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Abstract

The use of Adenassociated vira([AAV) vectors for gene therapy has been most promising
because of their safety profile; however, current production methods limit desirable amounts
of AAV vectors. Significant efforts have been made to improve AAV production systems,
including the optimisaon of vector expression cassettes and the regulation of producer cell
factors. In this study, we endeavoured to alter the host cell gene expression using CRISPR/Cas9
technology to improve AAV production. We generated knockouts-Box/ protein (B)1 in
293T,and the putatively identified homague Spodoptera frugiperd&-Box protein (SfYB) in

Sf9 celb. We present the first example in which CRISPR/Cas9 genome editing can be utilised to
regulate cellintrinsic factors that may be implicated in AAV vectooduction; although, the
disruption of YB1 or SfYB did not generate enhanced AAV vector producer cell lines. YB1
knockout cells presented with heightened sensitivity to chloroquine and limited its use for AAV
vector production. The protective function oBY to chloroquinenduced cytotoxicity was
demonstrated, and analysis of YB1 mutants suggested that its cold shock domain was the
principle mediator of this resistance. We also identified YB1 associations witlsekétype 2

(AA\2) inverted terminal repeatlTR in vitro, and a rather distinct cotalisation between YB1

mutant ¢ encompassi 3 terridal dbmain (CTDand AAV2 intact particle and AAV2

capsidto the nucleolar compartment. Therefore, there may be associations between YB1 and
its CTD in AAR/ector production. We also present the advantages of using a repertoire of
assays to characterise CRISPR/@d#&@d cell lines. This included the advantage of
establishing clonal populations that were homozygous for their knockout mutation(s), and
utilising targetspecific antibodies for screening knockouts. Regardless, CRISPR/Cas9 has
become a mainstream technology allowing for specific and efficient genome editing, and is
revolutionising human gene therapy withe potential of giving rise to an entigenew class of

therapeutics.
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Chapter 1 Introduction

1.1.0 Gene Therapy

1.1.1  Definition of gene therapy

Gene therapy is defined as the directed and targeted deligésxogenous genetic materitd
correct anegaive phenotype or diseasélhe goal of gene therapy is turethe clinical status

of patients, whom suffer from certain heritable or acquired genetic diseases. In this way the
recipient of gene therapy is corrected of their genetic defettei by mediating the repair of

LI G A Sy G mformaidhyUsdvet@l, 2005; Wet al., 2015) or inserting thefunctioning
gene into the &rget tissugs) (Anderson, 1984)

1.1.2  Conception of gene therapy

The core principles behind gene therapy derived from initial studies that propagated within
the last century with work performed on bacteria. Frederick Griffith examined the then
unknown phenomenon of transforntian (Griffith, 1928)oy mixing live, norvirulent R form é
Type | pneumococcus with hestactivated virulent S strain. Subsequent infection of this
mixture in micedevelopedactive infection, pneumonjand death. Additionally, viable isolates

of Sform of Type Il pneumococcus veecultivated from infected mice hlis Griffith concluded

the R form had converted to the more virulent miesoganism. Studies that followedhortly
thereafter, showed that the key factothat permitted such transformatiorwas mediated by

the transferof deoxyribonucleic acid (DNfAveryet al., 1944)

Additional gene transfermechanisms were shortly discovered, and perhaps an important
mediator of horizontal transfer of genetic material was via bacteriophages, in a process

Rdzo 6 SR Wi Ndinged ddiz@debarg/ I®5Ihese particulates invade and inject their

genetic material into target baerial cells, which then facilitates their replication and
consequently induces cell lysis.r @ dormant infectionestablisheswith integration of

bateriphage genetic material into the target genomdpon particle assemblpacteriophages

are capable of@lj dzZA NA y 3 G KS &I NB RibseguenBisfattion facitatds yhd 2 NI |
exchange of genetic material between bacte(énder and Lederberg, 1952; Wilseh al,

1979) This process contributes to the rapid acquisition of antibiotic resistance in certain

bacteria (ColomerLluch et al, 2011) The process exemplifies the extent at which



bacteriophages are capable of functioning as transforming mediators.

Futher to this, work performed by Waclaw Szybalski demonstrated the potential for rescuing
genetic defects by the acquisition of functional exogenous I8Zybalska and Szybalski,
1962) Cells require the synthesis of nucleic acids for growth and surnvilied. synthesis is
programmed in the form ofdihydrofolate reductase (DHFR), andhem inhibited, an
alternative pathway is utilised in the form of hypoxanthigeanine phosphoribosyl
transferase (HGPRT). Taking advantage of$zigbalskgenerated HGPR&Nnd HGPRTlones

from the human bone marrow cell line, D98S. Inhibition of DHFR by aminopterin
(supplemerned as hypoxaritine, aminopterin and thymidine[HAT medium) promoted the
survival of HGPRTerivatives only because the alternative HGP#REHiated sythesis of
nucleic aciccompensate for the lack of DHFR activity. Subsequent isolation of genomic DNA
from the HGPRTcells and transformation of HGPREIlIs with said isolated DNA resulted in
the canplete rescueof HGPRTcells vhen grown in HAT medium. Furthemodaughter cells

of transformed cells also showed a similar phenotype to the HG&&vative, indicating
stable transfer of the rescued geri8zybalska and Szybalski, 196js represenéd one of

the earliest indicators that the physical transfer of genetic information could be a means to

produce a desired phenotype.

The phenomena of transduction, genetic transtend the concept of rescuing genetic defects
fuelled research innovation ithh extension to eukaryotic viruses. One driver of this potential
application was the observation that pseudovirions were an tmthl product of
polyomavirugWinocour, 1968br simian virus @ (SV40[Trilling and Axelrod, 197@)fections

in vitro. Pseudovirions refer to progeny particles that harbour packaged fragments of host
DNA irstead d virus-specific genome. Observations made @gtermanet al. (1970)showed

that pseudovirions were capable of intracellular uncoating ,atitrefore, exogenously
acquired DNA could be shuttled safely into infected cells. Althpoglndication of the fate of

the shuttled host DNA fragments could be deduced frioitial studies the aforementioned

work providedthe initial premise that genetic information could be delivered safalyiva It
quickly became apparent that the mammalian SV40 virus could be manipulated to function as
a transfer vector of genetic infmation into eukaryotic cells, and propagate recombinant
vectorsfrom cultured mammalian cell&anemet al,, 1976; Goff and Berg, 1976; Nussbagim

al., 1976) Replacing SV40 genome sequences, namely the sequences encoding the SV40 large

T antigenandor sequences encadg the structural proteins Vp:B, with a desired transgene



permitted in vitro production of replicatiordefective recombinant SV40 vectdrsCO cells
(Strayer, 1996)Vector production was permissive because C€Q@®llsprovided the large T
antigenin trans (Straye, 1996) The therapeutic potential of recombinant SV40 vectors has
been demonstrated in animal models of select human dise@Sekisteinet al., 2002; Duaret

al., 2004; Vereet al, 2007) However, a considerable limitation of i@mbinant SV40 vector
technologyand its use inclinical studiesncluded the accumulation of replicatienbompetent
SV40 vectrs during production processd¥eraet al, 2004) This wa likely as a result of
recombination between recombinant SV40 DNA (for vector production) in7C€s that
were orginally immortalised by the introduction of origin of replicatiorutant SV40 viral DNA
(Gluzman, 1981)

1.1.3 Gene therapystrategies

It became essential to identify more appropriate viral vectors for the delivery of exogenous
geneticmaterial into target cellsespeciallythosethat could stably transduce target cells for
therapeutic purposes. Additional studies revealed the capacity for gene transfer by means of
alternative viral vectorsincluding lentivirus, Adenovirugnd Adeno-associated viruses (AAYs
(Volpers and Kochanek, 2004; Kotterman and Schaffer, 20h&refore, the principles of
gene therapy involveintroducing nucleic acid to be administered directly to humans with the
aim of genetic engineering of target cellBhis would allowsubstituion or replacenent of
defective gene sequencgandpotentially provide longerm curative benefit to those patients

who suffer from acquired or genetic disease

The predicted collective of monogenic diseaséfect a great number of people worldwidé&

list of approximately10,000 monogenic diseases is alable in the Online Mendelian
Inheritance in man (OMIM) databaseh€eT prospect of alleviating these conditions by a single
administration, curative strategy is highly attractive. And with enhanced -gereration
sequencing technologies, the precise gerw genetic defects responsible for a great many
genetic disorders (approximately 50%) have bkmtified in good confidencéBoycottet al,,
2013) With enhanced molecular understandindg genetic diseases, the targeting efficiency of
these identified gene defects can be improved substantially with greater oveliaital

Success.

