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ABSTRACT 

With the growing importance of defined contribution (DC) pension funds around the world, concerns 

have arisen over their ability to provide adequate income replacement for members and the liquidity 

of their invesments. The first part of this thesis focuses on the illiquidity associated with real estate 

investments. The first chapter provides a discussion of liquidity within the context of DC pension 

funds. The second empirical chapter employs the tracking error optimisation procedure in the 

construction of portfolios that include direct real estate and selected liquid, publicly traded assets. We 

find that this helps to improve the performance of these blended portfolios.  In the second part of this 

thesis, we look at various ways in which the real value of DC pension contributions can be preserved. 

The third empirical uses contemporary econometric approaches in the analysis of the dynamic 

relationship between asset returns and inflation/interest rate changes. Real estate and bonds were 

found to be a hedge against all the inflation/interest rates measures analysed. Some non-UK assets 

were also found to be a good hedge against selected benchmarks. The fourth empirical chapter of this 

PhD thesis examines the optimal allocation within portfolios designed to hedge against the various 

inflation and interest rate benchmarks. When the investment objective is to strictly track these 

benchmarks, bonds and real estate dominate the portfolios.  Real estate, stocks and alternative assets 

receive significant allocations within the portfolios constructed to provide maximum risk adjusted 

returns relative to the minimum return benchmarks. We observe that the allocation to real estate 

reduced significantly following the global financial crisis period with bonds appearing to take its place. 

On the whole, this thesis contributes to the discussion on how best DC pension portfolios could be 

designed to comply with current investment regulations regarding liquidity and minimum returns 

requirements.   
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CHAPTER ONE – INTRODUCTION  

1.0 BACKGROUND OF THE THESIS 

Pension funds represent pooled assets that are managed with the aim of supporting the income of 

members when they retire. Green and Robinson (2012) aver that a good pension is one that will pay 

an adequate and predictable stream of income in retirement, until death. A survey by Myers (2016) 

found that for many DC pension contributors, the most desirable outcomes are high investment 

returns, certainty, non-negative performance, low charges and immediate access (liquidity). 

Over the years, there have been changes within the pension fund industry that have important 

significance not just for scheme members, but for financial markets, governments and society as a 

whole. Most significantly, traditional defined benefit (DB) pension plans have been losing their 

dominance in the occupational pension systems of many countries, with DC plans now accounting for 

the majority of invested assets in private sector occupational pension plans (Broadbent et al., 2006; 

Antolin et al., 2012). The main feature of a DC pension scheme is that during the pre-retirement phase, 

investment risk is borne by the individual member. Neither the fund nor the employer provides any 

guarantee as to the level of pension the member would receive at retirement.  

Although the move to DC pensions offers a welcome relief to employers, it places a high degree of 

uncertainty on the retirement income of workers. DC pensions may make things easier for employers, 

but they achieve this by transferring risks to employees – risks that employees often do not understand 

and may not be able to deal with. For example, Tetlow & Crawford (2012) revealed that 59% of people 

aged between 50 and 64 with DC plans have never thought about the number of years in retirement 

they need to be able to finance. The consequences of this development is that many employees in the 

UK with DC pensions are currently saving too little for retirement and have very little understanding 

of the consequences of longevity risk – the risk that a pension plan will have to provide benefits to its 

members over a longer period than expected or the chance that a contributor might outlive his or her 

pension. Similarly, Ibbotson et al. (2007) estimate that married couples who are on DC pensions in the 

United States, had a 90% chance of outliving their assets at retirement. This compares with 3% of 

those with defined benefit plans. 

National governments have focused closely on how to ensure that pension funds are managed in an 

appropriate way. This is because as pension plans fulfil their promises, the retiree population is more 

financially secure. Therefore, there is likely to be little or no need for social benefits to replace the loss 

of employee pensions (Ruloff, 2005). Following the 2008 Global Financial Crisis (GFC), there has been 

a lot of focus on managing risks owing to the unpredictable nature of markets and economies. Inflation 
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risk in particular is of utmost importance to investors and portfolio managers as the scourge of rising 

prices could hurt returns across asset classes and erode the purchasing power of investors (Sweeting 

and Morris, 2011; Dessner et al., 2012; Antolin et al., 2012). Dessner et al. (2012) believe that negative 

real returns are not simply a product of high inflationary environments. Low inflationary environments 

accompanied by bear markets can also generate negative real returns. They believe that a diversified 

approach to portfolio construction, is best at providing a hedge against inflation. They also note that 

inflation protection strategies should be pursued without compromising other investment objectives 

such as liquidity, return and volatility target. This understanding, arguably, has informed the decision 

by many pension fund regulators to introduce minimum returns regulations in an attempt to protect 

the purchasing power of DC contributors as well as reassure and encourage more people to join 

occupational pension schemes.  

Concerns have also been raised about how undiversified their portfolios are compared with their 

counterpart DB pension funds. Morales et al. (2017) found that pension fund investment a 

disproportionate amount of DC investment remain in short-term government bonds with very little 

investment in alternative assets. DCIF (2013) found that nearly 80% of DC default fund investment in 

the United Kingdom are in equities. This lack of diversification in DC fund portfolios has been 

attributed to the high emphasis that these funds place on liquidity (DCIF, 2017; Towers Watson, 2015). 

A Towers Watson (2015) analysis shows that DC members may receive as much as 5% in additional 

pension benefit if their contributions were invested in a more diversified portfolio than there currently 

are. In order to deliver adequate investment services, DC portfolios need to become more diversified 

and must include significant allocations to long-term, illiquid investments.  

Real estate has long been a popular investment among pension funds. Among other things, real estate 

delivers stable returns and has low correlation with the traditional asset classes, hence providing 

diversification benefits. Real estate returns are also known to keep up with inflation (Case et al. 2012; 

Booth, 2002; Brounen et al., 2010). However, due to the increased emphasis on liquidity by DC pension 

funds, real estate and other alternative assets are not seen as good candidates for DC pension funds. 

In order to attract DC pension funds, a number of asset managers such as Legal and General have 

created real estate investment vehicles to meet the liquidity requirements by DC funds. Most of these 

funds contain a significant amount of cash. This places a drag on the returns of property portfolios. 

Similar blended or replication products have been developed within the hedge fund and private equity 

markets. This practice has important implications for the risk and return of the illiquid asset portfolios 

(Towers Watson, 2015; Farrelly & Moss, 2014).   

 

  



6 

 

1.1 OBJECTIVES OF THE THESIS  

The objectives of this thesis are twofold: One is to determine the optimal allocation within DC pension 

fund real estate portfolios given the liquidity requirements of these funds. The second objective is to 

determine the optimal allocation to real estate within multi-asset portfolios that have been designed to 

deliver on return objectives linked to selected inflation and risk-free interest rates.  

Although real estate is widely considered to possess the ability to hedge against inflation it is also viewed 

as an illiquid asset when owned directly (Farrelly and Moss, 2014). In order to meet the liquidity 

requirements from DC pension funds, several real estate investment funds have been created by 

investment management firms. These funds, known as hybrid or blended real estate funds, combine 

direct real estate and liquid, publicly traded assets. Often, these funds are created using just one or two 

pre-specified assets and weights, without any formal optimisation procedures. In this thesis, we apply 

formal optimisation techniques to the design of these hybrid real estate portfolios that can produce 

property-like returns whiles maintaining an acceptable level of liquidity. This idea has also been applied 

to other illiquid assets, too, such as hedge funds and private equity. Specifically, the following research 

questions are addressed in this thesis:  

1. How effective is real estate in the preservation of the purchasing power of DC investors’ 

contributions.  

2. How does real estate’s ability to hedge against inflation compare to that of other alternative 

assets as well as the traditional asset classes.  

3. What is the optimal allocation within portfolios designed to hedge against inflation and interest 

rates commonly used by DC pension fund regulators and trustees as minimum return or 

performance benchmarks?  

4. How does the composition of these optimal inflation and interest rate hedging portfolios 

compare to the current allocation within DC and DB pension fund portfolios?  

5. What is the optimal allocation within the portfolio of hybrid real estate funds designed to 

provide returns comparable to direct real estate returns whiles at the same time maintaining a 

level of liquidity acceptable to DC pension investors.  

In the first part of this thesis, econometric approaches are used to analyse the interdependency between 

asset returns and selected inflation and interest rate benchmarks. This part of the thesis enables us to 

identify assets that exhibit a long-term relationship with selected inflation and interest rate benchmarks 

and so could serve as a hedge against inflation and interest rate changes.  
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The portfolio analysis part of this thesis is in two parts. One part considers the allocation within DC 

pension scheme portfolios and the role that real estate plays within these portfolios. The second part 

considers the allocation within the real estate portfolios themselves.  

In constructing portfolios designed to hedge against inflation and interest rate changes, we explore the 

objective of minimising tracking error relative to the inflation and interest rate benchmarks. We also 

maximise the risk adjusted returns given the inflation and interest rate benchmarks. The vast majority 

of studies on the role of real estate within investment portfolios have employed the approach of 

Markowitz (1952). The typical Markowitz framework minimizes risk for a certain level of return or vice 

versa. The optimisation models employed in Chapter 7 use the mean-tracking error and semi-variance 

of tracking error as the measure of risk. The objective of maximizing risk-adjusted returns is also 

explored within the two frameworks. This part of the thesis follows a growing stream of studies that 

explicitly construct inflation hedging portfolios for institutional investors such as pension funds and 

life insurance companies who have minimum return promises tied to inflation and interest rate 

movements (e.g. Bruno & Chincarini, 2010; Bruno & Chincarini, 2011; Twomey et. al, 2011; Downing 

et al., 2012; Briere and Signori, 2012;   Crawford et al., 2013; Koniarski and Sebastian, 2015, Ogunc 

and Ogunc, 2016).  

For the simulations in this thesis, we employ the perspective of a UK DC pension fund that aims to 

diversify across the traditional asset classes of stocks and bonds as well as alternative assets such as real 

estate, commodities, hedge fund and private equity. As discussed later in this thesis, UK DC pension 

funds currently allocate more than 80% of their funds to stocks and the remaining are invested in 

bonds and cash. By expanding the asset universe to include as many assets as possible, we show that 

the current allocation within DC pension funds is sub-optimal at best.  

1.2 CONTRIBUTIONS OF THE THESIS 

This thesis contributes to the real estate finance literature in three areas: inflation hedging, strategic 

asset allocation and liquidity risk management. The thesis proposes and implements a framework that 

enables DC pension funds and other institutional investors to construct portfolios that deliver returns 

in line with their selected against inflation and interest rate benchmark. An approach has also been 

suggested to enable these funds invest in direct real estate compromising their liquidity requirements.  

Although several studies have analysed the inflation hedging ability of real estate to hedge against 

inflation before the recent financial crisis (2007-2008), very few studies have done so following the 

crisis. It is well noted that the behavior of most assets has changed following the financial crisis. The 

interdependency between various assets and macroeconomic variables has also been altered. This thesis 
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provides new evidence on the interdependency between the returns of various assets and inflation 

and/or interest rate changes. The identification of assets which have the ability to provide a hedge 

against inflation and interest rate changes is particularly important with the increasing dominance of 

DC pension funds. These funds have the primary objective of protecting the capital value of members’ 

contributions. In some jurisdictions, there are laws that compel these funds to deliver returns in line 

with selected inflation or interest rates.  

This thesis also contributes to the limited literature on inflation hedging within a portfolio context. 

Naranjo and Ling (1997) noted that empirical studies that have examined the relationship between real 

estate returns and the macro-economy have been limited to the question of whether real estate returns 

are sensitive to various changes in macroeconomic variables such as inflation. Very few studies have 

explored this issue within a portfolio context. Dessner et al. (2012) concluded that, instead of selecting 

specific assets for the purpose of hedging against inflation, a diversified approach to portfolio 

construction provides a better alternative for providing a hedge against inflation. They note further 

that inflation protection strategies should also be pursued without compromising other investment 

objectives such as liquidity, return targets and volatility constraints.  

To the best of our knowledge, this is the first study to analyse the optimal composition of 

hybrid/blended real estate portfolios. Currently, open-ended real estate funds use one or two 

predetermined liquid assets, mostly cash and/or listed real estate. The studies in this area have focused 

on analyzing the performance implications of the current mix of assets within open-ended funds that 

blend cash and listed real estate with direct real estate. The use of cash within property portfolios has 

been found to impose a drag on the returns of these funds whiles the use of listed real estate 

significantly distorts the return structure of these portfolios. In this thesis, we propose and use formal 

optimisation techniques to select the optimal mix of liquid assets that should make up the liquid-asset 

components of property portfolios. The composition of these portfolios would ensure liquidity is 

directly incorporated into the portfolio construction process. We show that an optimal combination 

of listed real estate, cash and bonds would be best for these funds. A direct output of this thesis is the 

creation of a number of blended real estate return series that can be used in the much the same way as 

other real estate return series.  

In this thesis, we focus on the efficient design of DC pension portfolios especially those designed to 

serve as default funds. We simultaneously examine the issue of inflation and interest rate hedging as 

well as liquidity within the context of DC pension funds concerned with protecting their portfolios 

against losses in capital value. By considering the important issues of capital preservation and liquidity, 

this thesis provides qualitative and numerical results to guide policy on how to ensure that DC 
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members retire with adequate capital replacement to support them. Clearly, if members receive 

retirement income that is sufficient, the burden on governments to care for retirees would be reduced. 

This study is timely as it is conducted at a time when the issue of capital preservation has led many 

regulators and pension trustees to provide or consider providing return guarantees on members’ capital 

contribution in nominal or real terms. 

1.3 CONTEXT OF THE THESIS 

In this part, we provide an understanding of the key issues that underpin this thesis. We first provide 

a definition of the key terms used in this thesis. We also discuss two of the key issues that have 

dominated discussions among pension regulators, trustees and contributors – the need for capital 

preservation and liquidity. These two issues are underpin the empirical analysis conducted as part of 

this PhD study. Finally, we provide a motivation for the reasons (i) why defined contribution (DC) 

pension funds, in particular, form the basis of this study, (ii) why real estate assets are of particular 

interest and (iii) why the United Kingdom is used as the context for this study.  

1.3.1 THE CHANGING PENSION LANDSCAPE 

The two most common forms of pension schemes are Defined Benefit (DB) pension schemes and 

Defined Contribution pension schemes (DC) pension funds. In a Defined Benefit (DB) scheme, the 

scheme’s rules set out a formula for the level of benefits that scheme members will receive on leaving 

the scheme through death, retirement or ceasing employment. In Defined Benefit (DB) pension 

schemes the pension benefits paid out are often linked either to the scheme member’s final salary or 

to their average salary during the course of their career and their length of service. Eason et al. (2013) 

find that final salary arrangements are more common within DC pension funds in the UK. The 

employer bears investment risk and longevity risk so long as they are solvent.  

Within defined contribution (DC) pension funds, contribution rates are usually a fixed percentage of 

salary. These contributions are invested in a fund of the employee’s choosing. DC pension funds could 

be trust-based or contract based.  

The final pension paid out will be related to the returns on the assets in which members’ funds are 

invested (after charges) and the way that the resulting pension pot is converted into a retirement 

income. If an annuity is taken, the annuity rate available at the time that the member retires will affect 

the member’s final retirement income. 

A more subtle difference between DB and DC pensions lie in the way each plan is managed. The assets 

within a DB pension fund are pooled together and managed as one big portfolio. The assets do not 

have to be split up until the benefits are actually paid out. This is made possible by the fact that the 
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expectations of all the contributors in DB pension plans is defined in terms of their benefit. Within 

DC pension plans however, each individual’s pension pot has to be tracked separately, as this is what 

determines what they get from the fund when they retire (Ezra et al., 2009).  

Nearly all public sector schemes are Defined Benefit, as are the majority of large private sector schemes. 

However, most of the private sector schemes are closed to new entrants, and the majority of new 

private sector schemes are Defined Contribution (Carrera et al., 2012).  

Figure 1(1)    Defined Benefit – Defined Contribution Split 
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Source: Towers Watson Global Pension Study (2016) 

Apart from pure DC and pure DB pension schemes, there are funds that have features of both DB 

and DC schemes. Eason et al. (2012) identify two of such funds within the UK, cash balance plans and 

DC funds with underpins. Cash balance plans require the employee to make DC-like contributions 

during the course of their employment. These contributions are credited with a fixed rate of return 

until the employee retires. If the accumulated contributions and the returns fall below the target 

amount, the employer makes up the difference. Similarly, in the event that the amount realised exceeds 

the promised or target amount, the employer retains the surplus. DC funds with underpins promise to 

pay the employee a guaranteed pension amount (as in a DB pension) or the accumulated amount within 

the DC fund, if the annuity that can be purchased with the accumulated amount within the DC fund 

is greater.  Eason et al. (2012) noted that even though cash balance plans and DC funds with underpins 

have attributes of DC pension funds, they are classified as DB pension funds under UK statutory 

regulations.  
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One of the most significant changes that has occurred on the pension landscape globally is the move 

from Defined Benefit (DB) structures to Defined Contribution (DC) pension structures. A study by 

Towers Watson (2016) showed that the transition from DB to DC structures around the world has 

been at different rates in various countries. Whiles countries like Australia and the United States have 

DC pension funds dominating their occupational pension sector, DB pension funds still dominate in 

Japan, Canada and the Netherland. The UK still has DB pension funds having a larger asset under 

management than DC pension funds although it is expected that this would change once auto-

enrolment is in full gear.  

A number of factors have been attributed to the trend away from DB pension structures to DC pension 

structures. Turner and Hughes (2008) groups these factors into two: (i) the increasing cost of DB 

pensions to employers and (ii) changes in demand for defined benefit plans. 

1.3.1.1 Changes in the Cost of Administering Defined Benefit Pensions 

i. Changes in pension legislation 

DB pension funds are governed by rules contained in pension legislation, regulation, and tax policy 

that over time have become increasingly complex and costly to administer. Broadbent et al. (2006) 

observe that these tax and regulatory restrictions have reduced the incentive for firms to sponsor DB 

plans, by increasing the cost of administering the plans, and by limiting firms’ flexibility in providing 

benefits (e.g., by regulating funding and limiting the extent to which companies can target benefits to 

particular employees). 

In the United States, the trend toward DC Pensions was preceded by important changes in pension 

regulations, beginning with ERISA and continuing through tax and pension regulations passed in the 

middle 1980’s. Since many changes in pension regulation increase the relative cost of defined benefit 

plans and limit their effectiveness as devices for influencing retirement and productivity, it has been 

argued that the trend toward defined contribution pension plans largely reflects the effects of changing 

regulation (Clark et al., 1988). Some analysts have attributed the closures of DB pension plans in the 

U.K, to the increase in regulatory burden since the 1980s (Davis, 2004; Broadbent et al., 2006). The 

acceleration in DB pension plan closures in the U.K. since 2000 has been attributed primarily to the 

change in pension accounting towards market-based standards. Indeed, the increase in DB plan 

closures in the U.K. following the introduction of FRS 17 has led many observers to conclude that the 

reforms to pension accounting being considered in the U.S. and internationally will accelerate the trend 

away from DB pension plans due to the greater volatility in financial statements that the proposed 

reforms are expected to create. The Myners Report (2001) concluded that the shift to DC pensions in 
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the UK is a result of numerous factors including increased labour mobility and cost but that regulatory 

changes such as the Minimum Funding Rule, the removal of the tax credit on dividends and the 

requirement to guarantee Limited Price Indexation have created disincentives for employers to offer 

DB plans. In Canada it is argued that over time the evolution of pension legislation, regulation and 

case law, particularly in the area of surplus ownership, have reduced the incentives for employers to 

sponsor DB pension plans (Armstrong & Selody, 2005). 

In Australia, a change in pension legislation that introduced mandatory employer pensions was the 

main contributor to the massive shift from DB to DC pension plans. Prior to this, employer pension 

coverage was limited to a small share of the workforce, similar to the experience of other countries 

such as the U.K., Canada and the U.S. The transition to DC pension plans began with the introduction, 

in 1986, of award superannuation which required that part of an employee’s pay increase would take 

the form of a superannuation payment. It accelerated markedly under the compulsory Superannuation 

Guarantee (SG) introduced by the Australian government in 1992. Under SG employers were required 

to make contributions (currently at 9% of earnings) on behalf of their employees.  

ii. Investment risk 

Investment risk relates to the chance that the expected return on an investment would not be realised. 

In defined benefit plans, the employer and employee may split the investment risk or the employer 

could assume all of the investment risk. Contribution rates to defined benefit plans will change over 

time to offset investment gains and losses. Furthermore, a defined benefit plan guarantees a set benefit 

level at retirement, ensuring that no individual plan participant’s retirement income will be affected by 

short term changes in economic conditions (MeElreath et al, 2012).  

Defined contribution plan participants on the other hand are solely responsible for their savings and 

investment performance. To illustrate the potential impact of changes in economic conditions on an 

individual, assume it is 2008 and a plan participant is expecting to retire in the near future. If this 

individual’s portfolio were significantly exposed to equity markets, she would have experienced 

considerable losses over the course of the year. These losses, borne solely by the individual, would 

force her to delay retirement, or enter retirement with less available savings. Conversely, the pooled 

nature and long-term outlook of defined benefit plans allows the plans to provide benefits based on 

the previously mentioned benefit formula regardless of market fluctuations. Any short-term losses are 

absorbed by the defined benefit plan, and may be recovered through long-term investment returns and 

contributions. 
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Also, in DB schemes revaluation of accrued benefits and indexation of pensions in payment are key 

parts of scheme design. The value of the pension received and the cost of providing pensions may be 

affected by changes in price inflation. Wage inflation can also increase the cost of providing DB 

pensions. For ex-ample, if an active member of a final salary DB scheme receives a substantial increase 

in pay at the end of their career, this can disproportionately increase the cost of providing the resulting 

annual pension. The returns on bonds, equities and other assets in which a pension funds invests, 

would also affect their funding position. Where a scheme is in deficit, lower returns will increase the 

level of contributions required to close the deficit. Over the last decade, bond yields and equity returns 

have been volatile, and over the longer term the outlook for investment returns remains uncertain. 

Broadbent et al. (2006) observed that the shift to DC scheme within the UK appears to be employer 

driven, and is largely due to pension underfunding and its persistence due to a decline in long-term 

interest rates. These they observe have reduced the incentive for employers to offer DB plans. 

Although the shift to DC plans shifts the investment risk to the participant, Ruloff (2005) maintains 

that the employer is also vulnerable. When the market turns down, the employer will suffer from low 

employee morale as DC assets deteriorate. At the same time, the plan sponsor might want to reduce 

staff. But with low account values, individuals eligible for retirement will be reluctant to leave, keeping 

payroll costs high. In addition, without a fully funded DB plan, the employer will not have the tools 

and the spare cash needed to encourage departures through an early retirement window. On the other 

hand, when the economy is good, the plan sponsor might want to increase staff. But at the same time, 

current employees might see sufficient DC funds as a good reason for them to retire. When this 

happens, the plan sponsor would not only be pressed to hire new employees to meet growing demands, 

but he will also need to replace retiring employees. Also, as participants make bad savings and 

investment decisions, they will be left without the means to pay for their retirement. Then taxpayers 

will need to make up for all of this difference. 

iii. Increasing Life Expectancy 

Longevity risk is the risk attached to the increasing life expectancy of pension plan participants, which 

can eventually translate into higher than expected pay-out-ratios for many pension funds. In a defined 

benefit plan, benefits are normally distributed in a lifetime annuity, or a series of monthly payments 

that lasts until death. 

DB plans are implicit contracts in which the expected present value (discounted) of wages and pension 

payments must be at least equal to the expected present value (discounted) of wages a worker can earn 

in the spot market. As the workforce has aged, the costs of funding a DB plan have risen because the 

level of accrued benefits is higher and the post-retirement period has lengthened due to early 
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retirements and increased longevity. Increases in life expectancy over the last 30 years due to medical 

advances and improved lifestyles have meant that people are living longer. For example, in the average 

life expectancy at age 65 in the UK in 1981 was estimated as being 14 years. In 2014 it was estimated 

to be over 21 years. Higher life expectancy increases the amount of money that DB schemes need to 

pay out because pensions have to be paid for longer (ONS, 2014). 

In theory, increased life expectancy should not be a problem; firms forecast the postretirement 

payments and set the wage schedule and benefit parameters to keep the present discounted value of 

compensation equal to the productivity of the worker over the life of the contract. In practice, it may 

be difficult for firms to adjust compensation in response to shocks to forecasted values of longevity, 

benefit costs, or asset returns. Reasons for this difficulty include regulatory constraints, litigation risk, 

and the impact on employee morale. In addition, some evidence has suggested that workers value a 

dollar of DB pensions less than a dollar of wages (despite the tax preference for DB pensions), which 

may limit the ability of firms to substitute across types of compensation. Thus, increasing costs could 

give firms an incentive to terminate DB plans. 

1.3.1.2 Changes in Demand for Defined Benefit Plans 

The shift towards DC pensions does have some positive aspects, both for employees and for sponsor 

companies. Changes in employee characteristics have led to a change in their preference for defined 

contribution schemes. On the whole, employees have a preference for the portability which DC 

pension funds provide, all else being equal.  

i. Employee mobility 

Historically, the shift towards DC pension plans has largely been a response to changes in industrial 

structure and labour force composition that have given rise to an increasingly mobile workforce, DB 

plans, which are often not portable across employers, can penalize mobile workers since the expected 

pension benefit generally accrues only to employees who remain with the same employer throughout 

their career, DC plans avoid the accrual losses that can be associated with DB plans and provide mobile 

workers with much a more flexible means of managing their retirement savings (Broadbent et al., 2006). 

Aaronson & Coronado (2005) explore the demand and supply factors contributing to the shift from 

DB to DC plans using data on pension coverage for 40 industries. Many of the factors they examine - 

and find to be statistically and economically important to the shift in pension coverage relate to 

increases in the mobility of workers between employers and in-and-out of the labour force. On the 

demand side, demographic trends in the labour force may have made the accrual risk of DB plans a 

more important consideration for workers. For instance, workers in dual-earner couples are likely to 
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prefer pensions with benefits that are portable across employers because their employment decisions 

depend on the opportunities of their spouses. In addition, women with children may prefer the steady 

accrual in DC plans because family concerns are likely to affect their labour force participation and 

lead to greater-than-average job turnover, which is penalized significantly in back-loaded traditional 

DB benefit formulas. The authors further observe that labour markets in the U.S, seem to have become 

characterized by greater mobility, leading workers to derive less value from DB plans that traditionally 

have given disproportionate reward to long-tenured employees. 

Although there are a range of opinions, the preponderance of the evidence in the U.S. suggests that 

worker mobility has increased over the past 30 years. Explanations include changes in the industry 

composition of employment, technological change, and changes in the demographic composition of 

the labour force toward workers with less stable labour supply. More mobile workers find DC plans 

relatively advantageous because benefits in these types of plans accrue more evenly through their career 

and are entirely portable should the worker separate from the sponsoring firm or leave the workforce 

for a period. 

ii. Level of Unionisation 

The overall trend toward defined benefit contribution plans may also reflect the changing composition 

of industry and work force. It is well known that defined benefit plans are more likely to be found in 

union firms, in large firms, and in certain industries such as manufacturing (Kotlikoff and Smith, 1983). 

To some extent, the trend toward defined contribution plans may simply reflect changes in the mix of 

jobs. Unions are more common within the manufacturing industry than service industry. Brown  and 

Liu (2001) argue that a higher level of unionization in Canada relative to the U.S. is one factor 

supporting the persistence of DB pension plans. They also note that differences in pension regulation 

and tax policy have been important as well. This is likely a reflection of the fact that in Canada, the 

principal means of “freezing” a DB pension plan is to close the plan to new members while maintaining 

the DB plan for existing members. Many of the largest DB plans have been in manufacturing industries 

such as steel and auto production, and in other heavily unionized industries. As these industries have 

declined, the prevalence of DB plans has diminished. 

Gustman and Steinmeier (1992) using data from IRS 5500 filings by pension administrators in the 

United States, found that at least half of the trend toward DC Pensions is due to a shifting employment 

mix toward firms with industry, size, and union status characteristics which have historically been 

associated with lower defined benefit plan rates. Not more than half of the trend can be attributed to 

a “stampede” by firms with given industry, size, and union status characteristics toward defined 

contribution pension coverage.  
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1.3.2 KEY ISSUES FACING PENSION FUNDS GLOBALLY 

In this section, we discuss two of the main issues that underpin the empirical analysis that we undertake 

later in this thesis: (i) The demand for DC funds to guarantee a minimum amount of return to 

contributors (ii) The requirement that DC pension funds should provide a certain amount of liquidity 

within their portfolios.  

1.3.2.1 Minimum Return Requirements 

Many studies have attributed the negative feelings that people have about Defined Contribution 

pension schemes to the fear of losing even part of the nominal value of their accumulated 

contributions. It is therefore important that at least the accumulated contributions be guaranteed (e.g. 

Antolin et al., 2012; Merton, 2013, DWP, 2014).  

Antolin et al. (2012) recommended that short of making minimum return guarantees mandatory, 

governments could require that at least one capital guarantee product is made available to members of 

all DC pension schemes as it is  in Japan.   

An alternative to return guarantees is the use of public pension stabilisers and old-age safety nets. The 

existence of these protective mechanisms minimises the share of retirement income that is exposed to 

market risk. However, public pension protection mechanisms often provide only partial protection 

especially for high net-worth individuals. Antolin et al. (2012) hold that these automatic stabilisers and 

old age safety nets are more valuable to retirees than return guarantees as automatic stabilisers 

guarantee a minimum level of retirement income as opposed to a minimum value of accumulated 

savings at retirement. Often, the decision to introduce minimum return guarantees depends on whether 

the public pension system provides adequate income replacement or not. Investment guarantees are 

more essential where much of retirement income come from DC pension plans.  

Antolin et al. (2012) carried out a survey to determine the kinds of minimum return guarantees, if any, 

that exist in OECD countries. They found that several countries have regulations that require DC 

pension funds to promise a certain minimum amount of return on members’ contributions. These 

guarantees are either absolute or relative to a certain benchmark.  

Countries such as Czech Republic, Japan, Slovak Republic and Switzerland require DC plan providers 

or sponsors to offer absolute rate of return guarantees. Pension funds in the Czech Republic must 

guarantee the nominal value of contributions and must not realize a negative rate of return in any single 

year. Japanese DC pension plans must offer at least one capital guarantee product to members. In 

Slovakia, DC Pension funds must guarantee returns equal to or more than 0% every six months. The 
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fund sponsor or provider is required to make up the difference if they fail to meet this requirement. 

Swiss DC pension funds have been required to provide different absolute returns over time. The rate 

was initially set at 4% in 1995 but has been reduced over time. Currently, the minimum return is linked 

to the returns on the 7-year Swiss Government bonds. This amount is usually credited to members’ 

accounts and also applied when members switch plans or retire. To provide further certainty to DC 

contributors, the annuity conversion rate is also fixed.   

Belgian and German pension funds also offer absolute return guarantees on contributions. However, 

given that these guarantees are the responsibility of the sponsoring employers and not the DC pension 

providers, these funds are classified as Defined Benefit by local laws and International Accounting 

Standards (IAS 19). Belgian pension funds must guarantee a minimum of 3.74% on employees’ 

contribution and 3.25% on their own contributions. This rate is used to calculate what is due employees 

when they change plans or retire. German pension plans that have been established under the Riester 

reform in 2001 must guarantee a minimum return of 0% in nominal terms. Although most Riester 

pension funds are offered by pension providers, the guarantee is backed by the plan sponsor. Another 

type of German pension fund, Pensionskassen must guarantee at least 2.25% per annum. This rate is 

applied at retirement. Each year, the member’s account is credited with this 2.25% or 90% of the fund’s 

annual return, whichever is greater.  

Countries that require DC pension funds to provide relative minimum returns that are linked to certain 

benchmarks include Chile, Denmark, Hungary, Poland and Slovenia. The Danish ATP which is the 

operator of the mandatory DC pension plan, guarantees a minimum return which the ATP sets itself 

in line with long-term interest rate movements. The minimum return required of DC pension fund in 

Chile depends on their equity exposure. The funds are grouped under options A, B, C, D and E. Funds 

A and B are funds with high equity exposure whiles C, D and E have a lower equity exposure. The 

funds with higher equity exposure (A and B)  must provide minimum returns defined as the greater of 

2% less than the average real rate of return over the previous 36-month period, and 50% of the 

weighted average rate of return. Funds C, D and E must produce minimum return that is set at the 

greater of 2% less than the average real rate of return over the previous 36-month period and 50% of 

the weighted average real rate of return. Hungary DC pension funds must not deliver returns less that 

are 15% less than the yield on Hungary Government bonds. Similarly, Slovenian DC pension schemes 

must guarantee a rate of return equal to 40% of the average annual interest rate on government bonds.  

1.3.2.2 Pension Funds and Real Estate Investments 

Pension funds play a key role within the financial markets of countries, owing to their huge asset base 

and long-term investment focus. The top 19 pension funds in the world control in excess of US$35 
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trillion dollars in assets and make up an amount equivalent to more than 80% of the GDP of these 19 

countries (Towers Watson, 2015). The growth in pension funds as institutional investors has been 

attributed to their ability to pool risk and the unique tax advantages which they offer. Pension funds 

pool risk by diversifying their portfolio across a wide range of instruments whose returns are 

imperfectly or negatively correlated. International diversification also presents further opportunity for 

diversification as national trade cycles are not perfectly correlated. Risk pooling is made possible by the 

large asset base of pension funds which results in lower transaction costs and also makes them able to 

effectively invest in large indivisible assets whiles at the same time balancing the illiquidity of such 

investments. Investing through pension funds also offers some unique tax advantages to contributors. 

In particular, taxes are paid only at the time of receipt and not when returns are being earned. Often, 

most contributors will be in a lower tax bracket at retirement and so may lose very little of their 

investments. In many countries, pension contributions are tax deductible whiles in others, tax-free 

lump sum deductions are allowed. These benefits make investing through pension funds more tax 

efficient and could potentially result in higher returns for contributors. 

Pension funds also represent very important investors in most financial markets, especially within the 

real estate market. The large capital base of many pension funds and their long-term investment 

horizon makes gives them the capacity to invest in projects, such as real estate, that require large 

amounts of funds to be invested over long periods. Similarly, real estate comprises the major wealth 

of most countries and is often cited as the bedrock of modern society. The real estate industry is a key 

driver of economic development in most countries and has both forward and backward linkages to 

other sectors within the economy. The industry gives both breadth and depth to modern financial 

systems and has recorded annual transaction volumes in excess of a trillion US dollars (Doling et al., 

2013). It is estimated that the real estate industry contributed over €285 billion to the European 

economy in 2011. The industry also employs more than four million people (AREF, 2012). The 

forgoing discussion points to the symbiotic relationship between real estate and pension funds. A 

growth in one market often results in a growth in the other while a crisis in one market would lead to 

a disaster in the other. The recent financial crisis (2007 - 2008) for example demonstrated how critical 

the real estate industry is to financial markets and the global economy in general. Antolin et al. (2012) 

estimated that the 2007-2008 financial crisis which originated in the housing market led to investment 

losses of 20-25% or even higher in some cases, among pension funds.  

However, an analysis of institutional real estate holdings shows that real estate investments have been 

volatile over the years. An annual survey by Pensions & Investments (2010) revealed that worldwide 

real estate asset under management by tax-exempted institutions peaked in June 2008 at US$1 trillion 

and plunged to US$677 billion in June 2010. Andonov et al. (2012) lament that despite this 
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phenomenon, very little remains known about what determines the variations in real estate allocations 

by various institutional investors.  

Although the issues discussed in this thesis are relevant to most, if not all, countries where DC pension 

funds have become the dominant form of retirement income provision, the simulations in the various 

empirical chapters are carried out from the perspective of a UK DC pension investors who desires to 

protect the real value of pension contributions as well as provide adequate liquidity within their 

portfolios.  The UK also presents a flexible regulatory environment where Pension trustees can set 

their own objectives regarding issues like minimum returns, liquidity etc. This allows us to consider 

different scenarios when carrying out the simulations. For example, unlike most other OECD 

countries, the United Kingdom does not have a specified benchmark against which the performance 

of DC pension funds are evaluated. A review of the Statement of Investment Principles of Master trust 

pension funds in the UK shows that the trustees of the various funds have different inflation and 

interest rates against which they would hedge at least over the long run. These are examined later in 

more detail. The impact of what measure of inflation or interest rate is used within DC schemes is not 

straightforward especially as the rate only represents a floor and not what is actually paid to a DC 

contributor. Analysis in this thesis contributes to this discussion by showing whether the decision of 

DC trustees to adopt the RPI rate for example as a performance benchmark would result in better 

portfolio performance than another fund that adopts the CPI rate.  

Using the UK as the context within which we situate our empirical studies also ensures that we have 

access to data on a wide array of traditional and alternative assets over an extended length of time. The 

United Kingdom is one of the biggest and most matured pension markets in the world and represents 

one of the countries where DC pension funds are expected to become the main source of income 

replacement for most retirees in the near future. Tetlow & Crawford (2012) observed that, within the 

UK, employer-provided defined benefit (DB) pension schemes are increasingly scarce in the private 

sector while the introduction of auto-enrolment in 2012 is expected to accelerate the move towards 

DC pension schemes.  

It is important to note that by using UK the UK as our case study, we are not suggesting that all the 

various scenarios presented pertain only to the UK. Instead, we are conceptually testing whether the 

allocations are more sensitive to the inflation or interest rate benchmark being hedged against or the 

investment objective being pursued relative to a given benchmark. This approach is consistent with 

the approaches used by other studies on this subject (Munnell et al., 2009; Antolin et al., 2012; Grande 

and Visco, 2010, Scheuenstuhl et al., 2011). We will however provide enough background information 
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on the various origin of the regulations and investment practices that form the basis of any analysis 

that we conduct in this thesis.  

1.3.2.3 Pension Liquidity 

Aside setting risk and return targets, there is an increasing emphasis on liquidity as a key objective 

among DC pension funds. Liquidity is a multi-faceted concept that requires further and closer 

definition if it is to be used meaningfully (Goodhart, 2008). In general, there are two kinds of liquidity 

(i) Funding liquidity (ii) Market/Asset liquidity. There are a number of measures that can be used to 

measure different aspects of liquidity. In Chapter 5, we provide a detailed review of these measures of 

liquidity.  

A market is considered liquid at any point in time there are willing buyers and sellers in large numbers. 

One of the earliest definition of asset liquidity was provided by Keynes (1937):  “An asset is liquid if it 

is more certainly realisable at short notice without loss”.  In this sense, cash is the most liquid asset as 

it can be used directly for economic transactions. Asset liquidity risk according to the Undertakings for 

Collective Investment in Transferable Securities (UCITs) is: “the risk that a position in the UCITS 

portfolio cannot be sold, liquidated or closed at limited cost in an adequately short time frame and that 

the ability of the UCITS to comply at any time with Regulation 104(1) is thereby compromised”.  

Section 104 (1) which is referred to in this definition states simply that “Subject to Regulation 63(2), a 

UCITs shall redeem or repurchase at the request of the unit holder.”  

Timmermans (2009) groups market illiquidity into three. The first form of market illiquidity is the 

absence of a secondary market. For example, open-ended real estate funds are not normally traded on 

a secondary market. So are private equity funds which also lack a secondary market. These funds often 

undertake to redeem their shares occasionally. They may also arrange matched bargains between buyers 

and sellers. The second form of illiquidity occurs when a market that is otherwise liquid becoming 

illiquid when there are too many sellers for the number of buyers of a unit. When this happens, market 

makers withdraw from the market. A third form of illiquidity relates to markets that have limited 

liquidity. For example, hedge funds allow redemptions only occasionally, for example once every 

quarter, often with a notice period of one month.  

Drehmann and Nikolaou (2008) define funding liquidity as “the ability to settle obligations with 

immediacy”. Consequently, funding liquidity risk is the chance that an institution would not be able to 

meet or settle its obligations promptly. From the perspective of a pension fund, funding liquidity risk 

would mean that the fund cannot meet its financial obligations as and when they fall due or that they 

cannot meet these obligations without incurring significant losses.  
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Liquidity risk from the perspective of a pension fund relates to the risk that the fund cannot meet its 

financial obligations as and when they fall due or that they cannot meet these obligations without 

incurring significant losses. In comparing banks to life insurance companies and pension funds, Davis 

(1988) observed that the actual maturities of bank deposits are difficult to foresee and hence they 

require a relatively large amount of liquid assets to meet demand for these deposits. Pension funds and 

life insurance companies however have long-term assets and liabilities and as such face very little 

liquidity risk. Apart from early retirements (for pension funds) and early surrender (for life insurance 

companies), premature withdrawal requests are rare. Also, pension funds and life insurance companies 

receive a steady inflow of funds in the form of regular contributions (for pension funds) and premiums 

(for life insurance companies). Davis (1988) asserted that the main risks faced by pension funds and 

life insurance companies were actuarial and market risks. Actuarial risk relates to the risk that the death 

rate of beneficiaries differs from what was predicted while market risk is the risk that the accumulated 

assets would not provide the returns required to cover the pay-outs that were promised.  Unexpected 

changes in earnings could also lead to contributions differing from what was initially estimated.  

Clearly, the comparison of Davis (1988) was based on the situation within defined benefit pension 

schemes. For DC pension schemes, the obligations or outflows of pension funds can be classified into 

(i) the payout of benefits as a result of specified life events (ii) the transfer of funds when pension 

contributors are allowed to switch between providers or switch portfolios (Enrique et al., 2017). This 

means that the outflows of DC pension funds may be less predictable than what Davis (1988) 

suggested. A study by Australia’s Prudential Regulation Authority (2008), for example, revealed that 

portability and the imminent retirement of a large cohort of DC members as well as illiquid investments 

resulted in a situation where Australian DC funds faced significant liquidity risk. Among the many 

suggestions put forward to help mitigate the increasing liquidity risk of DC pension schemes is the 

need for the funds to recognise that liquidity risk constitutes a material risk and must as such document 

appropriate measures to help them mitigate these risks. It is also important for the schemes to 

undertake a comprehensive liquidity stress test and for liquidity to be managed at the investment option 

level and not just at the whole fund level. Funds must also recognise that even otherwise liquid 

investments could become illiquid and remain that way for some time.  Commenting on the UK 

situation, Porritt (2016) observed that the recently promulgated ‘freedom and choice’ legislation in the 

UK would make liquidity considerations even more complicated for UK DC pension funds. We 

provide a more detailed discussion of the ‘freedom and choice’ legislation and its implication in more 

detail in Chapter 2. Effectively, this legislation makes it possible for DC members who are 55 years old 

and above to withdraw their pension pots in a single go or in several tranches. This could potentially 

result in larger than expected outflows for DC pension funds. To mitigate this risk, Porritt (2016) 
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recommends that funds need to examine the age profile and other characteristics of their members in 

order to determine how many of them are approaching the age of 55 and the proportion of them that 

are likely to make such early withdrawals. Those funds without the operational sophistication to hedge 

against liquidity risk must ensure that they have a large buffer to accommodate such capital calls. 

The less predictable nature of outflows of DC pension schemes has important implications for the 

liquidity and the asset allocation within DC pension funds. Among other things, Morales et al. (2017) 

blame the lack of diversification within DC pension portfolios largely on the less predictable nature of 

outflows due to switching. Morales et al. (2017) studied the effect of switching on DC pension 

performance in a number of countries. They found that switching skews the portfolios of DC pension 

funds towards short-term instruments. They further found that as pension funds mature, they tend to 

decrease their investment in short-term assets and begin to invest in longer-term assets. Increased 

allocation to longer-term assets have also been due to a relaxation of restrictions on investments. 

Similarly, Musalem et al. (2012) analysed the returns of pension systems in 27 countries from 1990-

2007. They found that that occupational schemes tend to generate returns than personal schemes. 

Additionally, closed schemes that do not allow members to switch often perform better than those 

that allow members to switch suppliers. The difference in performance was often due to an over-

concentration of some funds investment in short-term securities such as government bonds and T-

bills.  

It is important to note that illiquidity may not always be a bad thing for investors. Investors who can 

tolerate some level of illiquidity are in a position to earn illiquidity premiums and thus record attractive 

earnings over time. For investors who are not seeking to exit a fund arrangements such as restricted 

liquidity, minimum holding period and exit fees could serve as a form of protection (Timmermans, 

2009). Dusonchet (2006) found that hedge funds that offer less frequent redemptions tend to perform 

better than those that offer frequent redemptions.  

Following the 2008 financial crisis, investment managers, regulatory agencies, pension trustees and 

consultants have increased their emphasis on liquidity. This increased emphasis also comes at a time 

that yields on liquid assets such as bonds has been at an all-time low. This means that, these investors 

and investment managers increase their allocation to less liquid assets in order to boost their returns. 

A comparison of the portfolios of DC and DB pension portfolios shows that DC funds are less 

diversified. DC pension funds are heavily invested in liquid assets such as stocks and bonds but not in 

alternative assets such as real estate, commodities, private equity, hedge funds etc (Aon, 2011; DCIF, 

2013; Towers Watson, 2015; UBS, 2015; Schroders, 2016). The lack of diversification within DC 

pension funds has been largely attributed to the daily dealing requirement placed on DC pension funds 



23 

 

(DCIF, 2013; Blake et al., 1999). Towers Watson (2015) estimates that DC pension contributors could 

end up with about 5% in additional pension if these funds moved away from a reliance on liquid funds 

and rather include an optimal amount of alternative assets in their portfolios.  

Although this practice of investing only in funds that provide daily pricing and liquidity is widespread 

among DC pension funds, some studies have concluded that there is no regulation that requires DC 

funds to restrict their investment to only liquid assets. For example, Ezra et al. (2009) found that the 

increased emphasis on liquidity within DC funds stems from the fact that DC pension funds were 

initially designed to provide a vehicle where contributors could move money from one investment 

vehicle to the other regularly. Mohammed (2015) attributed the move towards daily trading originated 

from competition between fund administrators who used the speed at which they are able to 

invest/disinvest as a measure of their efficiency. Towers Watson (2013) concluded that the daily 

liquidity requirement by DC pension funds is a result of ambiguities and perceived fiduciary concerns 

over such areas as liquidity, daily pricing, fees and reporting. In order to encourage investment in long-

term investments, it is important for regulators to work to resolve these concerns.   

Harrison et al. (2013) also call for a relaxation of the daily liquidity requirement to make it easier for 

these funds to attain optimal allocations. Another factor that has promoted the move towards daily 

liquidity requirements is the desire by regulators to promote flexibility in DC pension arrangements 

with a view to promoting competition. However, evidence available suggests that many pension fund 

contributors do not really make use of this increased flexibility, which unfortunately comes at a high 

cost. However, Mohammed (2015) concluded that immediate access to pension contributions is less 

of a priority DC members who are in the contributory phases.  

In response to the liquidity requirements, many investment managers have developed products that 

would enable DC pension funds to gain access to real estate and other illiquid, long-term investments 

whiles at the same time satisfy their liquidity needs. In Chapter 2, we provide details of some of these 

products that have been developed for UK DC investors. 

1.4 ORGANISATION OF THE THESIS 

In this section, we set out the way in which the discussion within this thesis is organised. The current 

chapter (Chapter 1) presents a general introduction to this thesis. The first part of this chapter presents 

the objectives of the thesis and the motivation behind the studies that make up this thesis. The 

contributions of this thesis to the literature and the real estate investment industry are highlighted along 

with the limitations and areas for further research. The second part of Chapter One sets the stage for 

the discussions in this thesis. The main types of pension funds are first defined. We proceed to discuss 
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some of the key changes that have occurred on the global pension landscape – particularly the shift 

from DB to DC pension structures. We end the chapter by introducing two of the key issues that are 

of concern to DC pension funds and that underpin the discussions in this thesis – the issue of capital 

preservation and liquidity.  

Chapter Two builds on the context provided in Chapter One by presenting a more detailed discussion 

on the UK pension market. The chapter gives an overview of the UK pension system and the changes 

that have occurred over time. The accelerated move from DB to DC pensions following the 

introduction of Auto-enrolment is highlighted along with other changes introduced by the 2015 

pension reforms. We carry out a review of the Statement of Investment Principles (SIPs) of various 

master trust pension funds in the UK. The goal of this review is to identify the objectives of these 

funds as regards promised outcomes and the management of liquidity within their investment 

portfolios. The chapter ends with a comparison of the portfolio composition of DB and DC pension 

funds in the UK and around the world. This analysis puts into perspective the calls from various 

quarters that DC pension funds need to become more diversified.  

Chapter 3 reviews literature relevant to this study. The chapter focuses on role that real estate plays in 

the portfolios of pension funds and provides a builds a background to the analysis conducted later in 

the thesis. We review literature that demonstrates the range of optimisation and econometric 

approaches that have been used by various researchers in the analysis of the role real estate plays within 

investment portfolios. The range of findings from these studies are also highlighted.   

Chapter 4 is the Data and Methodology Chapter. The first part of this chapter brings together all the 

issues relating to the data used in our empirical analysis – the sources of data, composition of the 

various return indices, issues with the various sources and the steps taken to address those issues. A 

section of the Data Chapter is devoted to the discussion of issues surrounding the use of appraisal 

based indices, specifically the IPD property index. The discussions point to the fact that, although they 

have their limitations, appraisal-based indices such as the IPD property portfolio indices do a good job 

of tracking the performance of the underlying markets. Once we complete a discussion on data used 

within this study, we proceed to develop a theoretical framework which provides a background to 

statistical, econometric and optimisation techniques employed in the various empirical chapters. We 

end the chapter by presenting some summary statistics on the various assets that form the basis of our 

empirical analysis. Measures taken to address concerns over the statistical properties of the various 

assets such as appraisal smoothing and stationarity are also outlined and the results of the data 

transformation techniques discussed.   
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The empirical analysis in this thesis can be thought of as being in two parts. The first part of this thesis 

looks at the illiquidity associated with real estate investments vis-à-vis the growing emphasis on liquidity 

by institutional investors, particularly, DC pension funds. The discussion here shows that real estate 

funds can be structured in a way that makes them an appropriate investment vehicle for DC pension 

funds to access the real estate market.  

