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Abstract

Given a statistical model that attempts to explain the data, calculating the Bayes’

posterior distribution of the models parameters is desirable. The marginal likelihood

of the model is also of interest, which is used for model comparison. However, for

most applications, only estimates of these two measurements can be obtained with a

class of methods that give consistent estimates being Monte Carlo algorithms.

This thesis attempts to improve both the process in inferring a high-dimensional

posterior distribution and the corresponding model marginal likelihood, on the con-

dition that we can define an ordered set of statistical models in which deterministic

transformations between each adjacent model can be applied. We propose an adap-

tion of the sequential Monte Carlo algorithm, which we term the “transformation

Sequential Monte Carlo” algorithm. The key feature of this algorithm is by defining a

series of target distributions, that make use of said mentioned model transformations,

we aim to infer high dimensional models by using easier to estimate posteriors from

lower dimensional models with a model transformation applied.

Our proposed algorithm has advantages over many established MC methods.

One notable advantage is that we can tailor the algorithm if we wish to update a

posterior distribution by including additional observations, but these observations

also correspond to a new parameter set that needs to be inferred. Alternatively it

is useful where the parameter space can become too large to explore using basic

MC methods, for example if there exists an exponential or factorial relationship with

observation size and the number of discrete values, but using a lower dimensional

model and incorporating it into the model exploration assists with convergence.

We test these strengths of tSMC under three applications, which include two

population genetics applications being ancestral reconstruction under the coalescent

and the other being the Structure algorithm.
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Chapter 1

Introduction

1.1 Motivation and Framework

This thesis focuses on the Bayesian inference problem where we wish to consider

a statistical model that describes the data, y, with the ith observation of the dataset

defined by yi ∈ Y where Y is a sample space that contains the complete set of values

that yi can possibly have. Bayes’ inference involves inferring the posterior distribution

for the model parameters θ ∈ Θ, see section 1.2 of this chapter for an expanded

introduction, and for expedition purposes in this chapter we assume that Θ represents

a continuous multi-dimensional parameter space. We define the model likelihood of

the data as f(y|θ), the prior distribution as p(θ) and the posterior distribution as

π(θ|y) which is defined by

π(θ|y) = f(y|θ)p(θ)∫
Θ f(y|θ)p(θ)dθ . (1.1)

A common obstacle to obtain the exact form of (1.1) is solving the integral in (1.2)

representing the distribution of the data marginalised over the parameters, termed as

the marginal likelihood (ML),

Z(y) =
∫

Θ
f(y|θ)p(θ)dθ. (1.2)

1



Section 1.1 Page 2

Over the last few decades Monte Carlo (MC) algorithms, see section 1.3, have been

proposed that allow us to either estimate (1.2) or to bypass this formula to receive an

estimate of π(θ|y). As described in chapter 2, we may desire this marginal likelihood

as a measure to compare different models and see what provides the best model fit.

The algorithm we present in this thesis attempts to estimate the marginal likelihood,

but it was also primarily aimed for a particular situation in which we wish to use

Monte Carlo (as described below).

Suppose that for a particular model we are interested in the idea of sequentially

adding data observations over time and then updating the posterior distribution.

Under Bayes’ theorem when introducing a new set of observations y2 ⊂ Y , having

already found or estimated the posterior of π(θ | y1), then given (1.1) we can find the

posterior distribution for the combined data y = {y1, y2} proportional to

π(θ | y) ∝ π(θ | y1)f(y2 | θ, y1), (1.3)

where (1.3) is known up to a normalising constant. If we knew the exact form of the

posterior distribution then it is trivial to calculate it with the new data, however since

this may not be achievable then again we are dependent on Monte Carlo methods. The

most standard Monte Carlo methods, such as Markov chain Monte Carlo (MCMC)

does not allow us to update a Monte Carlo estimate of π(θ|y1) with y2, we specifically

explain why in section 1.4, and we would be forced to have a completely new run of

this algorithm.

However through methods such as particle filters or sequential Monte Carlo

(SMC), to be further discussed in sections 1.5 and 1.6 of this chapter, it is possi-

ble to obtain an estimate of (1.3) by updating π(θ|y1) with y2. This type of inference

is useful on the condition that the posterior of π(θ|y) is more similar to π(θ|y1), in

comparison to the prior distribution of p(θ).

Furthermore we consider the scenario where adding one observation would in-

2
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crease the number of parameters by at least one parameter. If the observations and

parameters are distributed by a state space model then we can apply particle filters,

described in section 1.6.1, however we are interested in applications which cannot be

expressed this way. We would have to consider a proposal that proposes extra param-

eters additional to those already present, see chapter 2 for a review on some of these

methods.

In this thesis we will describe an algorithm that will ideally start with a low-

dimensional model and move to a higher dimensional model, while also providing a

solution to devising accurate proposals by inferring a sequence of posterior distribu-

tions that eventually targets the true target distribution.

We believe the algorithm is best applied when there is a direct relationship be-

tween the size of the observations and the number of parameters in a model. For

example where gradual sets of observations are submitted over some real-world time

period, where separate Monte Carlo runs would be needed for the different sets of

data because of the stated relationship between the model and observations. An ap-

plication of how our proposed algorithm may be used this way is shown in chapter

4.

Furthermore it is useful in high dimensional models when an initial proposal

is difficult to devise, but easier to construct under a low-dimensional model. By

starting from a simpler model we aim to gradually build up to a high-dimensional

model providing that the posteriors of two high-dimensional models are very similar.

Chapter 3 and 5 exploit this sole condition alone and do not take into account an

incrementally increasing observation size. For the remainder in chapter 1 we give a

basic introduction to the Bayesian inference problem and how Monte Carlo methods

attempt inference of the posterior distribution. Much of what is discussed in this

chapter is considered general statistical knowledge with exceptions including the niche

class of particle filters, SMC samplers and associated properties which we do reference.

We recommend the following sources; Andrieu et al. (2003); Bernardo and Smith
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(1994); Chib and Greenberg (1995); Doucet and Johansen (2011); Liu (2004); Mackay

(2003); Robert and Casella (2004); Roberts and Rosenthal (2004); Särkkä (2013);

Tierney (1994). The remaining chapters give the following contributions.

Chapter 2 gives a brief introduction to model comparison techniques, introduces

Reversible jump Markov chain Monte Carlo (RJMCMC) and explains the key com-

ponents that we apply to our algorithm. This chapter introduces our proposed al-

gorithm of “transformation sequential Monte Carlo” (tSMC), including the strengths

and weaknesses of the algorithm, the extensions to tSMC to improve posterior infer-

ence, how results should be interpreted and how it has advantages over other standard

model-transitions algorithms.

In chapter 3 we apply tSMC in inferring the posterior distribution of a series

of univariate Gaussian mixture models. By using this application we investigate the

tSMC algorithm extensions, as mentioned in chapter 2, on the general algorithm

before deciding whether the said adjustments are appropriate to be used in chapters

4 and 5.

In Chapter 4 we present a tSMC adaption for genealogy reconstruction under

coalescent theory and describe the model assumptions made in our applied example.

We discuss how it can compete/coexist with other maximum likelihood or Monte

Carlo based methods.

Finally in chapter 5 we describe the Structure application in relation to Dirichlet

Process mixture models. We propose how these class of algorithms can be adapted

into tSMC and how gradually increasing the number of populations can be achieved

through tSMC (in comparison to increasing the number of parameters).

1.2 Bayesian Statistics

Bayesian theory has origins in Bayes and Price (1743), which primarily was an

analysis and discussion on the probability of an event occurring given the data. Given
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some data y ∈ Y , we define a statistical model for the data. In comparison to

frequentist statistics we claim uncertainty on the true values of each of the model

parameters, θ, by design. For purposes of exposition we let θ be a continuous random

vector of θ ∈ Θ ⊂ Rd where d is the dimensional size of θ. The posterior distribution,

π(θ|y), is the distribution of the parameters after data has been introduced. We also

define a prior distribution, p(θ), which is based on the prior information of θ that is

commonly based from model assumptions given the research field. When knowledge

of a parameter relating to some physical system is established, we can assume an

informative prior which accurately represents our prior knowledge of θ. They might

have strong cut-off points that give minuscule probabilities for improbable values,

and thus they concentrate the potential posterior distribution on a smaller range of

values. Alternatively if we have little information on θ we may choose to assign a

weakly informative prior, characterised by long distributional tails and weaker peaks

of probability density (a more flat density). An example of a non-informative prior

are “Jeffreys priors” (Jeffreys, 1946) which are invariant to any transformation of the

parameter set, which means that should a transformation be applied to a parameter

then the new prior can be constructed by using the “change-of-variables” formula on

the untransformed prior distribution (if not invariant you would have to invent a new

prior based on model assumptions). Although the weaknesses with Jeffreys priors are

depending on the application the prior has a chance of being an improper prior, which

is a prior that is not normalised and whose probability distribution does not sum to

one which may also lead to improper posterior distributions. Furthermore Jeffreys

priors are harder to use and solve in high-dimensional models. We also note that

the priors have hyper-parameters where we could assume additional uncertainty by

setting hyper-priors on a subset of these hyper-parameters, which are usually applied

to account for additional group differences depending on the data and/or model.

These type of models can be termed as “Hierarchical Bayesian models”.

As briefly mentioned in section 1.1 the posterior distribution in equation (1.1) is
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derived from the likelihood and prior. It requires equation (1.2) to be evaluated but

this integral can be intractable to solve, notably for high-dimensional problems. It is

possible to avoid such a calculation of the marginal likelihood using conjugate priors,

where the prior-likelihood combination gives a posterior that has the same distribution

as the prior. However it is usually an option only for the simplest of prior-likelihood

relationships and not for the applications shown in chapters 3-5, which consider high-

dimensional parameter space.

A class of methods that could approximate this integral are “numerical methods”,

which consider splitting the complete parameter space of a marginal parameter into

a large number of N intervals segments and estimating the integral by combining

estimates of the integral in these smaller intervals. However these methods scale very

poorly in high dimensions. Overall when assigning N interval segments per dimension

d for each integrand the computational cost is proportional to O(Nd).

Otherwise we could consider Laplace’s approximation (which we make use of in

chapter 4) to estimate the normalisation constant. Given that we wish to estimate∫
Θ π(θ)dθ, we first Taylor-expand around the log of π(θ) defined by

˜log(π(θ)) = log(π(θ̃))− 0.5(θ − θ̃)TH(θ − θ̃), (1.4)

where θ̃ is the maximum a posteriori (MAP) of θ, being the value that maximises the

posterior distribution, and H is the Hessian matrix given by

Hij = − ∂2

∂θi∂θj
log(π(θ))

∣∣∣∣∣
θ=θ̃

. (1.5)

By taking the exponential of the Taylor expansion in (1.4) we note that

π̃(θ) = π(θ̃)exp(−0.5(θ − θ̃)TH(θ − θ̃))

∝ exp(−0.5(θ − θ̃)TH(θ − θ̃)), (1.6)

which is a density of Normal(θ|µ = θ̃, τ = H), where µ and τ is the mean and precision

6
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respectively of a Gaussian distribution, so estimates of π(θ) can be sampled from this

distribution. The approximation of (1.2) is given by the normalisation constant of

said Gaussian distribution defined in (1.7),

˜∫
Θ
π(θ)dθ = π(θ̃)

√√√√ (2π)d

det|H| , (1.7)

where “det” defines the determinant of a matrix. Depending on the application

it is usually recommended that π(θ) is expressed in the form of exp(η(θ)), where

η : Θ → Rd being a function on the parameter space of θ, such that we can obtain

a Gaussian approximation through Laplace’s approximation. However it may not

always be possible for certain unnormalised posteriors to be defined through a Tay-

lor expansion, for example if discrete parameters are present then it is not possible

to apply Laplace’s approximation. The Laplace approximation to the normalisation

constant is not invariant should a nonlinear transformation be applied to θ, i.e the

method is basis-dependent and we would have different estimates for the marginal

likelihood. Finally the approximation is only appropriate when the posterior is justi-

fiably Gaussian distributed and is not multi-modal.

Our focus then shifts onto Monte Carlo techniques to obtain an approximation

for π(θ|y), which either lack the weaknesses or at least is not as hard to use in high

dimensions in comparison to numerical methods or Laplace approximations.

1.3 Monte Carlo Methods

In this section we give a basic introduction to the theory and convergence proper-

ties of Monte Carlo (MC) algorithms. Although MC methods can be used for different

applications, for example they can be used for numerical optimisation, we focus on

the class of algorithms regarding integral estimation.

The first Monte Carlo methods were developed within the 1940s, with the very

first paper on the subject published by Metropolis and Ulam (1949). The first form

7
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of the Markov chain algorithm, the Metropolis algorithm, was developed by Metropo-

lis et al. (1953) which focused on particle physics applications but only considered

symmetric proposals on some function. They also emphasised certain properties

that allow for a convergence to a stationary distribution (explained in section 1.4).

The Metropolis-Hastings algorithm by Hastings (1970) was a generalised form of the

Metropolis algorithm which also allowed for non-symmetric proposals and described

the target distribution as an invariant distribution of the Markov chain. Afterwards

Gibbs sampling was introduced as a special case of the Metropolis Hastings algorithm

in Geman and Geman (1984), based on earlier research by Josiah Gibbs in the early

1900s. Despite the introduction of these stated Markov chain Monte Carlo methods in

the 1970s-1980s, widespread use was restrained by poor computer processing power.

However after several research papers, notably starting with both applied and sug-

gested applications in Gelfand and Smith (1990) such as the Exchangeable Poisson

model, an increase of computational power from new systems and the introduction of

BUGS software (Bayesian Inference using Gibbs Sampling, Lunn et al. (2009)) were

the advantages of using MCMC fully displayed. The complete history of MCMC is far

more complex than stated in this thesis, where there existed additional developments

similar to the stated research that are less popular, and we would recommend more

advanced discussions by Hitchcock (2003); Robert and Casella (2011); Tanner and

Wong (2010).

MC methods provide a solution to estimate integrals of the form
∫

Θ η(θ)π(θ)dθ

where η : Θ → Rd is some function on the parameter space of θ, and π : Θ → Rd

is a probability density of θ. Notably the integral form of the marginal likelihood,

stated in (1.2), can be expressed this way where η(θ) = f(y|θ) and π(θ) is the prior

distribution p(θ). Alternatively where η(θ) = θ and π(θ) is the posterior distribution

of π(θ|y), this integral is the posterior expectation.

A standard MC approximation involves drawing N independent samples of θ =

{θ1, ..., θN} which are sampled from π(θ). Directly sampling from the target distribu-
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tion is termed “Perfect Monte Carlo Sampling”, and thus we use the approximation

in (1.9) to receive an unbiased estimate of the integral,

Eπ[η(θ)] =
∫

Θ
η(θ)π(θ)dθ, (1.8)

Êπ[η(θ)] = 1
N

N∑
i=1

η(θi). (1.9)

Consider the Dirac measure δ on the sample, in which δθ(i)(θ) is equal to one when

θ(i) = θ and zero everywhere else. An empirical estimate of the target distribution,

when η(θ) = θ, can be calculated by taking a weighted sum of Dirac measures, in the

basic MC algorithm we assume they all have equal probability, defined by

π̂(θ1:N) = 1
N

N∑
i=1

δ
θ

(i)
1:N

(θ1:N). (1.10)

However the clear weakness with this most basic MC algorithm is that it requires

that sampling from π(θ) is feasible. In the cases where it is not feasible we focus on

alternative MC methods which will be explained within the rest of this chapter.

Before these alternative MC solutions are discussed we should note several con-

vergence properties regarding (1.9) and (1.10). By the “law of large numbers”

1
N

N∑
i=1

η(θi) →
∫

Θ
η(θ)π(θ)dθ, (1.11)

as N → ∞ and again each θi was sampled from π(θ). We note that (1.11) follows

the strong law of law numbers and converges almost surely to its target (and thus

it converges in probability). Overall (1.11) states that the estimator is “consistent”,

meaning that as N increases then the estimator of (1.9) will eventually converge to

what it is aiming to estimate. Furthermore the central limit theorem states that

Êπ[η(θ)]− Eπ[η(θ)] → Normal
µ = 0, τ =

(
σ2

N

)−1
 , (1.12)

where µ and τ is the mean and precision respectively of a Gaussian/normal distribu-

9
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tion, as N → ∞ and σ2 = Varπ[η(θ)] < ∞. Equation (1.12) states that the Monte

Carlo estimate Êπ[η(θ)] converges in distribution to a Gaussian distribution with mean

Eπ[η(θ)] and variance σ2/N . Overall using (1.11) as an estimate to the integral gives

an unbiased estimator, with E
[
Êπ[η(θ)]

]
− Eπ[η(θ)] = 0, where E

[
Êπ[η(θ)]

]
is the

expectation of the estimate Êπ[η(θ)] given a large number of similar Monte Carlo

algorithm runs that infer the same target distribution.

We would also consider the non-negative mean squared error (MSE), being the

square of the errors, where we define it in the form

MSEπ[Ê[η(θ)]] =
(
E
[
Êπ[η(θ)]

]
− Eπ[η(θ)]

)2
+ Var

[
Êπ[η(θ)]

]
, (1.13)

where Var
[
Êπ[η(θ)]

]
is the variance, also known as the “Monte Carlo variance”, of the

estimate Êπ[η(θ)]. It may be used to determine how efficient the Monte Carlo esti-

mator of Eπ[η(θ)] is, where we aim to minimise the MSE by ensuring that the Monte

Carlo variance is as low as possible. The “bias” is termed as
(
E
[
Êπ[η(θ)]

]
− Eπ[η(θ)]

)
where if we cannot obtain an unbiased estimator, as explained earlier, we at least de-

sire for this value to be as minuscule as possible.

The class of Monte Carlo methods allow us to sample from π(θ) if this target

distribution has a non-standard distribution. One of the simplest examples of such

an algorithm is “rejection sampling”. The basic premise is given π(θ), which might

not be known up to a normalisation constant, instead of sampling from it we consider

an easy to sample distribution g(θ). We also set R ∈ R+ such that π(θ) < R × g(θ).

At each state we sample from g(θ) and u ∼ Unif(0, 1), and we accept θi as part of

the Monte Carlo sample if u < π(θi)/(R × g(θi)). This process is continued until an

appropriately sized Monte Carlo sample is collected. However it is not a practical

method for high dimensional problems as trying to find the best possible R × g(θ)

that follows the overall gradient or shape of π(θ), while still only marginally above the

target distribution for all θ, is not an easy or potentially possible task. For example if

10
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a large R is required for π(θ) < R×g(θ) for a high dimensional θ then the probability

of an accepted proposal is approximately 1/R which has the potential to be a very

small probability depending on the size of R (Andrieu et al., 2003).

Alternatively a sample may be obtained through a different Monte Carlo method

that considers the Markov chain family of algorithms, the core details are explained

in the next section. We would also extend to other popular forms of Monte Carlo

methods including Importance Sampling and sequential Monte Carlo in sections 1.5

and 1.6 respectively.

1.4 Markov Chains and Markov Chain Monte Carlo

Consider a stochastic process, or random process, which is a series of random

variables (θ0, ..., θN) indexed by some time scale set (0, ..., N). The process is used

to model the changes of a system of variables in time. We also briefly note that we

define θ0 to represent some initial value for the stochastic process, and we use the

notation more often when using other algorithms that only consider some time index

(we change the notation again when we start to use ‘particles’ in the later sections).

The only time index we consider is a discrete time process (0, ..., N) ⊂ Z+, where each

θi stays in their state for exactly one unit of time. If we can go by the assumption

that the conditional distribution of θi given all of its past states of θ0, ..., θi−1 is the

same as the conditional distribution dependent on θi−1 only, and not on any past or

future states, then the joint probability of the random variables can be given by

Pr(θ0, ..., θN) = Pr(θ0, ..., θN−1)× Pr(θN |θ0, ..., θN−1)

= Pr(θ0)
N∏
i=1

Pr(θi|θ0, ..., θi−1)

= Pr(θ0)
N∏
i=1

Pr(θi|θi−1), (1.14)

11
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this is also known as the “memory-less” property. We consider this class of stochastic

processes known as Markov processes and focus on discrete time Markov processes,

or Markov chains as they are usually called, which apply the type of kernels shown in

(1.15). We propose each θi sequentially using the transition kernel, based on (1.14),

K(θi−1, θi) = Pr(θi|θi−1). (1.15)

Specifically these are time homogeneous Markov chains as all conditional probabilities

are independent of the time index such that

Pr(θi+j|θi+j−1 = R) ≡ Pr(θi|θi−1 = R), (1.16)

for j ∈ N and R ∈ Rd. Furthermore we state that a Markov chain has a stationary

distribution if there exists a distribution π (also termed as an invariant probability

distribution) such that,

π(θi) =
∫

Θ
π(θi−1)K(θi−1, θi)dθi−1. (1.17)

Furthermore π is the limiting distribution of a Markov chain if no matter what state

we start in the chain, the current distribution will eventually converge to π as the

number of applied kernels go to infinity,

π = limN→∞Pr(θN = R|θ0). (1.18)

A Markov chain Monte Carlo (MCMC) algorithm is where the Markov chain is con-

structed in such a way that some desired target distribution, that we wish to infer,

is the chains limiting distribution. Therefore given that all marginal points are even-

tually sampled from the same target distribution we aim to obtain a dependent MC

sample from a Markov chain. Three conditions need to be satisfied in order to ensure

this, and we consider them as general guidelines when constructing Markov kernels

12
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used in this investigation. The first condition is that π is the stationary distribution

of the chain.

The second condition regards if each state is “irreducible”. At a current state, and

has to hold true for all states, it is possible to reach any other state in the parameter

space through a finite number of Markov transitions, e.g in the discrete time case

∃i′ > i such that Pr(θi′ = R′|θi = R) > 0 . For example it is possible to move from

say R to R′ within i′ − i kernel moves.

Finally the Markov chain must not get stuck in a cycle of revisiting the same states

of the chain in multiples ofm iterations, i.e the chain must be “aperiodic”. For example

given a series of subsets (Θ0, ...,Θm) ⊂ Θ,m ∈ N+ with Θ representing the parameter

space for all θ. Then periodicity exists if at a certain state Pr(θi ∈ Θj|θi−1) = 1 for

all θi−1 ∈ Θj−1 and i, j ∈ N, and furthermore Pr(θi ∈ Θ0|θi−1 ∈ Θm) = 1.

We consider the differences between the estimated distribution generated from a

Markov chain and the true target distribution through the total variation distance,

||Kn(θ,Θ)− π(θ)||TV = supΘ|Kn(θ,Θ′)− π(θ)|. (1.19)

A limiting distribution in the Markov chain implies convergence in total variation

distance, i.e

limn→∞||Kn(θ,Θ)− π(θ)||TV = 0. (1.20)

Under the weaker conditions of irreducibility and π being a stationary distribution, a

Strong Law of Large Numbers holds. Under some additional conditions a central limit

theorem holds, with the σ2 term (seen in (1.12)) when using Markov chains (Jones,

2004) defined by

σ2 = Var[E[η(θ0)]] + 2
∞∑
i=1

Cov(E[η(θ0)], E[η(θi)]). (1.21)

One way of ensuring stationarity with respect to π is to chose a Markov chain kernel
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such that it fulfills the sufficient condition termed the detailed balance formula,

π(θi)K(θi, θi−1) = π(θi−1)K(θi−1, θi). (1.22)

A chain that satisfies detailed balance with respect to the target distribution π implies

that π is a stationary distribution of the chain. It is an easy condition to check, and

therefore is used in the construction of most MCMC algorithms. Overall MCMC has

a minimum computational cost of O(N).

However if we refer back to equation (1.3), the reason we cannot solely use MCMC

to update a posterior distribution with more observations is because the stationary

distribution must be exactly the same within each state of the chain but increasing or

decreasing the number of observations will change the stationary distribution. There-

fore we can’t, for example, define each state of the chain to differ by the number of

observations. Therefore we consider importance sampling solutions, as seen in sec-

tions 1.5 and 1.6. Before discussing these methods, we give a brief introduction to

two of the most common MCMC algorithms and their corresponding kernel moves.

1.4.1 Gibbs Sampler and Metropolis-Hastings Algorithm

Suppose we define θ as d-dimensional where each marginal parameter is defined

by θj, and θ−j representing the joint set of parameters that does not include θj. Gibbs

sampling can be performed if we can obtain full conditionals on each parameter i.e

f(θj|θ−j). The Gibbs sampler algorithm is displayed in algorithm 1, where q(·) is a

simple to sample from distribution, and uses the kernel

K(θi−1, θi) =
d∏
j=1

π(θij|θi−j). (1.23)

Otherwise an algorithm that is applied more widely than Gibbs sampling is the

Metropolis Hastings algorithm, shown in algorithm 2.
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Algorithm 1 Standard Gibbs Sampling Algorithm
Set variable ordering of θ1, θ2, ..., θd
Set chain length N
θ0 ∼ q(·)
for i = 1 : N do

for j = 1 : d do
θij ∼ π(θij|θi−j)

end for
end for

Algorithm 2 Standard Metropolis Hastings Algorithm
Set chain length N
θ0 ∼ q(·)
for i = 1 : N do

θ̃i ∼ q(· |θi−1)

α(θi−1, θ̃i) = min
{

1, π(θ̃i)q(θi−1|θ̃i)
π(θi−1)q(θ̃i|θi−1)

}
u ∼ Unif(0,1)
θi = θ̃i if u < α(θi−1, θi), otherwise set θi = θi−1

end for

The transition kernel of Metropolis Hastings is given by

K(θi−1, θi) = q(θi|θi−1)α(θi−1, θi)

+ (1−
∫

Θ
q(θi|θi−1)α(θi−1, θi)dθi)δθi−1(θi), (1.24)

where q(θi|θi−1) is a simple to sample from distribution that uses parameters from a

previous iteration and α(θi−1, θi) is the function of the acceptance probability that

the value proposed for θi will be the next iteration given the previous iteration of

θi−1. For further proofs regarding how this kernel fulfills the criterion of the detailed

balance equation or how the acceptance probability function shown in algorithm 2

is designed to satisfy detailed balance, see Chib and Greenberg (1995); Roberts and

Rosenthal (2004). The success of the convergence depends on the proposal q(·|θi−1),

and a balance of the proportion of accepted proposals has to be considered. If the

proposal has a large variance then many of the moves will be rejected which leads to
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high correlation of the sampled chain. Otherwise if the variance is too small then the

chain will explore the distribution slowly and may not visit multiple modes if these

are present in the target distribution. A basic example of such proposal distributions

includes the independent sampler, q(·|θi−1) ∼ q(·), which has no dependency on the

previously iterated state. Another example is the random walk sampler where the

proposal is centered on θi−1, e.g Normal(µ = θi−1, τ) being a Gaussian distribution,

or Unif(θi−1 − 1, θi−1 + 1) being a continuous uniform distribution. Due to the form

of algorithm 2 it is possible to sample from π while only knowing its distribution up

to a normalisation constant, which makes the Metropolis Hastings algorithm a very

viable solution to applications that apply Bayes’ theorem.

1.5 Importance Sampling

Importance sampling (IS) is another Monte Carlo method which is given special

attention as sequential Monte Carlo techniques, described in the next section, build

on top of importance sampling. Similarly to rejection sampling, instead of simulating

directly from π(θ) we consider a simple to simulate proposal distribution g(θ) which

is similar to the target distribution. Here we use the term “particles” to explain

the complete set of proposals for the target distribution, see Annealed Importance

sampling which is explained later within this section as to how changes to the initially

generated particles can be proposed. Furthermore the ith particle is defined as θi in

comparison to section (1.4) where we used it to represent the ith state within a Markov

chain. A rearrangement of (1.8) and (1.9) gives us

Eπ[η(θ)] =
∫

Θ
η(θ)π(θ)

g(θ) g(θ)dθ

= Eg

[
η(θ)π(θ)

g(θ)

]
(1.25)

Êg

[
η(θ)π(θ)

g(θ)

]
= 1

N

N∑
i=1

η(θi)w̃(θi), (1.26)

16



Section 1.5 Page 17

providing that the normalisation constant for π(θ) is known (see (1.28) when it is

unknown). We define each w̃(θi) = π(θi)/g(θi), w̃i > 0, as an unnormalised im-

portance weight with the normalised IS weights defined by w̃(θi)/N . This proposal

distribution should be as close to the shape of π(θ), as the variance of the importance

sampling estimator is proportional to 1 + Varg(w̃(θi)). It is highly advisable to set

g(θ) to be more heavy-tailed than π(θ) to prevent the risk of having estimators with

infinite variance (Robert and Casella, 2004). Where the target distribution is only

known up to a normalisation constant, such as in Bayes’ problems, we would need

consider an alternative formulation. Given that the normalisation constant is defined

by
∫

Θ π(θ)dθ for an unnormalised π(θ) (as the integral would be equivalent to 1 if it

was normalised) then we rewrite the approximation as,

Eπ[η(θ)] =
∫

Θ
η(θ)

(
π(θ)
g(θ) g(θ)

)
(∫

Θ
π(θ)
g(θ) g(θ)dθ

)dθ

=
Eg

[
η(θ)π(θ)

g(θ)

]

Eg

[
π(θ)
g(θ)

] (1.27)

Êπ[η(θ)] =

1
N

N∑
i=1

η(θi)w̃(θi)

1
N

N∑
i=1

w̃(θi)

=
N∑
i=1

η(θi)w(θi), (1.28)

with a normalised importance weight of w(θi) = w̃(θi)/
N∑
i=1
w̃(θi). Thus importance

sampling is a viable solution for posterior distribution estimation. We note that

although (1.28) is asymptotically unbiased, it is biased for a finite sample in compar-

ison to (1.26) which is an unbiased estimator regardless of the size of N . A weighted
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empirical estimate of the target distribution can be obtained via,

π̂(θ1:N) = 1
N

N∑
i=1

w(θi)δθi(θ1:N). (1.29)

Otherwise IS continues to follow the standard MC convergence properties as described

in section 1.3. However a challenge with using importance sampling is trying to devise

a proposal distribution for high dimensional distribution, as with more parameters to

infer means a smaller probability of the parameters simultaneously being in areas of

high probability.

One adaption of importance sampling methods that works better in high dimen-

sions is “annealed Importance Sampling” (AIS) (Neal, 2001). The appeal of AIS is

that we try and close the distance between the initial particles θ0 ∼ η(·), which is

easy to sample, and the target θT ∼ πT (·). Although AIS could be explained from

Neal (2001), we explain the algorithm as described by Tokdar and Kass (2010) as

this variant is far more similar to sequential Monte Carlo samplers (shown in section

1.6.3).

Note that when describing a particle in AIS we use θit to represent a parameter

at the ith particle within time t of a time index, and sometimes we may use θijt to

represent the jth dimension of said particle if θit is multidimensional. We use this

notation for this algorithm and when using any SMC algorithm (see the next section)

throughout the rest of the thesis.

Given that the initial set of particles has been generated via θ0 ∼ η(·), we

move the particles θ0 to θ1 by applying some kernel function K1(θ0, θ1) which tar-

gets an intermediate distribution ρ1. This is repeated by applying individual ker-

nels Kj(θj−1, θj), where these kernels could be MCMC updates, which target ρj(·)

to receive each θj before finally targeting θT . We could define these intermediate

distributions via an annealed geometric scheme of ρt = (η(θ))1−ϕt(πT (θ))ϕt for some

(ϕ0 = 0, ϕ1, ..., ϕT = 1), such that each ρt−1 ≈ ρt. Each unnormalised importance
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weight is then given by

w̃i = ρ1(θi0)
ρ0(θi0)

ρ2(θi1)
ρ1(θi1) ...

ρT (θi(T−1))
ρT−1(θi(T−1))

. (1.30)

However a weakness with AIS is that it suffers from particle degeneracy, an attribute

that is explained in section 1.6.2.

1.6 Sequential Monte Carlo

The standard sequential Monte Carlo (SMC) sampler algorithm has flexibilities

that give it an advantage when applied with Bayesian inference in comparison to both

importance sampling and MCMC based algorithms, which we also remark in section

1.7. Before discussing sequential Monte Carlo samplers, which is used as the general

framework for our proposed methods in this investigation, we first discuss Bayesian

filtering as an introduction to the concept of particle filters. The importance of

resampling is also explained. Finally sequential Monte Carlo samplers are introduced.

1.6.1 Sequential Bayesian Filtering for the State Space Model

We give a brief explanation of the state-space model, also known as hidden

Markov models (HMM), of

θ0 ∼ p0(·)

θt ∼ p(·|θt−1)

yt ∼ f(·|θt), (1.31)

where each θt and yt is indexed to some discrete time t ∈ (0, ....T ), specifically the

time index for the second equation is (1, ...T ) and for the third equation is (0, ..., T ),

and we assume that their corresponding densities are homogeneous (i.e independent
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from the time index). Here p0(·) is our initial distribution to generate θ0, p(·|θt−1)

is a Markov transition kernel, and both f(·|θ0) and f(·|θt) are the distributions for

observations y0 and yt respectively. While we know the values of the observations

y0:T , we do not know the true values of the hidden variables θ0:T . Therefore we aim

to estimate the distributions of these hidden variables via

π(θ0:T |y0:T ) = f(y0:T |θ0:T )p(θ0:T )
Z(y0:T ) . (1.32)

As stated in section 1.2, we have the standard problem of the normalisation constant

Z(y0:T ) having an intractable integral. Naturally the joint distribution of π(θ0:T |y0:T )

may be simulated through MCMC. We could simulate the joint and dependent pa-

rameter set θ0:T in one proposed MH move, but devising a single high-dimensional

proposal would be difficult as simultaneously proposing each θt to their respective

probability modes becomes harder with increasing T . Alternatively we could perform

MCMC updates on blocks of the state space of length L ∈ {1, ..., T} and targeting

π(θt:(t+L)|y0:T , θ0:(t−1), θ(t+L+1):T ) ∝
t+L+1∏
i=t

pi(θi|θi−1)
t+L∏
i=t
f(yi|θi), (1.33)

providing that L is sufficiently small enough such that a good proposal is made.

However this is not likely to be a good strategy if the posterior dependence between

states is strong, and setting L to be small can increase the computational cost if the

observation size is large (Andrieu et al., 2010). It is possible to simulate exactly from

π(θ0:T |y0:T ) when the models are finite state space HMM (Doucet and Johansen, 2011;

Frühwirth-Schnatter, 1994). Alternatively it is also possible to simulate exactly if pt
and ft are Gaussian distributed and linear, for example this is the foundation for the

Kalman Filter algorithm (Doucet and Johansen, 2011; Kalman, 1960).

However a good strategy for the general case, that does not have the drawbacks

of the stated MCMC solutions, is to obtain a sequential set of the estimated densi-

ties using the particle filter (Gordon et al., 1993). The term “filtering” regards to
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how we estimate the current state of a chain using the past history of the chain,

where we estimate π(θ0:t|y0:t) by updating our estimate of π(θ0:(t−1)|y0:(t−1)). Oth-

erwise “smoothing” is its corresponding counterpart, where we target π(θ0:T |y0:T ) or

the marginal distributions of π(θt|y0:T ) given that we have access to the observation

states of y0:T . In general, particle filters are exclusively used for state space models

and nonlinear filtering applications (Doucet and Johansen, 2011; Särkkä, 2013).

In the particle filtering algorithm we firstly approximate the posterior distribution

of π0(θ0|y0) using importance sampling, with q0(θ0|y0) as our importance sampler using

a defined particle size N . This yields an unnormalised importance weight of

w̃(θ0) = f(y0|θ0)p0(θ0)
q0(θ0|y0) , (1.34)

and the weights are used as shown in section (1.5) to obtain the estimated posterior

distribution and other summary statistics for π(θ0|y0).

At the next time index at t = 1 we would consider the joint target distribution

of π(θ0:1|y0:1), where π(θ0:1|y0:1) ∝ [π(θ0|y0)] [f(y1|θ1)p(θ1|θ0)] and the importance

sampler proposal of q(θ0:1|y0:1) ∝ q0(θ0|y0)q1(θ1|y0:1, θ0) is applied to formulate the

next unnormalised importance weight of,

w̃(θ1) = f(y1|θ1)p(θ1|θ0)
q1(θ1|y0:1, θ0)

f(y0|θ0)p0(θ0)
q0(θ0|y0) . (1.35)

From (1.35) we are using a proposal of qt−1(θ0:(t−1)|y0:(t−1), θ0:(t−2)) to help construct

a proposal for π(θ0:t|y0:t), although there is usually no need to use the most elements

of the set {y0:(t−1), θ0:(t−2)} to construct a proposal qt(θt|y0:t, θ0:t−1) except for niche

applications (Doucet and Johansen, 2011). Therefore by using multiple importance

sampling updates we have a standard particle filter given in algorithm 3.

The optimal proposal (Doucet and Johansen, 2011) for the particle filter, which

is usually not available, to minimise the variance of the importance weights is given
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Algorithm 3 Standard Particle Filter without resampling (see section 1.6.2 for dis-
cussion on resampling)

Set Particle Size N
Set Markov Chain Length T
for i = 1 : N do

θi0 ∼ q0(·|y0)

w̃(θi0) = f(y0|θ0)p0(θ0)
q0(θ0|y0)

end for
for i = 1 : N do

w(θi0) = w̃(θi0)/
N∑
i=1
w̃(θi0)

end for
for t = 1 : T do

for i = 1 : N do
θit ∼ qt(·|y0:t, θ

i
0:(t−1))

w̃(θit) = w(θit−1)f(yt|θit)p(θit|θit−1)
qt(θit|y0:t, θi0:(t−1))

end for
for i = 1 : N do

w(θit) = w̃(θit)/
N∑
i=1
w̃(θit)

end for
end for
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by

qt(θt|y0:t, θ0:(t−1)) = p(θt|yt, θt−1)

= f(yt|θt)p(θt|θt−1)
Z(yt|θt−1) . (1.36)

However we may desire to use the methodology used for filtering in alternative situa-

tions. In section 1.6.3 we use methodology based on particle filters to simulate from

the posterior on a set of static parameters of θT . Before we explain this in section

1.6.3, we first remark on resampling in section 1.6.2 and why we should almost always

use it for any particle filtering algorithm.

1.6.2 Resampling

After multiple sequential weight updates in SMC methods, weight degeneracy

will occur because of increasing variance of the importance weights due to the grow-

ing distance between the importance sampling proposal and the target distribution

(Doucet et al., 2000; Gordon et al., 1993; Kong et al., 1994). As the time index

t continues to infinity it is guaranteed that one particle will contain all the weight

(Doucet et al., 2001). Thus degeneracy leads to an estimated distribution that is not

representative of the target distribution.

Therefore it is recommended to include a resampling step for both particle fil-

ters and SMC algorithms. If the particles are showing excessive degeneracy then the

particles, and their corresponding ancestry and weights, are resampled to obtain a

new set of particles of θ̃1:N
k . Resampling methods involve removing particles with low

weights and replacing them with replicates of existing particles whose corresponding

weights are large, thus the term “resampling” meaning that an estimate of the pos-

terior density is being sampled (Doucet et al., 2001). Resampling itself also increases

the variance of the posterior estimates. Thus we avoid resampling at every step and

only perform it when enough weight degeneracy has occurred.
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An illustration of resampling within the particle filter is shown in figure 1.1,

represented in the four steps. In step 1 we sample from a distribution q0(θ0|y0) that

estimates the posterior distribution of π(θ0|y0). In step 2 the particles are weighted,

using (1.34), with some particles clearly having more weight then others. In step 3

a resampling algorithm is initiated to duplicate particles, with the variation of the

resampled particles varying depending on the resampling algorithm itself but most

schemes always favour high weighting particles, and afterward the particles are set

to have equal weights. Finally in step 4 a proposal q1(θ1|θ0, y0:1), which uses the

resampled particles as part of the proposal, is made that estimates the marginal

posterior distribution of θ1 and this is followed by reweighting the particles, given in

(1.35), that gives particle weights corresponding to π(θ0:1|y0:1).

Figure 1.1: An illustration of resampling within the particle filter, where 9 particles are
considered and we are assuming that we are estimating a one dimensional parameter
at each indexed time. In this example, what can be seen is that some very low
weighted particles are replaced.
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One common way to measure degeneracy is by calculating the effective sample

size (ESS), which takes values between 1 and N , defined as,

1
N∑
i=1

(
w̃i(θi)

)2
. (1.37)

A predefined threshold is set, and one which will be used when applying such algo-

rithms in the investigation, in which we set it to half of the particle size (Doucet and

Johansen, 2011). If the ESS is below this threshold then resampling will be performed.

There are many types of resampling schemes, however “stratified resampling”, see

algorithm 4, will be applied throughout the investigation. The concept of stratified

Algorithm 4 Stratified Resampling Algorithm. The computational cost is O(N) for
stratified resampling

Set original particles θ1, ..., θN

Set normalised weights w1, ..., wN

for i = 1 : N do
ui ∼ Unif(0, 1)
ũi = (i−1)+ui

N

Find the minimum k such that ũit ≤ w1
t + ...+ wkt

θ̃i = θk

end for

resampling is that different partitions of the cumulative weights are explored, meaning

that particle with high weights are still likely to be selected but the probability is not as

high if resampled particles were to be selected if instead ũi ∼ Unif(0, 1). Consider the

following example, given six particles and cw1:N = (0.069, 0.247, 0.293, 0.519, 0.901, 1)

where cw1:N represents each cumulative normalised weights. Then suppose that the

particles selected are ĩ = (1, 2, 4, 5, 5, 6) if given ũ = (0.05, 0.213, 0.357, 0.4, 0.79, 0.946)

as we desire the minimum k such that ũi ≤ w1 + ... + wk. Thus we have a set of

resampled particles of θ̃ = (θ1, θ2, θ4, θ5, θ5, θ6).

The most common resampling algorithms being the multinomial, systematic and

stratified sampling algorithms give unbiased estimates to the target distribution. Sys-
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tematic resampling is considered a potentially good resampling scheme as well, how-

ever as it relies on producing samples dependently it means that there is no estab-

lished theory on its resampling variance reduction in comparison to other schemes.

Meanwhile the stratified resampling algorithm has theoretical evidence that it gives

a smaller variance than certain resampling algorithm such as multinomial resampling

(Douc and Cappé, 2005; Hol et al., 2006).