To tackle thisviral vectorbased gene therapy platforms have been actively developed. Their

applicationshave been widelyxtended fromthe original concept of reintroducing the correct



gene to target cells or tissue. Such includes direct correction of the defectives gsirey
genome editing technologies (this will liiefly discussed irsection 1.64). Howerer, t is
worth mentioning that alternatives to viral vector based gene therapies are actively being
researched andhave evenundergone clinical trialsThe intention is to expand gene therapy
platforms to overcome limitations of viral vector and/or rAAV vector strategies for gene
therapy. Such includesion-viral delivery methods that involvehe gene transfer of
therapeutic cDNAencoding gengplasmid or RNA Nonviral vector gene transfer methods
involving electroporationNeumannet al, 1982)of desirednucleic acid$rave shownsome
clinical translatiompotential, eitherin vivoand/or ex vivo(Brownet al, 2009) However, given

the nature of the gene transfer technique, the use of electric fields and impulses can incur
localised cell death and damage, which is more apparent that physical gene transfer methods

such as viral vector strategi@sefesvreet al,, 2002; Kubotat al., 2005)

Additional nonviral vectorstrategiescan also involvéntroducingnucleic acideomplexed to
liposomes (for example pGM169/GL67Apolymers,or gold nanoparticledor gene therapy
applications(Alton et al,, 2015; Leeet al,, 2017b; Surt al,, 2017) The use of a viral vector to
shuttle the desired nucleic acid is omittddany advantages are proposéaokr using norviral

gene delivery methods over viral delivery methods. This incltliegcreased safety frorthe
naked DNAandomly integrating into the host genome and potentially encouraging insertional
mutagenesis. The cDNA/RNA used in-umal delvery methodss largely norintegrating into

host genomes and are unlikely to affect the genomics of pretmcogenes or tumour
suppressor genes. Additionally, neital methods are associated with low immunotoxicity
given the absence of viral proteins, wh reduces thechance for adverse immunological
responses to the gene delivery as compared to using viral vector me{@dset al., 2010;
Kelleyet al, 2018) This is largely because recombinant viral vectos are typically derived from
naturally occurring virwss, from which a subset of the human population may be experienced
against and already have an immunological memory component ready to mount exaggerated
immune responses against cells targeted by viral vecfgesonet al., 2012) Finally viral
vectors often come with a packaging limit for the desitbdrapeutic geneas is seen with
rAAV vectors (up to 4.5kbpThe restricition in cDNA size is in theory lifiesing nonviral
methods as packaging capacities do not need to be consideralving said this, gene
delievery efficiencies are compromised lwiignificantly large cDNAs regardless of caxipl

with liposomes, polymersr gold particlegRibeiroet al., 2012)



1.1.4  Advantages oAAV vectors in gene therapy

To facilitate the abovevectorbased gene therapy habecome an extremely attractive
approach. AAV vectors show considerable promise as a system to deliver recombinant nucleic
acid into target cells. The great wealth of information available on AAVs and its biology has
permitted its easy manipulation.ngwledge inAAV capsid structure and design has enabled
commercial applications for research and translational benefildiipe AAVs have shown

until more recently (and briefly discussed in Section 1)1 /0 known association with active
human disease or cytopathegicity, and thuspotentiatesthe viral system as saf@athwani

et al, 2007; van Gestekt al, 2014) Moreover, AAV transduce a broad range of cells
including nordividing cells. This poses a complication amdtation when concerning other
vectorbased strategies, which have a marked preference for transducing actively dividing cells
only. However, givenrAA\@ tractableinfectivity towards either cell states (dividing or non
dividing) vectors derived from thsi system are able to circumvent this limitatj@nd broaden

cell targeting capabilities. By extensiaime prospect of targeting a greater repertoire of

genetic diseases thusmore permissible.

It should be appreciated, that unlike Svd@sed gene transfer, use of recombingnAAV
vectors is associated with logrm and stable transgene expressigdasparet al., 2005)¢ a
prerequisite for successful gene therapy. Recombirfafit/has therefore been used in gene
therapy clinical trials for a number ofsdiases, such as: Dwine muscular dystroph{Bowles

et al, 2012) haemophilia ENathwaniet al., 2011; Nathwanét al., 2014; Frenclet al., 2018;
Miesbachet al., 2018) and cystic fibrosiéMosset al, 2004) More promising is the fact that
the first EUlicensed gene therapy product, Glybera, and the even more recefapp®ved
Luxturng are both rAAbased gene therapy products for the treatment of hereditary
lipoprotein lipase deficiencyCarpentieret al, 2012) and LebeR &ongenital amaurosis
(Bennettet al,, 2016) respectively Wllectively these exampledemonstrate that rAAbased

gene therapies are a promising advancement as a modern healthcare and medicine.

1.1.5 Disadvantages of AAV vectors in gene therapy

Despite the advantages of agj rAAV vectors for gertberapy applications (as briefbutlined
above and in further detail in the rest of the literature reviewthe vector system is not
without some drawbacks that limit its extended use as a gene therapy platform. Firstly, the
packaging capacity ofAAV vectos is very limiting, where wildtype AAV genomes are

approximately 4.7kb in lengt{Srivastavaet al,, 1983) Therefore, after removal of theep and



cap encoding sequences, little cargo space is left for the desired therapeutic transgene. An
attempt to overload rAAV vectors is met with challenges in packaging intact vector geqomes
vector genomes are found trunGaS R | Gendidkdor sh@ved impaired transduction
efficienciesin vitro (Wu et al, 2010) Next, rAAV vectagenomes chiefly persists episomally in

the nucleus of transduced celfPenaudBudlooet al, 2008) and rarely integrates randomly
into the host genome(lnagakiet al, 2008) Therefore, depending on the target cell type,
episomalrAAV vector genomesan be simply diluted out by cell division, l@gglto a transient

state of gene correction. Additionalgiven that in most instancethe capsids of rarally
occurring AAV serotypeare used to pseudotype rAAV2 vector genomaswhich wildtype
counterparts naturally infect humans, and consequentiytdbute to an immune response

and immune memory to rAAV vectors. Ultimately, the host immunological response to rAAV
vectors is evident{Veronet al, 2012) and restricts the efficacy of rAAV vectors as a gene

therapy tool(Janelidzest al,, 2014)

Furthermore, thesafety profile of using rAAV vectors for gene therapy has become a
controversial topic despite the number of clinical trials to date that suggest its general safety
profile. Potential genotoxicty by rAAV vectors was first implied in murine models that
demonstrated a significantisk in hepatocellular carcinoma developmefi@onsanteet al,

2001; Donsanteet al., 2007) The genotoxicity issue was further raisedNgult et al. (2015)

of which group identified the integration of wildtype AAV2 genome sequences in 11/193
human hepatocellular carcinoma samples. The integration occurred in key genes knéen t
cancer drivers and correlated with their overexpression (CCNA2, TERT, QCNEEX al,
2015) Having said this, no long term studies on large animal models thus far have
demonstrated rAAVmediated genotoxicity, podransduction with rAAV vectors in a clinical
context (GitFarinaet al, 2016) Nonetheless, this potential revelation that AAV, and by
extension rAAV, may show some tendancy for insertional mutagenesis and hepatocellular
carciroma risk may warrant long term followup and observation of clinical trial participants
for tumour formation. This would likely include identifying AAV vector integration sites to

evalulate the risk of insertional mutagenesis in studies involving rAA¥neanhsduction.

