pre-industrialization (c.A.D.0-1750), industrialization 
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(c.A.D.1750-1950) and post-industrialization (c.A.D.1950-2000). Remarkable land-use changes 

were considered at three different thresholds: 20% grid-cell intended for human use (LU+20), 

defined as the first significant use by Ellis et al. (2013); 50% grid-cell intended for human use 

(LU+50), taken to reflect a high human-use value (> 6000 km2); and maximum value of use per grid-

cell for the whole time series (LUmax), a relative value to account for the expected differences 

among regions, i.e., the highest value in low-used areas may be the lowest observed in high-used 

regions. It is worth to mention that not all grid-cells exceeded the proposed absolute thresholds 

(20% and 50%), but all of them had a relative maximum value. For each threshold we calculated, 

when it occurred (time break as presented above), how much land was intended for human land 

(exact portion of land used at each time of remarkable land use), and how long this value was 

maintained (duration in years until A.D.2000; Table S2.1). 

 Present environmental conditions were synthesized for each 110 km grid-cell in terms of 

annual mean actual evapotranspiration (AET), obtained from Zhang et al. (2010); annual mean 

temperature and precipitation, obtained from WorldClim2 (Fick and Hijmans 2017); and mean 

elevation, extracted from the global digital elevation model GTOPO30 (LP DAAC 2004; Table 

S2.2). Environmental indicators were included to account for the known latitudinal gradient in 

species diversity distribution, mainly associated with water and energy availability (Hillebrand 

2004, Torres-Romero and Olalla-Tárraga 2014).  

 Distribution maps for 5237 terrestrial mammal species were gathered from the International 

Union for Conservation of Nature (IUCN 2014), selecting only polygons classified as native, extant 

and probably extant. Distribution data were intersected with the 110 x 110 km grid, and species 

were considered as present in a particular grid-cell when any overlap existed. Total richness was the 

sum of all terrestrial mammal species (with any conservation status) occurring in a grid-cell. The 

number of threatened mammals represented the sum of all species categorized as vulnerable (VU), 

endangered (EN) or critically endangered (CR) by the IUCN (IUCN 2014) occurring in a grid-cell. 

The proportion of threatened mammals was calculated by dividing the number of threatened 

mammals over the total mammal richness per grid-cell. Total mammalian richness, in models where 
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total threatened richness was the response, controlled for the fact that the more species within an 

area, the greater the chances to find more of them under threat. 

 

Statistical analyses 

To synthetize trajectory trends in longitudinal data of global land use we employed a clustering 

method that incorporates a k-means algorithm (Celeux and Govaert 1992) implemented in the kml 

package ('kml' function; Genolini et al. 2015) in R v.3.2.3 (R Core Team 2015). This method 

allowed us to group grid-cells with similar land use trajectories along the considered temporal range 

(c.B.C.6000 - c.A.D. 2000). The optimal number of clusters was defined using five non-parametric 

quality indices according to different criteria: three variants of the Calinski & Harabanz criterion, 

the Ray-Turi criterion and the Davies-Bouldin criterion (Calinski and Harabasz 1972, Davies and 

Bouldin 1979, Ray and Turi 1999, Kryszczuk and Hurley 2010). All of them try to minimize the 

within-cluster compactness while maximizing the between-cluster spacing, and are standardized 

within the kml package to allow comparisons (Genolini et al. 2015). Using this approach, we 

classified areas that had followed similar land-use transformations across time. The obtained 

trajectory-clusters were used as a categorical past land-use predictor in global models to test 

differences among clusters in terms of mammalian diversity and vulnerability. In addition, we fit 

separated models for each trajectory-cluster to identify specific past land-use indicators that explain 

current mammalian richness distribution within clusters. 

 As expected, some of the initially considered variables were highly correlated (Spearman's 

ρ≥|0.7|), so we kept only one variable from each correlated couple, according to the following rules. 

From correlated pairs with one control variable (present land use, total richness -when applicable- 

and environmental indicators) and one past land-use indicator we selected the control variable. 

From correlated pairs with two control variables we selected the one with the highest correlation to 

the response. Finally, from correlated pairs of two past land-use indicators we selected the past 

land-use indicator representing the oldest temporal span to increase the contrast with present land 

use (a control variable). We checked for correlation separately for the global and each cluster’s 
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subset of data (Figs. S2.1-S2.4), so the retained predictors varied among the global and by-

trajectory-cluster models, but all models contained at least one indicator from each of the 

hypothesized effects (proportion of human-used land at different time spans, rates of land-use 

change for different time periods, and remarkable land-use events). 

The selected indicators were included as predictors in global and by-trajectory-cluster 

boosted regression trees (BRT), testing three different response variables: mammalian richness, 

number or proportion of threatened mammals over total richness. BRT modeling uses a boosting 

technique to combine large numbers of relatively simple tree models to optimize predictive 

performance. BRT allow for detecting nonlinear relationships and including variables of very 

different nature and units (Elith et al. 2008). To fit the models we used the function ‘gbm.step’, 

which calculates the optimal number of boosting trees using 10-fold cross validation, and it is 

included in the dismo package (Hijmans et al. 2013) in R. A bagging fraction of 0.5, a tree 

complexity of 5 (up to 5-way interactions) and a learning rate of 0.005 were fixed for all BRT 

models to achieve a minimum of 1,000 trees, according to the guidelines in Elith et al. (2008). To 

account for spatial autocorrelation, all models included a residuals-based autocovariate (RAC) that 

specifies the relationship between the value of the residuals at each location and those at 

neighboring locations (the 8 immediate grid-cells surrounding each cell as neighbors, approximately 

within a 165 km distance in our case) from a model excluding spatial autocorrelation. Deriving the 

autocovariate from the residuals allows including only the remaining deviance unexplained by the 

explanatory variables, thus the actual influence of the predictors is better captured (Crase et al. 