1.6.3 Sequential Monte Carlo for Static Bayesian Inference

We now consider a sequence of static target distributions of (π1, ..., πT ) where

θt ∼ πt, θt ∈ Θ and t ∈ (0, ..., T ) is a sequence of natural numbers with T indexing

the final target distribution. Otherwise we define π0 to represent some joint proposal

distribution for π1. Unlike particle filters we do not have each individual observation

yt distributed by a specific distribution dependent on θt, i.e yt ∼ f(·|θt). Through

sequential importance sampling (SIS) methods we desire to transition a set of particles

generated from distribution π0 to a target distribution of πT , by moving a set of

particles {θi0}
N
i=1 drawn from π0 to regions of high probability density in π1 by using

π0 combined with some kernel as our importance sampler. The process continues

up to πT , which uses πT−1 and a moving kernel as the importance sampler, which is

similar to particle filtering.

One advantage of using SIS based methods is that we may choose to estimate

the posterior distribution of the joint parameters given that we include an additional

subset of observational values that are added over time. For example an estimation of

πt ≡ π(θ|y1:t) can be made using the previously inferred πt−1 ≡ π(θ|y1:(t−1)). This is

useful if the computational complexity increases with sample size, providing that πt
and πt−1 are similar. It also prevents running an additional MCMC with the complete

set of observations (Chopin, 2002).

Alternatively we may desire to gradually approach the target distribution of πT
through some tempering effect via annealing, an example being an annealed impor-

26



Section 1.6 Page 27

tance sampling scheme of πi ∝ πϕt

T (π0)1−ϕt for 0 = ϕ0 < ϕ1 < ..... < ϕT = 1, where

the sample path eventually converges to πT . Raising the target distribution to some

power of ϕt < 1 allows for the acceptance of less likely parameter subsets under

the posterior distribution. Therefore like AIS we can sequentially move towards the

target distribution in which any sampled values are weighted down, before sampling

from the target distribution, if they are unrepresentative of the true distribution. Al-

though we clarify that SIS is more “general” than AIS, such as sequentially including

observations over time and resampling (Del Moral et al., 2006; Neal, 2001).

We propose to move the particles at each target generated from the original

importance distribution using a Markov kernel Kt. This Markov kernel could be a

simple independent move that is not dependent on the previous values of the particles

or alternatively it could be a random walk move, for example we could propose a

Gaussian random walk with the mean for each ith particle being θit and the variance

being an appropriate value (Del Moral et al., 2006; Doucet and Johansen, 2011).

However if are we interested in static models, estimating the posterior of θt and

not θ0:t, we need to marginalise the importance distribution. Instead of sampling from

qt(θ0:t) we have a proposal distribution from qt(θt) given by

qt(θit) =
∫
......

∫
Θ0×...×Θt−1

q0(θi0)
t∏

j=1
Kj(θij|θij−1)dθ0dθ1, ...., dθt−1, (1.38)

where qt(θ0:t) = q(θ0:(t−1))Kt(θt|θt−1) for example. Naturally it is usually impossible

to solve the integral in (1.38) for an arbitrary kernel. So first we consider the formula

for the unnormalised weights under the standard sequential importance sampling

algorithm which samples sequentially from a target πt(θ0:t), in which we emphasise

that this can take the form of a normalised or unnormalised distribution, for increasing

t (Doucet and Johansen, 2011; Liu, 2004), with the general form being

w̃it = πt(θi0:t)
qt(θi0:t)
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= πt(θi0:t)

q0(θi0)
t∏

j=1
Kj(θij|θij−1)

=
πt−1(θi0:(t−1))πt(θi0:t)

πt−1(θi0:(t−1))q0(θi0)Kt(θit|θit−1)
t−1∏
j=1

Kj(θij|θij−1)

=
πt−1(θi0:(t−1))
qt−1(θi0:(t−1))

πt(θi0:t)
πt−1(θi0:(t−1))Kt(θit|θit−1)

= w̃it−1
πt(θi0:t)

πt−1(θi0:(t−1))Kt(θit|θit−1)
, (1.39)

as wit−1 = πt−1(θi0:(t−1))/qt−1(θi0:(t−1)). The concept of sequential Monte Carlo samples

is how it defines the joint target distribution to be a product of multiple artificial

backward Markov kernels of Lt−1(θt−1|θt) such that we formulise the most recent

marginal distribution, πt(θt), in the chain as

πt(θi0:t) = πt(θit)
t∏

j=1
Lj−1(θij−1|θij). (1.40)

Therefore the marginal distribution of the joint distribution is derived by construction

as this involves simply integrating out a set of backward kernels (Del Moral et al.,

2006). We reconsider the unnormalised importance weight update given by (1.39) and

manipulate the formula by substituting (1.40) into (1.39) to obtain

w̃it = w̃it−1
πt(θi0:t)

πt−1(θi0:(t−1))Kt(θit|θit−1)

= w̃it−1

πt(θit)
t∏

j=1
Lj−1(θij−1|θij)

πt−1(θit−1))Kt(θit|θit−1)
t−1∏
j=1
Lj−1(θij−1|θij)

= w̃it−1
πt(θit)Lt−1(θit−1|θit)
πt−1(θit−1)Kt(θit|θit−1) . (1.41)
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We then define the unnormalised importance weight via,

w̃it = wit−1
πt(θit)Lt−1(θit−1|θit)
πt−1(θit−1)Kt(θit|θit−1)

. (1.42)

Therefore it is possible to bypass the marginalisation problem as described earlier,

and obtain weights that are only dependent on the previous time point (Del Moral

et al., 2006). Overall a standard SMC sampler algorithm with resampling is shown

in algorithm 5, providing that we are using half the particle size as an ESS threshold

for resampling with a computational cost of O(NT ) .

It is still important to choose the most optimal form of both Lt−1(θt−1|θt) and

Kt(θt|θt−1) that provides the minimum variance of the weights at each state. The

most optimum set of kernels is when we consider an importance sampler of qt(θt), as

stated previously this has to be marginalised from qt(θ0:t) = q0(θ)
t∏

j=1
Kj(θj|θj−1), and

have the following relationship with the forward and backward kernels,

Lt−1(θt−1|θt) = qt−1(θt−1)Kt(θt|θt−1)
qt(θt)

, (1.43)

in which the substitution of (1.43) into (1.41) simply gives us the standard importance

weight update as described in section 1.5 (Del Moral et al., 2006). Again as such

a marginalisation is usually not possible we consider sub-optimal choices. In our

adaptions we choose MCMC moves, where the backward kernel is given by the reversal

of the forward kernel,

Lt−1(θt−1|θt) = πt(θt−1)Kt(θt|θt−1)
πt(θt)

, (1.44)

where the form of both πt−1 and πt can be known up to a normalisation constant.

Using this kernel simplifies the reweighting step to

w̃it = wit−1
πt(θit−1)
πt−1(θit−1) . (1.45)
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Algorithm 5 SMC Sampler algorithm with resampling
Set Particle Size N
Set Number of Target Distributions T
for i = 1 : N do

θi0 ∼ q0(·)
w̃0(θi0) = π0(θi0)/q0(θi0)

end for
for i = 1 : N do

w0(θi0) = w̃0(θi0)/
N∑
i=1
w̃0(θi0)

end for

if 1/
N∑
i=1

(
wi0
)2
< N/2 then

Resample Particles under Stratified Resampling algoirthm
end if
for t = 1 : T do

for i = 1 : N do
θit ∼ Kt(·|θit−1, ·)

w̃it = wit−1
πt(θit)Lt−1(θit−1|θit)
πt−1(θit−1)Kt(θit|θit−1)

end for
for i = 1 : N do

wit = w̃it/
N∑
j=1

w̃jt

end for

if 1/
N∑
i=1

(
wit
)2
< N/2 then

Resample Particles under Stratified Resampling algorithm
end if

end for
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Under this sup-optimal kernel it is possible to adjust algorithm 5 such that we per-

form all the steps in the ordering of “Reweighting-Resampling-MCMCKernel”, in

which from (1.44) the MCMC kernel targets the distribution πt(·), in comparison to

“MCMCKernel-Reweighting-Resampling”.

Regardless of including a resampling scheme in the SMC algorithm, particle de-

generation can be quickly hastened due to other factors. One potential factor is

caused by a large difference between distributions at each Markov state. Application

dependent factors can also lead to higher variances, for example if the type of kernels

cause small acceptance rates but with large jumps to different areas of probability.

If particle degeneration occurs too quickly then resampling will also occur at a rapid

rate, and if this restricts exploration of the parameter space of θ then only small

non-overlapping subsets of high probability density will be visited. Regardless re-

sampling should almost always be included, as in many situations it is impossible for

a proposal distribution to greatly match a target distribution and thus large weight

degeneracy is inevitable. The rate of particle degeneracy, shown through the ESS, as

the algorithm progresses from start to finish should be analysed and we consider this

as a diagnostic to access the quality of either the MCMC kernel and potentially the

resampling scheme. However analysing the ESS is only appropriate on the condition

that the posterior distribution has shown good convergence. An example would be to

avoid having the density of a parameter focused on a single value because the kernel

failed to explore the posterior.

On a quick note there also exists particle MCMC (PMCMC) (Andrieu et al.,

2010), and the basic concept of this algorithm is that it applies an SMC algorithm

within an MCMC sampler. Each state considers an acceptance probability between

the previous state of the chain and a weighted sampled particle from the SMC com-

ponent of the algorithm.
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1.7 Discussion

We have described the minimum statistical concepts that are necessary to under-

stand how we develop a solution to our problem stated in section 1.1. Although we

do not go into detail on model comparison techniques, these are instead discussed in

chapter 2.

The most basic Monte Carlo simulation described in section 1.3, independent

Monte Carlo sampling, requires that it is possible to simulate from the target distri-

bution. An example is a posterior distribution derived from a conjugate prior. This

does not make them appropriate for most Bayes’ application problem where it is not

possible to directly sample a distribution up to a normalisation constant. Impor-

tances sampling performs more effectively if the dimensional size is small and thus

an importance distribution is easier to propose. Prior knowledge of where the target

distribution has significant probability mass is required to construct an effective im-

portance sampling, but this might not be available and thus MCMC methods may

be a strong option. We would apply MCMC methods as a method to explore the

full possible parameter space of each parameter to identify subsets of high probability

density, either through single parameter moves or by transitioning the full parameter

set to a new state within one move. Even when applying MCMC in high-dimensions,

the chain can converge providing that the Markov chain is long enough and local ex-

ploration of the parameters is sufficient. Nevertheless devising an efficient proposal is

difficult when multimodality exists within the target distribution, and how to devise

MCMC to explore large probability valleys in the joint posterior can also be difficult

to devise.

If multimodality is present then using sequential Monte Carlo sampler techniques

has shown to be effective in practical applications, as we start from a long-tailed

proposal which should at least sample all potential probability modes before eventually

converging to a much narrower posterior (Paulin et al., 2019). As stated previously,
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SMC is also useful if we expect the complete data to arrive in subsets over time and

prevents multiple MCMC based runs to be initiated for new data. We note that each

described scheme has ever increasing computational complexity, and depending on

which method to use depends on background knowledge on how complex the posterior

distribution is expected to be.

While SMC samplers can be used in cases where observations are added one by

one, the most general form of the algorithm does not consider inferring additional

parameters for each observation added to the posterior. Although particle filters do

consider new parameters to be inferred with each observation included, the applica-

tions we consider lack the same relationship between the parameters and previous

states shown in (1.31). In chapter 2 we offer a proposed solution for our research

questions in this thesis, which applies most of the stated methods in this chapter and

across model methods which are again described in the next chapter.
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Chapter 2

Model Comparison and
Transformation Sequential Monte
Carlo

The previous chapter described relevant background information for the inves-

tigation, consisting of some fundamentals of Bayesian statistics and Monte Carlo

methods. Chapter 2 introduces our solution for the inferential problem described at

the beginning of chapter 1. We call the method “transformation sequential Monte

Carlo” (tSMC).

Within section 2.1 we first review methods for Bayesian model comparison. These

algorithms either provide an estimate of the model posterior distribution of π(m|y) or

otherwise a Bayes factor (BF) (Jeffreys, 1998) used to compare two models. We give

an introduction to reversible jump Markov chain Monte Carlo (RJMCMC) (Green,

1995) which allows for a jump from one statistical model to one with a different

parameter space. This is through trans-dimensional proposals, or alternatively termed

as “across model” moves, that make use of deterministic transformations. We explain

an extension of the algorithm by Karagiannis and Andrieu (2013) which proposes an

adaption that addresses one of the weaknesses of RJMCMC.

Section 2.2 describes the general form of tSMC. We state how this adaption of
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a sequential Monte Carlo algorithm estimates a sequence of posterior distributions,

of differing parameter space, by transitioning through each of these nested models

via deterministic transformations similar to those in RJMCMC. The strengths and

weaknesses of the tSMC approach, such as how well we expect tSMC to perform in

high dimensional models, are also explained.

Finally section 2.3 describes the extensions to improve the efficiency of the basic

tSMC algorithm.

2.1 Overview of Approaches to Bayesian Model
Comparison

Suppose that we have a set of models {mk}Kk=1 ⊂ M with θmk
∈ Θmk

being

the corresponding parameters for model mk. We also consider a union of spaces

∪mk∈M{mk} × Θmk
where the sample space of Θmk

⊂ Rdmk may consist of differing

dimensions dmk
∈ N. Furthermore, depending on the algorithm we use to infer the

posterior of each θmk
, we may define a model m0 which usually represents proposals

for model parameters of m1.

The posterior distribution π(mk|y) is obtained by

π(mk|y) =
p(mj)

∫
Θmk

f(y|θmk
,mk)p(θmk

|mk)dθmk

K∑
j=1

(
p(mj)

∫
Θmj

f(y|θmj
,mj)p(θmj

|mj)dθmj
)
) , (2.1)

where f(y|mk, θmk
), p(mk) and p(θmk

|mk) represents the likelihood given the data and

the prior distributions for mk and θmk
|mk respectively. Naturally the highest π(mk|y)

states the best model fit given the observational data. Alternatively to compare two

models we may consider using the Bayes factor to see the evidence for favoring one
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model mi over the other mj, which is given by

BF = π(mi|y)p(mi)
π(mj|y)p(mj)

= Z(y|mi)
Z(y|mj)

, (2.2)

in which Z(y|mj) is the marginal likelihood given that the parameters from model

mj have been marginalised. The Bayes factors becomes the posterior odds when

assuming a discrete uniform prior over the models. If BF < 1 then the weight of

evidence in the Bayes factor is in favor of model mj rather than model mi and vice

versa when BF > 1, but to what degree this can be considered as strong or weak

evidence is up to personal interpretation. Some caution should be taken when using

the marginal likelihood Z(y|mk) as a primary source of model comparison however,

as it is sensitive to the joint prior distribution of the model parameters. For example

given two models, which have parameters {θ1} and {θ1, θ2}, then if the individual

priors are uninformative this is likely to cause the smallest model to be favoured.

Furthermore, as typical of the Bayes’ formula, such a calculation of (2.1) is usually

intractable unless conjugate priors are used. Algorithms to estimate this posterior

or the BF are considered, but as discussed later each algorithm has their limitations

regarding the accuracy and computational cost in estimating the true ML. We could

also consider alternatives to the ML to compare models, for example we could calculate

the Hyvärinen scores of the models (Hyvärinen, 2005), which can be estimated through

SMC (Shao et al., 2018), although this can only be applied to certain types of models.

In section 2.1.1 we state how π(mk|y), π(y|mk) or Bayes factors can be estimated

from Monte Carlo output or by initiating a completely new algorithm. We also pay

particular attention to nested models, which we later consider when defining our algo-

rithm. In section 2.1.2 we give special attention to reversible jump MCMC algorithms

in that gives an estimate of π(mk|y) by exploring the joint posterior of π(mk, θ|y). We

also state a few other algorithms that are perform a similar role, in terms of model
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comparison, in section 2.1.4. Within most of this section we hide the conditionality

on mk when describing most of these algorithms, for simplicity, and only bring it up

when relevant.

2.1.1 Direct Marginal likelihood Estimation

2.1.1.1 Standard Importance Sampling, AIS and SMC Methods

First we consider importance sampling based methods to estimate a marginal

likelihood in which marginalising the model parameters θ ∈ Θ is not possible. In

chapter 1 we explained how the posterior can be estimated through importance sam-

pling. Indeed, by using g(θ) as an importance sampling proposal we can also obtain

a Monte Carlo estimate of the marginal likelihood given by

Z(y) =
∫

Θ
f (y | θ) p (θ) dθ

=
∫

Θ

f (y | θ) p (θ)
g (θ) g (θ) dθ

= Eg

[
f(y|θ)p(θ)

g(θ)

]
(2.3)

Ẑ(y) = 1
N

N∑
i=1

w̃(θi), (2.4)

where we let w̃(θi) = f (y | θi) p(θi)/g(θi) and θi ∼ g(·) for i ∈ {1, ..., N}. However,

similar to the problem of estimating the posterior distribution, a low Monte Carlo

variance of (2.4) will only occur if g(θ) is similar to the target distribution. This

becomes harder to design in high-dimensional or complex models (Agapiou et al.,

2017; Gelman and Meng, 1998). For example we could use the prior distribution as

an importance sampler in which the marginal likelihood may by estimated through

Z(y) = Ep

[
f(y|θ)p(θ)

p(θ)

]
(2.5)

Ẑ(y) = 1
N

N∑
i=1

f(y|θi), (2.6)
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however since the prior is usually much wider than the likelihood, unless again for

a suitably high N , then it will lead to the underestimation of the ML (Newton and

Raftery, 1994; Raftery et al., 2007).

We refer back to chapter 1 where we discussed AIS which has proven to de-

crease the variance of the Monte Carlo estimate of the posterior or marginal like-

lihood estimate in comparison to a standard IS (Neal, 2001). Instead of one im-

portance sampler we gradually transition through a series of T intermediate distri-

butions of ρt = (η(θt))1−ϕt(πT (θt))ϕt for (0 = ϕ0 < ϕ1 < ..... < ϕT = 1), where

the set (θ0..., θt, ..., θT ) is generated through a series of kernels, such as a series of

MH or Gibbs sampler kernels, in order to gradually move from usually a more wider

proposal to narrower posterior space. Defining each of the unnormalised weights by

w̃i = (ρ1(θi0)/ρ0(θi0))× .....×
(
ρT (θi(T−1))/ρT−1(θi(T−1))

)
, the marginal likelihood is esti-

mated by substituting the AIS weights into (2.4). Furthermore we state an algorithm

that applies AIS very similarly in section 2.1.1.3.

SMC samplers, as described in chapter 1, follow from AIS where notably it con-

siders resampling steps at certain states to prevent degeneracy in the particle set and

due to this the formulation of the estimated marginal likelihood is a little different.

In SMC we therefore consider

ẐT (y)
Z0(y) =

T∏
t=1

Ẑt(y)
Zt−1(y)

=
T∏
t=1

N∑
i=1

wt−1(θit−1)w̃t(θi(t−1):t), (2.7)

where if MCMC kernels were used to generate each θit then the incremental weights

are defined by w̃t(θi(t−1):t) = πt(θit−1)/πt−1(θit−1). Furthermore wt−1(θit−1) are the nor-

malised weights after assessing whether a resampling algorithm should be applied or

not. Again Neal (2001) shows that if we were to use a series of annealed target distri-

butions of πt(θ|y, ϕt) ∝ (πT (θ|y)ϕt(p(θ))1−ϕt , then (2.7) reduces down to an estimate

of ẐT (y) as a normalised prior distribution has a normalising constant of 1.
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2.1.1.2 Importance Sampling for Bayes Factors

We consider how importance sampling can be used to estimate the Bayes factors

between two models that are nested. For example consider two posterior distributions

that correspond to a low dimensional model m1 with parameters {θ1} ∈ Θ1 which

is subsetted to the other model m2 with parameters {θ1, θ2} (and θ2 ∈ Θ2). We can

obtain a Bayes factor between the two models, providing that they are normalised,

by considering the following relationship,

Z(y|m2)
Z(y|m1) = Z(y|m2)

Z(y|m1)

∫
Θ1×Θ2

π(θ1, θ2|y,m2)dθ1dθ2

= 1
Z(y|m1)

∫
Θ1×Θ2

f(y|θ1, θ2)p(θ1, θ2)dθ1dθ2

= 1
Z(y|m1)

∫
Θ1×Θ2

f(y|θ1, θ2)p(θ1, θ2)
q(θ2|θ1)π(θ1|y,m1)q(θ2|θ1)π(θ1|y,m1)dθ1dθ2

=
∫

Θ1×Θ2

f(y|θ1, θ2)p(θ1, θ2)
q(θ2|θ1)f(y|θ1)p(θ1)q(θ2|θ1)π(θ1|y,m1)dθ1dθ2. (2.8)

Thus by considering standard Monte Carlo theorem we have the estimate of the ratio

given by

̂Z(y|m2)
Z(y|m1) = 1

N

N∑
i=1

w̃i, (2.9)

where w̃i = f(y|θi1, θi2)p(θi1, θi2)/q(θi2|θi1)f(y|θi1)p(θi1) and using the importance propos-

als θi1 ∼ π̂(·|y,m1), which is based on a Monte Carlo estimate of the posterior distri-

bution π(·|y,m1), and θi2 ∼ q(·|θi1). The main appeal of using (2.8) and (2.9) is that

creating an importance proposal to estimate a low dimensional posterior of π(θ1|y)

is easier than designing a proposal for a higher dimensional posterior π(θ1, θ2|y), and

thus we could use a proposal for the non-nested parameters θ2 that might be condi-

tional on θ1 (given π̂(θ1|y)). Naturally the proposal q(θ2|θ1)π̂1(θ1|y,m1) still needs to

be a close fitting match to π2(θ1, θ2|y,m2) to avoid high variance estimates of (2.9).

Furthermore (2.8) can be expanded to include AIS with target distributions of the
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form,

ρt = (q(θ2|θ1)f(y|θ1)p(θ1))1−ϕt(f(y|θ1, θ2)p(θ1, θ2))ϕt . (2.10)

An SMC approach with resampling is also possible.

2.1.1.3 Other Importance Sampling Approaches

While MCMC bypasses the calculation of the marginal likelihood to obtain a

Monte Carlo estimate of the posterior distribution, the most common methods be-

ing Gibbs and MH samplers do not automatically give an estimate of the marginal

likelihood by design. Nevertheless it is still possible to obtain this estimate by post-

processing MCMC output, and one of the simplest methods that allows this is the

harmonic mean of the likelihood. The harmonic mean estimator (HME) is formulated

by considering that

1
Z(y) = 1

Z(y)

∫
Θ
p(θ)dθ

=
∫

Θ

f(y|θ)p(θ)
f(y|θ)Z(y)dθ

=
∫

Θ

1
f(y|θ)π(θ|y)dθ

= Eπ

[
1

f(y|θ)

]
, (2.11)

providing that the prior is proper as an improper prior may lead to an infinite marginal

likelihood (Baele et al., 2012; Friel and Wyse, 2012). We consider an IS approach and

use π̂(θ|y), derived from MCMC, as our proposed importance sampler to obtain a

sample of θ = {θ1, θ2, ..., θN}. Then a marginal likelihood estimate can be obtained

by,

Ẑ(y) =
(

1
N

N∑
i=1

(f(y|θi))−1
)−1

. (2.12)
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While being one of the more simplest methods that use MCMC output, N usually

needs to be impossibly large for the estimate to be accurate. This is since we would be

applying a narrow posterior as a proposal for a wide prior target distribution, and this

leads to an underestimation of (Z(y))−1 as we are not accounting for density in most

of the probability space. Naturally, considering the reciprocal, the HME provides an

overestimation of Z(y). In addition the true marginal likelihood value is sensitive to

the prior on θ, however the harmonic mean itself isn’t (Friel and Wyse, 2012; Xie

et al., 2011).

We also take note of the “stepping-stone” algorithm, which is an approach in-

troduced by Xie et al. (2011), and is very similar to AIS with regards to the al-

gorithms use of annealed intermediate distributions although it does generate each

θt−1 differently. The methods strictly considers a series of posterior densities of

πt(θ|y, ϕt−1) ∝ (π(θ|y))ϕt (p(θ))1−ϕt = (f(y|θ))ϕtp(θ) and so the algorithm estimates

Z(y). A path from the prior to the posterior is considered, with multiple reweighting

steps, and gives a marginal likelihood estimate of

Ẑ(y) =
T∏
t=1

Ẑt(y)
Zt−1(y)

=
T∏
t=1

(
1
N

N∑
i=1

(f(y|θit−1))ϕt

(f(y|θit−1))ϕt−1

)

= 1
N

T∏
t=1

(
N∑
i=1

(f(y|θit−1))ϕt−ϕt−1

)
, (2.13)

which is identical to AIS when using the prior an importance proposal. Unlike AIS,

at each state we sample N iterations of θt−1 from a MCMC algorithm which targets

πt−1(θ|y, ϕt−1).

We also describe “path-sampling”, also termed as thermodynamic integration, in

the application of Bayes formula via the algorithms proposed by Gelman and Meng

(1998); Lartillot and Philippe (2006). This set of algorithms attempt to estimate

log(Z(y|m2)) − log(Z(y|m1)) between two different models m1 and m2. We could
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again consider an annealed scheme (f(y|θ)p(θ))ϕ(p(θ))1−ϕ like AIS which simplifies

the log ratio to log(Z(y|m2)) = Z(y) given a normalised prior, although other annealed

schemes are possible should distribution m1 not be of the form of a prior. We now

show how under this scheme the integration over [0, 1] is formulated by considering

the first moment of

Z(y|ϕ) =
∫

Θ
f(y|θ, ϕ)p(θ|ϕ)dθ

=
∫

Θ
(f(y|θ))ϕp(θ)dθ, (2.14)

so Z(y|m1) = Z(y|ϕ = 0) = 1 and Z(y|m2) = Z(y|ϕ = 1) = Z(y) =
∫

Θ f(y|θ)p(θ)dθ.

This is gives us the stated ratio,

log
(
Z(y|m2)
Z(y|m1)

)
= log(Z(y))

=
∫ 1

0

∂ (log(Z(y|ϕ)))
∂ϕ

dϕ

=
∫ 1

0

1
Z(y|ϕ)

∂Z(y|ϕ)
∂ϕ

dϕ

=
∫ 1

0

1
Z(y|ϕ)

∂[
∫

Θ f(y|θ, ϕ)p(θ|ϕ)dθ]
∂ϕ

dϕ

=
∫ 1

0

(∫
Θ

π̃(y, θ|ϕ)
Z(y|ϕ)

1
π̃(y, θ|ϕ)

∂f(y|θ, ϕ)p(θ|ϕ)
∂ϕ

dθ

)
dϕ

=
∫ 1

0

(∫
Θ
π(θ|y, ϕ)∂log(f(y|θ, ϕ)p(θ|ϕ))

∂ϕ
dθ

)
dϕ

=
∫ 1

0
Eπϕ

[
∂log (f(y, θ|ϕ)p(θ|ϕ))

∂ϕ

]
dϕ, (2.15)

where π̃(y, θ|ϕ) = f(y, θ|ϕ)p(θ|ϕ) is the unnormalised posterior distribution (con-

ditional on some tuning value ϕ, 0 < ϕ < 1), Z(y|ϕ) is the marginal likelihood

corresponding to the said unnormalised posterior and Eπϕ is the expectation with re-

spect to π(θ|y, ϕ) (Lartillot and Philippe, 2006). The adaption by Gelman and Meng

(1998) sets a prior on ϕ, for example Unif(0, 1), and considered estimating the log
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Bayes factor in (2.15) via

log(Z(y)) = Eπ̃ϕ

[
∂log(f(y|θ, ϕ)p(θ|ϕ))

∂ϕ

1
p(ϕ)

]
, (2.16)

where Eπ̃ϕ is the expectation with respect to p(ϕ)× π(θ|y, ϕ). Therefore an estimate

of the Bayes factor is then given by,

̂log(Z(y)) = 1
N

N∑
j=1

1
p(ϕj)

∂log(f(y|θj, ϕj)p(θj|ϕj))
∂ϕj

, (2.17)

where we could draw N number of samples of ϕ and θ from p(ϕ)× π(θ|y, ϕ). Overall

it is not appropriate to plan on drawing from all possible models that are conditional

on the complete continuous variable set of ϕ especially if we depend on MH based

algorithms to estimate the form of π(θ|y, ϕ). Furthermore we do require that the

set of ϕj is spread out fairly evenly across [0, 1], otherwise we fail to cover the full

probability space sufficiently.

In Lartillot and Philippe (2006) they instead consider a fixed sequence (ϕ0 =

0, ϕ1, ..., ϕT = 1) ⊂ [0, 1] in which they consider a model m0, which contains prior

assumptions of model mT representing the posterior π(θ|y), in comparison to a set of

sampled ϕ. They perform individual Markov chain Monte Carlo runs targeting each

of the posteriors to collect N samples from each target. We then estimate each

Ut = Eπϕ

[
∂log (f(y, θ|ϕt)p(θ|ϕt))

∂ϕt

]
(2.18)

Ũt = 1
N

N∑
i=1

∂log (f(y, θi|ϕt)p(θ|ϕt))
∂ϕt

. (2.19)

Finally, as we have an integral between 0 and 1, Simpson’s triangulation gives an

estimate of the log ratio via,

̂log(Z(y)) = 1
T

(
1
2 Ũ0 +

T−1∑
t=1

Ũt + 1
2 ŨT

)
. (2.20)

While this form of path-sampling by Lartillot and Philippe (2006) is more flexible,
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the use of Simpson’s triangulation makes (2.20) suffer from discretisation bias as it is

approximating a continuous integral by using a finite sequence of points. This bias

decreases with increasing T and each {ϕt−1, ϕt} being appropriately spaced.

There has been some applied evidence that annealed importance sampling does

perform better than at least the harmonic mean estimator (Friel and Wyse, 2012).

What Baele et al. (2012) concluded is that the stepping stone algorithm, despite the

higher computational cost, offered improvements in the error bound of ML estimates

over the harmonic mean estimator and path-sampling algorithm (and furthermore

doesn’t suffer from discretisation bias). Otherwise the path sampling algorithm per-

forms better than the harmonic mean estimator, which includes other versions such as

the stabilised HME, in terms of how their algorithm gave the correct ML in multiple

applications (Baele et al., 2012; Friel and Pettitt, 2008).

While the estimation of the marginal likelihood given in (2.13) has similarities

with the AIS/SMC calculation of the marginal likelihood, the stepping-stone algo-

rithm requires that each θt−1 is estimated through MCMC. In comparison, a standard

SMC algorithm given by Del Moral et al. (2006) already estimates and samples θt−1

by design and thus is computationally faster. Therefore an AIS or SMC approach

would be considered a superior option to some of these popular choices which apply

MCMC output.

2.1.2 Across Model Transitions and Reversible Jump MCMC
(RJMCMC) Algorithms

We may desire to estimate each π(mk|y) by exploring the posterior on model

space. We could use a Metropolis-Hastings algorithm that allows for a proposal to

jump to a different model. Referring back to the acceptance probability stated in

chapter 1 for the MH algorithm, the acceptance ratio in this case would be

α(mi−1, m̃i) = min
{

1, Z(y|m̃i)p(m̃i)q(mi−1|m̃i)
Z(y|mi−1)p(mi−1)q(m̃i|mi−1)

}
, (2.21)
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where m̃i ∼ q(·|mi−1). Clearly we cannot implement the above because we cannot

define the true value of Z(y|m), and if we did know these values then then there is no

need to perform such an MCMC in the first place since model comparison can just be

done using the marginal likelihoods. Instead we consider pseudo marginal Metropolis

Hastings (PMMH) methods (see for example Andrieu and Roberts (2009)) in which

if some distribution cannot be evaluated then an unbiased estimator may be used

in its place in a standard Metropolis Hastings algorithm. Here we use a slightly

different pseudo-marginal approach to the one in Andrieu and Roberts (2009), where

instead we consider an unbiased estimator of the acceptance probability as described

in Karagiannis and Andrieu (2013). One potential estimator is an approximation

based on importance sampling. If we wish to use an importance sampling estimate

for the ratio Z(y|m̃i)/Z(y|mi−1) where m̃i is a higher dimensional model then model

mi−1, we can use the nested models based importance sampling estimate in (2.8). If

we define the two models to be π(θ1|y,mi−1) and π(θ1, θ2|y, m̃i) then by substituting

an importance sampling estimate of Z(y|m̃i)/Z(y|mi−1), based on (2.8) with only one

particle in said importance sampler, into (2.21) we receive

α(mi−1, m̃i) = min
{

1, Z(y|m̃i)p(m̃i)q(mi−1|m̃i)
Z(y|mi−1)p(mi−1)q(m̃i|mi−1)

}

≈ min
{

1, f(y|θ1, θ2, m̃
i)p(θ1, θ2|m̃i)p(m̃i)

q(θ2|θ1,mi−1)f(y|θ1,mi−1)p(θ1|mi−1)p(mi−1)

×q(m
i−1|m̃i)

q(m̃i|mi−1)

}
. (2.22)

This is essentially the groundwork for Reversible jump Markov chain Monte Carlo

((RJMCMC), see for example Green (1995); Hastie and Green (2012); Richardson

and Green (1997)), an across-model Markov chain algorithm that allows us to perform

trans-dimensional moves from the parameter space on some model mk ∈ M to the

new space within a different model mk′ . The algorithm introduced in Green (1995)

explains that the acceptance probability of (2.22) results in an MCMC algorithm that
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targets the posterior distribution on model space. However using multiple importance

points in (2.22) does not correctly target the posterior distribution unless the number

of particles is infinite (Alquier et al., 2016) but, as established in Green (1995), the

acceptance probability in (2.22) which uses a single importance point does in fact

result in the correct posterior distribution.

We now describe the general RJMCMC algorithm and how it extends the ap-

proach in (2.22). For simplicity we assume that each model mk has a direct transfor-

mation to model mk′ within some index sequence of models. Furthermore we work

on the disjoint union of spaces of ∪mk∈M{mk} × Θmk
, and θmk

∈ Θmk
⊂ Rdmk (with

dmk
∈ N) are the parameters for each corresponding mk. Given that the dimensions

of Rdmk and Rdmk′ differ then to jump between mk and mk′ we may require drawing

from a vector of random variables. We consider umk
∈ Umk→mk′

⊂ Rrmk , with den-

sity ψmk→mk′
(·), which is required to transition to mk′ and umk′

∈ Umk′→mk
⊂ Rrmk′ ,

with density ψmk′→mk
(·), used to transition back to model mk. We assume that the

normalisation constants of ψmk→mk′
(umk

) and ψmk′→mk
(umk′

) are known and these

densities can always be evaluated. These two auxiliary variable sets are needed to

give full posterior exploration of both mk and mk′ and must be set such that it meets

the dimension matching criterion of dmk
+ rmk

= dmk′
+ rmk′

.

Furthermore we apply a deterministic function, h : Rdmk ×Rrmk → Rdmk′ ×Rrmk′ ,

on {θmk
, umk

} to give the transformed sample of {θmk′
, umk′

}. When the previously

mentioned dimension matching criterion is met then h is bijective and its inverse is

differentiable (a diffeomorphism), a required condition to use RJMCMC since we are

making a transformation on the parameter space. In our illustrations we define the

Jacobian of the transformation as

Jmk′→mk
= J−1

mk→mk′

=
(∣∣∣∣∣∂h(θmk

, umk
)

∂(θmk
, umk

)

∣∣∣∣∣
)−1

. (2.23)
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There may be the case where the new parameters for mk′ are generated directly from

umk′
∈ Umk′→mk

⊂ Rrmk′ with density ψmk′→mk
(·) such that the identity transforma-

tion θmk′
= {θmk

, umk′
} is applied with Jacobian equal to 1 as in equation (2.22). The

general case of RJMCMC we have presented also corresponds to using an importance

sampling estimators for the acceptance probability, with the addition of a transforma-

tion to produce the proposal distribution. The general form of of RJMCMC is shown

in algorithm 6. We could perform a kernel move Kmk
that applies, for example, say

a standard MCMC proposal on the parameters of the current model mk either if

the proposed model to jump to is the current model (which is what is considered in

algorithm 6) or apply a kernel after an across model move has been made.

An estimate of a marginal density of π(mk|Y ) is obtained via the proportion that

the Markov chain was within model mj, same as a standard Monte Carlo estimate.

What we presented in (2.22) is a special case of RJMCMC where we strictly apply the

identity transformation and we use nested models. While the general RJMCMC also

uses a single point IS estimator the models do not need to be nested and a determin-

istic transformation is applied. However the efficiency of RJMCMC is dependent on

the choice of umk
and umk′

and the associated transformations to transition between

models mk and mk′ . If poor choices are made then the transformation will give a

high variance IS estimate of the acceptance probability will be made, resulting in an

inefficient MCMC and may fail to explore the complete model space. This is partic-

ularly an issue if each model is high dimensional since this increases the variance of

the estimate of the acceptance probability. A potential option is to use some adaptive

form of across model transformations (for a general review see Brooks et al. (2003);

Hastie (2005); Hastie and Green (2012); Sisson (2005)), however we do not consider

such modifications.
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Algorithm 6 Reversible Jump MCMC Algorithm.
Set N chain length
m

(0)
k ∼ q(·)

θ(0)
mk
∼ K(·)

for i = 1 : N do
m̃

(i)
k′ |m

(i−1)
k ∼ q(m(i−1)

k , ·)
if m̃(i)

k′ = m
(i−1)
k then

m
(i)
k′ = m̃

(i)
k′

θimk
∼ Kmk

(·|θ(i−1)
mk

)
else if m̃i

k′ 6= m
(i−1)
k then

uimk
∼ ψmk→mk′

(·)
{θ̃imk′

, ũimk′
} = h(θ(i−1)

mk
, uimk

)

αmk→mk′
(θ(i−1)
mk

, θ̃(i)
mk′

) = min

1,
π(m̃i

k′ , θ̃
i
mk′
|y)ψmk′→mk

(ũimk′
)

π(m(i−1)
k , θ

(i−1)
mk |y)ψmk→mk′

(uimk
)Jmk′→mk

×q(m
(i−1)
k |m̃i

k′)
q(m̃i

k′ |m
(i−1)
k )


u ∼ Unif(0,1)
if u ≤ αmk→mk′

(θ(i−1)
mk

, θ̃(i)
mk′

) then
mi
k = m̃i

k′

θimk
= θ̃imk′

else
mi
k = m

(i−1)
k

θimk
= θ(i−1)

mk

end if
end if

end for
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2.1.3 Annealed Importance Sampling Reverse Jump MCMC

A solution to the problem stated at the end of the previous section is given

by a modified RJMCMC algorithm by Karagiannis and Andrieu (2013), termed an-

nealed importance sampling reversible jump MCMC (AIS-RJMCMC), where the ba-

sic premise of the algorithm is that instead of using an importance sampling update

shown in (2.22) we instead consider an AIS based unbiased estimator. Similar to AIS

or SMC we have a time parameter t ∈ (0, ..., T ) where T ∈ N, and in this scenario we

consider the total number of intermediate distributions to transition from model mk

to model mk′ . Only one particle is used within the AIS as we would be substituting

the particle into a MH acceptance probability, similar to what is shown in (2.22).

We clarify that from here we start to start to consider a parameter θimkt
that

belongs to model mk, is part of the ith particle and we are at time t of some process.

We may choose to extend this to include the jth dimension of a parameter by defining

θmkjt, see chapter 3 where we use this notation. This is especially important as we

use this notation in our proposed solution in section 2.2. Although in the case of

AIS-RJMCMC we only have the one particle being θmkt.

A series of forward annealing densities of ρt(θmk′ t
, umk′ t

;mk → mk′) is defined,

and this may also be expressed in the form of backward annealing densities but for

simplicity our investigation considers these densities under the forward case. Like AIS

the idea is then to transition from an initial posterior distribution representing the

current model mk of

ρ0(θmk′
, umk

;mk → mk′) ∝ π(mk, θmk0|y)ψmk→mk′
(umk0)Jmk′→mk

, (2.24)

to a target distribution representing model mk′ of

ρT (θmk′
umk′

;mk → mk′) ∝ π(mk′ , θmk′T
|y)ψmk′→mk

(umk′T
). (2.25)
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What is noticeable is how (2.24) and (2.25) represent the numerator and denomina-

tor of an RJMCMC acceptance probability respectively, with the auxiliary variables

and the Jacobian that results from transforming the parameter space also defined in

algorithm 6 and section 2.1.2.

AIS-RJMCMC adapts algorithm 6 where after {θmk′
, umk′

} is generated, a series

of kernels that target a set of annealed intermediate distributions is applied in order

to obtain {θmk′T
, umk′T

} representing of mk′ . Thus starting with {θmk′0, umk′0}, we

generate a path that sequentially moves through the set of (ρ1(θmk′1, umk′1), ..., ρT ).

Each {θmk′ t
, umk′ t

} is generated from each of the corresponding transition kernels of

Kt(θmk′ (t−1), umk′ (t−1),mk → mk′), for example each Kt might be a series of MCMC

moves. If the kernel was designed to have have the reversibility and symmetry and

conditions (for example, Metropolis Hastings kernels), then the acceptance probability

in algorithm 6 is then defined by

α(0:T )
mk→mk′

≡ q(mk|mk′ , ·)
q(mk′|mk, ·)

T∏
t=1

ρt(θmk′ (t−1), umk′ (t−1);mk → mk′)
ρt−1(θmk′ (t−1), umk′ (t−1);mk → mk′)

, (2.26)

and we consider (2.26) in particular for our proposed algorithm. A recommended

scheme for the intermediate distributions is to use geometric averages, similar to

what is suggested for AIS, with an annealed sequence of ϕt = (t/T )R for R ∈ N. Each

annealed intermediate distribution is defined by

ρt(θmk′ t
, umk′ t

;mk → mk′) ∝ (π(mk, θmkt|y)ψmk→mk′
(umkt)Jmk′→mk

)1−ϕt

×(π(mk′ , θmk′ t
|y)ψmk′→mk

(umk′ t
))ϕt , (2.27)

where ϕ0 = 0, ϕT = 1 and each ϕt may be evenly spaced or may follow some function

of t (such as geometric spacing). As stated with AIS, a geometric scheme allows to

transition from (2.24) to (2.25) in a smooth manner by asserting more initial power

on the posterior parameter space of model mk which reduces the weighted impact

of an inefficient transformation proposal and allows for the proposal to explore the
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parameter space through the Markov transition moves.

