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Abstract 31 

The soil fungal ecology of the southern Gobi region of Mongolia has been little studied. We 32 

utilized the ITS1 region from soil DNA to study possible influences on soil fungal community 33 

variation. In the sample network, a distinctive fungal community was closely associated with high 34 

zinc (Zn), lead (Pb) and copper (Cu) concentrations. The pattern of occurrence suggests that high 35 

metal concentrations are natural and not a product of mining activities. The metal-associated 36 

fungal community differs little from the ‘normal’ community in its major OTUs, and in terms of 37 

major fungal guilds and taxa, and its distinctiveness depends on a combination of many less 38 

common OTUs. The fungal community in the sites with high metal concentrations is no less 39 

diverse than in areas with normal background levels. Overall, these findings raise interesting 40 

questions of the evolutionary origin and functional characteristics of this apparently ‘metal tolerant’ 41 

community, and of the associated soil biota in general. It is possible that rehabilitation of metal-42 

contaminated mined soils from spoil heaps could benefit from the incorporation of fungi derived 43 

from these areas.   44 

Keywords: Fungi, Gobi desert, Heavy metals, Metagenetics, Soil metal, ITS1 region 45 



1 Introduction 46 

Heavy metals occur widely in the parent materials of soils at concentrations that are broadly 47 

dependent on lithology. During pedogenesis metals become enriched or depleted in different soil 48 

horizons, depending on the soil-forming environment and the predominant chemical reactions for 49 

each element [1]. Soil may be naturally enriched in metals due to the influence of the underlying 50 

geology and the subsequent soil forming and ecological processes, for example, through pedogenic 51 

activities in ultramafic and serpentinised geologies (e.g. [2]) or enrichment in the surface horizons 52 

following plant uptake from depth (e.g. for Cu and Pb see [3, 4]). 53 

Soils with high concentrations of metals are associated with a distinctive microbial communities. 54 

This association is not in itself novel: there is abundant evidence of distinctive communities of 55 

plants and bacteria associated with metal-rich areas in other parts of the world. Examples include 56 

lead-, zinc- and [5] copper-rich mine spoil heaps in the UK and natural serpentine rock areas such 57 

as California and Borneo [5, 6]. Soil bacteria have been found to develop metal tolerance under 58 

laboratory conditions, by enabling energy dependent efflux of metal ions [7-9]. While metal-rich 59 

soils have occasionally been sampled by culturing individual fungal strains from them [10], there 60 

are few studies on whole metal-tolerant communities of soil fungi from anywhere in the world. 61 

Fungi are known to tolerate and detoxify metals by several mechanisms including valence 62 

transformation, extra- and intracellular precipitation and active uptake [11, 12]. Biological 63 

mechanisms implicated in fungal survival include extracellular precipitation, transformation of 64 

metals, biosorption to cell wall and pigments, decreased transport or impermeability, efflux, 65 

intracellular compartmentalization and sequestration [12-14].  66 

The behaviour and occurrence of naturally occurring trace elements in the ecology of the soil are 67 

complex and the key metals that might influence microbial communities are poorly understood. 68 



The present study was conducted in a naturally metal-rich area of the Gobi, a large cold desert in 69 

southern Mongolia and northern China. The desert basins of the Gobi are bounded by the Altai 70 

Mountains and the grasslands and steppes of Mongolia on the north, by the Tibetan Plateau to the 71 

southwest, and by the North China Plain to the southwest. It is the fifth largest desert in the world 72 

and the largest in Asia [15]. The climate is continental, characterized by dry and cold winters and 73 

a precipitation maximum in summer [16]. Our sampling was located in Oyu Tolgoi region, which 74 

is situated in the South Gobi desert, Mongolia. This area has only recently been discovered to be 75 

rich in metals, especially copper [17-20]. Large scale mining for copper started in 2013, with the 76 

opening of the Oyu Tolgoi mine [21]. Five major copper deposits that extend over 6 km in a north-77 

northeast–oriented zone. These occur in a middle to late Paleozoic arc terrain and are related to 78 

Late Devonian quartz monzodiorite intrusions. The Hugo Dummett deposits are the northernmost 79 

and deepest, with up to 1,000 m of premineral sedimentary and volcanic cover rock remaining [17]. 80 

The area is characterized by sparse vegetation and large tracts of Quaternary sediments and loess. 81 

Ephemeral streams cross the area and flow for a few short periods during an average summer. 82 