1.2.0 Biology of AAV
1.2.1  Taxonomy and classification of AAV
Human AAV was first identified as contaminants of sindidenoviruspreparations(Atchison

et al, 1965) AAVs are small (ZZbnm), norenveloped, DNA viruses which have been classed



into the Parvoviridaefamily. Parvoviridaefamily of viruses are among the smallest viruses

known, and comprise a wide number of nenveloped viruses with capsid shells tliatm an
icosaharal structure of T=1 symmetr{Xie et al, 2002) AAVs belong to its own genus,

Dependovirus, originally describeflie to their tendency to require helpeviral functions to

propagate. Therefore, AAVsare non-LINR RdzOG A @S | f 2-¢gyBldis incompBlete! | + &4 Q

unless aided by the presence of an unrethDNA virug, namely Adenovirus(Hoggaret al,

1966) or Herpes Smplex Virus (HSY(Bulleret al,, 1981) Upon supetinfection these helper

viruses act to change the intracellular milieu and permit AAV gene expression and replication.

Adenovirusprovides AAV with earlyd&noviral proteinsE1A, E1B, E4 and E2A. These helper

proteins function to promote hostell entry into Sohase and DNA rephtion (Samulski and

Shenk, 1988)It alsohas been described that AAV replication can be stimulated by cellular

genotoxic stresses (experimexly simulated by ultraviolet light, chemical carcinogens, or
inhibitors of DNA replication) in the absence of helpéus resulting in infectious AAV
progeny(Yalkinogluet al, 1988) In contrast to this, when helper functions are absehfV
establishes latent infection with sitgpecific integration into chromosome 19g13Kotin et
al., 1990) Thirteen serotypeof AAV(that are capable oinfectinghumans and primates) have
been describedwith AAV2 being thebest characterised serotype.h& remainder of this

literature review willfocus on this particular serotype as a prototype for the entire family.

1.2.2  Structure and organisation of AAV genome

All AAV serotypes package a sirgfi@nded (ss)DNA genome of either polarity (plus or minus

strands) at equal efficiency durimgsembly oAAVprogeny(Steinbactet al,, 1997) AAV DNA

genome is approximately 4.7kb in lend®rivastavaet al, 1983) and ateilK SNJ Sy R 6pQ Iy

ends) are specialised-shaped hairpin secondary structures. Thefeem as a result of 145
nucleotide (r) sequences called inverted terminal repeatdRs), and flank AAV coding

regions

¢KS 2NAFyYyAalGA2Y 2F 11+ 3ISy2YSQa O2RAY T
two main coding gene cassettes or open reading frames (QREg)and cap (Fig 1.1). The
primary ORFs contaia region in which theep and cap genes are overlappingy a small
intron sequenceTherep and capencode for four norstructural proteins and three structural
proteins, respectively. Althoughan additional nosestructural protein involved in AAV
assembly (assembhetivating potein, AAPhasbeenidentified by Sonntaget al. (2010) and
is encoded within thecap ORFE More recently an additional AAV2 ge has been
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characterisedAAV2X). The AAVXISY S 41 & T2 dzy-éhd df fie ARK2SgengraeNB
which is associated with its own promoterp81 (Caoet al, 2014) It was found that the
product of the X gene enhancedautonomous and helpedirected DNA replicatiorsixfold

(Caocet al,, 2014)

A total of three major rassenger (MRNA transcripts are generated from the two OBF&AV
3Sy2YSQa (Ibyelzal, 1879)Ndangdription initiation of each transcript is miwolled
by individual promotersermed p5, p19 and p40 (defined by their relative locatiothim the
genome). Both ORFshare a0 2 Y'Y 2 -¢nd pofyadenylatiorsite to dictate transcriptional
termination. Moreover, through the usef multiple promoters and hijacking of the host cell
transcriptional machinery a total of eight proteins are easily encoded withénstiort codiig

sequence of AAV.

Vi VP2 VP3
|

| I N |10 11

[ AAP alternative ORF l) L

ITR
T ey e —
T [ |

| rep78 |
| repb8 | ~ :l
| rep52 )
| rep40 | ~ :‘

Figure 11 Genome organisation of AAVRepresentative organisation of AAV2 genome, with and

cap ORFs flanked by Rsequences. Further dissection m&fp and cap ORFs is also shown, witkeveral
main transcriptsencoded by two ORFs coding for three structural proteins (VpB8), and four non

structural proteins (Rep78,68, -52 and -40). Black lines withincap represent surfacexposedaa

residues. AAP alternative reading rfra is denoted by the grewrrow. Wloured arrows indicate
separate hypervariable regionBigure fromKotterman and Schaffer (2014)

Because of the limited coding capacity of AAV, AAV is restricted in itsuffadfency. For

instance, AAV does not encode its own Ridlymerasefor transcription. To compensaté&AV

is dependent on the host cell machinery to engage transcriptional activity and processing.

Nonetheless, through transcriptional processing of alternate splice variantsygheORF

encodes four nosstructurd proteins termed Rep78, Rep68, Rep52 and Rep40, which engage

8
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in a number of processasnamely replication. Expression of Rep78 and Rep68 are under the
transcriptional control of p5 promoter, whereas Rep52 and Rep40 are determined by the p19
promoter. Re8 and Rep40 are-€rminal truncated splice variants of the Rep78 and Rep52

major transcripts, respectively. Tteap ORF, instead, is under the transcriptional control of

the p40 promoter and encodes the capsid structural proteins Vpl, Vp2 and Vp&llass

AAP. VpB makesdzL) G KS O2NB O2YLRyYySyda 27F ! ! atied LINE Q]
AAVserotype.The majortranscripts undergo splicing events due to the presence of the small

intron sequence found within theep-cap overlapping regionQiu et al., 2003) The small

intron possesses relevant splice donor and splice acceptor sites to facilitate splicing of either

ORF and therefore contributes to the repertoire of proteins expressed viydtype AAV

genome.

123 AAVITR

¢tKS pQ YR 0Q Sy RB oflANGyen@Saihéralthederihal L45nt forka $
shaped hairpin secondary structures. The initiist 125nt fom imperfect palindromes that
folds upon itself to adopt the -$haped hairpins. ThélRis a key requirement for certain
aspects of AAV biology; for example a key role of IffRis to facilitate AAV genome
replication by creating @uble-stranded (dsPDNA dplex that helps selprime DNA synthesis.

In addition to this thelTR also possessiselements such as the Régnding elements (RBE
YR w. 9Q0Z | yR { $yiivolyed in théldickirgy bftiSDNA afeoripletip® o6
of DNA replicationTheseare all necessary for active replication of AAV genome and packaging
of genomes into preformed AAV capsids, to then form infectious uikltype AAV is known

to integrate sited LISOAFAOlI & Ayid2 GKS AyFSOGSR OStfQa
this process is largely dependent on thERs. A representative diagram of AAVERIis

portrayed in Figl.2.
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Figure 12 AAV2ITRsequence and secondary structureéSecondary structure of the lefTRis depicted,

with annotations describing tevant features of the AAVER AAVITRis composed of two palindrome

sequences B Q IHYy®RO /G KI G YI 1S dbaipif Krdctureand thelofger palifd®met

sequence (A QU0 G KIF G YI JoShe | TEAeDs&8enced dnSeither end of the AAV genome is

the point where the AAV genome becomsimglestranded.w. 93 wSLJ 0AYRAYy3 StSYSydaT
Rep binding elementrs, terminal resolution siteFigure fromGoncalves (2005)