2.1.4 Other Past Approaches for ML Estimation or Explo-
ration of Joint Model Space

We give a brief explanation of other approaches which consider trans-dimensional

space. Less general and more application specific approaches that are similar to tSMC

are displayed in chapters 3-5 respectively.

In Jasra et al. (2008) they define a standard SMC algorithm which applies MH

or Gibbs kernels to the parameters of some model, similar to what we introduced in

chapter 1, however the kernel also includes a RJMCMC-like proposal to jump to a new

model. They performed this base adaption within their “interacting sequential Monte

Carlo samplers” algorithm which considers using parallel samplers, or simultaneous

SMC samplers, for some defined number of states in the Markov chain. The most

notable feature is that each sampler can be constrained to explore a specific subset

of models, so for example one sampler could explore the joint parameter space of the

three highest defined dimensional models while another sampler could explore the

three lowest dimensional models. This allows for a more effective exploration of the

space of the models. Once a certain number of states have been completed for all

samplers it is subjected to one final kernel/reweighting/resampling step. Note the

applied kernel at this state is set to be identical for all parallel runs, such that all

particles share the same parameter space. After performing another identical kernel

they then sample particles from all the runs and use a single SMC sampler for the

remainder of the algorithm. However the issue regarding if a RJMCMC move can

successfully transition between high-dimensional models remains unchanged in this

algorithm, with the most safest scenario in their algorithm being to dedicate a SMC

sampler to each specific model.

Zhou et al. (2016) presented SMC-1 which is very similar to the non-parallel

SMC sampler by Jasra et al. (2008) which we just discussed. It is a SMC algorithm,
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as described in chapter 1, that uses an annealed series of intermediate distribution

where again one of the kernels takes the form of a RJMCMC proposal. They also gave

an alternative algorithm being SMC-3 where while it is a SMC algorithm with an-

nealed distributions, these intermediate distributions differ from the usual geometric

annealed/bridged scheme as seen with AIS. In this algorithm, instead of jumping to a

random model, they consider exploring a sequential set of models of (m0,m1, ...,mK).

Assuming that we start with parameters sampled from π(·|mk−1), each particle consid-

ers the basic unnormalised posterior model, conditional on the model type, multiplied

by a prior on the models. This prior takes two values of mk−1 and mk such that as

t→ T then the prior will gradually favor mk, i.e Pr(mk|t) = η(t/T ) for some increas-

ing bijection η : [0, 1] → [0, 1], and thus all particles will be a representative sample

of mk when t = T . The kernels naturally incorporate RJMCMC proposals, where if

a particle is currently in one model then a RJMCMC move is proposed to transition

to its pairwise model and vice versa.

Persing et al. (2015) used a variation of the particle MCMC to transition be-

tween models, where as a reminder PMCMC runs a SMC algorithm within a MCMC

algorithm where each state considers an acceptance probability between the previous

state of the chain and a weighted sampled particle from the SMC component of the

algorithm (Andrieu et al., 2010). The main feature in their PMCMC algorithm is how

it starts by first sampling a model from some distribution to jump to, however all the

parameters are sampled from their respective conditional distributions (their prior dis-

tributions are also another option). They then apply a standard SMC algorithm that

applies geometric based intermediate distributions to explore the parameter space of

the sampled model. In comparison to the other RJMCMC described methods, they

do not transform a current set of parameters in order to transition between models,

but instead from some easy to sample proposal distribution.
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2.2 Transformation SMC, Algorithm Properties and
Justifications

In this section we now introduce transformation SMC and how it is used for

Bayes’ model comparison, and other scenarios, in section 2.2.1. We go in depth of the

advantages and disadvantages of this approach in sections 2.2.2 and 2.2.3.

2.2.1 The tSMC Algorithm

Unlike the AIS-RJMCMC algorithm discussed in section 2.1.3 which considers

an importance sampler of nested models as an estimator to a MCMC acceptance

probability, we instead use a pure SMC sampler which uses ideas from RJMCMC. As

an adaption of the SMC sampler it is possible to obtain not only the weighted points

of a posterior distribution for a set of models, but also estimate the corresponding

marginal likelihood of the model. If we were using MCMC then we would need to run

additional algorithms such as the stepping stone algorithm. We wish to estimate the

posterior distributions of models (m0,m1, ...,mK) ⊂ M , where there is some natural

ordering of the model space. We desire to infer up to the highest dimensional model

of mK . The difference between each mk would usually be the number of parameters,

but most importantly there must exist deterministic transformations between each

adjacent model. While we explain the algorithm in terms of Bayesian model com-

parison, it is possible to apply the algorithm in other scenarios, such as data point

tempering (see chapter 4), by defining a different sequence of models that differ by

the size of the observations that they are modeling. Alternatively, in chapter 5 we use

tSMC in a scenario where the total number of parameter has no linear relationship

with the observations, but an increase in the observation size will increase the discrete

parameter space for a subset of parameters (in which we explain our justifications for

our approach in said chapter). The algorithm will work best given that the difference

between each mk−1 and mk is small and each model is nested within a successive
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model, such that a subset of nested parameters in model mk has marginal posteriors

that are slightly different from the same parameters in mk−1.

Transformation SMC applies a similar sequence of target distribution from Kara-

giannis and Andrieu (2013) where we wish to estimate the posterior π(θmk
|y,mk) by

using the set of particles from π(θmk−1|y,mk−1) as part of an importance sampler.

As model mk differs by a few parameters we need to transform the parameter set

θmk−1 so that it is in the new parameter space. This could be achieved by either

generating the missing parameters from some distribution ψmk−1→mk
(·) and applying

an identity transformation. Alternatively we apply some transformation to the ex-

isting parameters, and define ψmk−1→mk
(·) and ψmk→mk−1(·) to ensure the dimension

matching criterion is met.

For the rest of the chapter, and thesis, we refer to the set {θmk
, umk

} as a result of

using a transformation on {θmk−1 , umk−1}. Overall we define the importance proposal

for the parameters of model mk by

π(θmk−1 ,mk−1)ψmk−1→mk
(umk−1)Jmk→mk−1 , (2.28)

where π(θmk−1 ,mk−1) is the unnormalised posterior of model mk−1, umk−1 are the

auxiliary variables related to the transformation to mk and Jmk→mk−1 is the Jacobian

of the inverse transformation. The sampler is used to aim to infer a target distribution

π(θmk
,mk)ψmk→mk−1(umk

), (2.29)

where we still define the auxiliary variables umk
for the inverse of the transformation

to be part of the target distribution. We choose to gradually converge to mk by using

a series of annealed intermediate distributions similar to (2.27) being

ρt =
(
π(θmk−1t,mk−1)ψmk−1→mk

(umk−1t)Jmk→mk−1

)1−ϕt

×
(
π(θmkt,mk)ψmk−1→mk

(umkt)
)ϕt

, (2.30)

54



Section 2.2 Page 55

such that

ρ0 = π(θmk−10,mk−1)ψmk−1→mk
(umk−10)Jmk→mk−1 (2.31)

ρT = π(θmkT ,mk)ψmk→mk−1(umkT ). (2.32)

We consider the particle set of {θmkT , umkT} to represent the MC estimate of the

posterior distribution for the parameters of model mk.

The most basic form of the tSMC algorithm considers the current schedule time

t, with ϕt = {ϕ0, ϕ1, ..., ϕT} where ϕ0 = 0 and ϕT = 1, between mk−1 and mk with

corresponding normalised weights of wmkt ∝ ρt/ρt−1. Thus our algorithm takes the

form of an annealed SMC algorithm, see chapter 1. Naturally when making a new

transition from model mk, after the previous transition is completed once ϕT = 1,

we reset t = 0. Furthermore the only type of kernel we apply in tSMC is a MCMC

kernel, which simplifies the unnormalised weight calculation to

w̃mjt = wmk(t−1)
ρt(θmk(t−1), umk(t−1);mk−1 → mk)
ρt−1(θmk(t−1), umk(t−1);mk−1 → mk)

= wmk(t−1)
(π(mk−1, θmk−1(t−1))ψmk−1→mk

(umk−1(t−1))Jmk→mk−1)1−ϕt

(π(mk−1, θmk−1(t−1))ψmk−1→mk
(umk−1(t−1))Jmk→mk−1)1−ϕt−1

×
(π(mk, θmk(t−1))ψmk→mk−1(umk(t−1)))ϕt

(π(mk, θmk(t−1))ψmk→mk−1(umk(t−1)))ϕt−1
. (2.33)

Just like an annealed scheme the first few intermediate distributions will initially favor

the joint parameter space of the posterior of mk−1 along with any auxiliary variables

and the Jacobian of the initiated transformation in (2.31) before gradually favoring

the posterior of model mk defined by (2.32). We also apply resampling and we initiate

it should the ESS drop too low.

The initial model m0 can be set to be the prior distribution for the parame-

ters in m1, in which we then can obtain a series of marginal likelihood estimates of

(Z(y|m1), ..., Z(y|mk)) as explained in previously sections. Otherwise the algorithm
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instead estimates a set of Bayes factor comparing a sequence of models instead.

Exploration of the parameter space is made by applying at least one MCMC ker-

nel, after a resampling step, of Kt(·|θmk(t−1), umk(t−1)) which target ρt as its stationary

distribution. We specifically use MCMC kernels on the parameter set {θmkt, umkt},

and then apply the reverse transformation to receive {θmk−1t, umk−1t}. We accept a

kernel proposal with acceptance probability of

α(θimk(t−1), θ̃
i
mkt

) = min

1,
(π(mk−1, θ̃

i
mk−1t

)ψmk−1→mk
(ũimk−1t

))1−ϕt

(π(mk−1, θimk−1(t−1))ψmk−1→mk
(uimk(t−1)))1−ϕt

×
(J̃mk→mk−1)1−ϕt(π(mk, θ̃

i
mkt

)ψmk→mk−1(ũimkt
))ϕt

(Jmk→mk−1)1−ϕt(π(mk, θimk(t−1))ψmk→mk−1(uimk(t−1)))ϕt

×
q(θimk(t−1)|θ̃imkt

)
q(θ̃imkt|θimk(t−1))

 , (2.34)

where q(θimk(t−1)|θ̃imkt
)/q(θ̃imkt

|θimk(t−1)) is our proposal ratio given that we are using

one MH update.

The basic tSMC algorithm is shown in algorithm 7, note that we go by the

assumptions that we are not starting from an existing run of the algorithm.

2.2.2 Justification

We now show that tSMC is a special case of a standard (fixed-dimensional) SMC

sampler through defining a sequence of target distributions that results in the weight

update as described in the previous section.

For simplicity we begin with the case where we have a sequence of nested models

and use the identity transformation. We do strongly note that we do not need this

nested model requirement for tSMC to be used, for example each model may be very

different to each other but good transformations that connect the sequences of models

may exist, however it is done for illustration purposes. We assume that the model set

(m0,m1, ...,mk, ....,mK) is successively nested within each other, each mk (excluding

m0) has parameter θ1:k and we define the parameters θk to represent the parameters of
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Algorithm 7 The Standard tSMC algorithm.
Set model (m0, ...,mK), Set Particle Size N , Set Resampling Threshold
for i = 1 : N do

wm00 = 1
N

θim00 ∼ Km0(·)
end for
for k = 1 : K do

for i = 1 : N do
uim(k−1)0 ∼ ψmk−1→mk

(·)
{θimk0, u

i
mk0} = h(θim(k−1)0, u

i
m(k−1)0)

end for
for t = 1 : T do

for i = 1 : N do

w̃imkt
= wimk(t−1)

ρt(θimk(t−1), u
i
mk(t−1);mk−1 → mk)

ρt−1(θimk(t−1), u
i
mk(t−1);mk−1 → mk)

end for
for i = 1 : N do

wimkt
= w̃i

mkt

N∑
j=1

w̃i
mkt

end for

if
(

N∑
i=1

(wimkt
)2
)−1

< Threshold then

Resample via Stratified Resampling algorithm
end if
for i = 1 : N do
{θ̃imkt

, ũimkt
} ∼ Kt(·|θimk(t−1), u

i
mk(t−1))

{θ̃imk−1t
, ũimk−1t

} = h−1(θ̃imkt
, ũimkt

)
αt−1→t({θimk(t−1), u

i
mk(t−1)}, {θ̃imkt

, ũimkt
}) =

min

1,
ρt(θ̃imkt

, ũimkt
;mk−1 → mk)

ρt(θimk(t−1), u
i
mk(t−1);mk−1 → mk)


u ∼ Unif(0,1)
if u ≤ αt−1→t(θimk(t−1), θ

i
mkt

) then
{θimkt

, uimkt
} = {θ̃imkt

, ũimkt
}

{θimk−1t
, uimk−1t

} = h−1(θ̃imkt
, ũimk))

else
{θimkt

, uimkt
} = {θimk(t−1), u

i
mk(t−1)}

{θimk−1t
, uimk−1t

} = h−1(θimk(t−1), u
i
mk(t−1))

end if
end for

end for
end for
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mk that are exclusive to any models that precede it. We are interested in estimating

a sequence of posterior distributions defined by

π(θ1:k|y) ∝ p(θ1:k|mk)f(y|θ1:k,mk), (2.35)

for all k ∈ (1, ..., K), and each normalising constant of Z(y|mk). In our tSMC algo-

rithm we actually define the true target distribution of each mk to be

π(θ1:K |y,mk) ∝ f(y|θ1:k,mk)p1(θ1), ..., pk(θk), ..., pK(θK), (2.36)

in which we assume for all of our applications that each distribution is defined on

the random vector θ1:K rather than θ1:k. Note that (2.36) has as its marginal on θ1:k

the posterior π(θ1:k|y,mk). Furthermore, the normalising constant of (2.36) is equal

to Z(y|mk). Thus, ignoring any intermediate distributions dictated by a tempering

scheme as described earlier, then the normalised weights are proportional to

wmk
∝ π(θ1:K |y,mk)

π(θ1:K |y,mk−1)

= f(y|θ1:K ,mk)p1(θ1), ..., pk(θk), pk+1(θk+1), ..., pK(θK)
f(y|θ1:K ,mk−1)p1(θ1), ..., pk−1(θk−1), pk(θk), ..., pK(θK)

= f(y|θ1:k,mk)
f(y|θ1:(k−1),mk−1) . (2.37)

In one transformation proposal in chapter 3, we suggest this identity transformation

for at least a subset of parameters in which the normalised weights almost take the

form of (2.37). What can also be seen is that when MCMC kernels on the space θ1:K

are applied, we only need to perform them on θ1:k as the parameters θ(k+1):K are not

present in (2.37).

However what we do consider is that the parameters of θ1:(k−1) that target mk−1

may not be an appropriate fit for model mk when including the new subset θk, and

in many scenarios there may exist some constraint between variables (for example
k∑
i=1

θi = 1). Therefore our final justification for the tSMC approach is that while the
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priors may not be suitable enough for proposing all of θ1:k in high dimensions, we

believe that applying a transformation on θ1:k−1 is a superior option given that the

current estimates are appropriate for models mk−1 and mk have marginal parameters

that are similar. In chapter 3 we show this comparison of trying to generate each

most of θk from prior distributions, against applying a transformation on a subset of

θ1:(k−1). Nevertheless should the transformation on parameters not be appropriate for

the untransformed subset of parameters inferred from model mk−1 still require some

changes in the estimates of their posterior probabilities when transitioning to mk,

then this can be done by applying MCMC kernels on θ1:k−1 and θk.

The general version of tSMC that is described in section 2.2.1 results from a

similar argument to that used in the derivation of (2.37), where the target is chosen

to estimate

π(θ1:K |y,mk) ∝ f(y|θ1:k,mk)p1(θ1), ..., pk(θk)

×pk+1(umk+1)..., pK(umK
), (2.38)

and when moving from model mk−1 to mk a deterministic transformation is applied

to the subvector (θ1:(k−1), umk
).

Since we have shown tSMC to be a standard fixed-dimensional SMC sampler, in

which we now go back to our standard notation of defining the model parameters of

mk as θmk
, we obtain the following Monte Carlo approximation,

π̂(θmk
|y,mk) =

N∑
i=1

w(i)
mk
δ
θ

(i)
mk

(θ1:N
mk

), (2.39)

and we would have the following central limit theorem for some function η for the

case where no resampling is performed Chopin (2004); Del Moral et al. (2006),

(
Eπ̂(θmk

|y,mk)[η(θmk
)]− Eπ(θmk

|y,mk)[η(θmk
)]
)
→ Normal

(
0, N

σ2
IS(η(θmk

))

)
. (2.40)
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In the scenario with multinomial resampling is performed at every iteration we have,

(
Eπ̂(θmk

|y,mk)[η(θmk
)]− Eπ(θmk

|y,mk)[η(θmk
)]
)
→ Normal

(
0, N

σ2
SMC(η(θmk

))

)
.(2.41)

We note that σ2
IS(η(θk)) and σ2

SMC(η(θk) follow from Del Moral et al. (2006) where

under strong mixing assumptions and using a sup-optimal kernel, such as an MCMC,

the variance of σ2
SMC(η(θk) is uniformally bounded as the number of SMC iterations

goes to infinity. However σ2
IS(η(θk) tends to infinity as the number of SMC iterations

goes to infinity. Finally Gerber et al. (2017) showed similar results when stratified

resampling is applied.

Just like the standard SMC sampler algorithm, see section 2.1.1, we can take the

product of each Bayes factor pairing to receive an estimate of the marginal likelihood

for each model mk given that m0 are simple proposal distributions (for example they

could be prior distributions) for the parameters of model m1. The normalisation

constant of the final model, by starting from a model m0 that is normalised such as

a model only containing prior distributions, given by tSMC is defined by

Ẑ(y|mK) =
̂Z(y|m1)

1
̂Z(y|m2)
Z(y|m1

...
̂Z(y|mK)

Z(y|mK−1)

=
K∏
k=1

T∏
t=1

N∑
i=1

wmk(t−1)(θimk(t−1))
ρt(θimk(t−1), u

i
mk(t−1);mk−1 → mk)

ρt−1(θimk(t−1), u
i
mk(t−1);mk−1 → mk)

=
K∏
k=1

T∏
t=1

N∑
i=1

wmk(t−1)(θimk(t−1))w̃mkt(θimk((t−1):t)), (2.42)

where wmk(t−1) are normalised weights, after assessing whether a resampling algorithm

should be applied or not, such that wm10(θim10) = N−1 and each wmk0 = wmk−1T .

Otherwise w̃mkt(θimk((t−1):t)) are the incremental weights within each model transition.

If there is either no resampling throughout the algorithm, or alternatively resampling

at each state the estimate is unbiased i.e E[Ẑ(y|mk)] = Z(y|mk).

We would also be concerned about how the Monte Carlo error is affected for both

the estimated posterior distribution and ML when a transition to a new model involves
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an increase in the model parameter dimensions. Beskos et al. (2014a) and Beskos et

al. (2014b) state that for a SMC sampler algorithm which uses annealed intermediate

distributions, controlling the MC error in a standard importance sampling algorithm

would require the number of particles to increasing exponentially in dimensional size

d. Alternatively it can be controlled by using O(d) intermediate distributions, leading

to a computational cost that is quadratic in d. As we use one model to bridge to the

next successive model, we only plan on introducing a few more dimensions at each

iteration and therefore the number of intermediate distributions needed to control of

the error may be less than O(d).

2.2.3 Discussion of the Standard tSMC Adaption

2.2.3.1 Advantages of tSMC

As indicated when explaining the basic tSMC algorithm in sections 2.2.1 and

2.2.2, the core strengths of our proposed algorithm over other across model comparison

algorithms are discussed within this subsection.

The efficiency from RJMCMC and AIS-RJMCMC can be poor due to a single

particle importance sampling estimator, even if applying AIS does offer improvements.

However our algorithm, instead of using multiple iterations of a high variance esti-

mator, is going to estimate the Bayes factor using a single SMC which improves the

variance of said Bayes factor by allowing for more particles instead of a single parti-

cle. Furthermore applying an annealed SMC scheme, instead of a single importance

sampler to transition between different models, means any additional changes to the

parameters that are needed after the transformation can be made via MCMC kernel

moves.

We may use a model mk−1 to infer properties of a model of mk which differ by

a few parameters. The densities for most of the parameters would change very little,

and any changes to their posteriors that are needed are proposed via MCMC kernel

moves, for an increasing dimensional size.
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A poor transformation can be compensated by resampling at certain states and

through additional MCMC kernels. We show later that these methods can be adap-

tively made.

As this approach is an adaption of particle filters then performing computational

parallelisation of most of the important processes, such as the reweighting and MCMC

kernel steps, is possible (Johansen, 2009).

Finally if our initial model m0 is the prior then we can receive an estimate of the

marginal likelihood for each mk.

2.2.3.2 Limitations and Improvements

The key limitation of tSMC that is shared across all applications is Gibbs sam-

plers, or at least when using target distributions under a geometric bridging scheme

of (2.30), can not be used as MCMC kernels for each variable θmkjt if they have a

continuous parameter space. This is due to how the geometric bridging intermediate

distributions raise two different posteriors to a power and thus it is impossible to

construct the conditional distributions of each θmkjt. It might be possible under cer-

tain models, although we have not identified them. We now go into further depth of

several improvements to the basic tSMC algorithm in algorithm 7 which will enhance

the advantages of tSMC over other algorithms.

An issue in AIS-RJCMC regards how to design an appropriate choice for ϕ =

(ϕ0, ϕ1, ..., ϕt, ..., ϕT ) given that there is no background information on the properties

of the data. If a large particle size is believed to be required to achieve sufficient con-

vergence or the computational cost to perform MCMC moves or evaluate each ρt is

very large, then it is desirable to minimise the number of reweighting steps. However

when designing ϕ it is necessary to set some of the early discrepancies between ϕt−1

and ϕt to be very small to give the particles some chance to explore the parameter

space and prevent a large variance in the particle weights when reweighting the parti-

cles soon after the initial model transition. Nevertheless devising a good schedule for
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ϕ is tricky as it needs to be consistently appropriate for all mk−1 to mk model transi-

tions, and it is unlikely that there is a ϕ that is appropriate for all model transitions.

For example there could be an issue of T being too large, whether this occurs when

transitioning between low or high dimensional models is likely to be application de-

pendent, leading to unnecessary reweighting and kernel move steps despite this being

a safe option to prevent a large variance in the posterior estimation. We discuss how

we can propose adaptively in section 2.3.1.

In a MCMC algorithm the exploration of the parameter space will be poor if

the kernels to transition to a new state are not chosen properly. What might be a

good proposal for a certain type of distribution may not be appropriate for lower or

higher dimensional models. Similarly the kernels may need adjusting as they may

have either too low or high acceptance rates as target intermediate distributions with

ϕt tend towards 1. As discussed previously we may want to use an adaptive scheme

to dictate the number of intermediate distributions when there is uncertainity of how

many of these distributions we require. However if there is very little movement in

the particles then this would show as a high ESS, and therefore give a poor picture of

convergence to an extended space. Therefore we take into account adaptive kernels

when possible. In section 2.3.2, we discuss adaptive approaches for both problems to

prevent the need for reruns and prior experimentation when applying our algorithm.

Furthermore there is also a question regarding which model transition, given

multiple choices for {umk−1 , umk
} and h(), is more appropriate to transition between

regions of high probability density. To prevent multiple runs of the tSMC algorithm

or some other investigation to figure out what the best possible transformation moves

could be, we instead propose an adaption of the tSMC algorithm that assigns a

subset of particles to different transformations in which the worst transformations are

removed via reweighting and resampling. We explain the approach in depth in section

2.3.3.
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2.3 tSMC Extensions and Diagnostics

2.3.1 Adaptive ϕt

As stated in section 2.2.3 some form of adaptive annealing is considered to avoid

the dilemma of how many annealed intermediate distributions to set up. We still

examine non-adaptive approaches too, and how each scheme differs with regards to

Monte Carlo error. However some caution is required when using adaptive schemes

(this also includes using adaptive MCMC kernels, see section 2.3.2) as they do induce

some small bias to both parameter and marginal likelihood estimates. However the

bias is still expected to be negligible in the estimates (Prangle et al., 2018).

Instead of defining the annealing schedule via some preset pattern, either being

a geometric or evenly spaced sequence etc, each discrepancy between ϕt and ϕt−1

could be adjusted via a sequence of targets based on some measurement of particle

degeneracy such as the effective sample size.

A set of targets to control the particle degeneracy is defined via a sequence of

effective sample sizes (RN,R2N, ...., RkN) with 0 < R < 1. At the beginning of the

algorithm when t = 1 and ϕt−1 = 0, we search for ϕ1 such that the ESS is equal to

RN . Afterward we estimate ϕ2, given ϕ1, to have the ESS equal to the next target

in the sequence of R2N . The particles are resampled when the ESS is below the

predefined threshold, being some value greater or equal to RkN , which then reverts

the ESS sequence back to RN . Naturally ϕt = 1 is accepted on the condition that it

gives an ESS greater then its assigned RjN . To identify each ϕt we use a bisection

method.

Jasra et al. (2011) also apply an exact scheme of ESS targets to dictate the

annealing schedule. It is also similar to another scheme by Del Moral et al. (2012)

where they used an adaptive scheme to select the tolerance levels of an Approximate

Bayesian Computation target distribution and force a steady decline of the ESS as

they infer successive annealed target distributions, tempered by this tolerance level
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parameter, within their SMC algorithm.

The issue of using the ESS, as defined in chapter 1 in which is more commonly

used in SMC algorithms, is that it is actually a measurement of weight degeneracy

between the current distribution and the joint distributions that came after a resam-

pling step. While useful to decide whether to perform resampling on particles, it is

not appropriate when we actually desire a measurement that dictates the discrep-

ancy between the target distribution and the distribution solely before it. Therefore

we consider a new measurement of the effective sample size, termed the conditional

effective sample size (CESS) by Zhou et al. (2016), defined as

CESS = N
N∑
i=1

wi


w̃it

N
N∑
j=1
w̃jtw

j
t−1



=
N(

N∑
i=1
wit−1w̃t

i)2

N∑
i=1
wit−1

(
w̃t

i
)2
. (2.43)

It is equal to the ESS if the particles are resampled after every reweighting step.

Therefore by setting CESS to some constant CESS ∈ (1, N ], we find ϕt such that it

is equal to said constant.

Zhou et al. (2016) claims that in their applications using the CESS schedule

provided less variation in the marginal likelihoods estimates, for an SMC algorithm

which used annealed intermediate distributions with a prior as an importance sampler,

while mostly giving gradually increasing discrepancies between each ϕt−1 and ϕt. In

comparison using the ESS leads to uneven discrepancies, notably a huge discrepancy

after resampling the particles. Overall what is desirable is for each of the successive

discrepancies of ϕt − ϕt−1 to be increasing or steady as ϕt → 1 by having roughly

even distances between each successive distribution.

However there is one disadvantage from doing adaptive annealing in comparison
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to a fixed annealing, whether such a ϕt can be practically defined by some finite pre-

cision if the value is negligible. For example we found that there were cases where ϕ1

could not be found if the quality of the transformation is poor as it leads to many

initial zero-weighted particles, with such an example shown in chapter 3. Jasra et al.

(2011) also suffered the same problem in their proposed across model SMC algorithm.

Therefore to compensate for such a move where the quality of the transformation is

unknown, especially in cases where we generate {θmk′
, umk′

} directly from a uninfor-

mative prior distribution, we may set ϕ1 to some very small value and either allow

for a resampling step naturally or force a resampling move.

2.3.2 Adaptive MCMC Proposals

We aim to have appropriate kernels that can explore the space of the new target

distribution of {θmk
, umk

} given that they were proposed using {θmk−1 , umk−1}.

Jasra et al. (2011) considered an MCMC kernel move for each independent pa-

rameter being a mean-centered Gaussian random walk at time t, with the scaling

being the variance of the parameters at t − 1. They also applied an additional pro-

cedure where if the acceptance rates of the MCMC moves for a particular parameter

become too large, by breaching a predefined value, then the tuning variance is mul-

tiplied by some positive factor β. Respectively if the rates become too small then

the tuning variance is reduced. The assumption made is that the empirical variance

from time t − 1 will provide an appropriate tuning to the parameters at time t, and

furthermore this continued to perform well under adaptive annealing using the ESS

as a threshold. Under this scheme, the vast majority of acceptance rates for each

parameter eventually did converge to some low-variance range of values at each t.

Theoretically, given that the marginal posterior distribution of a parameter is

close to Gaussian distributed, then when using a Gaussian random walk proposal for

one parameter what can give an optimum acceptance rate of around 0.44 is using

a tuning variance of (2.38σ)2 where σ is the standard deviation of the target. If
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several parameters are updated at the same time then it is (2.38Σ)2/d2 where d is the

dimensional of the proposal distribution and Σ is the empirical covariance matrix.

Furthermore the optimum acceptance rate is 0.234, and it is recommended to at least

get acceptance rates to be between 0.15 and 0.4 to obtain at least 80% efficiency of the

maximum asymptotic efficiency (as d→∞) of a MH algorithm (Gelman et al., 1996;

Roberts and Rosenthal, 2001, 2009). While it is not exactly stated how to achieve that

same percentage of efficiency for a one component proposal, which again requires an

optimum rate of 0.44 and that the target distribution is normally distributed, we could

consider an acceptance rate between 0.2 and 0.6 covers most of the efficiency given

graphical results of Gelman et al. (1996). However there is no certainty that a given

marginal posterior for a parameter could be justified as being Gaussian distributed.

Thus when considering single parameter random walks we consider applying a

relaxed scheme which uses the function of the empirical variance of the parameter

at time t − 1 as the tuning variance. This emperical variance is then multiplied by

a fixed constant c depending if the acceptance rates are too high or too low. Under

this scheme we will still try and obtain rates between 0.2 and 0.6, on the basis that

Gaussian conditions could be fulfilled despite not having a complete picture of the

true form of the posterior, and set c to either 2 or 0.5 when a rate breaks its respective

boundaries.

Individual adaptive MCMC proposals will be given within chapters 3-5, each

catered on the parameter set for each application.

2.3.3 Groundwork for Multiple Transformations

We desire to apply multiple transformations within our tSMC algorithm, and

potentially adapt the type of transformations made. This would prevent multiple

rounds of testing each type of transformation. It is an ongoing research topic in

model transition MCMC algorithms to identify a series of adaptive model transition

moves that can roughly consistently jump to regions of high probability density within
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the alternative model or bound the proportion of accepted moves to a predefined range

(Brooks et al., 2003; Hastie, 2005; Hastie and Green, 2012; Sisson, 2005). However

these type of adaptive transformations propose new across model moves based on the

properties of a single Markov chain. Whether such adaptions can be similarly applied

in a SMC type algorithm is another potential research question, however what first

must be analysed is whether the best possible model transformation moves can be

identified whilst transitioning between two models.

One possible implementation involves assigning individual particles to one of the

across-model transitions through some distribution. The weights of the particles are

pooled together during reweighting and resampling procedures, and will change to

a different move during the resampling. We investigate what the particle history

would be and how this would affect the estimated probabilities densities for each

marginal parameter. Ideally by the end of a transition from model mk−1 to mk the

best move dominates the particle set early on, and will allow for the potential option

of avoiding multiple tSMC runs for each move by analysing the algorithmic history

and recommending what the best possible move would be for future iterations. This is

based on similar MCMC schemes which apply multiple kernels and identify the most

appropriate moves based on acceptance rates and overall quality of each proposal.

We define l(mk−1→mk)· as a discrete “label” variable whose states (each ith state being

l(mk−1→mk)i) represent the different possible transformations. How each of these labels

are defined is dependent on the application, but overall they strictly dictate the form

of the auxiliary distributions and the associated transformation.

We let ψmk−1→mk
(·) represent the proposal distribution for different transforma-

tions and ψmk→mk−1(·) be a proposed auxiliary distribution to dictate what the reverse
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transformation is. Then each intermediate distribution is then given by

ρt = (π(mk−1, θmk−1t|y)ψmk−1→mk
(umk−1t|l(mk−1→mk)i))1−ϕt

×(Jmk→mk−1ψl,mk−1→mk
(l(mk−1→mk)i))1−ϕt

×(π(mk, θmkt|y)ψmk→mk−1(umkt|l(mk−1→mk)i))ϕt

×(ψl,mk→mk−1(l(mk−1→mk)i))ϕt , (2.44)

in which we apply the ith transformation and corresponding reversed transformation.

Usually we will let each possible type of transformation have equal probability of

being selected.

2.3.4 Alternative Annealed Intermediate Distribution

An issue with the geometric annealing distributions, described in (2.30), is that if

the quality of the transformation to a new parameter space is very inaccurate it may

cause larges variations in the particles weights. In the most extreme case, proposals

to a new model space might be so poor that almost all particles have probability zero

at any ϕt which will break the tSMC algorithm, as well as other algorithms such as

the discussed AIS-RJMCMC, as we have no positive weights for resampling. What

we consider instead of a geometric annealing scheme is to use arithmetic annealing

intermediate distributions, as suggested by Karagiannis and Andrieu (2013), of

ρt = (1− ϕt)(π(mk−1, θmk−1t)ψmk−1→mk
(umk−1t)Jmk→mk−1)

+ϕt(π(mk, θmkt)ψmk→mk−1(umkt)). (2.45)

Even if the transformation solely gave zero probability proposals, ρt would not equate

to zero and potentially can be recovered by MCMC moves. There will exist stronger

initial push to have parameter estimates for model mk, generated from an across

model move, into areas of high posterior probability mass at a faster rate as model
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mk will have more initial probability density mass at each ρt. This is due to ϕt being

used as a multiplicative factor rather than an exponent and thus ϕt will have less

impact on the magnitude of the joint densities for both (2.31) and (2.32). What

property this intermediate distribution has instead is a close to equal representation

of both models, in comparison to a gradual prioritisation of model mk. However we

must note that the true form of the arithmetic annealing intermediate distribution,

when unnormalised densities are not applied, is actually given by

ρt =
(

(1− ϕt)(π(mk−1, θmk−1t)ψmk−1→mk
(umk−1t)Jmk→mk−1)

π(mk−1|y)

× (1− ϕt)π(mk−1|y)
(1− ϕt)π(mk−1|y) + ϕtπ(mk|y)

)

+
(
ϕt(π(mk, θmk,t)ψmk→mk−1(umkt))

π(mk|y)

× ϕtπ(mk|y)
(1− ϕt)π(mk−1|y) + ϕtπ(mk|y)

)
, (2.46)

and therefore we may have large changes in the incremental weights if there is a great

difference between the two marginal likelihoods of π(mk−1|y) and π(mk|y), especially

when ϕt → 0 or ϕt → 1. Since we cannot define the true form of each of the

marginal posteriors, then it is difficult to define a tempering scheme to compensate

for unknown and sudden discrepancies in the weights. However we could apply an

adaptive scheme, like in section 2.3.1, which defines the tempering scheme adaptively.

This is an advantage over AIS-RJMCMC which only applies one particle and cannot

apply a similar adaptive scheme.

2.3.5 Evaluating the Performance of the tSMC algorithm

In chapters 3-5 we apply tSMC to three different models. All of this is coded

within R software (R Core Team, 2019). The software provides less complex op-

erations than other programming languages and ideally it is preferred to test basic

statistical concepts or ideas. However it is not appropriate to compare practical speed
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with an existing programme in c++/Java. As R is an interpreted computer language

which reads a series of lines step-by-step in comparison to a compiled language then

it will usually be slower.

We estimate the Monte Carlo error from results given by our tSMC algorithm,

with a focus on the marginal posterior densities of the model parameters and the

marginal likelihood of the data. Otherwise we calculate the Bayes Factors instead

of the marginal likelihood depending on how we define the models. We will still

run equivalent intermediate distributions runs (or a fixed number of annealed distri-

butions) for all ML tests, as we go by the assumption that a likelihood calculation

would make up the bulk of the time to complete a script of a tSMC run. Therefore

when appropriate we make comparisons with other MC algorithms, also redeveloped

in R, with a measurement of MC error per likelihood calculation. While there exist

proposed methods that attempt to determine Monte Carlo variance within one or

fewer sweeps, see for example Lee and Whiteley (2018), we stick with the standard

approach where we estimate the Monte Carlo variance from a number of runs.

Remaining attributes of tSMC are primarily tested within chapter 3. For ex-

ample this includes evaluating the quality of the transformation proposals between

each model transition by analysing the particle degeneracy given by the ESS and the

overall history of the annealed intermediate distributions. These are graphical inter-

pretations, and there is no established measurement that assesses the overall rate of

particle degeneracy or the rate of increasing ϕt−ϕt−1 over multiple reweighting steps.

We also use the number of intermediate distributions given by the adaptive scheme as

an indication between the initial and final distributions in which better model tran-

sitions would have a small number of intermediate targets. Although as discussed in

section 2.2.3 the particle degeneracy as given by the CESS or ESS should not solely

be used as a good indicator for particle diversity and posterior convergence, and it

is important we access the overall quality of the kernel moves made on the particles

is analysed and the marginal posterior distributions. Adaptive MCMC proposals, or
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standard proposals, and their associated Mean-Squared Jump distances and accep-

tance rates over time will also be analysed. The preferable outcome being consistent

rates over time despite difficulties in achieving such rates for all marginal param-

eters using SMC or RJMCMC (Jasra et al., 2011). Otherwise application specific

diagnostics are stated in each chapter.

2.4 Discussion

In this chapter we have introduced transformation SMC, a SMC adaption to

gradually infer distributional properties of a sequence of models under both fixed and

increasing sample size. We have explained where tSMC can be the most useful, and

where tSMC is definitely not appropriate such as when models are solely dependent

on Gibbs sampling to give the best possible exploration of the model.

In chapter 3 we aim to apply our model in the application of univariate mixture

models, and due to the simplicity of the application we primarily use it to test various

properties of tSMC and advanced adaptions. Chapter 4 examines an application

in genealogy tree reconstruction, an application that can be very difficult to as it

involves a discrete parameter space that increases factorially with increasing sample

size. Finally in chapter 5 we explore another type of mixture model, it is an example

of exploring the same model but here we gradually augment the number of potential

clusters that a set of allocations variables can take.
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Analysing tSMC with Applications
in Mixture Models

This chapter focuses on estimating posterior densities and marginal likelihoods

of a series of univariate Gaussian mixture models given some data y ∈ Y ⊂ R.

We primarily use this application to analyse the properties of our proposed tSMC

algorithm, and its variants, as described in chapter 2. This chapter is split into the

following subsections.

Section 3.1 describes the univariate Gaussian Mixture model. We also briefly

explain the label-switching problem, and the solution we apply for it.

A review of past approaches to the mixture distribution problem are explained

in section 3.2. We also state what contribution tSMC makes when inferring mixture

models while also describing its limitations.

Section 3.3 considers the most appropriate priors, MCMC kernels and parameter

transformations.

Section 3.4 gives a recap of the type of tests to run in tSMC and what type of

comparison diagnostics we will consider for finite mixture models. We discuss our

results in section 3.5.

Finally in section 3.6 we discuss strengths and weaknesses of the approach to

finite mixture models, and how our adaptions could be expanded to include other
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mixture models.

3.1 Mixture Models

3.1.1 The Finite Mixture Model

A mixture model is considered if exploratory analysis or otherwise suggests that

the density of the data {yi}ni=1 with yi ∈ Y is not unimodal or otherwise cannot be

explained through fitting a single distribution. Each model mk contains a total of k

identically distributed “component” distributions. Many research questions assume

that the total number of components k is unknown, and under Bayesian model as-

sumptions this may treated as a random variable. We define the possible components

as {a1, ..., ak}. The contribution that each component gives to the joint probability

density of model mk is dependent on their corresponding weight of ωmkaj
, also termed

as a mixture proportion, where ωmk· = {ωmka1 , ..., ωmkak
} and

k∑
j=1

ωmkaj
= 1.

A mixture model may also be parameterised using a set of allocation variables,

z1:n = {z1, ..., zn}, which correspond to each observation in the sample. The purpose

of such variables is to cluster points into the components which could representative

of some real world population, and the allocations of points to clusters are treated as

missing data that must be inferred as part of the posterior. For example we could

set a prior p(z|ωmk
,mk) such that Pr(zi = aj) = ωmkaj

, with an additional prior on

ωmk
such as a Dirichlet distribution (we refer back to this in chapter 5), and each

observation distributed by yi ∼ fzi
(·|θmkzi

, ωmkzi
,mk) where θmkzi

corresponds to the

component indexed by zi in model mk. Sampling from the posterior with this type

of parameterisation is sometimes dubbed as simulating “with completion”, with more

precise phrasing depending on how the allocation variables are inferred (Cappé et al.,

2003).

However we choose to ignore the allocation variables by integrating out the la-

tent variables by taking the product of f(yi|θmkzi
, ωmkzi

,mk) and p(zi|wmkzj
,mk), and
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then simply integrate over all discrete allocation variables which gives us (3.2) as the

distribution for one observation defined by

yi ∼
k∑
j=1

f(yi|θmkaj
, ωmkaj

,mk)p(zi = aj|wmkaj
,mk), (3.1)

such that

k∑
j=1

f(yi|θmkaj
, ωmkaj

,mk)p(zi = aj|wmkaj
,mk) ≡

k∑
j=1

ωmkaj
faj

(yi|θmkaj
,mk).(3.2)

Specific reasons why we choose to ignore the allocation labels, and otherwise how

they can be implemented, is given in section 3.6. Furthermore we consider allocation

of the observations in chapter 5 and give more in depth analysis of the methods that

are used to allocate each label. From the selection of potential mixture distributions

problems, the focus will be on Bayesian model comparison for a univariate mixture

of Gaussian distribution. This is given by

yi ∼
k∑
j=1

ωmkaj
Normal(yi;µmkaj

, τmkaj
), (3.3)

where each µmkaj
and τmkaj

are the means and precisions respectively of a Gaussian

distribution for each aj component of faj
(yi|θmkaj

,mk) = Normal(yi;µmkaj
, τmkaj

).

The choice of Gaussian mixture models was considered as there already exists a range

of results for comparison and a series of established Reversible Jump MCMC based

transformation moves when transitioning from differing mixture models.