The liquidity part of this thesis is made up of two empirical chapters – Chapters 5 and 6. The first 

empirical chapter, Chapter 5, is largely exploratory. In this chapter, we discuss the concept of liquidity 

and how different aspects of liquidity are measured within the mainstream finance literature. Empirical 

applications of these measures of liquidity within the field of real estate are also discussed.  

Chapter 6 focuses on hybrid or blended real estate funds which have become popular among DC 

pension funds as a way to access the direct real estate market whiles maintaining an acceptable level of 

liquidity. For an asset to be considered liquid enough for DC pension funds, it needs to be priced and 

traded on a daily basis. Blended/hybrid real estate products promise daily liquidity and dealing. To do 

this, these funds allocate a significant amount of their assets to liquid, publicly traded assets, often cash 

and listed real estate. Since these portfolios contain assets other than direct real estate, their returns, 

understandably, tend to deviate from the returns of the underlying property market. In Chapter 6, we 

apply formal optimisation techniques to the construction of hybrid/blended real estate funds that 

contain a certain proportion of direct real estate and some liquid, publicly traded assets. This is in 

contrast to the current practice of simply adding a certain amount of cash and/or listed real estate to a 

pre-specified percentage of direct real estate. The goal is to determine the optimal range and mix of 

assets that these funds need to hold in order to deliver property-like returns as much as possible. We 

employ the tracking error optimisation approach which is an extension of the Classic Markowitz 

optimisation framework. The extension is made to accommodate the needs of investors who wish to 

benchmark their performance against that of another portfolio. The benchmark portfolio for the 

optimisation in Chapter 6 is the IPD All Property portfolio. In order to gauge the ability of the various 

portfolios to produce out-of-sample performance that mimics the performance of the IPD direct 

property portfolio, we employ a variety of approaches including rolling tracking errors and dynamic 

conditional correlations estimated within a GARCH framework. We show that adding other liquid 

assets such as cash, general stocks and bonds of various maturities leads to improved tracking error 

and better performance within the hybrid real estate portfolios.  

The analysis in the first part of this thesis shows that although liquidity is a major concern among DC 

pension funds, there are a number of ways that real estate portfolios can be put together to meet the 

daily liquidity needs of these funds. Once we confirm that real estate can be included in DC fund 
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portfolios, we can proceed to analyse the inflation and interest rate hedging characteristics of real estate 

as well as other traditional and alternative assets which these funds invest in.  

As discussed in the earlier chapters, inflation hedging is important for all investors but is particularly 

important for institutional investors such as DC pension funds who have return promises that are tied 

to inflation and interest rate changes. The second part of this thesis is dedicated to the identification 

of assets which have the ability to hedge against the inflation and interest rates which some UK master 

trust DC pension funds have adopted in their Statements of Investment Principles.  In Chapter 7, we 

use a number of econometric models to analyse the ability of real estate assets to hedge against inflation 

and interest rate changes. The Autoregressive Distributed Lag (ARDL) approach to cointegration is 

used to determine the long-run inflation and interest rate hedging ability of the range of assets which 

DC pension funds invest in. This approach is preferred as it has the ability to handle cointegration 

relationship among variables irrespective of their order of integration. Similarly, the Toda and 

Yamamoto (1995) approach to testing for Granger causality is adopted to determine the short-run 

inflation hedging ability of the various assets. We carry out a sector-level analysis using a broad 

spectrum of asset sectors made up of real estate, stocks, bonds and alternative assets. We find that 

several assets provide a hedge against inflation but not interest rate benchmarks. Real estate in 

particular is a good hedge against inflation.  

Although the analysis in Chapter 7 helps us to identify assets that can serve as an inflation or interest 

rate hedge the chapter does not consider the issue of optimal allocation within investment portfolios. 

In other words, the chapter does not address the issue of how to combine different assets within an 

investment portfolio to ensure that the purchasing power of these portfolios is preserved. In the 

penultimate chapter, we analyse the optimal allocation within portfolios designed to hedge against 

inflation and interest rate changes. We follow a growing stream of literature on inflation-hedging 

portfolio analysis and construct inflation and interest rate hedging portfolios using different inflation 

and interest rate measures. As in Chapter 6, this chapter also makes use of the tracking error 

optimisation model along with a semi-variance optimisation model. The risk-adjusted versions of the 

two models are also implemented i.e. Sharpe ratio for the model based on tracking error and Sortino 

ratio for the one that uses semi-variance as the measure of risk. In determining the role that real estate 

plays within the resulting portfolios, we run the analysis without any real estate series initially and then 

with different real estate vehicles. We also unsmooth the real estate series to determine whether the 

allocation to real estate is driven by the appraisal smoothing problem associated with real estate and 

other private market assets. The procedure of Geltner (2003) is used in unsmoothing the real estate 

series. This procedure and its implementation as well as its effect on real estate and the various private 

market series are also presented in this chapter.  The results show that, for those portfolios constructed 
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to purely hedge against inflation or interest rate changes, real estate and bonds, especially short-term 

bonds receive significant allocations. Real estate also receives significant allocations within portfolios 

optimised to maximise risk-adjusted returns.   

The last chapter provides a summary of the various studies undertaken as part of this thesis. The 

implications of the findings of this study and some recommendations are also highlighted. We finish 

with a recap of the limitations of the various studies and an indication of some areas of future research 

that naturally arise from these limitations.     



28 

 

CHAPTER TWO – STYLISED FACTS ON THE UK 

PENSION MARKET  

2.0 INTRODUCTION 

In the second part of Chapter 1, we presented a general introduction to pension markets and how the 

global pension landscape has evolved over the years. This chapter is dedicated to the UK Pension 

Market. We provide an overview of the UK pension market and discuss the various changes that have 

occurred within the past few decades. We then turn our attention to the regulatory environment and 

investment activities of these funds – i.e. the investment regulations, allocations and their real estate 

investment activities.  

2.1 AN OVERVIEW OF THE UK PENSION MARKET 

This section looks at the key aspects of defined benefit and defined contribution pension arrangements 

within the UK. The changes that have occurred over the pension landscape over the past decade is 

reviewed.   A survey by the Pensions Policy Institute (PPI, 2017) concluded that due to a combination 

of market, demographic and policy changes, retirees in the near future are more likely to retire with 

Defined Contribution Pension savings, live longer in retirement, receive state pension later and 

experience greater flexibility in accessing their pensions.  

2.1.1 TYPES OF PENSIONS IN THE UNITED KINGDOM 

The UK pension system is made up of a compulsory, redistributive state tier and a voluntary, non-

redistributive private tier (Silcock et al. 2015). A new, single tier, state pension scheme has been 

introduced, effective April 2016, and replaces the basic and additional state pension arrangement that 

had been in existence. The pension amount for 2017/2018 is set at £159.35 per week for a single 

pensioner. To qualify, one has to make national insurance contributions for 35 years.  

A second tier of pension within the UK is the occupational pension schemes which can be sponsored 

and managed by the employer or a third-party. These schemes can also be run and paid for by the 

government for the public sector or by private sector employers. A wide range of occupational pension 

arrangements currently exist in the United Kingdom. The PPI (2017) survey found that there are about, 

including DB and hybrid schemes, there are five types of pension arrangements in the United 

Kingdom. These include Defined Benefit Pensions, Individual DC Pensions, Group Personal 

Pensions, Occupational DC Pensions, Hybrid Pension Schemes.  
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Public sector schemes are defined as pension schemes run and paid for by the government for the 

benefit of government employees. Public sector schemes are statutory, formed and reformed through 

Acts of Parliament. The Armed Forces scheme can be amended only by primary legislation, which 

requires full Acts of Parliament. Other schemes can be amended by secondary legislation which is a 

speedier and less onerous procedure. Private sector schemes can be amended by the trustees and could 

be closed down by the sponsoring company. 

There are 3 main differences in structure between public and private sector schemes. Firstly, Public 

sector schemes are - except for the Local Government scheme –unfunded. This means that pension 

benefits are paid out of current income as and when they become due. All approved private sector 

schemes and the Local Government scheme are funded (scheme members’ pension rights should be 

covered by assets held under trust). 

The first scheme for government employees was formalised by an Act of Parliament in 1810. The 

scheme was part of a government reform process to improve the efficiency of the Civil Service. Other 

state employees did not receive a pension scheme until much later. There are six main unfunded public 

sector pension schemes, the funded Local Government scheme and other quasi-public schemes. 

There are seven public sector schemes with total active membership of around 5 million people, of 

different structures: Those centrally run and paid for directly by government departments and the 

locally run or ‘branded’ schemes where the regulations are set centrally but each scheme is separate and 

run by a local authority. There are also a number of much smaller schemes such as those for MPs, the 

Judiciary, Research Councils and the UK Atomic Energy Authority, with total active membership of 

around 31,000 people (Carrera et al., 2012).  

Table 2(I)    The Seven Main Public Sector Schemes 

 Centrally run Locally run 

Unfunded − NHS 

− Teachers 

− Armed Forces 

− Civil Service 

− Police 

− Fire-fighters 

Funded  − Local Government 

Source: Carrera et al. (2012) 

Private sector pension provision in the UK includes all non-state provided pension benefits. These 

pensions can take the form of Defined Benefit, Defined Contribution or hybrid schemes. Following 
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the public sector, the first modern-style private sector schemes began to emerge in the early nineteenth 

century, mainly with large employers such as state chartered companies, utilities and railways.  

In general, DC pension schemes can be organised as a Trust-Based scheme run by a board of trustees 

or could be offered as contract-based. Trust based DC pension schemes are set up by the employer. 

They are can either be administered by an in-house or third party pension administrator for groups of 

workers. An insurance company may provide part or all of the services. Master Trust pension funds 

create a platform which different companies can join in order to benefit from economies of scale. The 

Master Trust provider covers all the administration and compliance issues. Each employer however 

determines the contribution levels for themselves and their employees.  

On the other hand, contract-based DC pension schemes are established by a contract between the 

individual employee and the service provider. There is no contractual relationship between the 

employer and the service provider. Even where there is a group policy, the scheme is still treated as a 

series of individual contracts.  

2.1.2 FACTORS ACCOUNTING FOR THE GROWTH OF DC FUNDS IN THE 
UK 

Another survey by the Pensions Policy Institute (PPI, 2012) found that four factors underpin the shift 

from defined benefit to defined contribution pensions in the United Kingdom. These factors include: 

(i) Increased life expectancy (ii) Investment risk (iii) Inflation (iv) Changes in regulation and legislation. 

The combined effects of these changes means has resulted in an increase in the contributions required 

to fund a typical final salary scheme from 11% in 1950 to 21% in 2012 (PPI, 2012).  

Life expectancy in the United Kingdom has been on the ascendency due to medical advances and 

improvement in lifestyles. In 1981, the life expectancy in the UK at age 65 was 14 years. This figure 

has increased steadily over the years and currently stands at an average of over 20 years (ONS, 2016). 

Higher life expectancy means that DB pension schemes need to pay pension for a longer time, thus 

increasing cost. Some DB pension funds have resorted to transferring longevity risk to insurers with 

Buy-ins and Buy-outs reaching £40 billion in 2007.  

Investment risk can be a major issue for DB pension funds as sponsors bear investment risk under 

defined benefit arrangements. Over the last decade, returns on stocks and bonds in the UK has been 

volatile, leading to concerns among DB plan sponsors that they will not be able to sustain benefit 

payments. In order to better match their liabilities, PPI (2012) found that DB pension funds have 

reduced their allocations to equities and increased their allocations to bonds.  
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Inflation is also an important issue for DB pension funds as the value of benefits beneficiaries receive 

under DB pension arrangements are affected by price inflation. In DB pension schemes, revaluation 

of accrued benefits and indexation of pensions in payments are essential parts of the scheme design. 

Although there is a cap on the mandatory indexation, this does not entirely eliminate inflationary risk 

for DB sponsors. Aside price inflation, wage inflation also poses a challenge for DB plan sponsors, 

especially for those who operate a final salary DB scheme. For example, if an active member on a DB 

scheme is given a huge pay rise shortly before retirement, the cost of providing pension for this 

individual would consequently be increased.  

Several changes in pension regulation in the UK have resulted in an increase in the cost of DB pension 

funds and consequently their lack of attractiveness to sponsors. These regulations include changes in 

accounting standards for DB pension funds and changes in the standards for DB pension funding. 

Changes in taxation of pension funds and some EU regulations have also led to an increase in the cost 

of providing DB pensions.  

2.2 CHANGES ON THE UK PENSION LANDSCAPE 

2.2.1 AUTO-ENROLMENT 

Defined benefit pensions have been in decline in the UK since the early 1960s. The membership of 

DB pension schemes reached an all-time high of 6 million in 1967 but has since been on the decline. 

Membership in DB pension schemes in the UK fell to 1.3 million in 2016 down from 1.6 million the 

year before (Ippolito, 1986; Turner and Beller, 1989). Turner and Hughes (2008) noted that the 

introduction of the Pensions Act 1990 acted as a catalyst for the move away from DB pension schemes 

towards DC pension schemes. The act prohibited the refund of contributions to members who change 

jobs and instead stipulated that these funds should be preserved and revalued in line with the lesser of 

the UK consumer price index and 4%. The act also established a minimum funding standard among 

other things. Whelan (2003) argues that the minimum funding standard increased the costs and resulted 

in a shift away from DB pension schemes.  

Defined contribution schemes have however been experiencing growth. There was an acceleration in 

the growth of DC pension schemes in the early 1980s, both in terms of assets under management and 

their membership. Active membership of Defined Contribution pension schemes, which remained at 

around one million between 2008 and 2014 increased to 6.4million in 2016. (ONS, 2016). The main 

catalyst for the growth in DC pension funds in the UK is the introduction of Automatic Enrolment 

which is a staged process that requires employers to enroll qualifying employees into a workplace 

pension. The employees however have an option to opt out of the scheme. PPI (2017) estimates that 
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over 8.3 million employees have been automatically enrolled by July 2017 with the opt-out rate 

averaging 9%.  

Since the beginning of auto-enrolment, a number of Master Trust pension schemes have been set up 

in the UK. The biggest Master Trust pension scheme is the National Employment Savings Trust 

(NEST), which is a qualifying scheme established under the Pensions Act 2008, to help companies 

meet their obligations with the introduction of automatic enrolment. More than half (59%) of the 

employees enrolled under auto-enrolment have been enrolled into master trust schemes by March 

2017. About 33% of enrolments have been into Contract based DC schemes. 4% were enrolled into 

DB pension schemes and Hybrid pension schemes. Less than 1% were enrolled under other trust-

based DC pension arrangements.  

When members join DC pension funds, they are placed in default funds unless they make an active 

choice to invest in a different fund.  Over 99% of Master Trust DC pension members were found to 

be invested in the default fund in 2017 (PPI, 2017). Most of the default funds make us of life-cycle 

investment strategies.  Life-cycle strategies typically make use of more volatile equity-based investments 

at the initial stages, when a member is further from retirement. As they get closer to retirement, the 

portfolio is shifted more to the use of fixed-income securities and cash as the member gets closer to 

retirement. Some of these funds start with less volatile assets to decrease the chance that members may 

stop contributing when they see a drastic loss in the value of their pension pots at an early stage.  

2.2.2 FREEDOM AND CHOICE 

Another significant change on the UK pension landscape is the introduction of the Freedom and 

Choice Legislation. This gives DC contributors greater flexibility in the way they can access their 

pension savings.  

The introduction of the Taxation of Pension Act 2014, the Pension Act 2014 and other supporting 

legislations paved the way to what has become known as ‘pensions freedoms’. Pension contributors 

can now draw from their pension pot as they wish after their 55th birthday. The only hindrance to how 

much they can withdraw is the rules of the particular DC pension scheme to which they belong. There 

are two main options are open to DC members: (i) Flexi-access drawdown and (ii) Uncrystallised funds 

pension lump sum.  

Flexi-access drawdown (FAD) replaced capped drawdown from 6 April 2015. Any existing drawdown 

arrangement automatically changed to FAD on 6 April 2015. The plan holder could take 25% of the 

taken as tax free lump sum. This tax free cash is also known as pension commencement lump sum 

(PCLS). The remaining 75% stays invested in a drawdown fund. There is the opportunity to withdraw 
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income amount from the fund by the individual, as they see fit. Any income withdrawal will be liable 

to taxable income- at the individual’s highest marginal tax rate, which is 40% or 45% for higher earners.  

The second option, uncrystallised funds pension lump sum, allows the DC contributor to withdraw a 

certain portion or all of his pension pot as a lump sum without first moving it into a drawdown fund. 

25% of the amount is normally tax free and the remaining taxed as pension income.  

The Taxation of Pension Act 2014 also made changes to how the amount remaining in a pension fund 

on the death of the DC member would be taxed. Under the old pension legislation, any remaining 

amount attracts a flat-rate tax of 55% whatever the age of the DC member at death. However, the new 

rules stipulate that no tax would be charged on pension benefits if the contributor dies after the age of 

75.  If the beneficiary DC contributor dies after the age of 75, the amount can be taxed at the marginal 

income tax rate of the beneficiary. The beneficiaries can also leave the funds in the fund and draw it 

over time as taxable income or pass it on to the next generation and so on.  

The Pension Act 2014 introduced a new class of national insurance contributions which enable those 

who have reached the state pension age to contribute a lump sum that would enable them receive a 

top-up to their state pension of up to up to £25 per week. Men born before April 1951 and women 

born before April 1953 are eligible to make these contributions. The amount of lump sum that the 

retiree needs to pay in return for these top-up depends on their age. For example, a 65-year-old 

pensioner would need to pay £890 for a £1 a week top-up in state pension payment whiles a 75-year-

old would need to pay £674 for the same amount of top-up.  

The Pension Policy Institute (2017) survey shows that although the number of annuities purchased by 

retirees has been falling since 2009, the introduction of the Freedom and Choice has led to a fall in the 

number of annuities purchased. The number of annuities purchased peaked at 466,000 per quarter in 

2009 but in 2017, only 20,000 annuities were purchased by retirees per quarter. On the other hand, the 

use of income drawdown contracts has been on the increase. The sale of income drawdown contracts 

doubled from 40,000 per quarter in 2014 to 80,000 per quarter in 2016. Although the number of initial 

lump-sum withdrawals increased from to 120,688 withdrawals in the second quarter of 2015, it has 

since fallen to an average of 59,000 withdrawals per quarter by the fourth quarter of 2016. 

2.2.3 OTHER CHANGES 

There are plans to increase the retirement age in the UK from age for both men and women is expected 

to increase to 66 in 2020 and further to 67 by 2028 and finally 68 by 2039. This means that people can 

expect to receive state pension later than is currently possible.  
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A number of regulatory changes have also been put in place following the introduction of the 

Automatic Enrolment. In 2015, contract based pension schemes are expected to set up Independent 

Governance Committees to ensure that these funds act in the best interests of members and that 

members receive value for money. Similarly, trust-based DC pension schemes are required to design 

default schemes that are in the best interest of contributors, ensure that financial transactions are 

prompt and accurate and that charges and costs are reasonable. The 2017 Pension Schemes Act also 

requires  

2.2.4 PROPOSED CHANGES  

In 2012, the UK Pension Minister Steve Webb called for pension providers to consider offering 

workers an affordable ‘money-safe’ guarantee that would ensure that that DC members would at least 

ensure that members would at least get back the nominal value of their accumulated contributions (i.e. 

individual contributions, employer contributions and tax relief).  The Department of Works and 

Pension (DWP) announced in a 2014 press release that new pension reforms to the pension system 

were being considered by parliament. These reforms are aimed among other things to ensure that 

certainty would be brought back to pension savings by opening up new types of schemes which would 

remain affordable to employees but deliver better outcomes. In particular, a ‘shared-risk’ category 

would be given legal backing to encourage greater innovation in DC pension design.   

On November 22nd 2012, the UK Department for Work and Pensions published ‘Reinvigorating 

Workplace Pensions’, in which it proposes the introduction of a new category of pensions in the UK 

market: defined-ambition (DA) pensions. Schouten and Robinson (2012) describe DA pensions as an 

attempt to reintroduce (or maintain) the concept of an employer bearing some risk on behalf of their 

employees. There are currently a number of different DA proposals around the world one of which is 

currently being implemented in the Netherlands. Schouten and Robinson (2012) describe the 

Netherland system as DA from DB (DA/DB) – that is, it is a modification of the DB pension system 

in which a pension fund continues to operate as before, but instead of promising to provide a pension 

based on average career salary, the employer promises to target a specific pension based on average 

career salary on the condition that employer contributions will not have to be raised in order to achieve 

this. Unlike DC, the employer is taking responsibility for trying to deliver a specified retirement 

outcome but, unlike DB, is not bound to deliver that outcome at all costs. As a result, companies no 

longer have the volatility and risk of DB pensions but at the same time employees receive more support 

and certainty than with most DC pensions. The second type of DA pension being proposed in the UK 

has been described Schouten and Robinson (2012) as DC plus pensions (DA/DC). These range from 

collective defined-contribution (CDC) pension plans to fairly straightforward money-back guarantees 
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on DC investments. A DWP strategy paper (2014) lists essential features of a DA pension including 

bulk-purchased annuities, guaranteed returns on investment, and a separate employers’ fund used to 

smooth returns of employees’ funds through annual or terminal bonuses (a sort of partial CDC). CDC 

itself is not currently possible in the UK, but some forms of DA/DC pensions are in use, such as the 

cash balance pension provided to employees by UK supermarket chain Morrisons. 

2.3 INVESTMENT REGULATION OF UK DC PENSION SCHEMES 

2.3.1 MYNERS PRINCIPLES FOR INSTITUTIONAL INVESTMENT 
DECISION-MAKING 

Although there are few regulatory constraints within the UK for DC pension funds in particular, the 

investment activities of pension funds in the UK are expected to be in conformity with a set of 

principles and best practices published by the Pension Regulator. These principles are drawn largely 

from the Myners (2001) Principles for Institutional Investment Decision-Making.  In this section, we 

discuss key elements of this document. It is important to note that while Pension Fund trustees are 

not required to implement each aspect of the guide, they are required to report on each aspect  on a 

‘comply or explain’ basis. Six principles are covered in the guide: (i) Effective decision making (ii) Clear 

objectives (iii) Risk and liabilities (iv) Performance assessment (v) Responsible ownership (v) 

Transparency and reporting.  

2.3.1.1 Effective Decision Making  

Regarding effective decision making, trustees are expected to appoint people with the requisite skills, 

knowledge and recourses to enable them take decisions as well as ensure that these decisions are 

implemented effectively. The trustees themselves must have the capacity to evaluate any advice they 

receive and raise relevant questions or challenge the advice they receive. The best practice in effective 

decision making include the creation of an investment sub-committee and drafting of an investment 

business plan. Ideally, trustees must be given a remuneration package to make them committed. Care 

must be taken in contracting and managing external advisers on issues such as strategic asset allocation, 

investment management and actuarial issues.  

2.3.1.2 Clear Objectives 

Clear investment objectives should be set for the pension fund. This must take into consideration the 

nature of the scheme’s liabilities, sponsor covenant and the risk tolerance of both trustees and 

sponsors. There must also be effective communication between the investment advisors and managers. 

The best practice in this regard is the setting of clear benchmarks and investment objectives. There 

must be a clear time horizon over which performance is measured. A range of assets must be agreed 
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upon as well as the asset management style (active or passive) that is to be adopted by the fund. The 

effect of transaction and management costs on fund performance should also be considered. As a best 

practice, trustees must be willing to accept underperformance at certain periods when market 

conditions are not favourable. Trustees also have a legal responsibility to put in place internal control 

mechanisms.  

2.3.1.3 Performance Assessment 

Performance assessment should be undertaken to determine how effective the investment strategy of 

the pension fund was. Aside measuring performance of the investment portfolio, there must be an 

assessment of the effectiveness of trustees and managers. As a best practice, there must be a formal 

policy and process must state how the evaluations should be carried out. Past performance should be 

used in selecting advisors, trustees and managers. Most importantly, benchmarks and tracking error 

limits need to be set. The investment principles and governance compliance statement must be clear 

and detailed.  

2.3.1.4 Responsible Ownership 

Funds must have a statement in their policy regarding responsible ownership. This must also contain 

a statement regarding the scheme’s strategy for intervention in the companies they hold a stake in. The 

goal of this policy is to ensure that the scheme does not override, negate or dilute the policies of the 

boards of companies in which they have invested. Any monitoring activities undertaken by the pension 

fund must be open.  

2.3.1.5 Transparency and Reporting 

There must be clear communication from the scheme to members regarding the management of 

investments and how the performance for the period compares with the stated objectives. Trustees 

must communicate with members at regular periods using an appropriate medium. Best practices in 

transparency ensure improvements in corporate governance within schemes. The fund must make 

available relevant statements such as the funding strategy statement, statement of investment principles 

governance compliance statement.  

2.3.2 INVESTMENT OBJECTIVES OF SELECTED DC MASTER TRUST 
PENSION FUNDS IN THE UNITED KINGDOM 

As indicated earlier, the overall goal of this thesis is to examine the composition of DC portfolios that 

are constructed to help the funds meet their objective of capital preservation and liquidity for members. 

Since there is no minimum return requirement imposed by the UK Pension Regulator, we review the 

Statement of Investment Principles (SIPS), annual statements and other documents of the various DC 
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Master trusts in the UK at the end of 2015 to determine the objectives and measures these funds have 

put in place to reassure contributors and potential contributors that they can entrust their future to 

them.  

A master trust is a trust based defined contribution pension scheme which is made up of non-related 

employers. Master trusts are governed by a board of trustees and offer the same terms to multiple 

employees and employers. Mastertrusts make up the majority of DC pension schemes. By the end of 

2015, twelve (12) master trust funds had been independently reviewed against the Master trust 

assurance framework and were on The Pension Regulator’s list of DC pension funds with Master trust 

assurance. PPI (2015) estimates that of the 5.2 million workers who were automatically enrolled by 

March 31st, 2015, more than half of this number (53%) were registered into Master-trust schemes. 

This number makes up more than 88% of employees enrolled into trust-based DC pension schemes. 

Concerning their choice of investment options, Silsock et al. (2015) found that over 99% of master-

trust members were in the default fund. This compares with 85% in workplace DC pension schemes.  

Table 2(II)    Master Trust Assurance List 2015 

Master Trust Pension Fund Membership  
(As at Dec. 2015) 

Smart Pensions  60,000 

BCF Pension Trust 2,161 

Legal & General WorkSave Master Trust Pension Scheme 97,350 

National Employment Savings Trust (NEST) 3,200,000 

National Pension Trust 18,000 

NOW: Pensions 890,000 

SEI Master Trust 217,705 

Standard Life DC Master Trust 107,576 

The BlueSky Pension Scheme (TBPS) 30,000 

The Pensions Trust 240,000 

The People’s Pension 1,315,000 

Welplan N/A 

Source: The Pension Regulator (2015) 

The goal of this section is to understand what informs the investment activities of DC pension funds 

with a particular focus on master trust DC pension funds. We focus on the funds’ strategy for 

preserving the purchasing power of contributions and while ensuring adequate liquidity within their 

portfolios. We include only those funds whom we identify as having explicit objectives, especially 

regarding returns (performance targets) and liquidity (realisation of assets).  



38 

 

We found that 5 out of the 12 master trust funds had explicit objectives regarding preserving the capital 

value of DC contributions or promise a minimum rate of return. The 5 pension plans together make 

up more than 90% of DC master trust membership which stands to reason that more than 90% of DC 

contributors in the UK have are invested in plans that offer some form of guarantee.  

Majority of the funds examined have set explicitly set performance targets which are often linked to 

stated inflation or interest rates. It is expected that as the market matures and competition increases, 

more funds would be more explicit about their targets or strategy for helping members achieve their 

goal of having adequate income replacement in retirement.  Another issue of interest, which we 

highlight, is if and how these funds gain exposure to real estate assets – the main asset of interest in 

this thesis. The information for the various funds are drawn from the Statements of Investment 

Principles and Annual Statements of the selected Master Trust pension funds.  

2.3.2.1 National Employment Savings Trust (NEST)  

The National Employment Savings Trust (NEST) is a scheme set up by the UK Government to 

provide a suitable, low-cost pension scheme to help employers meet their obligations under the 

Pension Act 2008.  

NEST invests in funds set up by leading investment managers. The criteria for selecting managers is 

that they must have a clear objective and most often, the funds invests in a single asset class. The assets 

invested in must be of adequate security and liquidity.  

The overarching objective of the NEST default fund in which the vast majority of members are 

invested is to provide returns in excess of CPI inflation after all charges, over the long term. The fund 

trustees believe that risk-based asset allocation is the best driver of long-term performance. Taking 

account of asset prices, economic conditions and long-term developments enhances long-term 

performance and informs the strategic decisions that NEST makes.  

For the default fund, NEST provides a series of target date funds with asset classes selected to meet 

the level of risk appropriate for the different stages that the scheme members go through in the course 

of their career. Three phases – foundation, growth and consolidation – have been designed to help 

members meet their investment objectives. All three phases are designed with CPI inflation as a 

benchmark. The Statement of Investment Principles of NEST makes it clear that the idea is to not 

completely hedge against inflation but to manage inflation. Consequently, instead of setting the target 

return equal to inflation, the various phases have different objectives linked to CPI inflation. The 

foundation phase, which is designed to last for the first five years, has an objective of keeping pace 

with the UK CPI inflation, after charges. The growth phase aims to deliver a return of 3% over and 
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above the UK CPI inflation rate. The consolidation phase has a stated objective of outperforming 

inflation whiles at the same time minimise return volatility as members approach retirement.  

Members who do not wish to be invested in the default fund are given six alternative fund choices – 

Higher Risk Fund, Lower Growth Fund, Ethical Fund, Sharia Fund and a Pre-retirement Fund. For 

these funds also, the investment committee ensures that the fund is well diversifies and that the risk 

taken is appropriate for the retirement age of the DC fund member.  

2.3.2.2 NOW Pensions 

NOW Pensions was founded by ATP Denmark, one of the largest pension funds in Europe. Although 

NOW Pensions indicates at the beginning of its Statement of Investment Policies that it would operate 

as a DC fund which offers no performance guarantees, the fund’s stated objective is to deliver a 

satisfactory return in real terms on contributions invested. Specifically, the fund’s overall goal is to 

maximise retirement pay-out in real terms and also protect members from significant reduction in the 

value of the individual’s pension account. The fund also undertakes to develop an investment strategy 

appropriate to the planned retirement date of the member. Members will be protected from significant 

reductions in the value of their pension account.  

The fund’s risk management approach is expected to ensure that a fund member would have sufficient 

retirement income that meets their expectations and also ensures that that volatility in expected pension 

outcome is minimised. The goal of the fund’s risk management approach is not to eliminate risk but 

to ensure that at every point, there is the right balance between the need for risk control and the need 

to produce assets that help meet the performance targets that have been agreed on.  

In terms of investment choices, the fund trustees believe that it is better to provide a unified investment 

solution that is tailored to the retirement date of members as opposed to giving them a wide array of 

funds to choose from. Three different funds are provided at each point in the glidepath: Diversified 

Growth Fund, Retirement Countdown Fund (Series I), Retirement Countdown Fund (Series II).  

The performance objective for each of the three funds is set relative to short-term UK interest rates 

as represented by the Sterling Overnight Interest Rate (SONIA). The diversified growth fund’s stated 

objective is to produce a return of 3% over and above the SONIA rate. Both retirement countdown 

funds are designed to track the SONIA rate as closely as possible in order to provide security and 

liquidity for members as they near retirement.  
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2.3.2.3 The Pension Trust (TPT)  

The Pension Trust is one of the providers of occupational pension in the UK, founded by the National 

Council for Voluntary Organisations in 1946 as the Social Workers Pension Fund. The fund currently 

has over 9 billion of assets under management.  

The stated investment strategy of the Pension Trust (TPT) is the tracking of each fund’s liabilities by 

investing in a combination of main asset (namely stocks, bonds and property) and alternative assets 

(private equity, hedge fund, insurance policies and annuities). The goal of the default fund manager is 

to dampen the effects of short-term market movements by tactically adjusting the allocation to the 

various assets.  

All TPT’s schemes offer target date funds as default options. The scheme’s trustees believe that a 

dynamic investment approach would enable them to better address the expected retirement date of 

each participant. In addition to the default fund, the trust also offers a number of self-select funds for 

members who do not wish to be invested in the default fund. These self-select funds currently include 

an ethical fund, flexible retirement fund and a growth plan Series 4 fund.  

The fund defines investment risk as the annual variation in returns between each fund and the returns 

of benchmark portfolios that the various funds are meant to track. The default target date fund uses 

the UK CPI as its overall performance benchmark.   

Regarding liquidity, all the range of funds which The Pension Trust invests in are core unified products 

which are traded on a daily basis and are thus easily realisable. By using a combination of index tracking 

and active managers, TPT hopes to produce returns in excess of the respective market indices it 

benchmarks.    

2.3.2.4 The People’s Pension 

The People’s Pension (TPP) is a trust-based pension scheme set up by Building and Civil Engineering 

(B&CE) in 2011 to help employers who require a scheme in order to fulfil their duties under the 

Pension Act 2008. Membership of the scheme stood at 1,315,000 at the end of 2015.  

The broad objective of The People’s Pension is to provide adequately for members retirement through 

investing the contributions of members appropriately. In the long run, the trustees expect that the 

returns obtained on the default fund would exceed CPI inflation and general salary (wage) growth rate. 

The default fund takes into consideration members expected retirement date, attitude to risk and their 

expected method of assessing their retirement savings.  
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Investment decisions are made on two levels. The strategic management of assets is undertaken by the 

trustee but scheme investment managers handle the day-to-day management of the scheme’s 

investment. The fund invests in pooled investment funds as opposed to direct investment in assets. 

The assets selected must provide sufficient liquidity in order to ensure that these assets are realised 

when members make requests at retirement or earlier.  

The different investments are expected to provide protection against specific risk factors. Equity 

investments are expected to provide returns in excess of CPI inflation over the long run. Funds that 

contain bonds are expected to provide returns in line with annuity rates and thus provide security for 

members close to retirement. Cash funds are expected to provide protection against losses in the capital 

value of accumulated pension especially for members who intend to draw part of their benefits in the 

form of tax-free cash.  

2.3.2.5 Legal and General 

Legal and General has about 56 different funds under its governed fund range, which are those funds 

that are monitored to a high degree by the investment review unit. Performance is monitored quarterly 

or more frequently. Members’ personal accounts are invested in funds that have an acceptable level of 

liquidity. Funds, such as property funds, that are less liquid are labelled appropriately to warn 

participants of likely delays in realisation.  

Nest states in its annual report (2016) that the fund “recognises that the performance and liquidity of 

investment markets, interest rate movements and inflation impact the value of investments we hold in 

shareholders’ funds and those to meet the obligations from insurance business, with the movement in 

certain investments directly impacting profitability” (p. 44).  

These funds are managed under two different arrangements – sole governance and shared governance. 

Sole governance gives the trustees full control of o of pension contributions. A default investment 

option is provided under the sole governance arrangement. The performance objective of the default 

fund is to target a real positive return net of fees. The risk of the default fund is also kept at a level 

lower than the risk of a pure equity portfolio.  

Participant companies that opt for shared governance can choose from several funds and could even 

add a new blend or fund with recommendation of the investment committee. These new funds could 

then be made available to other participants through Legal and General’s WorkSave investment 

platform or could be set aside for that participant.  
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Nest also offers annuity contracts to retirees with benefits tied to either CPI inflation or RPI inflation. 

The annuities often come with a provision that the annuity rate would not reduce if the CPI or RPI 

rate against which they are hedged becomes negative.  

2.3.2.6 Standard Life Pensions 

Regarding expected returns on investments, the trustees of the fund state that a distinction would 

always be made between nominal returns and real returns. The fund would always ensure that inflation 

and costs are factored into all investment decisions and in comparing different investment options. 

The overall objective of the Trust is to achieve good outcomes for members net of fees. Volatility in 

returns is managed by diversifying across a broad range of asset classes.  

The fund also has an explicit objective regarding liquidity – which is to look into how to always mitigate 

the risk that the assets may have to be sold under less favourable market circumstances. One of the 

options indicated in the SIPS is to suspend redemptions in certain situations.  

The fund has a range of default funds that are split into two suites: Active Plus and Passive Plus. Both 

suites are invested in a range of asset classes such as stocks, bonds and absolute return funds.  

The goal of the Active Suit is to give members the opportunity to select funds which match the amount 

of risk they are prepared to take. The range has five different risk ranges which indicate how much risk 

the contributor is prepared to accept. For example, the investment goal of the Active Plus Fund III 

for example is to provide positive investment returns regardless of whether markets are going up or 

down. They hope to do this by investing in shares, bonds, non-residential property. The fund also aims 

to diversify globally including investing in emerging markets. The active Plus II is designed to manage 

the level of risk in a portfolio rather than the level of return. The Passive Plus Funds invest mostly in 

tracker funds whose returns follow a broad index.  

2.4 ALLOCATION WITHIN UK PENSION PORTFOLIOS 

This section discusses the current historical allocations within DB and DC pension portfolios and 

compares the allocation within these schemes. We draw from different surveys and data from the UK 

office of National Statistics, Towers Watson and the WM Company.  

With the increasing dominance of DC pension funds, the portfolio composition of these funds have 

the focus of several surveys. Schroders, an investment management company carries out a semi-annual 

survey that analyses the allocation within the default funds of DC pension schemes of the UK’s top 

350 companies. A stated objective of the survey is to examine the move toward diversification in the 

portfolios of these funds. The Schroders (2016) survey revealed that the allocation to equities has 
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droped from 79 percent in 2011 to 67 percent in 2016. The allocation to alternative assets has also 

increased from 7 percent to 13 percent over the same period.   

2.4.1 GLOBAL PENSION ALLOCATION 

Towers Watson carries out an annual survey of pension funds in 19 countries with a total asset of 

US$35.32 trillion, accounting for 80% of the combined GDP of these countries. The allocations within 

the portfolio of these funds are shown in Table 2(III) below. Globally, we see a fall in the allocations 

to equities within pension portfolios. Bond allocations also appear to be falling. The fall in allocation 

to stocks and bonds have seen the allocations to alternative assets increase from a low of 7% in 1995 

to 24% by the end of 2015.  

Table 2(III)    Global Pension Asset Allocations (1995 – 2015) 

Assets  Years 

 1995 2002 2008 2015 

Equities 52 50 48 44 

Bonds 36 38 32 29 

Cash 5 3 1 3 

Others 7 9 19 24 

Source: Towers Watson (2016) 

2.4.2 UK PENSION ALLOCATION 

The discussion in this section is based on a survey conducted by UBS (2015) using data from the UK 

Office for National Statistics (ONS) and the WM Company. The allocation cover both DB and DC 

allocations, although before 2012 the vast majority of pension funds were DB pension schemes.  The 

allocation to various asset classes from 1962 – 2014 can be seen in Figure 2(1). Equities make up the 

largest part of UK pension portfolios over the whole period. The allocation peaked to equities peaked 

at 80% in 1993 whiles the lowest allocation of less than 40% was in 1974. Allocations in UK equities 

has however been falling in favour of overseas equities. Allocation to overseas equities surpassed the 

allocation to UK equities by the end of 2007. By 2014, overseas allocations were 11% more than the 

allocation to UK equities. 

Apart from equities, a significant allocation within UK Pension portfolios went to fixed income. The 

allocation to fixed income was driven by developments in the conventional government bonds and 

index linked bonds. For example, in the 1970s, the market capitalization for both the UK government 

bond market and the equity markets stood at GB£20bn. By the end of 2013 however, UK bond market 

only had a market capitalization of GB£1 trillion as against GB£2 trillion for the equity market. UK 
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bond allocations within pension portfolios fell from a high of 51% in 1962 to 4% in 1993. Bonds 

however made a resurgence in the 1990s. UBS (2015) attributes the renewed interest in bonds to the 

performance of bonds over the period. Another reason for the increased bond allocations was the 

demand for assets that offered pension funds a close match of assets and liabilities to fulfil the 

minimum funding requirements legislation. Pension allocations to bonds at the end of 2014 was 38%.  

Aside stocks and bonds, real estate received significant allocations within portfolios especially during 

periods of high inflation. The allocation to real estate peaked at 19% in 1974. However, real estate 

allocations between 2000 and 2014 has averaged about 7%. Alternative assets such as hedge funds and 

private equity has also increased steadily. From a low of 1% in 1996, alternative assets now account for 

7 to 9% of pension portfolios. On the whole, UBS (2015) survey shows an increase in allocations 

within UK pension funds both across asset classes and internationally.  

Figure 2(1)    UK Pension Allocations (1962 – 2014) 
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Source: UBS (2015) 

2.4.3 UK DC ALLOCATIONS 

There has been a renewed interest in the allocation within pension fund portfolios following the shift 

to DC pension structures. Schroders, a UK investment company, conducts a bi-annual survey of the 

allocations within DC pension portfolios. The allocations within the portfolio of the top 350 pension 

funds in the UK between March 2013 and March 2016 are shown in Figure 2(3). About 80% of DC 

pension portfolios were allocated to equities and a further 10% to bonds. Alternatives and cash made 

up the remaining allocations. Schroders (2016) defined alternative assets to include property, 

commodities and hedge funds.  
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The Pensions Regulator in conjunction with the Pension Protection Fund also undertakes an analysis 

of the portfolio composition of defined benefit pension funds in the United Kingdom. The allocations 

in  Figure 2(2) shows that within defined benefit portfolios, the allocation to equities has been falling 

in favour of gilts and other fixed income securities as well as alternative assets. In 2006, the allocation 

to stocks in DB portfolios was over 60%. This allocation has fallen to 33% by the end of 2015. Bond    

allocations which stood at 28.8% in 2006 stood at 33% by the end of 2015. Property allocations within 

DB portfolios has been consistent at around 5% over the entire sample period. Other alternative assets 

such as hedge funds and insurance policies have increased in allocation from just over 6% in 2006 to 

14.4 at the end of 2015.  

Figure 2(2)    UK DB Pension Allocations (2006-2015) Figure 2(3)    UK DC Pension Allocations (2013 – 2016) 
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Source: Pension Protection Fund (2015) Source: Schroders (2016) 

A comparison of the two allocations point to a clear lack of diversification within DC pension 

portfolios, with over stocks making up 70% to 80% of their portfolios. As pointed out in Schroders 

(2015), this trend appears to be reversing, with bonds and alternative assets increasingly gaining 

allocations within DC portfolios.  

2.5 CONCLUSION 

In this chapter, we built on the context provided in Chapter 1 by focusing on the UK pension market. 

We first provide an overview of the occupational pension sector in the UK before outlining the major 

changes that have occurred over the past few decades.  

The discussion in the chapter shows that DC pension funds have become more prevalent following 

the introduction of auto-enrolment. Most of the members who have been enrolled onto workplace 

pension funds are currently enrolled with multi-employer master trust pension schemes such as NEST, 

NOW Pensions and so on. Over 99 percent have elected not to make take on an active role in deciding 
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how their pensions are invested, hence they have been enrolled onto the default scheme. Consequently, 

we have decided to use the master trust pension funds as our case study and carry out our analysis 

from the perspective of a scheme manager investing on behalf of default scheme members. Hence, we 

analyse different investment objectives as these scheme managers would do at different points in the 

course of the employee’s life cycle.  

An analysis of the Statement of Investment Principles (SIPs) of the various master-trust pension funds 

reveals that most of them have investment objectives pegged to a measure of UK inflation or a risk-

free interest rate. NEST for example has its objectives for default scheme members linked to CPI 

inflation whiles NOW Pension uses the SONIA interest rate as its performance benchmark.  

Based on a number of surveys conducted on the allocation within DC and DB fund asset allocations 

over the years, we confirmed the concerns expressed by many analysts that there is a lack of 

diversification within DC pension fund portfolios especially when compared with their counterpart 

DB pension funds. Equities alone made up over 80% of the portfolios of DC funds’ portfolios. 

Schroders (2016) however observed that there appears to be a gradual reduction in the amount 

allocated to equities in favour of investments in assets such as real estate and other alternative assets.  

Another conclusion that we reached in this chapter is that the new legislations that have been 

introduced in the face of auto-enrolment such as the Freedom and Choice legislation is likely to create 

further uncertainty in the cash-flow pattern of DC pension funds. This legislation changes when and 

how members can access their accumulated investments. This is likely to increase the emphasis on 

liquidity and hence affect the investment decisions of these DC pension funds. Typically, it is easier 

for DB pension funds to predict what their cash flow pattern would be using factors such as the 

mortality rates, retirement age etc. Hence, they are in a position to undertake longer term investments. 

As we mentioned in the Introduction Chapter, the current low-rate environment requires that DC 

funds look to alternative investments in order to deliver good returns for retirees. Clearly, this is made 

more difficult when thee funds have to maintain enough liquidity to meet unpredictable outgoings.  

In the next chapter, we will review literature on the role of real estate within the investment portfolios 

of institutional investors such as pension funds. We analyse the role of real estate both as a stand-alone 

asset and as part of an investment portfolio. The chapter that follows (Chapter 5) would bring together 

all the issues around liquidity and how this needs to be managed within the investment portfolios of 

institutional investors such as pension funds. The discussion on liquidity ends with an analysis of a 

fund product that has become very common among UK DC investors as a vehicle to gain access to 

the real estate market while maintaining an acceptable level of liquidity.  
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CHAPTER THREE – THE ROLE OF REAL ESTATE 

WITHIN INVESTMENT PORTFOLIOS – A REVIEW OF 

THE LITERATURE 

3.0 INTRODUCTION 

In this chapter, we review literature on the role of real estate assets within investment portfolios, 

particularly within the portfolio of pension funds. The goal is not to provide an exhaustive discussion 

of all the studies that have discussed the role that real estate plays within investment portfolios but to 

present a broad overview of the various optimisation and econometric approaches that have been 

utilised in the various empirical studies and also highlight the range of findings obtained from these 

studies.  

In the first part of this chapter, we focus on the theory and practice of portfolio construction. We 

begin by offering a general introduction to asset allocation – what asset allocation is, the process of 

asset allocation and its importance for pension funds. Next, we review different asset allocation models 

that have been developed and implemented in theoretical and empirical studies. We examine the extent 

to which these models have been used within the real estate literature and the results of these studies 

and the challenges associated with implementing these models, especially within the context of real 

estate.  

In the second part of this chapter, we focus on the inflation-hedging characteristics of real estate. Real 

estate has long been viewed as a good hedge against inflation for a number of reasons especially as 

rental income can be adjusted to reflect increases in general price levels. Beginning with Fama and 

Schwert (1977), a large number of studies have analysed the ability of real estate to hedge against 

inflation. We review a large number of empirical studies, particularly, focusing on the method of 

analysis, assets analysed, time frame and the findings of these studies. On the whole, these studies show 

that real estate is a good hedge against inflation, although, as observed by Hoesli & Oikarinen (2012), 

these results have been the results depend on factors such as the method of analysis, geographical 

setting etc.  

3.1 ASSET ALLOCATION – AN INTRODUCTION 

In its simplest terms, asset allocation is the practice of dividing resources among different investment 

options such as stocks, bonds, mutual funds, investment partnerships, real estate, cash equivalents and 

private equity. The theory is that the investor can lessen risk because each asset class has a different 
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correlation to the others; when stocks rise, for example, bonds often fall. At a time when the stock 

market begins to fall, real estate may begin generating above average returns. 

The important thing in strategic asset allocation is to find a solution that satisfies a set of constraints, 

the structure of the pension fund and given legislation (Goldman Sachs, 2012). For pension funds, the 

asset allocation decision aims to balance the long-term goals, short-term obligations and risk tolerance. 

Creating a diversified portfolio plays a crucial role in balancing the long-term investment goals with 

the pension fund’s short-term obligations. Asset allocation takes the principle of diversification a step 

further by providing a customized approach for investors to strategically diversify their portfolio 

among different asset classes. This enables investors to stick to their long-term investment objectives 

and thus avoid relying on market timing to generate returns.  (Goldman Sachs, 2012). 

For investors, selecting the types of assets for a portfolio and allocating funds among different asset 

classes are major decisions. A 70/30 stock/bond portfolio has a different expected return, risk, and 

cash flow pattern than a 30/70 stock/bond portfolio. Which allocation is more appropriate for a 

particular investor will depend on how well its characteristics match up with the investment objectives 

and circumstances described in the investor’s investment policy statement (IPS). 

It is important to remember that asset allocation is not purely a mathematical process but involves 

several other considerations. Scott (1991) found that investors attitude to inflation plays a big role in 

the strategic asset allocation decision of UK investors. In other countries however, investment 

regulations play a more important role in determining the allocations within pension fund portfolios. 

Another factor that influences pension fund allocation is the government’s need for capital. For 

example, in Scott (1991) found that in the 1970s, when the UK Government had a substantial 

borrowing programme, UK pension funds invested more in bonds. This is because governments offer 

attractive returns when they require additional funds. In the 1980s, the UK Government raised funds 

mostly by selling off its shares in privatized companies. This period coincided with lower bond 

allocations within pension portfolios. This is also the time that pension funds invested very heavily in 

equities. 

3.1.1 STRATEGIC ASSET ALLOCATION 

Strategic asset allocation is an integrative element of the planning step in portfolio management. In 

strategic asset allocation, an investor’s return objectives, risk tolerance, and investment constraints are 

integrated with long-run capital market expectations to establish exposures to IPS-permissible asset 

classes. The aim is to satisfy the investor’s investment objectives and constraints. Thus, strategic asset 

allocation can be viewed as a process with certain well-defined steps. Performing those steps produces 
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a set of portfolio weights for asset classes; we call this set of weights the strategic asset allocation (or 

the policy portfolio). Thus, strategic asset allocation may refer to either a process or its end result 

(Maginn et al, 2007). 

Strategic asset allocation is both a process and a result. The strategic asset allocation focuses on how 

to invest assets to maximize the probability of achieving one’s long-term goals at an appropriate level 

of risk. It is the process of determining the target long-term allocations to the available asset classes. 

The process results in a set of long-term target allocations to applicable investable asset classes (proxied 

by market indices). The resulting long-term target asset allocations are often formalized into a strategic 

policy benchmark (policy benchmark for short) or model asset allocation. Using today’s popular alpha-

beta vernacular, strategic asset allocation is the beta decision, and as such, investment vehicles like 

mutual funds and hedge funds are not part of the discussion (Idzorek, 2006). 