1.2.4  Capsid structure

As depicted previously theap ORF encodes the capsid protei(\pl-3). Each share
terminus residues; however, Vp2 and Vp3 ar¢eNninus truncated splice variantsf Vpl
Vpl-3 are87kDa, 73kDa and 61kDa in size, respectivdig.capsid of AAV virions is composed
of sixty subunits made up dhese three core proteins The triplets ofproteins arrange
themselves in a specific 1:1:10 ratio of Vpl, Vp2 and Vp3, respectively, to form individual
subunits(AgbandjeMcKenna and Kleinschmidt, 201 Bitogether these 60 subunits assemble
to form an icosahedi structure with T=1 icosahedral symme(Big.1.3A)as determined by
Xray crystallogreJK @ & o * N a(Ridedall, R®3) The 2B8tuctute itseveral
AAV serotypetasalso been determined by-bay crystallography, including: AAYRadronet

al., 2005)and AAVYWalterset al., 2004) Shared characteristics are evident between AAV
serotype capsids, and these shared topological features are miiolyd at each axis of
symmetry. For instance, ¢hmost prominentfeatures of AAV capsidare protrusions that
appear at thethree-fold symmetry axis, and a cylindrical channel that appears afiviedold
symmetry axis (Figl.3B). Fig. 1.3B also depictsprominent depressions at théwo-fold
symmetry axis, which are immediately talled by the protrusions at the threfold symmetry
axis(O'Donnelkt al,, 2009)
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Figure 13 3D-structure of AAV2 capsidA) 3D representation of AAV2 capsid shell, whére white
triangle represents one subunit composedtioé Vp13at 1:1:10stoichiometry. Thesassemble to form

the icosahedral structure. Topology is coloured to reflect distance from centre of pactialbite,
furthest distance from centreand red is closest to centr&igure adapted fronKie et al. (2002) B)
Crosssectionalof AAV2 capsid with symmetry axes 2, 3, and 5 annotated. Arrows indicate protrusions
at the 3fold symmetry axis that flank-@bld symmetry axis depressioRigure adapted fron©'Donnell

et al. (2009)

1.25 AAV grotypes

Serotypes are defined as an lsied virus that does not croseact with neutralising
antibodies orantiserumthat is originally specific ainst other existing forms. A@Was the

first isolated serotype to be cloned into a bacterial plasmid Sgmulskiet al. (1982)
Therefore, it became the key serotype used for clinical and research purposes. Consequently,
AAV2 biology is best characterised andeasively elucidated in comparison to all other

naturaly occurringAAV serotypes

The initial most AAV serotypes4land 6 were mainly isolated as contaminantsAdenovirus
preparations(Atchisonet al,, 1965) whereas AAV5 was identified from human penile genital
warts (BantetSchaal and zur Hausen, 198&gveral more ramt AAV serotypes have also
been identified, including AAVY, as wellas well over 100 AAV variani§aoet al., 2002a;
Gaoet al, 2004; Mor et al, 2004; Schmidet al, 2006) This novel repertoire of AAV
serotypes was identified through P®Rsed strategies that targeted homologous regions of
the capgenein anumber of human tissuefGaoet al, 2004) It then became apparent that
some AAV serotypes showed distinctin vivo transduction properties despite significant
homology at the DNAevel. For example, isolation of AAV8 showed remarkable transduction
into murine Ilver compared to AAVESands, 2011)The distinct transduction biology between

serotypes encouraged expansion of AAV asah ftr gene therapy. Where the select tropism

11



displayed by particular serotypes pravadvantageous in a clinical setting by avoiding broad

non-specific transductionandthus allowing for more sitespecific targeting of cell or tissues

1.2.6  AAVlife-cyclesand helpervirus functions

Upon infection into target host cell, AAV typically undergoes one oflif@aycles ¢ lytic or
lysogenic. Lytic infection predominates when helper functions and virus are made available.
Productive AAV results and is charactedidy active genome replication, gene expression of
viralencoded genesand the eventual production of AAV virions. Helper vimediated lysis

of host cell results in theelease of AAV virus progeny.

The repertoire ofAdenovirusgenes that mediate théhelper functions for AAV production
were identified asEla, Elb, R2a, E4orf6 and virusassociated RNAYQA RNAs(Samulski and
Shenk, 1988)The encoded proteinand RNAgermit AAV prodation by affecting different
aspects of AAVife-cycleas well as the biolgy of theinfected hast cell. To start with,Ela
encodesEJA protein, which up-regulakes cyclin E and cdc25A expression and actiaitygl
promotes host cell entry into active-ghase of thecell cycle (Spitkovskyet al., 1996)
Additionally, EAis directly implicated in the pRb/E2AFpathway, by binding to the pRb family
of proteins to release key transcription factors that are defined as key regulatorplodse
entry fromthe G1 stage of the cell cyqRevins, 1990)Ultimately there is gross manipulation
of the infected cell that prompts cell cycle entry and-nggulation of DNA replicatin and
synthesis machineries. EBA&lditionally functions to regulate virus replication by promoting
transcriptional upregulation of the AAV promoterp5 and p19Tratschiret al,, 1984) EJAis
capable of stabilising p58 the tumour suppressor gene product, to elicit papoptotic
functions. This is mediated through EQAbility to render p53 incapablef proteasomal
degradation (Lowe and Ruley, 1993;dtial., 2004) Although, remaining helper furions have
evolved to prevent El#nediated p53induced apoptosis. Namely, the EABd E4orf6 helper
proteins (encoded byElband E4orf6, respectively are able to destabilise p53 by forming a
complex with associated cellular proteins. This complex harbours an E3itubitigase
function and targets p53 for ubiquitimediated proteolysigLuoet al, 2007; Schwartet al.,
2008) Furthermore, ER and E4orf6épossess additional helper functions that promote the
nuclear export of late viral mMRNA to the cytoplasm for downstream proce¢Bifdgret al,,
1986; Kratzeret al, 2000; Blanchetteet al, 2008) Considering AAV chdenovirusvirus
specific elements are exposed within infected cells, the host cellulawvaatiresponses must

be repressed. The VA RNAs assist in this regard to impressively bleckahmtiechanisms by
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inhibiting interferon (IFN)signalling that would otherwise activate awiral enzyme systems
such as Dicer and the RNduced silencing complex (RIS8hderssoret al., 2005) Lastly,
the final helper function required for AAV production is performed bj Ehcoded byE2a),
which functions to promote AAV DNA replicatiMvardet al,, 1998) Therefore, the rangef
helper functions work in concert to promote an intracellular milieu permesgor AAV2

production.

1.2.7  AAV sitespecific integration

On the other hand, in the absence afhelper virusor helper functiors, AAV is significantly
compromised in selfufficiency and undergoes latencylere, AAVgenome replication is
limited and gene exgssion is repressed. Latency is established by the preferredsiteific
integration of AAV genome into chromosome 19¢13.4, dubbesl AAV integration site 1
(AAVS](Kotinet al,, 1990; Samulsldt al., 1991) Specifically AAV genome integrates into the
initial exon of the myosin bind subunit 85 MIBS8) gene(Janovitzet al, 2013) This site
specific integration accounts for roughly 45% of all integrations detectedahypvitzet al.
(2013)

A direct consequence on the lack of helper virusrdection is the limited expression of AAV
Rep78 and Rep68rhisresults in the repression of AASpecific gene expression and DNA
cannot be replicatedLabow and Berns, 1988htegration into theAAVSIocus is particularly
favoured becauseof the presence of GCTC repeat element$, which elements apgar
similarly inwildtype AAVITR. The presence of these elements permits tdeterminus of
Rep78 and Rep68 proteins to bind (Weitzman et al, 1994; Suroskyet al, 1997)
Additionally, the presence oftas within the AAVSkite also has been identified, and thought
to be nicked upon integration of AAV genoifiéndenet al., 1996) In particularsupplying the
rep gene incisto anITRflanked GFP expression cassette demonstrated enhanced integration
into AAVSIcompared to supplyingn trans (Balagueet al., 1997) Given that the only viral
components present in these investigations included thp gene andITRsequences, this
essential work showed that the minimum requirements for sipecific integration was the

presence of Rep and k.
The exact mechanism GRAV integration has been explored, especially to elucidate any

adverse consequence of AAV integration or latency.7R&8 protein are capable of binding

to both AAV RBand cellular RBat the same time(Weitzmanet al, 1994) suggesting a
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possible mechanism of integration involving@Retheringthe ITRcontaining sequence to the
AAVSl1site. Henckaertset al. (2009) investigated sitespecift integration using mouse
embryonic stem cell lines because mice cells harbouMB$85orthologue It was observed