3.1.2 Label Switching

A common problem when inferring mixture models is given a set of compo-

nents with a parameter set of θmk· = {θmka1 , ..., θmkak
}, where each θmkaj

share a

common joint prior, is that the components are not identifiable by design. For il-

lustration consider that there are a total of k! permutations of the possible compo-

nent orderings. Therefore given two types of permutations of p and p′, such that
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(ωmkp, θmkp) ≡ (ωmkp1 , ωmkp2 , ..., ωmkpk
, θmkp1 , ..., θmkpk

) for example, then regardless of

the permutations we would have two symmetric likelihoods given by

f(y|ωmkp, θmkp,mk) =
n∏
i=1

 k∑
j=1

ωmkpj
faj

(yi|θmkpj
,mk)


=

n∏
i=1

 k∑
j=1

ωmkp
′
j
faj

(yi|θmkp
′
j
,mk)


= f(y|ωmkp′ , θmkp′ ,mk). (3.4)

Richardson and Green (1997) concluded that using a prior ordering on the means

by setting µ1 < ... < µk proved to be effective in reducing the multimodality (due

to this non-identifiability) of each marginal posterior parameter in univariate Gaus-

sian models. This is in comparison to a sequential ordering of the precisions which

failed to remove noticeable multimodality. However this prior does not necessar-

ily mean that multimodality in the posterior distributions will be removed, at least

with models that have more components than we might expect to find in the data,

which we call “oversaturated” models (Stephens, 2000b). We adopt this solution of

ordering the means for this chapter, but there are also other ways of tackling the

problem. For example the Kullback-Leibler (KL) relabeling strategy to apply with

MCMC involves considering a loss/cost function regarding all possible permutations

and potentially latent allocation variables, and their corresponding classification prob-

abilities of ωmkaj
faj

(yi|θmkaj
,mk)/

k∑
j=1
ωmkaj

faj
(yi|θmkaj

,mk). There is also the strategy

of performing a Monte Carlo algorithm without any constraints or orderings and then

perform post-analysis to assign the component labels (Stephens, 1999). Otherwise it

is advised to apply some post process simulation with different label assignments on

each component to analyse the properties of the posterior (Richardson and Green,

1997). For further reading on recent advanced strategies to label switching with re-

spect to Bayesian mixture models we would recommend Cron and West (2011); Jasra

et al. (2005); Papastamoulis and Iliopoulos (2010); Rodŕıguez and Walker (2014).
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3.2 Discussion of Past Approaches and tSMC Adap-
tion

We primarily focus on past research in the application of model selection for

univariate/multivariate mixture models, and efforts which allow for the chance of

increasing/decreasing dimensional size within one run of the algorithm. We refer

back to chapters 1-2 for the strengths and weaknesses of model comparison when

using MCMC and SMC methods in which numerous adaptions have been proposed.

The problem of using MCMC and SMC methods is that separate runs of the same

algorithm are required if model comparison of a series of models, with the difference

being the number of parameters to infer, was of interest. Furthermore the most reliable

methods to estimate the ML from MCMC output tend to have higher computational

cost. RJMCMC methods allow for the transition to different models and one of

the algorithm’s earliest uses was in the application univariate/multivariate Gaussian

mixture models (see Brooks et al. (2003); Jasra et al. (2008, 2005); Papastamoulis and

Iliopoulos (2009); Richardson and Green (1997); Zhang et al. (2004)). Again though it

may struggle to transition to different parameter spaces if the across model transitions

are inappropriate, and there exists a risk that the algorithm will not explore certain

mixture models within a set length of the Markov chain as it becomes harder to

devise better models transitions with particularly if the number of parameters for

each component is large.

An alternative class of algorithms, termed the continuous time Markov chains

Monte Carlo (CT-MCMC) by Cappé et al. (2003), also perform jumps between mod-

els. The basic concept introduced by Stephens (2000a) is that each state of a Markov

chain involves initiating a continuous time Markov birth-death process. In this pro-

cess a new component of a mixture distribution has a chance of being created which is

dictated by some birth rate (for an explanation on the concept of a component birth

or component death, see section 3.3.2), in which all weights are adjusted to incorpo-
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rate the new component. For each component that is “born” or is already generated

before the process starts, their independent death rates are also calculated. The rate

is designed such that a bad proposal to the target distribution will lead to a higher

rate. Therefore the number of components remains unchanged for some exponentially

distributed time period and after this holding time has passed either a birth or death

occurs. For example a component death occurs with probability given by its inde-

pendent death rate divided by the sum of the birth and death rates, and afterwards

all death rates are recalculated followed by another proposed holding time. Once the

Markov process stops at some predefined total time then other kernels may be applied,

such as MCMC moves on the model parameters etc, before moving onto the next state

of the Markov chain. One adaption by Cappé et al. (2003), who commented on the

lack of sufficient convergence when using birth/death moves alone, instead considered

splitting a component and its corresponding parameters into two instead of birthing

them and merging components instead of deleting them. CT-MCMC is slower and

does not give any notable improvements to the estimate of the model posterior distri-

bution than RJMCMC. Furthermore it still suffers from the same flaws of proposing

new components from an existing high-dimensional model and any form of exploring

the parameter space, which isn’t a model transformation move, is only done at a

certain state which comes after components have been proposed and deleted (Cappé

et al., 2003).

We conclude with Variational Bayes (VB) algorithms, a non Monte Carlo based

series of methods with origins in Attias (1999), that gives variational posterior approx-

imations. The basic concept of these algorithms for the application in model selection

of mixture models is that it first involves constructing some tractable function, also

termed as a variational distribution, that is an approximation to the posterior dis-

tribution. Afterwards, starting initially with a high dimensional model where the

model posterior is likely to have small probability density, the algorithm attempts

to maximise the marginal likelihood of the posterior through an iterative algorithm
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that moves the allocation variables (if included in the model) and the component

parameter estimates, and permanently (usually) deletes components based on min-

imising the Kull-back divergence between the tractable function and the posterior

distribution (Ormerod and Wand, 2010). Note that we don’t consider pure VB to

find the best possible model for a set of data as the algorithm tends to underestimate

the uncertainty of the ML, and furthermore it lacks the same convergence and vari-

ance consistency guarantees as Monte Carlo methods which were stated in chapter

1 (Grosse et al., 2015). An interesting approach by McGrory et al. (2016) applies

a sequential Monte Carlo algorithm and gradually adds data in batches over time.

They again initiate on the proposed highest component size and use variational Bayes

based kernel moves. The downside of this SMC approach however is that depending

on the ordering of these sequential batches of data a component might be deleted

too soon, although VB proposals were made in Wu et al. (2012) that allowed for the

generation of a new components in a typical VB algorithm.

3.2.1 The tSMC Approach

As stated in chapter 2, we believe that exploiting the similarities in posteriors

between neighboring models can assist with developing importance proposals for a

high dimensional mixture model. In the case of univariate Gaussian distributions with

a large number of components we might expect that the posterior distribution over

the majority of the parameters will not change significantly when a new component

is included, except with some adjustments to component precisions, and thus given

that it is easier to estimate posterior distributions for low-dimensional models then

it will assist with convergence at higher dimensions. Furthermore applying a series

of intermediate distributions with MCMC kernels to adjust for poorer proposals, and

move them into areas of high posterior probability density, is also beneficial. Unlike

RJMCMC which depends on single transformation, tSMC makes N proposals (i.e

N particles) which are weighted such that proposals which are in high probability
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regions of the posterior will have larger weights while other particles will be deleted

after resampling or gradually moved via kernel moves. Although CT-MCMC is similar

with death rates affected by the quality of a proposal, it does not apply kernels to

a mediocre proposal until the Markov time process is completed. Furthermore we

receive an estimate of the ML by design without additional post-analysis.

3.3 Adaption of tSMC to the Univariate Mixture
Model

Here we aim to estimate the marginal likelihood and posterior distribution of

π(θmk·, ωmk·,mk|y) ∝ f(y|θmk·, ωmk·,mk)p(θmk·, ωmk·,mk), (3.5)

for a set of models (m1, ...,mK), with model m0 containing only normalised proposals

for model m1. This application is an example where we have a sequence of successive

nested models, each one differing by the inclusion of one Gaussian component. For the

remainder for this section we first describe the complete form of the posterior distri-

bution, followed by several types of transformation that we apply and finally describe

the MCMC kernels we apply to the component weights and Gaussian parameters.

3.3.1 The Posterior Distribution

The unnormalised form of the posterior distribution is

π(θmk·, ωmk·,mk|y) ∝ f(y|ωmka1 , ...., ωmkak
, µmka1 , ...., µmkak

, τmka1 , ...., τmkak
,mk)

×p(ωmka1 , ..., ωmkak
)p(µmka1 , ..., µmkak

)

p(τmka1|b)...p(τmkak
|b)p(b)p(mk), (3.6)

where θmkaj
= {µmkaj

, τmkaj
} and b is explained later within this section. The likeli-

hood is again defined in (3.3), being
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n∏
i=1

k∑
j=1

ωmkaj
Normal(yi;µmkaj

, τmkaj
). (3.7)

We define the prior of each Gaussian mean by

µmkaj
∼ Normal(µ = ȳ, τ = (ymax − ymin)−2). (3.8)

where again µ and τ refers to the mean and precision respectively of a Gaussian

distribution. Otherwise ȳ is the observational mean, with ymax and ymin being the

maximum and minimum values respectively of the observations. This prior ensures

that it is likely that that each of the true distributions of the means are within the

range of the prior, although a drawback is that it does not encourage closer fitting

µmkaj
. Otherwise we consider the ordering of the Gaussian means of µmka1 < µmka2 <

... < µmkak
, where there are k! possible orderings. It also gives our joint prior of the

Gaussian means defined by

p(µmka1 , ..., µmkak
) =


k!

k∏
j=1

Normal(µmkaj
| ȳ, (ymax − ymin)−2) if µmka1 < ... < µmkak

0 Otherwise
.

(3.9)

This acts as our basic solution to the label switching problem (Richardson and Green,

1997). For each precision we use a gamma distributed prior of

τmkaj
∼ Ga (α = 2, β = b) , (3.10)

where α and β are the shape and rate parameters respectively. Note that we also

insert an additional prior on said rate parameter defined by

b ∼ Ga(α = 0.2, β = 10/(ymax − ymin)2). (3.11)

We use this prior as we assume that we are uninformed about the true spread of the

parameter space for each precision, and furthermore Richardson and Green (1997)
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has shown that the marginal posterior distribution for the number of components is

insensitive to the assumptions made in (3.10) and (3.11) while in comparison using

different fixed β in (3.10) will give different posteriors.

For the priors that have mentioned so far, we have incorporated the data itself

into the priors and is very close to what was used in Richardson and Green (1997).

We recognise that it is not good practice, as it is a double use of data which we are not

supposed to know in the first place as prior distributions are based on prior assump-

tions before receiving the data. Furthermore depending on how the hyperparameters

are defined these priors are at risk of being appropriate for some datasets but not for

others, to the point where it would of been simpler to set up a vague prior that would

be appropriate for any predicted data variation (Berger, 2006). However it is still used

in practice, such as the use of g-priors for regression coefficients when applying Bayes

theorem to multiple regression models (Liang et al., 2008), and again in this chapter

we are more interested in analysing the properties of the tSMC algorithm then a true

understanding of the data itself.

For the component weights we again assume no prior information and set an

uninformative Dirichlet distribution of

ωmk· ∼ Dirichlet(α1 = 1, ..., αk = 1), (3.12)

where each αi are the concentration parameters for a Dirichlet distribution.

Finally we set the prior on the number of components to be a discrete uniform

distribution, thus assuming that we have no prior information on the required number

of Gaussian distributions to represent the data of

p(mk) = K−1, (3.13)

for k ∈ {1, ..., K} where K is the pre-defined maximum number of joint distributions

that is realistically expected from the data. Another credible prior for the number
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of components would be a Poisson distribution, including its truncated variant, of

Poi(λ) where we set λ to the most likely number of joint Gaussian distributions such

that smaller probabilities are given the further the state deviates from λ (see Jasra

(2006); Nobile and Fearnside (2007); Phillips and Smith (1995); Richardson and Green

(1997)).

3.3.2 Model Transition Moves

We now describe how we plan on jumping between two parameter spaces. As

stated from chapter 2 we simplify the notation and consider the set {θmk·t, umk·t} to

refer to the results by using a transformation on the set {θmk−1·t, umk−1·t} and we are

also reintroducing the time index t to the notation, representing the current interme-

diate distribution assuming a total of T intermediate distributions, as described in

chapters 1 and 2.

3.3.2.1 Birth Move

One method to generate a new component for a higher dimensional model with

at least one parameter is to generate the component parameters via auxiliary vari-

ables and then apply an identity transformation such that all new parameters are

the equivalent to the auxiliary variables. To jump to a model with k components we

consider the auxiliary variables umk−1 = {u1, u2, u3} such that

µ̂ ≡ u1 ∼ Normal(µ = ȳ, τ = (ymax − ymin)−2)

τ̂ ≡ u2 ∼ Ga (α = 2, β = b)

ω̂ ≡ u3 ∼ Beta(1, k). (3.14)

The new mean and precision variables for the new components are proposed from their

respective priors, as can be seen in (3.14). We reorder the set (µmk−1a1 , ..., µmk−1ak−1 , µ̂)

to match the ordering of means as stated in (3.9) to get the set (µmka1 , ..., µmkak
)
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and this ordering applies for the other parameters too. A corresponding weight

for Normal(µmkak
, τmkak

) is generated from u3 with the other weights adjusted via

ωmka(1:k−1) = ωmkak
(1 − ωmka(1:k−1)). From the transformation of the set of weights

we receive a Jacobian of Jmk→mk−1 = (1 − ω̂)−(k−1). This type of move is termed as

a birth move, again based from Richardson and Green (1997), with the opposite of

a birth move that removes a component termed as a death move. To add the new

component we consider amk−1→mk,· as the set of labels that can represent the newly

created Gaussian component, with amk−1→mk,i as the specific ith label within this set.

This is given with probability

amk−1→mk,i ∼ ψa,mk→mk−1

= (k)−1 , (3.15)

and we do not propose a change to this auxiliary variable throughout the algorithm.

This label is used to determine which component is to be deleted when we consider an

inverse transformation to the model space of mk−1. We also note that ψa,mk−1→mk
(·) =

1 in this scenario. If we were to consider an importance weight of the tSMC algorithm,

when transitioning from k − 1 component model to one with k components where

ϕ0 = 0 and ϕT=1 = 1, then this is defined by

ρT (θmk·0, ωmk·0, umk
;mk−1 → mk)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk)

= f(y|θmk·0, ωmk·0,mk)p(θmk·0)p(ωmk·0)
f(y|θmk−1·0, ωmk−1·0,mk−1)p(θmk−1·0)p(ωmk−1·0)

× p(mk)
p(mk−1)ψmk−1→mk

(u3|amk−1→mk,i)Jmk→mk−1

×
ψa,mk→mk−1(amk−1→mk,i)
ψa,mk−1→mk

(amk−1→mk,i)
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=

 k∑
j=1

ωmkaj0faj
(y|θmkaj0,mk)

p(ωmk·0)k−1∑
j=1
ωmk−1aj0faj

(y|θmk−1aj0,mk)
 p(ωmk−1·0)

× 1
ψmk−1→mk

(ω̂)((1− ω̂)−(k−1))

(
p(µmk·0)p(τmk·0)ψa,mk→mk−1(amk−1→mk,i)

p(µmk−1·0)p(τmk·0)

)

=

 k∑
j=1

ωmkaj0faj
(y|θmkaj0,mk)

p(ωmk·0)k−1∑
j=1
ωmk−1aj0faj

(y|θmk−1aj0,mk)
 p(ωmk−1·0)

× 1
ψmk−1→mk

(ω̂)((1− ω̂)−(k−1)) , (3.16)

as {τmk−1a1 , ..., τmk−1ak−1 , τ̂} ≡ {τmka1 , ..., τmkak
} means that the precision priors cancel

out in (3.16) and a similar logic follows with the prior of the means and ψa,mk→mk−1(·) =

(k)−1 canceling each other out. What we also do when explaining these transformation

is suppress the dependence on all model parameters and the Jacobian on amk−1→mk,i ,

where this was done to make the notation more simplistic regarding how the param-

eters can change for differing values of amk−1→mk,i (a conditionality we take note of in

section 3.3.2.3).

3.3.2.2 Split Move

What was also considered was a split move which splits the weight, mean and

precision of {ωs, µs, τs} from a randomly selected component into two weights, means

and variances. This involves the generation of auxiliary variables umk−1 = {u1, u2, u3}

distributed by

u1 ∼ Beta(2, 2)

u2 ∼ Beta(1, 1)

u3 ∼ Beta(2, 2). (3.17)
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For the chosen Gaussian component we split its corresponding weight ωs, mean µs

and precision τs to represent the two new components, based on the Gaussian split

move by Richardson and Green (1997) where

ω̂1 = u3ωs

ω̂2 = (1− u3)ωs

µ̂1 = µs − u1

√
(τs)−1 ω̂2

ω̂1

µ̂2 = µs + u1

√
(τs)−1 ω̂1

ω̂2

τ̂1 =
(
u2(1− u2

1)(τs)−1ωs

ω̂1

)−1

τ̂2 =
(

(1− u2)(1− u2
1)(τs)−1ωs

ω̂2

)−1
. (3.18)

The reverse move is termed a merge move, that takes the form of the following set of

functions defined by

ωs = ω̂1 + ω̂2

µs = ω̂1µ̂1 + ω̂2µ̂2

ωs

τs =
(
ω̂1
µ̂2

1 + (τ̂1)−1

ωs
+ ω̂2

µ̂2
2 + (τ̂2)−1

ωs
− (µs)2

)−1

u1 = µ̂2 − µ̂1√
(τ̂1)−1 ω̂2

ω̂1
+
√

(τ̂2)−1 ω̂1
ω̂2

u2 = 0.5 + ω̂1 (τ̂1)−1 − ω̂2 (τ̂2)−1

2ωs(1− u2
1)τs

u3 = ω̂1

ωs
. (3.19)

The Jacobian Jmk→mk−1 for this type of transformation move can be expressed, based

on a transformed variant of the general form of Jmk−1→mk
for multivariate Gaussian
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models under 3.19 (Zhang et al., 2004), by

(
(ωs)4

(
(τs)−0.5 /ω̂1ω̂2

)3/2
(1− u2

1) (τ̂1τ̂2/τs)2
)−1

(3.20)

where (τ̂1τ̂2/τs)2 simply accounts for the determinant of the relationship between

the precision and the variance of the data when transforming the general Jacobian in

Zhang et al. (2004). Furthermore our reverse move only considers merging components

that are directly adjacent to each other where there are k − 1 adjacent move pairs.

We also add the further assumption, based in Richardson and Green (1997) and

Karagiannis and Andrieu (2013), that for the fusion of (3.19) to hold true we require

that µmka1 is directly followed by µmka2 , with no other µmkaj
in between, in order

to prevent the label switching problem. It is possible to ignore this rule and instead

consider all possible pairings, see for example Cappé et al. (2003), however it means

removing the indicator variables of µmka1 < ... < µmkak
and this could lead to a single

component attempting to represent a subset of Gaussian components. Overall we

consider the probability of a component to be split, and again we do not make any

changes to these variables over time between a model transition, to be given by the

auxiliary variable of

amk−1→mk,i ∼ ψa,mk−1→mk
(·)

= (k − 1)−1 , (3.21)

and this label is also used to identify which pairwise component pairing is to be merged

where

ψa,mk→mk−1(amk−1→mk,i) = (k − 1)−1 , (3.22)

in order to perform the inverse calculation. When using this transformation proposal

an importance weight between two models, given ϕ0 = 0 and ϕT=1 = 1, is given by
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ρT (θmk·0, ωmk·0, umk
;mk−1 → mk)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk)

= f(y|θmk·0, ωmk·0,mk)p(θmk·0)p(ωmk·0)
f(y|θmk−1·0, ωmk−1·0,mk−1)p(θmk−1·0)p(ωmk−1·0)

× p(mk)
p(mk−1)ψmk−1→mk

(umk−1 |amk−1→mk,i)

×
ψa,mk→mk−1(amk−1→mk

)
ψa,mk−1→mk

(amk−1→mk
)Jmk→mk−1

=

 k∑
j=1

ωmkaj0faj
(y|θmkaj0,mk)

 p(θmk·0)k−1∑
j=1
ωmk−1aj0faj

(y|θmk−1aj0,mk)
 p(θmk−1·0)

× p(ωmk·0)
p(ωmk−1·0)ψmk−1→mk

(umk−1) (τs/τ̂1τ̂2)2

× 1(
(ωs)4

(
(τs)−0.5 /ω̂1ω̂2

)3/2
(1− u2

1)
)−1 ,(3.23)

and again we suppress the dependence of the Jacobian and all other model parameters

on amk−1→mk,i.

3.3.2.3 Deconditioning the Model Proposals

There is a flaw regarding how both transformations, stated in sections 3.3.2.1

and 3.3.2.2, act as a proposal to an extended parameter space at each intermediate

distribution. As the tSMC progresses to each intermediate distribution, the particles

can become degenerate over the amk−1→mk
variables since some of the transformations

yield better proposals than others. Thus, despite choosing say a uniform distribution

over the component label amk−1→mk
, our proposals for the labels will eventually fail

to cover all of its possible states so only estimate a fraction of the marginal likelihood

is estimated over time which would cause a notable variance in the Monte Carlo

estimates. However the posterior distribution over the parameters is the same for each

label, so the degeneracy in the labels does not effect the main posterior distribution

that we want to infer. The birth move also has the same analogous problem.
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This issue is also important where we wish to consider more than one type of

transformation for moving between models. This involves applying an additional

auxiliary variable dictating whether we use a birth or a split move. However such

labels will also become degenerate. Therefore we choose to consider variance reduction

methods.

We consider integrating out a set of variables that are conditional on the target

distribution. While the purpose of such variables is to make sampling easier, it can also

increase the variance of the posterior and the marginal likelihood. This is sometimes

termed as deconditioning the model (Douc et al., 2007; Liu et al., 1994). In our case

we choose to integrate out the auxiliary labels amk−1→mk
stating how we initiate a

birth/death on a component or split/merge one-two components respectively (similar

to how the mixture model “with completion” was defined in section 3.1. For the birth

move we generate a new component, and then consider summing over the discrete

choices of which component is to be removed and thus we are deconditioning over

the auxiliary variable. Therefore an importance weight of a transition between two

models, with ϕ0 = 0 and ϕT=1 = 1, is defined in (3.24)

ρT (θmk·0, ωmk·0, umk
;mk−1 → mk)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk)

=

 k∑
j=1

ωmkaj0faj
(y|θmkaj0,mk)


ρ0(θmk·0, ωmk·0, umk

;mk−1 → mk)
×p(θmk·0)p(ωmk·0)p(mk) (3.24)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk) =

∑
amk−1→mk,i

 k∑
j=1

ωmk−1aj0faj
(y|θmk−1aj0,mk)


×p(ωmk−1·0)p(θmk−1·0)p(m(k−1))

ψmk−1→mk
(ω̂|amk−1→mk,i)

×ψa,mk−1→mk
(amk−1→mk,i)Jmk→mk−1

)
, (3.25)

and we suppress the conditionality on the model parameters and the Jacobian. In

particular θmk−1·, ωmk−1· and Jmk→mk−1 will vary for differing amk−1→mk,i. For example
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if we consider a three component model in mk, if the label is amk−1→mk,1 then θmk−1·

will represent the second and third Gaussian components of θmk·, with ωmk−1· simi-

larly adjusted based on the inverse transformation on {θmk·, ωmk·}. Furthermore we

emphasise that ψa,mk→mk−1(amk−1→mk,i), integrates to one within (3.24), and this is

similarly applied when we considering integrating out the auxiliary labels for the split

move.

The deconditioned version of the split move, although we integrate over which

pairwise components were thought to have originated from a split instead, is expressed

by an importance weight of

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk)

=

 k∑
j=1

ωmkaj0faj
(y|θmkaj0,mk)


ρ0(θmk·0, ωmk·0, umk

;mk−1 → mk)
×p(θmk·0)p(ωmk·0)p(mk) (3.26)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk) =

 ∑
amk−1→mk,i

 k∑
j=1

ωmk−1aj0faj
(y|θmk−1aj0,mk)


×p(θmk−1·0)p(ωmk−1·0)p(mk−1)

×ψmk−1→mk
(umk−10|amk−1→mk,i)

Jmk→mk−1

 1
k − 1 . (3.27)

Note that since we don’t integrate over ψa,mk→mk−1(·), which is equal to (k − 1)−1,

this remains in the denominator term of (3.27)

Finally we consider deconditioning the tSMC adaption when we assign a subset

of the particles to either the birth or split move defined by the label lmk−1→mk,i, as

discussed in chapter 2. Not only do we remove the dependence over the auxiliary

label variables, but also whether a birth or a split move was applied to a particle. We

assume that each transformation has equal probability of being assigned to one of the

transformations, i.e Pr(lmk−1→mk,1) = Pr(lmk−1→mk,2) = 0.5. Furthermore we sample
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any auxiliary variables dependent on the ith type of transformation, for example

umk−1 ∼ ψmk−1→mk,lmk−1→mk,i
(·). (3.28)

Therefore the importance weight between two models is given by

ρT (θmk·0, ωmk·0, umk
;mk−1 → mk)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk)

=

 k∑
j=1

ωmkaj0faj
(y|θmkaj0,mk)


ρ0(θmk·0, ωmk·0, umk

;mk−1 → mk)
×p(θmk·0)p(ωmk·0)p(mk) (3.29)

ρ0(θmk·0, ωmk·0, umk
;mk−1 → mk) =

 ∑
amk−1→mk,i|lmk−1→mk,1


 k∑
j=1

ωmk−1aj0faj
(y|θmk−1aj0,mk−1)


×p(θmk−1·0)p(ωmk−1·0)ψmk−1→mk,lmk−1→mk,1(umk−1)

×Jmk→mk−1

1
2

+
 ∑
amk−1→mk,i|lmk−1→mk,2


 k∑
j=1

ωmk−1aj0faj
(y|θmk−1aj0,mk−1)


×p(θmk−1·0)p(ωmk−1·0)ψmk−1→mk,lmk−1→mk,2(umk−1)

×Jmk→mk−1

 1
2(k − 1) , (3.30)

where again we suppress the conditionality of all the model parameters, auxiliary

variables and the Jacobians on both amk−1→mk,· and lmk−1→mk,·. The denominator of

(3.30) can essentially be thought of as the sum of both the deconditioned birth move

importance proposal and deconditioned split move importance sampler.

A downside to performing any form of the deconditioned adaptions is that the

computational cost will at least increase linearly depending on how many model tran-

sition proposals are applied and the complexity of each proposal itself.
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3.3.3 MCMC Kernel Proposals

The within-models moves are inspired from Karagiannis and Andrieu (2013). We

first perform Metropolis-Hastings kernels on the vector of component weights. This

is then followed by performing single component moves on each mean of ascending

order, and afterwards moves are made on each precision which is again proposed based

on the ascending order of the component means. Finally the shared b hyperparameter

term within each precision, as seen in (3.10) and (3.11), has a single MH proposal

applied.

µ
′

mkajt
∼ Normal

(
µ = µmkajt, τ =

(
υµmkaj t

)−1
)

(3.31)

log(τ ′mkajt
) ∼ Normal

(
µ = log(τmkajt), τ =

(
υτmkaj t

)−1
)

(3.32)

log(b′mkt
) ∼ Normal

(
µ = log(bmkt), τ =

(
υbmk

t

)−1
)
. (3.33)

We could choose to set each of the tuning variances υµmkaj t
, υτmkaj t

and υbmk
t via fixed

values. For example for each component mean this could involve the difference of the

range υµmkaj t
= ymax−ymin or alternatively we use the variance of the complete sample

such that υµmkaj t
= Var(y) although depending on the sample has the potential to be

a larger tuning variance than the range of the data. Large variances may have a great

impact on the acceptance rates if proposals breach the component ordering prior, and

since by our assumption that a good tuning variance for low dimensional model might

not be appropriate for high-dimensional inference is why adaptive tuning schemes are

considered.

At each state in the schedule the unadjusted tuning variances are updated before

each MCMC step via

υ
′

µmkaj t
= Wt.Var(µmkajt, wmkt) (3.34)

υ
′

τmkaj t
= Wt.Var(log(τµmkaj t

), wmkt) (3.35)

υ
′

bmk
t = Wt.Var(log(bmkt), wmkt), (3.36)
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where, for example, Wt.Var(µmkajt, wmkt) is the weighted variance of the particle

estimates of µmkajt given the normalised particle weights of wmkt. As stated in chapter

2, we will attempt bound the acceptance rates between 0.2 and 0.6. Considering the

final tuning variances for the means, if the acceptance rates are greater than the

upper bound we choose to set the tuning variance to this particular parameter to

υµmkaj t
= υ

′
µmkaj t

× cmkt, where cmkt = 2 × cmk(t−1) and cmk0 = 1. If they are less

than the lower bound then we set them to υµmkaj t
= υ

′
µmkaj t

× cmkt where cmkt =

0.5 × cmk(t−1). Otherwise we simply define tuning variance as υµmkaj t
= υ

′
µmkaj t

× 1

and cmkt = cmk(t−1). While these multiplicative factors stack together and carry over

to the next MCMC step, they are reset when we make a new across model move to a

new model.

A proposal to the component weights is made in logit space. Firstly one weight

is removed, where we choose to remove the last weight of ωmkakt, as there exists only

k − 1 degrees of freedom given that the weight vector has to sum to one. Afterwards

a random walk is made on each of the logit transformed weights of

log


ω
′
mkajt

1−
k−1∑
l=1

ω
′

mkalt

,

 = Normal

log


ωmkajt

1−
k−1∑
l=1

ωmkalt

 , (υω)−1

, (3.37)

and ω
′
mkakt

= 1 −
k−1∑
l=1

ωmkalt. After prior testing we do not apply adaptive tuning to

the weights, as the same scheme used for the means and precisions proved not to be

effective. Therefore a fixed tuning variance υω is considered instead, whose value is

dependent on the data.
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3.4 Tests and Adaptions for Univariate Mixture
Models

As discussed previously in chapter 2 we will consider:

• If satisfactory convergence of the posterior has been achieved, in comparison to

established techniques.

• The Monte Carlo variance of the marginal likelihood formulated of tSMC.

• In the case of having subsets of particle using either birth or split moves at

certain states, we investigate the competition between the two across model

moves.

• The ESS decay and its relationship to the discrepancies between intermediates

distributions.

We test our tSMC adaption on two datasets, displayed in figures 3.1 and 3.2. One

is the enzyme dataset containing 254 individuals introduced in Bechtel et al. (1993),

and the second dataset is the adjusted galaxy dataset from Roeder (1990) containing

82 observations.

Figure 3.1: Kernel density plot for the enzyme data.
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Figure 3.2: Kernel density plot forthe galaxy data.

For results used for displaying purposes we run tSMC for 10000 particles, under

the priors and kernel moves mentioned in section 3.3. Otherwise for tests that involve

the calculation of the marginal likelihood we run this up to eight univariate Gaussian

components, at 250 particles with two sets of 50 runs in total. One set considers

adaptively defining the number of intermediate distributions (adaptive annealing)

and other uses a fixed number of intermediate distributions (fixed annealing).

Under the fixed annealing scheme we apply a series of intermediate distributions

dictated by ϕt = (t/T )5 with the total length of the set ϕ being 100.

In regards to choosing the CESS target to dictate adaptive annealing scheme,

we choose to set it to 0.95P . Zhou et al. (2016) set the CESS decay to 0.999P when

applying this measurement to a standard annealed SMC algorithm (see Del Moral

et al. (2006)), where for each model the associated priors were used as an importance

proposal, and this lead to a total of 180-200 intermediate steps. However we have

chosen to set it lower and aim to have at most 100 intermediate distributions per

transition when using adaptive annealing, in which we analyse if adaptive anneal-

ing can still provide good convergence even though more intermediate distributions

guarantees convergence. We also briefly illustrate the problems of using the ESS to

adaptively define the intermediate distributions.

We compare the results of tSMC using am annealed SMC sampler algorithm that
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uses the prior as our importance sampler, although due to the variable computational

cost of adaptive annealing a true comparison can only be done with fixed annealing.

For example given that our fixed annealing scheme applies 100 intermediate distribu-

tions per model transition then our estimates of the marginal likelihood for an eight

component univariate Gaussian distribution from the tSMC algorithm is compared

with annealed SMC algorithm runs that have a total of 100 × 8 = 800 intermediate

distributions with discrepancies dictated by ϕt = (t/T )5 and having the same particle

size. When determining our best possible obtainable estimated marginal likelihood

and posterior distribution, we run extremely long runs of the said SMC algorithm

with 5000 particles and under 1000 intermediate steps.

Furthermore we compare our results with a long run of the RJMCMC adaption by

Richardson and Green (1997). Their algorithm is exactly given in the “Miscellaneous

Functions” CRAN package by Feng (2018), in which we can use the priors as described

in section 3.3.1. However we should note that the algorithm considers the “with

completion” adaption which attempts to infer the allocation variables, although there

should be no difference in the Bayes factor or marginal likelihood estimates compared

to the “without completion” model (providing that all prior distributions have the

same hyperparameters) since the latter just have the allocation variables integrated

out. The algorithm is run for 6, 000, 000 iterations with a burn in of 1, 000, 000

iterations.

We will consider using Monte Carlo error per number of likelihood calculations

should the final results be very similar to each other. Regarding the comparison

between tSMC and RJMCMC results we will compare the posterior odds (or Bayes

factor) between each adjacent model. As we are using a uniform prior for the ap-

propriateness of each model, given by (3.13), then the Bayes factors between each

adjacent model is the equivalent of the posterior odds.

The main objective of this chapter is to analyse the properties of the tSMC

algorithm by considering the following:
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• Firstly we illustrate a few properties of the algorithm, especially regarding the

extensions to the basic tSMC algrotihms such as the differences between using

an ESS and CESS threshold to control the discrepancies between intermediate

distributions when defining them adaptively.

• The second round of tests involves analysing the performance of both the birth

and split move, under a fixed annealing and adaptive annealing target distri-

bution. We repeat the two scenarios above, except we apply their respective

deconditioned adaptions variants as stated in section 3.3.2.3.

• We investigate if tSMC can apply multiple transformations, in this case ran-

domly assigning a particle one of the two moves, to set the ground work for

adaptions that may make use of multiple proposals in in the future.

• We analyse the performance of tSMC when applying arithmetic series of target

distributions. The tests will be based on the three previous points.

3.5 Results

We considered some pre-testing to analyse whether the tSMC algorithm was at

least functioning correctly and converging to a posterior that resembles an estimate

generated by a standard SMC algorithm. We also explain other alterations to our

adaptions due to discoveries during trial runs of each main tSMC adaption. Given an

initial transformation for some parameter set {θmk−1· , ωmk−1· , umk−1} to be transitioned

to {θmk·, ωmk·, umk
}, both of the applied transformations produced a large number of

negligible weights which naturally lead to a low effective sample size. Furthermore

the large variance between weights could also be due to the distance between the

two intermediate distributions of ρ0(·;mk−1 → mk) and ρ1(·;mk−1 → mk), but this

aspect would vary depending on model assumptions. Under fixed annealing we have a

predefined value for ϕ1, which gives an ESS estimate that usually leads to a resampling
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step. However under the adaptive selection of intermediate distributions, many trial

runs could not identify ϕ1 that would have a low enough particle variance defined

through the CESS. To compensate for this issue we have automatically set ϕ1 = 10−8

and perform adaptive annealing of each ϕt for the remaining transition states. This

was a method also used by Jasra et al. (2011).

On a minor note, adaptively tuning the MCMC kernel was found not to work well

when applied to a vector of component weights, and therefore we considered a fixed

constant for the tuning variance of the component weights. The reason for this decision

is because using a Gaussian walk with a weighted variance on the logit transformed

variables often gave proposals that had little or large mass on a subset of weights,

and were often rejected as a result. Under the enzyme dataset a tuning standard

deviation of 0.4 for the logit weights proved to give acceptable weights between 0.2 to

0.6, which is roughly where we aim when it come to giving proposals to a multivariate

object, and for the galaxy dataset we set this value to 0.8.

When using the Effective Sample Size as a measure to dictate the discrepancy

between each {ϕt−1, ϕt}, see chapter 2 and the issues of using this as a measure of

distance between two intermediate distributions, we consider a scheme of ESSi =

0.95ESSi−1 where ESS0 = N . We compared this to the adaption that uses a fixed

CESS target of 0.95N . We analysed the history of the annealing discrepancies of

each subsequent intermediate distribution when transitioning to an eight component

model when using the split move.

As seen in figures 3.3, and 3.4 we have a very similiar pattern to what was shown

in Zhou et al. (2016). The ESS scheme gave notably large discrepancies after a re-

sampling step, but afterwards there would be a sequence of decreasing and eventually

stable discrepancies until the next resampling step. In comparison using the CESS

mostly gave gradually increasing discrepancies, although depending on the transition

it could decrease but at a gradual rate, or otherwise the discrepancies between inter-

mediate distribution remained stable after each reweighting step. Most importantly
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(a) Discrepancies of ϕt − ϕt−1 when transitioning from one to two Gaussian components.

(b) Discrepancies of ϕt − ϕt−1 when transitioning from three to four Gaussian components.

Figure 3.3: Discrepancies, ϕt−ϕt−1, between intermediate distributions over time for
low dimensional transitions. The black line represents the ESS dictated discrepancies,
with the red line representing CESS dictated discrepancies.

99



Section 3.5 Page 100

(a) Discrepancies of ϕt − ϕt−1 when transitioning from five to six Gaussian components.

(b) Discrepancies of ϕt − ϕt−1 when transitioning from seven to eight Gaussian components.

Figure 3.4: Discrepancies, ϕt−ϕt−1, between intermediate distributions over time for
high dimensional transitions. The black line represents the ESS dictated discrepancies,
with the red line representing CESS dictated discrepancies.
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was that it was not affected by resampling. In either scheme we believe there wasn’t

any noticeable deviance of the posterior parameter estimation. Thus we believe using

the CESS to dictate the discrepancies between each intermediate distribution to be

the preferred option. The bisection method was shown to be fast enough for purpose

to find each ϕt that corresponding to the CESS target, and no further effort was made

to find faster root finding methods. Finally we do not make anymore comparisons

between the CESS and ESS in the remaining chapters.

We considered how stable the acceptance probabilities were within the interme-

diate distributions, and if the various weighted variance tuning proposals for each

parameter gave good initial acceptance probabilities (from the first intermediate dis-

tribution when transitioning from the two models). Figure 3.5 shows the acceptance

rates for some of the model transitions, with the majority showing a similar pattern.

What can be seen for most of these parameters is that they reach some steady con-

vergence of acceptance probabilities and there are no major drops in the acceptance

rates. This is slightly similar to what was shown in Jasra et al. (2011), who used

the same adaptive algorithm but set the acceptance rates to be between 0.15 and

0.7, although the application showed this steady state to be far less variable on some

parameters. From these tests we choose to apply our adaptive tuning scheme for all

continuous parameters in this chapter and beyond.

We display the estimated joint posterior densities in figures 3.6 to 3.9. These were

specifically generated under 10000 particle under adaptively annealed intermediate

distributions. While we only show the posterior distributions for the deconditioned

birth move and deconditioned split move in these figures, all different adaptions of the

tSMC algorithm gave approximately the same results as SMC and gave a good repre-

sentation of the data itself. Although as we explain in the rest of this subsection, each

of the tested transformations converged at different rates and gave different estimates

of the marginal likelihood. Regarding the results from the galaxy dataset, under any

of the schemes that infer a two Gaussian component univariate mixture model their
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(a) Acceptance Probabilities for the fourth ordered mean.

(b) Acceptance probabilities for the eighth ordered mean.

(c) Acceptance probabilities for the fourth ordered precision.

(d) Acceptance probabilities for the eighth ordered precision.

Figure 3.5: Acceptance probability plots for MH moves for several parameters when
transitioning to an eight component univariate Gaussian distribution, this is shown
over 10 runs of the tSMC algorithm.
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(a) Estimated posterior for two Gaussian compo-
nents.

(b) Estimated posterior for four Gaussian compo-
nents.

(c) Estimated posterior for six Gaussian compo-
nents.

(d) Estimated posterior for eight Gaussian compo-
nents.

Figure 3.6: Estimated posterior density plots under the deconditioned birth transfor-
mation for the enzyme dataset. The red line represents the tSMC estimate and the
black line represents the kernel density estimates of the data.
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(a) Estimated posterior for two Gaussian compo-
nents.

(b) Estimated posterior for four Gaussian compo-
nents.

(c) Estimated posterior for six Gaussian compo-
nents.

(d) Estimated posterior for eight Gaussian compo-
nents.

Figure 3.7: Estimated posterior density plots under the deconditioned birth transfor-
mation for the galaxy dataset. The red line represents the tSMC estimate and the
black line represents the kernel density estimates of the data.
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(a) Estimated posterior for two Gaussian compo-
nents.

(b) Estimated posterior for four Gaussian compo-
nents.

(c) Estimated posterior for six Gaussian compo-
nents.

(d) Estimated posterior for eight Gaussian compo-
nents.

Figure 3.8: Estimated posterior density plots under the deconditioned split transfor-
mation for the enzyme dataset. The red line represents the tSMC estimate and the
black line represents the kernel density estimates of the data.
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(a) Estimated posterior with two Gaussian com-
ponents.

(b) Estimated posterior with four Gaussian com-
ponents.

(c) Estimated posterior with six Gaussian compo-
nents.

(d) Estimated posteriorwith eight Gaussian com-
ponents.

Figure 3.9: Estimated posterior density plots under the deconditioned split transfor-
mation for the galaxy dataset. The red line represents the tSMC estimate and the
black line represents the kernel density estimates of the data.
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respective component Gaussian means are very close to each giving the impression of

one Gaussian component. While we do not display the individual posterior densities

for each parameter, there was no posterior density in minuscule subsets of the param-

eter (i.e no unusual peaks in the marginal density plots). Applying a fixed annealing

schedule gave similar answers.

In figures 3.10 and 3.11 we display the distributions of the number of intermediate

distributions, under each of the 50 adaptive annealing runs, it took to fully transition

from a model only containing prior assumption for a single Gaussian model to each

of the two to eight Gaussian component models. The performance of both the birth

move and the deconditioned birth move performed poorly in comparison to their

split transformation counterparts and more notably this large difference occurred even

during the transition to a two Gaussian component model where we go further in depth

of what exactly is happening within this transition with figures 3.12 to 3.15. In either

case the deconditioned moves performed better in comparison to their conditioned

counterparts. The performance of each move depended on the dataset, where in

the enzyme data the deconditioned split move required the the least intermediate

distributions on average to transition to an univariate Gaussian distributions with

eight components, but in the galaxy data both the the deconditioned split move

and the deconditioned birth/split move had roughly equal distribution of required

intermediate distributions.