Temperatures at Oyu Tolgoi range from +36°C to -25°C. Total precipitation is approximately 100 83 

mm/year and occurs mainly in late spring and early summer [22]. Given the potential ecological 84 

sensitivity of this area, several months after the opening of Oyu Tolgoi we undertook a baseline 85 

study of the area within a 130 km radius of the mine. Given the known concentration of natural 86 

copper deposits in the southern Gobi, we specifically examined whether metal content is a key 87 

factor in the structure and composition of soil fungal communities in this area.  This paper mainly 88 

aims to critically appraise apparent associations between metal-rich soils and fungal communities 89 

in SE Gobi to characterize these communities, and to consider their broader implications for 90 

microbial ecology and the study of metal enriched environments.  91 



  92 

2 Methodology  93 

2.1 Site description 94 

The sampling area (Supplementary Fig. S1) is located in south-eastern Mongolia, close to the 95 

border with China, between the latitudes of 42°31 N to 43°36 N and longitudes of 106°34 E to 96 

108°10 E. Samples were taken in mid-September 2013, towards the end of the vegetation growing 97 

season.  98 

This study commissioned by the Oyu Tolgoi mine company was initially intended to establish 99 

reference data for the background state of the soils in this area for future monitoring of any effects 100 

of dust contamination, ground water alteration, or displacement of grazing in the area surrounding 101 

the mine. For this baseline study of soil chemistry and biota, we sampled a network of 34 sites 102 

(Supplementary Table S2) chosen to represent the range of natural vegetation types of the south-103 

eastern Gobi. Thirty four separate 1 ha plot sample sites were assigned within a radius of 130 km 104 

of the Oyu Tolgoi mine, their positions chosen by selecting representative examples of different 105 

habitat types found in the Gobi, based on both local knowledge and on satellite imagery. 106 

Vegetation coverage consisted of small shrubs (mostly Chenopodiaceae and Asteraceae) and 107 

bunch grasses, with overall plant coverage on the hectare scale varying from 50% to 70% 108 

(Supplementary Table S1). Common representative plant species are Eurotia ceratoides, 109 

Potaninia mongolica and Caragana korshinskii. In each sampling site, we took one subsample at 110 

each corner of a hectare square and another in the center. Each subsample consisted of a core, 5 111 

cm deep and 2 cm in diameter. The 5 subsamples were combined into one composite sample, 112 

mixed thoroughly, and brought back to the laboratory on the same day. Half of the mixed sample 113 



was frozen at -20°C for later DNA extraction, while half was dried for soil chemical and physical 114 

analysis.  115 

In most of the 1 ha plots, vegetation composition was recorded, with a species inventory of all 116 

vascular plants present. Due to time limitations, we were unable to make a species inventory of 117 

four of the plots.  118 

 119 

2.2 Chemical Analysis and DNA extraction 120 

Soil analyses were carried out in the Laboratory of Soil Science of the Institute of Geography, 121 

Mongolian Academy of Sciences, using standard protocols of the Soil Science Association of 122 

America (SSSA) [23]. Measured chemical parameters were pH, CaCO₃, total organic carbon 123 

(TOC), soil salinity (measured as electric conductivity, dS/m), nitrogen (N), soil texture (TX), 124 

chrome (Cr), lead (Pb), cadmium (Cd), copper (Cu) and zinc (Zn). All samples were transported 125 

to the laboratory at Oyu Tolgoi mine and frozen at -20℃ within 3 hours of  sampling. Within days 126 

frozen soils were processed for DNA extraction in the Laboratory of Ecological and Evolutionary 127 

Synthesis of the National University of Mongolia. Soil was sieved with a 3 mm sieve, and 0.35 g 128 

of the sieved soil was DNA extracted using the Power Soil DNA extraction kit (MoBio 129 

Laboratories, Carlsbad, CA, USA) according to the manufacturer’s protocol. 130 

 131 

2.3 PCR and sequencing 132 

All the extracted DNA samples were amplified for ITS1 region by using the primer pair ITSIF (5’-133 

CTTGGTCATTTAGAGGAAGTAA-3’) and ITS2 (5’-GCTGCGTTCTTCATCGATGC-3’) [24, 134 

25]. Polymerase chain reactions (PCR) were performed in 50 l reactions using the following 135 



temperature program: 95°C for 10 min; 30 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s; 136 

and 72°C for 7 min. The resulting amplicons were purified using the QIAquick PCR purification 137 

kit (Qiagen, CA, USA), and sequenced using Illumina Miseq platform (paired end of 2 × 300) at 138 