2012). A Poisson error structure for the response variable was assumed for total and threatened 

mammals' counts. When the proportion of threatened mammals was explored as a response, this 

was arcsine square root transformed to approximate normality and a Gaussian error structure was 

used instead. Grid-cells containing a proportion of threatened mammals greater than 0.999 were 

excluded (N=12) from the analyses for being considered outliers corresponding to grid-cells with 

very few species (proportion of threatened mammals per grid-cell, mean=0.049, third quartile= 

0.667). 
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A predictor was considered to be relevant when its relative importance was greater than 

expected by chance (100% divided by the number of variables included in each model; e.g. Müller 

et al. 2013). The explanatory power of each model was calculated as the percentage of deviance 

explained respect to a null model, defined as one without any splits –equivalent to an intercept only 

model in linear regression (Ferrier and Watson 1997). The effect of each predictor was described in 

relation to the fitted model in which all other predictors were set to their average. 

 

Results 

All quality criteria supported the differentiation of three generalized trajectory-clusters describing 

global temporal patterns in past land use from c.B.C.6000 to c.A.D.2000 (Fig. S1.1). These three 

trajectory-clusters (Fig.1A) correspond to three broad global patterns of land-use progression that 

we named as: low-used areas (51.9% of grid-cells) where land-use values were low with only small 

increases in use over time; recently-used areas (32.3% of grid-cells), where the rate of land 

encroachment was moderate until relatively recent times (~A.D.1750) when a strong increase in 

land use was observed; and steadily-used areas (15.8% of grid-cells), where initial land use was 

higher than in the rest of trajectories and increased at a relatively constant rate with a soft 

steepening around B.C.1000 and a very recent decline. Low-used areas are mainly located in 

regions of low primary productivity, such as deserts and boreal forests; but also in productive 

biomes that may have remained largely unused due to difficulties for humans to access them, like 

the tropical forests of Borneo and the Amazon (Fig. 1B). Recently-used areas largely correspond to 

territories of relatively modern human colonization and expansion, such as North America, 

Australia or southern and East Africa. Steadily-used areas include the main cradles of ancient 

human settlements, including parts of the Middle East, Europe, India, eastern China, the Sahel and 

Central America (Fig. 1B). While quality criteria supported three clusters, there were additional 

configurations that had partial support. These suggested further division of recently and steadily-

used areas into more clusters with low-used areas always remaining as a single group (Fig. S1.2).  
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All models showed overall good values of percentage of explained deviance (77-96%) and 

most of the initial spatial autocorrelation was accounted for by including the spatial autocovariate, 

although it did not control it completely, which may be explained by the high spatial aggregation of 

the biodiversity metrics employed in this study (Tables 1-3 vs S3.1-S3.3). 

 Global models showed no relevance of the trajectory-cluster to explain differences in total 

mammalian richness, number or proportion of threatened mammals' distributions, being the least 

relevant variable in all BRT models (Tables 1-3). Globally, total mammal richness was, as 

expected, predominantly influenced by environmental factors, namely actual evapotranspiration, 

with the highest mammalian richness coinciding with intermediate values of AET (Table 1; Fig. 3). 

The number of threatened species was primarily affected by total richness, being positively related 

(Table 2; Fig. 2), while the proportion of threatened species was predominantly related to mean 

annual temperature. Higher proportions of threatened mammals were found where mean annual 

temperatures were extremely low or high, and the same trend applies in relation to AET, and at high 

elevations (Table 3; Fig. 3). 

Within-cluster trends were broadly similar, although in some cases past land-use indicators 

appeared as relevant. Both total mammalian richness and proportion of threatened species 

distribution were mainly explained by environmental indicators; with the exception of the relevance 

of past land use (c.A.D.1000) on total richness (Table 1) and pre-industrial rate of land-use change 

on proportion of threatened mammals within recently-used areas (Table 3). Slightly more indicators 

of past land use appeared as important to explain the distribution of total threatened mammals 

within all trajectory-clusters (Table 2). 

Within low-used areas, effects directions were the same as described for the global model 

and, additionally, more threatened mammals were found where pre-industrial land-use change was 

relatively faster (Fig. 4). In recently-used areas, mammal richness was greater where AET and 

temperatures were higher, at intermediate elevations, and in areas where land use was relatively 

high c.A.D. 1000; more threatened mammals tended to concentrate where total richness and land 

use c.B.C.6000 were larger; as for the proportion of threatened mammals, this tended to be higher at 
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higher elevations, extremely low or high mean annual temperatures and AET values, and where 

changes in land use were more rapid during the pre-industrial period (Figs.3 and 4). Steadily used 

areas showed higher total richness at relatively high values of AET, temperature and altitude. More 

threatened mammals predominantly occurred where total mammalian richness, temperature and 

precipitation were higher, and where pre-industrial land-use changes were either slow (or even 

negative) or relatively fast. Finally, the highest proportions of threatened mammals tended to co-

occur with relatively high temperatures, precipitations and elevations (Figs.3 and 4).  

 

Discussion 

Our results show that land-use history across the world can be broadly summarized into three 

trajectory-clusters: low-, recently- and steadily-used areas. Although there are not net differences in 

the total or threatened (absolute or proportional to the total) number of terrestrial mammals among 

clusters, there are disparities in the influence of different predictors in explaining mammal diversity 

metrics within each cluster, and in the shape of the relationship between predictors and responses.  

As shown in previous research, we found environmental variables are generally the best 

predictors of global differences in the distribution of mammal richness and proportion of threatened 

mammals, and absolute numbers of threatened mammals are generally correlated with total 

richness. However, when disaggregating by trajectory-cluster, we detected descriptors of past land-

use change as relevant. This signal of the past is most noticeable for recently-used areas and when 

assessing differences in total numbers of threatened mammals. Current land use or descriptors of 

remarkable past land-use changes were not identified as relevant in any model.  