Plots for the ESS over ϕt, are shown from figures 3.12, to 3.16. We mainly plot

results from the deconditioned adaptions, whose general pattern of particle degeneracy

is mostly replicated by their respective conditional counterparts. For all the birth

adaptions, shown in figure 3.12, there was an increasing rate of degeneracy as ϕt → 1

when transitioning from 1-4 Gaussian components when applied with the enzyme

dataset. As for the split transformation proposals, such a decay is not present with

an example shown in figure 3.14. Figure 3.13 displays the ESS for the deconditioned

birth move under the galaxy data, where it did not show the same rapid particle
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Figure 3.10: Cumulative number of intermediate distributions, from one to eight
Gaussian component mixture, for the enzyme data.
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Figure 3.11: Cumulative number of intermediate distributions, from one to eight
Gaussian component mixture, for the galaxy data.
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(a) ESS when transitioning from one to two Gaus-
sian components.

(b) ESS when transitioning from two to three
Gaussian components.

(c) ESS when transitioning from four to five Gaus-
sian components.

(d) ESS when transitioning from seven to eight
Gaussian components.

Figure 3.12: Effective sample size plots when applying the deconditioned birth move
for the enzyme data. The straight line at ESS = 5000 represents the threshold for
resampling.
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(a) ESS when transitioning from one to two Gaus-
sian components.

(b) ESS when transitioning from two to three
Gaussian components.

(c) ESS when transitioning from four to five Gaus-
sian components.

(d) ESS when transitioning from seven to eight
Gaussian components.

Figure 3.13: Effective sample size plots when applying the deconditioned birth move
for the galaxy data. The straight line at ESS = 5000 represents the threshold for
resampling.
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(a) ESS when transitioning from one to two Gaus-
sian components.

(b) ESS when transitioning from two to three
Gaussian components.

(c) ESS when transitioning from four to five Gaus-
sian components.

(d) ESS when transitioning from seven to eight
Gaussian components.

Figure 3.14: Effective sample size plots when applying the deconditioned split move
for the enzyme data. The straight line at ESS = 5000 represents the threshold for
resampling.
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(a) ESS when transitioning from one to two Gaus-
sian components.

(b) ESS when transitioning from two to three
Gaussian components.

(c) ESS when transitioning from four to five Gaus-
sian components.

(d) ESS when transitioning from seven to eight
Gaussian components.

Figure 3.15: Effective sample size plots when applying the deconditioned birth and
split move for the enzyme data. The straight line at ESS = 5000 represents the
threshold for resampling.
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(a) ESS when transitioning from one to two Gaus-
sian components.

(b) ESS when transitioning from two to three
Gaussian components.

(c) ESS when transitioning from four to five Gaus-
sian components.

(d) ESS when transitioning from seven to eight
Gaussian components.

Figure 3.16: Effective sample size plots when applying the conditioned birth and split
move for the enzyme data. The straight line at ESS = 5000 represents the threshold
for resampling.
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degeneracy as ϕt → 1 in comparison to when the transformation proposal was made

to the enzyme data. What we note in figures 3.15 and 3.16 is that even though

some particles had the birth transformation move applied to them, given that some

particle had the split move assigned and otherwise we decontioned over the type of

transformation applied to the particles caused the particle degeneracy to not show

the same patterns as seen in 3.12. At higher dimensional model transitions the ESS

starts to drop less rapidly as ϕt → 1 for all six transformation proposals.

We also give particular attention when transitioning from one Gaussian compo-

nent to two Gaussian components, under both of the deconditioned for the birth and

split transformations when the intermediate distributions are adaptively made. From

figures 3.17 to 3.20 when performing the birth move on the enzyme data what can be

noticed is how the particles representing one of the component means gradually shift

into areas that originally did not have any estimated probability mass during the mid

to late states of the transition, while the other mean has an estimated distribution

that remains roughly the same, as ϕt → 1. Furthermore this is accompanied with a

large number of reweighting steps due to particle degeneracy, as discussed earlier. The

pattern is also repeated for the component precision, and similar results are present

for the conditioned transformation variants as well. This highlights that proposing a

new component from prior conditions, without any changes to the existing distribu-

tion, was not appropiate to estimate a two component univariate Gaussian mixture

model, even though it does eventually estimate the posterior density similarly to that

of the split move adaptions as seen in figures 3.6 and 3.7 (as well as the particle plots).

For the galaxy data there was no sudden shift in the particle estimates, despite re-

quiring more intermediate steps than the enzyme data. In general the split move’s

performance was superior on both datasets, and converged faster to the posterior

distribution of a two component univariate mixture model.

Overall using intermediate steps has proven to have the stated advantage that we

predicted would occur, that bad importance sampling proposals from an inappropriate
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(a) Particle plot of the first ordered mean.

(b) Particle plot of the second ordered mean.

(c) Particle plot of the first ordered precision.

(d) Particle plot of the second ordered precision.

Figure 3.17: Particle plots, for the enzyme data, of the Gaussian means and precisions
when transitioning from one to two Gaussian components, using the deconditioned
birth transformation.
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(a) Particle plot of the first ordered mean.

(b) Particle plot of the second ordered mean.

(c) Particle plot of the first ordered precision.

(d) Particle plot of the second ordered precision.

Figure 3.18: Particle plots, for the enzyme data, of the Gaussian means and precisions
when transitioning from one to two Gaussian components, using the deconditioned
split transformation.
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(a) Particle plot of the first ordered mean.

(b) Particle plot of the second ordered mean.

(c) Particle plot of the first ordered precision.

(d) Particle plot of the second ordered precision.

Figure 3.19: Particle plots, for the galaxy data, of the Gaussian means and precisions
when transitioning from one to two Gaussian components, using the deconditioned
birth transformation.
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(a) Particle plot of the first ordered mean for the galaxy data.

(b) Particle plot of the second ordered mean for the galaxy data.

(c) Particle plot of the first ordered precision for the galaxy data.

(d) Particle plot of the second ordered precision for the galaxy data.

Figure 3.20: Particle plots, for the galaxy data, of the Gaussian means and precisions
when transitioning from one to two Gaussian components, using the deconditioned
split transformation.
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transformation of an existing nested model can be adjusted by an appropriate number

of MCMC and reweighting steps at a set of annealed distributions. Otherwise we

note that the majority of the particle plots, especially plots that involving transitions

when over four components are involved, would initially display wide spread and then

narrow down to a smaller interval/subset of values as ϕt → 1.

In figures 3.21 and 3.22 we show examples of the distribution of assigned transfor-

mations when performing the conditional version of the simultaneous birth and split

move over time. For lower dimensional models, the split transformation proposals

tended to be far more favored and in the case of the enzyme data would sometimes

completely represent all particles. For higher-dimensional models for the enzyme data,

the proportion of particles that were generated using the split proposal tended to more

dominant in high dimensions. For the galaxy data the distribution is roughly even as

ϕt → 1 in high dimensional transitions. However despite this transformation proposal

favouring the best transformation given the current transition and data, as well as

giving an accurate estimate of the posterior distribution, it did not neccessarily give

the best estimate of the marginal likelihood which we now discuss.

We consider the distribution of the log marginal likelihood estimates, under both

the adaptive and fixed annealing schedule for 50 runs, from figures 3.23 to 3.26. As

stated in section 3.4 we base the most accurate estimate of the ML from a standard

annealed SMC algorithm which uses its corresponding priors as an importance sam-

pler under a very large particle size, which can be seen in figures 3.24 and 3.26. In

most of the adaptions applying a fixed annealing schedule gave better estimation to

the marginal likelihood and smaller Monte Carlo variance, which implies that when

we applied adaptive annealing we set the rate of acceptable CESS loss between inter-

mediate distributions to be too high. For example, figure 3.26 shows that marginal

likelihood estimates for the galaxy data under from the deconditioned split move,

and the deconditioned birth/split move, was closer to the best possible estimated ML

value in comparison to applying adaptive intermediate distributions in figure 3.25.
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(a) Assigned transformations when transitioning from one to two Gaussian components

(b) Assigned transformations when transitioning from two to three Gaussian components

(c) Assigned transformations when transitioning from four to five Gaussian components

(d) Assigned transformations when transitioning from seven to eight Gaussian components

Figure 3.21: Evolution of birth and split moves for the enzyme dataset.
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(a) Assigned transformations when transitioning from one to two Gaussian components

(b) Assigned transformations when transitioning from two to three Gaussian components

(c) Assigned transformations when transitioning from four to five Gaussian components

(d) Assigned transformations when transitioning from seven to eight Gaussian components

Figure 3.22: Evolution of birth and split moves for galaxy dataset.
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Figure 3.23: Log marginal likelihood plot for the enzyme data under an adaptive
intermediate distribution scheme.
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Figure 3.24: Log marginal likelihood plot for the enzyme data when using a fixed
number of intermediate distributions. We note that the black point represents our
most accurate estimate of the marginal likelihood for each model.

124



Section 3.5 Page 125

Figure 3.25: Log marginal likelihood plot for the galaxy data under an adaptive
intermediate distribution scheme.
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Figure 3.26: Log marginal likelihood plot for the galaxy data when using a fixed
number of intermediate distributions. We note that the black point represents our
most accurate estimate of the marginal likelihood for each model.
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This is expected though as, from chapter 2, more annealed intermediate distributions

should reduce the variance of Monte Carlo estimates. Currently the cumulative num-

ber of intermediate distributions under all adaptive distribution adaptions is no more

than 250, in comparison to the approximately 800 geometric annealed intermediate

distributions set in the alternative scheme, and future research should be considered

on how setting the decay to some value closer to 1 will reduce these differences while

still having a far smaller number of intermediate distributions.

All adaptions displayed marginal increases in the variance of the ML estimates

as the dimensional size increased. We were instead hoping for each variance to remain

fixed over time as we incrementally move to each of the pairwise models, despite SMC

also displaying a similar problem.

When applying a fixed number of intermediate distributions in each run of the

tSMC algorithm, the deconditioned versions were superior with a smaller variance

and having Monte Carlo averages closer to the best estimated ML. In particular the

deconditioned split move was an exceptionally good proposal to transition between

different models, at least when modeling the enzyme dataset, when a fixed number of

intermediate distributions was applied.

However when tSMC was used to model the galaxy dataset, all of the proposed

transformations showed very poor results, something that we go in depth in our

discussion. This is despite that we can still obtain good estimates of the posterior dis-

tribution when using either transformation proposal. Furthermore there was greater

variability on how each transformation proposal performed depending on whether or

not

Figures 3.27 and 3.28 shows the Monte Carlo estimates of the log Bayes Factors

of adjacent models, under a fixed number of intermediate distributions, for the tSMC

adaptions. The figures also consider the log posterior odds estimate of a long running

RJMCMC algorithm under similar prior distributions. Note in each of the figures

we skip the comparison between model m2 and model m1, a two component mixture
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model against a one component Gaussian distribution, as the RJMCMC algorithm

gave posterior estimates of π(m1|y) = 0 for both datasets.

When comparing our results to the posterior odds estimation given by the RJM-

CMC, each tSMC adaption overestimated the log Bayes factor when comparing high

dimensional adjacent models for the enzyme dataset. Although for that matter, the

long running SMC result also had overestimated Bayes factors in comparison to the

RJMCMC algorithm. We cannot decisively say whether the SMC results were supe-

rior to the RJCMCMC result, however given the disadvantages of using RJMCMC in

terms of poor mixing in high dimensions and how devising a good proposal specifically

for all possible data variation is difficult, as stated in chapter 2, we personally put

more trust in the SMC comparisons as seen in figures 3.23 to 3.26.

When considering the log Bayes factor estimates for the galaxy dataset, several

transformation proposals gave estimates that matched the posterior odds of the RJM-

CMC algorithm. Caution is required when analysing posterior odds or a Bayes factor

as they regard the evidence of one model directly favouring another model. What they

cannot determine is whether these models are wrong or if the marginal likelihoods

have been underestimated as what can be seen from figures 3.23 and 3.26.

On a final note we consider the results when applying an alternative form of the

intermediate distributions, being arithmetic annealed target distributions as discussed

in chapter 2. We analysed these distributions when using the split move under both

fixed and adaptive intermediate distributions under the enzyme dataset. We found

there were several problems regarding the convergence to each posterior for at least up

to a three Gaussian component model. The first issue was predicted from analysing the

form of the target distribution, that the very first reweighting step would lead to huge

discrepancies between the left hand side of the arithmetic based target distribution of

(1−ϕt)(π(mk−1, θmk−1·|y)ψmk−1→mk
(umk−1)Jmk→mk−1), in comparison to the right hand

side of ϕt(π(mk, θmk·|y)ψmk→mk−1(umk
)). As we believe that the particles still received

non-zero probability proposals to the next model, despite some particles having zero
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Figure 3.27: Log Bayes factors for the enzyme data when using a fixed number of
intermediate distributions. The black dot represents the posterior odds, equivalent to
the Bayes factor under prior conditions, for a long running RJMCMC run.
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Figure 3.28: Log Bayes factors for the galaxy data when using a fixed number of
intermediate distributions. The black dot represents the posterior odds, equivalent to
the Bayes factor under prior conditions, for a long running RJMCMC run.
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probabilities, the arithmetic annealing caused even greater particle weight variability

then the geometric distribution. In many cases only a very small subset of particles

represented a resampled set and therefore there was a lack of particle diversity. Also

due to the lack of differences between two intermediate distributions whose tempering

was dictated by a factor, in comparison to a power when using the geometric bridging

intermediate distributions, we found that the adaptive annealing scheme produced

very small discrepancies between intermediate distributions. For example when using

a CESS target of 0.95N it took over 100 times the number of reweighting steps just to

simply transition from some model containing only prior assumptions to a Gaussian

distribution model, although it could be argued that an appropriate solution would be

to set a smaller CESS. Finally, and most importantly, the posterior distribution failed

to give approximately the same posterior distributions to a basic SMC algorithm,

having probability mass placed in the wrong areas. It is likely that the intermediates

distribution attempted to converge between two different models of equal priority for

most of the algorithm, which is not what we aim for as we require stronger incremental

priority on model mk when transitioning from model mk−1.

3.6 Discussion

In this chapter we have explained how tSMC may be used for posterior estimation

and model selection in the application of simple mixture models. This gives the basic

groundwork for how tSMC may be applied to other mixture models, for example when

considering multivariate distributions we would recommend split merge adaptions by

Zhang et al. (2004) and Dellaportas and Papageorgiou (2006) as a starting point.

What we hope to emphasise from this chapter is the advantages of using tSMC,

over MCMC or SMC, to estimate high-dimensional mixture models from by applying

a subset of nested low-dimensional models. We also showed how adaptive algorithms

can be applied within tSMC and still provide similar results to a large fixed annealing
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scheme at least with regards to the estimates of a posterior distribution. Thus we will

continue to apply this scheme and ignore a fixed annealing scheme in both chapters

4 and 5. What must always be taken into consideration is whether any across model

transitions can at least reach some of the modes of the posterior or otherwise conver-

gence would be too dependent on the quality of the MH samplers at each state, as we

have seen from figures 3.17 to 3.20.

While we do show that underestimation of the marginal likelihood can be reduced

by variance reduction methods such as deconditioning over certain variables, many

tSMC adaptions underestimated the ML, based from a long running annealed SMC

sampler algorithm, and performed worse then a SMC sampler algorithm that had

an equivalent number of likelihood calculations. In particular none of the proposed

transformations seemed appropriate for the galaxy data, in comparison to the enzyme

data. While the deconditioned split transformation showed to accurately estimate the

ML across all analysed mixture models under the enzyme data, the effectiveness of

this transformation is still data dependent. Underestimation of the marginal likeli-

hood would still occur if a significant number of particles picked a wrong component

to split or otherwise still were a poor match to the posterior distribution of the transi-

tioned model and therefore alternative moves would need to be considered. Naturally

an adaption of the birth move that can accurately target probability density unrep-

resented by the current parameters would be preferable, but such a move will always

be limited, unless used as part of a subset of transformations, if we require moves on

the other model parameters.

What we also discovered is if a proposal reached any mid-high posterior density on

the extended space, then using arithmetic intermediate distributions has the potential

to be worse than the geometric target distributions under the initial jump. No further

research was considered on this type of intermediate distribution in the other chapters.

We integrated out the allocation variables in the mixture model, as described

in section 3.1, despite there existing a strong interest in inferring these variables. If
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we were to infer them then what must be noted is that the marginal conditional

distribution for at least the allocation variables cannot be obtained when using the

geometric bridging scheme in the presence of other continuous variables, despite Gibbs

samplers being a popular choice to explore this discrete parameter space (Richardson

and Green, 1997). We did consider a solution to infer such allocation variables with

a detailed explanation in chapter 5, tested under a different type of mixture model.

However our solution only works on the condition that all the priors are conjugate to

the likelihood.
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Chapter 4

Applications in Genealogy
Reconstruction under the
Coalescent

This chapter considers an application within population genetics, which is a re-

search area that analyses how a sample of organisms have evolved and where their

properties can be expressed through a tree-like diagram. This application presents a

scenario to use tSMC where a new set of parameters need to be inferred when a new

observation is added to the existing posterior.

We are interested in modeling a joint collection of DNA sequences from haplotype

bacteria that reproduce clonally. There is a great interest to analyse the biological

processes that govern the evolution of bacteria (Felsenstein, 2004). By constructing

the ancestral relationships between sequences we can make conclusions on several

properties of the population, see section 4.1 for more detail.

The purpose of our tSMC adaption in this application is not to devise a new model

that explains any complex evolutionary behaviour, but to assist with the problems

inferring the posterior distribution under simple biological assumptions (see sections

4.2 and 4.3) when a large sample size is present. In this application we plan on using

tSMC to update a posterior distribution as new individuals, over some real time span,
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are incorporated one at a time and this may be termed as the algorithm being “online”.

In section 4.1 we give a basic introduction to the type of data that we are using,

including the more specific genetic based terms that we use in the algorithm. We

explain what a “tree” is, and how they should be interpreted. Furthermore the dif-

ferences between “phylogenetics” and “population genetics”, and what elements are

going to be shared between them are explained. Some of the language explained here

is also used in chapter 5.

Section 4.2 gives the relevant model assumptions we apply when inferring the

ancestral relationships between sequences, and all parameters that we aim to infer in

our Bayes solution.

A brief literature review on the more notable approaches to estimate the posterior

distribution and the general flaws of such approaches is given in section 4.3. We

explain how our tSMC approach could potentially resolve these drawbacks.

Section 4.4 provides prior assumptions on the parameters and the general form

of the posterior distribution. We propose two types of transformation moves, stating

their strengths and weaknesses, that allow for a gradual inclusion of observations into

the posterior distribution. We explain the MCMC within model moves to be made

on the parameters, similar to chapter 3.

Section 4.5 explains what tests were made as well as prior tests on certain model

assumptions, with the results explained in section 4.6.

Finally section 4.7 gives concluding thoughts on the results and further research

to be made on our proposed adaption of tSMC.

4.1 A Basic Introduction to Genomes, Trees, Phy-
logenetics and Population Genetics

In this investigation we define several terms relating to how we model a set of

genome sequences, an individual’s complete set of DNA. The data we use are known
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as “aligned sequences” in which we simply term them as “sequences” within the thesis.

In brief, aligned sequences are obtained through first performing sequencing and

then afterwards the the retrieved data is aligned. Sequencing is the process of reading

the genetic data of an organism, such as a small section of its chromosome, and

“alignment” is the process of performing some bioinformatic analysis to “align” the

read data by identifying core parts of the sequences and storing the data such that

all sequences are lined up (Metzker, 2010).

In a statistical and data-centrist viewpoint we consider one DNA sequence to

consist of a series of nucleotides, which can be thought as a basic building block of

DNA, that take the following four “nucleobases” which act as multinomial values;

Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).

For each organism we either analysis one chromosome, or one sequence, from a

haploid genome. Otherwise for diploid organisms we would analysis its two chromo-

somes, i.e two sequences. Haploid data can be defined by yil where i ∈ {1, ...n} and

l ∈ {1, ..., L} for a total of n aligned sequences of sequence length L. We also use the

terms “site” and “locus” to refer to the lth nucleotide/site/locus from the beginning

of the aligned sequence and contain one of the DNA nucleobases of {A,C,G,T}. The

plural forms of these phrases is simply nucleotides, sites and loci respectively. Similar

assumptions are made for diploid data, y(c)
il , but instead we have an extra dimension

that represents the cth chromosome where c ∈ {1, 2}. In this investigation we pri-

marily focus on haploid (one chromosome) data, and thus we only use the notation

yil when defining the data.

A single nucleotide polymorphism (SNP) is the existence of variation between

two sequences at the same site. Furthermore we consider the alleles, which are the set

of unique nucleotide types that exist within a site location across all sequences. For

example in figure 4.1 with two aligned sequences, at the first site there is no SNPs as

the pairwise sites share the same allele {A} but there is an SNP at the second site

with two alleles {A,T}.
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Figure 4.1: An example of three SNPs (or snips) when comparing two haploid se-
quences of sequence length 10. The SNPs are at the sites {2, 6, 10}.

The research interest is to use a model to identify patterns in the timing/areas

of changes within individuals or discovering alleles that are strongly associated with a

certain phenotype, where a phenotype is a type of physical characteristic of a genome.

For example when considering the genomes of bacteria we may discover an allele that

may be associated with a more toxic strand in comparison to other genomes of the

same species (Holder and Lewis, 2003).

We now give an explanation of what a “tree” is, and some of the basic notation

that we use when describing its features. We wish to show the “genealogy”, or the

ancestral relationships, of the sample sequences through a graphical or technical pre-

sentation. A “tree” is one way to express the genealogy. A tree consists of a set of

vertexes, which most researchers dub as “nodes” when constructing ancestral rela-

tionships, and a set of edges (or branches) that link the nodes together. These nodes

can either represent the sequences themselves, and thus we define them as “tip/leaf

nodes”, or they represent some unknown ancestor, alternatively termed as an “inner

node”, in which a subset of the sample sequences have diverged from said ances-

tor sequence. The overall relationship between each node, given the connections via

branches, we term as the “topology” of the tree. Where the edges are placed, as well

as the lengths of each edge, is associated with some genetic distance between each

sequence and depends on the model or other researcher beliefs on how the sequences

evolved (see section 4.2 for the evolutionary assumptions that we make).

We may rearrange the tree to have a “root” which represents the “most recent
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common ancestor” (MRCA) for the entire observation set. Thus the rooted tree

takes on a dendrogram/cladogram appearance. Figure 4.2 is an example of a rooted

tree, with A1 being the root node, and we specifically use rooted trees due to the

evolutionary assumptions of the sequences that we state in section 4.2. Furthermore

a “subtree” (atlernatively termed as “clades”) is essentially a tree that considers the

genealogy that descends from some other node that is not the true root node, although

we classify the entire tree as a type of subtree when defining certain formula, an

example being the subtree that has A2 as the root node and includes the tip nodes of

{y1, y2}.

Figure 4.2: A basic rooted tree for the set of sequences {y1, y2, y3, y4}. The tree
contains three ancestor nodes of {A1, A2, A3}, with a total of six edges connecting the
nodes together.

Finally we briefly mention the difference between “phylogenetics” studies and

“population genetics” research, where in this chapter we do cite many references

in the field of phylogenetics despite working with a population genetics application.

Phylogenetics studies involve constructing how a pattern of organisms, usually repre-

senting different species, are related from each other by reconstructing their genetic
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relationships in the form of a tree and analysing how each organism diverges from

each other. Population genetics mainly focus on the evolutionary and demographic

properties within one recorded species/population (Rosenberg and Nordborg, 2002),

although the populations can consist of multiple closely related species (Liu et al.,

2009; Rannala and Yang, 2003). This includes how certain sites of the sequences

within the population are correlated with each other, and this may be due to how

they swap/exchange chunks of DNA between themselves (with the process termed as

recombination). Alternatively population genetics research could involve analysing

the rate of change in the size of the population representing the organisms (Felsen-

stein, 2004; Yang, 2014). In our application in this chapter there is significant overlap

between the two disciplines where we apply likelihood and MC methods on a tree

space, see sections 4.3 and 4.4, to sample from the space of a posterior. Note that

Chapter 5 considers a population genetics application.

4.2 The Coalescent and the Mutation Rate

4.2.1 Coalescent Theory, Wright-Fisher model and Time Scales

Before we discuss the coalescent model, we give a brief mention about the Wright-

Fisher (WF) model (Fisher, 1931; Wright, 1931). This discrete-time Markov chain,

was developed during a time period where no genetic data was available. Instead

research mostly focused on how theoretically a population of individuals evolve and

pass on their genes to the next “generation”, a generation representing an indexed

state in the Markov chain, under fixed assumptions such as mutation rates.

We first define a number of generations where all individuals within each gener-

ation have equal chance of being fit enough for reproduction. Furthermore the size of

the population in each generation is constant and the model applies non-overlapping

generations representing any past and current populations. As we do not know what
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the true constant population size is, and that real populations do not follow the pre-

viously stated Wright-Fisher conditions, we instead consider an “effective population

size” of 2Ne haploid individuals and otherwise we would define Ne individuals (with

2Ne chromosomes/genes) for diploid data. This is the idealised Wright-Fisher popu-

lation size that would show the same magnitude of genetic drift (regarding how the

frequency of alleles change after each generation) as the real population, although it

will be smaller then the real population as we only consider a population which re-

sulted in the reproduction of each generation and more notably the present generation

(Felsenstein, 2004; Hein et al., 2004; Yang, 2014).

The model itself moves forwards in time where at each generation the previous

population dies and is replaced by its offspring. This offspring is created by inheriting

the genes of a uniformly sampled ancestor, each with probability 1/2Ne, from the

previous generation.

For example suppose that within a population only two alleles exist being A1

and A2. Letting i be the number of allele copies of A1 in the present population then

naturally the present frequency of said allele is given by p = i/2Ne and otherwise the

frequency for A2 is 1 − p. Therefore the Markov transition probability of allele A1

having j copies in the next generation, given i copies in the present generation, is

given by a binomial distribution of,

Pr(j|i) =
(

2Ne

j

)
pj(1− p)2Ne−j. (4.1)

An example where we consider the the change in two alleles in a population size of

10 is shown in figure 4.3, note that this is a very simplified example as real world

applications could consider an effective population size of 104 to 108 (Felsenstein,

2004; Hein et al., 2004; Yang, 2014).
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Figure 4.3: Example of the Wright-Fisher Model in practice with a haploid effective
population size of 2Ne = 10 over 5 generations. All crossed lines are removed for
easier interpretation. In the first generation the frequency of allele A1 is 0.5, but in
the fifth and present generation the frequency changes to 0.3.

We can expand this to the probability of getting K alleles to have a set of cor-

responding counts of (j1, j2, ..., jK) given the current counts of (i1, i2, ..., iK) has a

Markov transition probability being multinomial distribution (Nagylaki, 1997) de-

fined by

Pr((j1, ..., jK)|(i1, ..., iK)) = (2Ne)!
K∏
k=1

1
jk!

(
ik

2Ne

)jk
. (4.2)

Extensions to diploid data have an individual inherit two uniformly sampled alleles

from the previous population. It is also possible to add assumptions to the basic

model such as accounting for the presence of mutations on a site that occur at some

constant generational rate (see section 4.2.2). Naturally it is possible to trace back a

sequence to an ancestor, and even group multiple sequences which share a common

ancestor (Felsenstein, 2004; Hein et al., 2004; Yang, 2014).

However if we only want to consider the ancestral relationships between a small

sample of n sequences that are from the 2Ne sized population then it is ideal to apply

the coalescent model instead.
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The coalescent, also termed as Kingman’s Coalescent or the n-coalescent (King-

man, 1982a,b), was developed in the early 1980s and allows for several advantages

when modeling the ancestry of a sample in comparison to other population genetic

models like the Wright-Fisher model. The coalescent model represents the genealogy

of a small sample of sequences under WF model assumptions in the limit as 2Ne ap-

proaches infinity. Although in reality 2Ne will be a large population not an infinite

one, and thus the coalescent is actually an approximation to the WF model, however

if 2Ne is small then the coalescent does not follow WF assumptions.

The coalescent model works backwards in time and considers how two sequences

(sample sequences and/or ancestor sequences) are descended from some unknown

ancestor. The backwards joining of two sequences is referred to as “coalescing” and

the time of when these nodes are joined can be termed as a “coalescent event”. Thus

we define the set of “coalescent times” to be the time from each coalescent event to

the next coalescent event, which also includes the time from the present to the first

coalescent event.

It is far simpler to work backwards in time as we only care about a sample of

sequences and the subset of ancestors that are related to them, instead of simulating

from a computationally expensive Wright Fisher model where the population to gen-

erate can range from 104 to 108 as well as having a large number of generations (Hein

et al., 2004; Yang, 2014).

When simulating a series of coalescent events we generate a set of time periods,

X = {X2, ..., Xn} (given n individuals) termed as “coalescent time intervals”, between

each of the coalescent events. For example the first coalescent event occurs Xn in the

past by choosing two lineages to coalesce that are chosen uniformly and independent of

generation time. Then a second coalescent event occurs Xn−1 +Xn back in time from

the present. Finally the sample sequences have a MRCA at X2 +X3 + ...+Xn−1 +Xn

in the past. Before any coalescent events occur we state that there are i = n lineages

left, where lineages are any remaining sample or ancestral sequences whose lineages
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have not yet coalesced. After the first coalescent event occurs there are i = n − 1

individuals left, which includes the unknown ancestral sequence and the remaining

n − 2 individuals from the sample. This process continues until there are only two

lineages remaining which are naturally the “daughter” sequences of the MRCA for all

sequences.

A coalescent model can infer each time interval Xi under different measurements.

One such scaling is a “per generation” time, Xi ⊂ N, where a generation in this context

is approximately when some real world individual representing the genome sequence

reproduces and this may be referred to as discrete coalescent time. For a sample size of

two, the probability that the sequences have a common ancestor one generation ago is

(2Ne)−1 and with no coalescent event occurring having probability 1− (2Ne)−1. This

can be interpreted by considering WF assumptions as displayed in figure 4.3 where

the probability that one of the individuals shares the same parent with a selected

individual is (2Ne)−1.

This can be expanded to include the probability of any two genomes coalescing

within a set i individuals that have not coalesced yet, with probabilities of i(i −

1)/2(2Ne) and 1 − i(i − 1)/2(2Ne) respectively. Therefore the probability that two

lineages, out of a sample of i ≤ n remaining ancestral lineages, finds a common

ancestor j generations ago from the previous coalescent event (if any) is distributed

via

Pr(Xi = j) = Geo
(
p =

(
i(i− 1)

2

)( 1
2Ne

))
, (4.3)

with geometric mean of 2(2Ne)/i(i− 1). An example of this generation time is shown

in figure 4.4 which is based from figure 4.3 when considering the first three sequences

in the present. In this example the first coalescent event from the present occurs one

generation ago, and then the second coalescent event occurs three generations ago

from the previous coalescent event.
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Figure 4.4: Example of identifying where three sequences have diverged from their
ancestors based from figure 4.3. The sequences most recent common ancestor (MRCA)
can be traced back where two coalescent events have occurred from the present.

However if the population size 2Ne is large, which should be true when applying

coalescent theory, it is more practical to change the time scale to “per 2Ne generations”

which is the average time for two lineages to find their specific MRCA. We let this

new time scale be xi = Xi/2Ne where xi ⊂ R+ and x = {x2, ..., xn}. This is derived

by considering that the exponential distribution is the limiting case for the geometric

distribution. Given that Xi is geometrically distributed with a probability that can

be expressed as p = λ/2Ne which is small given that 2Ne is very large then a random

variable xi = Xi/2Ne has an exponential distribution with mean 2/i(i − 1) (Hein

et al., 2004; Yang, 2014). Given i lineages left we have each coalescent time to the

next event to be exponentially distributed by

Pr(xi) = Exp
(
λ = i(i− 1)

2

)
. (4.4)

An example of a tree generated by the coalescent under this time scale is shown in

figure 4.5. When applying coalescent theory, the three inner nodes ({A2,A3} and

the root node {A1}) represent a coalescent event between two nodes and the branch
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lengths are real numbers dictated by the recently stated continuous coalescent time.

The tree is also a “bifurcating tree” which means that each inner node, not including

the leaves/tip nodes, has three lineages attached being the two offspring nodes and

one ancestral node unless it is the root of tree which only has two descendant nodes

(Hein et al., 2004).

Figure 4.5: A tree, specifically a labeled history tree, represented by
((y1:0.5,y2:0.5):0.5, (y3:0.3,y4:0.3):0.7); in the Newick format (Felsenstein, 2004). The
first coalescent event occurs at x4 = 0.3 between individual genomes y3 and y4. This
is followed by a second coalescent between y1 and y2 occurring 0.5− 0.3 = 0.2 “2Ne”
generations later from the previous coalescent event. Finally all 4 individuals have a
common ancestor x4 + x3 + x2 = 1 “2Ne” generations in the past.

We also note that applying coalescent theory classifies the rooted tree as a “la-

beled history” tree. This type of tree occurs as the internal nodes are rank ordered

by the most recent coalescent event, with each branch length being dependent on

the coalescent events within the entire genealogy. Under the coalescent model we

always assume that each possible labeled history tree is equally likely to represent the

genealogy of the tree. There are a total of n!(n − 1)!/2n−1 possible labeled history

or coalescent trees. We comment on inferring from this large discrete space of the

topology space using standard MCMC methods in section 4.3.

We now describe what the evolutionary processes that dictate the divergence
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between sequences, dependent on the branch lengths, in sections 4.2.2 and 4.2.3.

4.2.2 Nucleotide Substitutions and the Population Size Pa-
rameter

One possible reason for a particular sequence in the sample to genetically di-

verge from its ancestor is due to a substitution or a series of substitutions within the

genome’s DNA sequence, which are the only reasons for divergence from the ancestor

that we consider with other factors such as demographic stochasticity are ignored.

These types of mutations can also be termed as point mutations and occur when a

site in a genome sequence has substituted its nucleobase type for a different type. For

example given the four types of nucleobases, {A,C,G,T}, on a given site of a DNA

sequence the nucleobase might change from ‘A’ to ‘T’, or ‘A’ to ‘C’ etc (Felsenstein,

2004; Hein et al., 2004; Yang, 2014).

It is assumed that the number of substitutions on a particular site is Poisson

distributed with a constant Poisson rate, or mutation rate, being ϑ/2 where ϑ ∈

R+ is the population size parameter. To understand the uses of this parameter,

suppose that the time scale of the coalescent times are changed such that they are

measured in the number of mutations per site. We have an option of using an adjusted

continuous coalescent time scale that is defined by x′i = µ
′
Xi whereXi is the coalescent

time intervals measured in discrete generations as discussed in section 4.2.1, µ′ is the

mutation rate per site per generation where for simplification we assume µ′ is the

same and constant among all loci and x
′
i is the number of mutations per site that

have occurred in-between coalescent events. We note that by substitution

x
′

i = µ
′
Xi

= µ
′ × 2Ne × (Xi/2Ne)

= xiθ/2. (4.5)

146



Section 4.2 Page 147

Thus the adjusted continuous time scale, being the number of mutations per site, is

exponentially distributed by

Pr(x′i) = Exp
(
λ = i(i− 1)

2

(2
ϑ

))
. (4.6)

Overall the population size parameter, ϑ, can be considered as a measure genetic of

diversity in the population. Combined with the knowledge of knowing µ′ , then ϑ can

be used to estimate the effective population size by rearranging the formula of (4.5)

(Yang, 2014). We explain how the mutation rate is used in giving the probability of

a substitution at a given site within a defined coalescent time in section 4.2.3.

4.2.3 Substitution Models and the JC69 Model

We now describe how to model nucleotide substitutions, in which in our case are

dependent on the population size parameter. For example, given a time period or

distance between sequences, we may wish to calculate the probability of a nucleotide

being subjected to a substitution or simply retaining the nucleobase within this time

span. For simplification we consider applying the Jukes-Cantor (JC69) substitution

model as the Markov model for nucleotide mutations (Jukes and Cantor, 1969). Oth-

erwise more complex substitution models are ignored as they provide no analytical

contribution to the investigation. This model is defined by a distance based probabil-

ity matrix where the rows represent the original nucleobase of a site and each column

represents the possible nucleobases that the site may take. We consider two sequences

of sil and sjl at the lth site, in which we will be comparing two ancestor nodes or an

ancestor node with a sample sequence when defining the likelihood of a tree.

However we wish to incorporate the mutation rate into the JC69 model. We define

the probability of a particular nucleotide changing to a different specific nucleotide,

after X number of generations, to be given by 0.25 − 0.25exp(−4Xµ′/3) with the

probability of no substitutions occurring within a certain number of generations being
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defined by 0.25 + 0.75exp(−4Xµ′/3) (Yang, 2014). By considering the relationship

between the different time scales mentioned in (4.5) then by substitution we can define

the two said probabilities of a nucleotide mutation occurring as a function of ϑ and

per 2Ne generation time x. So we define psilsjl
(x, ϑ) to represent the probability that

the site sil can mutate into the nucleotide of site sjl given a certain time period x has

passed with a mutation rate shared across the sequences. For example p(sil=C)(sjl=A)

is the probability of the nucleotide ‘C’ having a substitution to become ‘A’ over some

time period. The JC69 model can now be termed as,

psilsjl
(x) =


1
4 + 3

4e
−2xϑ/3 sil = sjl

1
4 −

1
4e
−2xϑ/3 sil 6= sjl.

(4.7)

where the probabilities all sum to one. What can be noticed in (4.7) is that as x→∞

we reach a limiting distribution of psilsjl
(x) = 0.25 in which we assume that so many

substitutions have occurred that the nucleotide of sjl has equal probability of being

one of the four nucleobases.

4.3 Review of Previous Approaches and tSMC Im-
provements

The number of algorithms that can construct genealogy trees is too large to

summarise within one small section. What we primarily focus on is past approaches

that gradually build upon an existing tree given a set of genome sequences, this may

include inferring population genetic parameters or not. We also discuss the most basic

implementation of MCMC to infer the genealogy, and the difficulties in performing

basic inference with it. Finally we consider other SMC approaches that build a tree

over time, although they usually consider π(x, γ|y) with the mutation rate fixed (or

otherwise is not accounted for in the model). Many of the algorithms mentioned in

this subsection are part of the phylogenetics research field, but nevertheless the tSMC
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adaption could assist with inference in this area.

There exists a collection of non-Monte Carlo methods to find the best tree, al-

though usually when coalescent assumptions are not incorporated, usually termed as

“Heuristic tree search” methods. In particular, the step-wise addition adaption of a

heuristic search is one such method where we usually start with a large number of

copies of a tree consisting of two to three individuals and at each tree we randomly

graft the ancestor node of a new sequence. Dictating how optimal the tree is could

be given by the parsimony score, which we would aim to minimise, where the score

represents the minimum number of required changes (such as substitutions) between

nodes to explain the history of the individuals and their ancestors (see for example

Fitch (1971)). Once the best score is found with the grafted sequence then this is

selected to be the best found optimum tree with all other trees discarded and the

same process is repeated until all sequences have been grafted. However the downside

of such a method is that it does not guarantee that the optimum tree is found, this is

due to how certain sub-optimal trees from the past are ignored despite one of them

potentially being the precursor for the true optimum tree. Furthermore the genealogy

of the final complete tree is strongly affected depending if more diverse sequences are

added first or if the sequences that are the most similar take priority to be grafted

(Holder and Lewis, 2003; Yang, 2014). Therefore sometimes a mixture of heuristic

methods, for example other branch rearrangement proposals as we describe in section

4.4.2, can be applied after or as part of a step-wise addition move (Morrison, 2000).

An alternative to using parsimony scores is the maximum likelihood, with a very

popular software package that searches for the maximum likelihood of a tree being

PhyML (Guindon et al., 2010). This package and most other maximum likelihood

based methods tend to start with some proposed tree, which can be generated via

the recently explained heuristic methods for example, that contains the complete

set of sample sequences and attempts topology adjustment moves to maximise the

likelihood. An example that does including gradual sequence grafting under maximum
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likelihood conditions is PUmpER (Izquierdo-carrasco et al., 2014) which does apply

a step-wise addition move called Parsimonator as part of a series of multiple steps to

optimise the phylogenetic tree when new sequences are grafted.

Although parsimony and maximum likelihood methods can be simple to imple-

ment, Bayesian methods can have advantages over the other two classes of algorithms

as Bayes’ assumptions makes it easier to infer high-dimensional parameter space es-

pecially when the joint parameter dimensions exceeds observational size (Holder and

Lewis, 2003; Huelsenbeck et al., 2002). Naturally Bayes’ methods allow for uncer-

tainty in the model parameters, and certain processes may not be as feasible to model

when using maximum likelihood or parsimony methods. One important problem

is the estimation of the population size parameter under coalescent model assump-

tions, in which to identify θ that maximises the likelihood of the sequence data would

require integration over all genealogy trees and coalescent time periods which is com-

putationally infeasible (Yang, 2014). Another example is that Bayes methods can

accommodate flexible prior assumptions on varying mutation rates across different

branches/lineages or sites but unlike non-Bayes methods there is no need to define

where these differing rates occur beforehand (Rutschmann, 2006; Yang and Yoder,

2003). Thus applying MCMC with Bayes assumptions on all parameters is a supe-

rior option. For a general review of applied MCMC methods we recommend Cheon

and Liang (2014); Rutschmann (2006); Yang (2014) regarding general phylogenetic

approaches. For examples of Bayes inference on tree space under coalescent assump-

tions we recommend Didelot and Falush (2007); Felsenstein (2004); Liu et al. (2009);

Rannala and Yang (2003); Yang (2014).