Macrogen Incorporation (Seoul, Korea), following standard Illumina sequencing protocols [26]. 139 

 140 

2.4 Sequence processing 141 

Miseq Illumina [24] sequence data were processed using Mothur platform [27]. In brief, the 142 

sequence data were pair assembled using make.contigs and the quality control was performed by 143 

identifying chimeric sequence via UCHIME [28] and by filtering chimera sequences. Operational 144 

Taxonomic Units (OTUs) were picked using UCLUST [29] with a threshold of 97% pairwise 145 

identity using the QIIME implementation [30]. This cut-off has often been used in fungal 146 

community analyses [31, 32]. After the process, singletons were screened in Mothur. Taxonomic 147 

classification was assigned using the UNITE database [33] using the classify command in Mothur. 148 

All of the ITS1 sequence data are available under the MG-RAST [34] project ID 17045 149 

(http://metagenomics.anl.gov/linkin.cgi?project=17045). The FUNGuild were used to classify 150 

OTUs into trophic categories [35]. 151 

 152 

2.5 Statistical analysis 153 

To perform the statistical analysis, all samples were standardized by random subsampling to 154 

13,957 reads per sample. We used a t-test for normal data and Wilcoxon rank-sum test for non-155 

normal data in R software package 2.15.2 to test whether the relative abundances of taxonomical 156 

groups were significantly different between samples in low metals sites and high metals sites. 157 

http://metagenomics.anl.gov/linkin.cgi?project=17045


OTUs richness and diversity indices were estimated using Mothur. To assess the correlation 158 

between richness/diversity and environmental variables, linear regression was performed in 159 

SigmaPlot v 10.0 (Systat Software, San Jose, CA). To test for spatial autocorrelation of the fungal 160 

community OTU composition, we used the Mantel test (Mantel Nonparametric Test Calculator 161 

2.0) [36] to compare matrices of fungal community composition in relation to geographic distance 162 

between different samples.  163 

An indicator species analysis [37-39] was performed using package labdsv [40] in R software to 164 

identify those OTUs that are characteristics of each high and low metal-enriched sites. We used 165 

the INDVAL analysis, which identifies indicator species based on OTU fidelity and relative 166 

abundance [39]. Only OTUs with significant (P<0.05) and INDVAL values that were >0.5 were 167 

considered as significant threshold for habitat specialization. The indicator species are defined as 168 

the most characteristic species of each group, found mostly in a single group and present in the 169 

majority of the samples belonging to that group. Bray-Curtis distance was calculated to analyze 170 

fungal community similarity. To reduce the contribution of highly abundant OTUs in relation to 171 

less abundant ones in the calculation of Bray-Curtis matrix, abundance data of OTUs were square 172 

root transformed. The pairwise differences in fungal community composition were calculated by 173 

analysis of similarity (ANOSIM) in relation to Bray-Curtis distance. A constrained analysis was 174 

conducted using CANOCO [41] to assess the effect of environmental variables on the fungal 175 

community. Forward selection was used in redundancy analysis (RDA) [42] to select significant 176 

explanatory variables with 999 permutations and only significant variables (P < 0.05) were 177 

included in the models. 178 

Fungal functional guilds were assigned according to Nguyen et al. [35] and Tedersoo et al. [43] 179 

using an open annotation tool (FUNGuild). Here, we only accepted the guild assignment where 180 



confidence ranking was “probable” or “highly probable”, as recommended by Nguyen et al. [35]. 181 

The functional guilds of fungi detected in this study principally included three major functional 182 

groups: pathogens, saprotrophs and symbionts 183 

 184 

3 Results 185 

The soils in all sites were alkaline, (mean pH 8.7; range pH 8.2 – 9.3), and contained on average 186 

56% of sand, 34% of silt and 11% of clay. Results of soil physico-chemical analysis are shown in 187 

Supplementary Table S2. In several samples, Zn metal concentrations exceeded EPA, Eco-SSL 188 

regulation (http://www.epa.gov/ecotox/ecossl/index.html) levels of 50 mg/kg, reaching 233 mg/kg 189 

in some samples. Cu and Pb contents were also above Eco-SSL, EPA level of 50 mg/kg in some 190 

samples, the highest metal concentrations measured were around 2300 mg/kg for Cu and 130 191 

mg/kg for Pb (Fig. 1). In combination, the combined Pb, Zn and Cu concentration averaged around 192 