Strategic asset allocation is the translation of an organisation’s investment policy. It dictates how a 

fund’s assets should be divided across major asset classes. Broad investment policy is the domain of 

the board of trustees. It is best to use broad asset classes with widely different fundamentals; sub-asset 

classes should be left to the implementation stage (Ambachtsheer & Ezra, 1998). 

In their seminal and extremely influential work, Brinson et al. (1986) estimated that, over time, 90% of 

the variance in returns of a typical portfolio is explained by the variance of the portfolio’s asset 

allocation. Ibbotson and Kaplan (2000), among others, confirms this important finding supporting the 

notion that strategic asset allocation (SAA) is the most important decision in the investment process. 

The primary risk exposure of a fund is attributable to its strategic asset allocation. While the investment 

staff can adjust a fund’s risk exposure through tactical asset allocation, the predominant contribution 

to the variation in a fund’s returns comes from the strategic asset allocation (Brinson et al., 1986). 

3.1.2 TACTICAL ASSET ALLOCATION 

A second major type of asset allocation is tactical asset allocation (TAA). It involves making short-

term adjustments to asset-class weights based on short-term expected relative performance among 

asset classes. Tactical asset allocation involves making short-term adjustments to asset-class weights 

based on short-term predictions of relative performance among asset classes. TAA can subsume a 

range of approaches, from occasional and ad hoc adjustments to frequent and model-based 

adjustments. In practice, TAA often refers to investment disciplines involving short-term (such as 

quarterly or monthly) adjustments to the proportions invested the various asset classes. Strategic asset 

allocations are reviewed periodically or when an investor’s needs and circumstances change 
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significantly. Among institutional investors, regular annual reviews are now commonplace. Ad hoc 

reviews and changes to strategic asset allocation in response to the news items of the moment may 

lead to less thoughtful decisions (Maginn et al, 2007). 

Tactical asset allocation is intended to take advantage of opportunities in the financial market when 

certain markets appear to be out of line. It is designed to facilitate a fund’s long-term goals by seeking 

added value. In other words, it attempts to beat the market. The total fund is adjusted to reflect changes 

in economic fundamentals. In this respect, tactical asset allocation compares the relative value of each 

assert class, and underweights or over-weights the major asset classes when values and returns appear 

to be out of line with economic fundamentals.  

A key distinction between tactical and strategic asset allocation is the time frame. Tactical asset 

allocation occurs more often than strategic asset allocation. It may be performed monthly, quarterly or 

annually. In fact, any adjustment to a fund’s portfolio that is not part of the strategic asset allocation 

process is a tactical attempt to add value. 

Tactical asset allocation is performed by the investment staff for a fund – not the board of trustees. 

The investment staff apply their knowledge of market conditions to underweight certain asset classes 

to take advantage of financial markets that are out of alignment. They also look for actively managed 

alternatives to funds that passively track benchmark risk. Actively managed accounts are alpha 

generators – that is, they attempt to generate excess return (or alpha) over a broad financial index. 

Alpha generators can be used to change the return distribution of the strategic allocation. Tactical asset 

allocation decides how much to allocate to active accounts versus passive benchmarks. 

3.2 THE INVESTMENT MANAGEMENT PROCESS FOR PENSION 

FUNDS 

The process of investment management for pension funds consists of three steps – (i) Drafting an 

investment policy statement (ii) Asset allocation decision (iii) Selecting investment managers in 

specified mandates (Ang et al., 2014). The contributions of the various steps to the performance of 

pension funds has however been a subject of much debate.  A majority of studies have concluded that 

that strategic asset allocation accounts for much of the time series variations in the portfolio returns of 

pension funds (Brinson et al., 1986, 1991; Ibbotson and Kaplan, 2000; Blake et al., 1999; Brown et al., 

2010). Brinson et al. (1986) for example concluded that as much as 91.5% of pension fund investment 

performance is driven by the strategic allocation. Scott (1991) found that although most investors agree 

that strategic asset allocation is the most important decision facing any pension fund, it is still the least 

understood. Ibbotson and Kaplan (2000) and Kritzman and Page (2002; 2003) however found security 
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selection to be more important than the other two aspects of pension fund investment management. 

Andonov et al. (2012) placed equal importance on the various processes.   

Scott (1991) concluded that the best way of ensuring an agreement between the various parties of a 

strategic asset allocation decision is to agree on a benchmark against which performance of the fund 

can be judged and, in so doing, to determine whether the investment objectives have been fulfilled. 

Strategic asset allocation is very necessary especially where an external manager is appointed. Once the 

benchmark is agreed upon, simulation techniques could be used to determine the array of possible 

outcomes of an investment strategy. 

A review of the statements of investment principles of UK defined contribution (DC) mastertrust 

pensin funds carried out in Chapter 2 showed many of them aim to deliver returns in excess of an 

inflation or interest rate measure. The actual measure used however varies from fund to fund. Tyagi et 

al. (2014) found that about 37% of pension funds in the database of CEM Benchmarking Inc. had 

some form of contractual inflation protection of benefits. The database of CEM Benchmarking Inc. 

contains information on 978 pension funds drawn from the USA, Canada and Europe with a total of 

US$10.4 billion under management. 

Pension funds that do not rebalance toward their long term asset allocation are described as exhibiting 

a myopic investment behavior as they base their allocations on recent asset performance (Tyagi et al., 

2014). For example, Pannachi and Rastad (2011) find US pension fund’s portfolio increased their risk 

taking following periods of poor investment performance. Hence, although many pension funds 

rebalance their asset allocations regularly to specific target weights, there is evidence that some funds 

may intentionally drift from their target allocations. Ang et al. (2014) believes that this may be due to 

a passive buy and hold strategy, a desire to maintain allocation near cap weights or as a proactive return 

seeking behavior. Even when they are aware of the limited predictive power of past returns, some 

pension funds chase returns by buying recent winners, whether asset classes or managers. Others may 

simply not have the patience to ride out periods of underperformance. 

Return chasing could be profitable as financial markets have a tendency to exhibit momentum over 

multi-month horizons especially if transaction costs are not too high (Jagadeesh and Titman, 1993; 

Moskowitz et al., 2012; Asness et al., 2013). Over multi-year periods however, financial markets have 

been found to exhibit a mean-reversal pattern. This makes return chasing unsuitable for long-horizon 

investors such as pension funds. A number of studies have found that multi-year return chasing has 

an adverse impact on investors’ wealth. For example, investors in the aggregate earn lower dollar 

weighted returns than time weighted returns, pointing to the effects of ill-timed investments and 
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disinvestments (Dichev, 2007; Friesen and Sapp, 2007). Goyal and Wahal (2008) find that institutional 

investors who make several hire and fire decisions regarding investment managers tend to lose value 

over time.   

3.3 ASSET ALLOCATION MODELS – A REVIEW OF THE LITERATURE 

The amount of an investor’s total portfolio placed into each class is often determined by an asset 

allocation model. Model is used here to mean an approach, technique or method. These models are 

often designed to reflect the personal goals and risk tolerance of the investor. Furthermore, individual 

asset classes can be sub-divided into sectors. For example, if the asset allocation model calls for 40% 

of the total portfolio to be invested in stocks, the portfolio manager may recommend different 

allocations within the field of stocks, such as recommending a certain percentage in large-cap, mid-cap, 

banking, manufacturing, etc. 

In discussing the role that real estate plays within pension portfolios, we have grouped the asset 

allocation models used in evaluating the portfolio role of real estate under three headings: heuristic 

asset allocation, modern portfolio theory (MPT) model, and post-modern portfolios. Heuristic asset 

allocation approaches do not require any formal modelling. The investor uses very simple approaches, 

often rule of thumb, to come to a decision on how to split their resources among the alternatives 

available to them. Perhaps the most widely used model within the asset management industry is 

Markowitz’s mean-variance optimisation framework developed from his Modern Portfolio Theory. 

Following its introduction, Markowitz’s model has been modified in several directions to better capture 

the risk-return features of various assets and also to make them appropriate for different investor 

groups. 

The following sections provide a discussion of the various approaches and models that have been 

utilised by pension funds and other institutional investors to make asset allocation decisions. In 

addition to reviewing literature on the various asset allocation approaches that have been used, the role 

of real estate within these portfolios is examined. Key terminologies relating to asset allocation are 

covered initially. This is followed by a discussion of the asset allocation models. We focus on those 

models which have been applied or, potentially, could be applied to direct real estate portfolios. Studies 

that have applied these models to direct real estate portfolios are highlighted. 

3.3.1 TALMUDIST (NAÏVE) ASSET ALLOCATION 

The use of the Talmudist (Naïve) diversification rule has a long history. Many believe this approach 

traces its origin to the Babylonian Talmud – a collection of rabbinic notes dating back to the fourth 
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century. Writing in about the fourth century, a rabbi named Isaac bar Aha, is said to have given the 

following asset allocation advice: “A man should always place his money, a third into land, a third into 

merchandise, and keep a third at hand” (Talmud, 1948).  

A natural extension of this rule is the 1/N or the equally weighted investment strategy, i.e. the strategy 

to split one’s wealth uniformly between the available investment possibilities. This has recently received 

plenty of attention in the literature. Employing the 1/n rule for investment purposes has the 

disadvantage of not utilizing information on the various parameters, but by the same token, it has the 

advantage of not being biased in relying on historical parameters that may be much different from 

future relevant parameters. Equally weighted portfolios have re-emerged as a solution to the problem 

of estimation error related to MPT portfolios which are discussed later. A possible solution is to impose 

lower and upper bounds on the weights of each asset. The simplest constraint is to apply equal weights 

on each of the components of a portfolio (Stevenson, 2005).  

Value weighted portfolios can be considered as a more advanced form of heuristic asset allocation. 

Two of the most popular versions of value-weighting are cap-weighted indices and fundamental 

indices. The idea of cap-weighted indices dates back to Sharpe (1964) and Lintner (1975) with the 

introduction of the Capital Market Pricing Model (CAPM). Since then, indices such as the S&P 500 

and ASX 200 have become important as passive investment options and benchmarks (Mar et. al., 2009; 

Tabner, 2009). Cap-weighted indices have been criticised for overweighting expensive stocks and 

underweighting undervalued stocks (Arnott et al., 2005; Treynor, 2005). Fundamental indices have 

been put forward as a better option to cap-weighted indices which weight stocks on the basis of 

performance metrics related to their fundamental values. Coupled with a growing demand and supply 

for fundamental indices, a growing body of studies continue to provide support for the use of 

fundamental series (Houwer and Plantinga, 2009; Branch and Li, 2010; Walkshäusl and Lobe, 2010). 

Critics of fundamental indexing however poing out that the fact that fundamental indexing is 

effectively an active investment strategy, and that the outperformance of fundamental indices may not 

be persistent in the long-term (Amenc et al., 2009; Perold, 2007). Both cap-weighted and fundamental 

indices suffer from the issue of a lack of diversification as they tend to be over-weighted in particular 

industries especially during extreme market conditions such as the tech-bubble.  

A more recent variant of equally weighted portfolios are equal risk portfolios, otherwise referred to as 

risk-parity portfolios. Maillard et al. (2008) describe equal risk portfolios as a compromise between 

equally weighted portfolios and minimum variance portfolios. The idea is to attribute equal risk to the 

different components of an investment portfolio. Instead of using the total risk of a particular asset, 

the contribution of the asset to the total risk of the portfolio (marginal risk contribution) of the 
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portfolio are considered. Studies conducted by Fernholtz et al. (1998) and Booth & Fama (1992) 

provide proof that the use of equal-risk portfolios can lead to improved out-of-sample returns.   

DeMiguel et al. (2009) have shown that the benchmark 1/N rule outperforms most of the other more 

involved portfolio strategies in terms of Sharpe ratio, certainty equivalence and turnover, and is not 

consistently outperformed by any of the other models considered in their study. The authors explain 

the results by stating that the errors in estimation of the parameters of the optimization models may 

outweigh the gains of the more advanced methodology. However, in order to ensure that the equal 

weights are maintained, periodic rebalancing is required as the price of the assets change. Chan et al. 

(1999) and Jagannathan and Ma (2003) also conclude that it is hard to find an investment policy that 

consistently outperforms the uniform investment strategy. 

Apart from the success of the 1/N rule in empirical studies, there is evidence that uniform investment 

strategies are actually used in a multitude of situations where agents have to decide on a mix of different 

alternatives. Bernartzi and Thaler (2001) provide evidence to suggest that investors prefer to use simple 

approaches – especially as concerns remain about the dependability of estimated returns. Benartzi and 

Thaler (2001) conduct experiments, where subjects are asked to allocate money to different funds 

available in hypothetical defined contribution pension plans. The authors find that a significant share 

of investors used the 1/N rule. In Huberman and Jiang (2006), a paper motivated by the work of 

Benartzi and Thaler (2001), data on the choice of consumers in actual 401(k) plans is analysed. The 

authors find that there is a significant share of investors (roughly two thirds) that follow the uniform 

investment rule. 

Within real estate, Lee and Stevenson (2005) highlight the practical difficulty of an equally weight 

portfolio strategy due to the marked differences in lot sizes between different property sectors. Baum 

& Struempell (2006) attribute the rise of the popularity of indirect real estate to the lumpy nature of 

direct real estate. Investors who require regular rebalancing find that it is easier to rebalance their 

portfolio using indirect rather than direct real estate vehicles. Studies such as Brown (1988), Morrell 

(1993) and Schuck and Brown (1997) examine the effect of value-weighting on the risk of real estate 

portfolios. They conclude that several properties are required to reduce risk to the systematic level. 

Morrell (1993) points out the difficulty of being able to obtain or maintain an equally weighted property 

portfolio and simultaneously diversify across key market segments. Gold (1995) suggests that instead 

of using specific allocations, ranges could be used as the efficient frontier is not singular but “fuzzy”. 

This means that different allocations which may appear statistically dissimilar may actually be able to 

fulfil the same risk-return objective. This suggestion certainly has implications for investment in lumpy 

assets such as direct real estate and could make it easier to rebalance real estate portfolios. 



55 

 

Aside from the support that equally weighted portfolios have received in empirical studies, there is 

evidence that many investment analysts actually use it in practice. A survey by Zweig (1998) found that 

several investment experts follow the 1/N rule, not least of whom is Harry Markowitz, the father of 

Modern Portfolio Theory. Markowitz is quoted as saying: "My intention was to minimize my future 

regret. So I split my contribution fifty-fifty between bonds and equities.” 

3.3.2 MODERN PORTFOLIO THEORY 

The most widely used quantitative strategic asset allocation framework is Harry Markowitz’s mean-

variance optimization, an idea that resulted in a Nobel Prize for Markowitz (Markowitz 1952, 1959). 

Mean-variance optimization is one of the cornerstones of modern portfolio theory and over the last 

half century has become the dominant asset allocation model. The procedure maximizes expected 

return for a given level of risk, or equivalently, minimizes risk for a given level of return (Idzorek, 

2006). The diversification theory advocated by Markowitz (1952) asserts that the optimal diversification 

strategy is a function of the means, variances, and pair-wise correlations of risky assets. Markowitz 

prescribes that the average returns and covariance matrix should be estimated. The optimisation 

process then consists adjusting the weights to minimise portfolios ex-ante risk for a stated average 

return. (Clarke et al., 2006).   

Despite its wide-ranging success, the single-period framework suffers from several deficiencies. The 

common problems that limit the applicability of the classic mean-variance portfolio are as follows:  

Assumption of Normal Distribution: Another drawback of the mean-variance approach is that it is 

approximation-free only when stock returns obey a Gaussian distribution, an assumption known not 

to hold in real data. This is especially true because the mean-variance (M-V) diversification strategy is 

very sensitive to possible sampling errors. As noted by Best and Grauer (1991): “a surprisingly small 

increase in the mean of just one asset drives half of the securities from the portfolio.” For example, it 

has been shown that the assumption of a normal distribution of returns did not offer a good description 

of the returns of direct real estate (e.g. King and Young, 1994; Young and Graff, 1995; Young et al., 

2006; Young, 2008). Also, the covariance and correlation structure of direct real estate returns have 

been found to be unstable over time. 

Sensitivity of Inputs to Input Assumptions: An additional limitation of the mean-variance framework 

that has received attention in the literature is the sensitivity of the mean-variance model's 

recommendations to input assumptions. Especially difficult is estimating the expected returns of assets. 

Michaud (1989) concludes optimisers tend to be “error maximizers” as they often over-allocate to 

assets with high expected returns and low standard deviation whiles allocating very little to those with 
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low return and high risk. This is typically referred to as “corner solutions”, a situation that leads to 

poor out-of-sample performance.  

It has also been observed by many researchers that the ex post analysis often resulted in portfolio 

weights that are different from those produced out-of-sample. Cheng and Liang (2000) for example 

found that mean-variance portfolios constructed using different property types were statistically more 

efficient than equally weighted portfolios only when the test period coincided with the construction 

period.  Bayes-Stein shrinkage estimators have been successfully used to produce increased stability in 

the estimated portfolios and have led to enhanced portfolio performance (Efron and Morris, 1977; 

Stevenson, 2001; 2002; 2005 and 2009).  

Failure to Capture Liabilities: First, it is difficult to apply to long-term investors such as pension plans, 

insurance companies, and individuals. For investors with liabilities and goals at particular dates in the 

future, investment decisions should be evaluated with regard to temporal issues besides static risk-

reward trade-offs. In a significant example, a critical risk for a pension plan is making a large 

contribution just when the sponsoring company is vulnerable to large unexpected costs, such as during 

the middle of a serious recession. Individuals face similar temporal issues—say, extracting funds from 

retirement accounts beginning at age sixty-five. The standard definitions of risks; variance of returns, 

downside risks, semi variance; do not convey information regarding the probability of missing the 

investor's goals or obligations. The investor must translate portfolio risks into investor risks. 

Lack of rebalancing: A final problem with the traditional MV model involves portfolio performance. 

It is well understood, for example, that the efficient frontier should be truncated at the log-optimal 

portfolio for long-term investors. Since Markowitz, researchers have studied the properties of points 

above the log-optimal solution. Likewise, performance may lag since the myopic MV model does not 

take advantage of additional returns by rebalancing the portfolio to target asset proportions 

(Luenberger, 1998; Mulvey et al., 2001). A multi-period model will perform better than single-period 

MV models for long-term investors. 

One of the earliest studies to apply Markowitz’s model to real estate was that of Friedman (1971) who 

found that direct real estate dominated mixed asset portfolios. This result was reinforced by Findley et 

al. (1979) who reported low correlations between direct real estate and the returns of other financial 

assets and hence its attractiveness. Findley (1979) observed that although the assumption of a quadratic 

utility function was simplistic, it was adequate for the analysis of the portfolio role of direct real estate. 

Following these two studies, several dozen studies examined the portfolio role of real estate and 

recommended what they believed was an ‘optimal’ allocation to the asset within a mixed-asset portfolio. 
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Viezer (2010) provides a comprehensive review of the various studies that utilise modern portfolio 

theory to analyse real estate’s role within investment portfolios. They observed that many of these 

studies use Markowtiz’s framework but differed in certain respects. The earlier groups of studies 

concentrated on how much should be allocated to direct real estate within an optimal portfolio. Studies 

such as Fogler (1984), Gold (1986). Irwin and Landa (1987) and Firstenberg et al. (1988) suggested an 

allocation between 10% and 15%.  Allocations below 10% were suggested by a handful of studies such 

as Hartzell (1986) and Kallberg et al. (1996). 

Other researchers turned their attention to diversification within real estate portfolios. Different 

dimensions were examined such as geographical diversification and property type diversification (e.g. 

Miles and McCue, 1982; Hartzell et al., 1987; Grimssom et al., 1987, Jud et al., 2002). Economic 

diversification is when local economic indicators are used to determine where to invest. Factors such 

as crime rate and cost of living have been explored (Hudson-Wilson, 1990; Ziering and Hess, 1995; 

Hudson-Wilson and Wurtzebach, 1994).  Viezer (2000) concluded that property type or geographical 

diversification was more practical than economic diversification as the cluster membership tends to 

change from period to period. International diversification across real estate markets was examined by 

several studies. Wilson and Zurbruegg (2003) concluded that results from such studies supported the 

belief that diversifying internationally improved real estate portfolio performance. The results however 

varied according to whether direct or listed real estate data was used in a particular study.   

One of the earliest criticisms of the application of modern portfolio theory to real estate is the fact that 

direct real estate returns are often obtain obtained through an appraisal process as opposed to actual 

transactions. This is believed to lead to lower volatility estimates, something researchers refer to as 

appraisal smoothing and hence the high allocations to direct real estate observed in many studies. The 

most popular approach for correcting for the effect of appraisal smoothing was developed by Geltner 

(1993) and Cho et al. (2003). Other researchers have used simpler approaches such as using listed real 

estate returns rather than direct real estate returns (Ennis and Burik, 1991). Some other studies have 

used transaction data which they believed were more accurate in capturing direct real estate returns 

than appraisal based indices (Miles et al., 1990). 

An obvious problem with direct real estate is that it is difficult to re-balance frequently because of the 

illiquidity problem (Farrelly and Moss, 2014) 

Although many studies have suggested that listed real estate could be used to bring real estate 

allocations up to a certain target, studies such as Seiler et al. (2001) did not find direct real estate and 

REITs to be substitutes within a mean-variance portfolio.    
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3.3.3 POST-MPT PORTFOLIOS 

Following the concerns that have been raised about of MPT to direct real estate, researchers have tried 

different approaches to make the model more suitable or appropriate to real estate assets. Viezer (2010) 

observed that the efforts have centred on refining the data inputs, employ improved estimation tools 

and asset allocation models. In this section, two groups of approaches are discussed: those that aim to 

improve the measure of returns and risk as well as those that employ an asset-liability model (ALM) 

optimisation framework. The following section reviews different models that have been developed to 

make up for the shortcomings of the classic mean-variance model.  

3.3.3.1 Parameter Uncertainty 

A simple approach that has been used to deal with the issue of parameter uncertainty is to impose 

constraints on the weights of the various assets and a restriction of short-sales. This leads to a greater 

diversification and hence improved out-of-sample performance (Michaud, 1989; Jorion, 1992; Byrne 

and Lee, 1995; Stevenson, 2000). Jagannathan and Ma (2003) propose the use of high frequency data 

as an alternative solution. More complex approaches that have been developed are: Bayesian models, 

resampling and minimum variance portfolios. These approaches are reviewed in the remainder of this 

section.   

i. Bayesian Models 

Although prediction distribution in decision-making was introduced by Zellner and Chetty (1965), its 

application within finance began in the 1970s. The first step in Bayesian portfolio analysis is formation 

of prior beliefs, often represented by probability density functions. 

These prior reflect information about the macro-economy, asset pricing theories and insights relevant 

to the dynamics of asset returns. The second step is to formulate the law of motion governing the 

evolution of returns. The predictive distribution of future asset returns can then be recovered 

analytically or numerically using the results of the first two steps. The optimal portfolio can then be 

obtained by maximising the expected utility with respect to the predictive distribution obtained. There 

are three advantages in employing the Bayesian approach to asset allocation. First, it incorporates 

information about several quantities of interest. Secondly, it accounts for model uncertainty and 

estimation risk. Lastly, it provides fast, intuitive and easily implementable numerical algorithms with 

which otherwise complex economic quantities can be simulated. Five Bayesian models have been 

developed and used extensively, namely, Shrinkage Estimators, Black-Litterman model, Multi-Prior 

Model, Copula Opinion Pooling and Belief-Rule Based (BRB) System of Optimisation.  
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A standard approach for minimising the impact of estimation error is to use shrinkage estimators. 

These are obtained by shrinking the sample mean, covariance or weights towards a certain target. Jorion 

(1986) proposes a shrinkage estimator based on mean returns based on the Bayes-Stein approach. Frost 

and Savarino (1986) utilised a Bayesian approach for an investor whose prior belief about the means 

and covariance matrix are jointly defined by a Normal-Wishart conjugate prior. Ledoit and Wolf (2003, 

2004a, 2004b) propose a variety of shrinkage estimators based on different prior beliefs about the 

covariance matrix. Authors (Kan and Zhou, 2007; De-Miguel et al., 2009; and Tu and Zhou, 2011) 

have constructed shrinkage portfolios obtained by directly shrinking the portfolio weights.  

The Black-Litterman model was developed by Black and Litterman (1990) and expanded by Black and 

Litterman (1991, 1992). The model sets the idealized market equilibrium as a point of reference, allows 

the investor to specify a chosen number of market views in the form of absolute or relative expected 

returns and a level of confidence for each view. The views are combined with the market equilibrium 

returns to give more (less) weight on assets where investors have positive (negative) opinions on. 

Results of several empirical studies show that the resulting portfolios are more stable and better 

diversified than those obtained using conventional mean-variance optimisation approaches (Gofman 

and Manela, 2012; Wolff et al., 2012). The Black and Litterman model has also found favour with 

investment practitioners (Bevan and Winkelmann, 1988). Goldman Sachs regularly publishes 

recommendations for investor allocations based on Black Litterman models as well as reports 

describing firms’ experience using the model. Investment management firms such as BlackRock, 

Zephyr Analystics and Neuberger Berman are known to use Bayesian models for their asset allocation. 

Garlapi et al. (2006) develop a model for an investor with multiple priors with an aversion to ambiguity. 

They find that compared with portfolios constructed using the Black-Literman Model and MVP 

portfolios.  

One of the problems with the Black and Litterman model is that it assumes that the priors have a 

normal distribution which have become more and more questionable. The Copula method, developed 

by Embrechts et al. (1999), blends the prior market distribution with the analyst’s views under very 

general assumptions for the distribution of the views. Essentially, the choice of distribution is handed 

over to the analyst, who can either fit a certain distribution and simulate using bootstrapping or simply 

make use of historical observations. Patton (2004) for example uses copulas to build an investment 

portfolio. After trying a number of models and copulas, he finds that the best model for an investor’s 

utility uses the skewed-t marginal distribution. Similarly, Ricceti (2010) tried models with different 

copulas (Normal, Student-t, Calsyton, Gumbel, Frank, Mix Copulas and Canonical Vine). They 

concluded that the best copula model is one that uses the student-t distribution. Tao and Chi (2015) 
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developed a dynamic copula model to detect the change of copula family and copula parameters. They 

conclude that the dynamic Copula performed better in risk management than the static model.  

Within real estate literature, Stevenson (2000) applied Bayes-Stein shrinkage to real estate data and 

finds that the approach leads to increased stability in the estimated allocations as well as improved 

performance out-of-sample. A follow up study (Stevenson and Lee, 2005) however did not find the 

improved performance in ex-ante performance from the use of Bayes-Stein shrinkage or the Minimum 

variance portfolio for the real estate market. This failure was attributed to the cyclical nature of real 

estate assets and the fact that the contrarian and mean-reversion effects witnessed in stock and bond 

markets are not captured within the real estate market.     

ii. Resampling  

Just like Bayesian models, the Resampled Efficiency was introduced to deal with the issue of estimation 

errors. The current embodiments of resampled mean-variance optimisation are due to a number of 

authors (Jobson and Korkie, 1982; Jorion, 1992; DiBartolomeo, 1993 and Michaud, 1998). Resampled 

Efficiency can be thought of as an averaging process that puts all the alternative frontiers together in 

a new efficient frontier. Each point on the resampled efficient frontier is obtained by averaging a 

number of statistically equivalent efficient portfolios.  

Generally speaking, Resampled Efficiency is always preferable to a Mean Variance approach because 

investors are never 100% certain of their estimates. Again, generally speaking, Resampled Efficiency 

optimized portfolios are less risky as they are optimal, relative to the many ways in which assets and 

markets may perform, in the investment period. In the case of long-only constraints, Resampled 

Efficiency leads to more-diversified portfolios, which, as presented by Michaud (1998), are well known 

to beat simple Markowitz portfolios in out-of-sample tests in a way that is statistically significant. 

Michaud's portfolios tend to be more diversified and more stable over time than asset allocations 

produced by traditional optimizers. 

Several empirical studies have shown that the performance of the Resampled Efficiency optimised 

portfolios is better than those of the classic mean-variance portfolio. (Michaud, 1998; Markowitz and 

Usmen, 2003; Galloppo, 2010 and Becker et al., 2010).  

A few studies have applied the resampled mean-variance optimisation approach in the construction of 

real estate portfolios. Gold (1995) used the procedure of Michaud (1998) to construct property 

portfolios by using bootstrapping to recreate 1,000 alternative averages and standard deviations. This 

process led to the creation of more stable portfolios which in turn reduced the need for costly 
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rebalancing of portfolios. Similarly, Liang et al. (1996) use the bootstrapping procedure of Efron (1979) 

to determine the optimal range of allocation to real estate and conclude that the confidence interval 

was too large (i.e. a range of 13% to 75%). Zibrowski et al. (1997) added Treasury Bills to the 

investment portfolio and find a result similar to what Liang et al. (1996). However, when the sample 

period was extended to five years, Zibrowski et al. (1999) found the optimal allocation to real estate to 

be very stable although the sample period over which the study was done spanned different economic 

conditions.   

iii. Minimum Variance Model 

As pointed out earlier, one of the problems with the mean-variance optimisation procedure is that it 

tends to be very sensitive to changes in the expected returns with estimation errors leading to sub-

optimal results (Jorion, 1985; Best and Grauer, 1992). Apart from expected returns, the expected 

covariance matrix needs to be estimated. A constant covariance matrix is often assumed. The 

assumption of a constant covariance matrix has been questioned by many researchers with many 

pointing to the effect of outliers and non-stationary parameters. (Bengston and Holst, 2002; Ledoit 

and Wolf, 2004).  

Perhaps the most used approach in dealing with estimation errors is the construction of minimum 

variance portfolios. These portfolios are obtained using the variances and covariances and not average 

returns as the input, effectively side-stepping the use of estimated returns which happen to be the main 

culprit in the problem of estimation errors. Stevenson (2009) describes minimum variance models as 

an extreme case of shrinkage. Jorion (1985) however warns that they are most appropriate when the 

assets included in the analysis are within the same risk class.  

The Minimum variance portfolio model is perhaps the most applied version of Modern Portfolio 

Theory (MPT) within the investment management community. Surveys by Johnson (2008) and Keefe 

(2008) conclude that several investment management companies base their investment strategies 

largely on the minimum variance optimisation approach. Within the real estate literature, Stevenson 

(1999; 2009) finds that minimum variance portfolios lead to improved performance, especially on an 

out-of-sample basis when applied to international real estate stocks. When applied to direct real estate, 

Stevenson and Lee (2005) do not find the same improved performance when the minimum variance 

approach was applied to direct real estate. 

3.3.3.2 Return Distribution  

Because of the key role it played in the theory of portfolio selection as set forth by Markowitz more 

than 55 years ago, the portfolio variance (or, equivalently, standard deviation) is the most well-known 
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dispersion measure. Markowitz (1952) showed that if risk is measured by the variance of returns and 

expected return by the mean of returns, then uncertain investments can be ordered by their ranking in 

MV space. A host of theoretical and empirical work suggests variance may not be a suitable proxy for 

risk. As a consequence, other risk measures such have been explored (Artzner et al., 1999; Bertsimas 

et al., 2004; Grootveld and Hallerbach 1999; Harlow 1991; Jorion 1997; Rockafellar and Uryasev, 

2002.) 

Since the mid-1990s, considerable thought and innovation in the financial industry have been directed 

toward creating a better understanding of risk and its measurement, and toward improving the 

management of risk in financial portfolios. There has been an even greater sense of urgency to establish 

better risk management practices after the collapse of the financial markets in the fall of 2008. The 

following section presents different models that have been developed to incorporate or make use of 

the advances in the measurement of risk. 

i. Semi-Variance Model 

Semi-variance is defined as the average of the squared deviations from the mean of all values that are 

below the mean. Thus, it is a special case of the lower partial moment risk measure. The semi-variance 

has been found to be a more robust measure of risk from a theoretical perspective, but the variance 

instead of semi-variance as risk measure was chosen by Markowitz (1959) for technical reasons and 

computational limitations. Markowitz (1959) mentions that investors’ risk perception might be 

asymmetric. However, it was not until the 1970s that the semi-variance measure of risk, known as 

lower partial moment of order n (LPMn), was generalized by Bawa (1975) and Fishburn (1977). In 

particular, they show that LPM optimization is appropriate to produce portfolios that will dominate all 

other portfolios according to the concept of third order stochastic dominance, which implies an 

optimal decision rule for any investor who is risk-averse and exhibits decreasing absolute risk aversion. 

ii. Mean-Absolute Deviation Models 

Instead of using the standard deviation, which is the average of the squared deviations of the possible 

realizations of portfolio returns from the expected portfolio return, the absolute deviation measures 

the average absolute value of the deviations of the possible realizations of portfolio returns from the 

expected portfolio return.  

The MAD measure has a number of attractive features such as bypass the covariance matrix 

computation and easier solving algorithm (portfolio optimisation). So it requires a shorter computation 

time and improves the computation of optimal portfolios. Moreover, MAD is more stable over time 

than variance and is less sensitive to outliers and it does not require any assumption on the shape of a 
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distribution. Interestingly, it retains all the positive features of the MV model. MAD is also apt to be 

used in situations when the number of assets (N) is greater than the number of time periods (T) (Konno 

& Yamazaki, 1991; Byrne and Lee, 1997, 2004; Brown and Matysiak, 2000; Konno, 2003). 

The identification of the Absolute Deviation as a measure of risk prompted the development of 

portfolio optimisations that use the MAD as a measure of risk (Konno, 1989). Such models have a 

number of advantages. First, Konno and Yamazaki (1991) show that the MAD approach is equivalent 

to the MV model if the returns are multivariate normally distributed. Secondly, the MAD model 

produces optimal portfolios without the need to calculate the covariance matrix and so can be used in 

situations when N, the number of assets, is greater than T, the number of time periods over which the 

analysis is performed. Konno and Shirakawa (1994) have shown that the MAD model can handle large 

problems in real time. A limitation of this approach is that the computational savings from the use of 

MAD objective functions may in some cases be outweighed by the loss of information from the 

(unused) covariance matrix (Simaan, 1997). 

Byrne and Lee (1997) found that the MAD risk measure gives less weight to outliers and hence may 

be considered a more stable substitute for the standard deviation. For a portfolio of different regional 

property types, both the MAD and MPT models selected the same assets with only slight difference in 

the weights.  

iii. Maximum Drawdown (MaxDD) 

The MaxDD is formally defined as the loss suffered when an asset is bought at a local maximum, and 

sold at the next local minimum (Hamelink and Hoesli, 2004). MaxDD has several important advantages 

over alternative measures of risk. For instance, semi-variance considers standard deviation only over 

negative outcomes, typically those that constitute the “risk” of a portfolio. While the semi-variance 

measure may seem appealing, it does not take into account the serial correlation of returns. A drop in 

25% drop in equity return is perceived differently by most investors when it is the third consecutive 

year that it occurs than when it happens for the first time. Therefore, the cumulative outcome might 

be more informative. 

Although it might appear counter- intuitive, the fact that time is not taken into account in the MaxDD 

criterion is probably very representative of the risk perception by most investors. How relevant is, for 

instance, the fact that World stocks fell by 51% in the past three years, rather than in two or four years?  

Time duration does not matter as much as the the magnitude of the fall in prices. Value-at-risk (VAR) 

is another example of an appealing alternative measure of risk, as it considers both a probability and 

an absolute level of loss. But contrary to what is the case with the MaxDD, VAR considers a pre-
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defined time frame over which the loss may occur, and therefore lacks to fully incorporate the time-

dependence of financial series. 

The MaxDD criterion might appear simple for several reasons. First, the MaxDD for a given series 

applies to one particular period in the past. Also, it is straightforward to extend Markowitz’s Mean-

Variance – or Mean-Standard Deviation (M-SD) framework to a Mean-Maximum Drawdown 

(hereafter M-MaxDD) framework. A portfolio is said to be efficient in M-MaxDD space when no 

other portfolio yields the same level of return with a lower level of MaxDD, or when no other portfolio 

yields a higher level of return, for the same level of MaxDD. 

A portfolio which is optimal in M-SD space is, by definition, dominating portfolios obtained through 

optimization under any alternative measure of risk. In other words, a portfolio on the efficient frontier 

in M-SD space with a given level of return has, by definition, a higher MaxDD than an efficient 

portfolio in M-MaxDD space with the same level of return. Comparisons have therefore to be done 

on a trade-off basis, the gain in terms of MaxDD relative to the loss in terms of SD. 

Hamelink and Hoesli (2003) investigate the role of real estate in a mixed-asset portfolio when the 

maximum drawdown (MaxDD), rather than the standard deviation, is used as the measure of risk. 

They argue that the MaxDD concept is one of the most natural measures of risk, and that such a 

framework can help reconcile the optimal allocations to real estate and the effective allocations by 

institutional investors. The empirical analysis is conducted from the perspective of Swiss pension funds 

who are faced with legal constraints on the weights that can be allocated to the various asset categories 

and pertains to the period 1979-2002. The authors show that most portfolios optimized in 

Return/MaxDD space, rather than in Return/Standard Deviation space, yield a much lower MaxDD, 

with only a slightly higher standard deviation (for the same level of return). The reduction in MaxDD 

is highest for portfolios situated half- way on the efficient frontier, typically close to those held by 

pension funds. Also, the reported weights for real estate are much more in line with the actual weights 

to real estate by institutional investors. 

In the study of Lee (2006) MaxDD emerges as the most appropriate risk measure for investors who 

require a time-dependent risk measure and it is the only risk measure that takes into the account the 

serial correlations found in the return series utilised. The shortcoming for MaxDD, is that it is 

influenced considerably by data interval. Hamelink and Hosli (2004) highlight that the higher the 

frequency, the larger the MaxDD. This is consistent with the findings of Acar and James (1997), which 

the MaXDD from intra-day data is higher than monthly MaxDD. 
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iv. Value-at-Risk Models 

Value-at-risk (VaR) models are one of the most significant developments in the measurement and 

management of risk. The value-at-risk of a portfolio is the maximum amount of loss that the portfolio 

will suffer within a specified time horizon at a certain level of probability (confidence interval).  

Although the idea of VaR is easy to understand, there is no standard approach for estimating VaR. 

Unlike other measures of risk such as the variance and semi-variance, there are several VaR models 

and implementation techniques that tend to produce varied estimates of risk for the same or very 

similar portfolios (Bohdalova, 2007). A common approach is to calculate the VaR using historical 

covariances between different risk factors to assess the effect of a shock on a portfolio whose positions 

can be mapped to those risk factors (Guldimann, 1995). Blake et al. (2003) offer an approach which 

provides insights into the factors that determine the long-term VaR, in particular, the impact of mean 

and volatility assumptions on estimates of long-term VaR. 

VaR models also have certain features that make them undesirable from a mathematical standpoint. 

Value at risk has been deemed to not be a coherent measure of risk as it violates the sub-additivity 

property required of a good risk measure. VaR models are coherent only when based on the standard 

deviation of normal distributions. Constructing a portfolio made up of several assets could result in a 

VaR that is greater than the sum of the individual asset VaRs. This means that one VaR models 

invariably discourage diversification. (Artzner et al., 1997, 1999). 

VaR is an incomplete measure of risk as it does not give any information regarding the amount of 

losses that would be suffered by a portfolio when the VaR limit is breached. In other words, VaR tends 

to ignore the losses incurred beyond the VaR limit.  

Furthermore, VaR is difficult to optimize when it is calculated from scenarios. Mauser and Rosen 

(1999), McKay and Keefer (1996) showed that VaR can be ill-behaved as a function of portfolio 

positions and can exhibit multiple local extrema, which can be a major handicap in trying to determine 

an optimal mix of positions or even the VaR of a particular mix.  

An improved version of the standard VaR is the Conditional Value-at-Risk (CVaR) which is defined 

as the mean of the tail distribution exceeding VaR. As a measure of risk, CVaR exhibits some better 

properties than VaR. Rockafellar and Uryasev (2000, 2002) showed that minimizing CVaR can be 

achieved by minimizing a more tractable auxiliary function without predetermining the corresponding 

VaR first, and at the same time, VaR can be calculated as a by-product. The CVaR minimization 
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formulation given by Rockafellar and Uryasev (2000, 2002) usually results in convex programs, and 

even linear programs. Thus, their work opened the door to applying CVaR to financial optimization 

and risk management in practice. Pflug (2000) and Acerbi and Tasche (2002) proved that CVaR is a 

coherent risk measure. Rockafellar and Uryasev (2002) further explained the coherence of CVaR, and 

showed that CVaR is stable in the sense of continuity with respect to the confidence level β. Pflug 

(2000) and Ogryczak and Ruszczyriski (2002) showed that CVaR is in harmony with the stochastic 

dominance principles which are closely related to the utility theory. Increasingly, CVaR is becoming 

more popular in financial management (Andersson et al. 2001, Bogentoft, Romeijn and Uryasev 2001, 

Topaloglou et al., 2002).   

Boassen et al. (2011) however pointed out that CVaR requires an assumption regarding the return 

distribution. It also requires a large number of return observations that fall below the return target. 

This makes it very difficult to apply CVaR to real world data. For example, with a sample of 100 

observations, a 99% CVaR would be based on only one observation. The other option would be to 

use simulation techniques to generate lots of scenarios.   

3.3.3.3 Liability Driven Investing 

A new stream of literature emerged in the 1990s which consider changes in pension liabilities along 

with the returns and variances of the various assets. The main premise of these studies is that pension 

fund investment managers are interested in maximising the surplus (difference between asset returns 

and liability returns) on a risk adjusted basis. Booth (2002) explains that risk is context specific and so 

any attempt to analyse the investment decision of pension funds that does not take liabilities into 

consideration is not complete. For pension funds, the context within which they operate is one that 

requires them to meet future liabilities and so risk from their perspective is the inability to meet those 

liabilities.  

Elton & Gruber (1988) and Sharpe and Tint (1990), among others, propose an asset liability model 

which takes into consideration not just the returns and variance of assets but also liability returns. The 

model of Sharpe and Tint (1990) has an objective function which is similar to that of the asset-only 

optimisation framework of Markowitz (1952) but also incorporates changes in pension liabilities and 

the covariance of the liability returns and their covariance with the returns of the various assets within 

the portfolio. The model also allows for different levels of emphasis to be placed to liabilities, the level 

of risk aversion and the funding level of the pension fund. In addition to allowing the investor gauge 

the sensitivity of the results to these factors, the model makes it easier for the fund to construct 

portfolios that suit its nature and objectives. The model treats liabilities as an asset that the pension 

fund has sold short. Selling short one of two positively correlated assets is equivalent to putting 
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together two assets that are negatively correlated. More complicated simulation models have been used 

in further studies by Cariño et al. (1994), Consigli and Dempster (1998), and Kouwenberg (2000). 

These models can handle alternative objective functions, constraints and distributions.  

Sharpe (2002) states that assets and liabilities should be measured in terms of market values but 

liabilities are often determined actuarially. The practice of actuarial valuation smoothing results in a 

diminished impact of market-related liability risks on optimization solutions of ALM models. Ponds 

and Quix (2003) confirm that this framework ignores risks and “leads to a self-constructed picture of 

the financial solidity of a pension fund without any link to financial markets”. Asset allocation studies 

within this smoothing framework are likely to give results quite similar to those of an asset-only 

approach in which liabilities are ignored and the risk minimizing asset class is cash. On the other hand, 

with a market rate used for discounting liabilities, the liability value will fluctuate with market forces. 

Arnott and Bernstein (1988), using a pension surplus framework, make a case for equities and long-

dated bonds as the risk minimizing asset classes and point out the high risk inherent in cash under the 

Financial Accounting Standards Board ruling no. 87. Similar reasoning can be found in Peskin (1997), 

who uses simulation techniques and an objective function that minimizes expected future pension 

contributions. 

Most of the real estate research on the portfolio role of direct real estate prior to 2000 employed mean-

variance optimisation and often found very high suggested allocation for direct real estate. These 

allocations clearly differed from the allocations observed in practice – leading researchers to question 

why this is the case. Different approaches (discussed in earlier sections) have been employed to correct 

for some of the well-known issues with the classic mean-variance model. Starting with Chun et al. 

(2000), a series of studies began to consider the context of pension funds and adopted the asset liability 

approach suggested by Wilkie (1985) and Sharpe and Tint (1990).  

Chun et al. (2000) developed and applied an asset liability model for a pension fund who invests in real 

estate along with other assets. The allocation to real estate was found to be between 6 and 13 percent. 

Listed real estate returns were used as a proxy for real estate returns. Craft (2001) employed a similar 

model but included both private and listed real estate in their portfolio. The suggested allocation to 

real estate was about 16% and that to listed real estate was about 10%.  Craft (2005) considers the 

funding ratio and find that fully funded pensions would allocate about 13% to direct real estate and 

15% to listed real estate. Underfunded pensions on the other hand allocate less to direct real estate but 

the same amount of listed real estate. Differences were also observed for different industry sectors’ 

allocation to direct real estate but not to listed real estate. 
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Booth (2002) finds that, although direct real estate features in immature pension plan portfolios, it only 

features in them if index-linked government bonds and equities are excluded from the portfolio. 

Brounen et al. (2010) consider different definitions of liabilities. They model pension liabilities as 

subject to inflation and interest rates and find that when liabilities are taken account of, direct real 

estate plays a limited role in the portfolio. The composition of portfolios differed according to the 

definition of liability used. 

3.4 INFLATION HEDGING ABILITY OF REAL ESTATE  

As the literature on the portfolio role of real estate developed, a parallel stream of literature which 

focus on the ability of real estate to hedge against inflation was also developing. This area became a 

favourite area as researchers carried out studies that analysed real estate returns and compared these to 

the returns of other assets and macroeconomic variables such as inflation. The earliest studies include 

Robicheck et al. (1972) and Fama & Schwert (1977). This interest in this area is partly due to the fact 

that perhaps the most cited justifications for including real estate in the portfolio of investors is its 

perceived ability to help preserve purchasing power of an investment portfolio over time and thus help 

achieve real returns which are in line with investment objectives. Hoesli et al. (2012) observed that 

these studies differ across time periods, market conditions, national boundaries, the components of 

returns examined and the conditioning variables included.  This section focuses on the varied 

approaches that have been used to analyse the inflation hedging ability of assets, in particular, real 

estate. Two broad approaches have been used in this type of analysis over the years: regression analysis 

and vector autoregressive models.  

3.4.1 REGRESSION ANALYSIS 

Fisher (1930) provided a framework for evaluating the ability of assets to hedge against changing price 

levels. He made a proposition that the expected nominal rate returns on any asset contain market 

assessments of the expected rate of inflation. Fisher believed that the real and monetary sectors of an 

economy are independent of each other to a large extent and that the expected rate of return and the 

rate of inflation are unrelated as well. Thus, the expected real rate of return is determined by real factors 

like productivity of capital, the time preferences of investors and investors risk appetite. A market is 

efficient if it accurately prices inflation expectation to obtain the real rate of inflation.   

Fama & Schwert (1977) extended the model of Fisher (1930) by demonstrating that the actual rate of 

inflation during any period will include both an actual and expected component and thus estimates of 

expected inflation are necessary before the Fama & Schwert (1977)can be estimated. The difference 

between the expected inflation and the actual inflation then gives the unexpected inflation. Several 
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approaches have been used over the years to obtain a series for expected inflation. Fama & Schwert 

(1977) used lagged short-term interest rates as their proxy for expected inflation whiles Fama and 

Gibbons (1982) made use of correction in short term rates. Series generated from surveys have also 

been used in some studies e.g. Gultekin (1983) used the Livingston price expectations survey whiles 

Saunders (1978) used the Carlson and Parking (1975) series of observed price expectations. Several 

studies have used ARIMA models of the form ARIMA (p,d,q)(SP,SD,SQ)S where p, d, q are orders 

for autoregressive, differencing and moving average terms respectively whilst SP, SD, SQ are the orders 

corresponding to seasonal terms and S is the seasonality e.g. Stevenson (2001a) used a number of 

proxies which included ARIMA (1,0,3) as per Gatzlaff (1994), ARIMA (1,1,3) as per Barkham et al. 

(1996). GARCH models have also been used in some studies. The proxy with a high correlation with 

actual inflation is considered the best. It must also have a constant α and a coefficient β which do not 

significantly differ from 0 and 1, respectively, in a regression of actual inflation and the proxy.  

Fama & Schwert (1977) applied their model to a number of assets including real estate, stocks and 

bonds. They found that residential real estate (represented by the rate of inflation of the Home Price 

Purchase component of the Consumer Price Index) provided a complete hedge against both the 

expected and unexpected changes in the US CPI. Limmark and Ward (1988) applied the model of 

Fama & Schwert (1977) to the UK context and find that the combined property as well as the three 

sub-sectors analysed viz. office, shops industrial, were a hedge against unexpected inflation. Only the 

industrial property sub-sector proved to be a hedge against unexpected inflation. Hoesli (1994) used 

the Swiss real estate mutual fund data given that appraisal based real estate data tend to be adjusted for 

inflation, which could lead to biased results. They find that whiles real estate provides a positive hedge 

against inflation, common stocks proved a perverse hedge. Improving the data further, Hamelink and 

Hoesli (1996) made use of transaction based real estate constructed using a hedonic approach. 

Although real estate returns were found to be positively correlated with the expected component of 

inflation, it was negatively correlated with the unexpected component of inflation. Newell (1996) used 

the Westpac Inflationary Expectations for Australia as a proxy for the unexpected component of 

inflation. All the office sectors for selected geographical areas were found to be a hedge against actual 

and expected inflation. Only retail and industrial property were a hedge against unexpected inflation. 

Interestingly, bonds were not a hedge against expected or unexpected inflation but stocks were a hedge 

against both.   

3.4.2 VECTOR AUTOREGRESSION (VAR) MODELS 

Vector Autoregression (VAR) models have also been used extensively to capture the dynamics between 

asset returns and selected macroeconomic variables, often inflation. VAR models enable researchers 
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to conduct several tests aimed at revealing the relationship between two or more variables. Two 

conventional techniques that have been employed in understanding the long-run relationship between 

variables are: (i) the Two-Step Engle-Granger cointegration procedure and (ii) the Johanson 

Cointegration Test. Causality tests, impulse response and variance decomposition are other tests that 

can be conducted to further understand the relationship between these variables.   

The Engle & Granger (1987) procedure involves first testing the residuals of the model for stationarity. 