If MCMC based methods were to be applied then what must be taken into con-

sideration is how MCMC explores a discrete parameter space and how the marginal

likelihood is estimated through MCMC output. Independently deciding upon the

length of the chain in high dimensional tree space can be daunting, where the number

of labeled history based rooted trees is n!(n−1)!/2n−1, so to allow for a full exploration
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of the topology space then an exceptional chain length may be required even though

it can been practically done and MCMC is still the most commonly used methods for

ancestral tree reconstruction (Lakner et al., 2008). Appropriate measurements can be

made to end the chain if multiple MCMC runs are ran simultaneously and either the

average standard deviation, maximum standard deviation or the maximum absolute

difference of subtree frequencies between these multiple runs is above a certain cut-off

point (Lakner et al., 2008; Whidden and Matsen IV, 2015). Other alterations to the

MCMC algorithm should be considered, for example by starting the Markov chain by

having the first iteration be drawn from some appropriate reference tree, which could

be generated from some of the previously mentioned frequentist methods. Although

starting off with a good tree will have a negative effect on some type of convergence di-

agnostics such as the average standard deviation of split frequencies which depend on

initial over-dispersed trees (Holder and Lewis, 2003; Huelsenbeck et al., 2002; Lakner

et al., 2008).

While we describe the interesting properties of our SMC approach in this appli-

cation in section 4.3.1, regarding other existing SMC approaches most research has

been focused on agglomerative clustering of genealogy trees. The general themes be-

hind how the clustering method works is that there exists an initial series of subtrees

or alternatively called “forests” for each particle and we aim to join them over time

to form one genealogy tree. The first step defines n subtrees which represent the tip

nodes alone without any common ancestors defined. At each SMC state, two of the

subtrees (with the root being an ancestor or sequence node) are selected at random

by either uniformly choosing a pairing or otherwise through a more directed proposal.

A proposal is made that they have a recent ancestor separated by some time based

distance. The joint subtree probabilities of the incomplete trees, with the exception of

tip node only subtrees, acts as the target distribution where reweighting and optional

resampling steps occur. The process continues, until a tree is formed where all the

sample sequences have a defined MRCA with each other.
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A coalescent based adaption, although they assume a fixed mutation rate instead

of inferring it, was performed by Teh et al. (2008). Bouchard-côté et al. (2012) and

Bouchard-côté (2014) apply their own variant, which they term PosetSMC, that con-

siders non-coalescent assumptions. Wang et al. (2015) through their combinatorial

SMC framework made further improvements from Bouchard-côté (2014) by consid-

ering more advanced assumptions such as non-clock trees, and in comparison to the

previous research they suggest MCMC moves may be applied after reweighting or

resampling. However we have not identified any previous work that simultaneously

, alongside the rest of the genealogy, infers the posterior of population genetic based

parameters such as the population size parameter. Furthermore when inferring the

target distribution as a set of subtrees that does not have a MRCA defined until the

final step, it is questionable to even attempt inferring the population size parameter

considering how some particles may have exclusive sample sequences represented in

their respective target distributions. Wang et al. (2015) suggested a PMCMC algo-

rithm that uses combinational SMC at different values of these evolutionary parame-

ters to obtain a Monte Carlo estimate. However it lacks parallelisation properties (at

least on the MCMC component of PMCMC) in comparison to our proposed algorithm

tSMC while still allowing for both sequential grafting and inferring the population size

parameter simultaneously.

A recent SMC approach was recently given with a theoretical discussion described

in Dinh et al. (2018), and then applied results in Fourment et al. (2018). The idea

behind their “Online Phylogenetic SMC” algorithm is that within a set of particles

they simply add the observation via a variable transformation and then reweight and

resample the particle set. Afterwards they perform a series of Metropolis Hastings

moves, although Fourment et al. (2018) ignore applying kernels after grafting, which

target the new parameter space before grafting another sequence. Fourment et al.

(2018) only considered inferring the topology and the branch lengths of the genealogy

tree and did not consider other evolutionary based parameters. They gave good
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proposals to graft a sequence onto a tree, which proved to be effective under a SMC

approach.

4.3.1 The tSMC Approach

We are going to use tSMC to sequentially graft sequences one at a time onto

trees whose posterior space has been explored. While this is similar to what was

done by Fourment et al. (2018) we believe the use of intermediate distributions and

MCMC kernels should compensate for sudden shifts in the posterior density when

a new sequence is added, especially if more complex models were of interest. For

tSMC to work efficiently for a standard phylogenetic problem we assume that given

that sample sequences are from similar populations there will be very little difference

between the topology with n− 1 sequences and another tree with n sequences. While

this condition may hold true for higher dimensional trees, it won’t necessarily hold

true for low dimensional trees with 3 to 5 sequences but nevertheless genealogies of

that size are easy to infer under the biological assumptions made in section 4.2. So

providing that that we have generated a tree through posterior inference, then there

are 2n − 1 ways to graft the new sequence onto an existing tree with n sequences

which is an improvement of doing MCMC and considering a total of n!(n + 1)!/2n

possible topologies for n+ 1 sequences.

When trying to estimate the ML many researchers opt for variations of the har-

monic mean estimator or path sampling for marginal likelihood estimation, we recom-

mend chapters 3-6 of Chen et al. (2014) that repeat said processes for genealogy trees,

however the SMC approach does calculate the ML by design. Naturally the imple-

mentation of the geometric bridging intermediate distributions in tSMC means that

the absolute worst particles are removed first, which allows more mediocre particles

to recover through MH moves.

We also believe tSMC allows for more flexibility in the estimation of evolutionary

or population based parameters then agglomerative clustering with SMC, for example
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the best possible clustering schemes either require the mutation rate to be fixed or

inferred under some scheme like a PMCMC but not updated with the rest of the

genealogy. However we believe our adaption can update all parameter simultaneously.

Furthermore tSMC allows for the posteriors to be updated as data arrives over time.

Fourment et al. (2018) suggested that using a larger particle size is more efficient

then using a large number of MCMC moves in their adaption. While this may be

appropriate when inferring the branch lengths and topology only, if grafting a new

sequence proved to have a notable change in the posterior distribution of an evolu-

tionary parameter such as the population size parameter, although this is a factor

that we aim to investigate, then no adjustment to the particle size would alleviate

this problem. Proposing accurate transformations on these parameters could be a

solution, but that might not always be an option available.

4.4 tSMC Adaption and Model Assumptions

In our tSMC adaption we aim to infer a set of models {m1, ...,mk, ...,mK}, We

emphasise that model mk models the ancestral relationships for k+ 1 sequences, and

thus K = n − 1 given that we will aim to infer a high dimensional tree containing

a total of n sequences. For example model m2 describes a tree for three sequences

with two coalescent time intervals defined by xm2(2:3). The difference between the

posteriors of mk−1 and mk is the inclusion of an additional coalescent time interval

and branch in the topology, generated due to the introduction of a new sequence of

yk+1. We also incorporate m0 to represent the proposals for the coalescent time for

two sequences, or a two sequence tree, to coalesce as well provide an initial proposal

for the population size parameter. We consider the posterior of each

πmk
(ϑ, γmk

, xmk
|y1:(k+1)) ∝ f(y1:(k+1)|ϑ, γmk

, xmk
)p(ϑ)p(γmk

)p(xmk
), (4.8)
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with each marginal parameter previously defined in section 4.2 and y1:k = {y1·, ..., yk·}.

When explaining the transformation proposals and MH kernels to apply within our

tSMC algorithm, we hide the notation t dictating the specific intermediate distribution

that the parameters correspond to. For example the coalescent time intervals for

model mk that are currently targeting the tth intermediate distribution (where t ∈

(0, ..., T )), within the transition from model mk−1 to mk for example, is technically

defined by xmk(2:(k+1))t. However we remove the notation t except briefly when we

describe our adaptive MH kernels for the relevent model parameters. This was done

for the sake of simplicity when explaining our proposals, despite that in chapter 3 we

did incorporate the index of an intermediate distribution. Otherwise we note that

ϑ ≡ ϑmk
as we apply no model transformation to this parameter when transitioning

between models as described in section 4.4.3.

4.4.1 The Posterior Distribution

4.4.1.1 The Likelihood

We consider the likelihood f(y1:(k+1)|ϑ, γmk
, xmk

) for the specific genealogy of mk,

which includes the overall topology and coalescent time intervals {γmk
, xmk

} and other

population parameters in which we only infer the population size parameter ϑ.

To illustrate how the likelihood can be calculated, we consider the clonal an-

cestry tree in figure 4.5 and suppose we analyse the likelihood of receiving this exact

genealogy, given a sample of DNA sequences at a particular site l. We define the inner

node sequences as A1·, A2· and A3· where we assume that their true sequences are un-

known and thus they are integrated out within the likelihood formula. The transition

probabilities of psi′lsil
(xsi′si

, ϑ), are given by the JC69 substitution model described

within section 4.2.3 where xsi′si
relates to the branch length from the sequence si to

its parent node of si′ . Given the JC69 model we assume that each nucleotide type

has an equal chance of being the root at that site, and thus given that we can take

nucleotide alleles of {A,C,G,T} then p(A1l) = 0.25 for all nucleotides. Finally we
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assume independence across all sites. Therefore the likelihood of site l is defined by

f(y(1:(3+1))l|γm3 , xm3 , ϑ) =
∑
A1l

∑
A2l

∑
A3l

p(A1l)pA1lA2l
(xA1A2 , ϑ)pA1lA3l

(xA1A3 , ϑ)

×pA2ly1l
(xA2y1 , ϑ)pA2ly2l

(xA2y2 , ϑ)

×pA3ly3l
(xA3y3 , ϑ)pA3ly4l

(xA3y4 , ϑ). (4.9)

where, for example,
∑
A1l

represents how we sum over the possible multinomial values

that A1l can take being {A,C,G,T}. If there are a large number of lineages in the

tree space, then (4.9) can be computationally unfeasible to resolve given it has a

cost that is exponential in n, being the total number of sequences to graft, of O(4n).

A useful method to simplify the calculation of the multiple sum terms is through

the pruning algorithm which considers the conditional likelihoods of trees. Suppose

that f̃(si) represents the conditional probability of sequence si having a certain set of

nucleobases given the rest of the genealogy that descents it. We consider the sequence

node si to have daughter nodes of sD and sD′ , and thus the conditional probabilities

is given by

f̃(sil) = (
∑
sDl

psilsDl
(xsisD

, ϑ)f̃(sD))× (
∑
sD′l

psilsD′l
(xsisD′

, ϑ)f̃(sD′)), (4.10)

in which if si is the root node of the complete genealogy tree then we calculate

variants of (4.10) recursively n−1 times to give a linear cost of O(n) for the algorithm

(Felsenstein, 1981). If the subtree root node is a tip node then any descendant tips

will only include the tip itself, for example if y1l = A then f̃(y1l = A) = 1 and 0

otherwise (f̃(y1l = C) = 0 etc). Overall the complete likelihood is then defined by,

f(y(1:(k+1))l|γmk
, xmk

, ϑ) =
L∏
l=1

f(y(1:(k+1))l|γmk
, xmk

, ϑ)

=
L∏
l=1

∑
A1l

p(A1l)f̃(A1l). (4.11)
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The computational cost of (4.11) can be simplified to O(NL′), where L′ is the total

number of unique trees when only one site is considered for the tip nodes, as any

duplicate trees are identified and their respective likelihood values of the genealogy

at this site is copied from another site that shares its tree (Yang, 2014).

4.4.1.2 Prior Distributions

The priors depend on the type of coalescent model we infer as explained in 4.2.

The “per 2Ne generation” time scale, x, is used for the investigation as we do not

need to consider the true value and/or interpretation of the effective population size

2Ne when using Monte Carlo algorithms to estimate Bayesian posteriors (Hein et al.,

2004; Yang, 2014). Overall the joint prior distribution for the set of exponentially

distributed coalescent times for model mk, which has a total of k + 1 sequences and

thus k coalescent time intervals, is given by

p(xmk
) =

k+1∏
i=2

i(i− 1)
2 exp

(
−i(i− 1)

2 xmki

)
, (4.12)

given ordered coalescent events such that xmk(k+1) is the time to reach the first event

and xmk2 is the final coalescent time period from the sample MRCA and the previous

coalescent event.

Under the coalescent all possible labeled tree topologies γ have uniform proba-

bility of

p(γmk
) =

k+1∏
i=2

(i(i− 1)/2)−1, (4.13)

to best represent the genealogy (Yang, 2014). We assign ϑ a gamma distributed prior

of

ϑ ∼ Ga(α = 1, β = 5), (4.14)

which is an appropriate prior given that in this investigation we are analysing a

157



Section 4.4 Page 158

particular species of bacteria where we do not expect a large ϑ (Takuno et al., 2012;

Young et al., 2012).

Note that model m0 only contains proposals for model m1, with the proposals

being the prior distributions themselves when two sequences are present.

4.4.2 MCMC Kernel Moves

We initiate kernel moves on the individual heights of the inner nodes (including

the root), the topology of the tree and the population parameter ϑ in this order.

Many of the moves are shared with phylogenetic applications, although they require a

few alterations to account for a coalescent prior. We consider proposals for model mk

on the ordered heights of the inner nodes h = {h2, ..., hk+1} where each height repre-

sents the cumulative coalescent intervals, for example h2 =
k+1∑
i=2

xmki or h(i) =
k+1∑
i

xmki

for i ∈ {2, ..., (k + 1)}. These heights will correspond to a certain inner node whose

height is subject to change, as described in section 4.4.2.1. The heights themselves are

considered temporary variables that implicitly have priors, in comparison to explicit

priors on the coalescent time intervals that are incorporated into the posterior. Up-

dating the heights under the coalescent is far more flexible in comparison to making

moves on each xmki and is common practice in many research papers and software

(see for example Didelot and Falush (2007); Drummond et al. (2012)).

4.4.2.1 Population Size Parameter and Branch Lengths

Whem making MH moves on the population size parameter we use a log normal

proposal, with tuning variance of υϑ, defined by

log(ϑ′) ∼ Normal(log(ϑ), (υϑ)−1). (4.15)

We consider making proposals to at least two branches of the tree simultaneously

based on identifying the smallest to largest inner nodes heights of each tree and we
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move them by a log-Gaussian random walk, with a tuning variance υhj
that corre-

sponds to the weighted particle estimates of each ordered height, given by

h
′

i ∼ Normal(hi, (υhi
)−1). (4.16)

Note that the move is rejected if the proposed inner node that corresponds to the

height is moved above its parent node (except if it the root node), or below one of its

daughter nodes.

We apply adaptive tuning variances for 4.15 and 4.16, and are changed adaptively

at each intermediate distribution such that

υ
′

ϑ = Wt.Var(log(ϑ), wmkt)

υ
′

hi
= Wt.Var(hi, wmkt), (4.17)

where wmkt are the particle weights for modelmk corresponding to the tth intermediate

distribution. If a certain parameter θ (for example, θ = ϑ or θ = h2) has acceptance

rates greater than 0.6 then its tuning variance (based on the current weighted particle

variance of θ being υ′θ) is readjusted to a constant factor of two such that we instead

choose to use a turning variance of υθ = υ
′
θ × cmkt where cmkt = 2 × cmk(t−1) and

cmk0 = 1. Should the acceptance rates go below 0.2 we readjust its tuning variance

to the relationship of υθ = υ
′
θ × cmkt where cmkt = 0.5 × cmk(t−1). Otherwise we let

cmkt = cmk(t−1). Again these factors do stack with each other, and are reset to one

once a tSMC transition from one model (when ϕ0 = 0) to the other (ϕT = 1) is

completed.

However what needs to be considered is the relationship between ϑ and the

overall time to the next coalescent event. These two types of parameter are highly

dependent a posteriori, for example given the best possible tree for n sequences then

by decreasing ϑ it is necessary to increase the length of the branch lengths and vice

versa to maintain the same number of expected number of mutations between two
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nodes. Therefore each υhi
might not be the right tuning variances. What we consider

instead is the conditional variance of the heights of each inner node given ϑ, found

by plotting a linear regression (assuming constant variance) of heights against ϑ and

calculating the variance of the weighted residuals to be the tuning variance (Raftery

and Lewis, 1995), this would naturally give a smaller tuning variance but one that

might be appropriate for all trees. There is no certainty that this would offer improved

acceptance rates during the initial stages, so we aim to briefly test both forms of the

adaptive tuning scheme.

4.4.2.2 Topology

We consider two topology moves with one being a basic subtree pruning and

regrafting (SPR) move, with the adaption inspired from the MCMC moves in Didelot

and Falush (2007). A second alternative SPR move is based from Wilson and Balding

(1998).

A SPR move prunes a subtree, where a subtree can consist of a single leaf node

or some ancestry descended from an inner node, and regrafts it on to any of the

remaining branches of the tree providing that the move meets certain criterion that

we shortly explain. For each non-root node si, we consider whether its parent node

si′ can be grafted above node sj and below its corresponding parent node sj′ . The

conditions for this move must be that node sj′ is older than si, that sj and si must

not share the same parent node (i.e si′ 6= sj′) and that si′ must not be a daughter

node of sj′ . Each possible move is then randomly selected through some distribution,

where we choose to use the discrete uniform distribution. If sj is not the root then

we attach it to some total height sampled from hi′ ∼ Unif(max(hi, hj), hj′). Other-

wise if sj is the root node then the new height is simulated from some distribution

with probability density qh(hi′), where appropriate choices include proposing from a

uniform distribution (which we consider) of hi′ ∼ Unif(hj, 1 + hj) or an alternative

method is to sample from an exponential distribution and then graft it above the root
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node such that hi′ ∼ hj + Exp(·) (Didelot and Falush, 2007; Yang, 2014). The MH

acceptance probability is based upon the densities of where the new branch is placed,

with any topology based probabilities having a ratio of one (Höhna and Drummond,

2008). Therefore in order to move the node back to its original position we need to

move node si′ between nodes sr and sr′ , or above the new root node sr. The ratio of

q(γ|γ′)/q(γ′|γ) is shown in (4.18),

1/(hr′ −max(hr, hi))
1/(hj′ −max(hj, hi))

if neither si′ or sj is the root node in the current state

1/(hr −max(hr, hi))
qh(hi′)

if sj is the root node in the current state

qh(hr′)
1/(hj′ −max(hj, hi))

if si′ is the root node in the current state. (4.18)

A flaw with this first version of this move is that the vast majority of moves will be

improbable and are most likely to be rejected, and this issue will be far more com-

mon for high dimensional trees. Lakner et al. (2008) also showed that a randomised

SPR move may perform worse in comparison to other types of moves such as nearest

neighbor interchanges (NNI) moves, even though this was tested under non-coalescent

assumptions. However since very basic genetic assumptions are made for this investi-

gation we can create a more accurate proposal by temporarily estimating the ancestral

states/sequences of each node and then basing the probability of a graft-prune moves

on the distance between the pruned node and the node to be grafted above, termed as

the Wilson & Balding move (Wilson and Balding, 1998). We consider the probability

of proposing to prune and regraft an ancestor node si above some ancestor/tip node

sj which is proportional to

q(·|si, sj) ∝
1

1 +Dsisj

, (4.19)

where Dsisj
represent the SNP differences between the sequences.

This kernel requires a temporary estimate of the unknown sequences for each
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inner node via the forward-backward algorithm. The simplest estimation of an un-

known ancestor is the root node A1 at one locus point l for model m(k−1). We define

the specific allele which has the largest marginal probability for the root node via

{max}lπ(A1l|y1l, ..., ykl, ϑ, xmk−1) = maxl


p(A1l)f̃(A1l)∑

A1l

p(A1l)f̃(A1l)

 , (4.20)

where the maximum is over the four alleles of {A,C,G,T} and this is repeated for

each lth site. Here π(sil|y1l, ..., ykl, ϑ, xmk−1) represents the marginal probability of

node sil having certain allele types at the lth site given the tip nodes only, although

π(sil = yjl|y1l, ..., ykl, ϑ, xmk−1) naturally has a probability of one for having its true

allele and zero otherwise. Furthermore the f̃(sil) are still the conditional probabilities

of having a certain nucleobase given the rest of the genealogy that descents from it

as seen in (4.10). Should (4.20) have the maximum in more than one allele type then

we randomly choose the allele via a discrete uniform distribution.

To understand how we derive the marginal probabilities of having a certain allele

for the other inner nodes that are not the root node, we consider a simple example.

We consider a tree with three sequences {y1, y2, y3}, with a coalescent event (repre-

sented by node A2) between sequences y1 and y2 before a final coalescent event occurs

represented by the root node A1. While π(A1l|y1l, y2l, y3l, ϑ, xm2) is given in (4.20) we

define the marginal probabilities for inner node A2 by

π(A2l|y1l, y2l, y3l, ϑ, xm2) =
∑
A1l

(
π(A1l, A2l, y1l, y2l, y3l, ϑ, xm2)

π(y1l, y2l, y3l, ϑ, xm2)

)

= 1
π(y1l, y2l, y3l, ϑ, xm2)

∑
A1l

(p(A1l)pA1lA2l
(xA1A2)

×pA1ly3l
(xA1y3)pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)

×f̃(y2l)f̃(y3l))
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= pA2ly1l
(xA2y1)pA2ly2l

(xA2y2)f̃(y1l)f̃(y2l)
π(y1l, y2l, y3l, ϑ, xm2)

×
∑
A1l

pA1lA2l
(xA1A2)

(
p(A1l)pA1ly3l

(xA1y3)f̃(y3l)
)
. (4.21)

Letting θ = p(A1l)pA1ly3l
(xA1y3)f̃(y3l) we note that

θpA1lA2l
(xA1A2)pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l) = π(A1l, A2l|y1l, y2l, y3l, ϑ, xm2)

×π(y1l, y2l, y3l, ϑ, xm2)

θ
∑
A2l

pA1lA2l
(xA1A2)pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l) = π(A1l|y1l, y2l, y3l, ϑ, xm2)

×π(y1l, y2l, y3l,

ϑ, xm2), (4.22)

in which we now consider that

θ = π(y1lθ, y2l, y3l, ϑ, xm2)π(A1l|y1l, y2l, y3l, ϑ, xm2)∑
A2l

pA1ly2l
(xA1y2)pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l)

. (4.23)

Therefore by substituting (4.23) into (4.21) we receive

π(A2l|y1l, y2l, y3l, ϑ, xm2) = π(y1l, y2l, y3l, ϑ, xm2)
π(y1l, y2l, y3l, ϑ, xm2)
×pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l)

× pA1lA2l
(xA1A2)π(A1l|y1l, y2l, y3l, ϑ, xm2)∑

A2l

pA1lA2l
(xA1A2)pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l)

= p(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l)

× pA1lA2l
(xA1A2)π(A1l|y1l, y2l, y3l, ϑ, xm2)∑

A2l

pA1lA2l
(xA1A2)pA2ly1l

(xA2y1)pA2ly2l
(xA2y2)f̃(y1l)f̃(y2l)

.

(4.24)

Overall for any ancestor node si we consider its parent node si′ and its daughter nodes
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sj and sj′ , and then identify the allele with the the highest probability via

{max}lπ(sil|y, ϑ, x, xmk−1) = maxl

 ∑
s(1:(k−1)) 6=i)l

π(s(1:(k−1))l, y1l, ..., ykl, ϑ, xmk−1)
π(y1l, ..., ykl, ϑ, xmk−1)


= maxl

ρ(sil, sjl, sj′l, y)

×
∑
si′l

psi′lsil
(xsi′si

)π(si′l|y1l, ..., ykl, ϑ, xmk−1)∑
sil

psi′lsil
(xsi′si

)ρ(sil, sjl, sj′l, y)

 (4.25)

ρ(sil, sjl, sj′l, y) = psilsjl
(xsisj

)psilsj′l
(xsisj′

)f̃(sjl)f̃(sj′l). (4.26)

The above formulas to estimate the sequence for each inner node are sum-product

formulas in which we estimate a posterior distribution over the inner nodes and iden-

tify the allele that maximises the posteriori (Jordan, 2004; Kschischang et al., 2001).

This is repeated for the daughter nodes sj and sj′ , unless they are tip nodes, and

that (4.25) should be normalised when selecting the mostly likely allele. Furthermore

we move from the root and down towards the tip nodes as we need to calculate each

conditional probability of π(sil|y1l, ..., ykl, ϑ, xmk−1). However the estimates of each

ancestral sequences is not included when calculating the unnormalised posterior dis-

tribution, and as stated in section 4.4.1.1 the likelihood considers all possible allele

combinations.

The computational cost to at least calculate all viable q(·|si, sj) for a single site for

a complete genealogy tree of n sequences is O(n). Although while this cost is linear,

it is still higher in comparison to the basic SPR move as we need to calculate both

the basic likelihood via the pruning algorithm and also calculate (4.20) and (4.25) for

all relevant nodes in which, just like the likelihood, increasing diversity of the sample

sequences will increase this cost. Finally we need to re-estimate the ancestral nodes

again for at least a subtree of the complete genealogy tree in order to define q(·|si, sj′)

where sj′ is the node that we need to place si above to return to the original tree.
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Therefore the true cost could be many times that of the SPR move.

In conclusion we only make use of SPR-based topology type moves, even if other

type of moves such as adaptions of the Nearest Neighbor interchange (Drummond

et al., 2002) can be more efficient. There is still no “gold-standard” topology move that

provides consistent acceptance rates in high-dimensional parameter space (Lakner

et al., 2008). Other research has recommended a total branch length re-scaling move

that shrinks or lengthens all branch lengths by some positive factor (Didelot and

Falush, 2007; Yang, 2014), however we have opted to ignore this type of move.

4.4.3 Updating the Posterior by Grafting a New Observation

In each of these cases we aim to define which node we graft below the most recent

ancestor of a new sequence and on what part of the branch we graft it onto for each

model mk, and that these transformation also define the form of each intermediate

distribution. In each of our two proposed cases we make a new proposal for a new

height hyk+1 from the present day on the new sequence to its next ancestor which

also changes the ordering of said heights. These changes simultaneously act as our

transformation on the set of coalescent time intervals.

4.4.3.1 Exponential/Uniform Graft Proposal

The first type of move is the least directed of the two moves and takes into

account the expected height of the tree. We state that the the expected height/time

of the MRCA for all sequences, given current observational size k + 1 for model mk,

is defined by

E[xmk(2:(k+1))] =
k+1∑
i=2

2
i(i− 1)

= 2k
k + 1 . (4.27)
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Figure 4.6: Illustration of the exponential/uniform graft proposal, when grafting a
fourth individual onto a tree with three individuals. There are two branches where it
could be placed conditional on the proposed height.

Therefore we propose a height of the parent node of a new sequence, distributed by

hyk+1 = u1 ∼ ψ1,mk−1→mk
≡ Exp

(
k+1
2k

)
. For example, for three sequences this is an

exponential distribution with a rate parameter of 0.75 in which the said parameter

eventually converges to 0.5 with increasing number of sequences. The second step

uses a discrete uniform distribution to propose which nodes to graft the ancestor node

above given the height. Note that we let ghyk+1 · represent all the possible branches

that the ancestor of the sequence yk+1 can be grafted to given the proposed height

(with a specific ith location given by ghyk+1 i
). A reverse transformation simply involves

removing the branch itself. An illustration of the move is shown in figure 4.6.

This gives us an importance weight when we define the intermediate distributions

of our tSMC distribution via ϕ0 = 0 and ϕ1 = 1, and letting xmk−1 and γmk−1 represent
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the parameters for model mk−1, of

ρT (xmk
, γmk

, ϑ;mk−1 → mk)
ρ0(xmk

, γmk
, ϑ;mk−1 → mk)

= f(y1:(k+1)|xmk
, γmk

, ϑ)p(xmk
, γmk

, ϑ)
f(y1:k|xmk−1 , γmk−1 , ϑ)p(xmk−1 , γmk−1 , ϑ)

× 1
ψ2,mk−1→mk

(ghyk+1 ·|hyk+1)

× 1
ψ1,mk−1→mk

(hyk+1) . (4.28)

We can identify the probability density of ψ2,mk−1→mk
(ghyk+1 ·|hyk+1) by scanning the

genealogy tree to determine what positions the ancestor node of the new sequence

could have been grafted to, therefore the move is flexible where we could perform a

SPR move to move the subtree of the said ancestor node and still be able to evaluate

(4.28). While we believe this transformation has the potential to cover all possible

probability mass of a posterior distribution, it may require a large number of particles

effectively cover all regions of high posterior probability mass.

4.4.3.2 Laplace Approximation Based Proposal

We considered a second transformation which is more directed and takes into

account the differences between sequences. The process involves a two-part proposal.

The first part involves defining a tip node in which we can consider a path that

starts from the selected sequence and continues towards the MRCA of the tree and

then moving towards infinity. Thus we consider a generalisation, described in Li and

Stephens (2003), of Ewens formula (Ewens, 1972). Firstly, as described in section

4.2.2, we assume that each locus mutates independently with Poisson rate of ϑ/2 and

thus the Poisson mutation rate for the whole sequence is Lϑ/2 . If we were to consider

one particular locus, the conditional distribution that the locus of the new sequence

yk+1 to be introduced will differ by Dyiyk+1 mutations (or SNP differences) from the

same locus of one of the randomly chosen sequences yi currently grafted onto the

tree is given by a geometric distribution with rate k/(k + ϑ), given that we have k

sequences in a tree corresponding to model mk−1. For example the probability of no
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mutations on a specific site from one of the k sequences is given by

Pr(Dyiyk+1 = 0|yi, yk+1) = k

k + ϑ
, (4.29)

such that it reproduces Ewens sampling formula in the special case of the infinite sites

model (Li and Stephens, 2003; Stephens and Donnelly, 2000). When considering the

sequence as a whole, the conditional probability of the number of mutations is given

by

Pr(Dyiyk+1|yi, yk+1) =
(

k

k + Lϑ

)(
1− k

k + Lϑ

)Dyiyk+1

=
(

k

k + Lϑ

)(
k + Lϑ–k
k + Lϑ

)Dyiyk+1

=
(

k

k + Lϑ

)(
Lϑ

k + Lϑ

)Dyiyk+1

. (4.30)

Therefore given a total of k conditional distributions based from (4.30), we choose to

construct a discrete distribution to select a sequence yi with probabilities proportional

to (4.30) defined as

gyi
∝

(
Lϑ

k + Lϑ

)Dyiyk+1

, (4.31)

and thus higher proportional probabilities exist for the smallest Dyiyk+1 SNP differ-

ences.

Once the tip node has been selected, the second part of the transformation in-

volves choosing to graft the new sequence based on some sampled height, representing

the distance between the new sequence and its most recent ancestor, within the path

of the chosen tip node. This distance is based on the pairwise likelihood, which is the

binomial probability (with the binomial coefficient dropped) of having Dyiyk+1 SNP
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differences under the JC69 substitution model. This is given by,

L̃(hyk+1|yi, yk+1) =
(

3
4 −

3
4exp

(
−

4ϑhyk+1

3

))Dyiyk+1

×
(

1
4 + 3

4exp
(
−

4ϑhyk+1

3

))L−Dyiyk+1

. (4.32)

Note that we consider an adjustment of this likelihood, in comparison to JC69 se-

quences distances between two sequences shown in Yang (2014), where the terms

4ϑhyk+1 replace the terms 2ϑhyk+1 , in comparison to section 4.2.3, as we have to con-

sider both the distance from the new sequence to some unknown ancestor and then

to the selected tip node which doubles the distance. Based on this likelihood we sug-

gest proposing a new height for the sequence using a Laplace approximation of the

likelihood given by hyk+1 ∼ N(µ = h̃, τ = −H̃) where h̃ is the maximum likelihood

estimate and H̃ is the Hessian of the log likelihood of 4.32.

To illustrate how we solve the corresponding Laplace approximation, we define

some variable g where

g ≡ g(hyk+1) = 3
4 −

3
4exp(−

4ϑhyk+1

3 ) (4.33)

hyk+1 = − 3
4ϑ log(1− 4g

3 ), (4.34)

such that the pairwise log-likelihood is defined by

log(L̃(g(hyk+1)|yi, yk+1)) = Dyiyk+1 log(g) + (L−Dyiyk+1)log(1− g). (4.35)

The MLE of the log-likelihood is obtained by differentiating (4.35) with respect to g

and then setting its value to zero, such that

∂log(L̃(g|yi, yk+1))
∂g

= 0 (4.36)
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Dyiyk+1

g
−
L−Dyiyk+1

1− g = 0

(1− g)Dyiyk+1 = g(L−Dyiyk+1)

g̃ =
Dyiyk+1

L
. (4.37)

In regards to defining the Hessian matrix, by considering the chain rule we note that

∂2log(L̃(hyk+1 |yi, yk+1))
∂h2

yk+1

= ∂

∂hyk+1

(
∂log(L̃(g|yi, yk+1))

∂g

∂g

∂hyk+1

)

=
(

∂g

∂hyk+1

)2
∂2log(L̃(g|yi, yk+1))

∂g2

+ ∂2g

∂h2
yk+1

(
∂log(L̃(g|yi, yk+1))

∂g

)
, (4.38)

as ∂log(L̃(g̃|yi, yk+1))/∂g̃ = 0, then the double differential of the log likelihood with

respect to the height is equivalent to,

∂2log(L̃(hyk+1|yi, yk+1))
∂h2

yk+1

∣∣∣∣∣
hyk+1=h̃

= ∂2log(L̃(g|yi, yk+1))
∂g2

∣∣∣∣∣
g=g̃

(
∂g

∂hyk+1

)2
∣∣∣∣∣∣
hyk+1=h̃

= −
(
Dyiyk+1

g̃2 −
L−Dyiyk+1

(1− g̃)2

)

×
(

∂

∂h̃yk+1

(
3
4 −

3
4

(
exp−

4ϑh̃yk+1

3

)))2

= −
(
Dyiyk+1

g̃2 −
L−Dyiyk+1

(1− g̃)2

)

×
(
ϑexp

(
−

4ϑh̃yk+1

3

))2

. (4.39)

So finally we obtain exact forms of h̃ and H̃

h̃ = − 3
4ϑ log(1− 4g̃

3 )

= − 3
4ϑ log(1−

4Dyiyk+1

3L ) (4.40)
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H̃ = −
∂2log(L̃(hyk+1 |yi, yk+1))

∂h2
yk+1

∣∣∣∣∣
hyk+1=h̃

=
(
Dyiyk+1

g̃2 −
L−Dyiyk+1

(1− g̃)2

)
ϑ2exp

(
−

8ϑh̃yk+1

3

)
. (4.41)

However we consider a variance stabilising transformation by Reis and Yang (2011),

due to the fact the log likelihood has an exponential downward curve (with vastly

different gradients between hyk+1 < h̃ and hyk+1 > h̃) in which larger h are expected to

have larger sampling errors. Therefore we use their arcsine transformation suggestion

with u = 2arcsin(
√

3
4 −

3
4exp(−4ϑhyk+1

3 )), such that hyk+1 = − 3
4ϑ log

(
1− 4sin2(u/2)

3

)
.

Furthermore we note that

g = sin2
(
u

2

)
. (4.42)

The MLE for ũ is simply given by

ũ = 2arcsin
√3

4 −
3
4exp(−

4ϑh̃yk+1

3 )


= 2arcsin
(√

p̃
)

= 2arcsin
√Dyiyk+1

L

 . (4.43)

By applying the chain rule again we can also define the double differential of the log

likelihood with respect to ũ to be

∂2log(L̃(u|yi, yk+1))
∂u2

∣∣∣∣∣
u=ũ

= ∂2log(L̃(g|yi, yk+1))
∂g2

∣∣∣∣∣
g=g̃

(
∂g

∂u

)2
∣∣∣∣∣∣
u=ũ

= −
(
Dyiyk+1

g̃2 −
L−Dyiyk+1

(1− g̃)2

)(
∂

∂ũ
sin2

(
ũ

2

))2

= −
(
Dyiyk+1

g̃2 −
L−Dyiyk+1

(1− g̃)2

)(
sin

(
ũ

2

)
cos

(
ũ

2

))2
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= −


Dyiyk+1(
Dyiyk+1

L

)2 −
L−Dyiyk+1(

1−
(
Dyiyk+1

L

))2


×

sin
arcsin

√Dyiyk+1

L

 cos
arcsin

√Dyiyk+1

L

2

= −


Dyiyk+1(
Dyiyk+1

L

)2 −
L−Dyiyk+1(

1−
(
Dyiyk+1

L

))2


√Dyiyk+1

L

√
1−

Dyiyk+1

L

2

= −


Dyiyk+1

(
1−

Dyiyk+1

L

)
(
Dyiyk+1

L

) −

(
L−Dyiyk+1

)(Dyiyk+1

L

)
(

1−
(
Dyiyk+1

L

))


= −


Dyiyk+1

(
1−

Dyiyk+1

L

)
(
Dyiyk+1

L

) −

(
L−Dyiyk+1

)(Dyiyk+1

L

)
(

1−
(
Dyiyk+1

L

))


= −

LDyiyk+1

(
L−Dyiyk+1

)
LDyiyk+1

−

(
L−Dyiyk+1

) (
Dyiyk+1L

)
(
L−Dyiyk+1

)
L

 .
= −L (4.44)

Finally we define proposal for the new height to be given by,

u
′ ∼ N

µ = 2arcsin
√Dyiyk+1

L

 , τ = L

 (4.45)

hyk+1 = −
( 3

4ϑ

)
log

(
1− 4sin2(u′/2)

3

)
. (4.46)

Another property from this transformation, in comparison to the untransformed ver-

sion, is that drawing from (4.45) and (4.46) will always produce a positive real number

for the height of the new node. A notable issue with this type of move is if hyk+1 is

higher than any ancestral node of yi then it is not possible to trace back its path to the

new node placement, for example this could have been generated by starting from the
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sister node of yi. While we could add a label that defines a descendant tip sequence,

this could limit the topology exploration by keeping the sequence in a subset of places

in the tree. Thus we decondition over the possible number of tip sequences that could

of resulted in the proposed tree. The overall move has a Jacobian of 1. Applying this

transformation move gives a weight update, when we only consider two intermediate

distributions where ϕ0 = 0 and ϕT = 1, of

ρT (xmk
, γmk

, ϑ;mk−1 → mk)
ρ0(xmk

, γmk
, ϑ; ;mk−1 → mk)

= f(y1:(k+1)|xmk
, γmk

, ϑ)p(xmk
, γmk

, ϑ)
f(y1:k|xmk−1 , γmk−1 , ϑ)p(xmk−1 , γmk−1 , ϑ)
×

∑
yi∈ygyk+1

(ψ1,mk−1→mk
(gyi
|ϑ)

×ψ2,mk−1→mk
(hyk+1|gyi

, ϑ))−1, (4.47)

where gyi
is defined via (4.31) and ygyk+1

is the set of all the sequences/tip nodes,

except for the newly grafted sequence, contained within a subtree where the root of

it has a daughter node being the newly grafted sequence. Otherwise the density of

ψ2,mk−1→mk
(hyk+1|gyi

, ϑ) is given by

ψ2,mk−1→mk
(hyk+1|gyi

, ϑ) =
(

∂

∂hyk+1

u

)√
τ
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(
τ(u− µ)2
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, (4.48)

where µ = 2arcsin
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)
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=
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4exp(−
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 . (4.49)

An example of the transformation in practice is shown in figure 4.7 where a

duplicate of the sequence y1 is being grafted. What can be noticed from the example

is the concentration of proposals near the tip node of the currently grafted y1, with

fewer proposals to be grafted above sequences with far few differences such as y2 and

y5. If it was assigned to be placed above other sequences then the recommended

heights are within the range where y1 shares a MRCA with a certain sequence. We

could have stricter or looser grafting probabilities proportional to some function of

(4.31), however we believe that the existing probabilities in (4.31) are appropriate

enough as seen in figure 4.7 which give some chance for unrelated sequences to follow

its path to the root but still prioritise genomes that are more related.

Otherwise for any of the two moves we are strongly dependent on having ϑ

converge via the MCMC steps, and although we believe that the parameter is unlikely

to vary greatly between large genealogy trees we would still need to analyse if such a

transformation on ϑ is needed.
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Figure 4.7: An example of multiple proposals made by the Laplace approximation
plotted onto the same tree. In this case we are grafting the duplicate sequence of y1
to the existing tree.

4.5 Diagnostics and Tests for the tSMC Adaption
for Genealogy Reconstruction

We attempt to reconstruct the ancestral history of Staphylococcus aureus se-

quences from their multi locus sequence typing genes (Enright et al., 2000). The com-

bined sequences, with a length of 3186 sites, consists of the following housekeeping

genes; arc (Carbamate kinase), aro (Shikimate dehydrogenase), glp (Glycerol kinase),

gmk (Guanylate kinase), pta (Phosphate acetyltransferase), tpi (Triosephosphate iso-

merase) and yqi (Acetyle coenzyme A acetyltransferase). There exist no missing/un-

known alleles at any of the loci. For simplicity it is assumed that the sequences do not

exhibit recombination, with the basic concept being that a chromosome may exchange

genetic material with other chromosomes (with the processes varying between haploid

or diploid genomes) and thus any inference on the genomes ancestry when assuming
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SNP changes by substitutions only is very likely to be wrong. However it is known that

Staphylococcus aureus does go through some form of horizontal gene transfer which is

a type of recombination (Everitt et al., 2014), and therefore any biological interpreta-

tions from these results should be taken with caution. The MLST types that we use are

{1, 5, 6, 8, 20, 22, 25, 34, 36, 39, 45, 59, 88, 93, 97, 101, 105, 123, 133, 151, 239, 250, 398}.

Unlike in chapter 3 we are not interested in the general properties of different

tSMC adaptions, such as the difference between setting either adaptive and fixed geo-

metric bridging intermediate distributions, and focus on application specific tests. We

analyse the differences of the estimated posteriors when new sequences were grafted

under the exponential/uniform proposal and the Laplace approximation proposal.

We also consider the scenario where no topology moves are made to investigate if it

is possible to avoid such moves if the transformation proposals alone can target re-

gions of high posterior density for each ordered genealogy of incrementally increasing

observational size. (as seen in Fourment et al. (2018)). We consider the following;

• We analyse the genealogy tree and the marginal posterior distributions of ϑ. We

also analyse how many intermediate distributions were required to convergence

under each scheme.

• We consider the differences in the Monte Carlo error per likelihood calcula-

tion between the two algorithms, and also analyse the ML under two different

orderings to graft the sequences onto a tree.

• On a minor note we consider how appropriate some of our suggested kernel

moves. In particular we analyse the two possible tuning schemes for proposing

changes to the topology or each of the node heights as described in section 4.4.2.