that integration of AAV genome was associated with duplication of the target integration site.
Specifically, and given integration can océuA 4 K G KS 11+ 3ISy2YB8Q2NASYdl i
transcriptional direction of théVibs85gene(Lusbyet al,, 1981; Rahinet al., 2011) the leftITR
sequence was found within th&bs85 gene. Whereas the righfTRwas located in the
promoter region ofMbs85instead, with the addition of 18nt spare that resembled the reverse
complement of theMbs85sequence from the junction that reads into the I€fR(Henckarts

et al., 2009) Therefore, integration was suggested to be mediated by Rep, which nicks at the
cellulartrs in AAVSleading to DNA synthesis of the target site withreoruitment of AAV
genome via Re@nd AAV leftiITR REE sequence. With AAV genome in proximity, strand
displacement leads to AAV genome being replicated instead and is contiguous with the initial
replication ofthe target integration site. Seeing as 18nt (reverse complement) ofMbs85

was doserved byHenckaertset al. (2009)at the far right junction at the integration site, this
suggestd that the AAV genome wasplicated and the replication f& switches back to the
Mbs85 sequence(the strand complementary to the displaced strandd template. The
proposed model(Fig 1.4) is extended byligation of (i K Shydro®yl groupof the nascent

a0 NY yR gehdioKthelbiigiallypddplaced cellulBNA by Rep, because Rep has shown
previous ligase activitgSmith and Kiin, 2000) Although, the importance of cellular ligase IV

in AAV integration was morecently noted byDayaet al. (2009) where significantly less AAV
specific integrattn was observed in cells that expressed less ligase IV. Nonetheless, quiescent
AAV is readily rescued when latently infected cells are subsequently infected by helper virus.
The lyticlife-cycleof AAV commences with the excision of AAV prs/from the tost genome

(a Repdependent process), and the production of infectious progeny in the presence of

superinfection withAdenovirugBernset al., 1975)
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Figure 14 Model for AAV sie-specific integration intoAAVS1locus. 1) A nick is generated in the trs

structure in AAVS1, mediated by AAV R&PB8. II) Strand displacement occurs by DNA synthesis at site

of nick. Ill) Strand displacement occurs with AAV genome as template ins¥ad@NA synthesis

switches back to theMbs85 DNA sequence (complementary to the displaced strand). V) Ligation
0SipSSy aeyikKSairaSR 5b! OKSNBE Fyy2G4FidSR a NBLI A
displaced DNA strand occurs. VI) A nick is generatéiieiopposite strand by Rep, and DNA synthesis
completes AAV genome integration. VII) This model of AAV integration intdAWSlgenerates a

duplication of theMbs85sequence Figure fromHenckaertset al. (2009)

1.2.8 AAV receptorligand interaction

Infection by AAV is a mulstep process that involves virus attachment to relevant seiface
receptors. This leads to intracellular signalling that promotes virus uptake by endocytosis. AAV
is then trafficked towards the nucleus, and its ssDNA genome is translocated into the nucleus
for replication and gene expression for production of geeay. AAV2 has been shown, by
sinde virus tracing studies bgeisenbergeet al. (2001) to makemultiple contacs with cell
membranesto deceleratep . & @GANILdzS 2F !l +nQa asStSOUALDS o.
receptor,heparan sulphate proteoglycablEPE(Summerford and Samulski, 1998; Rabinowitz

et al, 1999) AAV2 is capable of making the necessary contacts it requires to slow down its
acceleation and firmly attach taell surface membranes. This process seems especially reliant
on Vp3 capsid proteifRabinowitzet al., 1999) The use of sitelirected mutagenesis of the

cap ORF helped identify critical functional domains within WiBch facilitate receptotigand
binding between AAV2 and HSPR®u et al,, 2000) The corresponding mutations introduced

by Wu et al. (2000)correlated with two amino acidaa)Of dza (i S NBoopAW The priciSe
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aaresidues that contribute to the heparbinding motif was further elucidated bgernet al.
(2003)as being R484, R487, K532, R585, and .RB8&Xeare located as patches of basia
within loop IV at the thredold rotation axis of AAV2 capsi@onsidering that these key
residues are not exposed on the capsid surfagerather buried, and that K532A and R585M
mutants showed onlya modesteffect in AAV2 infectivity, it seems that AAV2 binding to HSPG
initiates contact to celmembranes in order t@nhance cellirus interactions for anchorage,

and is notwholly necessarily for infection.

It was also apparent that a number of-oeceptors were necessary to facilitate AAV2 entry. It

was identified that cNB OS LJG 2 NB D +hH pi M yASoREDAIA NIDOS) fibroblast

growth facor receptorl (FGFR1(Qinget al,, 1999) and hepatocytegrowth factor receptor,

c-Met (Kashiwakureet al., 2005)enhanced infectivity with little to no effect on the binding
properties of the virus particles to target cell. For instance, cells treated with antibodies that
GFNBSGSR h+i p dhiiiedS ehdtkyibsis 0K RA¥ S Rut Binding affinity was
unchanged relative to the use of control antouse immunoglobulin G (Ig@&anlioglwet al,

2000) However, itwas noted that initial attachment of virus to cell surface semito be
enhanced by the FGFR1, as the loss of FGFR1 expression alone correlated with the inability for

AAV2 to bind(Qinget al., 1999)

1.2.9 AAV ell entry

As a consequence @&AVbinding to primary cell surface receptor (HSPG) and secondary co

receptor(s), dowstream signalling pathwayare activated to permit virus uptake byglathrin

mediated endocytosi¢Bartlett et al, 2000) ThS & SljdzSa i NI GA2YyY 2F @ANHzA o8
localisation of AAV2 to clathreoated pits facilitates the molecular cue faathrinrmediated
endocytosis(Mukherjee et al, 1997; Wanget al, 1998) This paradigm of cell entry is

conserved between AAV serotypéBartlett et al, 2000) Even serotypeshat bind to an

alternative, unrelated primary receptor(s), such as AAMaIch binds tosialic acid receptor),

has also been shown to sequester totltin-coated pitsfor receptormediated endocytosis

(BantetSchaakt al., 2002)

Downstream signalling events associated with actin cytoskeletal reorganisation and
endocytosis has been largely supported. AAV2 has been stwimtetnalise into HelLa cells in
a Ragelated C3 botulinum toxin substrate 1 (Rad&pendent manner(Sanliogluet al,

2000) Racl is a small signalling GTPase involved in cell cytoskeletal reorganisation, cell
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motility, adhesion and membrane traffickinLamazeet al, 1996; Ridley, 2006; Fugt al,
2013) Integrins have been widely known to interact with a number of intracellular signalling
molecules and function as molecular cues for downstream signallingiteventegrin
interactions with Rac, Rho and Cdc42 families of GTPases have been de@d¢obed and
Hall, 1995; Van Aelst and D'Sow&zhorey, 1997)With the clugering of integrins to a focal
point at the cell surface enables proximal activation of phosphatidyline3itdhase (PI3K)
pathway, followed by Racl activatio(Li et al, 1998) PI3K is a lipid kinase which
phosphorylates Ptdins(4,5)P2 (PIP2) to form the active secondary messenger, PIR3PIP3
acts pon small GF-binding proteins such as Ra&hd results in actin polymerisation.
Ultimately, actin filaments propagate directly under the plasma membrane at thalfpoint.
Membrane extensions then formand engulf AAV2 particles in thénitial process of
endocytosis. Complete internalisation is deemed dynantapendent, where dynamin
oligomerisation forms a ring structure that is necessary for the formation of clatiméted
vesicles, and the final pinching of coated pits from the cell membrane into rteznal
compartment(Duanet al., 1999) However, inhibition of dynamin showed lgra partial block

in viral endocytosis(Duan et al, 1999) indicating the presace of alternative entry
mechanisms. It should be noted that a number of the aforementioned investigations assayed
AAV?2 infection in the presence of é&mbvirus co-infection for helper function which may

affect cell homeostasis and thus confound previcegorts on AAV2 internalisation.