 

Low-used areas 

According to our results, more than 50% of the global land area analyzed (excluding Antarctica and 

most of Greenland) have followed a low-used trajectory. This high share of the global surface may 

explain why general trends in the effects of environmental and land-use predictors within these 

areas resemble the global trends. These areas broadly coincide with last-of-the-wild regions, 
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traditionally seen as opportunities to preserve biodiversity given the relatively low human influence 

to which they are exposed (Sanderson et al. 2002). Lack of historical human pressure may be 

explained by two different reasons: low primary productivity associated to biomes in the northern 

hemisphere, such as the boreal forests, the Tundra, and deserts worldwide; and relative remoteness, 

limiting accessibility in some tropical forests, e.g. Amazon or Borneo (Fig. 1). 

Total mammal richness and proportion of threatened mammals follow the classical 

latitudinal gradients reflecting variation in environmental conditions, with the proportion of 

threatened mammals being also high at high elevations, likely corresponding to the Andes 

Mountains and the Tibetan plateau, which present high levels of endemism but are not particularly 

diverse (Miehe et al. 2014; Figs. 3 & S4.1-4). Thus, a priori, within these areas, tropical regions 

such as the Congo Basin or areas of South East Asia –rich in mammals, with many of them under 

threat and relatively unmodified, as shown here– might be candidates to preserve some of the most 

threatened fauna of the world if no further changes occur. However, future predictions are not very 

optimistic for some of these regions, which are identified as at high risk of severe biodiversity loss 

under different scenarios of agricultural development (Kehoe et al. 2017).  

More interesting for our aim is the high relative importance of pre-industrial rate of land-use 

change to explain the distribution of total numbers of threatened mammals. The fact that more 

threatened species tend to occur in areas more rapidly transformed during the period c.A.D. 0-1750 

suggests the existence of a land-use legacy on these parts of the Earth, where mammals remain 

negatively influenced by past human impacts and local extinctions have not yet occurred given the 

low magnitude of land-use changes (Bürgi et al. 2017).  

   

Recently-used areas 

Around 32% of global land is classified as a recently-used trajectory, which coincide with areas 

humanized after the great colonization events of the 15th century onwards. Many of these regions 

are located within highly developed countries, such as the United States or Australia (Fig. 1). 

Today, these areas do not present particularly high species richness or accumulations of threatened 
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mammals (Table S2.1), thus they are not generally considered a global priority (Brooks et al. 2006). 

However, some of the regions included in this category, such as southern South America, have been 

previously labelled as crisis ecoregions, where habitat conversion is occurring much faster than 

protection (Hoekstra et al. 2005).  

 Differently from low-used areas, environmental conditions correlated with mammal 

diversity metrics do not present such a clear geographic pattern and may reflect local conditions 

(Figs. S4.7-S4.9). As for the land-use-history variables of interest, total mammalian richness is 

lower where the proportion of land use c.A.D.1000 had been relatively low (Fig. 4), opposite to 

what we expected under a time-lag effect (lower species richness predicted for areas heavily 

modified in the past). Therefore, there is not a lagged effect of past land-use changes on current 

total richness, which remains relatively high within these areas (Table S2.1). On the other hand, the 

direction of the relationships between land use c.B.C.6000 and numbers of threatened mammals 

(more threatened species where areas were more converted in the past), and pre-industrial rate of 

change and proportion of threatened mammals (Fig. 4) seems to agree with the initial predictions. 

Overall, there is evidence of the existence of an extinction debt in threatened species but not for 

total richness. Considering that these areas were largely unmodified until the second half of the 18th 

century, it is possible that we would see changes in total richness as biodiversity inventories are 

updated in the future at the global scale.  

 

Steadily-used areas 

Less than 16% of global land belongs to this trajectory-cluster, which is characterized by a 

relatively high and long-lasting human land use covering different tropical and temperate regions. 

In these areas, steep changes in use were rare, but their average level of human appropriation of 

land by A.D.0 was already higher than levels observed today in low-used areas (Table S2.1).  

 In this trajectory-cluster trends in distribution of mammal diversity according to the three 

tested metrics show a latitudinal gradient, related to climatic factors (Figs. 3 & S4.14-16). In 

addition, total richness and proportion of threatened mammals tend to be higher at higher elevations 
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(Fig. 3), likely consequence of the higher human impact that eroded certain species from flatter 

areas –more favorable for human use– in the past (Laliberte and Ripple 2004). Furthermore, areas 

with more threatened mammals are also characterized by rapid, very low, or even negative pre-

industrial changes (i.e. where human land use decreased; Fig.4). Here, we are likely observing two 

different processes; on the one hand, areas like Central and South America are naturally rich in 

mammal species, which make them more likely to harbor more threatened species even if they did 

not have a human-activity explosion in the pre-industrial times. On the other hand, in areas like 

Eastern Europe and African regions from Guinea to Chad, changes were pronounced and our 

prediction of species not having had time to recover from past human pressures may hold (Fig. 

S4.18). Nevertheless, it is important to note that, within these areas, environmental factors have the 

greatest relevance in explaining diversity, therefore, time-lagged effects must be cautiously 

interpreted (Table 2). 

 

Conclusions 

To our knowledge, the use of temporal trajectory-clusters' delineation has never been applied in 

biogeographical or ecological studies. We show the power of this method to synthesize complex 

information, in this case reflecting human land-use history at a global scale. Its application at finer 

scales might allow disentangling diversity patterns at local or regional scales, and exploring which 

specific prehistoric and historic events may be associated with those patterns.  

 From all the tested predictors, environmental factors were identified as the main drivers of 

total and threatened mammal richness distribution across the world. The importance of 

environmental predictors offers cautious good news in the current context of global change. Natural 

processes still appear to best explain current mammalian biodiversity distribution patterns. 