With regards to the mentioned orderings, one ordering involves grafting the sequences

to an existing tree depending on the smallest SNP distance between a new sequence

and the existing sequences. In particular this ordering is made by first constructing
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a symmetric matrix, with each sequence indexed within the rows and columns, rep-

resenting the SNP differences between each sequence (with the diagonals naturally

equating to zero). We pick the two sequences which have the smallest SNP differ-

ence between them and then delete their corresponding rows from the SNP difference

matrix. Afterwards we extract all matrix columns who are indexed by the sequences

which are currently in the ordering (or currently grafted onto a tree), perform column

matrix addition for all said columns and then the next sequence to graft onto a tree

is based on the row, given by the matrix representing the added columns, with the

smallest SNP distance. This is then followed by deleting its corresponding row in

the SNP difference matrix, and the process continues until all observations have been

ordered. With this schedule we expect the recent ancestor node of the new sequence

to be the new root node or be an ancestor to a large subset of the current tip nodes.

The second ordering considers the largest to the smallest SNP differences, such

that new sequences are most likely to have their recent ancestor nodes have one of the

other tip nodes as a daughter node. This ordering is defined by the same procedure

as the other stated ordering, except we consider the largest SNP difference between

sequences in comparison to the smallest.

To visualise the particle representation of the posterior on the tree space we create

a weighted 50% majority rule consensus tree (Bryant, 2003; Margush and McMorris,

1981) that involves sampling from the particle set, dependent on the particle weights,

and then construct a consensus tree treating all sampled trees as equal. Although

there may be some variation in the ancestral topology of each genealogy tree we do

expect certain subtrees, such as the subtrees for the daughters of the root node, to

contain a consistent subset of tip nodes corresponding to a specific set of sequences. It

should be noted that it is not always possible to set up a consensus tree that appears

to be represented by coalescent model assumptions, as summary statistics for branch

lengths derived from a set of duplicate subtree clades can result in a tree where all

the tip nodes do not exist in the present due to uneven branch lengths. Therefore we
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present consensus trees where the sample sequences may not match perfectly to the

present. We do not apply more advanced consensus trees such as adaptions of the

greedy consensus trees or otherwise more refined algorithms (Bryant, 2003; Degnan

et al., 2009).

Furthermore pre-testing showed that both transition moves do not initially cause

a large number of zero weighted particles, and thus we do not use a scheme which sets

ϕ1 = 10−8 as we did in chapter 3 but instead set all {ϕ0 = 0, ϕ1, ϕ2, ....} adaptively.

All of the stated tests are analysed when using an adaptive scheme to set the number

of intermediate distributions as described in chapter 2, and we have them dictated by

aiming for the CESS to be equal to 0.95N (where again N is the number of particles).

Otherwise we apply adaptive MCMC kernels, where at each state we apply 10 SPR

MCMC kernel moves and one individual adaptive MCMC kernel for the node heights

and population size parameter as given in section 4.4.

For tests involving the differences between the MCMC kernel moves within the

tSMC adaption we use 250 particles and up to a subset of 15 sequences, and when

investigating the best methods for proposing node heights we analyse this while apply-

ing one W&B move and 10 SPR moves respectively. We use these tests to determine

what the exact MCMC kernel moves should be applied when analysing the marginal

likelihood estimates from our tSMC runs. Although within section 4.6 we do state

that based on these results we do apply 10 SPR moves when analysing the consensus

trees and the ML, and that there was no notable difference between the two MCMC

proposals for the node heights.

For marginal likelihood estimates we use a particle size of 250 with all 23 se-

quences, and what conditions this is analysed depends on the tests of each kernel.

We display consensus trees which are generated under 1000 particles, with again

10 SPR moves and one MCMC proposal for the population size parameters and each

individual height, and analyse whether the consensus topology matches with what is

shown with established methods.
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We compare the 1000 particle runs of tSMC to MCMC, under the same prior

conditions, with an iteration size of 1.5 × 106 and a burn-in period of 106. Within

this run of the MCMC we analyse whether we obtain similar results. The MCMC

algorithm applies the same MH moves as our tSMC algorithm but instead we consider

the adaptive metropolis algorithm (see for example Haario et al. (2001); Roberts

and Rosenthal (2009)), as an alternative algorithm to adaptively give proposals to

the population size parameter and node heights. Considering the population size

parameter as an example, a proposal, ϑ̃, for the parameter is given by

log(ϑ̃) ∼ (0.95× Normal(µ = log(ϑ), τ = (2.382υϑ)−1))

+ (0.05× Normal(µ = log(ϑ), τ = (0.01)−1)), (4.50)

where υϑ is defined by the variance of the current Monte Carlo estimates from at

least two iterations of the Markov chain. Otherwise we use a proposal of log(ϑ̃) ∼

Normal(µ = log(ϑ), τ = (0.01)−1) in the first 5 iterations of the Markov chain.

Although a downside is that the adaptive metropolis algorithm works best if each

marginal posterior distribution is expected to be similar to a Gaussian distribution,

for example in (4.50) we need log(ϑ) to justifiably be defined by a Gaussian distribu-

tion, an issue that we discussed in chapter 2. It this is not the case then the adaptive

metropolis algorithm is not the most efficient in exploring a parameter space (Haario

et al., 2001; Roberts and Rosenthal, 2009).

4.6 Results

Before major tests were run we first analysed the rate of successful MH propos-

als under an adaptive MCMC kernel scheme when the node height tuning variances

are dictated via the variance of the ordered heights or by the residuals between the

branches of the genealogy and the population size parameter. This was tested under

both the height and Laplace based transformation proposals, under 250 particles and
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up to a subset of the 15 out of the 23 sequences. As each height scales with the pop-

ulation size, and thus comparisons with how far each height has jumped successfully

may give misleading results, we considered analysing the mean square jump (MSJ)

distance under the number of mutations per site time scaling as described in section

4.2.2.

Acceptance probabilities are shown in figure 4.8, and we note that they have

shown the same pattern and approximate regions of acceptance probability. No

scheme gave better initial acceptance rates than the other. Regarding the mean

square jump distance, in figures 4.9, 4.10 and 4.11 what can be seen is that there is no

consistent difference between the two adaptive tuning variances. Sometimes a certain

variance tuning scheme might perform better overall at certain transitions and other

times it is roughly the same, and the patterns also vary with each parameter. More

importantly, regardless of one scheme being slightly more appropriate for a smaller

number of sequences, each scheme appears to give approximately the same marginal

likelihood estimates when identical orderings are considered (which we do not show).

What was interesting was how the exponential/uniform proposal also gave poorer

MSJ the vast majority of the time in comparison to the Laplace approximation. We

choose to consider the first scheme that does not use the correlation between the

population size parameter and the branches, although using the other scheme should

not have a massive impact on the results if inferring high dimensional trees was the

key objective. Furthermore we also consider if there was a better way to implement

these kernel moves as we discuss in section 4.7.

As part of other diagnostics we examined the effectiveness of the SPR moves. We

noticed that performing only one iteration of the most basic SPR move as given by

(4.18) had very poor acceptance rates, although this was somewhat to be expected as

a near identical move given by BEAST also showed similar properties, however this is

why we have considered the more advanced variant. We found that using a version of

the W&B that considers the estimates of the ancestor nodes did improve the rate of
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(a) Acceptance probabilities for the height to the first coalescent event under non-residual
tuning scheme.

(b) Acceptance probabilities for the Population Size Parameter under non-residual tuning
scheme.

(c) Acceptance probabilities for the height to the first coalescent event under residual tuning
scheme.

(d) Acceptance probabilities for the Population Size parameter under residual tuning scheme.

Figure 4.8: Acceptance probabilities for the height to the first coalescent event and
population size parameter. These represent 10 runs when transitioning from a 2 to 3
sequence genealogy tree.
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(a) MSJ for the height to the first coalescent event.

(b) MSJ for the population size parameter.

Figure 4.9: Expected mean square jump distance when transitioning from a 2 to 3
sequence genealogy tree. Analysed under both the exponential/uniform and Laplace
approximation proposal.
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(a) MSJ for the height to the first coalescent event

(b) MSJ for the population size parameter

Figure 4.10: Expected mean square jump distance when transitioning from a 10 to 11
sequence genealogy tree. Analysed under both the exponential/uniform and Laplace
approximation proposal.
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(a) MSJ for the height to the first coalescent event.

(b) MSJ for the population size parameter.

Figure 4.11: Expected mean square jump distance when transitioning from a 10 to 11
sequence genealogy tree. Analysed under both the exponential/uniform and Laplace
approximation proposal.
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accepted moves by approximately 5-15 times in comparison to one moves, and this was

not changed throughout different transitions. There was no notable improvement in

the estimates in regards to the posterior distributions or marginal likelihood. However

there is still substantial issues when taking into account the computational cost of

each move, as discussed in section 4.4.2. While giving an exact number of the cost

is tricky as the cost will vary depending on SNP differences based on the ordering of

the grafted sequences, performing at least 10 W&B allowed for approximately 5-30%

probability for the particles to at least have at least one successful SPR move while

still being faster than performing the W&B move. Therefore for our presented results

we considered using 10 SPR moves for our presented results.

From figures 4.12 to 4.15 we present the posterior consensus trees under the

exponential/uniform and Laplace approximation grafting proposals, with and without

topology moves. Otherwise figure 4.16 shows the consensus plot from the MCMC

output.

In particular we focus on the two subtrees, which have root nodes being the

daughter nodes of the root node for the complete tree, and the subset of tip nodes

that are contained within. These are

Sequence Set 1 = {250, 8, 239, 97, 1, 25, 88, 105, 5, 20, 6, 10, 22} (4.51)

Sequence Set 2 = {93, 59, 151, 133, 123, 39, 36, 34, 398, 45}. (4.52)

When we compare this to the maximum likelihood plot generated from Everitt et al.

(2014), the topologies do have some differences but the two subtrees that descend

from the root node contain sequence set 1 and 2 respectively.

What can be seen in figures 4.12 and 4.14 is that under strong topology mixing,

regardless of how each branch was grafted onto the tree, the same or similar topology

was generated. While there existed some variation when multiple runs of the algorithm

were made, at worst they only differed by one-two SPR arrangements in comparison
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Figure 4.12: Consensus tree for the complete 23 sequence set using the exponential/u-
niform grafting proposal.
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Figure 4.13: Consensus tree for the complete 23 sequence set using the exponential/u-
niform grafting proposal when no SPR moves were applied.
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Figure 4.14: Consensus tree for the complete 23 sequence set using the Laplace Ap-
proximation grafting proposal.
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Figure 4.15: Consensus tree for the complete 23 sequence set using the Laplace Ap-
proximation grafting proposal when no SPR moves were applied.
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Figure 4.16: Consensus tree for the complete 23 sequence set under generated from
MCMC burn-in.
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to what is shown in figures 4.12 and 4.14.

The two tSMC adaptions in figures 4.12 and 4.14 had topologies that had similar-

ities to figure 4.16. In the MCMC consensus tree, the subtree representing sequence

set 2 in (4.52) had a topology that was identical to the very same subtrees in the

tSMC adaptions that represent sequence set 2. Although the other subtree contained

the same set of sequences, there were a few differences in the orderings of when each

sequence coalesced but still had many similarities such as MLST22 being the last to

coalesce with all the other sequences in the set.

When no SPR moves were performed there were multiple deviations from figures

4.12, 4.14 and 4.16. The consensus tree when no SPR moves were made while graft-

ing sequences with the exponential/uniform grafting proposal, was very inaccurate

in comparison to other trees. Most notable is that the two subtrees that descend

from the root node contain sequences that do not match the sets shown in (4.51) and

(4.52). Using no SPR moves while appying the Laplace approximation also had a few

deviations, for example MLST45 and MLST398 should coalesce with each other with-

out initially coalescing with other nodes beforehand (however this was not present),

but it was not as bad of an estimate in comparison to using the exponential/uniform

grafting proposals. From the results, it shows that SPR moves are still required and,

unless better transformation proposals are made, relying on the transformation and

a large particle size alone is not as efficient in exploring the parameter space of the

genealogy.

When analysing the number of intermediate distributions needed to construct the

genealogy tree in figure 4.17, when considering particle degeneracy under the current

CESS threshold explained in section 4.5, the total number required was shown to be

twice as large when using the exponential/uniform grafting proposal in comparison

to the Laplace approximation grafting proposal. Although this shows that the ex-

ponential/uniform proposal was not a good proposal, which was expected because it

was less directed proposal compared to the Laplace approximation proposal, the use
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of intermediate distributions combined with MCMC kernel moves in the tSMC algo-

rithm will assist with convergence to the posterior and can give a result that matches

with better transformation proposals (as seen in figures 4.12 and 4.14).

Figure 4.17: The cumulative number of intermediate distributions required to con-
struct the complete genealogy tree when CESS = 0.95N .

Although when SPR moves are not made when the exponential/uniform grafting

proposal is used to transition to the next model the number of intermediate distribu-

tions is smaller by a large margin. However the number of intermediate distributions

alone does not dictate how appropriate each proposal is. For example if a move only

grafts the new branch in fewer appropriate areas this could lead to less diversity from

a resampling step and then the resulting decrease of the variance the particle set could

lead to large and fewer discrepancies between the intermediate distributions. As dis-
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cussed previously, applying no SPR moves gives poorer estimates of the expected

topology.

We also analysed the particle plots for the population size parameter and how

they have changed over time in figure 4.18. From these figure what can be seen is

that the posterior of the population size parameter is initially long-tailed when only

a few sequences are present. However the posterior appears to continue contracting

but at a decreasing rate with every sequence grafted onto the tree. These results are

repeated across multiple runs of the data. From these results we are confident that,

at least from this data, that we do not require a transformation on ϑ.

Finally we discuss the effects of the ML depending on patterned or random or-

derings. From table 4.1, in the scenario where no W&B moves were initiated there

was an underestimation of the marginal likelihood under both the Laplace and expo-

nential/uniform transformation moves. Overall the exponential/uniform graft move

is a far poorer grafting proposal from the ML results and a higher number of inter-

mediate distributions needed to be applied to allow for convergence. Therefore when

considering the ML tests for the fixed orderings, as described in section 4.5, we choose

not to analyse the results when an exponential/uniform grafting proposal is applied.

What we have discovered is that depending on the ordering, in table 4.2, different

marginal likelihood values are generated. Here we believe there existed some under-

estimation of when grafting sequences with the largest average SNP differences of the

existing grafted sequences to the smallest average differences. It should be noted that

this was an issue when using the stepwise addition move, see section 4.3, in which the

orderings of the sequences have an effect on the final tree. While we believe tSMC

can converge to the correct answer eventually with well mixed topologies and gradual

inclusion of sequences, it does not appear to fix the problems related to the marginal

likelihood.
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(a) Particle plots of ϑ when transitioning from a 2 to 3 sequence genealogy tree.

(b) Particle plots of ϑ when transitioning from a 4 to 5 sequence genealogy tree.

(c) Particleplots of ϑ when transitioning from a 6 to 7 sequence genealogy tree.

(d) Particle plots of ϑ when transitioning from a 22 to 23 sequence genealogy tree.

Figure 4.18: Particle plots of the population size parameter under multiple transitions.
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Standard Standard + No SPR
Exponential/Uniform −6297.278 −6308.481

Laplace Approximation −6259.373 −6287.086

Table 4.1: First set of log marginal likelihood estimates for the complete genealogy
tree. “Standard” scheme refers to running the tSMC algorithm with a particle size of
1000, with the number and type of MCMC kernels applied described in section 4.5.

Ordering 1 Ordering 2
Laplace approximation −6258.896 (5.133) −6262.448 (3.937)

Table 4.2: Second set of log marginal likelihood estimates (+ standard error) for the
completed genealogy tree. These were made via 250 particles and 10 SPR Moves
moves. “Ordering 1” refers to grafting sequences based on the average smallest SNP
differences from the sequences of the current tree, while “Ordering 2” regards grafting
sequences based on the largest SNP differences from the sequences of the existing tree.

4.7 Conclusions

This chapter has shown the basic groundwork to estimate a high-dimensional

posterior distribution of a phylogenetic tree by sequentially grafting sequences over

time, while taking into account the potential changes to the posterior regarding how

the sequences are added.

The Laplace approximation grafting proposal proved to be the superior way to

graft a new sequence as it was more likely to give better initial approximations regard-

ing how to place each new node in comparison to the other proposal which required

a larger number of intermediate distributions under adaptive annealing. However the

computational cost for the weight and MCMC updates under this move depends on

the number of existing tip nodes within the tree. For example calculating (4.47) is

more costly if say a new sequence was to be placed above the root node of a tree which

currently has n sequences in comparison to also being above the root but only with

n− 1 sequences. Therefore, when the data is available all at once, it is more desirable
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to graft sequences in the ordering from the average longest distance to the shortest

distance of the existing sequences, providing that underestimation of the marginal

likelihood is accounted for.

Fourment et al. (2018) claim that their algorithm, as explained in section 4.3,

gave satisfactory convergence to each tree using only transformation moves and only

one importance sampling step (along with resampling). However this contradicts our

results in section 4.6 where not applying topology MCMC moves gave a more inaccu-

rate estimate of the true genealogy tree and some number of intermediate distributions

was still needed to prevent particle degeneracy as dictated by the conditional ESS.

It is difficult to evaluate if our transformation proposals can cover all areas of

high posterior density to any transitioned model, and as we discovered with chapter

3 this is an important component for an accurate marginal likelihood. This is despite

how tSMC can compensate for this with intermediate distributions and appropriate

MCMC kernels. However given that simply trying to construct an accurate interpre-

tation of the ancestral relationship is already a challenge, model comparison is not a

major objective in either phylogenetic or population genetics studies at this point in

time.

From these tests we do not believe that the population size parameter requires

a transformation to shift the posterior space, especially if we do not expect large

differences in genome sequences within a population. However it is uncertain if this

will remain true for other population genetic based parameters such as the exponential

growth rate of a population (Yang, 2014), although given that it is also a static

parameter we believe that with more data then the posterior would contract in a

similar fashion as well.

We believe a more appropriate way to implement one of the adaptive tuning

schemes based on the residuals was to simultaneously give some proposal for the

population size ϑ along with a change in the height node. Alternatively a general

scaling options on all branching that follows from a change of the population size
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parameter could of been more appropriate. This would have to considered as part of

future research.

The tSMC adaption could be applied to tree construction under non-coalescent

conditions, however when proposing new methods to graft a new sequence we would

also need to consider the independent branch length from the new sequence to its

ancestor node in comparison to only considering the position of the most recent an-

cestor node of the new sequence. The Laplace approximation proposal worked on the

basis that all individuals are sampled from some present population and the distance

from each tip node to the root of the genealogy is the same. This is not an assump-

tion made under non-coalescent model conditions, where some individuals are part of

some extinct taxa. Proposals by Fourment et al. (2018) should be considered, or an

adjustment to the Laplace approximation would be required instead.

What would be of interest, given a particle set of trees with the same sample se-

quences, is if different substitution models provided a better fit for the data then the

cost to answer this question could decrease by considering some appropriate transfor-

mation of variables via tSMC. For example the Kimura (K80) model (Kimura, 1980)

assumes that substitutions from Thymine to Cytosine or from Guanineas to Adenine,

and vice versa with Cytosine to Thymine etc, all termed as transitions (not to be

confused with how we described transitions in tSMC) occur at a different rates in

comparison to all other substitutions which are termed as transversions. Therefore

we are interested in inferring a new parameter called the transition/transversion rate

ratio. However more than a parameter generation of substitution model parameters

would be required as, depending on the data, the topologies under two different sub-

stitution models can be very different should the said ratio greatly diverge from 1.

Thus using one transformed model as a type of importance sampler is not recom-

mended. Fixing the problem would require improved topology moves that can better

reorganise subtrees, although doing so would make the MCMC a far more viable op-

tion and weaken the argument for applying tSMC. Furthermore since our Laplace
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approximation was based on the distances of a JC69 model, then we would need to

devise alternative methods to graft a node onto a tree if a different substitution model

was to be used.

Another challenge is in the application of differing substitution/mutation rates

within subsets of the loci where a single mutation rate for all loci, like that was used in

this investigation, is not biologically accurate. One possible solution involves grouping

sites into “populations” which differ by their substitution rates based on a Dirichlet

process prior, see chapter 5 for a full explanation of how the Dirichlet process should

be interpreted. Each of the “population” groups have their own topology and branch

lengths as well as substitution rates (Huelsenbeck and Andolfatto, 2007; Wu et al.,

2012). However the previously discussed adaptions of tSMC are not very efficient at

moving such allocation variables around the model space unless all parameters that

are not the allocation variables themselves are integrated out, which is a strategy we

apply in chapter 5. Nevertheless to perform some integration for all possible labeled

history trees is unfeasible, and even if it was possible the number of sites/parame-

ters could range in the hundreds of thousands. An alternative parameterisation that

also assigns sites into populations and infers the differences in mutation rates is via

point change models (Persing et al., 2015; Suchard et al., 2003). What point change

models consider is inferring a number and position of breakpoints which separate the

individual groups within a sequence, which is more manageable since the number of

discrete parameters will be far smaller. However it is unclear what type of across

model move should be used for the breakpoints, whether it is randomly proposing a

new breakpoint or splitting one into two like what was proposed in chapter 3, and how

the introduction of one breakpoint will affect all other breakpoints and the genealogies

between breakpoints in the model.

In summary, regardless of what model we choose to infer if a new sequence

changes the genealogy greatly, more notably the topology, then constructing an accu-

rate importance proposal via a transformation will be harder to devise. The algorithm

198



Section 4.7 Page 199

will be more dependent on MCMC kernels, combined with setting the correct rate of

particle degeneracy, to explore the model space. While this strategy might allow for

convergence to regions of high posterior probability density it is still very likely that

the marginal likelihood will be underestimated given the evidence that we have seen

so far in chapter 3.
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Chapter 5

Applications in Population
Structure under Non-Parametric
Model Assumptions

In chapter 3 we discussed inferring a posterior distribution of a mixture distri-

bution where the allocation variables, which are used to represent the assignment of

observations to population groups which differ through parameter measured charac-

teristics, were integrated out from the model. This decision was made to simplify the

problem, and because we require an efficient method to successfully rearrange the al-

location variables when creating an additional component. Here we present a solution

to infer the allocation variables when using a set of nested models as proposals, which

differ by the number of population clusters in which said variables may be assigned

to. However for now it requires a conjugate relationship for all model parameters with

the exception of the allocation variables themselves for our transformation proposal

to be used. In comparison to the previous applications, we are not transforming the

parameters of a previously inferred model. Instead this is an example of using tSMC

to gradually explore the parameter space by incrementally increasing the number of

states of the allocation variables (or increasing the number of populations) at each

transition. On a minor note, Gibbs samplers as a MCMC kernel within tSMC can be
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used as we are inferring parameters in a solely discrete parameter space.

In this final chapter we now attempt to perform tSMC under the Structure model

(which is used to cluster genome sequences), see section 5.1.1. The Structure appli-

cation is an example where the within-population parameters can be collapsed out of

the model using conjugacy. As this application uses some terms relating to genetics,

we recommend referring back to chapter 4 for a brief explanation of certain genetics

based concepts.

Section 5.1 describes the basic concepts of the Structure model. We also state the

two types of Bayes’ prior distributions, including their differences, for the parameter

set representing the assignment of observations to populations.

In section 5.2 we give a brief literature review regarding the standard approaches

to increase or decrease the number of populations in the posterior distribution, a few

note-worthy SMC based adaptions and the contribution that tSMC can give.

We present the posterior distribution of the Structure model in section 5.3. Across

model moves and within model MCMC moves are also explained.

Section 5.4 describes the primary objectives for each test and the diagnostics to

be applied, with the results presented in section 5.5.

Finally we give a discussion on the limitations to our proposed approach and

what to prioritise for future work if we were to continue using the tSMC approach in

section 5.6.

5.1 Inference with Structure and Allocation Vari-
ables

5.1.1 The Structure Model

In the Structure model we consider aligned sequence data of n individuals, y =

{y1·, ..., yn·} ⊂ Y , which can be either haploid or diploid. In this thesis we use data

of the form y
(c)
il which represents the ith individual of the cth chromosome where
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c ∈ {1, 2}. Although we will be analysing diploid data, for simplicity when using yil
it equates to y(1:2)

il and so we account up to two alleles at each of the l loci for each

ith observation.

In comparison to chapter 4 where we only considered the allele type for the

lth locus, in this application it is possible to instead consider the alleles of the lth

joint loci on a sequence with an example being microsatellite data, which consists of

repeated tracts of DNA, as defining the data this way still captures the differences

between sequences. Overall we generalise the data to consist of sets of loci, which

may consist of only one site or multiple loci. We are interested in inferring the

posterior probabilities regarding the allocation of each of the individual sequences,

represented by their respective allocation variables of z = {z1, ..., zn}, to one of the

k populations. The populations, with ap ∈ {a1, ..., ak}, are representative of various

genetic properties of the assigned sample individuals. We assume that we do not know

the true characteristics of each population, only some prior assumptions.

The structure model considers inferring a population allele matrix P̄ , being a

k × l × ςl object representing the allele frequencies, and we consider the following

notation:

• ςl is the set of unique alleles at the lth loci.

• ς̃l is the number of unique alleles at the lth loci.

• ςlj is the jth allele of the set of unique alleles present in the lth loci.

• ς̃lj is the total number of the the jth allele type in ςl that exists across all k

populations.

• ς̃l·ap is the total number of the read alleles at the lth loci for sequences that are

in population ap only.

• ς̃ljap is similarly defined like ς̃l·ap , except we only record the counts of the jth

ordered allele of the lth loci only that are in population ap only.
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• nap is the number of individuals, or number of zi, assigned to population ap.

• Therefore we define P̄ljap as the estimated frequency of the jth ordered allele at

the lth locus for any individual who belongs to population ap.

• Otherwise P̄l·ap is the vector of allele frequencies within the population ak at the

lth loci. Furthermore P̄l·ap ∈ F is integrable over a continuous space.

Furthermore we use an additional ‘(i)’ or ‘(−i)’ notation to define whether indi-

vidual i is to be included in some object. For example ς̃(−i)
ljap

is the number of counts

for the ordered jth alleles of the lth loci for all individuals belonging to population

ap with the exception of individual i. Otherwise if we only consider the counts of the

ith diploid organism we would use ς̃(i)
ljap
∈ {0, 1, 2} which depends if the lth loci of the

observation either has missing allele data (ς̃(i)
ljap

= 0), allele data at one chromosome

only (1) or no missing data respectively (ς̃(i)
ljap

= 2).

Finally in section 5.3 we use an additional term of mk, when defining estimated

parameters, or otherwise allele counts/frequencies for individual populations, of each

model mk. For example, zmki is the ith allocation variable that corresponds to model

mk. In comparison to previous chapters however we will not be defining the specific

intermediate distribution, when transitioning between adjacent models, that any es-

timated parameters correspond too. This decision was made to simplify the notation,

and we won’t be using it when explaining how our transformation on each model

works.

When considering the Structure model we assume that each locus is unlinked

with the rest of the sequence and linkage equilibrium is present, which means that

any two different allele frequencies P̄l′j′ap and P̄ljap do not have a higher or lower

frequency of being inherited together by offspring from an individual belonging to

population ap and thus all alleles are independent across sites. Furthermore we assume

Hardy-Weinberg conditions in which the population allele frequencies/characteristics

will remain unchanged by outside influences, these include immigration/emigration
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or mutations that change allele frequency, across multiple generations of offspring.

These assumptions are needed such that an allele at each loci for a sequence from

population ak is an independent draw from the allele probabilities of P̄ljak
. Therefore

we define the distributions for each sequence’s chromosome and the population allele

frequencies as

y
(c)
il ∼ Discrete(P̄l·zi

) (5.1)

P̄l·ap ∼ Dirichlet(βl1, ..., βlς̃l), (5.2)

for (βl1, ..., βlς̃l) ⊂ R+. The basic Structure model, and the class of adapted algorithms

that follow from its origins by Pritchard et al. (2000), provides a Bayesian-approach

which not only attempts to estimate the distribution of the allocation variables but

simultaneously estimates what the allele frequencies are for each population. This is

usually accomplished through Gibbs sampling as the conditionals of zi and P̄l·ap can

be defined from appropriate priors (see sections 5.1.2 and 5.3).

Some care is needed when interpreting the biological implications from produced

results. By design the Structure algorithm will favor the smallest population size

possible that explains the vast majority of genetic variation, and although this should

be an ideal property of Bayes models it may not reflect real world populations that

the data represents. This would occur if certain genomes from a divergent population

do not have a significant sample size and/or a high genetic divergence from the other

population groups, and instead the individuals would be mixed with the other groups

(Lawson et al., 2018).

5.1.2 Non-Parametric and Parametric Priors on the Alloca-
tion Variable

In this subsection we explain two priors for the allocation variables under Struc-

ture, one being the Dirichlet process (DP) prior and the other being a finite mixture
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prior.

Ferguson (1973) introduced the Dirichlet process, a stochastic discrete time pro-

cess, and Antoniak (1974) proposed its application in mixture models. This prior

assumes that each observation, is generated by first sampling a random distribution

G from the Dirichlet process G ∼ DP(αG0) where α is the concentration parame-

ter and G0 is a baseline distribution. Then each of the joint parameters θi are drawn

from G, and finally an observation yi is sampled from a family of mixture distributions

F (θi) corresponding to θi. Overall we define a hierarchical model of

yi ∼ F (θi)

θi|G ∼ G

G ∼ DP(αG0). (5.3)

For example a Dirichlet process mixture model for the Structure could be defined by

y
(c)
il ∼ Discrete(P̄l·zi

)

P̄l·zi
∼ G

G ∼ DP(αG0)

G0(P̄l·ap) ∼ Dirichlet(βl1, ..., βlς̃l). (5.4)

To make the link between the DP and mixture models, like in chapter 3, we consider

taking the limit as the number of possible population groups goes to infinity for a

finite mixture model. Following the example from Huelsenbeck and Suchard (2007);
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Lawson et al. (2012); Neal (2000) we consider a finite mixture model

yi ∼ f(·|zi, θzi
)

zi|ω ∼ Discrete(ω)

θap ∼ G0

ω ∼ Dirichlet(α1 = α/k, ..., αk = α/k). (5.5)

Naturally the within within cluster θap correspond to cluster ap. We set the mixing

proportions ω to be distributed by a symmetric Dirichlet prior with concentration pa-

rameter α/k, such that the parameters approach zero as k goes to infinity. Depending

on the application, additional hierarchical assumptions may be applied which puts fur-

ther hyper-priors on the concentration parameters of the mixing proportions prior, for

example in finite mixture of Gaussian models the mixing proportions could be based

on the ordered labeled weights {ω1, ..., ωk} where each ωj distributed by a beta distri-

bution multiplied by the product of
j−1∏
i=1

(1− ωi) (Papastamoulis and Iliopoulos, 2013).

What we briefly note is that we can integrate out the allocation variables in (5.5),

and thus we would be inferring a posterior of π(ω, θ|y), just like our tSMC adaption

of univariate mixture models in chapter 3 (in which we have shown how these can be

integrated out in the said chapter). This is termed as being a “without-completion”

sampler, where we sum over all the population components for each observation.

However in this chapter we instead integrate over the mixing proportions ω ∈ Θ,

in addition to integrating out the within component parameters θ. This is known as

“collapsing the model”. In this section we consider how we define a Dirichlet process

by integrating out the mixing proportions and letting the number of population tend

to infinity, and otherwise with regards on how to integrate out the population allele

frequencies (the only component parameters in the basic Structure model) then refer

to section 5.3.1.

Firstly the joint prior for the mixing proportions and the allocation variables is
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given by

p(z|ω)p(ω) =
(

k∏
i=1

ω
nap

i

)
Γ(

k∑
i=1

α/k)

k∏
i=1

Γ(α/k)

k∏
i=1

ω
α/k−1
i



=
Γ(

k∑
i=1

α/k)

k∏
i=1

Γ(α/k)

k∏
i=1

ω
α/k+nap−1
i . (5.6)

However as we can equate the integral of a Dirichlet distribution to

Γ(
k∑
i=1

(α/k + nap))

k∏
i=1

Γ(α/k + nap)

∫
Θ

k∏
i=1

ω
α/k+nap−1
i dω = 1

∫
Θ

k∏
i=1

ω
α/k+nap−1
i dω =

k∏
i=1

Γ(α/k + nap)

Γ
(

k∑
i=1

(
α/k + nap

)) . (5.7)

Then we can integrate out the mixing proportions by substitution of (5.7) into (5.6)

giving

p(z) =
∫

Θ
p(z|ω)p(ω)dω

=
Γ(

k∑
i=1

α/k)

k∏
i=1

Γ(α/k)

∫
Θ

k∏
i=1

ω
α/k+nap−1
i dω

=
Γ(

k∑
i=1

α/k)

k∏
i=1

Γ(α/k)

k∏
i=1

Γ(α/k + nap)

Γ
(

k∑
i=1

(
α/k + nap

)) . (5.8)

What we now consider is that each observation is being introduced one at a time,
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and that the allocation for observation yi is affected by the previous allocations of all

other y1:(i−1) but its allocation is not affected by y(i+1):n. Overall we consider each

conditional distribution of p(zi|z1, ..., zi−1). The conditional distribution that the ith

ordered observation is assigned to population ap, under a finite mixture model, is

defined by

p(zi|z1, ..., zi−1) = p(z1, ..., zi)
p(z1, ..., zi−1)

=


Γ(

k∑
i=1

α/k)

k∏
i=1

Γ(α/k)


Γ(α/k + (nap + 1))Γ(α/k + na1)...Γ(α/k + nak

)

Γ
(
na1 + (nap + 1) + ...nak

+
k∑
i=1
α/k

)

×




Γ(

k∑
i=1

α/k)

k∏
i=1

Γ(α/k)


Γ(α/k + nap)Γ(α/k + na1)...Γ(α/k + nak

)

Γ
(
na1 + ...nap + ...nak

+
k∑
i=1
α/k

)

−1

= (α/k + nap)Γ(α/k + nap)Γ(α/k + na1)...Γ(α/k + nak
)

(i− 1 +
k∑
i=1
α/k)Γ

(
i+

k∑
i=1
α/k

)

×


Γ(α/k + nap)Γ(α/k + na1)...Γ(α/k + nak

)

Γ
(
i+

k∑
i=1
α/k

)

−1

= (α/k + nap)
i− 1 + α

. (5.9)

where this is derived by adding one more observation to nap in p(z1, ..., zi). When

we let the number of populations go to infinity we obtain a Dirichlet process, where

the conditional probability of assigning an observation to a specific group under the

collapsed model converges to

p(zi|zi−1, ..., z1) =


nap

(i− 1 + α) if placed in an existing group ap

α
(i− 1 + α) if placed in a new group

, (5.10)
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based from (5.9) and in the case of (5.10) it is the current number of observations

from (y1, ..., yi−1) that are allocated to population ap. Therefore the limit of (5.5) as

k →∞ is equivalent to the Dirichlet process mixture model (Escober and West, 1995;

Gershman and Blei, 2012; Neal, 2000).

What we also note is that the joint prior is an exchangeable prior, meaning that

the ordering of assigning the observations does not affect the density of the prior as,

given in (5.11),

p(z) = f(zn|zn−1, ..., z1)....f(z2|z1)f(z1)

= (α)k

k∏
p=1

Γ(nap)

n∏
i=1

(α + i− 1)
. (5.11)

Although we assume that there exists infinite components a priori, in posterior infer-

ence the parameters of a cluster only need to be updated if there is an observation

associated with it (Gershman and Blei, 2012; Neal, 2000).

Apart from the Dirichlet process prior we give a brief mention of another type

of prior that provides informative or uninformative assumptions regarding how the

allocation parameters are concentrated in population groups. The variations of these

type of priors, in which we follow Green (2001) in terming them finite mixture pri-

ors. This prior distribution firstly considers the maximum number of populations, K,

drawn from some distribution often chosen to be uniform (although in some applica-

tions, such as Structure, it is chosen to be fixed based from background knowledge).

Furthermore for any defined but empty populations, the priors for the parameters of

said empty population are still included as part of the posterior distribution in com-

parison to Dirichlet process priors where empty populations are deleted (along with

their parameters). The model shown in 5.5 had priors which are essentially finite

mixture priors. Such priors are commonly used in several applications, and naturally

this also includes the Structure model (see De Iorio et al. (2015); Jasra et al. (2008);
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Pritchard et al. (2000)).

Both types of priors will favor certain posterior results. For example Green

(2001) considered a Dirichlet multinomial allocation (DMA) prior, which sets the prior

on the label allocations to be a multinomial distribution with Dirichlet distributed

hyperpriors for the concentration parameters. They stated how a DMA prior favors

more equal allocations by design, in comparison to using the DP prior.

We choose to focus on Dirichlet process prior as we intend for this part of our

investigation to provide a groundwork on how these common applications can use

tSMC to incrementally increase the number of population groups. Furthermore the

type of model transformations and MH proposals that we propose make use of DP

assumptions.

5.2 Previous Approaches to Inference of Structure
and SMC with Dirichlet Processes

We focus on previous attempts to infer the posterior distribution from the Struc-

ture model, as well SMC based approaches to non-parametric models. As stated

previously Structure can use a non-parameteric Dirichlet process prior on clusterings,

in which the number of clusters may be considered as a model selection problem.

Naturally MCMC does allow for the inference of models with Dirichlet process

priors. The simplest adaptions are when the joint prior distribution of the non-

allocation variables is conjugate to the likelihood function, as these allow for simple

Gibbs moves to be applied to propose new values for each allocation variable. This is

a method that we compare with our tSMC adaption, and more details on how these

Gibbs probabilities are defined is shown in section 5.3.4.

However single Gibbs updates that move allocation variables one at a time are

notorious for getting stuck at local modes as they struggle to cross valleys of low

probability density and into a different high probability mode. For example suppose
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that the allocation variables are such that all observations are part of one population,

but a more likely explanation is that there should exist two populations. However

any one observation creating a new population is even more unlikely, and thus Gibbs

moves alone are not likely to be effective in exploring the parameter space of the

allocation variables (Dahl, 2003; Gershman and Blei, 2012; Neal, 2000).

Therefore there exist proposals that attempt to perform these large jumps by

splitting or merging populations into multiple sets. A popular set of such algorithms

involve anchoring two allocation variables to either create two new groups, reassign

allocation variables between two groups or merge two population groups together

(Bouchard-côté and Roth, 2017; Dahl, 2003; Jain and Neal, 2004). We give an in-depth

explanation of a split-merge sampler known as the “Sequentially-Allocated Merge-

Split” (SAMS) sampler (Dahl, 2003) in section 5.3 and how we use it in out tSMC

adaption. Variational methods can also be used (see for example Blei and Jordan

(2006)) where we have described the disadvantages of such an approach in chapter 3.

Bouchard-côté and Roth (2017) define their Particle Gibbs Split-Merge sampler,

a Particle MCMC algorithm, in which each state considers a series of particles that

performs a variation of the split-merge sampler similarly to Dahl (2003). The SMC

component of their adaption considers randomly selecting two population labels, in

which two labels can take the same value, and then sampling a permutation ordering

to rearrange the allocation variables within the labeled population(s). They define a

set of ordered intermediate distributions, where there is a difference of an allocation

variable between them. Reweighting and resampling steps between the intermedi-

ate distributions are made to assess the groupings of the subsetted individuals until

they have all been reassigned. Thus the final particle picked out would, assuming

the anchors were in two different populations, either have the allocation variables

rearranged within the two populations or produce a population containing all obser-

vations (a merge move). If the two anchors were from the same population either a

split move would happen or the particle would be equal to the previous state of the
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Markov chain.

An alternative SMC approach for non-parametric models is introduced by Ulker

et al. (2010). Their algorithm has the advantage of not only inferring the allocation

variables within a current set of observations, but also each SMC state allows for the

number of observations to increase at each state. Assuming conjugate conditions,

they perform a standard SMC sampler algorithm under increasing sample size, and

they use sup-optimal MCMC kernels, like we consider in our tSMC algorithm, that

are blocked Gibbs sampling updates that take into account the increasing number of

the allocation variables.

Jasra et al. (2008) used a trans-dimensional SMC algorithm, which we explained

in chapter 2, for inference with the Structure model while assuming a discrete uniform

distribution of having an observation assigned to a cluster/population (a finite mixture

prior), and inferring both the allele population frequencies and the allocation variables.

They proposed two across model proposals that involves generating allele frequencies

for the missing population and the complete allocation variable set from some prior

distribution, and a second move being a more in-depth birth move which proposes a

new state for all population frequency alleles and the allocation variables based on

an approximation of the joint posterior in each dimension using an adaption of the

Expectation-Maximisation algorithm by Figueiredo et al. (2002). They found that

the first type of proposal did not give satisfactory convergence, while the second move

gave better results.

In section 5.6 we describe other adaptions of the Structure algorithm or non-

parametric models, and how we consider applying such work in the future.

5.2.1 The tSMC Approach

To understand how tSMC can be useful consider that the number of unique

allocations of the individuals to a fixed number of groups/populations k, with the

condition that all populations are non-empty, is naturally given by the Stirling number
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in (5.12). If we were to consider all possible permutations for the allocations, that are

again non-empty, then this is given by the Bell numbers where

Skn = 1
k!

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n (5.12)

Bn =
n∑
i=1

Sin, (5.13)

and it is far higher if we go by the additional assumption that populations can be

empty. Thus, the number of possible permutations for the allocation variables in-

creases factorially with k. This makes it ideal to start off with a lower population

size, ensuring convergence for a smaller population and then gradually insert pop-

ulations over time. We continue with the concept that to transition to a model of

differing population size applying a move in RJMCMC might be very rarely accepted

or Gibbs updates might struggle to reach areas of high posterior probability, as also

stated in Ulker et al. (2010) and Bouchard-côté and Roth (2017), and it may be easier

to reach and infer high population size models through tSMC via proposals that con-

nect to each successive parameter space. The tSMC algorithm can be designed such

that proposals that split clusters may be used which covers the issue when relying

on single Gibbs updates in a MCMC setting alone. By giving posterior estimates

under non-parametric modeling we demonstrate how tSMC may be used for other

models under similar settings, at least with applications that allow for conjugate dis-

tributions (as explained in section 5.3). For non-conjugate cases, which also consider

inferring other the other non-allocation parameters simultaneously, see section 5.6 for

our discussion on this issue.
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5.3 Posterior Distribution, MCMC Kernels and
Model Jump Proposals

We now explain in depth the collapsed model adaption of the Structure model,

where the posterior to be inferred is

π(zmk
|y) ∝ f(y|zmk

)p(zmk
). (5.14)

We consider a set of nested models of mk ∈ (m1, ...,mK), for some maximum number

of populations K, in which the difference between each adjacent model is the number

of possible population states that the set of allocation variables zmk
can take. In

this application we do not define a model m0 to represent some prior assumptions

on model m1, although we may consider it if we were considering a model that does

not integrate out any within cluster parameters (in which m0 would then represent a

proposal for said cluster parameters), and we consider that model m1 has each zi = a1

for i ∈ {1, ..., n}. However, we strongly emphasise that because we are starting with

a model that clearly has a marginal likelihood that is not equal to one, then instead

of calculating the ML for each model we instead formulate the Bayes Factor in favour

of each model mk against model m1.