On the other handNonnenmacher and Weber (201#lpmonstratel that infectious AAV2
internalisationwas predominantly controlled by the clathrindependent carriers (CLIC)/GPI
anchoredprotein-enriched endosomal compartment (GEEC) pathway, instédds was
determined by blocking clathrimediated endocytosis through the overexpression of
truncation mutant of Eps15 (a clathraoated vesicle component), or chemical inhibition using
chlorpromazine. Virus internalisation was unaffected under theseRA G A 2y & AY RAOF G A
independence to clathrinrmediated endocytosis. Alternatively, inhibiting effectors of
CLIC/GEEC, such as Arfl and Cdc42 GTPase showed reduced toansfidghVvV2 into HelLa
and 293Tcellsby 70%. AAV2 was evidenced within CLIEGEndosomes, as per-lozalised
markers of CLIGEEC endosomes, such as GRAEhnenmacher and Weber, 20114AV2
entry was not completely blocked by inhibiting clathnrediated endocytosis mentioned
above, whereas, inhibition of both the CLIC/GE&B®@ dynamindependent pathways of
endocybsis were needed to block entry completely. Therefdoeth entry pathways are

simultaneously used by AAV(Fig. 15), although the dependence of either may vary
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considerably between different host cell types

Binding
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@ basolateral

Figure 15 Proposed mechanisms of AAV vector trafficking to the nucledgV binds to key receptors

on the surface of target cells, and are internalised by clathr@diated endocytosis (CCP) and/or
CLIC/GEEC. Trafficking of AAV then is transported to the nudleely, ihvolving early endosome
maturation to late endosome or recycling endosomes. AAV is then released to transverse the nuclear
membrane into the nucleus to continue its lfgcle. Acronyms thereafter includ€€AV, caveolar
endocytosis;Cyt, cytosol; Dy, dynamin; ER, endoplastic reticulum; EE, early endosome; LE, late
endosome; LY, lysosom&|P, micropinocytosisNo, nucleolus; NP, nucleoplasm; NPC, nuclear pore
complex; Nuc, nucleu®®NRE, perinuclear recyclying endosome&GN, transGolgo network. Figre

from Nonnenmacher and Weber (2012)

1.2.10 AAV traffickingto the nucleus

Inarguably the AAV genome must be trafficked intihe nucleus express relevant viral
proteins andreplicate progenyn order to establish an infective oatent life-cycle Successful
transduction of AAV requires intact partidie migrate to the nucleus and import at leasits
genome It remains unclear exactly how AAV is trafficked to the nuclespgeciallywhen
exactly viral uncoating occur§.o answer thee, studies have predominantly utilised rAAV

vectorsand examined the subcellular localisatiamdarafficking mechanisms employed.

RecombinantAAV vectors are compartmentalised inRab3 early endosomes after initial
uptake by clathrirmediated endocytosis. These vesibleundrAAV are shown teraffic to the
perinuclear spac¢Bartlett et al., 2000; Sanlioglet al, 2000) More recentevidence suggests

AAV igraffickedto the Golgi apparatus that occupies the perinuclear sp@emtelSchaakt
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al., 2002; Xiao and Samulski, 2012; Xetoal, 2016) Srong evidence suggests that
compartmentalisedAAV utilises the cellmicrotubule network to trafficitself towards the
nucleusvia the perimuclear space, unidirectionaliKiao and Samulski, 201Z)espite using
nocodazole treatment to disrupt microtubule formation and inhibit the formation of the
microtubule organisation centre (MTOC), a small portion of infecting #tlVmanageto
translocateinto the nucleus, indicating alternative mechanisms for AAV trafficking and/or

nucleartranslocation(Xiao and Samulski, 2012)

Hficient trafficking and transduction idependent on early endosome processingate stage
endosomes. Reports have shown trafficking of AAVthrough the Rab7 late endosomes;
although trafficking via RabAl recycling endosomes has also been repor(Baduaret al,,
2001; Dinget al., 2006; Harbisomrt al., 2009) Redirecting AAV to traffic via the Rab@sicles,
using Eerl to inhibit endosomal reticuluassociated degradation processing, contributed to
enhanced transduction efficienciéBerry and Asokan, 2016)hisindicated a benefit for AAV
particles to commit to a single trafficking pathwéaterestingly, a doselependent disparity in
AAVZX) infection route has been described high multiplicity of infection (MOI) 010,000
genomes/cellcorrelated with co-localisation of AAV2 particles with Raltlendosomes
RabA" late stage endosoes was associated with low MOI of 100 genomes/&&ihget al,
2006) In addition to this, the mechanism utilised by AAV to traverse infected calg igkceH
type dependent(Pajusolaet al, 2002) as chemical inhibition of micropinocytosis in Hela,
HepG2 or Huh7 cell lineshowed enhanced transduction rates onlytlre hepatocellular cell
lines (Weinberget al., 2014) Differential trafficking pathways may be a feature of different
AAV serotypes infecting the same permissive cells. This may be attributed to the fact that
different AAV serotypes utilise different prinyareceptors to mediate viral or vector entry into

target cells, which would likely impachaownstream signalling eventkiuet al., 2013)

Endosomal escape of rAAypically ensues, andhvolves the release of rAAfrom their

processed endosome vesiclegherefore, once trafficked close to the nucleesdosomal pH
is modulated to favour AAV escape. Endosome maturationl@téoendosomes anlysosomes
is accompanied with adification of this compartment. ie use of chemical inhibition of
endosomal acidification has outlined the importance of this stehibitors have included
ammonium chloride, bafilomycin Al, or chloroqujradl of whichtreatments correlated with
redued AAV transduction(Bartlett et al, 2000; Xiao and Samulski, 201Eyventually,a

conformatioral change in the Nterminus of Vpl of AAV capsid, which houses the
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phospholipase A(PLA) domain and nuclear localisation signal(§ig 1.6), is stimulated
(Venkatakrishnaret al., 2013) Given both the inhibition of latendosome formation and
acidification of late endosomes associated with reduced AAV transduction, it seems late
endosome adlification is the trigger for thisonformation changeMutations in PLAcatalytic
domaincorrelated with reduced AAV gene expression and translocation into the nucleus, but
did not affect AAV entry into cells and its localisation to the periear spacgGirodet al.,

2002; Stahnkeet al., 2011) Moreover, AAMnfectivity and transduction wereescued when
co-infectingVpl mutated AAV vectomsith specialised AAV vector&hichwere composed of

Vp1l fusion proteins that allowed their capsid surfaces to be exposed, withentiemlctivated
PLAdomains(Griegeret al, 2007) In turn, thesedataimply that the PLAdomain is necessary

for AAV infectivity downstream of AAV entry and traffickinghe perinuclear spaceGiven

PLA functions to hydrolyse phospholipids, #vas reasonably assumed that this activity is
SYLX 28SR o6& AyFSOGA2dza !''!'+ (2 KeéRNRfeasS (KS

escape.

It remains widely accepted that AAV translasinto the nucleusas intact particlegNicolson

and Samulski, 2014; Kelieh al, 2015). Despite the growing evidence in support of nuclear
translocation of intact AAV, the point at which viral uncoating actuattgurs remains
debated. Fewer studies imply viral uncoating of AAV2 ascurring prior to nuclear
translocation(Luxet al, 2005) In further support of the former is the presence of three basic
regions(BR13) in the unique Ntermini of Vpl and VpZFig.1.6). Thesequences of which
closely resemblauclear localisation sigra(NLS (Griegeret al, 2006) Mutations in BR43

are associatd with reduced transduction and the inability for AAW translocate into the
nucleus (Johnsonet al, 2010) The mechanism in which intact AAV particles physically
translocate the nuclear membraneak thus been proposed, and seems to operate in a
different manner to minute virus of mice (MVM) another parvovirusg that disrupts the
nuclear laminain order to access the nuclei€ohenet al, 2006; Coheret al., 2011) The
proposed mechanisrhas be@ shown to involve nuclear pore complexes (NR@stead for
AA\2. Labelled AAY were directly evidenced to move into the nucleus through labelled NPCs
(Kelichet al., 2015) And theinhibition of NPCs using wheat germ agglutinin prevented nuclear
entry of infecting Cy#\AV to a greater extent tharehicle control used in the studiNicolson

and Samulski, 2014)urthermore, rAAV2 was found to -mcalise with importiA ol 15@
chaperone involved in directing nuclear entry of NLS contaipirajeins) after 1h post

infection, and postcidification of AA¥ containing endosomeiNicolson and Samulski, 2014)
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Figure 16 Vpl and Vp2 contain key signals for AAfé-cycle Schematic of AAVp1-3 proteins, which
contain PLA (HD) domainand basic regions ER13) in the Nterminus of Vpl and Vp2 proteins
necessary for AAV infectivityr regions indicate putative nuclear localisation sign&igure from
Johnsoret al. (2010)