If the residuals are found to be stationary, the series are cointegrated and so have a common long-term 

equilibrium. A number of issues have been raised with the Engle-Granger procedure. One issue relates 

to the designation of a left-hand side variable and right hand side variable(s). Practically, one regression 

can show that the variables are cointegrated. Reversing the order of the variables might indicate no 

cointegration. This issue is even more complex when three or more variables are included in the model. 

This is obviously not a desirable feature as we would expect that the test for cointegration should not 

be affected by how the variables are arranged in the model. A second problem with the Engle & 

Granger, (1987) procedure is the two steps it entails. The researcher runs a first regression to generate 

the residuals (�̂�𝑡) which are then used to estimate a second regression of the form ∆�̂�𝑡 = 𝑎1�̂�𝑡−1 + ⋯. 

Given that 𝑎1 is obtained from an earlier regression, any errors that is introduced in the first regression 

is carried into the second regression. 

The Johansen (1988) procedure is based on maximum likelihood estimation of all the cointegration 

variables and offers a better alternative for to the Engle-Granger approach. For one, the approach does 

not rely on the use of the two-step estimation procedure and also test for the presence of multiple 

cointegrating vectors. Also, it allows the researcher to test the restricted versions of the cointegrating 

vectors(s) and the speed of adjustment parameters. Granger and Hallman (1991) and Granger (1991) 

proposed a testing procedure which is appropriate for testing the non-linear relationship between 

variables. Using this procedure, an algorithm called the alternating conditional expectations (ACE) is 

used to transform a non-linear relationship into a linear. Cointegration tests are then applied to the 

linearised relationship. The ACE algorithm was proposed by Brieman and Friedman (1985) as an 

approach for detecting nonlinearities in multiple regressions. The Autoregressive distributed lagged 

(ARDL) model of Pesaran et al. (2001) has also been used for cointegration analysis. While the 

approach has been widely used to test the Fisher effect in several markets, its use within the real estate 

literature has been limited (Tehrani et al., 2012). This approach uses the bounds testing approach to 

examine the long run relationship between variables. 

Impulse Response Functions and Causality Tests can be used within a VAR framework to further 

uncover the relationship between the variables in a VAR system. Impulse response functions can be 
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used to describe the reaction of endogenous macroeconomic variables to exogenous impulses or 

shocks, at the time of a shock and over subsequent points in time. The Granger Causality test is a 

statistical hypothesis test which is used to determine whether one time series is useful in forecasting 

another. A time series X is said to Granger-cause Y if it can be shown, usually through a series of t-

tests and F-tests on lagged values of X (and with lagged values of Y also included), that those X values 

provide statistically significant information about future values of Y.  

Starting in the 1990s, many real estate researchers employed VAR models exclusively or along with 

other models, often the Fama & Schwert (1977) framework, in the analysis of the inflation hedging 

ability of real estate assets. Appendix 3(A) shows a summary of the various studies that have been 

conducted, the country/time span, analytical approach adopted, assets included in the analysis as well 

as the key findings. It is easy to see from the Appendix 3(A) that as observed by Hoesli et al. (2012), 

the conclusions of the various studies depends on several factors: the country, time period analysed, 

return series and most importantly the variable being hedged against, i.e. CPI Inflation, RPI inflation, 

PPI Inflation, Interest rate etc. Again, the studies listed in Appendix 3(A) is not meant to be exhaustive; 

rather, the aim is to provide an overview of the wide range of studies that have examined this subject 

and the range of approaches that have been used. 

3.5 CONCLUSION 

In this chapter, we have reviewed literature on the role of real estate as a stand-alone investment and 

as part of an investment portfolio. As a stand-alone asset, we have focused on the ability of real estate 

to hedge against inflation. Beginning with the seminal work of Fama & Schwert (1977), we have 

reviewed several studies that have analysed the inflation-hedging characteristics of real estate. We found 

that approaches have dominated the literature on inflation hedging – the classic OLS analysis of Fama 

& Schwert (1977), cointegration analysis and causality tests. Owing to the limitations of these models 

especially when applied to assets such as real estate, a number of newer approaches have been 

developed. This includes the newly developed ARDL model of Pesaran et al. (2001). We confirm the 

observation of Hoesli et al. (2012) that the results of the various studies depends on factors such as 

the country, time-frame analysed, the real estate return series analysed and the inflation measure used 

– i.e. whether actual, expected or unexpected inflation.  

Studies that have analysed the role of real estate within investment portfolios have mostly been 

conducted within the Markowitz (1952) framework. In this chapter, we have reviewed several asset 

allocation models, beginning with the mean-variance optimisation model of Markowitz (1952). The 

issues surrounding the use of the Markowitz framework within the asset management industry are 
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discussed. In particular, we highlight the limitations of the mean-variance model especially when 

applied to assets such as real estate. Most of the early studies on the portfolio role of real estate 

suggested allocations far in excess of what was observed in practice. We have categorised the various 

asset allocation models into three groups: Heuristic, modern and post-modern portfolio theory models. 

The post-modern portfolio theory models were designed to overcome some of the limitations 

identified with the Markowitz (1952) framework. Parameter uncertainty and return distribution of the 

various assets have been identified in this review as some of the challenges of the Markowitz 

framework. We identified several models that have been identified to deal with these challenges. The 

results of studies that have applied these improved models have been found to produce more robust 

results and suggested allocations to real estate that were closer to the observed allocations within the 

portfolios of institutional investors such as pension funds. 

In subsequent chapters, we apply several of the models identified in this chapter to the determination 

of the inflation-hedging characteristics of real estate and an understanding of the portfolio role of real 

estate. In Chapters 6 and 8 we apply different asset allocation models to the determination of an 

optimal mix of liquid assets that can be added to real estate portfolios and the optimal mix of real estate 

and other assets within a mixed-asset portfolio respectively.  In particular, we apply the mean-tracking 

error optimisation model which is an extension of the classic mean-variance model in Chapter 6. The 

extension is made to accommodate the needs of investors who seek to benchmark the returns of 

another portfolio. In Chapter 8, we use a combination of models that use tracking error and the semi-

variance of tracking error as measures of risk to determine the portfolio role of real estate. We also 

explore the risk-adjusted version of these models in the determination of real estate within mixed-asset 

portfolios designed to provide a hedge against inflation and interest rate changes. 

In Chapter 7, we apply the ARDL model of Pesaran et al. (2001) in the analysis of the long-run 

cointegrating relationship between real estate and different inflation/interest rates often employed by 

DC pension funds for the purposes performance measurement and benchmarking. The Toda-

Yamamoto approach to testing for granger-causality is also applied to understand the short-run 

relationship between inflation/interest rates and real estate returns.  
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APPENDICES 

Appendix 3(A)    Hedging Ability of Real Estate Assets – Literature Review 

Study Country/ 

Timespan 

Empirical 

Methodology 

Assets Analysed Actual 

Inflation 

Expected 

Inflation  

Results and/or Conclusions 

Fama & Schwert 

(1977) 

USA 

(1953 and 

1971) 

Fama & Schwert 

(1977) 

- Stock  
- Bond 
- Real Estate 

US CPI  - T-Bills rates - Residential real estate provided a complete hedge against both the 
expected and unexpected changes in the CPI.  

- US government bonds were a partial hedge against inflation whiles 
stocks provided a perverse hedge against both the expected and 
unexpected inflation.  

- The coefficient for real estate relative to expected inflation in Fama 
and Schwert (1977) was 1.19 and relative to unexpected inflation 
was 0.56, both significant at the 1% significant level. 

Limmack and 

Ward (1988) 

UK 

(1976 – 1986)   

Fama & Schwert 

(1977) 

- Real Estate  (Various 
sectors)  

UK RPI - ARIMA estimates 
- Yield on T-Bills 

- Combined property as well as the three sub-sectors analysed viz. 
office, shops industrial, were a hedge against expected inflation.  

- Only the industrial property sub-sector   proved to be a hedge 
against unexpected inflation. 

Park et al. (1990)   - US REITs - US CPI - Livingstone Survey 
- T-bill returns 

- Found US REITs to be negatively related to both expected and 
unexpected inflation.  

Wurtzebach et al. 

(1991) 

(1977 – 1989)   - Office real estate 
- Industrial properties 

 -  - Office properties were a hedge against inflation in during low 
inflationary periods 

- Industrial properties were an effective hedge against inflation during 
high inflationary periods.  

Hoesli (1994) Switzerland 

(1970 – 1991) 

Fama & Schwert 

(1977) 

- Real Estate 
- Real Estate Mutual 

Funds 
- Stock 

Swiss CPI - Short term rates 
- ARIMA models 

- Real estate provides a better hedging ability than common stocks.  
- Real estate was found to provide a positive hedge much of the time  
- Common stocks proved a perverse hedge. 

Barkham et al. 

(1996 

UK 

(1982 to 1994) 

- Granger causality 
- Johansen 

cointegration 

-  UK Property (Ellis 
monthly property 
index) 

UK RPI - Yield on T-Bill 
- ARIMA estimates 

- Causality tests indicate that changes in expected and actual inflation 
influence returns to direct property.  

- A long-term hedge relationship was also found for property and 
inflation.  

- Results of the error correction model estimated however pointed to 
the fact that property may not be a good hedge against inflation in 
the short term. 

Hamelink and 

Hoesli (1996) 

Switzerland 

(1978 – 1992) 

Fama & Schwert 

(1977) 

- Real Estate 
(Transaction based 
returns) 

Swiss CPI - Linear Function 
- ARCH Model 

- Real estate does not provide a better hedge against inflation than 
stocks or bonds.  

- Real estate and real estate mutual funds were found to be positively 
correlated with the expected component inflation but negatively 
related to the unexpected component. 
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Matysiak et al. 

(1996) 

UK  

(1964 – 1993) 

Cointegration 

analysis 

- Equities, gilts, listed 
real estate, 
commercial property, 
unsmoothed 
commercial property 

UK RPI - Structural time series 
model estimates 

- Matysiak et al. (1996) found that the coefficient between property 
returns and both expected and unexpected inflation were positive, 
suggesting that property was a hedge against both.  

- Commercial property was not a short-term hedge. However, in the 
long-run, there is a positive correspondence between property 
returns and both expected and unexpected inflation.  

- Similarly, property shares were found to be a hedge even at the 
aggregate level, meaning they could be used as a substitute for 
commercial property.  

Miles (1996) UK  

(1970 – 1995) 

Relative 

performance 

measurement, 

literature review 

-  UK RPI - N/A - Money invested in 1970 would have doubled in value in real terms 
by 1995 whereas stocks would have made a little under 6% in real 
terms per annum.  

- The results did not support the view that real estate investments are 
less attractive during low inflationary periods. 

Newell (1996)  Australia 

(1984 – 1995) 

Fama & Schwert 

(1977) 

- Office real estate 
- Retail real estate 
- Industrial real estate 
- Bonds 
- Common stock 

Australian CPI - Westpac Inflationary 
Expectation 

- All property sectors were found to be a hedge against actual 
inflation, as were common stocks.  

- Property trusts and bonds however, did not provide a hedge against 
actual inflation. Similar results were obtained for expected inflation.  

- Office real estate were found to be a hedge against unexpected 
inflation, as were common stocks.  

- Retail and industrial property were to a lesser extent hedges against 
unexpected inflation. 

- Bonds did not show any hedging ability against the unexpected 
component of inflation. 

Schofield (1996) UK 

(1982 – 1994) 

- Regression 

analysis 

- Cash-flow 

scenario analysis.  

- Real estate 
- Index-linked bonds 

- UK RPI   - Schofield (1996) show that when regression-based approaches are 
used, index-linked bonds are a poor hedge against inflation. 

- Based on the cash-flow based scenario approach, index-linked 
bonds were found to be a perfect hedge against inflation, provided 
the impact of lagged indexation is ignored. 

- Properties were not found to be a perfect hedge against inflation. 
The authors attribute this to the five-year rent review cycle which 
makes it difficult, if not impossible, to adjust rents in response to 
inflation rate changes. 

- Employing leverage makes real estate investments less prone to 
inflation. 

Hoesli et al. 

(1997) 

UK 

(1963 – 1993) 

- Fama & Schwert 

(1977) 

- OLS approach 

- Stocks 
- Bonds  
- IPD real estate (total 

and income returns; 
capital gains) 

- UK RPI - T-bill returns 
- Fama and Gibbons 

(1984) 
- ARIMA (0,1,1) 
- Harvey (1989) 

- Compared to stocks, real estate was a poorer hedge against inflation 
when total returns, income returns and changes in capital values 
were analysed.  

- However, the hedging ability of real estate was better than bonds 
- The relationship between inflation and real estate also depends on 

whether annual or quarterly data was used.   
- Bonds become a better inflation hedge than real estate when 

unsmoothed return series for real estate are used.  

Barber et al. 

(1997) 

UK 

(1987 – 1994) 

- Structural Vector 
Autoregression 
Models  

- Different Sectors of 
the IPF Index 

- GDP 
Deflator 

N/A - Results show that property offers a hedge against unexpected 
inflation rather than the expected trends in inflation.  
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 (Industrial, Office, 
Retail and Office).  

- Components of the 
property returns: 
Capital Growth & 
Rental Values 

- Capital values were found to provide a better hedge against inflation 
than rental values over the period examined (1988 – 1989).  

- The best sector level hedging was provided by the industrial 
property sector whiles the office sector was the worst. 

Ganesan and 

Chiang (1998) 

 -  -  -   -  

Stevenson and 

Murray (1999) 

Ireland  

(1985 – 1996 

and 1969 – 

1996) 

- Fama & Schwert 

(1977) 

- Cointegration 
tests 

- Irish real estate 
returns 

- Stock 
- Bonds 

Irish CPI - Lagged short-term 
interest rates 

- ARIMA estimates 

- Real Estate does not function as an effective inflation hedge but it 
does produce significant positive real returns.  

- Stocks and bonds did not function as an inflation hedge, neither do 
they produce positive real returns.  

Quan and 

Titman (1999) 

17 countries 

(1984 – 1996) 

- Regression 
analysis 

- Commercial real 
estate 

CPI 

GDP 

 - Commercial real estate was found to be a good long-term hedge 
against inflation but not on a year-to-year basis.  

Stevenson (2000) UK  

(1983 – 1995) 

- Fama & Schwert 

(1977) 

- ma and Schwert 
(1977) 

- Engle and 
Granger 
Cointegration 

- UK Real Estate UK CPI 

UK PPI 

- Correction in short 
term rates (Gibbons, 
1982).  

- ARIMA estimates 

- North West, Scotland and Yorkshire provided a consistent hedge. 
There was no evidence of a long-run relationship in any of the other 
regions. 

- A larger number of regions registered significant beta coefficients 
when the UK PPI was used instead of the UK RPI. 

- Whiles housing may not provide adequate hedge against either the 
Producer Price Index or the Retail Price Index, the real returns in 
all cases are positive. 

- The Engle and Granger Methodology cointegration test uncovered 
evidence of cointegrating relationship between both the RPI and 
PPI in all but one of the regional markets analysed. 

- Results of the Granger Causality test revealed that housing market 
returns lead inflation. 

Stevenson 

(2001a) 

10 

international 

markets (1983 

– 1995): 

Australia, 

Brussels, 

France, 

Toronto, 

Milan, Japan, 

Amsterdam, 

Singapore, UK, 

USA.  

- Fama & Schwert 

(1977) 

- Engle and 
Granger 
Cointegration 

- Johansen (1988) 
Cointegration 

- Raw and Hedged 
REIT Data 

CPI - Lagged T-Bill rates 
- Fama and Gibbons 

correction of T-Bill 
rates 

- Simple first order 
autoregressive model 

- ARIMA estimates 
 

- Results from the OLS estimation show that aside Japan and 
Australia, none of the assets provide an effective hedge against 
actual inflation over the short term.  

- It was found that in many of the cases, REITs did not have any 
significant economic relationship with the expected or unexpected 
components of inflation.  

- There was no evidence of cointegration in all the countries except 
for the orthogonalized Japanese series 
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Brooks and 

Tsolacos (2001) 

UK (1968 – 

1998)  

- Durbin Watson 
(D-W) statistic 

- Engle & Granger 
(1987) 

- Johansen (1988, 
1991) 

- Johansen and 
Juselius (1990) 

- Property stocks listed 
on the London Stock 
Exchange 

- 3-Month T-
bill rates 

- 20-year 
government 
bond rates 

 

 - Found cointegration relationship between UK real estate returns 
and interest rate spreads, but fail to establish same for the short or 
long term rates themselves. 

Anari and Kolari 

(2002) 

USA 

(1968 – 2000)  

- ARDL 
- Recursive 

regressions 

- House prices CPI inflation  - House prices offer a hedge against inflation 
- Recursive regressions confirm stability of long-run relationship 

between house prices and inflation.  

Chu and Sing 

(2004) 

4 cities in 

China: Beijing, 

Chengdu, 

Shanghai and 

Shenzen. 

(1987 – 2002)  

- OLS  
- Cointegration 

analysis (Engle 
and Granger) 

- Granger causality 
test 

- Real estate returns 
from the Chinese 
Real Estate Index 
(CREI) 

- CPI inflation - ARIMA (1.0,3)  - Chu and Sing (2004) found no long-term relationship between 
inflation and real estate returns.  

- Causality tests show unidirectional causality from inflation to real 
estate returns in Chu and Sing (2004)   

- GDP growth and real stock market returns were not found to be a 
driver of real estate returns.  

Chen and Foo 

(2006) 

UK 

Tokyo 

Hong-Kong 

Taipei 

Singapore 

(1971 and 

2003) 

- Model of Berber 
et al. (1997) 
analysis of  time 
series features: 
Trend, 
Seasonality, cycle 
etc.  

- Residential real estate 
series (Various 
sources) 

- RPI for UK 
- CPI for all 

other markets 

 - Singapore residential property was found to offer a hedge against 
both transient and permanent price shocks. Taipei residential real 
estate offered a partial hedge against the long-term inflation trend 
whereas Hong Kong had the worst hedging ability against all three 
types of inflation. 

Huang and 

Hudson-Wilson 

(2007) 

USA (1978 – 

2006) 

- Fama & Schwert 

(1977) 

-  

- NCREIF US Private 
equity (Sectors: 
Apartment, office, 
retail, warehouse; 
Components of 
return: Income, 
capital, total) 

US CPI - Treasury bill interest 
rates 

- Results show that office real estate has the best inflation hedging 
ability followed by apartments and lastly warehouse. The difference 
between the performance of apartment and warehouse was quite 
pronounced. The authors attributed the poor performance of 
warehouse real estate to the disappearance of lease structures that 
linked rents to sales as well as allowing for full expense pass-
through. 

Simpson et al. 

(2007) 

USA (1981 – 

2002) 

- Fama & Schwert 

(1977) 

-  

- Equity REIT 
database of the US 
Centre for Research 
on Stock Prices. 

- Survey of US 
inflation 
expectation 
(Money 
Market 
Services)  
 

- Inflation survey 
divided into expected 
and actual 
component by means 
of a complex ARIMA 
structure that 
included both 
autoregressive (AR) 

- When expected and unexpected changes in the inflation were 
separated into positive and negative changes, they observed that 
REIT returns rise in response to changes in either direction. They 
attributed this result to how market participants process 
information that it consider to be relevant to inflation. 
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and Moving Average 
(MA) terms  

Le-Moigne and 

Viveiros (2008) 

Canada (1973 

– 2007) 

- Correlation and 
time series 
analysis 

- ICREIM/IPD real 
estate index and 
Russell-Canadian 
Property Index 

- Canadian CPI - Lagged Canadian CPI 
inflation 

- When the sample period was split into two: 1973 – 1984 and 1985 
– 2007, they observed that real estate only provided a hedge in 
periods of high inflation and not when inflation rates were low.  

- On their own however, British Columbia and Quebec’s real estate 
provided a hedge against expected inflation.  

- The failure of real estate to hedge against inflation, in the latter 
periods examined by the study, was attributed to an introduction of 
inflation targeting by the Central bank of Canada. 

Erol and 

Tirtiroglu (2008) 

Turkey (1999 

to 2004) 

- Fama & Schwert 

(1977) 

- Fisherian Direct 
Causality model 

- Real Estate 
- Stock  

 

- Turkish CPI - T-Bill Rate 
- Fama and Gibbon 

(1982) correction in 
short-term rates. 

- When the sample period was divided into periods of moderate and 
high inflationary sub-periods, there was still evidence that stocks 
and REITs provided better hedges against inflation for both periods 
but REITs consistently outperformed stocks.   

Hoesli et al. 

(2008) 

UK 

USA 

(1977 – 2003)  

- Error correction 
models 

- Direct real estate 
- General stocks 
- Small cap stocks 
-  

- US CPI 
- UK RPI 

(excluding 
mortgage 
payments, 
seasonally 
adjusted) 

- Treasury bill rates 
- ARIMA estimates 

- Only private real estate was found to have a non-significant 
relationship with anticipated inflation  

- Unanticipated inflation had a significant positive relationship with 
private real estate but no relationship with public real estate 
securities 

- For the US market, over the long run, securitised real estate 
provides a complete hedge against inflation whereas direct property 
is only a partial hedge against expected inflation. 

- Results from the short-run models suggest that in general, there was 
no significant inflation hedge provided by any of the assets although 
real estate assets provided a better hedge than stocks.  

- With regard to the United Kingdom, all the asset classes partially 
hedged inflation over the long run.  

- The coefficients for direct real estate was less than one whiles all the 
others were greater.  

- Private real estate recorded a significant positive coefficient.  
- Over the short run however, only direct real estate provided some 

hedge against both the expected and unexpected components of 
inflation. 

Attie and Roache 

(2009) 

USA  

(Various start 

dates for 

different assets 

to Nov. 2008) 

- multivariate 
vector-error 
correction model 
(VECM) 

- Real estate 
- Bonds  
- Equities 
- Cash 
- Commodities  

 

- US CPI N/A - Over the short run, they find that bonds and equities did not 
provide a good inflation hedge.  

- Commodities however provide a good hedge against inflation, 
particularly over periods of rising inflation.  

- Over a 12 – 18 month period, they find commodities to be the best 
performing asset and bonds to be the worst performing.  

- Beyond this period, bonds outperformed inflation while commodity 
prices begin to fall in nominal terms.  

- Equity, they note, was unable to recover short-term losses made and 
thus performed poorly over all the sample periods examined. 

Amenc et al. 

(2009) 

USA  

(1973 – 2007) 

- Vector error 
correction 
models (VECM) 
which allow for 

- Real estate 
(FTSE/NAREIT real 
estate index) 

- Stocks 

- US CPI - Return on a constant 
maturity zero-coupon 
TIPS 

- Results of the study were, among other things, that commodities 
and real estate are able to offer inflation-hedging over the long term.  

- The authors compared their liability-hedging investment solution to 
other approaches typically used by long-term investors and note 
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incorporating 
price and return 
dependencies 

- Bonds 
- Commodities 
-  

that it offers a more cost-effective option to the use of TIPS and 
inflation swaps. 

Demary (2009) Australia 

Denmark 

Finland France 

Germany 

Japan 

Netherlands 

Spain  

UK  

USA  

(1970 – 2005) 

- cross 
correlations at 
different leads 
and lags 

- Various VAR 
approaches: 
impulse 
response, 
forecast error, 
variance 
decomposition 
and causality 

- Real Estate 
-  

- GDP 
- Short-term 

interest rates 

N/A - The study found that real estate prices fall in response to unexpected 
increases in the price level.  

- Declining prices however does not imply that real estate is not a 
hedge against inflation. 

- Housing demand shocks are a key driver of money market rates.  
- 12 to 20 percent of output fluctuations and around 10 to 20 percent 

of price fluctuations can be traced back to the housing demand 
shock. 

Demary and 

Voigtlander 

(2009) 

Canada  

USA 

France 

Germany 

Ireland 

Netherlands 

Sweden   

UK 

(1998 – 2007) 

- Panel data 

augmented 

version of the 

Fama & Schwert 

(1977) 

model 

- Real Estate data from 
EPRA 

-  

- CPI - ARIMA estimates - Neither stocks nor REITs protect investors against inflation in the 
countries examined. 

- Direct real estate however does protect the investor against 
inflation.  

- Office and residential real estate were found to provide the best 
hedge against inflation.  

- A possible explanation for this is that landlords in residential 
properties have a higher market power to make occupants accept 
increases to their rent as inflation increases. 

Zhou (2010) USA (national 

and ten 

selected states) 

(1978 – 2007)  

- Engle and 
Granger (1987) 
Cointegration 

- Johansen (1988, 
1991) 
Cointegration 

- Alternating 
conditional 
expectations 
(ACE) algorithm 
of Breiman and 
Friedman (1985). 

- US House Prices - Income 
- Mortgage 

rates 
- Construction 

costs 

- N/A - Results of the linear cointegration shows that of the series 
examined, only the City of Cleveland shows evidence of 
cointegration of house prices and the fundamentals. 

- Results of the Ramsey (1969) reset test was used to detect errors in 
the specification of the linear OLS regression and it was found that 
only the linear specification of Cleveland was correctly specified. 

- It was found that the transformed house prices are linearly 
cointegrated with the series for the transformed house price 
fundamentals for the national series as well as those of six cities: 
Chicago, Dallas, Philadelphia, Richmond, Seattle and St. Louis. 

Zhou and 

Clements (2010)  

China 

(2000 – 2008) 

- Autoregressive 
Distributed Lag 
(ARDL) Model  

- Granger causality 
test  

- Residential real estate 
prices 

- Non-residential real 
estate prices 

- Aggregate real estate 
prices 

- Stocks 

- CPI inflation  
 

- ARMA estimates - No long-run cointegration relationship found between real estate 
returns and inflation (actual, expected and unexpected). 

- No short-run causal relationship between real estate prices and 
inflation.  

- Residential real estate found to granger-cause actual inflation.  
- Bi-directional relationship between residential real estate and 

expected inflation.  
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- Non-residential real estate found to granger-cause both actual and 
expected inflation.  

Inglesi-Lotz and 

Gupta (2011) 

South Africa 

(1970 – 2011)  

- ARDL Allied Bank South 
Africa Real estate 
segments:  

- Luxury  
- Large middle-

segment  
- medium middle-

segment 
- Small middle-segment 
- Entire middle-

segment 

- CPI 
(excluding 
housing 
costs) 

-  - All the various real estate segments were found to be cointegrated 
with the chosen inflation measure over the long-run.  

- The long-run coefficients which represents the attempt by house 
owners to maintain their purchasing power was found to range 
between 0.902 for the luxury segment and 1.111 for the affordable 
housing segment.  

Blake et al. 

(2011) 

UK 

(1948 – 2007)  

- Correlation 
analysis 

- UK Real Estate - CPI 
- GDP growth 
- Wage 

Growth 

-  - A hedge is obtained if an asset is moving at the same time as 
inflation, or reacting to it, and not merely keeping pace with 
inflation over time.  

- In the long run, they found that UK property did not act as an 
inflation hedge although it does deliver positive returns.  

- The results however varied according to the type of inflation being 
analysed and the underlying economic conditions. 

- When GDP growth was used as the inflation measure, the study 
recorded coefficients for real total returns were not significantly 
different from zero.   

- Capital growth was seen to respond very strongly to CPI inflation 
but income return did not show any long-term relationship. 

- Income from UK property did not keep up with CPI inflation, 
particularly in periods of high inflation. 

Tenigbade (2011) Nigeria (1999 

– 2010)(Cities: 

Ikoyi, Victoria 

Island, Ikeja) 

- Fama & Schwert 

(1977) 

- Real Estate - CPI - T-Bill Rate - An examination of the correlation structure of real estate and 
inflation showed that real estate was positively correlated with 
inflation.  

- Results of the Fama & Schwert (1977) model indicated that the 

prime commercial property around Ikoyi and Victoria Island acted 

as a perverse hedge whereas those in Ikeja and its surrounding area 

offered a complete hedge against inflation. 

Case et al. (2012) USA 

(1978 – 2011)  

- Success Ratio 
analysis 

- REITs 
- Commodities 
- TIPS 
- Stocks 
- Gold 

-  -  - They find that real estate accessed through publicly traded equity 
REITs provided attractive inflation hedging characteristics.  

- Short-duration leases, or properties with rents linked to revenues 
provided the strongest inflation protection. In particular, self-
storage, residential properties and shopping centres recorded 
success ratios higher than the industry average.  

- The authors also worked within the Markowitz mean-variance 
framework to determine the optimal allocation that provides the 
best inflation protection. They find that a blended portfolio with 
49% invested in TIPS, 17.5% invested in REITs, 15% in 
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commodities, 14% in stocks and 6% in gold achieves a 75% success 
ratio. 

Obereiner and 

Kurzrock (2012) 

Germany 

(1992 – 2009) 

- Fama & Schwert 

(1977) 

model 
- Engle & Granger 

(1987) 
cointegration 

- Johansen (1988) 
cointegration 

- Granger 
Causality tests 

- Open ended funds 
(OEF)  

- Secial real estate 
funds (SF)  

- CPI - ARIMA estimates - Results from the Fama & Schwert (1977) model suggested that in 

the short run, none of the real estate investment vehicles analysed 

provide a hedge against either the expected or the unexpected 

components of inflation.  

- Cointegration test results show that over the long term, open-ended 
funds and special real estate funds do provide a hedge against 
inflation.  

- Causality tests lend support to the findings of the cointegration tests 
by suggesting that real estate fund performance is influenced 
strongly by the German CPI rates over the long run. 

Park and Bang 

(2012) 

Korea 

(2002 – 2010) 

- Dynamic 
ordinary least 
square (DOLS) 
regression of 
Saikkonen (1992) 
and Stock and 
Watson (1993). 

- Vector error 
correction model 
(VECM) 

- Engle-Granger 
cointegration 

- Johansen (1988) 
cointegration 

- Real estate (Korean 
CBRE income return; 
capital gains) 

- Equity 

- CPI - ARIMA estimates - Real estate was found to be a hedge against actual and expected 
inflation over both the short-run and long run.  

- Equities were found to have a negative relationship with inflation 
over the short-run. However, over the long-run, equity returns were 
found to be cointegrated with inflation.  

- The error-correction coefficient for inflation and commercial real 
estate in Park and Bang (2012) was -0.016 and for equities it was -
0.292.  

- An analysis of the rental income shows that it has a positive co-
movement with both expected and unexpected inflation. However, 
compared to the analysis using total returns, the degree of 
correlation was weaker. 

Tehrani et al. 

(2012) 

Third World 

Countries 

(1980 – 2011)  

- Pesaran et al. 
(2001) ARDL 
Bounds Testing 
approach 

- Real Estate  
- Stock  
- Time Deposits 

- Country 
Policy and 
Institutional 
Assessment 
(CPIA) Rate  

-  - The study found that small and medium size properties are better at 
hedging against inflation than large, luxury apartments.  

- Real estate assets were also found to possess better hedging ability 
than common stocks and time deposits. 

Anim-Odame 

(2014) 

Ghana 

(1992 – 2007)  

- Hedonic models - Residential real estate - GDP  
- Interest rate 

-  - Results show a positive relationship between GDP growth and the 
total returns of the Ghanaian residential housing market.  

- Conversely, the study recorded a negative relationship with interest 
rates.  

- These results are stronger when the dollar total returns are 
translated into Ghana cedi using. 
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CHAPTER FOUR – DATA AND METHODOLOGY 

4.0 INTRODUCTION 

This part brings together a discussion of all the issues concerning the data used in our empirical analysis. 

We first present the sources of each data series used, who construct it, the composition of the index 

etc. Potential problems with each data source, namely, representativeness, appraisal smoothing etc. are 

discussed, including a description of how we deal with each of these issues. We then go on to discuss 

the key benefits of investing in the various assets and also present a discussion of their historical 

performance over our sample period. In the second part of this chapter, we present a background to 

the statistical, econometric and optimisation models and techniques that underlie the analysis in the 

various empirical chapters. The aim is to provide an expanded discussion of the various models and 

analytical techniques that we implement in the various empirical chapters of this thesis. A summary of 

these models would be given in the various chapters in which they are applied.   

4.1 DATA 

4.1.1 ASSET RETURNS 

The assets included in this study are grouped under four headings to reflect the allocations observed 

by studies that have analysed the allocation within pension portfolios (Scott, 1991; UBS, 2015; 

Schroders, 2016). We group the assets under the following headings: stocks, bonds, real estate and 

alternative assets. Under alternative assets we have assets such as commodity, hedge funds and private 

equity. This category also includes developed market equities and emerging market equities, which may 

normally not be classified as alternative assets. In addition to the main asset classes, we include sub-

sectors where data is available. 

The various empirical studies in this thesis are conducted from the perspective of a UK pension fund 

investor who aims to gain exposure to both traditional (core) and alternative asset classes. Very few 

studies have examined the inflation and interest rate hedging ability of real estate within a portfolio 

context. Those that have done so (e.g. Koniarski and Sebastian, 2015) have limited the portfolio to real 

estate and the traditional asset classes of stocks and bonds. Also, very few studies have used sector-

level data in their analysis, a situation Spierdjick and Umar (2013) found could lead to inaccurate 

conclusions being drawn as the behaviour of an asset on a sector level may be different from the 

behaviour at an aggregate level.   
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In order to determine the hedging ability of these assets, the relationship between the returns of the 

assets and selected macroeconomic variables are analysed. We include a number of inflation and 

interest rate measures to determine the robustness of our results and also to see if the resulting asset 

portfolios are driven by the inflation or interest rate benchmark chosen by a particular pension fund.  

We use the UK CPI Inflation rate as the main measure of inflation and the 3-month T-bill rate as the 

main interest rate measure. The UK RPI Inflation rate is used as an alternative measure of inflation 

whiles the 3-month LIBOR rate is used as an alternative interest rate.  

The analysis in this thesis cover the periods 1991 and 2015. The starting point allows us to include a 

wider selection of assets as data for most of the alternative assets are only available from the early 1990s 

compared to the traditional assets such as stocks, bond and real estate that have data going back much 

farther. The start time of our analysis also coincides roughly with the period when the move towards 

DC pension structure started in the UK (Broadbent et al., 2006; Turner and Hughes, 2008; Whelan, 

2003). 

We use quarterly data as the returns of some of the assets included in this study are only available on 

a quarterly basis. For our out-of-sample analysis, we use a quarterly rebalancing window which reflects 

the practice within pension funds (Blake et al., 1999; Ibbotson and Kaplan, 2000; Bams et al., 2016; 

Driessen et al, 2017).  

Also, many of the alternative assets are priced in US$. The analysis in this thesis are conducted from 

the perspective of a UK DC investor and thus it makes sense to convert all returns into UK pound 

sterling. However, in Chapter 7, we carry out the analysis using non-UK asset returns in both US$ and 

GB£ to reveal whether a decision to hedge currency risk or not impacts on the ability of non-UK assets 

to hedge against UK benchmarks. The analysis in the portfolio paper (Chapter 8) is conducted with 

non-UK asset returns converted back into GB£ to provide focus on the analysis of whether the 

different benchmarks result in different portfolio composition for DC pension funds.  

Published indices are used as proxies of asset return in all cases. We source most of the data from 

datastream and Bloomberg. We supplement this with data sourced directly from data providers such 

as Cambridge Associates and the various pension funds.  

The following sections explain the sources of returns for the various investment assets and 

macroeconomic benchmarks. Issues associated with the various data sources would be discussed as 

well as our approach for dealing with these issues. The specific data required for the each empirical 

analysis would be discussed in the respective chapters.  
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4.1.1.1 Direct Real Estate  

Apart from stocks and bonds, real estate is the most significant asset class in which pension funds 

invest (Andonov et al., 2012).  Hudson et. al. (2003) explained that the rationale for including real estate 

in investment portfolios is its ability to reduce risk and achieve a competitive return. Also, real estate 

delivers strong cash flows which serve as a hedge against inflation. Ling and Naranjo (1997) found that 

real estate returns were driven by factors such as GDP growth per capita, the term structure of interest 

rates and some measures of inflation. Similarly, Geltner (1989) found that real estate returns were very 

sensitive to national consumption. Brounen and Eicholtz (2003) point to real estate’s relatively low 

correlation with equities and bonds. Andonov et al. (2012) found pension fund real estate investments 

depend on their willingness to invest in alternative assets in general. It also depends on the size of the 

funds.  

Early studies on the role of real estate within investment portfolios have recommended high allocations 

to direct real estate than what was observed in practice. Many reasons have been put forward for the 

low allocation that real estate receives in practice. These reasons include lumpiness and illiquidity 

(Gallagher, 2005; Payton et al., 2007), high management costs (Byrne and Lee, 2005), lack of 

transparent pricing (Gallagher and Martin, 2005).  

In this thesis, we use actual both the IPD Index and the AREF/IPD unlisted funds indices to obtain 

exposure to the direct real estate market in the UK. In addition to these two series, we also construct 

a blended real estate index that is made up of an 80% direct real estate (AREF/IPD unlisted fund 

index) and 20% listed real estate. This is similar to the approach taken by NEST for their real estate 

investment. We discussed the significance of blended real estate in Chapter 2. The idea of creating 

blended real estate series also underpins the empirical analysis in Chapter 6. As an additional robustness 

check, we re-run the analysis where we use the IPD property index using an unsmoothed IPD Index 

return series. The approach of Geltner (1991, 1993) is used.  

The IPD-UK index is constructed by the Investment is the standard benchmark that property investors 

use to measure the performance of UK direct real estate. It is constructed from valuation and 

management records of individual properties in complete portfolios, collected directly from investors. 

The index tracks the performance of over three thousand property investments with a total 

capitalisation of GB£45 billion as at April 2017. Andonov et al. (2012) note that the IPD index 

represents the most prevalent database for commercial real estate investment in the United Kingdom. 

Similarly, Callender et al. (2007) concluded that the IPD index provides a realistic picture of the options 

that are available to investors who wish to construct a direct real estate portfolio. More than 60 percent 
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of investors in the IPD UK database are pension funds (Bond and Mitchell, 2010). In addition to the 

aggregate IPD-UK property benchmark, sector levels will be conducted using the three main sub-

sectors: Office, Retail and Industrial real estate. For the purposes of this thesis, listed real estate would 

be classified under stocks.  

Although the use of return indices to measure the performance of different asset classes is well 

established in the literature, some have questioned the use of index returns within the context of real 

estate investment. The arguments centre around (i) the suitability of real estate indices in tracking the 

performance of the underlying real estate market and (ii) The accuracy of appraisal based indices in 

general in the measurement of returns. The first issue has to do with whether investors can actually 

hold the many assets included in a property index in order to replicate the performance of the index. 

This is a valid concern especially given how expensive it would be for an average investor to own the 

number of assets that an index contains. The second issue has to do with the accuracy of appraisal 

based series in capturing the returns of the underlying market. Statistical issues such as appraisal 

smoothing also remain a concern among researchers. In the following section, we debate these issues 

and show that on the whole, appraisal based indices reflect the returns earned by property investors. 

Also, real estate indices have over time become more reliable and have been shown to reasonably track 

property returns.  

The IPD direct real estate index tracks the performance of the universe of direct real estate assets 

available to UK institutional investors and fund managers. Some have argued that investors cannot 

realistically hold the many assets that make up the UK IPD index and so the returns obtained may not 

be comparable to the IPD benchmark portfolio. Consequently, several empirical studies have 

investigated the question of whether the IPD benchmark portfolio returns can be replicated using a 

limited number of properties. The focus of most of these studies has been on the number of properties 

that are required to create a well-diversified portfolio.  

Early studies on diversification and portfolio size were conducted in equity markets. These studies in 

general found that a small number of stocks were required to produce a reasonable level of 

diversification. The seminal work of Evans and Archer (1968) provided the simulation approach for 

subsequent studies. The study examined how the standard deviation of a randomly selected, equally 

weighted portfolio decreases as portfolios containing 1 to 40 stocks are constructed. The selection of 

each portfolio size is repeated 60 times and the standard deviation from each trial are averaged out. 

The results showed that 8 stocks were enough to produce returns that track the returns on the S&P 

index. The added benefit of having more than ten stocks in the portfolio was very small. Elton and 

Gruber (1977) applied analytical techniques using average variance and covariance for stocks drawn 
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from the New York Stock Exchange and the American Stock Exchange. They found that 51% of an 

equally weighted stock portfolio can be eliminated by adding 10 to 20 stocks to the portfolio. Statman 

(1987) incorporated variations in management and transaction costs and concluded that 30 to 40 stocks 

make a well diversified portfolio. The added cost of holding more than 40 stocks outweighed the added 

diversification benefits.  

Achieving a reasonable level of diversification is more challenging for direct real estate due to (i) the 

indivisibility of commercial real estate (ii) High transaction costs associated with real estate investments 

(iii) Lack of effecting vehicles for short-selling and hedging. Brown and Schuck (1996) believes that a 

high level of asset-specific risk explains in part the low allocation to direct real estate relative to the 

allocations suggested by most optimisation models.  

Jones Lang Wooten (1986) conducted one of the earliest studies on portfolio size and diversification 

within the real estate market using the approach of Evans and Archer (1968). They concluded that 20 

properties were required to achieve a reasonable level of diversification. Using a similar approach, 

Barber (1991) estimated that between 40 and 45 properties are required whiles Campbell et al. (2001) 

concluded 50 randomly selected buildings could help achieve relatively complete portfolio 

diversification. Byrne and Lee (2000) however found wide dispersions in the results from the various 

trail sets of portfolios. They concluded that even though a significant amount of risk-reduction can be 

achieved with 20 properties, 60 to 80 properties would be required to create a portfolio about which 

an investor can be very confident. Young et al. (2006) found that assuming a normal distribution, only 

16 properties would be required to eliminate about a quarter of a single property portfolio’s risk. 

However, when the assumption of normality is relaxed, 88 properties would be required to achieve the 

same outcome. Fisher and Goetmann (2005) constructed simulated portfolios using data on 4,000 

properties bought and sold in the US from 1977 to 2004. They found that increasing portfolio size 

from 10 to 100 properties could reduce the risk of the portfolio from 3.76% to 1.27%.  

Brown (1988) applied an analytical technique to a portfolio of 135 properties and found that only 10% 

of variations in property returns are explained by market movements. This compares with 30% of 

market movements in the equity market that is explained by market movements. To achieve a high 

level of diversification, they concluded that over 200 properties would be required. Byrne and Lee 

(2003) found that in order to remove all of the unsystematic risk from a property portfolio, a large 

amount of properties, more than 200, have to be held. As this nearly impossible for most investors, 

the authors concluded that most properties would still contain some amount of unsystematic risk 

factors. On the contrary, Brown and Matysiak (2000) found that institutional investors who hold 

between 20 and 30 properties are able to diversify away much of the property specific risk. The results 
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of ) were confirmed by Boulding et al. (2013) who examined how well a real estate index tracks the 

return movement of portfolios with different numbers of properties. They found that aggregate real 

estate indices are effective when portfolios of more than twenty properties are considered. They also 

found that location based indices were better at tracking real estate returns than property-type indices. 

Callender et al. (2007) found that a large amount of risk reduction can be achieved with a portfolio of 

30 to 50 properties. However, to obtain tracking error of less than 1%, over 250 properties are required. 

Mitchell (2015) analysed the performance records of over a thousand UK commercial properties along 

with their characteristics and tenancy records. They found that the deviation in sensitivity of individual 

property returns and the returns of the benchmark IPD All Property portfolio is not large. An 

implication of this result is that investing in a couple of properties is enough to achieve a reasonable 

level of diversification and obtain returns similar to the IPD benchmark.   

A review of the Statement of Investment Principles and Annual Statements shows that many of the 

property funds through which pension funds invest in direct real estate are benchmarked to the IPD-

UK property total return index or its variants. The graph in Figure 4(1) is adapted from Skjönsberg 

(2014). The graph compares the monthly total returns of three major real estate funds returns to the 

total returns of the IPD UK All Property portfolio benchmark. We observe that the returns follow the 

same pattern, although some funds perform better or worse than the benchmark.  

Figure 4(1)    IPD All Property Returns and Individual Property Fund Return 

 

Source:  Skjönsberg (2014) 
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There has also been a long standing debate on the suitability of appraisal based indices to track the 

returns of various assets, especially direct real estate. The main focus has been on valuation smoothing 

and its effect on the measurement of real estate performance on the index level. Smoothing affects the 

volatility of an index as well as other statistical properties of the index. Smoothing is attributed to 

factors such as valuation timing, sticky valuation process and aggregation effects (Geltner, 2003; Brown 

and Matysiak, 2000). Geltner (1993) believes that the smoothness and lagging associated with appraisal 

based indices has to do with two sets of factors: (i) how appraisers behave and how individual appraisals 

are obtained (ii) How the various appraisals are aggregated to form an index. Geltner (1989) believes 

that smoothing at the individual property level is a result of the fact that appraisers in themselves 

cannot be certain that their current estimates of market values equals the true market value. Given the 

market value of the same property for a particular property for a previous year, valuers tend to consider 

the previous year’s estimates at least to some degree. Diaz and Wolverton (1998) found that there is a 

high tendency for appraisers to anchor on their own previous assessment of value. Similarly, Clayton 

et al. (2001) found that anchoring on previous values was greater where the property is appraised by 

the same valuer. To reduce this tendency, it is important to rotate appraisers from one period to the 

next. Index level smoothing is often a result of what US researchers describe as a stale appraisal 

problem with respect to NCREIF data. This problem arises from the fact that some properties are 

valued less frequently than quarterly. In order to retain such properties within an index, the values of 

intervening quarters are populated with figures from the last appraisal process. This results in a loss of 

information as movements in the value of properties that are appraised quarterly tend to be dampened 

by those assets whose values do not move. Even when all assets included in the sample are revalued 

each quarter, some temporal aggregation could result as not all the properties are valued on the same 

date.  

One of the reasons cited for the high allocation which real estate receives within investment portfolios 

is that real estate returns are less risky and exhibit low volatility. They also have low correlation with 

other asset classes and thus present an opportunity for diversification. However, many authors have 

argued that the low volatility is a function of the valuation process – what they refer to as appraisal 

smoothing. Byrne and Lee (2005) note specifically that using actual appraisal based real estate index 

return could lead to corner solutions – a situation where real estate allocations are very high.  

Geltner (1989) proposed an approach to unsmooth direct real estate returns on the index level to reveal 

the ‘real’ volatility. A number of studies have built on Geltner (1989) but have proposed different 

approaches to unsmooth appraisal-based property returns (e.g. Geltner, 1993; Quan and Quigley, 1991; 

De-Wit, 1993; Fisher et al., 1994).  
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The process of unsmoothing appraisal based real estate returns is not without its critics. Lai and Wang 

(1998) show that there are scenarios in which appraisal-based returns can exhibit even more volatility 

than true asset volatility. They question the assumptions often made regarding appraisal-based time 

series and aver that “it is not reasonable to conclude that something is wrong with appraisal based 

indices because the variance seems artificially low” (p. 532).  

Another issue with using unsmoothed real estate return series is that the various unsmoothing 

processes or models tend to produce different results (Marcato and Key 2007). Corgel and deRoss 

(1999) for example found that different assumptions about the appraisal process and the different 

models proposed to correct the perceived appraisal bias could resulted in very different allocations to 

direct real estate within optimal multi-asset portfolios. Bond et al. (2012) suggest that smoothing in 

individual property appraisals is not as great as has been implied from analysis of index-level data. They 

argue that previous studies utilised models that are too simple for capturing the return generation 

process for real estate.  

Crosby and Diaz (2011) outline three reasons why transaction based indices for real estate have been 

difficult to construct: (i) limited volume of real estate transactions (ii) lack of transparent market place 

to observe transactions. (iii) heterogeneous nature of properties. They observed that despite the 

shortcomings of appraisal based indices, they enable a larger sample to be used with the possibility of 

greater disaggregation than transaction based indices. The usefulness of appraisal based indices has 

also been improved over the years by research into their limitation. The increasing availability of 

transaction based indices has helped in identifying differences between the outcomes and those of 

appraisal based indices at the more aggregated level. Some researchers have used transaction based 

indices in place of appraisal based indices. For example, Brounen et al. (2010) used the MIT Centre for 

Real Estate Transaction based indices instead of the NCREIF Property index to avoid the perceived 

smoothing and lagging problem of appraisal based indices. Boulding et al. (2013) examined 12,427 

repeat sales transactions between 2004 and 2011 and found that aggregate real estate indices do a good 

job of tracking real estate returns when more than 20 stocks are included in the portfolio. They 

concluded that aggregate real estate indices can be effective in evaluating direct real estate performance. 

Devaney (2014) compared the volatilities of different types of indices and found that the UK has 

similar volatility figures for both appraisal based and transaction based indices.  

Many researchers have argued that the unusually high allocation to real estate observed in earlier studies 

reflect shortcomings of the standard mean-variance framework as opposed to problem with the 

underlying asset data. In Chapter 3, we provided a detailed discussion of the shortcomings of the mean-

variance model and several approaches and models that have been developed to produce better 
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portfolios. More pertinent to this thesis is the use of Asset Liability Models (ALM) within the context 

of pension funds. ALM models emerged in the early 1990s (Sharpe and Tint, 1990; Leibowitz et al., 

1994). Studies that have applied ALM to real estate found allocations that differed greatly from those 

that worked within a Mean-Variance framework (Chun et al., 2000; Craft, 2001; Craft, 2005; Brounen 

et al., 2010). Brounen et al. (2010) in particular aver that accounting for inflation within an ALM context 

was at the heart of discrepancies between reported and predicted allocations to direct real estate. The 

analysis in the portfolio chapter is carried out within a framework that uses tracking error and semi-

variance of tracking error as the measure of risk. Consequently, risk is measured relative to the inflation 

and interest rate benchmark. This way, the effects of appraisal smoothing on the risk measure is 

expected to be minimal. Consequently, we do not expect the results of analysis based on actual IPD 

property index to differ significantly from an analysis using desmoothed index returns. As an additional 

robustness however, the portfolio analysis chapter would make use of both the actual IPD All Property 

Index as well as an unsmoothed IPD return series.  

4.1.1.2 Publicly Listed Real Estate 

It is well known that the REIT market offers investors who want to invest in real estate the opportunity 

to invest in real estate without running into the problem of illiquidity, management issues as well as 

high lot sizes and unit costs direct investment in real estate entails (Chiochetti et al., 2002). Although 

listed real estate investments have been available since the introduction of REITs in the United States 

in 1960, they only became popular in the United States in the early 1990s owing to a number of factors. 