689.78 mg/kg (ranging from 54.7 mg/kg to 3061 mg/kg).  193 

From the 34 soil DNA samples, we obtained a total of 2,459,044 quality reads, which were 194 

classified into 11,559 OTUs at the 97% similarity level. In presentation of results, we have 195 

distinguished ‘high metal concentration’ samples as those containing >50 ppm Zn, Cu and/or Pb.  196 

The fungal community averaged across all the samples was dominated by Ascomycota, with 79% 197 

of total reads (Fig. 2a). Basidiomycota was the next most abundant group with 7% of the total 198 

reads. Relative abundance of other phyla was under 1%. There was no significant difference at the 199 

phylum level when high metal samples and low metal samples were compared, with the exception 200 

of certain minor phyla representing less than 1% of total reads - including Blastocladiomycota 201 

(w=77, P=0.02), Chytridiomycota (w=198, P=0.007), Incertae sedis (w=62, P=0.01) and 202 

Streptophycophyta (w=172, P=0.01).  203 

http://www.epa.gov/ecotox/ecossl/index.html


Among the detected fungal classes, Dothideomycetes and Sordariomycetes (Ascomycota) were the 204 

most abundant, with a relative abundance of 48% and 25% of reads respectively amongst all 205 

samples combined. Tremellomycetes (Basidiomycota) represented 5% of total reads, and 206 

Eurotiomycetes (Ascomycota) and Agaricomycetes (Basidiomycota) were each at around 1% of 207 

total reads. Dominant orders were Pleosporales (46%), Hypocreales (21%), Filobasidiales (5%) 208 

and Sordariales (4%) (Fig. 2b).  209 

As Fig. 2c shows, 9 families (These families included Nectriaceae (18%), Pleosporaceae (17%), 210 

Pleosporales family Incertae sedis (15%), Sporormiaceae (10%), Filobasidiaceae (5%), 211 

Chaetomiaceae (2%), Leptosphaeriaceae (2%), Lasiosphaeriaceae (1.5%) and Hypocreales 212 

family Incertae sedis (1%) made up less than 1% of the total community. Community composition 213 

at the family level did not vary in relation to metal content.  214 

The most abundant genus across all the samples combined was Gibberella from the family 215 

Nectriaceae, representing 18% of total reads (Fig. 2d). Metal content had no statistically 216 

significant effect on genus level composition of the community (Supplementary Table S3).  217 

Linear regression analysis showed that metal content had no significant effect on fungal diversity. 218 

Similarly, the other soil parameters (pH, soil texture, etc) did not influence the fungal diversity 219 

(Supplementary Fig. S2). The effect of metal content on fungal richness and diversity was further 220 

evaluated using multiple regression analyses. Metal content (i.e. Zn, Pb and Cu) did not show any 221 

correlation with OTU richness and with diversity indices (Supplementary Fig. S3).  222 

Fungal diversity in the high metal samples was no lower than the normal metal samples 223 

(Supplementary Fig. S2).  The heat map analysis of the 50 most abundant OTUs did not show any 224 

consistent difference between high metal and low metals sites, despite the difference of metal 225 

concentrations (Supplementary Fig. S4).  226 



Indicator species analysis revealed fungal OTUs that sort between low and high metal sites. The 227 

OTUs classified as core community in the low metal samples were represented by 25 genera, and 228 

characterized by the genera Phoma (represented by the species Phoma bulgarica, Phoma 229 

calidophila, and Phoma sp P31E4), Preussia, Giberella, etc. There were 30 genera classified as 230 

core community in high metal samples represented most abundantly by an unclassified fungal 231 

genus previously detected in eastern US forest soils by [44] under the name species fungal sp. 38 232 

CC 06 28. Also members of the genera Cochliobolus, Curvularia and Chaetomium are abundant 233 

examples of the core community of the metal rich sites (Table 1). 234 

Vegetation cover (w=44.5, P=0.33) and plant species composition (t=-2.005, df=6.65, P=0.08) did 235 

not differ in relation to any measured soil characteristic among the 30 quadrat samples which had 236 

vegetation data (Supplementary Fig. S5). Multiple regression analysis showed that vegetation 237 

cover was not correlated with either Zn soil content, or Cu soil content (P>0.05), whereas it 238 

significantly correlated with Pb soil content (Supplementary Fig. S6). 239 

An RDA (Fig. 3) showed that metal concentration (Zn, Cu, Pb individually, or all three combined) 240 

was the strongest predictor of variation in fungal community composition among our samples. 241 