After entering the nucleus®\A\2 localises to nucleqlibut mobilisation into the nucleoplasm
seems to be required for AAV to uncoat and pergéne expressiofJohnson and Samulski,
2009) The exact means thantact AAV capsids use to traffic nucleoli is not recognised in
full, but nucleolar proteinshave been shown to directly interact with intact AAV. Namely,
nucleolin and nucleophosmin have besimown to bind and céocalise with AAV after nuce
import (Qiu and Brown, 1999; Bevingtat al., 2007) Although, nucleolar accumulation of
infecting AAVseems toact as a baier to efficient transduction; specificallghort interfering
(s)RNA knockdown of either nucleolor nucleophosmin in HelLa cells showed emted
transduction efficienciegJohnson and Samulski, 2008hemical treatment with hydroxyurea
significantly affected the subcellular distribution of nucleolin, and treatment with hydroxyurea
correlated with enhanced AAV transduction efficiency, with a diffuse distribution of AAV in the

nucleoplasm buéexcludedfrom the nucleoli(Johnson and Samulski, 2009)

1.2.11 AAV DNA replication

AAVgenomereplication predominarly occurs in thepresence ofAdenovirusor HSVco- or

super infection, which provides all the necesgahelper functions that permitAAV
transcription and gene expression. Ultimately, AAV DNA replication occurs by the synthesis of
dsDNA from the ssDNA AAV genoawnting as templateThe dsDNA AAV replication product

serves as replicative intermediatéStrauset al,, 1976) from which ssAAV gemes with plus
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or minus polarities are packaged into AA¥psids (Berns and Rose, 1970Host cell
machineries and viral factors require@ss timakedAAV genome in order to commence DNA
replication. Althoughthe disassembly of AAV capsid has not been fully elucidatedk by
Johnson and Samuls{@009) proposeinfectious AAV2 vector remain compartmentalised in
nucleoli, and mbilise to the nucleoplasm in order to instigate AAV genome replioaiiogene

expression.

DNA replication isichieved initially from the inherent property of the AAVRs. The ITR

harbour the viral origin of replication in the forms of theERIBdtrs, but also, the initiamost

125nt of ITR form imperfect palindromethat folds upon itself. Thisef-annealingproperty

providesa suitabledsDNA template and importantly provides a badelll A NJ&/&oxy §roup

from which unilateral DNA synthesis can occiihe replication machinery is thought to be

recruited for unidiectional DNA synthesis from tHERR S NR&A @h§dRoxylogdup However,

the unilateral DNA replication alone does not complete DNA replication of the entire AAV
genome, due to a lack of a bakd A NByBroxgl Goup on the opposite strand to replicate

thS NB Y Ay HSthat s2rfed asa replication primer. In this case, AAV6RES

proteins bindto the dsDNA of thdTRvia theRBEMcCartyet al., 1994) Rep also recognises

secondY2 AT oOow. 9QU0 LINEaSyTR & yK [{Md&hamy2d POMfRe2 yS 2F (K
is thought to function as a helicase to generate ssDNA aroundrshevhich is necessary to

allow thetrs to form an intermediaryhairpin structure This change in conformation within the
AAVITRsequencepromotes cleavage of thes @A | wS LIQ& SnytiBR ahdizdovides 3 S F dz
Iy 2 ( KKydidxyb goup to permit DNA synthesis and sirgjland displacementThe

remainder ofthe ITRthat served as a replication primer is faithfully replicategsulting in a

completely replicated AAV genome as a dsDNA intermediette DNA ends of which can

renature to form terminal hairpins from each strand and generate another paged, 0 -Q

hydroxyl group for replicatio by singlestrand displacement. Thigovidesconcatemeric AAV

genomes and the ssAAV genome for packa¢®teauset al, 1976; Honget al, 1994) An

overall schematic of replication by singdrand displacement is depicted belowFig.1.7.
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Figure 17 Model for AAV genome replication¢ K S ITRODAAV2 genome forms ashaped hairpin

structure, which provides a badell A NJhiRdfoxylogfbup necessary for DNA synthesis. Firstly
wSLlkcykTy 0 ATRasdhe drigin di iéplicatm and furtherretak G YSy G 2F GKS OStfQ
machinery facilitates DNA synthesis of the AAV genometiB@ A S 4 GKS oQ 2F GKS
nicked by Rep68/78, and provides another base A NEhRifxyloqg@up to permit complete DNA

replication of thelTRthat served as a replication primer. After complete DNA replication | Ti& can

renature to serve as replication primers to promote singleand displacement and elongation of the

AAV genomeThe entire model results inoacatamericdsAAV genomeThe sAAV genomesan be

packaged Solid lines refer to templatstrand; dashed linegefer to replicating strandsFigure from

Goncales (2005)

1.2.12 AAV assembly
It is commonly perceived that AAV assembbgeurs in two distinct phases, assembly of a
preformed capsid shell, followed by ii) the packaging of sSAAV genome into the preformed

capsid(Myers and Caer, 1980) The assembly of preformed capsid vectors has been observed
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in the nucleoli or nucleolar periphery, with encapsidation of AAV genoeturring in the
nucleoplasm(Wistuba et al., 1997) The expression of VA leads to the coordinated
assembly of AAV capsid with the 1:1:10 stoichiometry of Vp1, Vp2 and Vp3, respettinely.
processof whichrequires host factors in order to facilitate capsid asseniBlginbachet al.,,
1997; Wistubeet al., 1997)

Assembly of preformed AAV capsids is promoted by an additionaéiproaAAP, which is
encoded by an alternative ORF in tb&p gene(Fig.1.1). Expression ofVp2/3 and Vp3 only
capsid proteinscan result in successful assembly of piy vectos, albeit, non-infectious
vectors (Griegeret al, 2007) This islikely due to the loss of the PLAomain and BR3B
sequencesNonetheless, vectors derived from solely Vp3 expression was only possible when
the entire AAV2cap gene, with mutated initiation codons for Vpl ang2/ORFs, was
transfected (Sonntaget al., 2010) This indicated the presence of an Aéntoded fator
upstream d Vp3 ORFesponsible fomucleolar traffickingand capsid assemblgf Vp3 and
was characterised as AABonntaget al, 2010; Sonntaget al, 2011; Earleyet al, 2015)
Slencing AARexpressionprevented the nucleolar trafficking of Vg8lproteins and capsid
formation, whichcould not be rescud by taggingVp3 with a nucleolar signalling peptide
(Sonntaget al, 2010) Therefore, a proposed role for AAP is to function as a scaffolding
protein by binding tocapsidproteins and concentrating thesaembly process to the nucleoli
(Naumeret al, 2012; Earlewet al, 2015) The mechanistic role of AAP in promoting capsid
assembly maype conserved between serotypgiven AAVRierived AAP can promote capsid
assembly of aiverse range of AAV serotypéSonntaget al, 2011; Naumeet al, 2012)
However,Earleyet al. (2015) have shown that AAP is not essential for csig assembly for

AAV4, 5, and1l, and for nucleoldiocalisation of capsid assembly.