However, we should not overlook the fact that these natural processes also drive specific land uses, 

such as agriculture, which may not be fully captured with our general ‘present-land-use’ metric and 

that likely are also shaping contemporary mammals’ distribution (Licker et al. 2010). Interestingly, 

the second group of predictors in terms of importance was past human land use. In particular, the 
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rate of change during the period c.A.D.0-1750 repeatedly appears as relevant in tested models, 

highlighting the importance of this time-span. Understanding land-use drivers before 

industrialization may give us clues to explain current global biodiversity patterns (Redman 1999). 

The fact that past land-use metrics are more relevant in explaining total and especially threatened 

mammalian richness distributions than present land use also has implications for future studies 

given the widespread practice of including present land use, but not past use, as a predictor of 

numbers of threatened species (Lenzen et al. 2009, Koh and Ghazoul 2010, Brum et al. 2013). On 

the other hand, what we call current mammalian biodiversity patterns may be an optimistic picture 

of what actually remains, since rapid changes may not be captured by global biodiversity databases 

and, although our resolution of 1° is recommended at the global scale, IUCN range maps are known 

to overestimate species geographic ranges (Hurlbert and Jetz 2007). Furthermore, we represented 

land use with data from c.A.D.2000 to use the same source, but land-use changes have likely 

occurred in the last two decades. The difficulty of obtaining global updated and matching land-use 

and biodiversity data may add some noise to our analyses, and could partially explain why current 

land use has not relevance in explaining current patterns of mammal distribution.   

Extinction debts have been described at local or landscape scales, but less frequently at 

wider geographical scales (Cowlishaw 1999, Helm et al. 2006, Bommarco et al. 2014). Here, we 

present evidence of global extinction debt, consistent with previous macroecological studies 

showing the greater relevance of past vs present land-use metrics, using countries as units of study 

and focusing on temperate regions, or using much simpler statistical methods for all vertebrate 

groups (Dullinger et al. 2013, Chen and Peng 2017). Our results point to the existence of a 

geographically widespread land-use legacy –more evident in recently-used areas– and warn us 

about possible extinction debts (Brooks et al. 1999). Extinction debts at regional scales have been 

found to reflect more recent habitat modifications and particularly affect sensitive species, agreeing 

with our global results (Uezu and Metzger 2016). Worryingly, if past changes explain today’s 

patterns, it is possible that biodiversity responses to today’s changes are not detectable yet, even if 

there are impacts (Jackson and Sax 2009).   
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We complement previous findings by including different biodiversity metrics, which 

improves the interpretation of land-use legacies; and providing a trajectory-cluster zonification, 

which not only summarizes global trends but also reveals three distinct land-use areas with specific 

conservation needs. Low-used areas present a good opportunity to proactively preserve mammal 

species before future impacts and before signs of emerging extinction-debt are confirmed. Recently-

used areas, which have been rarely prioritized for conservation up to now, are likely most affected 

by extinction debt which may be best addressed via restoration initiatives. In steadily-used areas 

conservation actions should focus in tropical higher-diversity areas and those that were rapidly-

modified-in-the-past areas where some susceptible species may remain. On the other hand, areas 

modified at a more constant pace throughout history (e.g. Europe or India) may have more resilient 

species, as these areas are more likely to have suffered more severe extinction filters in the past 

(Newbold et al. 2018, Polaina et al. 2018). 

Overall, our study shows current biodiversity patterns reflect a signal of environmental 

drivers but also of past land use. Separating the land surface based on land-use history also warns us 

about overlooked processes in more anthropized regions, which encompass a relatively small area 

(recently- and steadily-used areas) affected by different events that may not be detected at the 

global scale. Human impacts have not completely altered natural biogeographical patterns, but we 

note with concern that in most areas of the world the peak of human land-use has occurred only 

recently while the transformation of primary areas continues. Deeper impacts on species 

biodiversity may have already occurred, but they may only be apparent to the conservation 

biologists of the future.  
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Figures 

 

 

Figure 1. Overall trajectories (A) and spatial location (B) of trajectory-clusters from B.C.6000 to A.D.2000. 

Three was the optimal number of clusters according to the different quality criteria implemented in kml 

package (Genolini et al. 2015). In panel A, the X-axis represents the approximate year for which land use 

estimations are available in the KK10-model database, and Y-axis the proportion of land use (grid-cell 

proportion). Each grey line in panel A corresponds to a grid-cell on panel B. Legend (applicable for both 

panels) shows the proportion of grid cells assigned to each trajectory-cluster. Green color represents low-

used areas; purple recently-used areas, and yellow steadily-used areas. Grey areas on the map show areas 

without historical land-use data. Map projection: Berhmann cylindrical equal area. 
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Figure 2. Partial dependency plot showing the relationship between total and threatened richness according 

to the global (dashed black line), low-used (green), recently-used (purple) and steadily-used (yellow) models. 

Point clouds show the actual response prediction when the rest of the explanatory variables are fixed to the 

mean; lines are LOESS smoothers to facilitate visualization.   
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Figure 3. Partial dependency plots of the relationships between relevant environmental predictors of total 

mammalian richness (first row), total threatened richness (second row) and proportion of threatened 

mammals (third row). Dashed black lines symbolize results from the global model, continuous lines 

represent trajectory-cluster models’ outcomes: low-used (green), recently-used (purple) and steadily-used 

(yellow). Point clouds show the actual response prediction when the rest of the explanatory variables are 

fixed to the mean; lines are LOESS smoothers to facilitate visualization.   