Higher metal content samples (defined in Fig 3 as >200 mg/Kg of Zn) tended to cluster separately 242 

in terms of fungal community composition (Fig 3). Together with two axes on the biplot, in an 243 

accumulative variance for the interaction between communities and variables, a total of 19.3% of 244 

variation was explained. Axis 1 explained 12.2% of the variation in the data, while axis 2 explained 245 

15.8. Among the measured physico-chemical factors, Zn (pseudo-F=3.7, P=0.001), Pb (pseudo-246 

 =1.3, P=0.05) and silt (pseudo-F=2.0, P=0.001) were significant contributors to fungal 247 

community variability, and a forward test indicated that the most important factor was Zn. 248 



ANOSIM performed on Bray-Curtis community matrix confirmed that samples from low metal 249 

content sites and high metal content sites varied significantly from each other (Global R=0.48; 250 

P=0.001). The Mantel test showed no effect of spatial distance on the composition of fungal 251 

communities amongst the sites (Mantel statistic r=0.091, P=0.15). 252 

Fungal taxonomic functional analysis by FUNGuild categorized the fungal sequences into 253 

different trophic modes. 34% of all reads were identified as pathotroph, followed by pathotroph-254 

symbiotroph (23%), saprotroph (19%), pathotroph-saprotroph (7%), and less than 1% for 255 

symbiotroph, saprotroph-symbiotroph and pathogen-symbiotroph (Fig. 4a). In this functional 256 

study, there was only significant difference in pathogen-symbiotroph (that represents less than 1% 257 

of total trophic modes) between the normal and high rich metal samples. There was no significant 258 

difference in trophic strategy composition between samples having normal metal content and 259 

samples having high metal content (Fig. 4b). 260 

 261 

4 Discussion 262 

4.1 Community characteristics and comparison with other arid environments 263 

The soil fungal community across all our sampled sites in the Gobi was dominated by Ascomycota, 264 

with a much lower abundance of Basidiomycota and other phyla (Fig. 2a). This bias towards 265 

Ascomycota is typical of arid environments globally – whereas Basidiomycota normally dominate 266 

in forest soils [27, 45-48]. Within the phylum Ascomycota, the most abundant family across all 267 

samples was Nectriaceae (18% of total reads), which includes a number of common pathogens, 268 

but also saprobes [49]. Within this family, the genera Gibberella and Fusarium which contain both 269 

plant pathogens and saprobes [50-54] were at 18% and 1% relative abundance, respectively (Fig. 270 

2d). This again is typical of arid environments: for example Fusarium is generally one of the 271 



commonest fungi in desert environments globally, and members have often been found to be 272 

abundant in the presence of metals [55, 56]. 273 

The family Pleosporaceae (Ascomycota) was also very abundant in our samples (17% of total 274 

reads). Members of this group are typically necrotrophic pathogens and saprobes, especially 275 

associated with grasses [49]. Within the family, the genera Mycocentrospora (11% of total reads) 276 

and Alternaria (10% of total reads) were particularly abundant in these Gobi sites. Alternaria has 277 

also been isolated from the metal-rich soils elsewhere [56, 57]. Mycocentrospora forms 278 

chlamydospores which have thick walls for surviving in extreme environments, a feature that may 279 

allow it to live in the very variable water environment of the Gobi [57].  280 

The most abundant family of Basidiomycota in our samples was Filobasidiaceae, belonging to the 281 

order Filobasidiales and the class Tremellomycetes. Their mean relative abundance was 4.8%, and 282 

they made up most of the Basidiomycota in these samples (the Basidiomycota averaging in total 283 

at 7% of reads). Genus Cryptococcus under family Filobasidiaceae is also known to exhibit 284 

tolerance to Cu and Zn [48]. Filobasidiaceae have been isolated from Antarctic ecosystems and 285 

have a very wide range of habitats. The relative abundance of Basidiomycota was much less than 286 

in typical samples in forested or damper environments, but typical of semi-arid and arid locations: 287 

generally Basidiomycota are less abundant in hot desert environments [49].  288 

In terms of trophic guilds from FUNGuild, pathotrophism was the most abundant category with 289 

34% of total fungal reads, although this may reflect the difficulties of guild assignment in very 290 

diverse genera such as Giberella and Fusarium known to contain saprobes [58]. Pathotroph-291 

symbiotrophism was the second abundant trophic mode with 23% of total reads. Saprotrophism 292 

was the third most abundant category overall, at 19% of total reads, which agrees with the family 293 

level results discussed above. The spore-forming habit of many saprotrophs may allow their 294 



survival in mostly dry soils without any physiological activity [58, 59].The least abundant trophic 295 

category was saprotroph-symbiotroph, accounting for only 0.2% of reads (Fig. 4).  296 