These factors include the include the inclusion of REITs in major market indices such as the S&P 500 

and the strong performance witnessed by REITs following the burst of the dot-com bubble (Ling and 

Naranjo, 2003), the low correlation observed between real estate stocks and other stocks (Ross and 

Zisler, 1991; Kallberg et al., 1996). Real estate investments also increased when the “five or fewer rule” 

for pension funds in the United States was changed. The rule stipulated that the top five shareholders 

together cannot own more than 50% of the shares outstanding of REITs. This effectively limited the 

ability of pension funds to invest in REITs given their large financial resources. The rule was amended 

in 1993 so that pension funds were no longer seen as single investors but a collection of investors. 

REITs have been used as a proxy for listed real estate in a number of non-UK studies. However, in 

the UK, the first property companies that converted to REITs did so in 2007 and so there is no data 

for REITs before this time. In this study, we use data for listed real estate companies. The listed real 

estate benchmark used is the Thomson Reuters Datastream listed real estate stock supersector (Level 

3) which is a subset of the financial industry stocks (Level 2).  
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With the popularity of listed real estate came the question of whether investing in listed real estate 

could yield the same outcome as investing in direct real estate. Three different strands of literature have 

emerged regarding the relationship between direct and listed real estate and the role of listed real estate 

within investment portfolios. One line of research analyses the relationship between listed and direct 

real estate returns and direct real estate returns whiles another looks at the benefits of adding listed real 

estate to real estate investment portfolios. A third group of studies examines the role of listed real 

estate within multi-asset portfolios that may or may not contain direct real estate.  

Several studies have compared the returns of listed and direct real estate to reveal whether both series 

exhibit the same trend and could be considered as substitutes or whether they are both unique and so 

be used together within a diversified portfolio.  

Many of these studies used the style analysis approach of Sharpe (1988, 1992) or vector autoregressive 

models. While some of the studies analysed the relationship between the direct real estate and listed 

real estate asset specifically, others considered the relationship between direct real estate and the 

broader equity market. Myer and Webb (1993) observed that US REIT returns behave more like 

equities in the short term. They however granger-cause the direct real estate market in the long term. 

Liang and McIntosh (1998) performed the style analysis of Sharpe (1988, 1992) and concluded that 

REITs were a unique asset class and so should be added to investment portfolios for enhanced risk-

adjusted performance. Ling & Naranjo (1999) examined whether the direct real estate market as well 

as the REITs market were integrated with the common equity market. While REITs were found to be 

integrated with the common equity market, direct real estate markets were not. The results were 

consistent whether the direct real estate series was unsmoothed or not. Similarly, Quan and Titman 

(1999) found that commonality between direct real estate and domestic equity markets are only evident 

when data was examined at an aggregate level and over longer time horizons. Pagliari et al. (2005) 

found that the returns of direct real estate, after adjusting for leverage, smoothing and accounting for 

other effects, were very similar to REIT returns. This was particularly so between 1993 and 2001. Based 

on this, they suggested that REITs were a good proxy for direct real estate. 

The studies that utilised vector autoregression approaches generally found little evidence of integration 

between direct and indirect real estate sectors (Wilson et al., 1998). Causality analysis has also been 

used to investigate this issue by papers such as Myer and Webb (1994), Barkham and Geltner (1995; 

1996) and Seiler et al. (1999). Most of these studies revealed that the listed real estate market leads the 

direct real estate market, implying that information is incorporated into the prices of listed real estate 

assets more quickly. Barkham and Geltner (1995) found evidence of unlevered and lagged price 

information transmission from listed real estate market to the direct real estate market in both the UK 
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and USA. Geltner et al. (2007) observed that the returns of listed and direct real estate vary, especially 

in the short term. Clayton & MacKinnon (2000) believe that variations in direct rand listed real estate 

returns stem from the fact that information takes longer to transfer from the direct to the listed market. 

Hoesli & Oikarinen (2012) compare the return of listed and direct real estate using vector error 

correction models. They find evidence of a long-term relationship in the UK and US markets. 

However, the relationship between REITs and stock markets is stronger in the short-term. In the long 

run, REIT returns have similar risk factor exposures to direct real estate.  

4.1.1.3 Nominal Bonds 

The two main criteria used to categorise bonds are (i) Issuer type and (ii) Term to maturity. There are 

different types of bonds depending on who the issuer is e.g. government bonds, corporate bonds, 

municipal bonds etc. Term to maturity refers to the length of time between when the bond is issued 

and the time the issuer must redeem the bond by paying the principal or face value.  Between these 

two dates, the issuer makes periodic interest (coupon) payments to the bond holder. We include Bonds 

with different maturities in our studies – All Maturities; 10+ year, 10 year, 5 year, 3 year and 2 year 

Bonds series. The main sterling corporate indices for the UK do not start until the mid- to late- 1990s. 

A study by the UK Institute and Faculty of Actuaries (2003) attribute this to the fact that very few 

companies issued bonds during high inflation periods owing to their reluctance to commit to paying 

high coupon rates. Also, many bond issues tend to be tightly held (mostly by insurance companies who 

purchase and hold them to maturity) while some of these bonds were very rarely traded. UBS (2015) 

observed that as corporate bonds are priced as a spread over government bonds, a rise in interest rates 

would mean that the return in corporate bonds would go up to the same degree.  

Several studies that have analysed the portfolio role of bonds within a multi-asset setting have tended 

to focus on government bonds (e.g. Chun et al., 2000; Craft, 2001; Bruno & Chincarini, 2011; Koniarski 

and Sebastian, 2015). In assessing the ability of bonds to hedge against inflation, analysing bonds of 

different maturities would offer more insight than analysing bonds from different issuers. Mergon 

(1974) observed that maturity risk is a factor for even the safest bonds there is a higher potential for 

changes in inflation and interest rates to adversely affect the returns of these bonds. Assuming a 

constant risk premium as in the expectation hypothesis of Fama (1984), the return pattern of corporate 

bonds of various maturities is expected to be identical to the returns of government bonds of the 

respective maturities. After accounting for default and other risk factors, the difference in return for 

bonds of different terms to maturity is expected to be the same.  

The nominal bond series is obtained from the Thomson Reuters DataStream’s Benchmark 

Government Bond Indices which represent returns on government Bonds and is available for several 
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countries based on formulation recommended by the European Federation of Financial Analysts 

Societies. The maturities included in our study are the maturities that are available for all countries (up 

to 10 years) although longer maturities are available for countries such as the UK. We use the 10+ year 

to represent all the maturities greater than 10 years.  This way, the results of our study can be replicated 

in all the other countries for which data is available and compared to the present study. 

4.1.1.4 Inflation-Indexed Bonds 

Aside analysing the inflation hedging ability of nominal bonds, we also include index-linked bonds. 

Many studies have taken for granted that these bonds are a complete hedge against inflation given that 

their income returns are mechanically indexed the given inflation and interest rates. The few that have 

done so have surprisingly produced mixed results. Most of them found index-linked bonds to not be 

a good hedge against inflation as they tend not to be highly correlated with contemporaneous inflation. 

This result has been attributed to the time lag between when the inflation rate is recorded and time the 

returns are adjusted to reflect the past inflation rate. In the UK, it takes about 3 months or in some 

cases 9 months for the coupons and principal of inflation-indexed bonds to be adjusted for inflation.  

Schofield (1996) observed the result of studies that failed to find a strong relationship between 

inflation-indexed bonds and inflation rates have often used regression analysis, which is designed to 

mostly detect contemporaneous correlation. In order to find a close correlation between index-linked 

bonds and inflation, it is necessary to use an approach that makes use of the lag of the variables as well. 

In our analysis, we use the ARDL model which uses as the exogenous variables the lagged values of 

the dependent variable and other variables.  We hope that this analysis would better capture the 

dynamic relationship between index-linked bonds and inflation/interest rate changes.  

We use the FTSE Actuaries UK Gilts Index series. The series includes all index-linked gilts 

denominated in pound sterling and quoted on the Stock Exchange. The various index-linked bonds 

are an 8-month or 3-month indexation lag to the Retail Price Index (RPI) or to the Consumer Price 

Index (CPI). The index however does not include convertible index-linked gilts and those that are 

classified as “rump stocks” by the UK Debt Management Office. These are index-linked bonds that 

are issued in quantities that are too small for an effective market.  We include in our index-linked bond 

series in our analysis – those with maturities less than 5 years and those with maturities more than 5 

years.  

4.1.1.5 Stocks 

Although equity returns depend on corporate earnings and dividend, their returns are also sensitive to 

interest rates and inflation.  The main reason that equity returns are attractive to long-term investors 
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such as pension funds is the fact that they offer superior returns compared to other traditional asset 

classes (UBS, 2015).  

We analyse 17 Stocks sectors which include real estate and infrastructure Stocks. All the Stocks returns 

are from Thomson Reuters Datastream equity series.  The Thomson Reuters Datastream Global 

Equity Index series provides a reliable benchmark for equity in most countries. Datastream Global 

Equity Indices draw on the wealth of the Thomson Datastream database to provide a range of equity 

indices across 53 countries, 32 regions and 170 sectors worldwide. They form a comprehensive, 

independent standard for equity research and benchmarking. For each market, a representative sample 

of stocks covering a minimum 75 - 80% of total market capitalisation enables market indices to be 

calculated. By aggregating market indices for regional groupings, regional and world indices are 

produced. Within each market, stocks are allocated to industrial sectors using the Industry 

Classification Benchmark (ICB) jointly created by FTSE and Dow Jones. Sector indices are then 

calculated. The following sectors are included in our analysis: Oil and Gas; Basic Materials; Industrials 

– made up of Construction, Industrial Goods and Services; Consumer Goods; Health Care; Consumer 

Services; Telecom; Technology; Financials – made up of Banks; Insurance; Financial Services and Real 

Estate.  

4.1.1.6 Alternatives 

In addition to the traditional assets of UK Stocks, UK Bonds and UK real estate, many institutional 

investors are turning to alternative asset classes to boost their returns and also to diversify their 

portfolios as several studies have provided evidence that international equity does provide 

opportunities for diversification.  They are also increasingly stepping out of the UK to other developed 

and even emerging economies. To reflect this, we include a number of international assets. For these 

international assets, we make use multi-country funds as most UK institutional investors are likely to 

invest in these funds than to select funds from specific countries. We include the following 

alternatives/non-UK assets – Emerging market Stocks, Developed Market ex UK Stocks, 

commodities, hedge fund and private equity.  

i. International Stocks  

There has been a strong case for the inclusion of emerging market stocks to further diversify the equity 

portfolio of pension funds. We make use of the S&P/IFCI index as the benchmark for Emerging 

Economies. The S&P Emerging BMI captures all companies domiciled in the emerging markets within 

the S&P Global BMI with a float-adjusted market capitalisation of at least US$ 100 million and a 

minimum annual trading liquidity of US$ 50 million.  
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As in Bond et al. (2007), we use a world ex UK return index to gain exposure to the developed market. 

The Datastream developed equity market ex-UK data serves as our proxy for the developing market 

Stocks.  

ii. Commodities  

There are a number of commodity indices but the one most used in academic studies is the S&P 

Goldman Sachs Commodity Index (Bond et al., 2002). The index measures returns of a fully 

collaterised commodity futures investment rolled forward from the 5th to the 9t business day of each 

month. It provides investors with a reliable and publicly available benchmark for investment 

performance in the commodity markets, and is designed to be a “tradable” index. The index is 

calculated primarily on a world production-weighted basis and includes the principal physical 

commodities that are the subject of active, liquid futures markets. The index is currently composed of 

24 commodities (e.g. energy products, industrial metals, agricultural products, livestock products and 

precious metals). The wide range of constituent commodities provides the S&P GSCI with a high level 

of diversification, across subsectors and within each subsector. This diversity mutes the impact of 

highly idiosyncratic events, which have large implications for the individual commodity markets, but 

are minimised when aggregated to the level of the S&P GSCI.  

Greer (2000) analysed the performance of commodities between 1970 and 2000 and found that the 

total returns and volatility from unleveraged commodity were comparable to those of stocks. They 

however found that the returns of commodity and stocks were negatively correlated to each other. 

This offers an opportunity for diversification. Idzorek (2006) found commodities to be the top 

performing assets of all the assets they studied.  

Gorton and Rouwenhurst (2006) analysed different commodity portfolios drawn from database of 

Commodity Research Bureau and the London Metal Exchange. The risk premium for these 

commodity portfolios were similar to that of stocks (about 5% per annum). The standard deviation of 

commodities was however slightly lower than stocks. Like Greer (2000), they found that commodity 

returns had a negative correlation with stock and bond returns.  

Given the high proportion of energy (average of 72%) contained in the S&P GSCI commodity index, 

we include two sub-indices - gold and oil. We use the S&P gold and oil indices in order to allow for a 

direct comparison with the general commodity asset class.   

Given that gold is often cited as one of the best inflation hedge, we include it along with the aggregate 

commodity series to observe if it is indeed better at hedging the broad spectrum of liability benchmarks 

we include in our study. Riley (2010) believes that given the increasing supply of money, gold represents 
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a good store of value. They found that gold has a potential of offering consistent returns in excess of 

inflation, especially post the GFC. Ratner and Klein (2015) however found that US stock returns 

outperformed gold over the sample period they examined.  

iii. Hedge Fund  

Hedge funds are investment funds that tend not to be highly regulated and so are able to invest in 

products such as derivatives. They are also able to use techniques such as short selling to enhance their 

returns and/or reduce risk (Gregoriou and Doffy, 2006).  

Investment in hedge funds has a number of benefits, two of which are increased alpha and offering 

diversification opportunities to investors.   Fund and Hsieh (1997) found that hedge funds produce 

returns that have a low correlation with the returns of standard asset classes and mutual funds. Asness 

et al. (2001) however find after adjusting for bias in hedge fund indices that the diversification pointed 

out in studies such as Fund and Hsieh (1997) vanish. A number of studies have examined whether 

hedge funds provide excess returns on a risk-adjusted basis and whether there is a period of persistent 

outperformance. These studies include Arggarwal and Jorion (2010) and Eling (2009) found some 

evidence of persistent outperformance.   

The return series for hedge fund which we use for this thesis is obtained from the Hedge Fund 

Weighted Composite index provided by the Hedge Fund Research Inc. (HFRI). The HFRI Fund 

Weighted Composite Index is an equally weighted performance index encompassing over 2000 funds 

which is used by lots of hedge fund managers as a benchmark for their own hedge funds. Funds 

included in the database and indices report monthly and have at least $50 Million under management 

or have been actively trading for at least 12 months. 

Along with the Credit Suise/Tremont Hedge Fund indices, the HFRI index is the most used hedge 

fund is the most used index for academic studies as they are regarded as the most transparent and 

comprehensive (Fung and Hsieh, 2002). The HFRI index tends not to suffer from some of the biases 

and statistical problems associated with hedge fund indices in general. The statistical problems that 

hedge fund indices suffer from include non-normality and autocorrelation (Fung et al., 2000; Eling, 

2006; Getmansky et al., 2004). To overcome this non-normality problem, Argawal and Naik (2004) 

propose using different measures of risk and return that account for non-normality.  

Hedge fund returns tend to display a non-normal distribution. They display conditions of skewness 

and leptokurtosis (Eling, 2006; Amin and Kat, 2003). A result of this is that statistical measures such 

as standard deviation and Sharpe ratios may not work for hedge funds.  
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Like direct real estate, hedge funds tend to exhibit autocorrelation, leading to an underestimation of 

their volatility. However, the autocorrelation in hedge fund returns has been attributed to the fact that 

these funds may old illiquid positions. Getmansky et al. (2004) identified some hedge fund strategies 

that were more likely to hold illiquid assets. The returns of these funds were found to exhibit more 

autocorrelation than those funds that do not hold illiquid assets. Similarly, Eling (2009) found that 

strategies such as convertible arbitrage are more likely to result in high levels of return persistence 

caused by holding of illiquid assets. Kat and Brooks (2002) tested for autocorrelation in different hedge 

fund indices. They find autocorrelation at for the different fund types but not at the aggregate level. A 

number of studies have applied the approach of Geltner (1993), developed to desmooth real estate 

indices, to hedge funds (Kat and Brooks, 2002; Kat, 2002). Getmansky et al. (2004) suggest two 

methods that can be employed to estimate smoothing parameter in order to adjust for autocorrelation 

in hedge fund data – a regression based and a maximum likelihood estimation approach.  

The inherent biases associated with hedge fund data include survivorship bias, selection bias and 

backfill bias. Survivorship bias occurs when funds that are no longer in operation are excluded from 

an index. As most funds shut down due to poor performance, this results in a positive bias as only 

funds that survive. Selection bias occurs on two levels. Firstly, only funds that meet a certain criteria, 

usually of a certain size, are considered for inclusion in an index. Managed funds are excluded from 

some hedge fund indices. A self-selection bias occurs as only funds have to agree to being added to an 

index database. Again, a positive bias could occur as only funds that believe they are performing are 

more likely to put out their performance data.  Fung and Hsieh (2002) found that funds that are closed 

to new investors may opt out of a hedge fund index. Often, closure to new investors connotes superior 

performance. Back-fill bias results from the fact that new funds added to a hedge fund index often 

have their performance data added retrospectively to the index. As indicated earlier, funds with 

superior performance are most likely to be added to the hedge fund database. In order to deal with 

backfill bias, some researchers suggest eliminating some fund’s reported earnings and re-constructing 

the index (Ackerman et al., 1999; Jagannathan et al., 2010). However, this requires access to the 

underlying data, which is often not readily available.  

The HFRI index does not suffer from survivorship bias as the index retains details of all the constituent 

funds, whether alive or dead (Agarwal and Naik, 2000; Jaganathan et al., 2010; Liang, 2000). However, 

like other indices, the HFRI index suffers from biases such as backfill bias and selection bias. It also 

suffers from non-normality and autocorrelation. As with real estate index, we will, where appropriate 

desmooth the hedge fund series using the approach of Geltner (1993) and compare the results of the 

smoothed and desmoothed index to see if there are significant differences in the results.  
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iv. Private Equity 

The historical performance of private equity funds has remained uncertain due to the uneven disclosure 

of private equity returns and concerns regarding the quality of data available for research (Harris et al., 

2014). Harris et al. (2014) studied the performance of buyout and venture capital funds. They found 

that the performance of buyouts consistently exceeded the performance of public markets. Private 

equity outperformance averaged more than 3% annually. They note that although venture capital 

performed better than public equities in the 1990s, they performed less than public equities in the 

2000s. Kaplan and Schoan (2005) used cash flow data from venture economics to study the return 

persistence across funds of the General Partner (GP). They found that buyouts earn less than the 

public market. Venture capital also outperformed better than public markets on a capital weighted 

basis. They however performed less than the public market on an equally weighted basis. Similar results 

were found by Gottschalg (2009), Robinson and Sensoy (2011), Higson and Stucke (2012) and 

Phalippou (2012).  

Private equity data was obtained from Cambridge Associates who have data on several private equity 

and venture capital categories. Other sources of private equity are those from Preqin, Burgiss and 

Thomson Venture Economics. Harris et al. (2014) found that the performance of data for Cambridge 

Associates, Preqin and Burgiss were similar. We include three series – US Private Equity, US Venture 

Capital, Developed ex US Private Equity and Emerging Private Equity. The US Venture capital index 

is based on funds which represent the majority of the funds raised by US venture capital manages from 

1981 whiles the US Private Equity index is based on funds raised by US buyouts, mezzanine, 

restructuring and private equity funds or partnerships formed from 1986. Return data for the Global 

ex US. Developed and Emerging Markets Private Equity and Venture Capital Indices is from data 

obtained from institutional quality funds raised from 700 funds in the developed market and close to 

500 in the emerging market. 

4.1.2 INFLATION AND INTEREST RATE BENCHMARKS 

Three economic concepts, inflation, growth and monetary policy are very important for investors. 

These represent the three building blocks of investment economics and often interact with each other. 

For example, when the central bank puts in place a monetary policy aimed at targeting inflation, they 

may set interest rates that boosts or constraints economic growth. This growth in economy may 

consequently lead to a rise or fall in inflation.  

This study explores the impact of these three building blocks on the performance of various assets and 

consequently on pension portfolios. We make use of three inflation measures and two short-term 
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interest rates. These rates have been used by many pension fund trustees and pension regulators as a 

performance benchmark for pension funds.  

The idea behind using inflation or growth rates as a minimum return benchmark for pension funds is 

to ensure that the purchasing power of the contributions are not eroded. Those based performance 

benchmarks linked to short-term interest rates are meant to ensure that contributors receive a return 

that at least is equal to the risk-free rate of return (OECD, 2012). The short-term interest rates analysed 

in this study are the UK Treasury Bill rate (T-bill rate) and the London Interbank Offer Rate (LIBOR).  

A review of the Statements of Investment Principles (SIPs) and annual statements UK master trust 

pension funds revealed that many of these funds measure their performance relative to selected 

inflation and interest rate benchmarks. Although internationally, growth rates have been used by certain 

pension funds, none of the UK master trust pension fund trustees have selected a growth rate measure. 

As the analysis in this thesis are conducted from UK DC investors’ perspective, we analyse the 

relationship between the returns of the various assets and an inflation (UK CPI) and interest rate 

(the 3-month T-bill rate). This represents the base case. To see if the particular inflation or interest rate 

impacts on the assets chosen and thus the portfolio structure of DC funds, we use an alternative 

inflation rate (UK RPI) and an alternative interest rate (the LIBOR rate).  

4.1.2.1 Inflation Rates 

As inflation is likely to be positive in most economies, investors would want to be receive returns that 

are in excess of the expected inflation to ensure that they have more purchasing power when they 

receive their returns. In general, investors consider inflation as unwelcome especially if it is 

unanticipated and so not captured in the agreed returns. Regulatory agencies and pension trustees often 

set their minimum acceptable returns equal to inflation in order to protect the accumulated 

contributions from inflation. Thus, the lump sum at retirement equals at least the sum of the 

contributions in real terms. An inflation-indexed capital guarantee effectively provides a minimum 

return of 0% in real terms.  

In Chapter Two, we provided evidence of master trust pension funds who have set their investment 

objective as delivering returns equal to inflation. The challenge then is to find assets that can effectively 

hedge against inflation over the both the short and long term. Naturally, real assets such as properties 

are considered a hedge against inflation as rents are one of the contributors to inflation. The price of 

properties also move up when inflation goes up. Equities are also less likely to suffer from inflation. 

This is because companies can increase prices during periods of high inflation, leading to an increase 

in income return to equity holders in the form of higher dividends. As bonds tend to have fixed coupon 
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payments, an increase in inflation would adversely affect investors’ purchasing power. On the other 

hand, an increase in inflation is often accompanied by higher interest rates which could lead to an 

increase in bond returns.  

The inflation measures we use in our analysis are the UK Consumer Price Index (CPI) and the UK 

Retail Price Index (RPI). The UK Retail Price Index was designed as a compensation index to protect 

workers from price increases during the First World War. It was officially produced in January 1956 

and provided estimates of inflation estimates dating back to 1947. The Consumer Price Index however 

has a much shorter history, having first been launched in 1996 as the Harmonised Index of Consumer 

Prices. Its name was changed in 2003 to the Consumer Price Index by the National Statistician. It 

became the official measure of inflation the same year, replacing the Retail Price Index. Both indices 

are compiled by the Office of National Statistics, UK.  

Both the Consumer Price Index and Retail Price Index are measures of inflation that are supposed to 

measure the movement in purchasing power of money within the UK. The difference however lies in 

the fact that the CPI has been designed to be consistent with National Account Principles and thus 

has a wider coverage than the RPI. There are a number of differences between the CPI and RPI but 

fundamentally, the CPI is based on spending by all households within the UK whiles the RPI excludes 

the top 4% of households by income levels and also those who receive much of their income from 

state pensions and benefits. Another important distinction is that the CPI does not include costs 

associated with owner occupied housing such as mortgage interest payments, house depreciation, 

building insurance etc. Also, whiles the CPI captures only spending within the UK (by residents and 

visitors), it excludes expenditure by UK nationals abroad. Johnson (2012) notes that the main 

difference between CPI and RPI lies in the way each treats rental and interest costs. 

The use to which the CPI and RPI have been put in practice by different stakeholders continues to be 

the subject of debate with both being used for the two broad purposes for which Price Indices are 

used – as macroeconomic indicators of inflation and for compensation purposes. The Office of 

National Statistics has insisted that the use of the CPI, RPI and their derivative indices in the public 

domain has been, and remains, a political decision made by the government of the day. Earlier studies 

on the inflation hedging ability of UK real estate such as Limmack and Ward (1988) and Barkham et 

al. (1996) have used the RPI whiles later studies like Demary and Voigtlander (2009) and Blake et al. 

(2011) have used the CPI.  

The choice of inflation measure in these studies has been largely to ensure that the study captures what 

is considered the official measure of inflation in a particular country as well as measures used by 

previous studies on inflation-hedging. In Japan, DC Pension funds must provide at least one capital 
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guaranteed product among their investment alternatives. In the Slovac republic, a zero% rate of return 

is required every six months, above which the managers of the fund can charge a fee on the investment 

earnings. If they fail to make the minimum, they are responsible for making up the difference (OECD, 

2012). Our choice of inflation rates are the UK Consumer Price Index (CPI) and Retail Price Index 

(RPI),  

4.1.2.1 Interest Rates  

One of the main tools of monetary policy for central banks are short-term interest rates. Short-term 

rates are set by central banks and serve as the rate at which banks lend to individuals and businesses. 

The rate also serves as an anchor for all other rates of return within the economy as it represents the 

lowest interest rate that investors must earn in the short term (UBS, 2015).  

Aside protecting themselves against a loss in the purchasing power of their investments, most investors 

wish to earn at least the risk-free rate on their investments. This is also the view of pension regulators 

who use a certain measure of risk-free rate as their choice of minimum return benchmark. Mukherji 

(2011) notes that most practitioners and academics tend to readily use returns on short-term or long-

term government securities as the choice of risk free rate for most purposes. A few studies that have 

examined the interest rate sensitivity of real estate assets Hoesli et al. (2008), Demary (2009) and Anim-

Odame (2014) have used the T-bill rate for the countries analysed. The ATP system in Denmark 

requires that 80% of the contributions are guaranteed based on the interest rate that the ATP can 

obtain in the market when contributions are paid. Thus, the current 1-year interest is assigned to each 

annual contribution made and is valid until retirement. Also, the seven-year Swiss Government Bonds 

rate is the minimum return threshold for pension funds which operate the mandatory system – law 

BVG/LPP (OECD, 2012).  

The London Interbank Offer Rate (LIBOR) is a reference rate at which large banks indicate that they 

are able to obtain wholesale funds from each other on an unsecured basis. The rate is credited to a 

Greek banker, Minos Zombanakis who in 1969 was able to arrange $80 million in loans from a 

syndicate of banks. The rate used for this transaction, which has come to be known as the LIBOR rate, 

represents the at which the most credit worthy institutions are able to obtain funding and thus serves 

as a lower bound for the borrowing rate for less credit worthy individuals and institutions.  

Prior to the 2007, the LIBOR followed the same trend as the Treasury bill rate and other short-term 

rates. However, following the 2008 financial crisis, it began to display greater volatility. Also, reports 

of manipulations following investigations by US investors and other regulators also affected the 

credibility of LIBOR rate as a risk-free benchmark. The Bank for International Settlement (Bank de 
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Pagos and Basilea, 2013) has questioned the continued use of the LIBOR rate as a reference rate as the 

banking market has shrunk following the global financial crisis and the dispersion of bank credit has 

increased sharply, making average rates for unsecured interbank funding not a good proxy for bank 

funding costs let alone a good proxy for risk free rates. In this thesis, we use the 3-month T-bill rate 

and 3-Month GB£ LIBOR rate as the interest rates to see if an asset that hedges against one of the 

measures necessarily hedges against the other.  

4.2 TIME SERIES FEATURES OF ASSET RETURNS AND INFLATION/ 

INTEREST RATES 

In this section, we investigate the time series features of the returns of the various assets as well as the 

inflation/interest rates analysed in this thesis. An understanding of the time series features is important 

in the selection of appropriate analytical tools later on in this thesis. The analysis carried out here would 

also provide background information for the results that would be obtained later on in this thesis.  

We analyse the return and risk features of the various assets including average returns, volatility and 

historical index growth of the various assets as well as the inflation/interest rates. We then go on to 

discuss the issue of serial correlation of return series and how it affects the private market assets 

included in our analysis. The approach of Geltner (2003) is employed in the unsmoothing of the data 

series found to exhibit serial correlation. The effects of the unsmoothing process are also discussed. 

We also explore the distributional properties of the various assets and benchmarks before delving into 

the issue of stationarity. In all cases, we particularly highlight the time series features of the real estate 

and the alternative assets that are included in our analysis.  

4.2.1 RETURNS AND RISK MEASURES 

Table 4(1) shows the performance of the various assets. Overall, we observe that stocks and private 

equity sectors recorded the highest average returns with UK technology sector stocks holding the top 

spot with an average return of 4.5% per quarter. In fact, all the top 20 best-performing assets were 

either stocks or private equity. The low earning assets were short-term bonds and commodities. 

Commensurate with their returns, technology sector stocks and private equity stocks had the highest 

standard deviations. Although among the assets with the lowest returns, commodities had a high 

standard deviation.  

Apart from stocks and the private equity sectors, real estate delivered good returns. The IPD industrial 

real estate sector delivered returns of 2.34% per quarter, just below long-term bonds with maturity 

greater than 10 years. Interestingly, we find that the IPD real estate sectors produced some of the 

lowest standard deviations, along with bonds. We observe that the returns of the other real estate 
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vehicles were all lower than the IPD real estate returns. This is because the AREF fund and the 

Blended/Hybrid real estate series contain a certain amount of cash and listed real estate respectively. 

The returns of the Blended/Hybrid real estate series was however higher than the AREF fund returns 

because unlike the AREF fund, these hybrid funds use listed real estate as their liquidity buffer. 

Unfortunately, although these assets produced returns that were still below the returns of the IPD 

portfolio, its standard deviation was above that of the IPD series. This leads to questions about the 

benefits of these funds, beyond infusing additional liquidity into the portfolios. In Chapter 6, we 

examine different approaches to creating blended/hybrid real estate funds which have better risk-

return characteristics and also more closely tracks the returns of the underlying real estate market.   

As indicated earlier, private equity and venture capital sectors produced the highest returns of the 

alternative assets whiles commodities produced the lowest returns. We notice that converting 

alternative assets from US dollars into pound sterling results in a slight dip in the returns. However, 

this does not affect the ranking of the various alternative assets.  

The historical chart of the various IPD real estate sectors are presented in Figure 4(2) along with a 

comparison of the returns of the various real estate vehicles. We rebase all the indices to the first 

quarter of 1991 and track the growth of each index over the period 1991 – 2015. Figure 4(2) also 

confirms the results obtained for the average returns as we see the IPD UK industrial real estate sector 

having the highest index value by the first quarter of 2015. However, the graph also shows that until 

recently, the retail real estate sector has dominated all the other real estate sectors. Compared to the 

other real estate vehicles, we see that the IPD benchmark fund outperforms all the other real estate 

vehicles.  

Figure 4(2)    Historical Returns – IPD Property Sectors 
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We can see from Table 4(2) that longer maturity bonds consistently performed better than shorter 

maturity bonds, pointing to an upward slopping yield curve for the UK market. For example, an 
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investment of £100 2-year bonds in the first quarter of 1991 would have grown to £381, £631 if 

invested in 7-year bonds and £844 if invested in bonds with maturity greater than 10 years. The value 

of the aggregate bond portfolio was close to the value of 7-year bonds, valued at £623 by the first 

quarter of 2015. Short-term index-linked bonds with maturity less than 5 years produced the worst 

performance, underperforming 2-year bonds (index value = 352.84). However, the index-linked bond 

portfolio containing bonds with maturity greater than 5 years produced returns close to 10 year bonds, 

resulting in an index value of £682.35. The value of these index-linked bonds also exceeds the returns 

of the aggregate nominal bond portfolio.  

Figure 4(3) compares the index evolution of the various inflation and interest rates analysed included 

in our studies. We see that the two inflation rates follow the same pattern whiles the two interest rate 

benchmarks also follow a similar pattern. LIBOR interest rates was higher than T-bill rates and the 

inflation rates whiles RPI inflation dominated CPI inflation. This in a sense explains why investors may 

prefer to have their returns hedged against interest rate benchmarks and RPI inflation over CPI 

inflation, as recently seen in the resistance to a change in UK pension indexation benchmark from RPI 

inflation to CPI inflation.  

Figure 4(3)    Historical Returns - Inflation and Interest Rates 
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Table 4(I)    Descriptive Statistics – All Assets 

  Mean 
 
Median  Max.  Min. 

 Std. 
Dev. 

 
Index  
Growth  Skew.  Kurtosis 

 Jarque-
Bera  Prob. 

IPD Property            
IPD All Property 2.09 2.44 12.06 -12.96 3.17 712.85 -1.33 9.07 177.68 0.00 

IPD Industrial 2.28 2.63 8.53 -12.20 2.96 835.76 -1.67 8.61 172.11 0.00 

IPD Office 2.08 2.53 12.99 -12.62 3.40 707.64 -1.08 7.08 86.08 0.00 

IPD Retail 2.23 2.52 12.87 -13.80 3.32 809.29 -1.26 9.78 211.39 0.00 

Other Real Estate Vehicles 

AREF – All Funds 1.79 2.50 10.50 -18.50 3.78 546.03 -2.31 12.05 417.61 0.00 

AREF – All Balanced Funds 1.78 2.30 8.00 -13.40 3.15 538.38 -1.90 9.06 206.53 0.00 

Hybrid Real Estate  1.95 2.36 13.04 -13.18 4.16 600.09 -1.07 5.32 40.08 0.00 

UK Bonds           

Index linked bonds - 0-5 Years 1.34 1.20 4.63 -2.30 1.28 352.84 -0.06 3.75 2.36 0.31 

Index linked bonds - 5+ years 2.07 2.14 9.76 -7.35 3.17 682.35 -0.14 3.51 1.37 0.50 

Bonds – All lives 2.03 2.19 9.90 -6.42 3.11 623.89 0.09 2.94 0.15 0.93 

Bonds – 10 + years 2.41 1.84 15.96 -9.29 4.51 843.95 0.23 2.98 0.87 0.65 

Bonds – 10 year  2.19 2.38 11.52 -8.26 3.70 701.65 0.04 3.21 0.20 0.91 

Bonds – 7 year 2.04 2.02 8.61 -5.58 2.93 631.55 -0.06 2.86 0.13 0.94 

Bonds – 5 year 1.79 1.70 7.51 -4.57 2.40 511.93 -0.02 3.04 0.01 1.00 

Bonds – 3 year 1.63 1.50 5.69 -2.11 1.63 452.18 0.47 2.99 3.54 0.17 

Bonds – 2 year 1.44 1.17 5.03 -1.12 1.30 381.07 0.87 3.47 13.26 0.00 

UK Stocks 

Aggregate stocks 2.14 3.17 17.25 -20.61 8.13 663.85 -0.69 3.51 8.71 0.01 

Banks 3.44 4.01 40.54 -38.79 13.82     966.71 -0.16 3.92 3.81 0.15 

Basic Materials 2.95 4.00 27.93 -43.80 13.14 652.39 -0.83 4.29 17.81 0.00 

Consumer goods 3.71 4.21 32.95 -32.27 10.69 1907.78 -0.05 4.01 4.16 0.12 

Construction 2.80 4.18 22.66 -24.64 10.46 800.44 -0.34 2.59 2.59 0.27 

Consumer services 2.55 3.26 21.20 -21.88 8.79 743.29 -0.52 3.45 5.24 0.07 

Financial services 3.26 4.76 23.04 -23.75 10.39 1210.38 -0.39 2.92 2.44 0.30 

Health care 2.88 3.36 24.49 -14.59 7.21 1125.70 0.07 3.41 0.77 0.68 

Industrial 3.29 4.15 29.30 -31.35 10.92 1278.45 -0.49 3.98 7.82 0.02 

Industrial goods and services 2.91 3.15 22.51 -26.94 9.56 985.12 -0.53 3.62 6.12 0.05 

Insurance 3.07 5.09 29.47 -30.84 11.60 932.05 -0.43 3.27 3.25 0.20 

Oil 2.74 4.09 25.58 -26.64 9.11 928.93 -0.47 3.53 4.70 0.10 

Technology 4.50 4.82 
127.0

4 -54.61 20.93 
1230.61 

1.77 14.44 579.36 0.00 

Telecom 3.12 3.74 46.02 -25.20 12.64 891.55 0.46 4.38 11.11 0.00 

Utilities 3.47 3.94 21.36 -13.67 7.15 1946.79 0.00 2.62 0.58 0.75 

Listed real estate 2.64 4.86 33.08 -34.18 11.74 563.36 -0.65 3.72 8.95 0.01 

Alternatives in US$ 

Commodities - all 0.91 1.67 30.84 -46.22 11.72 132.40 -0.70 5.10 25.71 0.00 

Commodities - gold 1.35 1.38 15.77 -21.63 6.43 295.59 -0.22 3.62 2.38 0.30 

Commodities - oil 2.26 3.47 41.55 -57.70 17.55 214.87 -0.27 3.70 3.15 0.21 

Developed ex UK stocks 2.46 3.39 26.00 -21.84 8.78 670.84 -0.38 3.84 5.19 0.07 

Developed ex US private equity 3.56 4.03 21.64 -22.50 7.23 2581.47 -0.50 4.70 15.78 0.00 

Emerging private equity 1.87 2.17 14.02 -17.50 5.41 519.64 -0.46 4.34 10.63 0.00 

Emerging stock market 3.05 3.86 36.09 -27.89 13.24 834.48 -0.06 2.91 0.08 0.96 

US private equity 3.68 4.01 17.80 -15.40 5.04 2874.85 -0.58 5.07 22.79 0.00 

US venture capital 4.42 3.47 84.06 -19.99 11.78   3805.54 3.40 23.73 1924.08 0.00 

Hedge funds 1.72 1.67 13.52 -10.41 3.54 483.12 -0.74 6.12 48.25 0.00 

Alternatives in GBP  

Commodities - all 0.78 3.29 24.05 -46.21 12.54 113.07 -1.06 5.02 34.70 0.00 

Commodities - gold 1.22 1.28 20.78 -24.20 8.36 252.42 -0.11 3.01 0.19 0.91 

Commodities - oil 2.18 3.65 45.23 -57.68 18.37 183.49 -0.35 3.62 3.50 0.17 

Developed ex UK stocks 2.29 3.40 21.55 -32.68 9.72 572.86 -0.78 4.08 14.60 0.00 

Developed ex US private equity 3.64 3.90 31.80 -37.07 11.06 2204.42 -0.45 4.83 16.74 0.00 

Emerging private equity 1.81 2.10 27.82 -33.01 8.40 443.74 -0.51 6.15 44.32 0.00 

Emerging stock market 2.94 3.83 34.53 -40.62 14.30 712.59 -0.24 3.01 0.97 0.62 

US private equity 3.58 4.33 22.04 -31.30 7.71 2454.95 -0.92 6.49 63.10 0.00 

US venture capital 4.26 4.22 80.51 -28.78 12.61 3249.70 2.30 16.03 771.31 0.00 

Hedge funds 1.57 1.89 15.02 -27.25 6.14 412.56 -1.04 6.96 80.72 0.00 

Inflation/Interest Rates 

UK CPI 0.57 0.47 4.72 -0.73 0.66 172.15 2.62 17.20 925.57 0.00 

UK RPI 0.70 0.60 2.15 -2.13 0.68 195.94 -0.47 5.23 23.65 0.00 

LIBOR 1.15 1.28 2.99 0.13 0.69 293.80 0.09 2.71 0.47 0.79 

T-bills 1.11 1.22 3.18 0.09 0.70 281.37 0.20 3.01 0.63 0.73 
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4.2.2 NORMALITY OF DATA 

The Jarque-Bera and the Shapiro Wilk tests are used to test the hypothesis that the asset return series 

included in this study are normally distributed. Both tests calculate the probability that the sample was 

drawn from a normal distribution. The hypothesis are:  

𝐻0: The sample data is normally distributed 

𝐻1: The sample data is not normally distributed 

If the probability value is greater than the pre-defined significance level, we cannot reject the null 

hypothesis that the data is normally distributed i.e. if the probability is greater than the significance 

level, the data is normally distributed.  

The results, presented in Table 4(2) confirm the assertion of Brooks (2002) that financial data are 

mostly not normally distributed in spite of the fact that most techniques in econometrics assume that 

they are. He further noted that, the availability of more sophisticated statistical tools means that 

researchers can still proceed to use these series in their analysis as these available tools can correct for 

most types of non-normality.  
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Table 4(II)    Distribution of Data 

   Skewness  Kurtosis Jarque-Bera Shapiro-Wilk 
      Statistic Prob. Statistic Prob. 

IPD Property         
IPD All Property -1.33 9.07 177.68 0.0000 0.86 0.0000 
IPD Industrial -1.67 8.61 172.11 0.0000 0.88 0.0000 
IPD Office -1.08 7.08 86.08 0.0000 0.91 0.0000 
IPD Retail -1.26 9.78 211.39 0.0000 0.85 0.0000 

Other Real Estate Vehicles        
AREF – All Funds -2.31 12.05 417.61 0.0000 0.79 0.0000 
AREF – All Balanced Funds -1.9 9.06 206.53 0.0000 0.85 0.0000 
Hybrid Real Estate  -1.07 5.32 40.08 0.0000 0.92 0.0000 

UK Bonds        
Index linked bonds - 0-5 Years -0.06 3.75 2.36 0.3100 0.98 0.0837 
Index linked bonds - 5+ years -0.14 3.51 1.37 0.5000 0.99 0.5794 
Bonds – All lives 0.09 2.94 0.15 0.9300 0.99 0.9642 
Bonds – 10 + years 0.23 2.98 0.87 0.6500 0.99 0.6699 
Bonds – 10 year  0.04 3.21 0.2 0.9100 0.99 0.9520 
Bonds – 7 year -0.06 2.86 0.13 0.9400 0.99 0.9309 
Bonds – 5 year -0.02 3.04 0.01 1.0000 0.99 0.9217 
Bonds – 3 year 0.47 2.99 3.54 0.1700 0.97 0.0471 
Bonds – 2 year 0.87 3.47 13.26 0.0000 0.94 0.0002 

UK Stocks        
Aggregate stocks -0.69 3.51 8.71 0.0100 0.95 0.0017 
Banks -0.16 3.92 3.81 0.1500 0.98 0.1411 
Basic Materials -0.83 4.29 17.81 0.0000 0.96 0.0033 
Consumer goods -0.05 4.01 4.16 0.1200 0.98 0.2267 
Construction -0.34 2.59 2.59 0.2700 0.98 0.2480 
Consumer services -0.52 3.45 5.24 0.0700 0.97 0.0455 
Financial services -0.39 2.92 2.44 0.3000 0.98 0.1702 
Health care 0.07 3.41 0.77 0.6800 0.99 0.5041 
Industrial -0.49 3.98 7.82 0.0200 0.98 0.0655 
Industrial goods and services -0.53 3.62 6.12 0.0500 0.97 0.0493 
Insurance -0.43 3.27 3.25 0.2000 0.98 0.0712 
Oil -0.47 3.53 4.7 0.1000 0.98 0.3359 
Technology 1.77 14.44 579.36 0.0000 0.84 0.0000 
Telecom 0.46 4.38 11.11 0.0000 0.97 0.0174 
Utilities 0 2.62 0.58 0.7500 0.99 0.5984 
Listed real estate -0.65 3.72 8.95 0.0100 0.96 0.0098 

Alternatives in US$        
Commodities - all -0.7 5.1 25.71 0.0000 0.96 0.0072 
Commodities - gold -0.22 3.62 2.38 0.3000 0.98 0.2551 
Commodities - oil -0.27 3.7 3.15 0.2100 0.98 0.2211 
Developed ex UK stocks -0.38 3.84 5.19 0.0700 0.97 0.0132 
Developed ex US private equity -0.5 4.7 15.78 0.0000 0.96 0.0104 
Emerging private equity -0.46 4.34 10.63 0.0000 0.97 0.0273 
Emerging stock market -0.06 2.91 0.08 0.9600 0.99 0.8609 
US private equity -0.58 5.07 22.79 0.0000 0.96 0.0028 
US venture capital 3.4 23.73 1924.08 0.0000 0.71 0.0000 
Hedge funds -0.74 6.12 48.25 0.0000 0.92 0.0000 

Alternatives in GBP         
Commodities - all -1.06 5.02 34.7 0.0000 0.93 0.0001 
Commodities - gold -0.11 3.01 0.19 0.9100 0.99 0.8737 
Commodities - oil -0.35 3.62 3.5 0.1700 0.98 0.2167 
Developed ex UK stocks -0.78 4.08 14.6 0.0000 0.96 0.0095 
Developed ex US private equity -0.45 4.83 16.74 0.0000 0.96 0.0064 
Emerging private equity -0.51 6.15 44.32 0.0000 0.95 0.0010 
Emerging stock market -0.24 3.01 0.97 0.6200 0.99 0.8569 
US private equity -0.92 6.49 63.1 0.0000 0.95 0.0006 
US venture capital 2.3 16.03 771.31 0.0000 0.82 0.0000 
Hedge funds -1.04 6.96 80.72 0.0000 0.94 0.0002 

Inflation/Interest Rates        
UK CPI 2.62 17.2 925.57 0.0000 0.82 0.0000 
UK RPI -0.47 5.23 23.65 0.0000 0.95 0.0016 
LIBOR 0.09 2.71 0.47 0.7900 0.92 0.0000 
T-bills 0.2 3.01 0.63 0.7300 0.91 0.0000 
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4.2.3 SERIAL CORRELATION 

A critical pillar of many analytical frameworks built on a premise of “normality”, is the assumption that 

asset returns from period to period are independent and identically distributed. However, if one 

month’s return is ‘influenced’ by the previous month’s return, then there may be a need to account for 

this effect in future asset projections (Sheikh and Qiao, 2010). We find that the examining the 

autocorrelation structure does not show autocorrelation in assets other than direct real estate. 

However, an application of the Box Pierce autocorrelation test reveals significant first-order 

autocorrelation in almost all the private market assets. The results are presented in Appendix 4(B) to 

4(F).  

We use the simplest reverse-engineering model of Geltner et al (1993) to unsmooth our real estate 

return series. The model is expressed as:  

rt=
rt
*-αrt-1

1-α
 4(1) 

Where 𝑟𝑡
∗ is the smoothed return during period t, 𝑟𝑡 is the corresponding unsmoothed return during 

period t and 𝛼 is the smoothed parameter between 0 and 1.  

Table 4(III)    Unsmoothed Return Series 

  Mean  Median  Max.  Min. 

Std.  

Dev.  

 

Index 

Growth  Skew  Kurtosis 

 Jarque-

Bera 

 

Prob

. 

UNSMOOTHED UK REAL ESTATE  

IPD All Property 2.19 2.04 23.94 -25.15 5.33 683.60 -0.85 13.75 478.64 0.00 

IPD Industrial 2.34 2.48 16.22 -23.22 5.06 788.05 -1.31 9.99 225.20 0.00 

IPD Office 2.22 2.35 26.07 -23.69 5.59 693.67 -0.70 11.65 310.26 0.00 

IPD Retail 1.88 2.15 17.00 -24.80 4.99 553.01 -2.05 13.62 523.63 0.00 

UNSMOOTHED PRIVATE MARKET ALTERNATIVES 

Hedge Fund 0.73 1.26 29.90 -43.02 11.72 118.98 -0.60 4.66 16.89 0.00 

US Private Equity 1.81 3.65 41.65 -54.23 17.63 167.23 -0.17 3.48 1.42 0.49 

US Venture Capital 1.38 1.40 15.63 -21.74 6.43 304.79 -0.22 3.66 2.58 0.28 

Dev. ex-US Private equity 1.26 1.62 13.34 -10.89 3.43 320.17 -0.63 5.76 37.09 0.00 

Emerging Private Equity 2.30 2.40 16.49 -12.67 4.67 799.63 -0.30 4.63 12.12 0.00 

Given that the idea of unsmoothing is to correct the bias created by the serial correlation present in 

the data, we re-run the Box Pierce Analysis to show whether correlation is present in our data has been 

corrected following the unsmoothing process. We find that an application of the reverse-engineering 

model of Geltner (1993) helped to eliminate the autocorrelation in most of the asset series.  

Unsmoothing the IPD real estate series resulted in an increase in the standard deviation of the various 

IPD sectors. The average returns also increased marginally for all but one of the IPD real estate sectors. 

This increase in the average return of unsmoothed series could be due to the fact that the series are 

now quite volatile and possibly have larger recovery from drawdowns. Unsmoothed series also tend to 
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lead the original series. When using unsmoothed series for portfolio choices however, it is often the 

volatilities that are of interest, not the average returns. Like real estate, the standard deviation of the 

private market alternative assets also increased once the return series was unsmoothed. However, the 

average returns fell marginally.   

4.2.4 STATIONARITY  

A non-stationary time series is a stochastic process with unit roots or structural breaks (Nkoro and 

Uko, 2016). A non-stationary process could be trend stationary (deterministic) process (TSP) or 

difference stationary process. If the trend of a time series is predictable and not variable, it is said to 

be trend stationary. In the case of a deterministic trend, the divergence from initial value is purely 

random and tend to disappear quickly and not contribute to affect the long-run development of the 

time series.  Integrated stochastic trend however affects the long run development of the time series.  

Consequently, it is important to purge the time series of this trend. The approach used to remove the 

trend would depend on whether the series is difference stationary process or trend stationary process.   

A trend stationary process becomes stationary after the removal of the deterministic trend whiles 

difference stationary processes become stationary after the series is differenced. It has been shown that 

most time series are difference stationary processes rather than trend stationary processes. Using 

differenced variables for regressions imply loss of relevant long run properties or information of the 

equilibrium relationship between the variables under consideration. Hence, there is a need to use an 

approach which retains the relevant long run information of the variables.  