 

 
Figure 4. Partial dependency plots of the relationships between relevant land-use predictors of total 

mammalian richness (first row), total threatened richness (second row) and proportion of threatened 

mammals (third row). Dashed black lines symbolize results from the global model, continuous lines 

represent trajectory-cluster models’ outcomes: low-used (green), recently-used (purple) and steadily-used 

(yellow). Point clouds show the actual response prediction when the rest of the explanatory variables are 

fixed to the mean; lines are LOESS smoothers to facilitate visualization.    
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Tables 

Table 1. Results of the boosted regression trees when total mammals richness was the response. Bold 
numbers denote relevant variables (% relevance greater than expected by chance, i.e. threshold = 100% 
divided by the number of variables included in each model). Significantly correlated variables (⍴≥ |0.7|) that 
did not enter any model are not included in this table. Dashes represent variables excluded only from some 
models due to high correlation or because they were not pertinent (e.g. including trajectory-cluster as a 
predictor within specific cluster models). 

  Global Low-used Recently-used Steadily-used 
No. trees 5150 4700 5000 4700 
Residuals’ Moran’s I 0.16*** 0.09*** 0.11*** 0.03** 
% Deviance explained 96 96 91 89 
Variables (relevance, %)         
RAC 22.1 11.51 21.34 23.17 
Trajectory-cluster 0.01 - - - 
Environmental         
AET 57.66 71.38 43.56 32.39 
Temperature 5.92 4.13 10.86 8.69 
Precipitation - - - 7.61 
Elevation 3.2 1.55 8.67 14.99 
Land use         
LUBC6000 1.04 0.67 1.26 - 
LUAD1000 - - 9.02 2.01 
LUAD1750 - - - 2.91 
LUAD1900 - - 0.4 - 
LUAD2000 0.82 0.43 0.53 0.63 
Land-use change         
Prehistoric1 - 1.18 - - 
Pre-industrialization2 6.25 5.68 3.55 4.96 
Post-industrialization3 0.13 0.27 - - 
Remarkable land-use changes         
Time break     

LU+20 2.74 0.74 0.45 - 
LU+50 - 2.02 - 1.52 

Land use     

LU+20 - - 0.34 1.00 
Duration     

LUmax 0.14 0.43 0.03 0.12 
1BC6000-AD0; 2AD0-1750; 3AD1750-AD1950 
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Table 2.  Results of the boosted regression trees when total threatened mammals richness was the response. 
Bold numbers denote relevant variables (% relevance greater than expected by chance, i.e. threshold = 100% 
divided by the number of variables included in each model). Significantly correlated variables (⍴≥ |0.7|) that 
did not enter any model are not included in this table. Dashes represent variables excluded only from some 
models due to high correlation or because they were not pertinent (e.g. including trajectory-cluster as a 
predictor within specific cluster models). 

  Global Low-used Recently-used Steadily-used 
No. trees 10550 8600 10400 6700 
Residuals’ Moran’s I 0.28*** 0.23*** 0.23*** 0.19*** 
% Deviance explained 89 90 81 85 
Variables (relevance, %)         
RAC 27.94 14.99 20.34 8.3 
Trajectory-cluster 0.06 - - - 
Total richness 47.15 51.31 38.39 24.45 
Environmental         
AET - - 6.02 5.61 
Temperature 3.28 1.66 3.68 9.02 
Precipitation - - - 22.12 
Elevation 2.31 1.75 5.94 4.11 
Land use         
LUBC6000 3.6 1.4 9.38 - 
LUAD1000 - - 2.27 1.63 
LUAD1750 - - - 0.94 
LUAD1900 - - 2.17 - 
LUAD2000 1.82 2.16 2.91 3.35 
Land-use change         
Prehistoric1 - 5.3 - - 
Pre-industrialization2 5.61 10.39 5.47 12.01 
Post-industrialization3 3.13 1.51 - - 
Remarkable land-use changes         
Time break     

LU+20 4.93 3.24 2.01 - 
LU+50 - 6.26 - 7.29 

Land use     

LU+20 - - 0.82 0.92 
Duration     

LUmax 0.17 0.04 0.61 0.24 
1BC6000-AD0; 2AD0-1750; 3AD1750-AD1950 
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Table 3. Results of the boosted regression trees when proportion of threatened mammals over total mammal 
richness was the response. Bold numbers denote relevant variables (% relevance greater than expected by 
chance, i.e. threshold = 100% divided by the number of variables included in each model). Significantly 
correlated variables (⍴≥ |0.7|) that did not enter any model are not included in this table. Dashes represent 
variables excluded only from some models due to high correlation or because they were not pertinent (e.g. 
including trajectory-cluster as a predictor within specific cluster models). 

  Global Low-used Recently-used Steadily-used 
No. trees 9400 5000 6800 3800 
Residuals’ Moran’s I 0.03*** 0.11*** -0.02 -0.03 
% Deviance explained 84 84 77 82 
Variables (relevance, %)         
RAC 45.44 29.19 33.79 18.14 
Trajectory-cluster 0.07 - - - 
Environmental         
AET 14.54 23.01 10.93 6.04 
Temperature 16.3 17.52 13.46 30.53 
Precipitation - - - 11.15 
Elevation 9.84 9.08 11.91 17.11 
Land use         
LUBC6000 2.93 3.85 5.73 - 
LUAD1000 - - 6.19 2.13 
LUAD1750 - - - 0.82 
LUAD1900 - - 1.84 - 
LUAD2000 1.04 1.02 2.87 1.1 
Land-use change         
Prehistoric1 - 4.6 - - 
Pre-industrialization2  3.8 4.38 10.64 7.71 
Post-industrialization3 3.03 1.7 - - 
Remarkable land-use changes         
Time break     

LU+20 2.64 1.26 1.15 - 
LU+50 - 3.8 - 4.14 

Land use     

LU+20 - - 1.28 0.94 
Duration     

LUmax 0.36 0.57 0.2 0.18 
1BC6000-AD0; 2AD0-1750; 3AD1750-AD1950 
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SUPPLEMENTARY MATERIAL 