 297 

4.2 Community patterns in relation to metal content  298 

In the RDA for the Gobi plots, the community divides very clearly into two clusters (Fig. 3). There 299 

is clear tendency in the RDA for the metal rich samples (average Zn concentration in metal samples 300 

of 225.44 mg/kg, 1500 mg/kg Cu and 70.39 mg/kg Pb) to cluster on one side of the ordination 301 

diagram, with variation in fungal community composition mainly related to metal concentrations 302 

(Fig. 3), and with Zn and Pb as the strongest predictors.  303 

The RDA analysis shows a strong consistent pattern in relation to metals, especially Zn and Pb. 304 

Despite the clear differentiation of the fungal community by soil metal content on the RDA 305 

ordinations, at the broad taxonomic level the composition of the metal-poor and the metal-rich 306 

communities at the phylum, class and family level is very similar (Fig. 2). The same dominant 307 

genera are also found in all samples, both metal-rich and normal (Fig. 2d). Comparing the heat 308 

maps of metal-poor and metal-rich samples, there is no clearly evident community difference in 309 

terms of the 50 most abundant OTUs shown (Supplementary Fig. S4). The same major OTUs are 310 

present across both sample sets. Whatever the differences that lead to the high metal samples 311 

clustering separately, they presumably involve either the overall effect of many rarer OTUs, or 312 

consistent but subtle differences in the abundance of both common and rare OTUs. These OTUs 313 

include the ‘indicator’ taxa mentioned above.  314 

It is of course necessary to ask if the close relationship we observed between metal concentrations 315 

and fungal community composition is merely spurious, with these factors inter-correlating with 316 

some other soil parameters that actually play the important role in determining soil fungal 317 



community composition. Since a broad range of soil parameters was measured (Supplementary 318 

Table S2) and Zn, Pb and Cu were by far the best predictors of fungal community variation (Fig. 319 

3), it seems unlikely that metal concentrations are merely a proxy for other soil parameters. This 320 

agrees with is a generally accepted view that high metal concentrations may lead to alteration of 321 

soil microbial community structure [61, 62].  322 

The ‘high’ metal concentrations (Zn, Pb and Cu) seen here in some of our samples are not 323 

exceptionally high compared to some contaminated sites studied in Europe which have had around 324 

10 times this concentration [63]. However, in their experimental studies Smolders et al. (2004) 325 

observed effects of Zn on soil microbial (mostly bacterial) activity starting at concentrations 326 

around 200 mg/kg of Zn, similar those we observed, which suggests that at the concentrations 327 

found in the Gobi sites, microbial ecology could be significantly affected by Zn and other metals.  328 

A background of previous work also suggests that soil fungi are especially susceptible to high Zn 329 

concentrations, compared to bacteria. A study by Speir et al. [65] found that increasing Zn 330 

concentrations between 0 and 400 mg/kg had a significant negative impact on enzymatic activities 331 

of soil fungi (in our study the higher metal sites had around 200 mg/kg of Zn). Soil fungal 332 

communities have been found to be more responsive to Zn than soil bacteria are [60, 66]. Most of 333 

the samples that cluster at the higher end in terms of Zn concentrations greatly exceed 334 

environmental tolerance guidelines for Zn (EPA, Eco-SSL database: 335 

http://www.epa.gov/ecotox/ecossl/index.html, Supplementary Table S2)  and the concentration 336 

limits reported in Kabata-Pendias [67] who stated that the threshold upper limit value of Cu in 337 

surface soils should be around 100 ppm, whereas our most Cu rich soils have concentrations of an 338 

average of 1475 ppm . They also noted that upper limit for the Pb content is around 70 ppm whereas 339 

our most Pb rich soils have an average concentrations of 66 ppm, and the mean Zn for worldwide 340 

http://www.epa.gov/ecotox/ecossl/index.html


soils is around 64 ppm, whereas our most of our Zn soils have concentrations of an average of 224 341 

ppm. This is certainly suggestive that toxicity may have a role in selecting the distinctive 342 

community that is found in these places. In some previous studies, soil fungi were found to be 343 

more sensitive to Cu than Zn and tended to have tolerance of Zn [68, 69]. 344 

It is also necessary to consider the possibility that the summative effect of multiple metals in the 345 

soil may be having the observed effect on fungal communities. It may also be important that the 346 

metals in our sampled soils tend to co-occur at higher concentrations. In recent years, there has 347 

been growing awareness of the interactive effects that multiple metals may have on soil ecology. 348 