A unit root is a feature of processes that evolve over time that can cause problems in statistical 

inference involving time series if 1 is a root of the process's characteristic equation. Such a process is 

non-stationary. The Augmented Dickey-Fuller and Phillips Perron unit root test are used to test the 

Stationarity of our asset return series.  The results of these tests are presented in Table 4(IV).   

The results of these tests are mixed. We found that most of the assets were integrated of order 1(i.e. 

I(1), a few assets such as the IPD office sector, utilities stocks, technology stocks, index –linked bonds 

and aggregate bonds were stationary (i.e. I(0)). This result implies that we applying standard techniques 

such as the Johansen cointegration and the Granger Causality tests would result in spurious results. In 

the theoretical framework section, we discuss this issue further and recommend approaches that are 

capable of handling both I(0) and I(1) variables within a single equation.   
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      Table 4(IV)    Unit Root Test 

  Augmented Dickey Fuller Phillips Perron  
 Variable Level 1st difference Level 1st difference 

 IPD Industrial -2.3957 -3.6783** -1.6588 -3.8630** 
Real Estate IPD Office -3.1846* -3.5351** -2.1257 -3.6608** 
 IPD Retail -2.3119 -4.5243*** -1.4706 -3.9405** 
 IPD All Property -2.7740 -4.1782*** -1.8206 -3.8365** 
 AREF – All Funds -1.4111 -3.5294*** -0.9945 -3.6990*** 
 AREF – All Balanced Funds -2.4065 -3.4841** -1.6017 -3.6845** 
 Hybrid Real Estate  -2.5803 -4.4557*** -1.7819 -4.4961*** 
Stocks Aggregate stocks  -1.6390 -9.9032*** -1.6389 -9.9009*** 

Listed real estate -1.9536 -8.1283*** -2.2106 -8.1294*** 

Oil -2.0091 -11.7094*** -1.7542 -12.0894*** 

Basic Materials -2.5752 -8.9015*** -2.7214 -9.1519*** 

Industrial -2.6344 -10.5828*** -2.6344 -10.5448*** 

Construction -2.3550 -9.6652*** -2.4861 -9.6753*** 

Industrial goods and services -2.5128 -10.5821*** -2.5669 -10.5821*** 

Consumer goods -3.0188 -11.0569*** -3.0008 -11.5138*** 

Health care -2.5536 -9.7936*** -2.5826 -9.7947*** 

Consumer services -2.7106 -9.7781*** -2.7543 -9.7781*** 

Telecom -3.1430 -8.2942*** -2.2420 -8.3133*** 

Technology -1.4787 -8.2444*** -1.8294 -8.4546*** 

Utilities -3.2766* -8.8663*** -3.0622 -8.9115*** 

Banks -1.9707 -9.8565*** -1.9520 -9.8718*** 

Insurance -2.0604 -10.2640*** -2.1685 -10.2459*** 

Financial services -2.3447 -8.2837*** -2.5922 -8.2837*** 
Bonds Index-Linked Bonds (0-5) -3.1663** -4.8320*** -3.1673** -9.1623*** 

Index-Linked Bonds (5+) -0.2422 -8.6080*** -0.2422 -8.5421*** 

All lives -2.8611* -7.9817*** -3.0126** -8.5473*** 

10+ year bonds -2.7243 -7.8037*** -2.7243 -9.0393*** 

10 year bonds -3.0024 -7.5918*** -3.1035 -8.4429*** 

7 year bonds -2.9493 -8.5852*** -2.9626 -8.5274*** 

5 year bonds -2.8221 -8.4206*** -2.8420 -8.3694*** 

3 year bonds -2.1550 -8.1937*** -2.1465 -8.1438*** 

2 year bonds -1.5153 -7.3509*** -1.5291 -7.2815*** 
 Emerging stock market -2.7238 -7.5272*** -2.4041 -7.4888*** 
 Developed ex US private equity -3.0736 -7.4435*** -2.1749 -7.4526*** 
 Commodities – all  -1.6094 -8.3276*** -1.7338 -8.2220*** 
Alternatives (in GB£) Commodities - oil -1.3336 -7.7587*** -1.2328 -7.6962*** 

Commodities - gold -1.9285 -9.1366*** -1.9528 -9.1444*** 

Hedge funds -2.0203 -7.9093*** -1.4438 -7.8805*** 

US private equity -2.3163 -7.4060*** -2.1037 -7.4266*** 

US venture capital -2.0151 -5.3734*** -1.6592 -5.5011*** 

Developed ex US stocks -2.3758 -7.9250*** -2.7183 -7.9413*** 

Emerging private equity -2.4662 -7.1335*** -2.2068 -7.1093*** 
Alternatives (in US$) Emerging stock market -2.7238 -7.5272*** -2.4041 -7.4888*** 

Developed ex US private equity -3.0736 -7.4435*** -2.7183 -7.4526*** 

Commodities – all -1.9346 -8.1116*** -1.6589 -7.9931*** 

Commodities - oil -1.3336 -7.7587*** -1.2328 -7.6962*** 

Commodities - gold -1.9285 -9.1366*** -1.9528 -9.1444*** 

Hedge funds -2.0203 -7.9093*** -1.4438 -7.8805*** 

US private equity -2.3163 -7.4060*** -2.1037 -7.4266*** 

US venture capital -2.0151 -4.9552*** -1.6592 -5.5011*** 
 Developed ex US stocks -2.3758 -7.9250*** -2.1749 -7.9413*** 
 Emerging private equity -1.7538 -6.1456*** -1.4843 -6.1469*** 
Inflation and interest 
rates 

UK CPI -2.1069 -12.1044*** -2.1758 -12.1625*** 

UK RPI -2.2544 -5.8300*** -2.4178 -10.5144*** 

T-BILL 0.6143 -3.3174** 0.3263 -3.0393*** 

LIBOR 0.3793 -3.0598 0.3994 -2.9515*** 

Note: *, **, *** denotes that the null can be rejected at 10%, 5% and 1% levels of significance respectively. 
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4.3 THEORETICAL FRAMEWORK  

As discussed in Chapter 1, this thesis addresses two key issues from the perspective of DC pension 

funds, the issue of liquidity and capital preservation. The first part of this thesis looks at the illiquidity 

associated with real estate investments vis-à-vis the growing emphasis on liquidity by institutional 

investors, particularly, DC pension funds. The discussion here shows that real estate funds can be 

structured in a way that makes them an appropriate investment vehicle for DC pension funds to access 

the real estate market. The liquidity part of this thesis is made up of two empirical chapters – Chapters 

5 and 6. The first empirical chapter, Chapter 5, is largely exploratory. In this chapter, we discuss the 

concept of liquidity and how different aspects of liquidity are measured within the mainstream finance 

literature. Empirical applications of these measures of liquidity within the field of real estate is also 

presented. The chapter ends with an examination of different ways in which liquidity can be managed 

within the investment portfolios of pension funds. Chapter 6 focuses on hybrid or blended real estate 

funds which have become popular among DC pension funds as a way to access the direct real estate 

market whiles maintaining an acceptable level of liquidity. For an asset to be considered liquid enough 

for DC pension funds, it needs to be priced and traded on a daily basis. Blended/hybrid real estate 

products promise daily liquidity and dealing. To do this, these funds allocate a significant amount of 

their assets to liquid, publicly traded assets, often cash and listed real estate. Since these portfolios 

contain assets other than direct real estate, their returns, understandably, tend to deviate from the 

returns of the underlying property market. The goal of Chapter 6 is to determine the optimal range 

and mix of assets that these funds need to hold in order to deliver property-like returns as much as 

possible. We employ the tracking error optimisation approach which is an extension of the Classic 

Markowitz optimisation framework. The extension is made to accommodate the needs of investors 

who wish to benchmark their performance against that of another portfolio. The benchmark portfolio 

for the optimisation in Chapter 6 is the IPD All Property portfolio.   In order to gauge the ability of 

the various portfolios to produce out-of-sample performance that mimics the performance of the IPD 

direct property portfolio, we employ the dynamic conditional correlation within a GARCH framework.  

As discussed in the preceding chapters, inflation hedging is important for all investors but is particularly 

important for institutional investors such as DC pension funds who have return promises that are tied 

to inflation and interest rate changes. The second part of this thesis is dedicated to the identification 

of assets which have the ability to hedge against the inflation and interest rates which some UK master 

trust DC pension funds have adopted in their Statements of Investment Principles.  In Chapter 7, we 

use a number of econometric models to analyse the ability of real estate assets to hedge against inflation 

and interest rate changes. The Autoregressive Distributed Lag (ARDL) approach to cointegration is 

used to determine the long-run inflation and interest rate hedging ability of the range of assets which 
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DC pension funds invest in. This approach is preferred as it has the ability to handle cointegration 

relationship among variables irrespective of their order of integration. Similarly, the Toda and 

Yamamoto (1995) approach to testing for Granger causality is adopted to determine the short-run 

inflation hedging ability of the various assets.  

The fourth empirical chapter analyses the optimal allocation within portfolios designed to hedge against 

inflation and interest rate changes. As in Chapter 6, this chapter also makes use of the tracking error 

optimisation model along with a semi-variance optimisation model. The risk-adjusted versions of the 

two models are also implemented i.e. Sharpe ratio for the model based on tracking error and Sortino 

ratio for the one that uses semi-variance as the measure of risk. In determining the role that real estate 

plays within the resulting portfolios, we run the analysis without any real estate series initially and then 

with different real estate vehicles. We also unsmooth the real estate series to determine whether the 

allocation to real estate is driven by the appraisal smoothing problem associated with real estate and 

other private market assets. The procedure of Geltner (2003) is used in unsmoothing the real estate 

series. This procedure and its implementation as well as its effect on real estate and the various private 

market series are also presented in this chapter.   

In the following sections, we provide a background to all the models identified in the summaries 

provided above. The goal is to have an extended discussion on the methodologies that we implement 

in the various empirical chapters. A summary of the models implemented would still be given in the 

respective chapters.  

4.3.1 STATIONARITY AND COINTEGRATION TECHNIQUES 

Econometric models have often been formulated based on the assumption that the underlying time 

series are stationary or at least stationary around a deterministic trend. In other words, econometric 

models have been formulated based on the assumption that the means and variances of the variables 

are constant and not dependent on time. It has however been shown that most time series tend to 

diverge away from their mean over time. These series are said to be non-stationary.  

In order to overcome the issues relating to non-stationarity of time series and prior restrictions on the 

lag structure of a model, econometric analysis of time series data has increasingly moved towards 

cointegration.  Cointegration techniques help to detect the presence of steady state equilibrium between 

variables. If two series do not cointegrate, spurious regression could result and the results become 

meaningless. 

The approaches of Granger (1981); Engle & Granger, (1987), the Johansen and Juselius (1990) and the 

Autoregressive Distributed Lag (ARDL) models of Pesaran and Shin (1995) and Pesaran et al. (2001) 
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have become the standards for determining long run relationship between time series that are non-

stationary. 

These cointegration models can also be re-parameterised to the Error Correction Model (ECM) which 

gives the short-run dynamics and long-run relationship of the underlying variables. This way, 

cointegration models are versatile enough to estimate the long relationship between non-stationary 

variables and reconciling the short-run dynamics with long-run equilibrium (Nkoro and Uko, 2016).  

Cointegration approaches make it easier to retrieve the relevant long-run information regarding the 

relationship between variables that may be lost on differencing. Cointegration techniques integrate 

short-run dynamics with long-run equilibrium and helps obtain realistic estimates of models and thus 

aid in meaningful forecast and policy implementation (Nkoro and Uko, 2016). 

Cointegration is concerned with the analysis of long run relationships between integrated variables and 

reparameterising the relationship between the considered variables into an Error Correction Model. 

The approaches of Granger (1981), Engle & Granger (1987) are however not applicable if the variables 

are integrated of different orders for example where Series A is I(1) and series B is I(0).  The ARDL 

cointegration technique on the other hand, can be used to determine the long-run relationship between 

variables integrated of different orders (Pesaran and Shin, 1999; Pesaran et al., 2001). The re-

parameterised result of the ARDL model gives the short-run dynamics and long-run relationship of 

the variables being considered.  

The next section presents the theory behind the Autoregressive distributed lag model and how the 

long-run and short-run models are derived.  

4.3.2 ARDL APPROACH TO COINTEGRATION 

This section sets out the theory behind Autoregressive distributive lag (ARDL) models as well as a 

derivation of the approach for analyzing the long-run and short run relationships between variables. 

The procedure that we have used to practically implement this model in E-Views are also explained.  

ARDL models have been in existence for a long time but have recently become popular as an approach 

for examining Cointegrating relationships due largely to the seminal works of Pesaran and Shin (1998) 

as well as Pesaran et al. (2001). The authors argue that ARDL models have the advantage of handling 

cointegration with an inherent robustness to a misspecification of the orders of integration of the 

relevant variables. There are three cases of interest regarding the order of integration of variables:  

1. That all the variables are I(d) for some 0≤d and are not cointegrated. In this case, least squares 

techniques can be used to estimate and interpret equation 1 above.  
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2. All variables are I(1) and are cointegrated. Here, least squares techniques can be used to 

estimate the long-run relationship by regressing y
t
 on xj,t for j=1,⋯k in levels. Alternatively or 

complementarily, least squares can be used to estimate the speed of adjustment of short-run 

dynamics to the cointegration relationship by regressing the appropriate error-correction 

model (ECM).  

3. Some variables are I(0) and others are I(1) and some of the I(1) variables are cointegrated.  

Conventional cointegration approaches such as those of Engle & Granger (1987), Phillips and Ouliaris 

(1990) and Johansen (1995) fail when some variables are I(0) and others are I(1) as in Case 3. It is 

often important to pre-test for the presence of unit root in each of the variables of interest before 

proceeding to use the conventional cointegration approaches. This sometimes leads to misclassification 

as most unit root tests are known to suffer from size and power issues (Perron and Ng, 1996). The 

bounds test for cointegration proposed by Pesaran et al. (2001) is however not subject to the same 

restrictions and is thus able to handle the nuances of Case 3. ARDL models are the standard for 

estimation when a researcher chooses to remain skeptical of the orders of integration of the underlying 

variables.  

ARDL models are linear time series models in which both the dependent and independent variables 

are related both contemporaneously and across their lagged values. Given that 𝑦𝑡 is the dependent 

variable and x1,⋯,xk 

are k explanatory variables, a general ARDL(p,q
1
,…..q

k
) model is given by:  

y
t
=a0+a1t+ ∑ ψ

i
y

t-i

p

t=1

+ ∑ ∑ β
j,lj

xj,t-lj
,+ϵt

q
j

lj

k

j=1

 

 

               

4(2) where 𝜖𝑡 are the usual innovations, 𝑎0 is the constant term, and a1, ψ
i
, β

j,lj
 are respectively the 

coefficients associated with a linear trend, lags of the k regressors xj,t for j=1,⋯k.  

If let L denote the lag operator and define  ψ(L) and β
j
(L) as the as the lag polynomials:  

ψ(L)=1- ∑ ψ
i
Li

p

t-1

 

 

              and 
β

j
(L)= ∑ β

j,lj
Llj

q
j

lj=0

 

Equation 1 can then be re-written as:  
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ψ(L)y
t
=a0+a1t+ ∑ β

j
(L)

k

j=1

xj,t+ϵt              4(3) 

 

4.3.2.1 Representations of ARDL models 

ARDL models are often specified in general form as in Equation 1. However, there are three different 

representations. The first representation is used for intertemporal dynamic estimation whiles the 

second is used for post-estimation derivation of the long-run equilibrium relationships. The third 

representation is a reduction of equation 1 to the conditional error correction representation in the 

Pesaran et al. (2001) bound test.  

The three representations require decomposition using the Beveridge-Nelson approach. According to 

this approach, 𝜓(𝐿) and 𝛽𝑗(𝐿)can be decomposed as:  

ψ(L)=ψ(1)+(1-L)ψ̃Li 
and 

β
j
(L)= (β̃

j
(1)+(1-L)β̃

j
(L)) 

 where 

ψ̃(L)= ∑ ψ̃
i
L

i

p

i=0

 

 

 

and 

ψ̃
i
=- ∑ ψ

r

p

r=i+1

 

 

β̃
j
(L)= ∑ β̃

j,lj
Llj

q
j
-1

lj=0

 

 

 

and 
β̃

j,lj
=- ∑ β

j,s

q
j

s=lj+1

 

 
and  

ψ(1)=1- ∑ ψ
i

p

i=1

 

 

 

and 
β

j
(1)= ∑ β

j,lj

q
j

lj=0

 

 
It is important to note that  𝜓(𝐿) = 1 − 𝜓∗(𝐿) where ψ*(L)= ∑ ψ

i
Lip

i=1 . Furthermore, observe that:  

ψ*(L)= ∑ ψ
i
Li

p

i=1

= (∑ Li-1

p

i=1

) L= (ψ*(1)+(1-L)ψ*̃(L)) L 

where 

 ψ*̃(L)= ∑ ψ
i
Li-1p

r=i+1 , ψ̃
i

*
Li-1, ψ̃

i

*
=- ∑ ψ

r

p

r=i+1 , and  ψ*(1)= ∑ ψ
i

p

i=1  

For any series 𝑧𝑡 one can always write:  



115 

zt=zt-1+∆zt 

 

i. Intertemporal Dynamics Regression 

The first step in the application of ARDL models is an estimation of the intertemporal dynamics. Here, 

we are interested in the relationship between 𝑦𝑡 on both its own lags as well as the contemporaneous 

and lagged values of the 𝑘 regressors 𝑥𝑗,𝑡. Equation 4(2) can be cast into the following representation:  

y
t
=a0+a1t+ ∑ ψ

i
y

t-i

p

i=1

+ ∑ β
j
(1)xj,t+ ∑ β̃

j
(L)∆xj,t+ϵt

k

j=1

k

j=1

                   4(4) 

 

where we use the first difference notation, ∆=(1-L). Given that equation 4(4) does not explicitly solve 

for 𝑦𝑡, it is often considered as a regression for intertemporal dynamics. Within a more practical setting, 

equation 4 can be restated as:  

y
t
=a0+a1t+ ∑ b0,iyt-1

p

i=1

+ ∑ bjxj,t+ ∑ ∑ cj,lj
∆xj,t-lj

+ϵt

q
j
-1

lj=1

k

j=1

p

i=1

 

 

                  

4(5) 

ii. Post-Regression Derivation of Long-Run Dynamics 

The second representation of the ARDL model attempts to derive the long-run relationship between 

𝑦𝑡 and the 𝑘 regressors. This representation solves for  𝑦𝑡 in terms of 𝑥𝑗,𝑡. Having estimated the 

regression equation in model 5, we can use equation 6 to derive the long-run parameters post-

estimation.  The second representation is formulated thus:  

y
t
=ψ-1(1) (a0

*+a1t+ ∑ β
j
(1)xj,t

k

j=1

+ ∑ β
j
*(L)∆xj,t+ϵt

*

k

j=1

) 

                      

4(6) 

iii. Error Correction Representation 

The objective here is to test for cointegration by reducing a typical VAR framework to its conditional 

error correction form. This representation of the ARDL is considered the most interesting and 

receives a lot of attention in applied work. Equation 4(7) is the Conditional Error Correction form of 

the ARDL model in equation 4(2):  
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∆y
t
=a0+a1t-ψ(1)ECt-1+ (ψ*̃(L)∆x,t-1) + ∑ β

j

k

j=1

(L)∆xj,t+ϵt                  

4(7) 

The error correction term, denoted as ECt-1, represents the Cointegrating relationship when y
t
 and 

x1,t,⋯,xk,t are cointegrated.  

Pesaran et al (2001) propose the bound test for cointegration as a test on parameter significance in the 

Cointegrating relationship of the conditional error correction model. The test is a standard F – or Wald 

test for the following null and alternative hypotheses:  

       H0          ψ(1) ∩  {Bj(1)}
k

j=1
= 0  (Variables are not cointegrated) 

H1          ψ(1) ∩  {Bj(1)}
k

j=1
≠ 0  (Variables are cointegrated) 

The computed test statistic is compared to two asymptotic critical values that correspond to the polar 

cases of all variables being purely I(0) or purely I(1). This implies that the critical values lie in the lower 

and upper tails, respectively, of a non-standard mixture distribution involving integral functions of 

Brownian motions. When the test statistic is below the lower critical value, one fails to reject the null 

and concludes that cointegration is not possible. If however the test statistic is above the upper critical 

value, one rejects the null and concludes that cointegration is indeed possible. In either cases, 

knowledge of the Cointegrating rank is not necessary. However, when the test statistic falls between 

the lower and upper critical values, it is important to have knowledge of the Cointegrating rank to 

proceed any further.  

Pesaran et al. (2001) offer five alternative interpretations of the Conditional Error Correction model 

depending on whether deterministic terms integrate into the error correction term. The ARDL model 

can be formulated with: (i) No constant and trend; (ii) Restricted constant and no trend; (iii) 

Unrestricted constant and no trend; (iv) Unrestricted constant and restricted trend and (v) Unrestricted 

constant and unrestricted trend.  

The first step in implementing the ARDL model involves checking the data to see whether there are 

some clear trends or structural changes which may have to be taken into consideration later in the 

analysis. We take the nature log (ln) of the various asset return indices to improve the distributional 

property of the series and then check this data.  

Once this is done, we proceed to test for the order of integration to ensure that none of the series 

under consideration is integrated of order 2 or higher. We run a two tests, the Augmented Dickie Fuller 
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Test and the Philips Peron Test on the level series and first difference of the series. We confirm that 

most of the data series are I(1) with a few being I(0).  

We specify the ARDL model with unrestricted trend and intercept in the first instance and then re-

specify without a trend and intercept term. Both models are estimated with a maximum lag length of 

4 as we are dealing with quarterly data. E-Views 9 provides an algorithm that automatically selects the 

most appropriate lag structure given the model specified by the user. The model selected is one which 

minimises some information criterion, for example, the Akaike (AIC), Schwarz (BIC), Hannan-Quinn 

(HQ) criterion. We check the lag structure of the various models to determine that indeed the model 

lag structure selected is indeed optimal. In addition to inspecting the lag structure, we also run the 

Ramsey Reset Test to ensure that the resulting model selected by EViews captures the relationship 

being investigated. We also proceed to verify that the residuals from the model selected are serially 

uncorrelated using the Breusch-Godrey Serial Correlation LM Test. Residual homoscedasticity is also 

tested using the Heteroskedasticity Test of Breusch-Pegan Godfrey. Where there is a problem with 

residual serial correlation, this is corrected by increasing the lag length of both the dependent variable 

and regressors. Residual heteroskedasticity can be corrected by adjusting the coefficient covariance 

matrix to Newey West (HAC). It is important to note that whiles serial correlation leads to biased 

results, heteroskedasticity only leads to inefficient estimation. Therefore, it is more important to 

remove residual serial correlation.  

Once we are satisfied the models are properly specified, we test for the presence of cointegration using 

the Bounds Test. Since the F-statistic distribution is non-standard, the critical values have to be 

calculated. Pesaran et al. (2001) and Narayan (2005) both developed two bounds of critical values. A 

lower bound applies when the variables are stationary and an upper bound is applicable when the 

variables are integrated of order one (i.e. I(1)). We can reject the null hypothesis of no cointegration if 

the F-statistic is higher than the upper bound. We accept the null hypothesis if the F-statistic is below 

the lower bound. If the F-statistic falls between the upper and lower critical bounds, the results are 

inconclusive.   

If the series are cointegrated, we can proceed to test for the speed of adjustment by estimating the 

Cointegrating and long run form of the ARDL model. We expect the Error-Correction term 

(CointEq(-1)) to be negative and statistically significant to indicate how any movements into 

disequilibrium are corrected for within one period.  
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4.3.3 GRANGER CAUSALITY TEST – TODA AND YAMAMOTO (1995) 
APPROACH 

One way of thinking about the ability of an asset to hedge against a particular benchmark is to examine 

the contribution that the benchmark makes in the prediction of the asset’s return or vice versa. This 

predictability can be assessed by employing the principles of Granger causality to examine whether the 

past values of returns of the asset being examined aids in the prediction of the inflation/interest rate 

changes or vice versa. This is undertaken using either the restricted or unrestricted versions of the 

models below:  

 
𝑥t= ∑ α1i𝑥t-i+ ∑ β

1i
𝑦t-i

l

i=1

+γ
1
Et-1+ε1t

l

i=1

 
   4(8) 

 
y
t
= ∑ α2i𝑦t-i

l

i=1

+ ∑ β
2i

𝑥t-i

l

i=1

+γ
2
Et-1+ε2t 

   4(9) 

Where 𝑥 and 𝑦 represent asset returns and the inflation/interest rate respectively. The restricted 

version of each equation only includes the lagged values of respective dependent variable. The third 

term in both equations is an error correction term, which should be included where there is evidence 

that the variables are cointegrated (Engle & Granger, 1987). 

Wald test is used to test whether all of the lagged values of 𝑥 and 𝑦 equation are simultaneously equal 

to zero in order to find out whether 𝑥 granger causes 𝑦.  

If ∑ β ≠0, 𝑥 Granger causes 𝑦;  

If both ∑ α ≠0 and ∑ β ≠0, then there exists a bidirectional causality between 𝑥 and 𝑦.  

It is important to understand that granger causality does not imply one variable causes changes in the 

other. When we say that x1t, x2t, …. , xnt Granger-cause 𝑦𝑡, we mean that past values of x are correlated 

with current values of y. Granger-causality can run in one direction, both directions or there is no 

Granger-causality at all.  

Whiles the Granger representation theorem suggests that for there to be cointegration among two 

variables, there must be a causal relationship running in at least one direction, some studies have 

however shown that this is not necessarily the case. For example, Ogaki and Reinhart (1998) provide 

an example to show that a cointegrated time series does not necessarily have an error correction 

representation. Gujarati (2003) also indicated that relationship between two variables does not 

necessarily imply causality.  
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In this study, we employ the Granger non-causality approach of Toda and Yamamoto (1995) to test 

the relationship between asset returns and the inflation/interest rates. This approach has the advantage 

that it can be applied without first testing the cointegration properties of the system. Also, if the order 

of integration does not exceed the fitted lag length of the model, then the Toda and Yamamoto (1995) 

approach can be applied whether the series are integrated in levels or first differences (i.e. I(0) AND 

I(1) (Toda and Yamamoto, 1995; Zapata and Rambaldi; 1997; Caporale and Pittis, 1999).  

Following Fang et al. (2018), we specify the following equations to establish the relationship between 

asset returns and the selected inflation/interest rates:  

ln(y
t
)=β

0
1+ ∑ β

1i
1 lny

t-i

K+d max

i=1

+ ∑ β
2i
1 lnxt-i+εt

K+d max

i=1

 

            4(10) 

 

ln(xt)=β
0
2+ ∑ β

1i
2 lnxt-i

K+d max

i=1

+ ∑ β
2i
2 lny

t-i
+εt

K+d max

i=1

 

           4(11) 

 

where d max =maximum order of integration.  

The coefficient matrices of the last 𝑑 𝑚𝑎𝑥 lagged vectors in the model not used in the estimation as 

these are regarded as zeros. This way, we can test linear or non-linear restrictions on the first k 

coefficient matrices using the standard asymptotic theory (Toda and Yamamoto, 1995).   

In equations 4(10) and 4(11), the hypothesis that asset return is does not Granger-cause 

inflation/interest rate movements is tested using the following: H0: β
0
1=0, i=1,2,……K. The 

hypothesis that inflation/interest rate movements does not Granger-cause asset return changes is also 

testing as follows: H0: β
0
2=0, i=1,2,……K. 

4.3.4 STATIC AND DYNAMIC CONDITIONAL CORRELATIONS 

Correlation estimates are critical inputs for most types of financial analysis. For example, in asset 

allocation, a forecast of the covariance matrix of returns is required, a key input of which is the 

correlation between the assets. Correlation measures the direction and strength of relationship between 

different variables. The Pearson correlation coefficient can be calculated mathematically thus:  

ρ
XY

=
cov(X,Y)

√σX
2 σY

2
=

∑ (Xt-X̅)(Yt-Y̅)n
t=1

√∑ (Xt-X̅)2 ∑ (Yt-Y̅)2n
t=1

n
t=1

 
      4(12)  
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Many financial theories rely on the assumption of constant variances and covariances. However, it has 

been shown that tail events exist where these parameters may change drastically. It is therefore better 

to calculate a conditional correlation which estimates correlation based on all information available up 

to a particular point in time. Chong et al. (2012) found that in most cases, the average correlation is 

identical to the unconditional correlation estimated across the entire sample. Where this is not the case, 

the average conditional correlation is lower; pointing to the fact that during periods of increased 

volatility, an upward bias is introduced into the conditional coefficients. This is consistent with the 

view of Forbes & Rigobon, (2002). 

A number of approaches have been used to estimate the conditional correlation – rolling window, 

exponential smoother and the Dynamic Conditional Correlation model. The rolling correlation is easy 

to estimate and is capable of capturing time-variation and clustering of cross asset returns (Anderson 

and Romaindo, 2008). However, Anderson and Romaindo (2008) observed that since all the windows 

in a rolling correlation analysis are given the same weight, they tend to adjust very slowly to new 

information. This problem becomes greater with longer window lengths. Regarding the window, many 

authors have observed the difficulty in choosing a window length as there is no theoretical or empirical 

basis for selecting this (Case et al., 2012; Ziering et al., 1999). There could also be huge changes in 

correlation estimates when there are abnormally small or large return observations, especially as these 

observations enter or leave the window. Forbes & Rigobon (2002) found that rolling correlation 

coefficients tend to be prone to bias. They explained that as volatility increases in one asset market, 

Heteroskedasticity in returns may cause the correlation coefficient to be biased upward.  

To make up for the drawbacks of the rolling correlation method, Multivariate Generalised 

Autoregressive models have been proposed and used in many studies. Engle (2002) suggests using the 

Dynamic Conditional Correlation (DCC) model. The DCC model calculates the conditional 

correlations as a function of past volatilities of assets and the covariance between them. Given that all 

past information is used in the otimisation process, there is no difficulty in selecting a window length 

as with rolling correlations. Engle (2002) found that the multivariate and univariate volatility forecasts 

are consistent with each other. The volatility forecasts and the correlations of the original assets remain 

unchanged when new variables are added to the system, depending on the way the model is revised. 

Also, when applied to typical financial applications it was found that DCC models revealed important 

time varying features that might otherwise be difficult to quantify. 
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The Dynamic Conditional Correlation model estimates a GARCH (1,1) specifications, employing the 

resulting standardized residuals to estimate the time varying correlation matrix. In order to accomplish 

this, the residuals are transformed by their estimated standard deviations  Ξt=
εt

√ht
⁄  .  

The covariance matrix can be expressed as Ht≡DtRtDt , where Dt is a diagonal matrix of univariate 

GARCH volatilities. Rt=Q
t
*-1Q

t
Q

t
*-1 is the time varying correlation matrix, with Q

t
 as described by: 

Q
t
=(1 − a − b)Q̅+a(Ξt-1Ξ'

t-1)+Q
t-1

   4(13) 

Q̅ is the unconditional covariance of standardized residuals resulting from the first stage estimation, 

and Q
t
* is a diagonal matrix composed of the square root of the diagonal elements of Q

t
. As with the 

standard GARCH (1, 1) model the coefficients of the DCC (1, 1) model are estimated by the maximum 

likelihood procedure using the algorithm of Broyden–Fletcher–Goldfarb–Shanno (BFGS). The log-

likelihood function, under the assumption of conditional multivariate normality can be displayed as 

follows: 

L(ϑ)=-
1

2
[TN ln (2π)+ ∑ ln|Ht+Ξt

' Ht
-1Ξt|

T

t=1

]     4(14) 

where Ξt is an N×1 vector stochastic process, with Ht=Et-1(ΞtΞt
' ), being the N×N conditional 

variance-covariance matrix.  

The Dynamic Conditional Correlation model has the advantage of being a two-step process and so is 

generally less computationally intense and suitable for big systems (Cappiello et al., 2006).   

4.3.5 UNSMOOTHING TECHNIQUES 

A critical pillar of many analytical frameworks built on a premise of “normality”, is the assumption that 

asset returns from period to period are independent and identically distributed. However, if one 

month’s return is ‘influenced’ by the previous month’s return, then there may be a need to account for 

this effect in future asset projections (Sheikh and Qiao, 2010). The s-th order autocorrelation 

coefficient for a stationary time series 𝑟𝑡 is:  

ρ
s
=

cov(rt,rt-s)

var(rt)
 4(15) 
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Autocorrelation can also be tested on the significance of the autocorrelation coefficient obtained from 

equation 4(15) using the Box Pierce Q-statistics and their probability value. The Q-statistic is a test for 

the null hypothesis that there is no autocorrelation to order p. It is computed as:  

Q=T ∑ φ(n)2

p

n=1

 

 

 

  

with Q~χ
p
2   4(16) 

where 𝑇 is the sample size and φ(n) is the nth-order sample autocorrelation. Q is asymptotically 

distributed as φ(n)2 with degrees of freedom equal to the number of autocorrelations.  

Several approaches have been developed to help eliminate the smoothing problem in appraisal based 

return series. The most popular of these approaches include those of Geltner et al. (1991; 1993), Fisher 

et al. (1994) and Cho et al. (2003); Booth and Marcato (2004).  These models have largely been 

successful in generating real estate series that have a higher volatility compared to the ‘smoothed’ 

returns. They have also been found to reduce the lagging effects when compared to public listed real 

estate series. A confirmation of real estate’s higher than observed volatility is provided by the 

development of transaction-based series for example the MIT real estate series.  

It is important to note however that real estate still records significantly lower volatility than other 

financial assets. The use of unsmoothed series have also been found to allocations that still exceed 

what is observed in practice.  (Hudson-Wilson et al., 2003; Worzala and Sirmans, 2003; Bond et al., 

2007). This has been attributed to an added ex-ante liquidity premium that is not accounted for in 

conventional practice, to investor’s inability to diversify away specific risk fully due to large lot sizes or 

simply to the distributional characteristics of real estate returns (IPF, 2004; Bond et al., 2007; Baum & 

Struempell, 2006; Young, 2007).  

The model of Geltner et al (1993) has been applied within real estate and hedge fund literature to 

unsmooth the returns of assets that have been found to be autocorrelated. The approach applies a 

reverse filter to recover the true return as given in equation 4(17): 

rt
u=

(rt
*-(1-α)rt-1

* )

α
 

4(17) 

where:  

rt
u = the unobserved true return 

rt
* is the observed appraised value and 

α is a parameter between 0 and 1. If no smoothing is present in the returns, then the value of α=1 

The unsmoothing parameter, 𝛼, is based on a judgment concerning the degree of smoothing present 

in the real estate market. Giliberto (1992) found based on their survey of industry practitioners that 
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real estate investors view the asset’s ‘true’ volatility as being about half the volatility of equities. 

Stevenson (2000), however points out that the use of different assumptions could result in different 

results and so proposed a first-order autoregressive (AR1) model, following Fisher et al. (1994), which 

can correct return series for autocorrelation without having to set parameters arbitrarily. The AR1 

model is referred to by Stevenson (2000) as a Full Information Model alternative which should provide 

an adequate figure. This model assumes that real estate returns follow a first-order autoregressive 

process. Therefore, 𝛼 can be estimated as the 𝛽 coefficient in the following OLS regression:  

rt
*=α+βrt-1

*  4(18) 

The underlying corrected return can be retrieved from the equation below:  

rt
u=

rt
*

1-α
-

α

1-α
rt-1
*  

4(19) 

Fisher et al. (1994) and Geltner (1993) have suggested adjusting for autocorrelation at higher lags to 

account for seasonality in data, especially as witnessed in the NCREIF index which displays a level of 

fourth order autocorrelation, since the data is at quarterly frequency, this fourth order-autocorrelation 

is viewed as evidence of seasonality. A smoothing process for lags 1 and 4 can be formulated as shown 

in equation 4(20):  

rt
u=

rt
*-α(-1)*rt-1

* -α(-4)*rt-4
*

1-α(-1)-α(-4)
 

4(20) 

where:  

α(-1) = first-order autocorrelation 

α(-4)= fourth-order autocorrelation 

Some researchers have applied unsmoothing techniques that use a time-varying alpha. Brown & 

Matysiak (1997) who offer a smoothing model with a time varying alpha based on rolling window serial 

correlations. Chaplin (1997) used a regime switching approach to unsmooth real estate series, following 

Quan and Quigley (1991). A similar approach is used by Lizieri et al. (2012).  
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4.3.6 ASSET ALLOCATION MODELS  

4.3.6.1 Markowitz (1952) Mean-Variance Model 

In the typical mean-variance model of asset allocation without short-selling and no riskless borrowing 

or lending, the portfolio manager’s objective is to select a combination of assets that minimise the risk 

of the portfolio subject to a given level of return and the constraints that the asset weights are non-

negative and sum to one. Mathematically, the objective function is given as:   

min
1

2
∑ wiwjσij

n

i,j=1

 4(21) 

s.t.  

∑ wirĩ

n

i=1

=rP 

where:  

∑ wiwjσij

n

i,j=1

 
 

= variance of the return of a portfolio containing n different assets.  

∑ wirĩ

n

i=1

 
 

= expected rate of return of a portfolio containing n different assets.  

4.3.6.2 Mean-Tracking Error Models 

Although it is informative for an investor to determine which combinations of assets help achieve a 

certain amount of return with minimum risk, this does not really fit the goal of most investors. Most 

investors are concerned with the real return that they obtain at the end of the period i.e. the returns 

after accounting for the loss in purchasing power. Other investors also measure their performance 

relative to a certain benchmark such as the returns on Treasury securities.  

Bruno & Chincarini (2010) specify an objective function which characterises an investor who wishes 

to maximize his real returns subject to some minimization of the nominal deviation from inflation. In 

this thesis, we expand the context to include both inflation and interest rate changes.  It is important 

to note that this is equivalent to performing Markowitz (1952) mean-variance analysis on real returns.  

The objective function specified by Bruno & Chincarini (2010) is:  

min[V(rP,t,t+k-πt,t+k)]  s.t. rP,t,t+k-πt,t+k=μ̃
P
      4(22) 
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where rP,t,t+k is the return of the investor’s portfolio from time t to time t+k, πt,t+k is the inflation 

rate from time t to time t+k, and μ̃
P
 is the real return target of the portfolio.  

The objective function that we implement in this thesis is to minimise the tracking error of the portfolio 

with a given inflation or interest rate benchmark. We select a group of assets for the DC pension 

investor that helps to achieve this goal. The problem can be re-written as:  

min

wi
[V (∑ wi,t,t+k-πt,t+k

N

i=1

)] 

 

s.t.  

∑ wiri,t,t+k-πt,t+k=μ̃
P

N

i=1

 

 

4(23) 

subject to some additional constraints. We can write the above in matrix notation as:  

min

w
w'∑w-2w'γ 

s.t.  w'μ=μ̃
P
+πt,t+k 4(24) 

where 𝛾 is an N-dimensional vector of the covariances between individual asset returns and the 

inflation rate over the investment horizon spanning t to t+k, ∑ is the variance-covariance matrix of 

the asset classes and inflation, and 𝑤 represents the weights of the portfolio of asset classes.  

γ= [

C(r1,πt,t+k)

⋮
C(rN,πt,t+k)

] 

Constraints can be added to prohibit short selling of asset classes and that the sum of weights sum to 

1.  

In our study, we run In-sample optimisations are run for the periods 1990– 2015. We use a 5 year 

estimation horizon for the out-of-sample estimations. The estimations are first done with data from 

the first quarter of 1991 to the fourth quarter of 1995. This estimate is used to construct the optimal 

portfolios for the next quarter. The 5-year window is moved forward by one quarter and a new 

portfolio is re-estimated using data from the second quarter of 1991 to the first quarter of 1996. This 

process is repeated until the first quarter of 2015.  

A modified version of the Tracking Error Optimisation Model is used in the optimisation in Chapter 

6 which seeks to create a portfolio that contains direct real estate and liquid publicly traded assets 

namely as listed real estate, aggregate stocks, cash and bonds of various maturities. We use a generalised 

form of the tracking error optimisation model which seeks to minimise the tracking error variance for 
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a given expected excess return. The following numerical optimisation model is implemented in this 

thesis:  

 min

wk
∑ (rindex,t- ∑ wkrk,t

N

k=1

)

2

    

T

k=1

 
           

4(25) 

Subject to:  

∑ (rindex,t- ∑ wkrk,t
N
k=1 )T

t=1 =0  

∑ wk
N
k=1 =1  

L<wk<U 

Where:  

rindex,t = the return on the direct real estate benchmark at time t 

rk,t = the return on the kth asset at time t 

wk = the weight assigned to the kth asset 

The optimizer selects a combination of assets that provide the lowest tracking error relative to the IPD 

UK index returns, subject to the constraints of zero expected tracking error, unit sum of weights and 

a set allocation to direct real estate. The weight set for direct real estate ranged from 0% to 90%, in 

10% intervals.  

4.3.6.3 Semi-variance Optimisation  

Bruno & Chincarini (2011) again suggest an alternative model to more accurately specify an investor’s 

optimisation problem in terms of minimising downside risk, rather than variance. This approach is also 

more suitable for dealing with asset returns that are not normally distributed:  

 
min

wi

1

T
∑ [min (∑ wi,t

N

i=1

ri,t,t+k-πt,t+k,  0)

2

]

T

j=1

 4(26) 

s.t.  (∑ wi,tri,t,t+k-πt,t+k
N
i=1 )=μ̃

P
  

4.3.6.4 Sortino and Sharpe Ratio Optimisation  

In this study, we use a generalised form of the Sharpe ratio where the risk-free rate is replaced with the 

selected inflation and interest rate benchmarks: 
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 Shape ratio=
E[Rp-Rb]

σp

  4(17) 

where σp is the portfolio standard deviation.  

Similarly, a generalised Sortino ratio is used. The target return is replaced with the returns on the 

selected inflation and interest rate benchmarks:  

 
Sortino Ratio=

E[Rp-Rb]

√1
n

∑ (Rp-Rb)
2
f(t)n

i=1

 
 4(28) 

f(t)=1 if return < target return 

f(t)=0 if return ≥ target return 

In-sample portfolios are estimated from the first quarter of 1991 to the first quarter of 2015 for which 

we have data available for all the 32 variables. The out of sample portfolios are estimated from the 

beginning of 1991 plus five additional years. This estimate is used to construct portfolios for the next 

quarter. The window is then expanded forward by a quarter and a new portfolio re-estimated. This 

process is repeated until the first quarter of 2015. The VBA code for the construction of the out-of-

sample portfolios are given in the Appendix.  

4.4 CONCLUSION 

This Chapter is made up of two parts. In the first part, we presented the asset classes and sectors that 

we analyse in this thesis. In total, we have 65 variables made up of 11 variables representing direct real 

estate, 16 variables for stocks and 9 bond sectors. We had a total of 25 variables capturing different 

alternative asset sectors. 4 variables are used for our inflation/interest rate benchmarks. A list of these 

variables is presented in Appendix 4(A). All of these variables are used in our analysis to demonstrate 

how the results change given the specific asset class or sector returns that is used. Spierdijk and Umar 

(2013) demonstrated that the time series features of an asset class (at the aggregate level) could differ 

considerably from the time series features of the component sectors.  

Once we outline the data sources, we proceed to carry out some preliminary analysis. The aim of this 

analysis is to provide some insight into the return and risk of the various asses and the inflation/interest 

rates. We also explored some time series features that we believe could have a bearing on the selection 

of an appropriate analytical framework for subsequent analysis involving the respective assets. We 

analysed and discussed the distribution properties of our data, the serial correlation and stationarity of 
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the various variables. The results show for example that the various assets had different degrees of 

integration. Most of the series were not found to be normally distributed. Furthermore, private market 

assets such as direct real estate and some alternative assets were found to exhibit significant 

autocorrelation. An application of the reverse engineering model of Geltner (2003) helped to get rid 

of the autocorrelation, although it also altered the return of the assets affected.     