In this section we explain the form of the likelihood, the “transformation” to

increase the number of populations at each tSMC transition and how we plan on

exploring the discrete parameter space of the allocation variables based on this trans-

formation.

5.3.1 Priors and Likelihood

The joint exchangeable prior of the allocation variables, p(z), is stated in (5.11)

where we set α = 1 thus giving a symmetric uniform DP prior. Regarding the Struc-

ture model, the probability of a particular set of alleles being present in a chromosome

of an observation and the prior for the population allele frequencies at each site/loci
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is shown in (5.1) and (5.2) respectively. For each P̄l·ap we are assuming an uninfor-

mative prior which has hyperparameters (βl1 = ... = βlς̃l = 1). The likelihood for one

observation for one diploid sequence, assuming a non collapsed model, is

f(yi·|P̄ , zi) =
L∏
l=1

ς̃l∏
j=1

f(yil|zi, P̄l·zi
)

=
L∏
l=1

ς̃l∏
j=1

(
P̄ljzi

)ς̄(i)
ljzi . (5.15)

We give a reminder that ς̄(i)
ljzi

represents the counts of the jth allele of the lth loci that

is contained within the diploid sequence yi only, with ς̄
(i)
l·zi
∈ {0, 1, 2}. We note that

the complete likelihood of the observations does not need to take into account the

orderings regarding when they were assigned to population groups (Bouchard-côté

and Roth, 2017; Gershman and Blei, 2012; Lawson et al., 2012). Suppose we let Iap

represent the indexes of the sequences assigned to population ap, the observations

corresponding to the allocation variables as zIap
and the set of lth loci of all observa-

tions assigned to ap defined by yIap l. Then the site/loci likelihood of a cluster, for a

non-collapsed model, is simply given by

f(yIap l|P̄l·ap , zIap
= ap) =

ς̃l∏
j=1

(
P̄ljap

)ς̃ljap
. (5.16)

Overall the likelihood for the collapsed model is termed by

f(y|z) =
L∏
l=1

 k∏
p=1

f(yIap l|ap)


=
L∏
l=1

 k∏
p=1

∫
F
f(yIap l|ap, P̄l·ap)p(P̄l·ap)dP̄apςl


=

L∏
l=1

 k∏
p=1

f(yIap l|ap, P̄l·ap)p(P̄l·ap)
π(P̄l·ap |yIap l, ap)

 , (5.17)
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where y.l represents the sequences at the site l. The numerator terms follow from

(5.15) and (5.2). Considering that

f(yIap l|ap, P̄l·ap)p(P̄l·ap) ∝
ς̃l∏
j=1

(
P̄ljap

)βlj−1+ς̃ljap
. (5.18)

Then π(P̄l·ap|yIap l, ap) can be obtained by considering the conjugate relationship be-

tween the likelihood and the prior of Dirichlet(βlj + ς̃ljap), defined by

π(P̄l·ap|yIap l, ap) =
Γ(

ς̃l∑
j=1

(βlj + ς̃ljap))

ς̃l∏
j=1

Γ(βlj + ς̃ljap)

ς̃l∏
j=1

(
P̄ljap

)βlj−1+ς̃ljap
. (5.19)

Therefore by substitution into (5.17) we receive the complete likelihood below

f(y|z) =
L∏
l=1

 k∏
p=1

f(yIap l|ap, P̄l·ap)p(P̄l·ap)
π(P̄l·ap|yIap l, ap)



=
L∏
l=1



k∏
p=1


Γ(

ς̃l∑
j=1

βlj)

ς̃l∏
j=1

Γ(βlj)


ς̃l∏
j=1

(
P̄ljςl

)ς̃ljap+βlj−1


Γ(

ς̃l∑
j=1

(βlj + ς̃ljap))

ς̃l∏
j=1

Γ(βlj + ς̃ljap)


ς̃l∏
j=1

(
P̄ljap

)βlj−1+ς̃ljap



=
L∏
l=1


k∏
p=1

Γ(
ς̃l∑
j=1

βlj)
 ς̃l∏

j=1
Γ(βlj + ς̃ljap)


Γ(

ς̃l∑
j=1

(βlj + ς̃ljap))
 ς̃l∏

j=1
Γ(βlj)





=
L∏
l=1


k∏
p=1

Γ(
ς̃l∑
j=1
βlj)

Γ(
ς̃l∑
j=1

(ς̃ljap + βlj))

ς̃l∏
j=1

Γ(βlj + ς̃ljap)
Γ(βlj)

 . (5.20)
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5.3.2 Inferring the Posterior of Allocation Variables

To infer each π(zmk
|y) we first consider all allocation variables belonging to the

same population, i.e. k = 1. Unlike in the previous chapters where each model

transition involves the addition of new parameters, each incremental increase of k only

increases the existing parameter space of the allocation variables by one additional

state. We define zmki as the allocation variable for the ith observation given that it

can be assigned to k possible clusters. We are interested in using a proposal based on

the SAMS proposal (Dahl, 2003) to split a population. However, we cannot use each

variable zmki as a proposal for each corresponding variable zmk+1i, since this proposal

would have no chance of proposing the new (k+ 1)th state of the variable zmk+1i with

k + 1 possible states. Thus we instead consider a sequence of distributions between

the two parameter spaces in the form of

ρ0(k+1) = f(y|zmk
)p(zmk

)q(zmk+1|zmk
) (5.21)

ρT (k+1) = f(y|zmk+1)p(zmk+1)q(zmk
|zmk+1), (5.22)

and how the above is defined will depend on the type of across model proposal that in-

creases the number of states. In the next subsection we now explain how we designing

each q to transition between the two stated joint distributions.

5.3.3 The Across Model Move based on the SAMS Proposal

We present one proposal to increase the number of states in the population and

reallocate a subset of the allocation variables. Before we explain the sole transforma-

tion proposal, we briefly mention that we planned a move which considered generating

zmk+1 from the DP prior, and simultaneously sampling zmk
using a similar prior as part

of a inverse move, and then generating the population allele frequencies conditional

on zmk+1 . However strictly relying on priors for transformations was very unlikely to
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be successful.

We consider an adaption of the “Sequentially-Allocated Merge-Split Sampler” in

Dahl (2003) which considers multiple ratios of Gibbs sampler probabilities to divide

a single population into two groups through an MH ratio. First we randomly select a

population through some distribution of

ψJ,(mk)→(mk+1)(·), (5.23)

on the condition that said population has more than two labels associated with it.

Afterwards we randomly choose two observations from this population to act as our

“reference indexes” or anchors. Let Amk+11 and Amk+12, be the indices of these two

anchor points where Amk+11 6= Amk+12 and can only take values of observation that

are only contained within the selected population āmk+1 sampled via

ψA,(mk)→(mk+1)(· | āmk+1), (5.24)

with ã1 and ã2 being the index indices of the two new populations. The pair of

anchors could be selected via a discrete uniform proposal with each pair of anchors

having equal probability of 2/nāmk+1
(nāmk+1

− 1). An alternative is to consider all the

distances between each allocation variable and then use a discrete distribution based

on the normalised distances. In this case, pairs of of individuals which have a greater

genetic variation are more likely to act as our two anchors. Then for all remaining

allocation variables we sample a random permutation Omk+1 on the ordering of how

they are assigned to the two new groups, where for now it is given by a discrete

uniform distribution,

ψO,(mk)→(mk+1)(· | Amk+11, Amk+12, āmk+1). (5.25)

We define the auxiliary variables as uk = {āmk+1 , Amk+11, Amk+12, Omk+1}. The popu-

lation to be selected, the anchors and the allocation ordering variables do not change
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throughout the set of intermediate distributions involved in the transition from zmk

to zmk+1 .

We define y
I

(−i)
ã1

to be set of observations that are currently assigned to the first

split cluster that does not include the ith ordered (given the permutation from Omk+1)

observation, which should at least contain the anchor observation, and y
I

(−i)
ã2

is the

set of observations currently assigned to the second split cluster which again does

not contain the ith ordered observation. From this the proportional probability to

assign the ith ordered individual from population āmk+1 to belong to one of the two

new population clusters, in this case population ã1, that are seeded by the anchor

variables is stated below,

Pr(zmk+1i = ã1|zmk+1(−i), yi, y(−i)) =
π(zmk+1i = ã1|zmk+1(−i), yi, yI(−i)

ã1
)

2∑
j=1
π(zmk+1i = ãj|zmk+1(−i), yi, yI(−i)

ãj

)
(5.26)

π(zmk+1i = ã1|zmk+1(−i), yi, y(−i)) ∝
(
nã1 ×

∫
F
f(yi|zmk+1i = ã1, P̄l·ã1ςl)

×π(P̄l·ã1|yI(−i)
ã1

)dP̄l·ã1

)
(5.27)

π(zmk+1i = ã2|zmk+1(−i), yi, y(−i)) ∝
(
nã2 ×

∫
F
f(yi|zmk+1i = ã2, P̄l·ã2)

×π(P̄l·ã2|yI(−i)
ã2

)dP̄l·ã2

)
, (5.28)

and furthermore the normalisation constants in (5.26) also cancel out. We note that

in (5.27) for example is simply the conditional likelihood

∫
F
f(yi|zmk+1i = ã1, P̄l·ã1)π(P̄l·ã1|yI(−i)

ã1
)dP̄l·ã1 , (5.29)

multiplied by its corresponding conditional prior probability, with cancellations lead-

ing to just the term nã1 , and we do not need to account for the normalisation constant
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of the data. The conditional likelihood of the observation is defined by

L∏
l=1


Γ(ς̃(−i)

l·ã1 +
ς̃l∑
j=1

βlj)

Γ(ς̃(i)
l·ã1 + ς̃

(−i)
l·ã1 +

ς̃l∑
j=1
βlj)

ς̃l∏
j=1

Γ(ς̃(i)
lja
′
1

+ βlj + ς̃
(−i)
lja
′
1

)

Γ(βlj + ς̃
(−i)
lja
′
1

)


 . (5.30)

and how we calculate (5.29), or (5.30), is identical to how we defined the likelihood in

section 5.3.1 or alternatively how we integrated out the mixture proportions in section

5.1.2.

For each ith observation we calculate the two unnormalised probabilities to ac-

cess if zmk+1i = ã1 or zmk+1i = ã2, normalise the probabilities and then draw from

them. We furthermore update either ς̃lja′1 or ς̃lja′2 depending on which population the

new observation is assigned to. Conditional on the auxiliary variables, the proposal

is represented by ψz,(mk)→(mk+1)
(
zmk+1 | zmk

, y, uk
)
, where this is the product of the

SAMS probabilities representing successful allocations. For example if two observa-

tions, indexed by i1 and i2, were to be assigned to the two split groups, but they were

assigned to different groups then the density of the proposal is given by

ψz,(mk)→(mk+1)
(
zmk+1 | zmk

, y, uk
)

= Pr(zmk+1i1 = ã1|zmk+1(−i1), yi1 , y(−i1))

×Pr(zmk+1i2 = ã2|zmk+1(−i2),

yi2 , y(−i2)). (5.31)

This procedure we have introduced defines q(zmk+1|zmk
). The distribution q(zmk

|zmk+1)

is defined by considering that the auxiliary distributions

ψJ,(mk+1)→(mk)(āmk+1) (5.32)

ψA,(mk+1)→(mk)(Amk+11, Amk+12 | āmk+1) (5.33)

ψO,(mk+1)→(mk)(Omk+1 | Amk+11, Amk+12, āmk+1), (5.34)
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must be defined on the auxiliary variables used, and we set it to be the same as

their corresponding distributions in the proposal. Then to complete the definition

ψz,(mk+1)→(mk)
(
zmk
| zmk+1 , y, uk

)
is equal to 1 since there is only one way of merging

the proposed clusters.

5.3.3.1 Joint Space Representation given by the SAMS Proposal

We now consider the form of the joint space representation of each intermediate

distribution distribution given the unique problem stated in section 5.3.2. This means

that our true target distribution is constructed on the extended zm(1:K) space and what

the kth iteration looks like. In fact we consider that we are just given zmk
but require

all other states we would need to construct a transformation proposal on all zm(1:K) .

Therefore an unnormalised posterior distribution π̃(·) of zmk
would take the form of

π̃(zm(1:K) |mk) = p (zmk
) f (y | zmk

)

×
K∏
k′=k

(
ψz,(mk′ )→(mk′+1)

(
zmk′+1 | zmk′

, y, uk
)

×ψJ,(mk′ )→(mk′+1)(āmk′+1)ψA,(mk′ )→(mk′+1)(Amk′+11, Amk′+12 | āmk′+1)

×ψO,(mk′ )→(mk′+1)(Omk′+1 | Amk′+11, Amk′+12, āmk′+1)
)

×
k−1∏
k′=1

(
ψz,(mk′+1)→(mk′ )

(
zmk′

| zmk′+1 , y, uk
)

×ψJ,(mk′+1)→(mk′ )(āmk′+1)ψA,(mk′+1)→(mk′ )(Amk′+11, Amk′+12 | āmk′+1)

×ψO,(mk′+1)→(mk′ )(Omk′+1 | Amk′+11, Amk′+12, āmk′+1)
)
. (5.35)

However we note that the proportional normalised weight update between two models,

each differing by allowing for an addition state to exist, simplifies to

wmk+1 ∝ wmk

π̃(zm(1:K)|mk+1)
π̃(zm(1:K) |mk)
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wmk

π̃(zm(1:K) |mk+1)
π̃(zm(1:K)|mk)

=
p
(
zmk+1

)
f
(
y | zmk+1

)
p (zmk

) f (y | zmk
)

×
ψz,(mk+1)→(mk)

(
z.k | zmk+1 , y, uk

)
ψJ,(mk+1)→(mk)(āmk+1)

ψz,(mk)→(mk+1)
(
zmk+1 | z.k, y, uk

)
ψJ,(mk)→(mk+1)(āmk+1)

×
ψA,(mk+1)→(mk)(Amk+11, Amk+12 | āmk+1)
ψA,(mk)→(mk+1)(Amk+11, Amk+12 | āmk+1)

×
ψO,(mk+1)→(mk)(Omk+1 | Amk+11, Amk+12, āmk+1)
ψO,(mk)→(mk+1)(Omk+1 | Amk+11, Amk+12, āmk+1) . (5.36)

Due to the cancellation of the auxiliary distributions (since we specify the distributions

to be equal in the numerator and denominator) and how the density ψz,(mk+1)→(mk) is

equal to one then we can simplify the form of the intermediate distribution between

model transitions and express it as

ρt(zmk+1 ;mk → mk+1) = (ρ0(k+1))1−ϕt(ρT (k+1))ϕt (5.37)

ρ0(k+1)(zmk+1 ;mk → mk+1) = p (z.k) f (y | zmk
)

×ψz,(mk)→(mk+1)
(
zmk+1 | zmk

, y, uk
)

(5.38)

ρT (k+1)(zmk+1 ;mk → mk+1) ∝ p
(
zmk+1

)
f
(
y | zmk+1

)
. (5.39)

It is clear that the main flaw with this adaption is the large number of auxiliary

variables in order to jump between models. The labeling, anchors and ordering cause

the exploration of the parameter space to be limited as allocation variables either

have to always not be a part of the split populations or between the two split groups

as we explain in the next subsection.

5.3.4 General Within Model MCMC Moves

Given that the form of the intermediate distributions as defined in the previous

section, we consider MCMC kernels that have separate updates for the allocation

variables in the split populations of {ã1, ã2} and the other non split populations.

If we were to move the ith allocation variable that is currently in one of the split
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populations to the other split population based on a Gibbs sampler move (see for

example Escober and West (1995)), then the probability of the observation being in

population group ã1 is proportional to

Pr(zmk+1i = ã1|z(−i), y) =
ρt(zmk+1(−i), zmk+1i = a1′ ;mk → mk+1)∑

aj′∈{ã1,ã2}
ρt(zmk+1(−i), zmk+1i = aj′ ;mk → mk+1)

, (5.40)

where

ρt(zmk+1(−i), zmk+1i = aj′ ;mk → mk+1) = (f(y|zmk
)p(zmk

))1−ϕt

×(ψz,(mk)→(mk+1)(zmk+1(−i),

zmk+1(−i) = aj′ | zmk
, y, uk)1−ϕt

×
(
f(y|zmk+1(−i), zmk+1i = aj′)

× p(zmk+1(−i), zmk+1i = aj′
)ϕt

, (5.41)

where we can further simplify ψz,(mk)→(mk+1)
(
zmk+1 | zmk

, y, uk
)

by removing the joint

probabilities that precede from the location of the ith observation in the SAMS or-

dering Omk+1 . However the subset of these probabilities that come after zmki in said

ordering will change depending on the proposed values of zmki, and we emphasise

that they must be recalculated according to (5.26). Furthermore we could trim the

likelihoods and priors to only incorporate the observations within the split groups

only. We cannot apply this Gibbs kernel to the anchors as they are needed to define

the split groups, and we cannot move any observations to any other clusters except

for the two spit groups.

If the ith observation is within one of the non-split groups then the proportional

probability of it being moved to a different cluster aj, which is not one of the split
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groups, is defined by

Pr(zmk+1i = aj|zmk+1(−i), y) =
ρt(zmk+1(−i), zmk+1i = aj;mk → mk+1)∑

aj′ /∈{ã1,ã2}
ρt(zmk+1(−i), zmk+1i = aj′ ;mk → mk+1)

(5.42)

ρt(zmk+1(−i), zmk+1i = aj′ ;mk → mk+1) = (f(y|zmk(−i), zmki = aj′)

×p(zmk+1(−i), zmk+1i = aj′))1−ϕt

×(f(y|zmk+1(−i), zmk+1i = aj′)

×p(zmk+1))ϕt , (5.43)

where ψz,(mk)→(mk+1) (·) cancels out. Note that cannot move this observation to ã1 or

ã2 if it is not already contained in of those groups and furthermore we cannot move

the observation if it causes one population to be empty.

An alternative move is to perform a reverse transformation and then initiate com-

pletely new SAMS move, as explained in the previous subsection, on the parameters

as our MH move (in summary, an independent sampler for all allocations). What this

type of move allows for is if a bad choice for the populations to split is made, or a

bad choice of anchors, then this move allows us to essentially propose a completely

new transformation. It is debatable that such as move is necessary, for example if it

would be more appropriate to consider more particles to ensure that all populations

have some probability of being split. Therefore we later test this and compare this

move to at least the Gibbs sampler only counterpart.

We could apply kernel moves to the auxiliary variables such as which population

to split or which anchors should be used to represent the two new populations, however

as we are more interested in satisfactory diversity over z and z′ so we ignore such

moves. While Ulker et al. (2010) applied blocked Gibbs updates on the allocation

variables, we have not presented considered such a move and how to perform them

for the split and non-split groups.
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5.4 Data and Diagnostics

We examine the tSMC adaption on allele data for Taita Thrush (Turdus Helleri),

introduced in Galbusera et al. (2000), and consists of 155 diploid individuals and 7

microsatellite loci. This bird species was sampled at four locations, but this may not

be representative of the population structure, and missing alleles are present in some

of the loci.

We evaluate the results for this dataset up to eight unique population groups.

For both datasets we examine the effect on,

• Performing No MCMC moves, which we use to determine if the SAMS auxiliary

proposal generates enough diversity to ensure good performance.

• Using the single Gibbs sampling proposal on each of the allocation variables,

with the tSMC specific conditional distributions stated in section 5.3.4.

• Using the above stated Gibbs move, and an additional MH move where we

inverse the original SAMS clustering and retry the original SAMS move.

We continue to use the same adaptive annealing scheme as the previous two chapters

and base the intermediate geometric distributions on 0.95CESS. A particle size N

of 250 is used for summarising properties of the posterior distribution, using the

diagnostics below. All prior settings were stated in section 5.3.

We identify the weighted mean permutation of the posterior results, based on

Gusfield (2002), which considers the partition distance of D′({zmk
}i, {zmk

}j) for each

particle set of model mk. The partition distance can be be described as the minimum

number of individuals that must be deleted, or the number of allocation variables that

must move around, to make the allocation variable {zmk
}i from the ith particle be

identical to {zmk
}j. The weighted mean partition zmk

for model mk is the partition

that minimises the squared distance of
P∑
i=1
wmki

(
D
′({zmk

}i, zmk
)
)2

, where wmk
are the

normalised particle weights corresponding to model mk. To find the mean partition
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we first pick a random particle to act as our current zmk
. Given an ordering of

the allocation variables we move each of the ordered variables, one at a time, and

check if there has been a decrease in the squared distance when placed in any of the

populations. Note that the allocation variables are moved while still retaining the

same number of non-empty populations. Should there be a decrease in the squared

distance then we move this allocation variable to the new population which becomes

our new zmk
, revert back to the original ordering and repeat the same process. The

final estimate of zmk
is defined if there is no decrease in the squared distance after

the collection of possible single permutations for each allocation variable have been

checked (Huelsenbeck and Suchard, 2007). An alternative plot we also consider are

plaid plots which is a n×n matrix object displaying the weighted probabilities of the

ith individual and jth individual being in the same population group.

We also analyse the number of intermediate distributions that occurred when

adaptively choosing the number of intermediate distributions to converge to each

posterior and the best possible number of populations as given by the BF. Given

the results from the previous chapters we expect the true values of the BF to be

underestimated given how the inclusion of auxiliary variables lead to underestimation

of the marginal likelihood, and thus Bayes factors, as it prevented other parts of the

posterior to be sufficiently explored.

We also compare tSMC results with a standard Gibbs sampler algorithm, which

again infers a posterior distribution of a collapsed Structure model that only infers

the allocation variables. Defining zji to be the ith allocation variable at the jth state

in the Markov chain, then the Gibbs probability that we move zi to population ap is

given by

Pr(zji = ap|zj(−i), y, P̄ ) ∝ nap

∫
F
f(yi|zji = ap, P̄l·ap)π(P̄l·ap |yI−i

ap
)dP̄l·ap , (5.44)

with the exact form of the integral shown in (5.30). However we also state that the
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probability that it will move to a new group, say ak+1, is defined by

Pr(zji = ak+1|zj(−i), y, P̄ ) ∝ α
∫
F
f(yi|zji = ak+1, P̄l·ak+1)p(Pl·ak+1)dP̄l·ak+1 ,(5.45)

in which the integral is defined by (5.30) with ς̃(−i)
ljak+1

and ς̃(−i)
l·ak+1

equal to zero (Huelsen-

beck and Suchard, 2007). Naturally the complete Gibbs probabilities are defined by

dividing (5.44) and (5.45) by the sum of (5.45) and each (5.44) for all p ∈ {1, ..., k}.

Finally we compare our tSMC adaption to a Gibbs sampler combined with the SAMS

Metropolis-Hastings Proposal as given by (Dahl, 2003). One difference between the

original algorithm and how we implemented a portion of it to act as a transforma-

tion proposal for the tSMC algorithm is that they choose two allocation variables at

random instead of picking a population to split. Should the two chosen allocation

variables belong to different populations groups then the two populations are merged

and if they are in the same population then a split is proposed with the two variables

as the anchors. Otherwise the way the probabilities to allocate each individual to one

of the two split populations is identical to (5.26). We would then accept the proposed

allocation variable set of z̃j with MH probability of

min
{

1, f(y|z̃(j))p(z̃(j))
f(y|z(j−1))p(z(j−1))

q(z(j−1) | z̃(j))
q(z̃(j) | z(j−1))

}
(5.46)

where each q(·|z) depends on whether a split or merge move occurred. For example if

the two anchors indicate a split move then q(z̃(j) | z(j−1)) will be a product of Gibbs

probabilities shown in (5.26).

5.5 Results

In figures 5.1 and 5.2, we display the weighted mean partitions for the thrush data.

Under the thrush data when transitioning to three populations, all three adaptions

gave identical results to Huelsenbeck and Suchard (2007) when they applied a Dirichlet

process prior to the very same thrush dataset. This was also backed up by results
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(a) Mean partition when a single Gibbs kernel is applied.

(b) Mean partition when no Gibbs kernels are applied.

(c) Mean partition when a single Gibbs kernel + SAMS kernel is applied.

Figure 5.1: Mean partitions of the thrush data under a population size of three.
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(a) Mean Partition when a single Gibbs kernel is applied.

(b) Mean partition when no Gibbs kernel is applied.

(c) Mean partition when a single Gibbs kernel + SAMS kernel is applied.

Figure 5.2: Mean partitions of the thrush data under a population size of four.
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(a) Plaid plot when no MCMC kernels are applied.

(b) Plaid plot when a single Gibbs kernel was applied.

(c) Plaid plot when a single Gibbs kernel + SAMS kernel is applied.

Figure 5.3: Plaid plots for the thrush data under population size of three.
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from our Gibbs samplers algorithm and the SAMS + Gibbs sampler algorithm which

also gave the same mean partition for a run that uses 20,000 particles with a burn-in

of 5000 particles.

However when forcing the model to transition to a model that considered a pop-

ulation group size of four, it did not match the results in comparison to Huelsenbeck

and Suchard (2007) when a population size of four was fixed (although this under a

finite mixture prior, and not a DP prior). This arguably could of been due to how we

are using a Dirichlet process prior which favours smaller and compact groups. This

pattern continues for all increasing number of population states added to the model.

Under three populations we had a mean squared distance of 2.3296 under the no

MCMC kernel scheme, 6.5282 under the Gibbs only kernel scheme and 4.48405 for

the Gibbs + SAMS Kernel. As seen from the plaid plots in figure 5.3, the vast ma-

jority of particles displayed very little variation with a high concentration of certain

individuals pairings sharing the same cluster. For example the 102nd read observation

was close to a probability of one to be part of the same cluster as the first set of 80

observations.

Figures 5.4 and 5.5 show the log Bayes factors, up to 8 populations, and the

cumulative intermediate distributions that was used to reach each population size

respectively. The Thrush data gave the highest Bayes factor, for model mk against

model m1, at three populations in which Huelsenbeck and Suchard (2007) also stated

a similar pattern for their ML estimates when fixing the population sizes to a constant,

although the estimates were made for a finite mixture allocation prior so the ML values

should not be compared. Naturally we need to account for some Monte Carlo variance

in the estimation of the BF in figure 5.4. In regards to the number of intermediate

distributions needed for each transitions, there was no notable difference in the speed

of convergence whether using an additional SAMS kernel or not. Applying no MCMC

kernels in the tSMC algorithm showed to have far fewer intermediate steps, but this

might be expected as given an adaptive scheme and the mean squared distance there
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existed less variation in the particles in comparison to the other schemes.

Figure 5.4: Log Bayes factors, of model mk against model m1, for the thrush data
under three different MCMC kernel schemes within tSMC.

However we found that the tSMC adaption in this application does not perform

any better then either the Gibbs Sampler or the SAMS + Gibbs Sampler algorithms,

at least under the thrush dataset. We ran both algorithms for under 20,000 iterations,

which is more than the maximum number of MCMC moves that was applied in

the three tSMC runs (being the particles multiplied by the number of intermediate

distributions) to reach the mean partition with a total of three populations as seen

in figure 5.6. When plotting the unnormalised posterior densities over the iterations,

shown in figure 5.6, what can be seen is that both runs converge to the posterior mode

that gives the partition mean shown in figure 5.6 after 500 iterations have passed.

This is significantly faster than tSMC. This was repeated multiple times with similar

results. Both of the diagnostic algorithms have a smaller computational cost of O(n)

in comparison to tSMC. Furthermore since our algorithm required that the product

of Gibbs probabilities be recalculated in each intermediate distribution, see (5.37),
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when performing single Gibbs move on individual allocation variables, means that

our tSMC adaption is more computationally complex in comparison to having each

target distribution have no bridging between two models like in the Gibbs sampler

algorithm.

Figure 5.5: Intermediate distributions for the thrush data under three different
MCMC kernels within tSMC.

More complex population data, or known but complex simulated allele data, is

needed to understand how tSMC might have advantages or disadvantages over the

tested established methods. Nevertheless, as we will now discuss in section 5.6, we

have only tested the tSMC adaption on a model in which there exists a conjugate

relationship between the likelihood and all other model parameters leaving the allo-

cation variables to infer. Therefore we need to equally consider whether it is possible

to use tSMC to infer population clustering under more complex model assumptions,

as well as how to reduce the complexity of calculating each target distribution when

using the SAMS transformation proposal.
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Figure 5.6: Plot of the unnormalised posterior densities over the iterations for the
Gibbs sampler algorithm and the SAMS + Gibbs sampler algorithm.

5.6 Discussion

We have given a method to infer the allocation variables on conjugate based

mixture models under a Dirichlet process prior. We had good performance on the

thrush dataset. Nevertheless there are still some uncertainties to our adaption, as we

explain within this section.

What would have been desirable was to decondition the model with regards to the

label for the population to split, the allocation variable anchors to define the two split

group and the orderings to sort the remaining observations. This is not possible as the

parameter space for the discrete variables can be huge where for example if we were to

consider the discrete orderings Omk+1 for 10 observations then there are over 3 million

possible joint Gibbs based probabilities sets to calculate, and that is not including the

possible number of anchors pairings that the orderings condition on. Nevertheless this

should not affect the estimation of model posteriors since the posterior is the same
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for each auxiliary variable. If we were able to then apply appropriate deconditoning

then the loss of dependence would of allowed for more flexible MCMC moves where

we could propose each allocation variable to be assigned to any population group

regardless of whether they are a part of a split group or not.

In terms of different moves to create new population groups, the “Restricted

Gibbs Sampling Split Merge” algorithm for conjugate posteriors by Jain and Neal

(2004) is an alternative move that splits a population into two population groups.

They randomly choose two of the observations, and should they belong in the same

population group they perform a split move. Afterwards the remaining observations

are randomly assigned between the two new split populations. Then multiple Gibbs

scans are made on the same observations (except for the anchors) within the two popu-

lations. Finally the split population is accepted via a Metropolis-Hastings probability.

We have let to devise whether the inverse transformation is possible, and should it

be applied to tSMC, as we have let to come up with a solution that allows us to

identify the auxiliary variables (consisting of Gibbs probabilities) that would of led to

the proposed allocation variables. When no Gibbs Scans are used after reassignment

then it doesn’t give any notable advantages over Dahl (2003) as the initial allocations

to the two split groups have equal probability instead of a conditional probability and

it becomes similar to another split move by Nobile and Fearnside, 2007.

There was a proposed split transformation move in Nobile and Fearnside (2007)

that integrates out the auxiliary variables responsible for assigning each observation

to one of the split groups. Given some population to split they propose to move

each individual to a new population, with a shared probability generated from a beta

distribution that is defined so that it is highly likely that the new population will

not be empty, or otherwise stay within their original population group. Unlike the

split-merge move by Dahl, 2003, this probability does not use the similarities between

the new sequences and the existing sequences between groups. Therefore while this

move clearly does not have to be concerned about the anchors or orderings, we did
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not use this move as the allocations are based on basic random probabilities instead

of the properties of the data. It would only be appropriate for a small population

size, and we would still need to change their adaption to include anchors such that we

absolutely guarantee an increased number of populations in comparison to a marginal

chance of an empty population like they have done. Otherwise they do suggest a few

MH and Gibbs based moves which can allocate a set of individual from one population

to a different population, or exchanges the allocations between populations, without

changing the total number of states.

Otherwise the second across model move by Jasra et al. (2008), as stated in sec-

tion 5.2, did show a strong potential to work. In particular this proposal is quite

similar to that of a split move in chapter 3 in how it adjusts all population allele fre-

quencies based on some deterministic function. Nevertheless since the transformation

is based on the Expectation-Maximisation algorithm, there is no clear transformation

relationship between a target distribution and a transformed importance sampler that

is required for tSMC.

In future work we should consider how to use tSMC in the non-conjugate case,

where we cannot use the collapsed model (i.e where the within cluster parameters

remain in the model). While Jain and Neal (2007) proposed a variation of the split-

merge sampler, their method only works for conditional conjugate models, where

conjugate relationships exists for a parameter set providing that a separate subset of

parameters is fixed to allow for a conjugate relationship. Otherwise their algorithm

approximately shares the same algorithm to Jain and Neal (2004), and there is still

some uncertainty whether we can apply it due to the multiple Gibbs Scans as stated

earlier. Alternatively Dahl (2005) suggested that instead of integrating out the param-

eters to obtain (5.26), we instead consider replacing the conditional probabilities given

in (5.27) and (5.28) with nã1×f(yi|zmk+1i = ã1, P̄l·ã1) and nã2×f(yi|zmk+1i = ã2, P̄l·ã2)

respectively where initial values P̄l·ã1 and P̄l·ã2 are generated based on the prior and

a single anchor observation. When an observation gets assigned to one of the split
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groups then the selected populations corresponding parameters, P̄l·ã1 or P̄l·ã2 , are

updated.

We could very easily apply our tSMC adaption to univariate Gaussian mixture

models by integrating out all weights, means and precisions for each component by

setting conjugate priors, where there exist several choices, for the joint parameter

set (Görür and Rasmussen, 2010; Tadesse et al., 2005). Further research is required

regarding how we could fuse our two strategies for model exploration together, one

that splits the components and another that splits a clustering group.

In regards to how we infer the Structure algorithm, we may also want to consider

if admixture is present in the populations. In Pritchard et al. (2000) they assume

that for each individual a certain proportion of their loci was inherited from different

populations, this being a basic definition of admixture, instead of a single group like

we have assumed in the investigation. Falush et al. (2003) extended the admixture

assumptions by Pritchard et al. (2000) to account for admixture linkage disequilib-

rium where a set of unbroken combined loci is usually inherited together through

many generations. These segments of unbroken loci on each sequence are defined by

breakpoints given by a Poisson process, where higher Poisson rates would mean more

breakpoints and an infinite rate implies independence of all loci. Under these assump-

tions the allocation variables take the form of which population did the combined loci

within these breakpoints come from. Alternatively we may want to account for the

existence of correlated alleles. The assumption is that all the populations diverged

from a most recent common ancestor population, and as each population would have

different magnitudes of genetic drift the allele frequencies in the ancestral population

may give information on each descendant population (Falush et al., 2003; Nicholson

et al., 2002). To translate both types of extensions into the Structure algorithm under

non-parameter model assumptions we need to consider hierarchical Dirichlet processes

(Teh et al., 2005). How such model assumptions can be given in both parameter and

non-parametric (Dirichlet process) form is stated in De Iorio et al. (2015). An al-
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ternative parameterisation that does account for admixed individuals while avoiding

hierarchical DP would be an adaption of the fineStructure algorithm by Lawson et al.

(2012). They consider using an alteration of the data that takes the form of a N ×N

co-ancestry matrix which accounts for the admixture between all individuals. They

infer the allocation variables and a K × K object being the population co-ancestry

matrix. This would be the easiest to adapt as Lawson et al. (2012) already applies

a SAMS like proposal to split a population into two, which is again accomplished by

integrating out the population co-ancestry matrix from the posterior.

In our analysis we fixed α within p(z), see (5.10) and (5.11), to some constant.

The concentration parameter α affects the size of each population group with a de-

creasing α leading to great variability between groups with one or two groups being

dominant in population size. Inferring the posterior of this parameter is possible under

basic MCMC schemes (see Bouchard-côté and Roth (2017); Escober and West (1995)).

Appropriate kernel moves that can be applicable under a geometrically bridged inter-

mediate distribution would need to be considered. Huelsenbeck and Suchard (2007)

showed that under an MCMC scheme where Dirichlet process priors were applied to

the allocation variables, varying set values of α did not have an effect on the mean

partitions of the thrush data (as well as in other datasets). This differed from their

simulated data, in which the simulated data was constructed with α such that a

certain number of populations are expected to be present in each dataset. When

misclassifying α to be larger than its true value value the average distance between

the mean partitions and true partitions of the simulated datasets increased. On aver-

age for all simulated runs a higher posterior mean for the number of populations, in

comparison to the true population size, was given under a higher misclassified concen-

tration parameter. Nevertheless both overestimation decreased with increasing size of

the loci. Overall only practical analysis would show whether α differs greatly between

parameter spaces, and this would have an affect on the mean partitions, but inferring

this parameter is not an intermediate interest.
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The priority for future adaptions of tSMC should be to make it applicable for

general mixture models which include non-conjugate posteriors. In regards to the

posterior estimation, there are still uncertainties how the restrictions on the MCMC

kernels can harm the exploration of the parameter space or if using a large particle size

can compensate for this problem. We also have to consider transformations that have

a lower computational complexity then our adaption of the SAMS proposal. Therefore

we wish to decondition our existing adaption in regards to the labeling given by the

auxiliary variables, although it is not clear how this can be accomplished.
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Final Discussion

In this investigation we have introduced transformation Sequential Monte Carlo, an

adaption of the SMC algorithm that specialises in across-model simulation. This

adaption should be applied when a series of ordered models can be defined, which

differ by dimensional size or both a difference of observational and dimensional size,

and transformation proposals can be made between each adjacent model. The key

concept is how a proposal that is based on a transformation of some existing model,

that targets the new parameter space, has the potential to be more efficient then some

prior distribution. The quality of the proposal is then accessed through a series of

annealed intermediate distributions, with proposals of low probability either adjusted

via MCMC kernels or removed via a resampling algorithm. Furthermore the use of

adaptive schemes means that there is flexible control of the number, and type, of

intermediate distributions and the overall exploration of the parameter space. We

have assessed the performance of tSMC when inferring the posterior distribution of a

standard univariate mixture model, a mixture model under a Dirichlet process prior

and another application in the field of population genetics. We considered application

specific research questions, and if they can be answered under our current tSMC

scheme. In this final discussion we summarise the general tSMC algorithm. We refer

to application specific points in the discussion sections of each chapter, and conclude

with the following general key points.

If the primary aim was to simply model the posterior where attempting to provide

an initial estimate proves to be challenging and a series of subsetted models exist, such
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as reconstruction of the ancestral history of a series of genomes where the space can

become very large, then tSMC is really useful. In particular we are positive with

our work on the reconstruction of the genealogy under coalescent model conditions

in chapter 4 which has the best potential for further research. We were still satisfied

with some of the results in chapters 3 and 5 even though there exists problems with

our tSMC adaptions in comparison to other established methods.

With regards to future research in the application of genealogy reconstruction we

hope to use tSMC under JavaScript to be compatible with Beast phylogenetic software

(Drummond et al., 2012). Their software offers faster posterior density evaluation then

what we have used for this investigation due to the nature of Java v.s R. However the

addition of “online” posterior updates and data inclusion, as well as the parallelisa-

tion properties, are key traits that tSMC has over the current MCMC based ancestral

reconstruction software. Nevertheless in the long term this would require implemen-

tation of other population genetic parameters and under non-coalescent phylogenetic

assumptions. More notably we would require additional changes to the proposals to

graft a new node to a tree. Caution is required with how the type of ordering for

gradual data inclusion can affect the ML. An analysis is required to consider if there

exist scenarios where, over a real life time period, we would expect more differences

in the newer sequences in comparison to the existing gnomes and thus likely to be

placed as recent coalescent events.

What we initially believed was through the use of tempered annealing to gradually

converge to posterior distribution, be it through a large number of intermediate distri-

butions or an adaptive scheme dictating the variability of the particles, the marginal

likelihood would also similarly converge to its true value. We have discovered that

this is not the case, and in many cases underestimation of the marginal likelihood

was present despite good posterior results in chapters 3-5. The asymptotic properties

of a SMC algorithm means that increasing the number of intermediate distributions

eventually gives an estimate that would resemble the true ML (with a minuscule bias
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due to adaptive kernels and normalisation of the weights). However we never iden-

tified a way to find this safe/guaranteed number of intermediate distributions that

would prevent underestimation of the ML. For example, even larger runs under each

scheme were made on the mixture models in chapter 3 (which we do not show in this

thesis) however they still didn’t match the ML on the best run for an eight component

Gaussian mixture model for the galaxy dataset despite exceeding their 1st quartile of

their corresponding MC estimates shown in the marginal likelihood boxplots.

An issue is whether any transformation we apply is appropriately long-tailed.

Failing to reach high probability regions of the posterior of an extended parameter

space for most particles on the initial transformation, and not from the combined use

of intermediate distribution and MCMC kernels like what we have seen, would cause

an underestimation of the marginal likelihood. This is a problem that can occur in

many of the algorithms mentioned in chapter 2, such as RJMCMC and importance

sampling methods such as the harmonic mean estimator, and tSMC has not removed

this issue.

How to tell if a transformation is long-tailed is a difficult task. This can be

daunting if transformations, that are not identity functions, need to be applied on

every single parameter in order reach posterior modes on high-dimensional space.

The point of applying MCMC kernels was that small changes that were required on

parameters not involved in the model transformation itself can be conducted through

these kernels. This has proven to be successful as even with poor results on the

marginal likelihood, generated by an inappropriate transformation, we can still obtain

good approximations to the posterior.

For applications involving non-increasing data size we did not consider stopping

conditions for inferring an increasing higher dimensional space, and only considered

an ideal number of likely components to halt the algorithm. A possible solution

would be stop the algorithm after a series of multiple drops in the estimated marginal

likelihood, or due to a significant single drop in the ML when transitioning between
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two models. However this requires us to account for the existence of variance of the

ML estimate within one run and not stop the algorithm too soon due to Monte Carlo

variance. We have let to identify how to estimate this variability in one run, although

if we could we would simply define some confidence intervals for each ML estimate

and stop the algorithm if some threshold has been breached.

Another minor objective would be to find a way to apply Gibbs samplers in

tSMC, for the small subset of applications in which using Gibbs samplers is highly

recommended over Metropolis-Hastings, while still giving us the option to not inte-

grate out continuous variables. This would remove multiple obstacles that we have

highlighted in the previous chapters, as well as any unrealised problems for any future

applications. Alternate target distributions would need to be identified which allow

for Gibbs probabilities to be applied for all parameters. However these intermediate

distributions would also need to be close to each other such that there are no sudden

jumps with each annealed state, as we found when using the arithmetic annealed

target distribution.
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