APPENDIX S1. Additional results of the trajectory-cluster analyses 

 
Figure S1.1. Optimal number of trajectory clusters according to different criteria. X-axis represent the 
number of proposed clusters, Y-axis shows the standardized [0-1] test values (the higher, the better). 
Different numbers and colors represent different quality tests, 1(black): Calinski-Harabatz (Calinski & 
Harabasz 1972); 2 (red): Calinski-Harabatz2, Kryszczuk variant (Kryszczuk & Hurley 2010); 3 (green): 
Calinski-Harabatz3, Genolini variant; 4 (blue): Ray-Turi (Ray & Turi 1999); 5 (cyan): Davies-Bouldin 
(Davies & Bouldin 1979). 
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Figure S1.2. Overall trajectories and spatial location of land-use trajectories from B.C.6000 to A.D.2000, 
considering two (A), four (B), five (C) and six (D) cluster divisions. In all plots, X axis represent the 
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approximate year for which land use estimations are available in the KK10-model database, and Y axis the 
proportion of land use (grid-cell proportion). Legend shows the percentage of grid cells assigned to each 
trajectory-cluster. Map projection: Berhmann cylindrical equal area. 
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APPENDIX S2. Data description: global and by trajectory-cluster 

 
Table S2.1. Global and per-trajectory summary of land-use, environmental and mammalian diversity 
indicators calculated for a 110 x 100km grid (~1º  at the Equator). Past land-use indicators are based on the 
KK10 model (Kaplan et al. 2011; spatial data available at <http://ecotope.org/anthromes/data/>). Land use 
refers to the mean proportion of grid cell classified as intended for human use at each time break (original 
temporal resolution); land -use change was calculated as the difference of proportion of used grid cell 
between temporal milestones, standardized per 1000-years time; remarkable land uses considered are: 20% 
grid cell intended for human use (LU+20), defined as the first significant use by Ellis et al. (2013); 50% grid 
cell intended for human use (LU+50), taken as an arbitrarily high value; and maximum value of use per grid 
cell for the whole time series (LUmax). For each threshold, we show: time break (when the threshold was 
exceeded), land use (how much land was used by humans when the threshold was exceeded) and duration 
(how long this value was maintained). Environmental indicators are recalculated from the original data (see 
Table S2.2) as the mean per grid-cell. Total and threatened mammalian richness are based on IUCN Red List 
Data (IUCN 2014)⁠. 

 
Global 
(N=9867) 

Low-used 
(N=5119) 

Recently-used 
(N=3189) 

Steadily-used 
(N=1559) 

Environmental [median, min-max] 

Temperature 18.14 (-24.90-30.92) 18.78 (-24.90-30.92) 18.71 (-7.54-30.32) 16.12 (-3.15-29.14) 
AET 30.49 (0-175.71) 22.32 (0-175.38) 36.02 (0-175.71) 39.69 (6.41-119.63) 
Precipitation 44.61 (0-447.26) 37.81 (0-447.26) 42.30 (1.35-303.66) 66.22 (10.43-351.06) 
Elevation 430.63 (-39.91-

5414.87) 
410.86 (-39.91-
5414.87) 

510.42 (-27.29-
5173.28) 

397.43 (2.09-3677.44) 

Land use [median, min-max (grid-cell proportion)] 

BC6000 0.004 (0-0.754) 0.001 (0-0.181) 0.004 (0-0.169) 0.024 (0.002-0.754) 
BC3000 0.008 (0-0.848) 0.004 (0-0.332) 0.009 (0-0.230) 0.138 (0.003-0.848) 
BC1000 0.012 (0-0.871) 0.005 (0-0337) 0.012 (0-0.278) 0.204 (0.003-0.871) 
AD0 0.019 (0-0.928) 0.009 (0-0.380) 0.021 (0-0.323) 0.347 (0.016-0.928) 
AD1000 0.034 (0-0.930) 0.013 (0-0.392) 0.046 (0-0.380) 0.435 (0.102-0.930) 
AD1500 0.055 (0-0.931) 0.018 (0-0.442) 0.082 (0-0.609) 0.494 (0.166-0.931) 
AD1750 0.034 (0-0.936) 0.011 (0-0.520) 0.057 (0-0.559) 0.547 (0.108-0.936) 
AD1900 0.197 (0-0.928) 0.030 (0-0.491) 0.314 (0.141-0.783) 0.560 (0.203-0.928) 
AD1950 0.247 (0-0.946) 0.023 (0-0.332) 0.490 (0.271-0.853) 0.556 (0.144-0.946) 
AD2000 0.250 (0-0.999) 0.005 (0-0.404) 0.652 (0.166-0.999) 0.538 (0.003-0.979) 

Land-use change [median, min-max (grid-cell proportion/1000 yrs)] 

Prehistoric1 0.002 (0-0.143) 0.001 (0-0.062) 0.003 (0-0.052) 0.050 (0.002-0.143) 
Pre-industrialization2 0.003 (-0.160-0.476) 0.001 (-0.0944-0.287) 0.008 (-0.103-0.316) 0.081 (-0.160-0.476) 
Industrialization3 0.192 (-2.781-4.095) -0.003 (-1.442-1.479) 1.908 (-0.748-4.095) -0.056 (-2.781-2.985) 
Post-industrializtion4 0.073 (-5.564-6.544) -0.033 (-4.222-2.669) 3.277 (-3.454-6.544) -0.389 (-5.564-5.851) 

Remarkable land-use changes 

Time break [highest number of grid-cells transformed (yr)] 
LU+20 AD1900 AD1950 AD1900 BC3000 
LU+50 AD1950 AD1950 AD1950 AD0 
LUmax AD2000 AD2000 AD2000 AD1750 