This phenomenon, known as mixture toxicity, takes place where synergies between metals arise 349 

[70, 71]. Synergistic effects occur when the combined effect of two metals is greater than the sum 350 

of the effect of each metal individually. For synergistic interactions to occur in the soil, interacting 351 

metals have both to co-occur and to be present at concentrations high enough to induce the synergy 352 

[72, 73]. It is plausible, given that Zn, Pb and Cu in our soils are strongly co-occurring, there is a 353 

synergistic effect at work here in affecting the soil community.  354 

An important proviso on the case that metal ions are a major direct factor in the fungal 355 

ecology of this area, however, is that the soil pH in the metal-rich areas is high, and that this is 356 

predicted to limit bioavailability of metal ions [74, 75]. In general – based on idealized laboratory 357 

observations of the chemistry and solubility of metal salts - each unit increase in pH is forecast to 358 

result in halving of available concentrations [75-78]. As the average pH of the soils which 359 

contained high metals was 8.66, having a pH range between 8.43 to 8.87 (Supplementary Table 360 

S2), the actual bioavailability would be predicted to be lower than in neutral or acidic soils [79, 361 

80]. Exactly how much soil pH affects metal ion availability in actual soils is uncertain: Smolders 362 

et al. [63] found that over a range of pH from 4.5 to 7.5, Zn toxicity effects on soil microbes were 363 



unaffected by pH, suggesting that the theoretical limits are inaccurate. All that one can really state 364 

is that while correlation suggests that Zn, Cu and Pb are affecting the fungal communities in the 365 

Gobi, traditional inorganic chemistry predicts that their effects are weaker than they would be if 366 

soil pH were more acidic. Protection against toxic effects of metals in soils can also occur through 367 

various other mechanisms: for example organic matter content, clay content and iron oxide content 368 

[78, 81-83], and it is possible that these too affect the biological availability of Zn and other metals 369 

in the soil.  370 

 371 

4.3 Community patterns in relation to vegetation 372 

Vegetation composition and percentage coverage did not correlate with fungal community 373 

composition in the sampled areas. Despite the apparent effects of these metals on the fungal 374 

community, the visual appearance of the Gobi ecosystem in the high metal areas does not suggest 375 

intense toxicity by metals. In the 30 samples which had vegetation data, the plant diversity and 376 

vegetation coverage of the most metal-rich 1 ha plots we obtained from the Gobi was no less than 377 

the 1 ha plots with normal metal concentrations, suggesting that: 1) the plants themselves have 378 

evolved local metal-tolerant ecotypes, 2) there might be evolutionary adaptation by the soil biota, 379 

perhaps in sequestering metal ions (and possibly making these metal ions unavailable to the plants 380 

in the process) or 3) due to high pH in limiting availability, the effects of high Zn or Cu or Pb 381 

concentrations are marginal in terms of plant growth and ecosystem function, despite a subtle 382 

effect that can be detected in ordination of the fungal community.  383 

 384 

4.4 High diversity of the metal-rich soil fungal communities  385 



Despite the high concentrations of metals in some of the soils, and the apparently dominant role 386 

of metal concentrations in determining variation in fungal community structure, the diversity of 387 

soil fungi in the metal-rich 1 ha plot samples was no less than in the local soils with normal 388 

background levels of metals (Supplementary Fig. S2).  389 

Extreme environments are usually seen as being associated with lower diversity [84]. This is the 390 

case for example with soil bacterial communities of metal-polluted soils, and of extreme high and 391 

low pH conditions [85-88]. However, in a previous study of the effects of application of sewage 392 

sludge rich in metals, similarly high metal concentrations in soils still only showed minor effects 393 

on microbial diversity [60].  394 

In the system we are studying here, there seems to be no association between diversity and 395 

‘extreme’ conditions (high Zn, Cu and Pb concentrations), for soil fungi at least. It is possible that 396 

the high soil pH acts as a protectant against the worst effects of the metal ions on cell physiology 397 

preventing the diversity-suppressing effects normally associated with an extreme environment. 398 