After gaining insight into the time series features of our data, we proceed to discuss the various 

analytical approaches that are subsequently used in our empirical analysis. We present a detailed 

background to each of the models and the appropriateness of each model given the objectives we 

pursue in the respective chapters and the results of the time series analysis conducted in this chapter.  
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APPENDICES 

Appendix 4(A)    List of Variables 

IPD Real Estate Sectors Alternatives (IN US$) 

1. IPD All Property 1. Emerging stock market  

2. IPD Industrial 2. Developed ex UK stocks  

3. IPD Office 3. Commodities – all  

4. IPD Retail 4. Commodities – oil  

Unsmoothed IPD Real Estate Sectors  5. Commodities – gold  

1. IPD All Property 1. Hedge funds  

2. IPD Industrial 2. US private equity  

3. IPD Office 3. US venture capital  

4. IPD Retail 4. Developed ex US private equity  

Other Real Estate Vehicles 5. Emerging private equity  

1. AREF – All Funds Alternatives in GB£ 

2. AREF – All Balanced Funds 1. Hedge funds 

3. Hybrid Real Estate  2. US private equity 

Stocks 3. US venture capital 

1. Aggregate stocks 1. Developed ex US private equity 

2. Oil 2. Emerging private equity 

3. Basic Materials 3. Emerging stock market 

4. Industrial 4. Developed ex US stocks 

5. Construction 5. Commodities - all 

6. Industrial goods and services 6. Commodities - oil 

7. Consumer goods 7. Commodities - gold 

8. Health care Unsmoothed Private Market Alternatives 

9. Consumer services 1. Hedge funds 

10. Telecom 2. US private equity 

11. Technology 3. US venture capital 

12. Utilities 4. Emerging private equity 

13. Banks 5. Hedge funds 

14. Insurance  

15. Financial services  

16. Listed real estate  

Bonds  

1. Index linked bonds - 0-5 Years  

2. Index linked bonds - 5+ years  

3. Bonds – All lives  

4. Bonds – 10 + years  

5. Bonds – 10 year   

6. Bonds – 7 year  

7. Bonds – 5 year  

8. Bonds – 3 year  

9. Bonds – 2 year  
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Appendix 4(B)    Correlograms: UK Real Estate (Original) 
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Appendix 4(C)    Correlograms: UK Real Estate (Unsmoothed) 
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Date: 04/09/18   Time: 06:21

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.752 0.752 56.600 0.000

2 0.481 -0.19... 80.032 0.000

3 0.242 -0.10... 86.024 0.000

4 0.107 0.053 87.209 0.000

5 -0.02... -0.14... 87.255 0.000

6 -0.11... -0.04... 88.534 0.000

7 -0.22... -0.16... 93.693 0.000

8 -0.30... -0.09... 103.54 0.000

Date: 04/09/18   Time: 06:23

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.744 0.744 55.434 0.000

2 0.499 -0.12... 80.573 0.000

3 0.275 -0.11... 88.287 0.000

4 0.142 0.035 90.365 0.000

5 0.017 -0.10... 90.396 0.000

6 -0.08... -0.08... 91.171 0.000

7 -0.16... -0.04... 93.896 0.000

8 -0.18... -0.01... 97.706 0.000

Date: 04/09/18   Time: 06:24

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.765 0.765 58.558 0.000

2 0.531 -0.13... 87.093 0.000

3 0.311 -0.12... 96.946 0.000

4 0.143 -0.03... 99.049 0.000

5 -0.03... -0.17... 99.164 0.000

6 -0.15... -0.03... 101.53 0.000

7 -0.27... -0.17... 109.44 0.000

8 -0.37... -0.15... 124.73 0.000

Date: 04/09/18   Time: 06:25

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.724 0.724 52.398 0.000

2 0.434 -0.18... 71.406 0.000

3 0.200 -0.07... 75.486 0.000

4 0.099 0.086 76.488 0.000

5 0.030 -0.06... 76.582 0.000

6 -0.02... -0.05... 76.662 0.000

7 -0.12... -0.13... 78.302 0.000

8 -0.21... -0.08... 83.126 0.000

Date: 04/09/18   Time: 13:07

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.131 0.131 1.7191 0.190

2 -0.00... -0.02... 1.7270 0.422

3 -0.13... -0.13... 3.6592 0.301

4 0.001 0.038 3.6593 0.454

5 -0.06... -0.07... 4.0783 0.538

6 -0.01... -0.01... 4.0948 0.664

7 -0.07... -0.06... 4.6876 0.698

8 -0.19... -0.20... 8.6637 0.371

Date: 04/09/18   Time: 13:09

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.017 0.017 0.0299 0.863

2 0.020 0.020 0.0699 0.966

3 -0.07... -0.07... 0.6579 0.883

4 0.009 0.011 0.6658 0.955

5 -0.02... -0.02... 0.7337 0.981

6 -0.07... -0.08... 1.3452 0.969

7 -0.08... -0.08... 2.1700 0.950

8 -0.02... -0.02... 2.2366 0.973

Date: 04/09/18   Time: 13:10

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.076 0.076 0.5826 0.445

2 0.046 0.040 0.7948 0.672

3 -0.07... -0.07... 1.3152 0.726

4 0.035 0.045 1.4412 0.837

5 -0.10... -0.10... 2.5535 0.768

6 -0.05... -0.04... 2.8254 0.830

7 -0.06... -0.03... 3.2119 0.865

8 -0.27... -0.28... 11.105 0.196

Date: 04/09/18   Time: 13:10

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.115 0.115 1.3316 0.249

2 -0.03... -0.04... 1.4291 0.489

3 -0.15... -0.14... 3.7757 0.287

4 -0.03... -0.00... 3.9182 0.417

5 -0.00... -0.01... 3.9266 0.560

6 0.044 0.024 4.1303 0.659

7 -0.03... -0.05... 4.2954 0.745

8 -0.13... -0.13... 6.2220 0.622
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Appendix 4(D)    Correlograms: Private Equity (Original Series in US$) 

US Private equity 

 

 

 

 

US Venture Capital 

 

 

Developed ex US Private Equity 

 

Emerging Private Equity 

 

 

Appendix 4(E)    Correlograms: Private Equity (Unsmoothed Series in US$) 
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Date: 04/09/18   Time: 06:28

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.376 0.376 14.178 0.000

2 0.280 0.161 22.121 0.000

3 0.128 -0.02... 23.805 0.000

4 0.086 0.008 24.570 0.000

5 -0.03... -0.09... 24.725 0.000

6 0.001 0.032 24.725 0.000

7 -0.11... -0.11... 26.163 0.000

8 0.006 0.093 26.166 0.001

Date: 04/09/18   Time: 06:29

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.601 0.601 36.183 0.000

2 0.479 0.184 59.372 0.000

3 0.325 -0.03... 70.130 0.000

4 0.044 -0.31... 70.327 0.000

5 -0.03... -0.02... 70.476 0.000

6 -0.07... 0.083 71.123 0.000

7 -0.08... 0.073 71.974 0.000

8 -0.10... -0.11... 73.244 0.000

Date: 04/09/18   Time: 06:30

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.225 0.225 5.0632 0.024

2 0.136 0.090 6.9339 0.031

3 -0.07... -0.12... 7.4680 0.058

4 0.017 0.049 7.4978 0.112

5 -0.12... -0.12... 9.2343 0.100

6 0.184 0.243 12.797 0.046

7 -0.11... -0.20... 14.178 0.048

8 -0.12... -0.14... 15.964 0.043

Date: 04/09/18   Time: 06:33

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.434 0.434 18.856 0.000

2 0.213 0.030 23.431 0.000

3 0.041 -0.07... 23.598 0.000

4 -0.02... -0.02... 23.654 0.000

5 -0.03... -0.00... 23.813 0.000

6 -0.05... -0.02... 24.087 0.001

7 -0.08... -0.06... 24.891 0.001

8 -0.12... -0.07... 26.598 0.001

Date: 04/09/18   Time: 13:15

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.010 0.010 0.0103 0.919

2 -0.02... -0.02... 0.0840 0.959

3 -0.09... -0.09... 1.0058 0.800

4 -0.05... -0.05... 1.3538 0.852

5 -0.03... -0.04... 1.4966 0.913

6 -0.06... -0.08... 1.9637 0.923

7 -0.02... -0.03... 2.0298 0.958

8 -0.08... -0.10... 2.8877 0.941

Date: 04/09/18   Time: 13:15

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.023 0.023 0.0507 0.822

2 -0.05... -0.05... 0.4012 0.818

3 0.002 0.004 0.4015 0.940

4 -0.00... -0.00... 0.4015 0.982

5 -0.08... -0.08... 1.1747 0.947

6 -0.12... -0.11... 2.6902 0.847

7 0.030 0.025 2.7867 0.904

8 -0.07... -0.09... 3.3746 0.909

Date: 04/09/18   Time: 13:16

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.002 0.002 0.0003 0.986

2 0.210 0.210 4.4500 0.108

3 0.071 0.074 4.9681 0.174

4 0.070 0.028 5.4718 0.242

5 0.115 0.090 6.8475 0.232

6 0.124 0.108 8.4704 0.206

7 0.010 -0.03... 8.4808 0.292

8 0.216 0.168 13.521 0.095

Date: 04/09/18   Time: 13:17

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.00... -0.00... 0.0056 0.940

2 0.011 0.011 0.0181 0.991

3 0.033 0.034 0.1318 0.988

4 -0.09... -0.09... 1.0574 0.901

5 -0.06... -0.06... 1.4575 0.918

6 -0.17... -0.18... 4.8332 0.565

7 0.105 0.112 6.0010 0.540

8 -0.03... -0.03... 6.1175 0.634
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Appendix 4(F)    Correlograms: Hedge Fund  

Hedge Fund (Original series in US$) 

 

 

 

 

Hedge Fund (Unsmoothed series in US$) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Date: 04/09/18   Time: 13:14

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.002 0.002 0.0005 0.982

2 -0.00... -0.00... 0.0085 0.996

3 0.001 0.001 0.0085 1.000

4 -0.09... -0.09... 1.0216 0.907

5 -0.07... -0.07... 1.6585 0.894

6 0.066 0.065 2.1166 0.909

7 -0.13... -0.14... 4.0972 0.769

8 0.011 0.004 4.1114 0.847

Date: 04/09/18   Time: 06:26

Sample: 1 97

Included observations: 97

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.254 0.254 6.4642 0.011

2 0.072 0.008 6.9877 0.030

3 0.022 0.001 7.0351 0.071

4 -0.10... -0.11... 8.1723 0.085

5 -0.12... -0.07... 9.6866 0.085

6 -0.17... -0.13... 13.075 0.042

7 0.049 0.148 13.331 0.064

8 -0.00... -0.05... 13.336 0.101
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Appendix 4(G)    E-Views Code for Estimating Dynamic Conditional Correlations  

load "sample s1" 
'set sample range 
sample s1 1992Q3 2014Q4 
scalar pi=3.14159 
  
'defining the return series in terms of y1 and y2 
series y1=dre 
series y2=dre_all1 
  
'fitting univariate GARCH(1,1) models to each of the two returns series 
equation eq_y1.arch(1,1,m=1000,h) y1 c 
equation eq_y2.arch(1,1,m=1000,h) y2 c 
  
'extract the standardized residual series from the GARCH fit 
eq_y1.makeresids(s) z1 
eq_y2.makeresids(s) z2 
  
'extract garch series from univariate fit 
eq_y1.makegarch() garch1 
eq_y2.makegarch() garch2 
  
'Caculate sample variance of series z1, z2 and covariance of z1and z2 and correlation between z1 and z2 
scalar var_z1=@var(z1) 
scalar var_z2=@var(z2) 
scalar cov_z1z2=@cov(z1,z2) 
scalar corr12=@cor(z1,z2) 
  
'defining the starting values for the var(z1) var(z2) and covariance (z1,z2) 
series var_z1t=var_z1 
series var_z2t=var_z2 
series cov_z1tz2t=cov_z1z2 
  
'declare the coefficient starting values 
coef(2) T 
T(1)=0.2 
T(2)=0.7 
  
' ........................................................... 
' LOG LIKELIHOOD for correlation part 
' set up the likelihood  
' 1) open a new blank likelihood object and name it 'dcc' 
' 2) specify the log likelihood model by append 
' ........................................................... 
  
logl dcc 
dcc.append @logl logl 
  
'specify var_z1t, var_z2t, cov_z1tz2t 
dcc.append var_z1t=@nan(1-T(1)-T(2)+T(1)*(z1(-1)^2)+T(2)*var_z1t(-1),1) 
dcc.append var_z2t=@nan(1-T(1)-T(2)+T(1)*(z2(-1)^2)+T(2)*var_z2t(-1),1) 
dcc.append cov_z1tz2t=@nan((1-T(1)-T(2))*corr12+T(1)*z1(-1)*z2(-1)+T(2)*cov_z1tz2t(-1),1) 
  
dcc.append pen=(var_z1t<0)+(var_z2t<0) 
  
'specify rho12 
dcc.append rho12=cov_z1tz2t/@sqrt(@abs(var_z1t*var_z2t)) 
  
'defining the determinant of correlation matrix and determinant of Dt 
dcc.append detrRt=(1-(rho12^2)) 
dcc.append detrDt=@sqrt(garch1*garch2) 
dcc.append pen=pen+(detrRt<0) 
dcc.append detrRt=@abs(detrRt) 
  
'define the log likelihood function 
dcc.append logl=(-1/2)*(2*log(2*pi)+log(detrRt)+(z1^2+z2^2-2*rho12*z1*z2)/detrRt)-10*pen 
  
'estimate the model 
smpl s1 
dcc.ml(showopts, m=500, c=1e-5) 
  
'display output and graphs 
show dcc.output 
graph corr.line rho12 
show corr 
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Appendix 4(H)    VBA Code for Blended Real Estate Optimisation 

Sub Blended2() 

' Blended2 Macro 

' Keyboard Shortcut: Ctrl+k 

' 

For i = 1 To 98 

Worksheets("LD_" & i).Activate 

 

    ActiveWindow.SmallScroll Down:=-15 

    Range("B38").Select 

    SolverReset 

    SolverOk SetCell:="$E$37", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$L$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverAdd CellRef:="$B$28:$L$28", Relation:=3, FormulaText:="0" 

    'Set minimum return to average real estate return 

    SolverAdd CellRef:="$B$33", Relation:=3, FormulaText:="$L$25" 

     

    SolverAdd CellRef:="$B$36", Relation:=2, FormulaText:="1" 

    'Set real estate return = 0/0.50/0.7/0.8 OR 0.9 

    SolverAdd CellRef:="$L$28", Relation:=2, FormulaText:="0.90" 

 

    SolverOk SetCell:="$E$37", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$L$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverOk SetCell:="$E$37", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$L$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve userFinish:=True 

        SolverFinish keepFinal:=1 

Next 

ActiveWorkbook.Save 

End Sub  
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Appendix 4(I)    VBA Code for Mean-Tracking Error Optimisation Model 

Sub modified() 

' modified Macro 

' Keyboard Shortcut: Ctrl+m 

For i = 1 To 78 

Worksheets("LD_" & i).Activate 

ActiveWindow.SmallScroll Down:=-9 

    SolverReset 

    SolverOk SetCell:="$B$43", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

'No short sale constraint 

    SolverAdd CellRef:="$B$28:$AG$28", Relation:=3, FormulaText:="0" 

'Weight of liability benchmark = 0 

    SolverAdd CellRef:="$AG$28", Relation:=2, FormulaText:="0" 

'Sum of weights = 1 

    SolverAdd CellRef:="$B$40", Relation:=2, FormulaText:="1" 

        SolverOk SetCell:="$B$43", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve userFinish:=True 

    SolverFinish keepFinal:=1 

    Next 

ActiveWorkbook.Save 

End Sub 
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Appendix 4(J)    VBA Code for Mean-Semi-Variance Optimisation Model 

Sub modified() 

' modified Macro 

' Keyboard Shortcut: Ctrl+m 

For i = 1 To 78 

Worksheets("LD_" & i).Activate 

ActiveWindow.SmallScroll Down:=-9 

    SolverReset 

    SolverOk SetCell:="$B$38", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

'No short sale constraint 

    SolverAdd CellRef:="$B$28:$AG$28", Relation:=3, FormulaText:="0" 

'Sum of liability benchmark = 0 

    SolverAdd CellRef:="$AG$28", Relation:=2, FormulaText:="0" 

'Sum of weights = 1 

    SolverAdd CellRef:="$B$40", Relation:=2, FormulaText:="1" 

    

    SolverOk SetCell:="$B$38", MaxMinVal:=2, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve userFinish:=True 

    SolverFinish keepFinal:=1 

     

Next 

ActiveWorkbook.Save 

 

End Sub   
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Appendix 4(K)    VBA Code for Sharpe Ratio Optimisation Model 

Sub modified() 

' modified Macro 

' Keyboard Shortcut: Ctrl+m 

For i = 1 To 78 

Worksheets("LD_" & i).Activate 

ActiveWindow.SmallScroll Down:=-9 

    SolverReset 

    SolverOk SetCell:="$B$48", MaxMinVal:=1, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

'No short sale constraint 

    SolverAdd CellRef:="$B$28:$AG$28", Relation:=3, FormulaText:="0" 

'Sum of liability benchmark = 0 

    SolverAdd CellRef:="$AG$28", Relation:=2, FormulaText:="0" 

'Sum of weights = 1 

    SolverAdd CellRef:="$B$40", Relation:=2, FormulaText:="1" 

 

    SolverOk SetCell:="$B$48", MaxMinVal:=1, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve userFinish:=True 

    SolverFinish keepFinal:=1 

     

Next 

ActiveWorkbook.Save 

 

End Sub 
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Appendix 4(L)    VBA Code for Sortino Ratio Optimisation Model 

 

Sub modified() 

' 

' modified Macro 

' 

' Keyboard Shortcut: Ctrl+m 

' 

For i = 1 To 78 

Worksheets("LD_" & i).Activate 

ActiveWindow.SmallScroll Down:=-9 

    SolverReset 

    SolverOk SetCell:="$B$46", MaxMinVal:=1, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

'No short sale constraint 

    SolverAdd CellRef:="$B$28:$AG$28", Relation:=3, FormulaText:="0" 

'Sum of liability benchmark = 0 

    SolverAdd CellRef:="$AG$28", Relation:=2, FormulaText:="0" 

'Sum of weights = 1 

    SolverAdd CellRef:="$B$40", Relation:=2, FormulaText:="1" 

     

    SolverOk SetCell:="$B$46", MaxMinVal:=1, ValueOf:=0, ByChange:="$B$28:$AG$28", _ 

        Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve userFinish:=True 

    SolverFinish keepFinal:=1 

     

Next 

ActiveWorkbook.Save 
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Appendix 4(M)    E-Views Code for Estimating Dynamic Conditional Correlations  

load "sample s1" 
'set sample range 
sample s1 1992Q3 2014Q4 
scalar pi=3.14159 
  
'defining the return series in terms of y1 and y2 
series y1=ipd_all 
series y2=uk_cpi 
  
'fitting univariate GARCH(1,1) models to each of the two returns series 
equation eq_y1.arch(1,1,m=1000,h) y1 c 
equation eq_y2.arch(1,1,m=1000,h) y2 c 
  
'extract the standardized residual series from the GARCH fit 
eq_y1.makeresids(s) z1 
eq_y2.makeresids(s) z2 
  
'extract garch series from univariate fit 
eq_y1.makegarch() garch1 
eq_y2.makegarch() garch2 
  
'Caculate sample variance of series z1, z2 and covariance of z1and z2 and correlation between z1 and z2 
scalar var_z1=@var(z1) 
scalar var_z2=@var(z2) 
scalar cov_z1z2=@cov(z1,z2) 
scalar corr12=@cor(z1,z2) 
  
'defining the starting values for the var(z1) var(z2) and covariance (z1,z2) 
series var_z1t=var_z1 
series var_z2t=var_z2 
series cov_z1tz2t=cov_z1z2 
  
'declare the coefficient starting values 
coef(2) T 
T(1)=0.2 
T(2)=0.7 
' ........................................................... 
' LOG LIKELIHOOD for correlation part 
' set up the likelihood  
' 1) open a new blank likelihood object and name it 'dcc' 
' 2) specify the log likelihood model by append 
' ........................................................... 
logl dcc 
dcc.append @logl logl 
  
'specify var_z1t, var_z2t, cov_z1tz2t 
dcc.append var_z1t=@nan(1-T(1)-T(2)+T(1)*(z1(-1)^2)+T(2)*var_z1t(-1),1) 
dcc.append var_z2t=@nan(1-T(1)-T(2)+T(1)*(z2(-1)^2)+T(2)*var_z2t(-1),1) 
dcc.append cov_z1tz2t=@nan((1-T(1)-T(2))*corr12+T(1)*z1(-1)*z2(-1)+T(2)*cov_z1tz2t(-1),1) 
  
dcc.append pen=(var_z1t<0)+(var_z2t<0) 
  
'specify rho12 
dcc.append rho12=cov_z1tz2t/@sqrt(@abs(var_z1t*var_z2t)) 
  
'defining the determinant of correlation matrix and determinant of Dt 
dcc.append detrRt=(1-(rho12^2)) 
dcc.append detrDt=@sqrt(garch1*garch2) 
dcc.append pen=pen+(detrRt<0) 
dcc.append detrRt=@abs(detrRt) 
  
'define the log likelihood function 
dcc.append logl=(-1/2)*(2*log(2*pi)+log(detrRt)+(z1^2+z2^2-2*rho12*z1*z2)/detrRt)-10*pen 
  
'estimate the model 
smpl s1 
dcc.ml(showopts, m=500, c=1e-5) 
  
'display output and graphs 
show dcc.output 
graph corr.line rho12 
show corr 



CHAPTER FIVE – ESTIMATING AND MANAGING 

LIQUIDITY WITHIN PENSION FUND INVESTMENT 

PORTFOLIOS 

5.0 INTRODUCTION  

This chapter is in two parts. The first part a review literature on the different ways in which liquidity is 

captured and measured within asset markets and the extent to which these approaches have been 

adopted within the real estate market. In part two, we look at different ways in which liquidity can be 

managed within the portfolios of institutional investors such as pension funds. We also provide a 

discussion of how liquidity affects the investment decisions of pension funds, specifically UK DC 

pension funds. A version of this chapter has been published by the Journal of Real Estate Literature 

under the title: Liquidity, a review of dimensions, causes and empirical applications in real estate 

markets.1 

An asset can be said to be liquid if large quantities can be traded in a short period of time without 

moving the price too much. Accordingly, several alternative measures of liquidity have been used in 

the literature, including the price impact of trade, the bid–ask spread, share or dollar volume, and 

turnover, among others. Liquidity from an institutional investor’s point of view is the ability to meet 

their obligations as and when they fall due, at all or without incurring significant costs. The goal of 

liquidity management is to ensure that there is no misalignment of an investment portfolio’s liquidity 

profile and the cash flow demands of investors (Kathura and Myers, 2013).  

We can think of several obvious ways in which an investor benefits from having a good liquidity 

management system in place. Some of these are the ability to: (i) exercise market timing skill, (ii) 

rebalance a portfolio, (iii) meet capital calls, (iv) reallocate part of the portfolio to newly discovered 

opportunities or exit from unproductive investments, and (v) respond to shifts in risk appetite.  

Portfolio Rebalancing: Investors choose portfolios they believe are optimal given their views and attitude 

about expected return and risk. Once they establish their optimal portfolio, however, price changes 

among the component assets cause the actual weights of the portfolio to drift away from the optimal 

targets, and the portfolio becomes sub-optimal. If the portfolio comprises only liquid assets, investors 

can restore the optimal weights easily, though not without cost. However, to the extent that some 

portion of the portfolio is allocated to illiquid assets, investors cannot implement the full solution, and 

                                                           
1 Ametefe, F., Devaney, S., & Marcato, G. (2016). Liquidity: A review of dimensions, causes, measures, and 
empirical applications in real estate markets. Journal of Real Estate Literature, 24(1), 1-29. 
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the portfolio remains sub-optimal. For example, the 2008 financial crisis left many investors coping 

with illiquidity at a time when the liquid portion of their portfolios experienced significant losses in 

value. As the liquid portion of a portfolio loses value, the illiquid portion represented a larger share of 

the portfolio than before. However, these illiquid assets could not be sold to meet immediate liquidity 

needs without incurring significant losses. 

Capital Calls: Investors periodically need to liquidate a portion of their portfolios to meet capital calls. 

Pension funds, for example, may need to raise cash in order to make unanticipated benefit payments 

to retirees. Many endowment funds and foundations commit to private equity and real estate funds 

which demand capital sporadically as investment opportunities arise. Private investors occasionally 

need to replace lost income to meet their consumption demands. These liquidations may drive the 

portfolio away from its optimal mix, and to the extent that part of the portfolio is allocated to illiquid 

assets, the investor may not be able to restore full optimality. 

Market Timing: Some investors are skilled at anticipating the relative performance of asset classes or 

risk factors. This improves the expected utility beyond the portfolio’s initial expected utility. 

New Opportunities: Investors may discover new managers or strategies or just better ways to reconfigure 

their existing portfolios. Alternatively, investors may wish to exit existing positions they no longer 

expect to perform as originally contemplated.  

Shifting Risk Appetite: Investors may become more or less averse to risk as their circumstances change. 

The presence of illiquid assets limits the extent to which investors can respond to their shifting risk 

appetites. 

The Pension Regulator (2016) believes that investment governance within DC schemes is one of the 

most influential factors in the delivery of good outcomes for DC members. Consequently, all trustee 

members are expected to have a good understanding of issues relating to investment and to always 

make decisions based on advice from qualified persons. A qualified investment manager is required for 

the management of any investments.  Regarding liquidity, the Code of Practice references the 

Occupational Pension Schemes Regulation (2005) which requires that trustee boards invest 

predominantly in assets that are traded on a regulated market. Although DC pension funds can invest 

in investment options that are not traded on a regulated market, they are expected to identify these 

assets as such in their Statement of Investment Principles and offer an explanation of why they believe 

it is appropriate to include these assets in that form. They should also spell out how these illiquid 

investments align with the objectives set out in their Statement of Investment Principles. Section 108 

of the Code of Practice requires that consideration is also given to asset protection and what would 
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happen in the event of a problem. Factors such as indemnity insurance, compensation schemes 

applicable and the overall conclusion about the security of assets to members and employers. DC 

providers are also required to be in constant communication with members about when and how they 

wish to take their DC benefits. In particular, matters such as flexible access to benefits and the 

particular approaches to investment of members must be taken into account. 

It is important liquidity guidelines are incorporated into the investment policy statements of 

institutional investors under the risk management section or a separate liquidity management section. 

A clear liquidity guideline is vital especially during periods of market stress.  This guideline serves to 

document the degree of acceptable liquidity during both normal and stress market environments. 

Liquidity management should be part of a broader risk management practice. Consequently, the 

liquidity profile of investment portfolios should be analysed along with other indicators of portfolio 

risk such as the standard deviation, value at risk, maximum drawdown etc. Also, given the impact that 

regulatory changes have on portfolios, it is also important for asset managers and trustees stay abreast 

with regulatory changes. This would ensure that they can better analyse the liquidity implications of 

each change (Kathura and Myers, 2013).  

5.1 LIQUIDITY: DIMENSIONS AND CAUSES 

The role of liquidity in determining asset prices is the subject of a vast research literature spanning a 

period of more than thirty years. A recent paper by Brunnemeier and Pedersen (2009) both theoretically 

and numerically modeled the relationship between the two main aspects of an asset’s liquidity: trading 

as defined by “the ease with which it is traded” and funding, represented by “the ease with which 

investors or traders can obtain funding.”  

Goodhart (2008) contends that liquidity has so many facets that it is often counter-productive to use 

it without further and closer definition. In this spirit, Bond et al. (2004) spent the main part of their 

literature review addressing this definition in the context of real estate markets reached, among others, 

two main conclusions: 

 liquidity does not only represent the amount of transaction activity but its impact on 

costs and prices as well; 

 no unique definition of liquidity exists and research should consider several 

dimensions of this risk. 

Furthermore, adding one dimension to the ones highlighted in Bond et al. (2004), we can 

identify five main characteristics of market liquidity: 

(i) Tightness: the cost of trading even in small amounts; 
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(ii) Depth: the capacity to sell/buy without causing price movements; 

(iii) Resilience: the speed at which the marginal price impact increases as trading quantities 

increase; 

(iv) Breadth: the overall size of the volume traded; 

(v) Immediacy: the cost (discount/premium) to be applied when selling/buying quickly. 

 

Figure 5(1) Dimensions of market liquidity. 

 

 

 

 

 

 

 

 

 

 

 

Source: Kyle (1985) 

Following from Kyle (1985), the first three dimensions of market liquidity are graphically represented 

in Figure 5(1) – adapted from Kerry (2008) – where demand and supply curves can be compared with 

the ones of a perfectly liquid asset. On the demand side (Purchase), even with a minimum amount of 

transacted volumes, the buyer needs to pay a cost to enter the transaction (normally referred as one 

half of the bid/ask spread). If the buyer then decides to increase the order flow, initially the marginal 

impact (i.e. first derivative of the demand function) is zero and the length of this horizontal part of the 

curve defines the market depth of an asset. However, after a certain threshold, the marginal impact of 

an additional unit of trading volume increases and the speed of this continuous increase defines the 

resiliency of such market. The same (but inversely) applies to a seller and the supply function (Supply). 

Clearly, both demand and supply functions for a liquid asset (represented with a dotted line) are flat as 

no price impact is identified for any volume of trading activity.  

Sale Purchase 

Quantity 
Q1 Q2 

   0 

T
ig

h
tn

es
s 

     Depth 

      Ask 

Perfectly  
Liquid asset 

Depth 

Bid 

Price 



144 

 

If markets were fully efficient, assets would be perfectly liquid. In other words, assets with similar cash 

flows should reflect similar valuations. However, some asset/market characteristics may lead to 

different valuations (and expected returns) for investments with similar cash flows and the main reason 

for such differences is the presence of market imperfections. A recent working paper by Vayanos and 

Wang (2012), following other works done by O’Hara (1995) and Hasbrouck (2007) in market 

microstructure and Amihud et al (2005) in asset pricing – surveyed the liquidity literature both 

theoretically and empirically. They categorise market imperfections in six main groups we briefly 

present. 

Firstly, participation costs arise because there is no immediate and continuous access to the entire 

population of counterparty agents in a trade (i.e. sellers cannot interact with all buyers and vice versa). 

Hence agents have to incur in a cost to enter the market and this makes agents willing to invest only if 

a compensation for this cost is offered in terms of liquidity premium (Huang and Wang, 2009; Amihud 

and Mendelson, 1980). Another consequence is the infrequent arrival of agents into the market, with 

market makers almost obliged to take losses. A clear example of such expenses in real estate markets 

is represented by the absence (for some market segments) of an active secondary market (e.g. derivative 

products for small market segments) and the entry of hedge funds and more aggressive players just 

before and during the most recent economic crisis. 

Secondly, transaction costs refer to the expenses associated with the execution of a trade and can make 

the effective buying and selling price of the same transaction diverge. A consequence is that assets with 

transaction costs trade at a lower price in equilibrium (i.e. offer a premium) but this effect can be 

mitigated by the lengthening of the investment horizon (Amihud and Mendelson, 1986; Acharya and 

Pedersen, 2005; Beber et al, 2012). Examples of transaction costs are represented by taxes and 

brokerage fees, which are notoriously higher for assets such as real estate (in the UK we can assume 

that the cost associated to the buyer and seller is approximately equal to respectively 5.25% and 2.25%). 

Another clear example is offered by a measure of tightness (in the categorisation above) which indicate 

different levels of liquidity in the difference between bid-ask spreads in equity and property derivatives 

(i.e. total return swaps) markets. 

Thirdly, asymmetric information can exist because agents have access to private information (not 

observable by others), or information are obtained by different sources or processed differently. This 

situation will lead to a liquidity premium agents want to access to invest in markets with a high 

proportion of private information (O’Hara, 2003; Easley and O’Hara, 2004) and it can also cause spill-

over effects for asset/market liquidity because of information inefficiencies (Cespa and Foucault, 
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2014). This market imperfection is especially key for markets with scarce and thin information such as 

real estate, where we can observe a greater difference of offer prices than in more efficient markets 

such as the ones of equities or bonds. 

Fourth, imperfect competition is linked to the different dimension of market players and hence their 

asymmetric impact on prices which is either due to their size or information advantage. The main 

seminal work in this area is Kyle (1985, 1989) which is used to show dynamics of risk sharing (DeMarzo 

and Urosevic, 2006; Brunnermeier and Pedersen, 2005). It has also by Glosten (1989) to demonstrate 

the conditions for market failure and further extended to incorporate different speeds of information 

revelation caused by risk averse agents (Baruch, 2002) , insiders (Chau and Vayanos, 2008)  and the 

presence of regulation (Huddart et al., 2001). The issue of imperfect competition is even more 

important for heterogeneous and non-divisible goods like real assets. For example, small investors 

cannot obtain trading information which is only available to large fund managers, and they do not have 

access to investment opportunities because of diversification issues that these investments may cause 

relative to the dimension of other assets in the portfolio (Fuerst and Marcato, 2009). 

Fifth, funding constraints do not allow agents to borrow freely hence restricting their capacity to invest 

in some markets or segments. This phenomenon may be linked to the uncertainty attached to the 

liquidation value (Hart and Moore, 1994, 1995; Schleifer and Vishny, 1992) and limits to financing 

applied on intermediaries offering liquidity (Gromb and Vayanos, 2002; Liu and Longstaff, 2004). 

Furthermore, a possible contagion (or spiral) effect is found for assets that would be otherwise 

unrelated as we have seen over the 2008 financial crisis (Brunnermeier and Pedersen, 2009) especially 

for agents with a short investment horizon (Scleifer and Vishny, 1997) and even for optimal contracts 

(Acharya and Viswanathan, 2011). Funding constraints are probably the one market imperfection 

which interacts most with all other imperfections. Hence Albagli (2011) and Bai et al. (2006) among 

others have focused on this interaction to tease out plausible amplifying effects. 

Finally, search costs arise from a decentralised form of organization – the normal way OTC (over-the-

counter) markets operate – and they are associated to the need of finding a counterparty (Duffie et al. 

2002, 2005, 2008) and Vayanos and Wang (2007) among others. This market imperfection is 

particularly applicable to direct real estate and other unlisted financial products based on those assets 

(e.g. property derivatives and unlisted funds). A vast literature on this cause of liquidity has also been 

developed for the housing sector. 



146 

5.2 MEASURES OF LIQUIDITY 

Liquidity itself is not observable and therefore, has to be proxied by different liquidity measures. Market 

microstructure and finance literature have identified several trading variables that measure different 

dimensions of liquidity, thus reflecting the need to capture all these facets separately. Moreover, some 

studies have shown that mixed results in liquidity premiums may be due to the use of different aspects 

of the overall liquidity risk (Baker, 1996; Bertin et al., 2005). As a consequence, we have decided to 

identify a series of measures which may be helpful to describe liquidity and compare results across 

assets and market segments. 

In the following part of this chapter, we present several indicators used in the literature and we group 

them into four main categories: 

(i) Transaction Cost Measures 

(ii) Volume-Based Measures 

(iii) Time-Based Measures 

(iv) Price Impact Measures 

(v) Return-Based Measures 

Our classification is analogous to that of Sarr and Lybeck (2002) but we extend it by adding time-based 

measures, extensively used for real estate assets and isolating return-based measures as a separate 

category.  

5.2.1 TRANSACTION COST MEASURES 

Transaction cost measures are those that capture the cost of trading financial assets and the trading 

frictions in financial markets. Amihud and Mendelson (1986) state that “illiquidity can be measured by 

the cost of immediate execution.” They go on to say “a natural measure of illiquidity is the spread 

between the bid and ask prices.” Hence, larger bid-ask spreads are widely regarded as evidence of more 

illiquid securities. The difference between the ask and bid price and its related measures gives an 

approximation of the cost incurred when trading. In addition to fees and taxes, the trader has to pay 

the spread as cost for the immediate execution of a trade. 

Demsetz (1968) was the first to analyse bid-ask spreads empirically, and numerous researchers have 

followed his path breaking work. Acker et al. (2002) for examined the determinants of bid-ask spreads 

and their behavior around corporate earnings announcement dates. The spread is used to determine 

where price discovery takes place in Harris et al. (2002), a study that compares trading at different stock 

exchanges. The smaller the spread-related liquidity measures are, the more liquid the market is. In the 

remaining part of this section, we present several measures of bid-ask spreads. 
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5.2.1.1 Absolute (Quoted) Spread 

The absolute spread is the difference between the lowest ask price and the highest bid price. The 

absolute spread (sabs) is thus calculated as follows: 

 Sabst=p
t
A-p

t
B 5(1) 

where p
t
A is the lowest ask price and p

t
B the highest bid price. 

This measure is always positive and its lower limit is the minimum tick size. For small orders, the 

quoted spread is a good indication of the execution cost for a trade. For large orders, however, it may 

not fully represent the cost. 

Chordia et al. (2001) use this measure in their study of the NYSE and Grammig et al. (2001) with data 

on the German stock market. It is intensively investigated for the whole market and for single market 

makers in Barclay et al. (1999) who analyze the impact of the NASDAQ market reforms of 1997, which 

ended the collusion among market makers to artificially inflate the spreads. The absolute spread differs 

also across the NYSE specialist firms as Corwin (1999) shows. Another study using individual dealer’s 

data is Christie and Schultz (1998) who investigate the liquidity provision during the 1991 market break, 

when the index fell over 4%. Karagozoglu (2000) divides the quoted spread by two but had to calculate 

it out of the average price reversals because quote data is not available in the futures market.  

The absolute spread may be logarithmized to improve its distributional properties. It is used in Hamao 

and Hasbrouck (1995) because its distribution is closer to a normal than the absolute spread and, 

therefore, mathematically easier to use. 

 LogSabs
t
=ln (p

t
A-p

t
B) 5(2) 

5.2.1.2 Relative Spread 

The relative spread is the liquidity measure most extensively studied because it is easy to calculate and 

because it makes spreads of different stocks comparable to each other. Sometimes this measure is also 

referred to as “inside spread” as in Levin & Wright (1999). Another advantage is that it may be 

calculated even if no trade takes place, in contrast to the relative spread calculated with the last trade. 
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where p
t
 denotes the last paid price of the asset before time t.  

5.2.1.3 Effective Spread 

Bid–ask spread measures reflect the cost of transacting in the market, but these measures are subject 

to criticism. For example, Grossman and Miller (1988) and Lee et al. (1993) argue that the quoted bid–

ask spread is a noisy and inadequate measure of liquidity, since a large number of transactions take 

place at prices other than the quotations. The effective spread better captures the cost of a round-trip 

order by including both price movement (dealers coming in to execute orders at a better price than 

previously quoted) and market impact (spread widening due to the size of the order itself). It is 

computed as follows: 

 Seff
t
=|p

t
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t
M| 5(5) 

where 𝑝𝑡 denotes the last traded price before time t and the mid-quote price 𝑝𝑡
𝑀 is obtained by: 
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If the effective spread is smaller than half the absolute spread, this reflects trading within the quotes. 

Sometimes the effective spread and all the following related measures may be multiplied by two to 

make them better comparable to the other spread measures, as in Barclay et al. (1999), Bacidore (1997), 

Bacidore et al. (2002), Breedon and Holland (1997), Jones and Lipson (1999), or Lin et al. (1995). In 

Lee et al. (1993) this doubled effective spread is weighted with the trade size to get an average effective 

spread for a certain period. This yields similar results as weighting with the number of trades does. 

Using the effective spread, Battalio et al. (1998) calculate a liquidity premium: 𝐿𝑃𝑡 = 𝐼 ∙ (𝑝𝑡 − 𝑝𝑚
𝑡 ) 

where I is the direction of trade indicator. I equals 1 for buyer initiated trades and -1 for seller initiated 

trades. This liquidity premium is positive if the buyer pays more or if the seller pays less than the spread 

midpoint. 

5.2.1.4 Relative Effective Spread 

The relative effective spread can be calculated with last trade or with mid-price. The relative measure 

allows comparability across different stocks. Also the relative effective spread may be doubled to 

compare it to other relative spread measures. 
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where p
t
 denotes the last traded price before time t and the mid-quote price p

t
M is obtained from 

above. 

5.2.2 VOLUME BASED LIQUIDITY MEASURES 

Volume-based measures distinguish liquid markets by either the absolute or relative amount of 

transactions compared to the price variability, primarily to measure breadth and depth. Barclay et al. 

(1998) emphasize volume measures as better indicators of liquidity than price discounts. Volume of 

trading has been measured in a variety of ways, including the number of shares traded, dollar volume 

of shares traded and the number of transactions. Volume-based measures are most useful in measuring 

the breadth of the market and include: (i) Transaction Volume, (ii) Trading Frequency, (iii) Turnover 

Ratio, (iv) Quote Size and (v) Herfindhal Index  

5.2.2.1 Transaction Volume 

Trading volume is an indirect but widely cited measure of market liquidity. Its popularity derives from 

empirical evidence that more active markets such as treasury bonds markets tend to be more liquid, 

and from theoretical studies linking increased trading activity with improved liquidity through ease of 

access and decrease in transaction costs. The popularity of such a measure (sometimes represented by 

‘order flows’ in equity markets) reflects its simplicity and availability, with volume figures regularly 

reported for most assets. A drawback, however, is its association with market volatility which may 

reduce market liquidity (Karpoff, 1987).  

Transaction volumes for a given period t (i.e. the dollar volume traded Volt) are computed as the sum 

of individual i trades within the period (computed as prices Pit times quantities Qit ). 

 
Volt= ∑ PitQit

n

i=1

 
5(9) 

Empirical investigations of common stock intraday patterns initially focused solely on trading volume. 

The first comprehensive theory to explain intraday trading behavior within the context of a strategic 
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trader model including informed traders and both discretionary and non-discretionary liquidity traders 

was presented by Admati and Pfleiderer (1988). The informed and discretionary liquidity traders prefer 

to trade when they have the least effect on price, and this desire creates a strong incentive to trade 

when other traders are active. Their model suggests that the periods immediately after the open and 

before the close are unique for this purpose and will incur lower trading costs due to higher liquidity. 

Therefore traders may have a preference for trading during these high liquidity periods among 

nondiscretionary traders, and this may result in other traders gravitating to these time periods as well. 

Based on this explanation, Brock and Kleidon (1992) model the bid–ask spread during the day and 

conclude that the intraday pattern should be U-shaped, if the intraday pattern in volume is also U-

shaped. Empirically, Jain and Joh (1988) found a U-shaped pattern in intraday volumes for stocks of 

the S&P 500 Index. Similarly, Foster and Viswanathan (1993) report that stocks with relatively low 

volume exhibit a more pronounced U-shaped pattern than high volume stocks. 

5.2.2.2 Turnover Ratio 

Turnover gives an indication of the number of times the outstanding volume of an asset changes hands 

within a specified time period: 

 
Turnn=

Vol

(S*P)
 

5(10) 

where Vol is the transaction volume, S is the number of outstanding stocks of a certain asset and P is 

the average price of the i trades in the equation for transaction volumes. While its computation is easy 

for exchange traded securities, an adequate coverage of transaction volumes and estimation of existing 

stocks represent critical issues for assets traded over the counter (i.e. OTC products), such as real 

estate. 

Amihud and Mendelson (1986) show that this measure is negatively related to illiquidity costs. In fact, 

when the turnover ratio is low, market makers tend to charge a higher transaction cost to cover the 

risk of holding their position – i.e. the higher the turnover ratio, the more liquid the stock is. 

Turnover has been a popular liquidity measure in the previous literature (Rouwenhorst, 1999; Chordia 

and Swaminathan, 2000 and Dennis and Strickland, 2003). The theoretical motivation for using 

turnover as a liquidity proxy goes back to Demsetz (1968) who shows that the price of immediacy 

would be smaller for stocks with high trading frequency since frequent trading reduces the cost of 

inventory controlling. Glosten and Milgrom (1985) also show that stocks with high trading volume 

would have lower level of information asymmetry to the extent that information is revealed by prices. 
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Finally, Constantinides (1986) finds that investors would increase their holding periods (thus, reduce 

turnover) when a stock is highly illiquid. 

5.2.2.3 Quote Size  

Quote size refers to the quantity of securities tradable at the bid and offer prices. It accounts for market 

depth and complements the bid-ask spread. Market makers often do not reveal the full quantities they 

will transact at a given price so the measured depth underestimates the true depth.  

 
Quote Size=

Average No of Transacted Assets

Average Size of the Market
 

5(11) 

A related measure to quote size is the quantity of securities traded at the bid and offer prices, reflecting 

any negotiation over quantity i.e. the trade size. A drawback of this measure is the availability of such 

information as market makers may not reveal this amount. It can also underestimate market depth 

because the quantity traded is often less than the quantity that could have been traded at a given price. 

5.2.2.4 Number of Bids  

The number of investors who put in their bid for a particular asset can be used as a measure of liquidity 

in that market. The larger number of bids, the easier the trading should be because it should be easier 

to find a counterparty for the transaction. A more liquid fund interest is likely to generate greater buyer 

interest which should translate into a greater number of bids. 

Kleymenova et al. (2002) uses the number of bids, computed as the natural logarithm of the number 

of individual spot or portfolio bids received for a particular asset in the first round of bidding, to find 

that this measure to be highly correlated with the number of bidders. Kleymenova et al. (2002) used 

this to gauge the liquidity of Private Equity Markets. This measure has also been used in the corporate 

bond market – see Gehr and Martell (1992) and Jankowitsch et al. (2002). 

5.2.2.5 Market Depth 

The market depth at time t, 𝐷𝑡 is also referred to as “quantity depth” (Huberman and Halka, 2001) or 

“volume depth” (Brockman and Chung, 2000). It is computed as the sum of bid and ask volumes at 

time t. Corwin (1999) shows that market depth differs significantly among the NYSE specialist firms, 

and Corwin & Lipson (2000) investigate depth around trading halts. Greene & Smart (1999) look at 

abnormal depth due to liquidity trading. 

 Depth=q
t
A+q

t
B 5(12) 
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To improve the distributional properties of this measure, the log depth (Dlogt) may be used, as in Butler 

et al. (2002). The log depth measure is computed as follows:  

 Log Depth=ln(q
t
A+q

t
B) 5(13) 

As the market depth for bid and ask can be computed separately, the overall depth may also be obtained 

as an average between the two (Chordia et al, 2001; Goldstein and Kavajecz, 2000; Sarin et al., 1996). 

As the depth measures of the bid- and the ask-sides of the limit order book are not symmetrical and 

do not necessarily move in common, the computation of separate measures may be helpful to study 

both dimensions of liquidity (Kavajecz, 1999; Kavajecz and Odders-White, 2001). 

5.2.3 PRICE IMPACT MEASURES  

Price impact measures attempt to differentiate between price movements due to the degree of liquidity 

from other factors such as general market conditions or arrival of new information. Bernstein (1987) 

noted that, measures of liquidity when no information is hitting a stock must be more relevant than 

measures of liquidity when new information leads to new equilibrium values. They include: (i) Amihud 

measure (ii) Percentage of 0% return and (iii) Market efficiency coefficient. 

5.2.3.1 Amihud measure 

Amihud measure has been widely used in the literature (Avramov et al., 2006; Watanabe and 

Watanabe, 2008 and Karolyi et al., 2011) normally with a monthly frequency and it is computed as 

follows: 

 
Amihudt=

1

n
∑

|TRi|

Voli

n

i=1

 
5(14) 

 

where t and n respectively refer to the month and number of trading days in a month, while TRi and 

Voli represent the total return and transaction volume of an asset/market on the day i of month t. 

This liquidity measure has its advantage in solving the problem of nonlinear relation between 

transaction costs and trading volume since economies of scale sometimes do exist for institutional 

traders or for investors with large trading volume and commission discounts. 

5.2.3.2 Regressed lambda 

An alternative measure to the Amihud illiquidity is represented by the regression coefficient of 

returns on the signed volume of transaction activities as represented by the following: 
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TRt=α+lVolt+ ∑ δj*Zjt

m

j

 5(15) 

where  is the illiquidity measure which represents the price impact per unit of trade due to the 

existence of market imperfections, while Zjt and j represent respectively j control variables and their 

estimated coefficients. 

5.2.3.3 Pastor-Stambaugh Liquidity Factor 

This liquidity dimension is associated with temporary price changes accompanying order flow. Pastor 

and Stambaugh (2003) construct a measure of market liquidity in a given month as the equally weighted 

average of the liquidity measures of individual assets, using daily data within the month. 

Particularly, the liquidity factor for asset i at time t is computed as it coefficient estimated as follows: 

 ri,d+1,t
e =θi,t+ωi,tri,d,t+γ

i,t
sign(ri,d,t

e )*Voli,d,t+ϵi,d+1,t 5(16) 

Where 𝑟𝑖,𝑑,𝑡  is the return of asset i in day d of the month t, while 𝑟𝑖,𝑑,𝑡
𝑒  is the same return but in excess 

of the market return and 𝑠𝑖𝑔𝑛(. ) ∗ 𝑉𝑜𝑙𝑖,𝑑,𝑡 represents the signed transaction volumes (positive if the 

excess return is positive and negative viceversa).  

The liquidity measure it is linked to the idea that the signed transaction volume should lead to an 

expectation of reversal in future returns and hence the estimated value should be negative and 

increasing in absolute value for assets/periods with higher illiquidity. 

5.2.3.4 Percentage of 0% Return 

Lesmond et al. (1999) developed a model to estimate transaction costs in which the only data 

requirement is the time series of daily stock returns. The basic assumption is that, on average, a zero 

return is observed if expected return does not exceed the transaction cost threshold. Therefore, high 

transactions costs result in zero return days. In addition, investors have relatively low incentive to 

obtain private information for stocks with high transaction costs and, as a results, most trades are noise 

trades which more likely lead to zero-return, and possibly positive volume, days. Bekaert et al. (2007) 

use the Zeros measure as one of liquidity measures in examining liquidity and expected return in 

emerging markets and find that this measure is able to significantly predict future returns. The measure 

is computed as:  

 ZRi,t=
Ni,t

Tt
  5(17) 
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where: 

Tt=number of trading days in a month t 

Ni,t=number of zero-return days of stock i in month t 

Bekaert et al. (2007) demonstrate that this measure is highly correlated with more traditional measures 

of transaction costs for emerging equity markets. Lesmond (2005) provides a detailed analysis of 

emerging equity market trading costs, and confirms the usefulness of this measure. For the period from 

the mid-1990s over which the Trade and Quote (TAQ) data are available, Goyenko et al. (2005) 

compare various transaction cost measures for U.S. data, and find that those based on observed zero 

returns are correlated with effective costs obtained from high-frequency data. 

The zero return measure has been widely used to evaluate the relation between market liquidity and 

political risks in emerging markets (Lesmond, 2005), the implication of liquidity on asset pricing in 

emerging markets (Bekaert et al., 2007), and the pricing of liquidity risks in global financial markets 

(Lee, 2011). Importantly, ZR is defined over zero-volume days as well as positive volume days since 

this measure assumes that a zero-return day with positive volume is a day when noise trading induces 

trading volume. 

Goyenko et al. (2009) propose an alternative version of Zeros, Zeros2, which is the proportion of 

trading days with zero return but positive trading volume within one month. The argument is that 

stocks with higher transaction costs tend to have less private information acquisition so these stocks 

are more likely to have no-information-revelation zero returns even on positive volume days. The 

second component is about trading frequency. Since illiquid stocks are traded less frequently and, 

therefore, are more likely to have zero trading volume days, I propose another version of Zeros, 

ZeroVol, which is defined as: 

 
ZeroVol=

Number of days with zero volume

Number of days in Trading Month
 

5(18) 

5.2.3.5 Market efficiency coefficient  

The Market-Efficiency Coefficient (MEC), or variance ratio, was developed by Hasbrouck and 

Schwartz (1988) and has been used extensively in the literature considering that price movements are 

more continuous and reflect new information timely in liquid markets. Thus, for a given permanent 

price change, the transitory changes to that price should be minimal in resilient markets. This measure 

is computed as follows:  
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MEC=

Var(Rt)

(T*Var(rt))
 

5(19) 

where:  

Var(Rt)  and Var(rt) represent the variance of respectively long-period and short-period returns and 

T is the number of short periods within each long period.  

The Market efficiency ratio tends to be close but slightly below one in more resilient markets, since a 

minimum of short term volatility should be expected. Indeed, prices of assets with low market 

resiliency may exhibit greater volatility (more transitory changes) between periods in which their 

equilibrium price is changing. Factors that foster excessive short-period volatility (overshooting) result 

in an MEC substantially below one. These factors include price rounding, spreads, and inaccurate price 

determination involving partial adjustment to news, cause prices to adjust relatively small, and 

positively correlated increments. This would dampen short-period price volatility relative to longer 

period price volatility (Sarr and Lybek, 2002). 

5.2.4 TIME-BASED LIQUIDITY MEASURES 

Time-based measures capture either the time that has elapsed between trades or the amount of time 

required to trade an asset once a decision to buy or sell has been made. It might be assumed that where 

a particular asset or type of asset is traded more often, then that asset or group of assets is more liquid. 

If so, then this would be captured by two of the measures examined in this section: (i) holding period 

and (ii) trading frequency. However, there could be instances where assets are held for a long period 

because they have particularly desirable characteristics and not because they are difficult or costly to 

trade. If so, then it may be possible to transact such assets very quickly once marketed and this would 

be captured by the third measure explored here: (iii) time on market. 

Time on market could be split further, with the search for a counterparty forming one stage and the 

time to process a trade forming the other. In mainstream financial markets, both of these stages may 

seem trivial in length owing to the existence of centralised, public exchanges. In contrast, the 

decentralised and private nature of direct real estate markets means that time on market has been 

studied extensively for residential real estate, with more limited attention from the commercial real 

estate literature. Nonetheless, the time to execute trades is still of importance in financial markets. For 

instance, certain arbitrage strategies may need to be executed within minutes or even seconds, and so 

the possibility of being able to trade within such intervals becomes important. 
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5.2.4.1 Holding Periods (Inverse of Turnover Rates)  

The standard way of incorporating market frictions into asset pricing models is to assume that trading 

involves some exogenous trading cost. The more often that investors plan to trade, the more important 

are such costs in terms of their impact on returns. In fact, the magnitude of any costs may influence 

investors’ expected holding periods. If higher trading costs for a particular asset or market translate 

into longer holding periods, this in turn implies a reduced volume of trading for that asset or market, 

as fewer participants seek to sell assets in any given period. 

A number of theoretical models use the concept of expected holding period to link liquidity to asset 

prices. For example, Amihud and Mendelson (1986) provide an early model that incorporates the 

expected holding period. However, it has been hard to investigate these theories empirically owing to 

a lack of data on actual holding periods. Instead, investigations have relied on proxies of investor 

holding periods constructed in the following way from data on turnover: 

 
HP=

(S*P)

Vol
=

1

Turnn

 
5(20) 

where 𝑇𝑛 is turnover rate, Vol is the dollar volume traded, S is the outstanding stock of the asset and 

P is the average price of i trades. In contrast, the actual holding period for an asset held by an investor 

would simply be the time between the purchase date and the sale date for that asset. 

In financial markets, even though high turnover stocks are likely to have many investors buying and 

selling that stock, it is by no means certain that all owners of the stock have short holding periods. For 

example, there may be a group of owners with very long holding periods, but high turnover among the 

remaining investors. The core of this problem is that, while turnover is a characteristic of an asset, 

holding period is a decision made by an investor. This is recognized in empirical work for real estate 

by Collett et al. (2003) where statistical models were deployed to correct the measurement of holding 

periods for the presence of untraded assets over the study period. 

5.2.4.2 Trading Frequency 

Trading frequency is also closely related to trading volume. Trading frequency equals the number of 

trades executed within a specified interval, without regard to trade size. Like trading volume, high 

trading frequency may reflect a more liquid market. However, it may be associated with volatility and 

lower liquidity. Jones et al. (1994) show that the positive volume-volatility relationship found in many 

equity market studies reflects the positive relationship between the number of trades and volatility, and 

that trade size has little incremental information content. 
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To obtain trading frequency, a count of the number of trades between time 𝑡 − 1 and 𝑡 is required. 

Information on the timing of transactions may also be used to compute waiting time between trades, 

as studied by Peng (2001): 

 

WTt=
1

N-1
∑ tri-tri-1

N

i=2

 

5(21) 

 

where 𝑡𝑟𝑖 denotes the time of the trade and 𝑡𝑟𝑖−1 the time of the trade before. Therefore, waiting time 

for a specific time space has to be calculated as an average time between two trades. 