Land use [median, min-max (grid-cell proportion)] 
LU+20 0.220 (0-0.871) 0 (0-0.477) 0.283 (0.2-0.783) 0.286 (0.200-0.871) 
LU+50 0.253 (0-0.798) 0.048 (0-0.477) 0.436 (0.021-0.783) 0.357 (0.018-0.798) 
LUmax 0.346 (0-0.999) 0.054 (0-0.520) 0.652 (0.278-0.999) 0.642 (0.294-0.979) 
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Global 
(N=9867) 

Low-used 
(N=5119) 

Recently-used 
(N=3189) 

Steadily-used 
(N=1559) 

Duration [median, min-max (yrs)] 
LU+20 250 (0-8000) 50 (0-5000) 100 (0-5000) 2750 (400-8000) 
LU+50 250 (0-8000) 900 (0-8000) 50 (0-5000) 2000 (50-8000) 
LUmax 0 (0-8000) 0 (0-8000) 0 (0-250) 100 (0-2000) 

Mammalian diversity [median, min-max] 

Species richness 55 (5-251) 41 (5-251) 63 (13-243) 68 (20-250) 
Threatened spp 
richness 

2 (0-40) 1 (0-40) 2 (0-33) 3 (0-32) 

 1BC6000-AD0; 2AD0-1750; 3AD1750-AD1950; 4AD1950-2000. 

 

Table S2.2. Data sources of environmental indicators included in the statistical models. All variables were 
resampled to our grid size (~110 x 110km ; 1º at the equator). 
Environmental indicators 

Units, description Year 
Original resolution 

Reference Long name Short name Spatial Temporal 
Mean annual actual 
evapotranspiration AET mm, accumulated 2000 1 degree month 

Zhang et al. (2010, 
2015) 

Mean annual 
temperature Temperature ºC, average 1970-2000 10 arc minutes month 

Fick & Hijmans 
(2017) 

Mean annual 
precipitation Precipitation mm, average 1970-2000 10 arc minutes month 

Fick & Hijmans 
(2017) 

Global digital 
elevation model Elevation m 1996 30 arc seconds - LP DAAC (2004) 
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Figure S2.1. Spearman's rank correlation coefficient (ρ) calculated for all variables a priori considered for 
the global model. Blue colours show high positive correlation values; red colours show low positive 
correlation values. 
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Figure S2.2. Spearman's rank correlation coefficient (ρ) calculated for all variables a priori considered for 
the low-used-areas model. Blue colours show high positive correlation values; red colours show low positive 
correlation values. 
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Figure S2.3. Spearman's rank correlation coefficient (ρ) calculated for all variables a priori considered for 
the recently-used-areas model. Blue colours show high positive correlation values; red colours show low 
positive correlation values. 
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Figure S2.4. Spearman's rank correlation coefficient (ρ) calculated for all variables a priori considered for 
the steadily-used-areas model. Blue colours show high positive correlation values; red colours show low 
positive correlation values. 
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APPENDIX S3. Additional results of the BRT Models 1 

 2 

Table S3.1. Results of the boosted regression trees when total mammals richness was the 3 
response, excluding residuals autocovariate (RAC). Bold numbers denote relevant variables (% 4 
relevance greater than expected by chance, i.e. threshold = 100% divided by the number of 5 
variables included in each model). Significantly correlated variables (⍴≥ |0.7|) that did not enter 6 
any model are not included in this table. Dashes represent variables excluded only from some 7 
models due to high correlation or because they were not pertinent (e.g. including trajectory-8 
cluster as a predictor within specific cluster models). 9 
 10 

  Global Low-used Recently-used Steadily-used 
No. trees 7300 5650 9400 5700 
Residuals’ Moran’s I 0.62*** 0.51*** 0.53*** 0.42*** 
% Deviance explained 89 93 83 81 
Variables (relevance, %)         
Trajectory-cluster 0.04 - - - 
Environmental         
AET 62.63 73.75 45.36 36.25 
Temperature 10.54 5.63 14.47 10.61 
Precipitation - -  10.91 
Elevation 6.75 3.02 11.50 18.06 
Land use         
LUBC6000 2.69 1.77 3.79 - 
LUAD1000 - - 10.36 3.71 
LUAD1750 - - - 4.08 
LUAD1900 - - 1.55 - 
LUAD2000 1.87 0.85 1.86 1.16 
Land-use change         
Prehistoric1 - 1.91 - - 
Pre-industrialization2 8.93 7.87 8.24 9.98 
Post-industrialization3 0.90 0.99 - - 
Remarkable land-use changes         
Time break     

LU+20 5.19 1.12 1.36 - 
LU+50 - 2.54 - 2.56 

Land use     

LU+20 - - 1.42 2.42 
Duration     

LUmax 0.46 0.55 0.09 0.28 
1BC6000-AD0; 2AD0-1750;  3AD1750-AD1950    

 11 

Table S3.2.  Results of the boosted regression trees when total threatened mammals richness 12 
was the response, excluding residuals autocovariate (RAC). Bold numbers denote relevant 13 
variables (% relevance greater than expected by chance, i.e. threshold = 100% divided by the 14 
number of variables included in each model). Significantly correlated variables (⍴≥ |0.7|) that 15 
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did not enter any model are not included in this table. Dashes represent variables excluded only 16 
from some models due to high correlation or because they were not pertinent (e.g. including 17 
trajectory-cluster as a predictor within specific cluster models). 18 
 19 

  Global Low-used Recently-used Steadily-used 
No. trees 14000 10950 13550 7500 
Residuals’ Moran’s I 0.63*** 0.61*** 0.53*** 0.53*** 
% Deviance explained 78 84 76 81 
Variables (relevance, %)         
Trajectory-cluster 0.23 - - - 
Total richness 51.63 52.50 40.68 25.07 
Environmental         
AET - - 7.75 5.38 
Temperature 5.71 3.33 6.03 10.72 
Precipitation - - - 23.47 
Elevation 4.72 2.94 8.61 4.41 
Land use         
LUBC6000 6.37 2.14 11.26 - 
LUAD1000 - - 3.96 1.89 
LUAD1750 - - - 2.06 
LUAD1900 - - 3.46 - 
LUAD2000 4.86 2.69 4.29 3.57 
Land-use change     