Relatively low bioavailability could explain why fungal diversity is comparable with the other soil 399 

samples with normal background concentrations of these metals, even though the metal 400 

concentration is apparently having enough biological effect to make it a strong predictor of 401 

community variation. An alternative, or additional, explanation for why these metal-rich soils 402 

remain high in fungal diversity is that high metal concentrations in this area have existed for long 403 

geological periods, allowing a very diverse soil fungal community to build up.  404 

 405 

4.5 Are the high metal concentrations natural or influenced by anthropogenic activity?  406 

The source of the Zn and also the Cu and Pb found in many of the sites we sampled is unclear. 407 

Most of our more metal-rich sites are found across a broad radius south-east of the Oyu Tolgoi 408 



mine site, and the predominant wind direction in the area is north-west to south-east [89], which 409 

could imply that dust from the mine is the source. However, this seems unlikely, as the 410 

concentration of Zn, Cu and Pb does not show any relationship with distance from the mine, with 411 

some of the most metal rich samples being 20-80 km or more away from the mine, in areas never 412 

before mined. Scattered amongst the metal rich sites were also other sites that have normal 413 

background levels of metals, which would not be expected if an extensive metal-rich dust plume 414 

was spreading out across the desert. Also, the mine had only recently opened, producing its first 415 

ore in 2013 which was the year of sampling [21], which further implies that it is unlikely to have 416 

provided such extensive contamination of Zn, Cu and Pb over such a large area, and to have 417 

produced any noticeable changes in a fungal community averaged through the sampling depth of 418 

0-10 cm .  Additionally, a further set of very metal rich samples are found 30-40 km north-east of 419 

the mine, well upwind from the mine.  420 

The most plausible explanation is that the high soil metal concentrations we observe here in the 421 

south eastern Gobi are natural, a consequence of the geological enrichment of rocks in this area 422 

with metal ores [90, 91], followed by weathering to form metal-rich soils.  423 

 424 

5 Conclusions 425 

The area around Oyu Tolgoi appears to be an unusual system, with naturally high soil 426 

concentrations of Zn, Cu and Pb in many areas [90, 91]. The strength of correlation suggests that 427 

Zn in particular dominates the community composition of soil fungi in this area, although Cu and 428 

Pb might also play an important part since they also tend to occur at high concentrations in the 429 

same Zn-rich areas. Despite the high metal concentrations, diversity of fungi in the metal-rich 430 



areas is as high as in areas with normal background metal concentrations, which suggests the 431 

possibility of a long history of specialized adaptation by the soil biota.  432 

As a naturally metal-rich system, the soil ecology of Oyu Tolgoi area deserves further study. It 433 

appears to offer a natural analog to anthropogenic metal-contaminated sites associated with 434 

industrial activity around the world. Globally, there are very few known examples of naturally 435 

metalliferous soil, the few exceptions being serpentine rock outcrops (rich in Ni), and Zn-rich sites 436 

in central Europe [5, 92] – but even these are much more localized in extent than the Gobi area 437 

that we studied. To our knowledge, no naturally metalliferous soil has ever been thoroughly 438 

investigated from a microbial viewpoint. It would be interesting to know what (if any) special 439 

adaptations the fungi in these metal-enriched soils have to the presence of metal ions, and whether 440 

the distinctive community composition also extends to other soil organisms such as bacteria, soil 441 

metazoans and archaea. Further studies should also include the soil metagenome, its 442 

metatranscriptome, and soil properties such as potential soil respiration rate. Such aspects could 443 

then be compared to those of anthropogenically contaminated sites, for potential lessons in terms 444 

of the processes of community adaptation over time, and practical guidance for rehabilitation of 445 

contaminated land.  446 
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Figure legends 681 

Fig. 1 Metal (Zn, Cu and Pb) contents in low metal samples and high metal samples. High metal 682 

is defined by cutoff concentrations of 50 mg/kg in Zn, Pb and Cu. 683 

Fig. 2 Relative abundance of the detected fungal taxa observed in the Gobi samples (a) at the 684 

phylum level, (b) class level, (c) Family level and (d) genus level. 685 

Fig. 3 Redundancy Analysis (RDA) ordination plot of fungal community composition based on 686 

ITS1 gene OTUs and a vector overlay of the environmental variables. The significant 687 

environmental variables were shown in red arrows. Red dots denote samples having low heavy 688 

metal contents and blue dots denote samples having high heavy metal contents. 689 

Fig. 4 Detected fungal tropic mode by FUNGuild. (a) Classified trophic modes and (b) Relative 690 

abundance of each trophic mode. 691 

Table legend  692 

Table 1 Results of indicator species analysis. 693 