Encapsidation o§sAAV genoménto preformed capsidss likelyto follow after AAV genome is
replicated and is thought to occur in the nucleoplasm at later stages of AAV infection
(Wistubaet al,, 1997) Additionally,Rep-40, -52, -68, and-72 proteins were shownto bind
directly to free capsid proteinsor assembled capsidmdependent of ITRcontaining AAV
vector DNA by ceimmunoprecipitation studies(Dubidzig et al, 1999) Certain bulky
Ydzi I GA2y&a 4G ! +ufold syrhieiBades toirelatddkvBtiA neduced Rep
capsid interactions and genome packaging efficigiidlgkeret al,, 2005; Blekeet al., 2006)
Such proteinprotein interaction may generate an intermediate complex with AAV ssDNA

given Rep78 covalently associates with AAM RsequencgPrasad and Trempe, 1995)
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AAV vector genomes have been identified to enter AAV cagsid polamanne® ¢ KS 0 Q
ssDNA sequence wadentified in mrtially-packaged AAV2 vectors Y LI & A y-SDNAKS 0 Q
sequencds first translocated into preformed capsidKinget al, 2001) despite the fact that

i K Ssequéhce asociates with preformed capsids context with Rep8 (Prasad and Trempe,

1995) Especially, e loss of thel TR2 B-sequences, but retentiomf the hairpin secondary
structures, in plasmid constructsas defective in their ability to produce ssDNA genane
Therefore, ssDNA progeny genome could notpaekaged, and vector genomes were not
detectable(Wanget al., 1996) Further to this after associating dsAV genomes to preformed

capsid via Réf8, smallerwSLIn nk pH Q& 5b! KSft A OLlnwiBding tBeids A G &
AAV genomes, principig at thS -en@to feed and encapsidate S8V genomegKinget al,

2001)

1.3.0 Invitro production of recombinant AAV vectors

1.3.1 Recombinant AAV vectors

The develoment of rAAVs for vectebased gene therapy has progressed significantly and
continuously over the years. Use of AAV vectors has become a very successful and promising
therapeutic tool for treatment of monogenetic disess However, despite the current
developments, certain limitations have restricted the full utilisation of AAVs. One main
limitation is the constrainediral titres produced from current production methods. Interest in
this field of research is due to threeedfor highMOI for efficientin vivotransduction by rAAV
vectors.Generally a MOI of 13-1C°infectious particlescell is prelictedto be neededElliset

al., 2013) or clinical dosesof 10'-10%/kg infectious particles neesd for human
administration (Bryant et al., 2013) though these quantities are @ge dependent on the

intendedtarget tissue type.

1.3.2 Components required forAAV production

RecombinantAAV production is mediated most commonly by triple transfection of three
recombinant plasmids that introduce the transgeesg&andtranscomponents of AVs, as well

as helper functions. These recombinant plasmids individually encode for the transgene of
interest flanked by AAVEZTRs, or the Rep and Cap proteins, or finally the helper functions
minimally required for rAAVector production(Matsushitaet al., 1998;Xiaoet al., 1998) The

gold standard for the laboratorgcalein vitro production of vectors is the use of the packaging
cell ling human embryonic kidney (HE2QBT. Therefore, adheren293T cells are subjected to

triple transfection by above mentioned plasmids to commerfAV production.
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293T cells are a specialised cell line, and have been developed and commercialised for the use
in rAAVvector production. This immortalised cell line has been specifically modified by the
addition of humanAdenovirustype 5Elearly region coding DNANnd in turn provides E1A

and ElBhelper function(Grahamet al,, 1977) Therefore, an advantage of this transformation
allows for a immortalised cell line as perAsdncogene function, and the necessary el
function provided by EAQ &ans-acting function to upregulate viral promoters. Another
advantage of using a 298AV specialised cell line is the partial independence #al@novirus

or alternative helper virus infection, which improves the safetyfipgoof subsequent rAAV
vectors ¢ the risk of pathogenic contamination is ablated. Thenasnder minimal helper
function is provided by the aforementioned helper plasmid that provides the E2A, E4orf6
LINEGSAYa FYyR (GKS +! wb! @kagng teK hnd simullanedusSyt by S NB R

triple transfection with the AANtansgene andep/ capplasmids.

It should be noted that the transgene of interest is cloned into a vector backbone that
comprises the AAVETRs, and therefore the rep and cap ORFs haeen replaced completely.
With the removal of therep and cap coding sequences with intended transgene, the coding
capacity increases significantlx coding capacity of approximately 5kb in length is generated
with the replacement of thaep and cap genes. ThdTRs are maintained for theicisacting
functions in particle assembly (packaging of the recombinant AAV genome into preformed
empty capsids), and genome replication. Additionally, the discovery of different serotypes of
AAV (Rutledgeet al, 1998)promoted pseudotypingof rAAVvectors This meanthe capsid
encoding element of the recombinant systems derived from different serotypes, whereas the
ITR andrep gene were based on AAV2. This permitted a wide range of serotypically different
vectors to be praduced, and thus expandethe transduction potential of rAAV vectors

because pseudotyping particles provide a wide collective tropism.

1.3.3 RecombinantAAV vector productio

Scalable systems of rAAV production are currentlgémelopment However, an importat
consideration to take into account is the need to produce sufficient quantities of vector that
can be used for clinical use. This has been a-#tagding limitation in the history of rAAV
mediated gene therapy, but constant advancements have been dpedlto procure igher

and purer yields of rAAV

Generally speaking93T cells are grown and expandéd vitro. After which, triple transfection
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with three plasmids (encoding transgene acid- or trans- acting factas) is performed on
adherent 293T cells (Fig.1.8). A number of means can be utilised to promote the efficient
transfer ofplasmid DNA@to 293T cells, especially the use GhlciumPhosphateprecipitation
(Xiaoet al,, 1998) andpolyethylenimine (PE([Drittanti et al, 2001) and cationic lipid¢Lu et

al., 2008) The @lcium Phosphate precipitation method is widely used for largeale
production of rAAV attributable by the reagents costffective use in transfection 0293T

cells, especially with high transfection efficiency documented/ieyssneret al. (2001)(up to

90% transfer of exogenous DNA into cultured cells). It must be noted that for rAAV vector
production usingCalcium Phosphate or even other chemical methods of DNA transfer, the
process and coriions must be specially optimised. Additionally, consistency between
productions must be upheld to truly ensure reproducible and comparable AAV titres and
quality. Additional consideratiors are the viability and quality of cultured93T cellsand the
variation in protocols between established laboratori€onsistency in this respect is difficult

to achieve, with variation in chemical makeup of reagents and technique, culture conditions,
all of which can impact on rAAV vector production. Despite @Gkjum Phosphatemediated

triple transfectionhas shown to provide vector tits ranging from 1910° viral genomestell
(Aucoinet al, 2008) therefore showing a range of 186ld difference in infectious viral
genomes. This is a considerable difference to havectmant for, and one that has proven

difficult to narrow.
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Figure 18 Schematic of a@mmon AAV vector productiommethod by triple transfection. The triple
plasmid system to generate rAAV vectors in 293T, oablatE1A/Bexpressing cell lings illustrated.

The vector genome is encoded by one plasmid, and contains the gene of intedest ttenscriptional
control of a suitable promoter and polyA signal, all of which is flanked by FA¥2rhe second plasmid
(PAAVVRepCapkncodes AAV2 Rep protein, and Cap proteins for the desired AAV serotype. The third
plasmid (pHelper) contains E2, E4 and VMNAC¢ the minimal adenovirus factors required for AAV
replication. 293T cells are ultimately-tmnsfected, after which, A vectors can be harvesteBigure
adaptedfrom Ayusoet a. (2010)

Nonethelesstriple transfection results ithe production of rAAVand 72h posttransfection,

cells are harvested anigsed to recover rAAV vector§herefore,each cell treated musbe
transfected with eactof the three plasmids for vector production to occur. This transfection
pressure therefore restricts the efficiency of production on a-bgitell basis. Subsequent
purification of infectious rAAV vectors from empty capsids and cellular proteins is then
performed. For example purificatiowas most initially based on multiple rounds of caesium
chloride densitygradient ultracentrifugationHere, @esium chloride salts are able to form
gradients based on differential buoyancies. This generates differing equilibriums between
sample compositins when subjected to ultracentrifugatioWvhen viruses are treated with
caesium chloride salts and centrifuged, viruses are collectively separated from contaminants
and cellular constituents. In fact, where rAAV production involasnovirushelper, caeam
chloride densitygradient ultracentrifugation is capable of partitioning rAAV fréaenovirus
contaminants. Main disadvantages of this pudfion method must be considered; ¢se

include caesium chloride toxicity, which means downstream clinicalisidenited unless
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