Prehistoric1 - 7.21 - - 
Pre-industrialization2 10.19 15.94 8.80 13.76 
Post-industrialization3 6.83 2.24 - - 

Remarkable land-use changes         

Time break     

LU+20 9.11 2.89 2.74  

LU+50 - 7.96  7.68 
Land use     

LU+20 - - 1.83 1.51 
Duration     

LUmax 0.36 0.16 0.58 0.48 
1BC6000-AD0; 2AD0-1750;  3AD1750-AD1950   

 20 
 21 
 22 
Table S3.3. Results of the boosted regression trees when proportion of threatened mammals 23 
over total mammal richness was the response, excluding residuals autocovariate (RAC). Bold 24 
numbers denote relevant variables (% relevance greater than expected by chance, i.e. threshold 25 
= 100% divided by the number of variables included in each model). Significantly correlated 26 
variables (⍴≥ |0.7|) that did not enter any model are not included in this table. Dashes represent 27 
variables excluded only from some models due to high correlation or because they were not 28 
pertinent (e.g. including trajectory-cluster as a predictor within specific cluster models). 29 
 30 
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  Global Low-used Recently-used Steadily-used 
No. trees 15000 14100 12300 6250 
Residuals’ Moran’s I 0.50*** 0.42*** 0.34*** 0.33*** 
% Deviance explained 68 74 65 75 
Variables (relevance, %)         
Trajectory-cluster 0.22 - - - 
Environmental         
AET 20.18 23.52 14.29 10.00 
Temperature 24.01 23.93 19.48 33.20 
Precipitation - - - 14.45 
Elevation 17.21 15.34 14.88 19.16 
Land use         
LUBC6000 8.14 6.42 8.67 - 
LUAD1000 - - 9.77 2.93 
LUAD1750 - - - 2.10 
LUAD1900 - - 5.35 - 
LUAD2000 3.49 1.91 6.22 2.28 
Land-use change         
Prehistoric1 - 7.83 - - 
Pre-industrialization2 10.91 8.77 14.61 8.94 
Post-industrialization3 7.33 3.80 - - 

Remarkable land-use changes         

Time break     

LU+20 7.37 2.01 2.97 - 
LU+50 - 5.37 - 4.60 

Land use     

LU+20 - - 3.44 1.85 
Duration     

LUmax 1.16 1.09 0.32 0.47 
1BC6000-AD0; 2AD0-1750;  3AD1750-AD1950   

 31 
 32 
 33 

  34 
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APPENDIX S4. Mapping of relevant variables for each trajectory-cluster model 35 
 36 
Low-used areas 37 
 38 

39 
Figure S4.1. Total mammal richness per 110km x 110km grid-cell in low-used areas. 40 
 41 
 42 

43 
Figure S4.2. Mean actual evapotranspiration per 110km x 110km grid-cell in low-used areas. 44 
 45 
 46 



 

45 
 

47 
Figure S4.3. Mean annual temperature per 110km x 110km grid-cell in low-used areas. 48 
 49 

50 
Figure S4.4. Mean elevation per 110km x 110km grid-cell in low-used areas. 51 
 52 
 53 
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54 
Figure S4.5. Mean pre-industrial rate of change per 110km x 110km grid-cell in low-used areas 55 
(from c.A.D.0 to c.A.D. 1750 56 
 57 
 58 
 59 
Recently-used areas 60 
 61 

 62 
Figure S4.6. Total richness per 110km x 110km grid-cell in recently-used areas. 63 
 64 
 65 
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66 
Figure S4.7. Mean actual evapotranspiration per 110km x 110km grid-cell in recently-used 67 
areas. 68 
 69 
 70 

71 
Figure S4.8. Mean annual temperature per 110km x 110km grid-cell in recently-used areas. 72 
 73 
 74 
 75 
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76 
Figure S4.9. Mean elevation per 110km x 110km grid-cell in recently-used areas. 77 
 78 
 79 

80 
Figure S4.10. Mean proportion of land intended for human use c. B.C.6000 (per 110 x 110 km 81 
grid-cell) in recently-used areas. 82 
 83 
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 84 
Fig S4.11. Mean proportion of land intended for human use c. A.D.1000 (per 110 x 110 km 85 
grid-cell) in recently-used areas. 86 
 87 
 88 
 89 
 90 
 91 

 92 
Figure S4.12. Mean pre-industrial rate of change per 110km x 110km grid-cell in recently-used 93 
areas (from c.A.D.0 to c.A.D. 1750). 94 
 95 
 96 
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Steadily-used areas 97 
 98 

 99 
Figure S4.13. Total richness per 110km x 110km grid-cell in steadily-used areas. 100 
 101 

 102 
Figure S4.14. Mean actual evapotranspiration per 110km x 110km grid-cell in steadily-used 103 
areas. 104 
 105 
 106 
 107 
 108 
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 109 
Figure S4.15. Mean annual temperature per 110km x 110km grid-cell in steadily-used areas. 110 
 111 
 112 
 113 

 114 
Figure S4.16. Mean annual precipitation per 110km x 110km grid-cell in steadily-used areas. 115 
 116 
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 117 
Figure S4.17. Mean elevation per 110km x 110km grid-cell in steadily-used areas. 118 
 119 
 120 
 121 
 122 

 123 
Figure S4.18. Mean pre-industrial rate of change per 110km x 110km grid-cell in steadily-used 124 
areas (from c.A.D.0 to c.A.D. 1750). 125 
 126 
 127 
 128 
 129 