5.2.4.3 Volumes Volatility 

As real estate is not divisible and traded infrequently, a proxy one may use to represent the above 

dimension of liquidity is the volatility of transaction volumes. This measure should be inversely 

proportional to the trading frequency because the implication of this measure can be twofold: the 

average trading volume is lower (and hence similar swings show higher impact) and/or the swings in 

transaction volumes from one period to the next are higher. The Volumes Volatility measure and is 

computed as follows: 

 
σVolt

=
∑ Volt-Volt̅̅ ̅̅ ̅

N-1
 

5(22) 

where Volt is the dollar volume traded and N is the number of observations within the period. 

5.2.4.4 Time on Market (TOM)  

A fundamental characteristic differentiating real estate investments from mainstream financial assets is 

the time involved in buying or selling once a decision to buy or sell has been made. Furthermore, the 

timescale is not only long, but it is also uncertain. This is because the private and decentralized nature 

of real estate markets requires search by participants for appropriate assets and/or willing 

counterparties, while the physical, legal and spatial heterogeneity of assets may necessitate extensive 

due diligence by purchasing parties. 

This uncertainty is discussed by Lin and Vandell (2007), who provide a simple illustration of the real 

estate transaction process reproduced in Figure 5(2). In the figure, an investor purchases a real estate 

asset at time 0 and holds it until time Tn before placing it on the market for sale. �̃� is the potential 

marketing period, the actual length of which is a random variable. t1, t2 and ti represent possible end 

points to the transaction process and P̃Tn+t ̃ is the price upon a successful sale.  
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Figure 5(2): The Transaction Process for Real Estate 

 

 

 

 

 

 

A defining feature of this process is the sequential but random arrival of offering prices that 

characterizes the mutual search between sellers and potential buyers. During the search process, the 

seller receives offers over time from a stream of buyers whose offer prices and timing of arrival are 

stochastic in nature. Buyers make offers based on the information acquired from their search. Each 

time a buyer makes an offer, the seller evaluates the benefits of waiting for a potentially better offer 

and the cost associated with waiting, and then decides whether to sell the asset or not. If a deal is not 

reached, the search continues. Thus, there is uncertainty both around the length of the marketing 

period and the price that will eventually be agreed. 

In terms of empirical measurement, time on market is often measured from the perspective of the 

seller, looking from the date when a property is listed for sale to the date when a sale is formally 

concluded. However, it is also relevant to consider time to transact from the perspective of buyers, 

which could be seen as commencing from the point at which search begins. Moreover, it is possible to 

also break the time to transact down into different stages. For instance, McNamara (1998) breaks the 

sales process into three periods: (i) the period between the decision to sell a particular asset and the 

date when heads of terms are agreed; (ii) a subsequent period up to exchange of contracts; and (iii) the 

last period up to when money is finally transferred. All three periods affect the liquidity risk, though 

the achieved sale price should not change during the third of these periods. These stages are further 

refined and then measured in Crosby & McAllister (2004), while Scofield (2013) concentrates on the 

buyer perspective. 

5.2.5 RETURN-BASED MEASURES 

Some liquidity indicators have been drawn theoretically from the impact that a lack of transaction 

activities may have on price movements and hence properties of return time series. These measures 

𝑇𝑛 𝑇𝑛 + 𝑡1 𝑇𝑛 + 𝑡2 𝑇𝑛 + 𝑡1 
···

Marketing Period �̃� (random) 

Return upon a Successful Sale 

(random) 
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have then become popular because price indices exist for several assets and markets and no other 

information is required. 

5.2.5.1 Roll Measure 

Roll (1984) developed an implicit measure of the effective bid-ask spread based on the serial covariance 

of the changes in stock price. Two key assumptions are that the market is informationally efficient and 

the probability distribution of observed price changes is stationary. Let 𝑃𝑡 be the last observed trade 

price on day t and assume that it evolves as: 

 
Pt=Vt+

1

2
SQ

t
 

5(23) 

where: 

Vt unobserved fundamental value of the stock on day t and it fluctuates randomly 
S is the effective spread to be estimated 
Qt is a buy or sell indicator for the last trade on day t that equals 1 for a buy and -1 for a sell. 
 

Assuming that 𝑄𝑡 is equally likely to be 1 or -1, is serially uncorrelated and is dependent on the public 

information shocks on day t, Roll shows that the effective spread can be estimated as: 

 S=2×√-cov(∆Pt,∆Pt-1) 5(24) 

where ∆ is the change operator.  

The beauty of this Roll measure is that it can be estimated easily since the only data requirement is daily 

price. However, this measure is not meaningful when the sample serial covariance is positive, which is 

more likely to happen in emerging markets with low market efficiency. Therefore, as in Goyenko et al. 

(2009) modified the Roll measure as follows: 

 

{
2×√-cov(∆Pt,∆Pt-1)                  when cov(∆Pt,∆Pt-1)<0

0                                                             when cov(∆Pt,∆Pt-1)≥0

 

 

5(25) 

5.2.5.2 Run Length 

Das and Hanouna (2010) developed an illiquidity proxy based on run length of returns, defined as the 

consecutive series of positive or negative returns without reversion. Empirically, they showed that run 

lengths are positively related to the price impact of trading and can explain cross-sectional variation of 

stock returns. Using daily stock returns, the monthly measure of run lengths is computed as follows: 
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 RLi,m=
Nrun

Nm
  5(26) 

where Nrun is the sum of the length of each run in a month m and Nm is the number of runs in a 

month m. 

If the consecutive occurrence of positive or negative returns is not reversed right after the presence of 

zero return, the zero return day does not terminate the run. If any run is reversed after the presence of 

zero returns, then the run terminates with the last zero. The minimum possible run length of a stock 

in any month is one.  

5.3 EMPIRICAL STUDIES IN REAL ESTATE MARKETS 

After identifying the dimensions and causes of liquidity and introducing measures that can proxy for 

this risk, we discuss empirical research related to real estate markets/products. We begin by reviewing 

studies that explore public real estate before turning to the private real estate market and finally to work 

produced on unlisted real estate vehicles. 

5.3.1 EMPIRICAL EVIDENCE IN LISTED REAL ESTATE MARKETS 

Corgel et al. (1995), Zietz et all. (2003), and Feng et al. (2011) provide descriptive overviews of 

exchange-listed REITs. The liquidity of REITs relative to alternative investments linked to real estate 

has great appeal and this allowed the market to develop with a high institutional component in its 

ownership structure. 

Nelling et al. (1995) find that the liquidity of real estate investment trusts (REITs) – daily closing bid-

ask spread for securities listed in the NASDAQ – decreased during 1980s, making these products 

relatively expensive over that period. Following this work, but using market microstructure data, Bhasin 

et al. (1997) show that, during mid-1990s, the trend inverted and these products became more liquid, 

partly thanks to a significant growth in their number and market capitalization driven by the “new 

REITs era” (Cole, 1998). Bhasin et al. (1997) use an empirical model of spreads following Stoll (1978) 

and shed light on their determinants: price and dollar volume (positive relation) and return volatility 

(negative). Clayton & MacKinnon (2000) confirm these results for the early 1990s by decomposing the 

percentage spread into three components (depth, tightness and resiliency) following Kyle (1985) and 

find that most gains are driven by improvements in depth rather than tightness. Meanwhile, Cannon 

and Cole (2011) find significant improvements in the overall liquidity of REITs around 2000-2006. 

Marcato and Ward (2007) develop the model in Clayton and MacKinnon (2000) to allow an estimation 

with daily rather than intra-day data. Similar results are found for the U.S., with improving liquidity 
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measured for both estimated spreads and market depth. The choice of stock exchange is found to be 

significant, with even smaller REITs benefiting from listing in the NYSE as opposed to NASDAQ 

and AMEX, similar to Danielsen and Harrison (2000), who found the NYSE and AMEX to be 

preferable to the NASDAQ. Weaker results are also found for other markets (U.K. and Australia). 

Characterizing the intraday-trading behavior. Below, Kiely, and McIntosh (1995) find that (1) REIT 

structures present a smaller amount of volumes and trades than nonREIT ones, (2) equity REITs 

present higher spreads than mortgage REITs, and (3) REITs with high institutional ownership trade 

at spread levels similar to those observed for non-REITs. However, Bertin et al. (2005) argue that using 

raw spreads fails to include transactions taking place inside the quoted spread. Therefore, they compute 

several liquidity proxies and show that REIT liquidity follows an intraday U-shaped pattern similar to 

that of common stocks. 

Brounen et al. (2009) support the idea of studying several dimensions of liquidity in international 

markets and use three proxies for liquidity—dollar trading volume, turnover, and a version of the 

Amihud measure—to avoid misleading conclusions. They show that dividend yield, market 

capitalization, and non-retail share ownership are the main drivers of liquidity. Furthermore, 

Subrahmanyam (2007) finds liquidity risk to be priced in REITs. He is the first to explore order flow 

spillovers across NYSE stocks, finding that this phenomenon occurs from REITs to non-REITs and 

that liquidity measures of the latter are a good predictor for the former. 

Benveniste et al. (2001) compare asset replacement value with company value and show that the 

securitization process of assets obtained through the REIT structure enhances the underlying asset 

value by IO%-20%. Yet, they do not find that the market value of equity provides explanatory power 

for liquidity when they include control variables such as sector and institutional ownership. Following 

from the evidence that REITs partly reflect equity and partly private real estate performance, Bond 

and Chang (2012) study the cross-asset liquidity between these three markets/assets. In line with 

theoretical expectations, they find liquidity risk and commonality in liquidity to be generally lower for 

REITs than for other equities and causality going from public to private markets. 

Finally, a recent by Glascock and Lu-Andrews (2014) sheds light on the macroeconomic factors driving 

REIT funding liquidity and its linkages with market liquidity across the business cycle. The authors use 

the Amihud measure and turnover ratio for market liquidity and LTV ratio, debt service coverage ratio, 

and number of loans for funding liquidity. This study shows that both contemporaneous and lagged 

macroeconomic factors have a significant impact on REIT funding liquidity; negative for inflation, 

default spreads, and term spreads and positive for the banks’ willingness to lend. 
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5.3.2 EMPIRICAL EVIDENCE IN DIRECT REAL ESTATE MARKETS 

There are fewer studies of liquidity for private real estate than for either financial assets or REITs. In 

part, this stems from the decentralized and private nature of real estate markets that has created 

difficulties in obtaining data and creating liquidity measures. Yet, liquidity issues have been subject to 

more extensive study in recent years, including work that considers the impact of liquidity on real estate 

price series. This has resulted in the creation of liquidity indices in the U.S., although the assumptions 

and models required to produce such indices are methodologically complex. Meanwhile, other research 

has occurred using more traditional liquidity indicators such as volumes and time-on-the-market. 

Fisher, Ling, and Naranjo (2009) and Ling et al. (2009) have explored the relation between volumes 

and returns in private real estate investment markets. They examine the relation between capital flows 

and investment returns in the U.S. and the U.K., respectively, to see whether they affect each other. 

Both studies use a vector autoregressive (VAR) approach where institutional capital flows and returns 

are specified as endogenous variables in a two-equation system. Fisher, Ling, and Naranjo (2009) find 

that lagged capital flows have a statistically and economically significant relationship with returns, 

which suggests weight-of-money effects in pricing. They do not find evidence for return chasing. Ling 

et al. (2009) find positive contemporaneous correlations between returns, absolute and percentage 

capital flows, and turnover, but their results did not support the idea that capital flows exert a “price 

pressure” effect in the U.K. 

The composition of transaction volumes is studied in Fisher, Gatzlaff, Geltner, and Haurin (2004). 

They examined sales out of the population of private real estate investments monitored by the National 

Council of Real Estate Investment Fiduciaries (NCREIF) in the U.S. They tested whether specific 

property, owner or market characteristics affected the probability of an asset being sold. The results 

might indicate when properties are more liquid and which assets are more liquid than others, but it is 

possible that some buildings with desirable characteristics are held for longer by owners and would 

trade rapidly if offered for sale. Fisher and Young (2000) studied holding periods using the NCREIF 

database whiles Collett et al. (2003) examined holding periods for institutional grade U.K. real estate. 

The latter find that holding periods have reduced over time, and vary with market state and by type of 

property. 

In contrast to volumes, tightness, as captured by bid-ask spreads, is much more difficult to measure 

for private real estate than for many financial assets as there is not an observable bid-ask spread for 

different assets in the real estate investment market. However, there is a distinction between the 

reservation price of a seller (at which they are prepared to sell) and that of a buyer. The distance 

between these determines the likelihood of a sale taking place: where reservation prices meet or 
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overlap, a buyer and seller can conclude a trade, but, where they do not, the asset concerned will remain 

unsold. 

More generally, a distribution of reservation prices that reflects the views of potential buyers of real 

estate assets can be inferred as can a similar distribution of reservation prices that reflects views of 

potential sellers. Such distributions are proposed by Fisher et al., (2003). They describe how the shape 

and extent of overlap between these distributions influences the number of assets likely to trade 

(Clayton et al., 2008). They argue that variations in liquidity in the real estate market over time make 

the interpretation of real estate price series more difficult. This is because prices tend to adjust slowly 

to changes in real estate market conditions. In fact, the nature of real estate markets causes adjustments 

to occur in prices, volumes, and time to transact when market conditions change, as well as in the mix 

of assets being traded. As such, Fisher et al. (2003) argue that real estate indices need to be adjusted to 

reflect the differential ability to enter and exit the market at different points of the real estate cycle. 

Adjustments to create constant liquidity real estate price series for the U.S. are tested by Fisheret al. 

(2003), Goetzmann and Peng (2006), and Fisher et al, (2007). Subsequently, the relation between 

constant liquidity and uncorrected price series has been used by Clayton et al. (2008) to derive a 

measure of market-wide liquidity, while Buckles (2008) proposes a liquidity index based on a more 

complicated procedure. This strand of research resulted in the publication of a liquidity series by the 

MIT Center for Real Estate, alongside the U.S. transaction-based price series resulting from the work 

of Fisher et al. (2007). However, similar, constant-liquidity transaction price indices do not exist in 

other countries and are a prerequisite for creating a liquidity index of this nature. 

The other major area of examination has been in regard to the time it takes to transact assets in the 

private real estate investment market. As noted earlier, a substantial body of research has explored 

time-on-the-market for residential property, but there are far fewer studies for commercial real estate. 

McNamara (1998) conducted survey work to estimate average transaction times for U.K. real estate 

investments. For sales, he reported a marketing period of four to eight weeks and a due diligence period 

of four to twelve weeks depending on property type. However, IPF (2004) found actual times to be 

longer, with a median sale time of 190 days and considerable dispersion in transaction times as well. 

Scofield (2013), who considers the transaction process from the buy side, finds that time to transact is 

time varying and that transactions were conducted more rapidly during the boom phase of the U.K. 

real estate cycle. This is reinforced by Devaney and Scofield (2015), who also suggest that features of 

the asset and counterparties involved are influential in explaining why some transactions take longer 

than others. 
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The nature of real estate markets (heterogeneous assets with limited numbers of buyers and sellers 

operating under various economic constraints) means that the length of the time-on-the-market is likely 

to be affected by many factors. Thus, when real estate investors come to sell a property, they face 

uncertainty not only in regard to transaction price (price risk), but also around the time it will take to 

sell (marketing period risk). In contrast, many financial assets can be sold instantaneously through 

public exchanges and so investors do not bear marketing period risk. 

The nature and behavior of marketing period risk is investigated by Lin and Vandell (2007), who 

highlight the importance to investors of the hidden risk exposure that occurs during the extended 

marketing period of a commercial real estate asset. They estimate the extent to which ex post data on 

real estate performance understates the ex-ante risk exposure taken by real estate investors, because it 

does not take into account the asset risk exposure during the marketing period or the uncertainty of 

the marketing period itself. This work is extended by Bond, Hwang, Lin, and Vandell (2007), who 

calibrate such models using the transaction times reported in IPF (2004). They suggest that the ex ante 

level of risk exposure for a commercial real estate investor is around one and a half times that obtained 

from historical statistics. Meanwhile, Lin and Liu (2008) consider how the level of risk might vary with 

the financial circumstances and investment horizons of different types of sellers, while the analysis has 

been extended still further in more recent work by Cheng et al. (2010, 2013a, 2013b). 

This work provides evidence of the importance of liquidity in private real estate markets and, to some 

extent, the degree of liquidity for different types of property or in different periods. However, the range 

of measures produced and tested in a private real estate context is much narrower than for either 

REITs or financial assets and is less developed for commercial real estate than for residential property, 

where data have traditionally been much richer. 

5.3.3 EMPIRICAL EVIDENCE ON OTHER REAL ESTATE VEHICLES 

A descriptive overview of the public non-listed REIT sector is provided by Corgel and Gibson (2008) 

for U.S. funds and by Brounen et al. (2009) for European funds. New empirical work on the estimation 

of liquidity premiums for investment vehicles different from REITs has started to be developed in 

recent times and this area is likely to be further analyzed in the future. So far, however, only a few 

articles have focused on European unlisted funds, debt products, and U.S. real estate mutual funds. 

Schweizer et al. (2013) discuss open-ended property funds, which offer apparently perfect daily 

liquidity, but failed to do in market conditions when liquidity was most required (redemptions are 

suspended if a threshold of requests is passed). They found that these vehicles offer a liquidity premium 

(measured as discount to NAV) of about 6% in the short run, but are not affected by 
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liquidity risk in the long run and represent an attractive investment tool for long-term investors such 

as pension funds and other institutional players. 

Marcato and Tira (2015) build upon the issue of suspended redemptions and estimate the impact of 

traded volumes on the price of such vehicles. Interestingly, if no effect is seen for aggregate transaction 

volumes, in line with previous findings in the finance literature, an opposite effect is found for money 

flows entering and exiting such funds. In fact, a smart money effect is estimated for outflows (i.e., 

capability of disinvesting timely), suggesting that current investors have access to better information. 

In contrast, a return-chasing behavior seems to drive inflows (i.e., investors enter funds that performed 

well in the past), also thanks to the persistence of fund returns over time. 

As a further step in the analysis of indirect causes of liquidity for unlisted funds, Wiley (2014) links the 

problem of suspended redemptions to managerial incentives and finds that an increase in 

compensation increases illiquidity risk indirectly because it reduces the ability to generate revenues and 

to raise equity capital to be used to fulfil redemption requests. 

Finally, as far as debt products are concerned, we clearly see a shift in the pricing of liquidity risk for 

such products. If, before the last economic crisis, Nothaft et al. (2002) estimated a very small liquidity 

premium for agency (e.g., Freddie Mac, Fannie Mae) products, Kim (2009) later found that a liquidity 

shock is more likely for mortgage-backed securities (MBSs) than for government bonds if there is a 

sudden and significant drop of trading activities (as observed in 2008). Work from the Federal Reserve 

Bank of New York and Atlanta reinforces these results, linking the premium to vintage and a common 

factor (along with credit rating and an idiosyncratic factor) (Dungey et al., 2013). It shows the positive 

effect (around 10 to 25 bps) of the trading method on a “to-be-announced” (TBA) basis and no effect 

of the presence of a government credit guarantee. 

5.4 MANAGING LIQUIDITY WITHIN DC PENSION PORTFOLIOS  

In the preceding sections, we identified a number of approaches that have been developed to help 

quantify or measure liquidity within asset markets. In this section, we will offer a discussion of various 

approaches that exist for institutional investors such as pension funds to manage liquidity within 

investment portfolios. Kathuria and Myer (2013) identified five main approaches for managing 

liquidity: (i) Spending policy rate (ii) Asset allocation and Rebalancing (iii) Use of derivative securities 

(iv) Sensitivity or stress test analysis and (v) Loan program or the issuance of debt.  
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5.4.1 SPENDING POLICY AND RATE 

There are two variables that go into determining an institutional investor's cash outflows: (i) The 

targeted proportion of the portfolio spent per time period e.g. 5% per annum and (ii) The method by 

which the rate is calculated i.e. the spending policy. Both variables need to be taken into account when 

determining the liquidity needs of the investor. When the spending rate is low, the liquidity needs of 

the portfolio would not be impacted too much, particularly during normal market environments. 

However, if the expected draw from the portfolio is high, this may impact the investor's choice of 

liquidity profile, especially in stressed market conditions.  A well designed spending rule would give 

enough flexibility to the institutional investor to accommodate unforeseen decreases in portfolio value 

and to avoid forced liquidation and permanent loss of value. A well designed spending rule also helps 

the investor to stabilise spending. 

The cash inflow for pension funds is made up of the contributions from active employees and the 

transfer payments from newly recruited employees. The returns on investment can also be classified as 

cash inflows. The cash outflows include benefit payments to retired or disabled employees or the vested 

benefits to resigned worker. Cash outflows also include payments to beneficiaries of a deceased worker. 

(Mettler, 2005). It is important to make a projection of the pension fund’s cash inflows and outflows. 

The derivation of future cash flow profile often involves a specification of both demographic and 

economic variables.   

Within the realm of actuarial science, the projection of the expected cash flows for pension funds 

generally involves two steps. First, the future state of the contributors or group of contributors is 

forecasted by employing some stochastic process. Secondly, a reward of some type is triggered upon 

the attainment of a certain state (Papadopoulou et al., 2002). Mettler (2005) used four different models 

to estimate the projected cash flows of a life-insurance/pension fund provider i.e. population model, 

salary model, savings model and a cash flow model. The population model follows the evolution of 

the insured or group of insured in terms of their physical characteristics such as age and health status. 

A salary model describes the future salary distribution of active workers. Given that contributions and 

some element of benefit payments for some products are based on a given percentage of the insured's 

salary, a salary model is appropriate for determining future cash flow profile. A savings model follows 

the accumulation process of contributions and the returns on invested contributions. The future level 

of savings becomes the basis for the calculation of various benefit payments. The cash flow model 

reassembles the results of the other three models, thereby integrating the applicable contributions and 

benefit rates. 
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A significant change that has occurred within the UK pension landscape is the introduction of the 

Freedom and Choice Legislation. Two pieces of legislation in particular paved the way for what has 

become known as the ‘pensions freedoms’ viz. the Taxation of Pensions Act 2014 and the Pensions 

Act 2014. This legislation makes it possible for DC members to withdraw their pension funds as they 

wish after their 55th birthday. The two main options open to them are the (i) Flexi-access drawdown 

and (ii) Uncrystallised funds pension lump sum. Chapter 2 contains a full discussion of these various 

modes of access. Clearly, this affects the cash flow pattern of DC pension funds.  

Commenting on the liquidity situation of Australian DC pension funds, Jones (2008) observed that 

although the cash flows of DC pension funds have been cash flow positive, the issues of portability 

and the retirement of a large cohort of DC pension contributors has heightened the concerns over 

liquidity within Australian DC pension funds. Among the measures put in place to manage liquidity 

risk, he observed that there is the need for DC funds to strike a good balance between member 

investment choice and the ability to meet payment request within the context of choice.  

5.4.2 ASSET ALLOCATION AND REBALANCING 

Although traditional asset allocation focuses on the types of assets, increasingly, portfolio allocation 

takes into consideration different risk factors such as interest rate risk, inflation risk, currency and 

liquidity risk. A substantial amount of research has also been devoted to the relation between liquidity 

and the conditional distribution of returns. However, the question of how liquidity influences portfolio 

allocations is not easy to address.  

Modelling portfolio allocations should take into account the illiquid nature of the investments. Not all 

securities within each asset class share the same liquidity profile. Different vehicles have different 

liquidity constraints (Myers, 2009). This would help to foresee shifts in the strategic asset allocations 

and enable investment management committees to set the allocations to those assets appropriately. 

Kathuria and Myers (2013) also recommend that those firms that invest in private market assets should 

employ laddering of their allocations to reduce the potential for liquidity squeezes.  

As part of their asset allocation process, investment managers should not only determine the 

parameters for allocation to broad asset classes but also seek to understand the impact of investment 

vehicles on the near-term liquidity pool.  

Another way in which institutional investors can manage liquidity is to consider the possible declines 

in the market values of illiquid assets when rebalancing portfolios at policy-determined intervals. 

Without a deliberate and periodic rebalancing, liquidity constraints could cause a portfolio to stray from 

its intended target asset allocation. As it is often easier to add money to illiquid assets than to redeem, 
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alternative allocations should be monitored and proactively reduced to avoid the situation where 

allocations stray from their targets. A rebalancing program or continuously monitored redemption 

request could help mitigate this risk. Many institutions have indicated that they regularly rebalance their 

portfolios to maintain or enhance liquidity in those portfolios. (Kathuria and Myers, 2013).  

Lo et al. (2003) identified three methods for incorporating liquidity directly into the mean-variance 

portfolio construction process. The three approaches for doing so are: (a) imposing a liquidity “filter” 

for securities to be included in a portfolio optimization program; (b) constraining the portfolio 

optimization program to yield a mean-variance efficient portfolio with a minimum level of liquidity; 

and (c) adding the liquidity metric into the mean-variance objective function directly. 

5.4.3 USE OF DERIVATIVE AND HYBRID ASSETS 

Derivatives allow investors to increase the exposure of their portfolios to certain asset classes without 

actually owning the assets. In using derivative securities, investors must be mindful of the fact that they 

can directly lead to liquidity squeezes if margin calls occur. Derivatives can increase the complexity and 

risk of portfolios and hence care should be taken when using them (Kathuria and Myers, 2013).  

Passive replication products have become very common within the hedge fund and private equity 

market. MSCI has for example created a liquid private equity index for US real estate investors based 

on an approach developed by Pegliari et al. (2005) and Ang et al. (2013). Kat & Palaro (2005) used the 

FundCreator approach has been used by a number of product developers and institutional investors 

to replicate hedge fund performance.  

Factor models are by far the most common approach used by product developers and academics to 

try and replicate the performance of these illiquid assets (Hasanhodzic & Lo, 2006; Amenc et al., 2008; 

Amenc et al., 2010 and Bollen & Fisher, 2013). Factor models estimate the target fund’s exposure to a 

number of factors and then use the estimated coefficients to determine the allocations in the replication 

portfolio. Despite their popularity, factor models have been criticised on a number of basis. Due to 

the lack of transparency in the investment management process, it is difficult to identify the factors 

that drive the performance of different hedge fund or private equity strategies. Consequently, the 

tracking error of the portfolios constructed using the factor approach tend to exhibit a poor out-of-

sample tracking error relative to the performance of the target portfolios. Also, products developed 

based on the estimates obtained from factor models have been found to underperform the target 

portfolios. Kat & Palaro (2005) however explained that the goal of the replicated funds is not to match 

the returns of the target portfolios but rather to attempt to create portfolios that have statistical 

properties similar to the fund being replicated.  



169 

In order to enhance the liquidity of investments such as real estate, private equity and hedge funds, 

some investment managers blend different strategies. In response to the to the growth in the DC 

market and the increasing emphasis on liquidity by these funds, many real estate investment managers 

have developed products to enable DC funds gain access to the real estate market. These funds typically 

combine direct real estate and significant proportion of liquid assets, mostly listed real estate and/or 

cash. The attractiveness of these funds is that they offer daily pricing and liquidity. In this section, we 

provide evidence on the existence of these funds. Later in the section, we discuss the extent of usage 

of these funds among DC pension funds, especially within master trust pension funds.  

5.4.3.1 TR Property Investment Trust  

TR Property Investment Trust is perhaps the most widely known property investment company that 

combines direct and listed real estate within the same portfolio (Moss & Baum, 2013). Founded in 

1905, the company invests in UK direct property as well as shares and securities of property companies 

and property related businesses. The fund is managed by Thames River Capital and F&C Investment 

Business Limited and is benchmarked against the FTSE/EPRA NAREIT Developed Europe Capped 

Net Total Return Index in Sterling. Although the company aims to diversify internationally, a pan-

European benchmark means that most of its investment are domiciled in Europe. Direct property 

investment is limited to the United Kingdom. The limits set for the various assets are 5 – 20% for 

direct UK property, 45 – 75% European listed equities, 25 – 50% in UK listed equities, 0 – 5% in other 

listed equities and 0 – 5% in bonds. The current (2016) allocations of the fund currently stand at: 8.5% 

direct UK property, 26.4% UK securities, 65.3% European securities.  

5.4.3.2 Legal and General Property Fund 

The fund was launched in 2011, being the first hybrid real estate fund targeted at Defined Contribution 

Pension Schemes. The managers of the fund believe that it meets the optimum investment criteria of 

UK Defined Contribution Pensions, having being designed in consultation with leading investment 

managers. The hybrid property portfolio is made up of 70% direct commercial property and 30% 

global REITs. This combination is more diversified and provides greater liquidity along with lower 

expenses, compared to a direct investment in property. The 70:30 ratio can be adjusted by the fund 

manager within an agreed range. The fund is designed to provide returns that are broadly in line with 

the AREF/IPD UK Quarterly Balanced Property Funds Index.   

5.4.3.3 HSBC Open Global Property Fund  

This fund aims to provide investors with a property portfolio that is diversified both geographically 

and offering investors an exposure to real estate through both the direct and listed market. Listed real 
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estate currently makes up about 60% of the portfolio whiles direct real estate receives an allocation of 

around 30%. A cash buffer made up of cash deposits and money market securities such as Treasury 

bills makes up the remainder of the portfolio. Geographically, the fund invests about 40% in the UK, 

30% in North America and the remaining in continental Europe. A fund of fund strategy is employed 

to ensure that there is better diversification, access to local managers and increased liquidity. In 

particular, the fund believes that partnering with local property investment managers gives them a 

leverage especially in the selection of quality assets.   

5.4.3.4 Evidence of UK DC Pension Fund Investment in Hybrid/Blended Real Estate  

As an asset manager and Master Trust Pension Fund, Legal and General, offers a number of property 

funds targeted at pension funds. Those funds targeted at DC pension funds are constructed with 

liquidity being a key consideration. The L&G UK property Fund for example invests in UK property 

in a concentrated manner as opposed to a broad based approach. The fund invests 60 – 80% in direct 

property, depending on the market conditions. The fund also invests 20 – 30% in cash and marketable 

securities and about 5% in REITs. In 2011, Legal and General launched the hybrid property fund 

which it hopes would give UK DC pension funds an innovative way to invest in direct real estate in a 

cost efficient way.  

NEST, the largest DC Pension investor in the UK announced in 2013 that it has selected the Legal 

and General Investment Management and its property platform, Legal and General Property (LGP) as 

the manager of its two real estate mandates. The allocation of 20% to real estate that NEST announced 

represents a sizable allocation to real estate for a DC pension fund. Hitherto, NEST invested just over 

3% in listed real estate through its diversified beta fund. Like NEST, Standard Life Pension invests in 

the L&G Hybrid (70:30) Real Estate Fund.  

The Pension Trust (TPT) gains its property exposure through three different funds provided by CBRE 

and Standard Life. TPT invests in CBRE’s UK Property Fund which invests exclusively in UK direct 

property and a Europe (ex UK) property fund which invests in private equity style real estate funds. In 

addition to the two funds, TPT also invests in the Standard Life long lease property fund which targets 

institutional investors who require regular, increasing cash flows. The Standard Life long lease property 

fund also invests about 6% in cash and money market securities. The overall performance objective 

for TPT’s property investment is to outperform the returns on the IPD monthly index over an 

annualised rolling seven-year period. This benchmark is not applied to each of the funds but to TPT’s 

property portfolio in general.  

 



171 

5.4.4 SENSITIVITY/STRESS TEST ANALYSIS 

It is important to evaluate the liquidity profile of investment portfolios in both normal and stressed 

environments. For each asset class, the liquidity expectation in normal market environments or 

conditions should be identified and compared to the estimated downside experience in stressed market 

environments.  

In normal market environments, assets such as hedge funds and core real estate funds provide quarterly 

liquidity. However, in stressed market environments, the actual redemption could take one or two 

years. The winding down period of private equity funds could take about two years in normal market 

environments. However this could be much longer in stressed market environments. 

The investment structure, as well as the terms of the private capital investments such as core real estate 

and hedge fund investments, including any lock-ups and redemption constraints need to be carefully 

considered. The better investors understand what drives lock-up periods for example, the better would 

be their ability to analysed liquidity. Stress testing and scenario analysis would also help the institutional 

investors to determine their illiquidity tolerance, as well as their ability to meet spending targets in 

stressed market environments.  

5.4.5 USE OF LEVERAGE (DEBT) 

Although some institutions such as pension funds may have restriction on the use of loans, this may 

represent a good way of managing liquidity when the need arises. A proactive loan programme means 

that the firm agrees a credit line in advance with banks. Interest is only paid on the amount the firm 

actually uses. Having a credit line creates a funding capacity for short-term liquidity needs. This allows 

the institution to better deploy its funds in more long-term profitable investments. Also, during stress 

market environments, having access to credit would ensure that the institution does not have to sell 

off its investments at inopportune times (Kathuria and Myers, 2013).  

Occupational pension schemes in the United Kingdom that are defined benefit or defined contribution 

could borrow from a bank. The occupational Pension Schemes Regulation (2005) prescribes that 

pension funds may only borrow money for the purposes of providing liquidity for the scheme on a 

temporary basis. Occupational pension schemes with fewer than a hundred members do not have a 

restriction on borrowing but can only borrow if the Trust Deed and rules grants them permission to 

do so. For smaller schemes, the powers for trustees to borrow are included in the investment provision 

of the Pension Trust Deed and Rules although technically speaking, borrowing is not an investment 

activity. For larger funds, the Statement of Investment Principles must allow borrowing, otherwise 

banks may not lend any money to the fund. 
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Schemes are also limited in the value of their borrowing. Generally, pension funds are not allowed to 

take out loans that exceed 50% of their assets, measured on the day the loan is granted. Going beyond 

this limit could have tax implications for the pension fund.  

5.5 CONCLUSION 

In this chapter, we have examined the literature on liquidity over recent decades and highlight the 

multi-faceted dimension of this phenomenon, the market imperfections causing it, the different 

measures used to estimate its significance empirically, and the main results obtained for real estate 

investment markets and products. We distinguished two types of liquidity. Trading (or market) liquidity 

refers to the nature of different assets and the markets in which they are traded. Funding liquidity is 

related to investors and their ability to gain funding to execute trades of those assets. The focus of this 

review was trading liquidity, several dimensions of which are presented and related to the time and 

costs of trading and its potential impact on prices: (1) tightness, (2) depth, (3) resilience, (4) breadth, 

and (5) immediacy. Different liquidity measures spring from the presence of six main market 

imperfections and we attempt to map these measures against the identified dimensions. This helps 

investors to understand market activity and their behavior in response to liquidity shocks. For each 

individual measure considered, both the formula for calculation and notes on its use in financial 

markets are set out. 

The applicability of different measures to real estate markets and their occurrence in the real estate 

literature are examined. While this exercise shows that some measures may be impractical for private 

real estate markets, it also reveals their suitability and relevance for alternative investment vehicles in 

real estate, such as REIT shares, private equity funds or real estate debt. Aside from REITs, we find 

that the liquidity of alternative forms of real estate investment has received surprisingly little attention. 

We also identify other measures that are yet to be used with private real estate data, but which have 

potential and should be explored. A clear example is represented by Marcato (2015), who estimates 

liquidity premia using volume-based, time-based, and price-impact measures to improve confidence in 

final outcomes and the estimation process. 

The estimation of liquidity premia for private real estate assets or funds is an area that requires more 

investigation. Liquidity is often suggested as a factor that can explain the risk premium puzzle for 

private real estate alongside issues concerning measurement of real estate returns. However, the extent 

of any liquidity premium is rarely quantified. Furthermore, there is a long history of trying to reconcile 

theoretical allocations to real estate from portfolio modelling with actual allocations by institutional 

investors. If liquidity could be incorporated formally into such models, more realistic solutions for 
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portfolio weights to different assets, including private real estate, might be forthcoming. The time it 

takes to transact commercial real estate is also rarely researched, in contrast to the large amount of 

literature on this issue for residential real estate assets. 

In the last section of this chapter, we discussed a number of ways that institutional investors such as 

DC pension funds can manage liquidity within their investment portfolios. These approaches include 

the use of asset allocation techniques that consider the illiquidity of the various assets. Another 

common approach to managing liquidity which we have highlighted is the use of derivative and hybrid 

instruments. Rather than investing directly in assets considered illiquid, managers of institutional 

portfolios are increasingly turning to passive replication products and hybrid products that contain a 

mix of the illiquid asset and some other assets, mostly liquid ones. We have provided examples of these 

assets and funds within the hedge fund and direct real estate markets. Other liquidity management 

approaches we have touched on include the use of debt (leverate) and sensitivity/stress test analysis.  

This work represents a comprehensive review of studies on liquidity and its impact on pricing. We 

hope that empirical work might spark from this review, improving the debate on such an important 

issue for markets with real as opposed to financial assets. In the next chapter, we take a closer look at 

the design of hybrid products within the direct real estate markets. The motivation for this exercise is 

the increasing popularity of blended/hybrid real estate products that are being targeted at DC pension 

funds in an effort to attract these funds to invest in the real estate asset class without having to 

compromise on the daily liquidity requirement which most of these funds have in place.  
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CHAPTER SIX – OPTIMAL COMPOSITION OF 

HYBRID/BLENDED REAL ESTATE PORTFOLIOS 

6.0 INTRODUCTION 

Unlisted real estate funds are an important part of many mature property markets around the world 

and have grown significantly in number and assets under management in the last two decades. Yet, 

despite this, there is still relatively little academic research on such funds, either on the structure and 

operation of the funds themselves or as an option for gaining exposure to real estate as an asset class. 

Open-ended funds, in particular, are a potentially attractive route for investors that desire exposure to 

a diversified pool of real estate investments while holding units that are reasonably liquid. However, 

the performance and liquidity of such funds has come into sharper focus in recent years. For instance, 

in the UK, the ability of investors to exit some open-ended funds has been restricted following market 

shocks (Forbes and Cartwright, 2012; 2017). 

This makes questions around the degree of liquidity that such funds can offer, and the means by which 

they can do so, important issues for research. Open-ended fund units are not normally traded on a 

secondary market. Instead, units are normally bought or sold directly from the fund itself. In order to 

facilitate such trades, open-ended funds typically hold significant amounts of cash in the portfolio, for 

which Appendix 6(A) provides evidence in respect of UK funds. In most market conditions, though, 

cash acts as a drag on fund performance, reducing the returns achieved and thus the ability of the fund 

to match the underlying real estate market (Frodsham, 2012). So, while holding more cash would enable 

a fund to redeem units more easily in downturns or following shocks, it also reduces its attractiveness 

to investors seeking real estate exposure. 

In this context, this study examines the implications of open-ended real estate funds holding different 

types of liquid assets in their portfolios alongside direct real estate. Such portfolios are called either 

blended or hybrid real estate portfolios, as they do not consist solely of direct real estate investments. 

Formal optimisation procedures are used to determine an optimal mix of liquid assets that might be 

held, with the aim of finding portfolios that replicate closely the performance of the underlying direct 

real estate market. The performance of these optimal portfolios is then compared to that of portfolios 

which use only a single predetermined liquid asset, such as cash, to provide the liquidity necessary for 

operation of the fund. The findings suggest that holding a mix of liquid assets could be more effective 



  

175 

 

than holding cash in isolation. A version of this chapter has been has been published in the Journal of 

Property Investment and Finance. 2 

This discussion does not imply that liquidity is a priority for all investors in real estate, not even for all 

investors in open-ended funds. For some investors in funds, restrictions on liquidity through minimum 

notice periods and exit fees are perceived to offer protection (Timmermans, 2009). Nonetheless, there 

has been increased emphasis on liquidity by numerous parties such as regulatory agencies, investment 

managers, pension trustees and consultants following the 2007-2008 global financial crisis. At the same 

time, the low yield environment following the crisis has raised interest in real estate and alternative 

asset classes as a means of meeting performance objectives. Thus, investors have been faced with the 

challenge of increasing their exposure to less liquid asset classes without sacrificing liquidity. 

This study contributes to the discussion of how real estate funds need to be structured to deal with the 

increased emphasis on liquidity while retaining the essential performance attributes of real estate as an 

asset class. The goal is to add liquid, tradable assets to a direct real estate portfolio but without altering 

the risk-return profile of the portfolio significantly. The chapter begins by discussing literature on 

blended solutions in both real estate and other private asset markets before outlining the methods 

adopted to find optimal blended portfolios in a real estate context. The data used are then discussed 

before results and findings are presented, with the final section concluding on the implications of the 

findings and the areas for further research. 

6.1 LITERATURE REVIEW 

Liquidity is a multi-faceted concept for which a variety of proxy measures exist, none of which capture 

all of its dimensions (Ametefe et al., 2016). Here, liquidity refers to the ability of investors to buy or 

sell assets quickly, at low cost and with minimal loss in value from executing the trade. Liquidity is also 

a relative concept, with direct real estate investments seen as comparatively illiquid owing to their high 

transaction costs, lengthy and uncertain trading times, and low frequency of transactions. Thus, in the 

absence of active secondary markets, real estate funds that want to offer greater liquidity to investors 

must do so by holding other assets in addition to direct real estate. This has been achieved traditionally 

through holding cash balances, but the use of public (or listed) real estate investments to facilitate 

greater liquidity has been explored recently by several studies.  

  

                                                           
2 Frank Kwakutse Ametefe, Steven Devaney, Simon Andrew Stevenson, (2018) "Optimal composition 
of hybrid/blended real estate portfolios", Journal of Property Investment & Finance, https:// 
doi.org/10.1108/JPIF-04-2018-0022 
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6.1.1 BLENDING DIRECT AND LISTED REAL ESTATE INVESTMENTS 

Early studies into the benefits of including listed real estate in US direct real estate portfolios included 

Giliberto (1990), Giliberto and Testa (1990) and Stevenson (2001). These studies showed that there 

was potential to diversify by investing in both direct and listed real estate markets, with listed real estate 

assets acting as timing devices that enabled investors to observe market movements which take time 

to be reflected in direct real estate values. Stevenson (2001) conducted sector level analysis using three 

REIT sectors – equity, mortgage and hybrid REITs – as well as non-US listed real estate assets. He 

noted that, in addition to enhanced diversification, listed real estate also made it possible for an investor 

to quickly alter the exposure of their portfolio, as well as infuse the portfolio with liquidity as an 

alternative to cash. 

NAREIT (2011) also examined the benefits of blending private and listed real estate investments. They 

found that optimal blends of private real estate funds and listed real estate assets produced significantly 

better risk-adjusted returns than investing in private vehicles alone. This was again driven by the 

diversification and timing benefits of listed real estate investments. They suggested that the optimal 

composition of blended real estate portfolios should be around one-third listed real estate and two-

thirds private real estate. The optimal blended real estate portfolio was found to produce positive 

annual returns, with not a single period of negative return over the entire sample period, which 

remarkably encompassed the 2007-2008 global financial crisis.   

Lee (2014) analysed portfolios containing a blend of private and public real estate using the 70:30 

allocation suggested by NAREIT (2011). His study employed the percent contribution to risk measure 

of Holman and West (2013) to see whether the additional return generated by including listed real 

estate in the blended portfolio justifies the additional risk which it adds to the portfolio. The results 

showed that a blended public and private real estate portfolio produced a higher Sharpe ratio than any 

direct real estate fund type. Listed real estate was however found to be the main driver of volatility in 

the blended portfolios. Lee (2014) concluded that although listed real estate enhances the returns of 

real estate portfolios, the returns were not sufficient to justify the risk they contribute to the portfolio. 

The findings of NAREIT (2011) were confirmed by Moss and Farrelly (2014). They analysed a 70:30 

blend of UK unlisted real estate funds and global listed real estate funds over the period 1998-2013, as 

well as a portfolio split 75:25:5 between UK unlisted real estate, global listed real estate and cash. They 

found that adding global listed real estate to the portfolio resulted in return enhancement of about 19% 

over the full period. It also led to a significant increase in volatility, though they found that the Sharpe 

ratio only declined modestly due to the high increase in returns. They argued that this decline was 

acceptable given the additional liquidity benefits that were obtained by adding listed real estate. 
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Meanwhile, the motivation for the cash allocation was to service the day-to-day liquidity requirements 

of the portfolio, so that the return enhancement benefits of listed real estate would not be lost through 

frequent trading of this element (see also Farrelly and Moss, 2014; Moss & Farrelly, 2015). 

Nonetheless, Moss and Farrelly (2014) noted that, although many asset managers are aware of the 

benefits of including a proportion of listed real estate in their direct real estate portfolios, most were 

reluctant to implement this strategy. One of the main concerns was the increase in tracking error that 

would result from adding listed real estate to the direct real estate portfolio. For example, allocating 

30% to listed real estate, as recommended by NAREIT (2011), resulted in a per-annum tracking error 

of 5.2% relative to the UK IPD direct real estate index. So, while listed real estate might offer a 

diversification benefit relative to direct real estate, if the aim in a multi-asset context is to obtain direct 

real estate returns, then adding listed real estate might be detrimental to that wider aim. 

This raises the question of the extent to which listed and direct real estate could be considered as 

substitutes or complements from a multi-asset perspective, or even whether listed real estate should 

simply be considered part of the broader equity market. The earliest studies to examine these questions 

utilised simple correlation based tests, which often revealed a low contemporaneous correlation 

between direct and listed real estate, and a high correlation between listed real estate and equities. More 

recent contributions have used cointegration and other advanced techniques to understand the linkages 

better. 

Ling & Naranjo (1999) examined whether the direct real estate market and the REIT market in the US 

were integrated with the common equity market. While REITs were found to be integrated with the 

equity market, direct real estate markets were not. However, other studies have found evidence of 

integration between direct and listed real estate (for example, Wang et al., 1997; Tuluca et al., 2000; 

Morawski et al., 2008; Oikarinen et al., 2011). Most of these studies have found that returns in the 

listed real estate market lead direct real estate returns, implying that information is incorporated into 

the prices of listed real estate investments more quickly, and that the two types of real estate will not 

track each other closely in the short-term as a result. 

Hoesli & Oikarinen (2012) examined the short-term and long-term dynamics between listed and direct 

real estate. Their analysis was based on sector level data from Australia, the UK and USA. The study 

also adjusted for the absence of leverage in direct real estate indexes. They show that over the long 

run, the returns of listed real estate were much closer to the direct real estate market than they are to 

the general stock market. Similarly, Yunus et al. (2010) found a long-term relationship between the 

listed and direct real estate markets, and that listed real estate leads the direct real estate market in the 
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UK, US, Australia and the Netherlands. Meanwhile, Ang et al. (2013) studied the US market and found 

a common and highly persistent real estate cycle across both the direct and listed real estate markets. 

Both were broadly exposed to pro-cyclical market factors. 

The foregoing suggests that direct and listed real estate might be good long-term substitutes, but, to 

the authors’ knowledge, only (Farrelly and Moss, 2014; Moss & Farrelly, 2015) have considered the 

question of tracking error when combining direct and listed real estate into a blended portfolio, though 

low short-run correlations between direct and listed real estate imply that significant tracking error will 

be present. Meanwhile, none of the studies reviewed so far have addressed the question of which liquid 

assets beyond cash and listed real estate could be included within a blended real estate portfolio or the 

optimal combination of such assets. Given that many property funds have fixed, pre-determined 

allocation to various liquid assets, sometimes with a tolerance level, this study considers the optimal 

mix of liquid assets within the liquid asset component and examines the effects on returns, risk and 

tracking error in relation to a direct real estate benchmark. 

6.1.2 REPLICATING RETURNS OF ILLIQUID ASSETS - EVIDENCE FROM 
OTHER MARKETS 

The issue of enhancing liquidity within asset portfolios is not limited to the real estate market. 

O’Doherty et al. (2015) note a very high demand among institutional investors for passive replication 

products that track the performance of illiquid assets such as private equity and hedge funds. An 

example are Liquid Alternative Beta funds, which seek to replicate the risk and return characteristics 

of hedge fund indexes through investment in liquid, tradable instruments (see Drachman and Little, 

2010). The use of factor models to replicate hedge fund performance with more liquid investments is 

perhaps the most popular approach among product developers and academics (Hasanhodzic and Lo, 

2007; Amenc et al., 2008; Amenc et al., 2010; Bollen & Fisher, 2013). These models estimate the target 

fund or index exposure to certain factors and use the information to determine asset allocations within 

the replicated portfolios. For instance, Hasanhodzic and Lo (2007) constructed a factor model and 

used it to replicate the returns of 1,610 hedge funds. These funds covered all the major hedge fund 

investment strategies. 

Although intuitively appealing, factor models have some drawbacks that limit their effectiveness in 

replicating hedge fund returns. The lack of transparency in the investment process of hedge funds 

makes it difficult to identify an appropriate set of factors. This leads to poor out-of-sample 

performance of these models in tracking hedge fund returns, while products based on them have also 

been found to underperform the target portfolios (Amenc et al., 2010; Bollen & Fisher, 2013). Kat and 

Palaro (2005) advocate an alternative approach that does not seek to generate identical period-to-period 
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returns, but generate returns with the same statistical properties as the hedge fund being replicated. 

Meanwhile, other alternatives to factor models are the algorithmic approach and the payoff distribution 

approach. O’Doherty et al. (2015) used an algorithm that combines information from several pre-

selected models and use this to create a cloned hedge fund. 

Private equity funds are perhaps the most illiquid alternative asset class, as capital in these funds can 

be locked up for as long as twelve years (Timmermans, 2009). Nonetheless, such funds appeal to 

institutional investors as they can offer higher returns and diversification opportunities. A few studies 

have examined the possibility of replicating the risk and return features of private equity funds using 

more liquid investments. Axelson et al. (2013) documented factors that determine the financial 

structure of private equity funds and compared these with publicly traded funds. Using the factors 

identified in Axelson et al. (2013), Stafford (2017) then explored the possibility of replicating private 

equity fund performance using a passive portfolio of similar public equity investments. A similar 

approach was taken by Ang et al. (2013), and MSCI has since created a liquid private equity index for 

US real estate investors based on their analysis. 

6.2 APPROACH 

Different strategies are employed in this study for the creation of blended or hybrid real estate 

portfolios. The aim is to construct blended real estate portfolios whose out-of-sample returns best 

replicate the risk and return features of the underlying direct real estate market over time. The types of 

blended portfolios constructed here are set out in Table 6(I).  

Table 6(I) Composition of Various Blended Real Estate Portfolios 

Fund A (DRE-CASH) Direct real estate and cash 

Fund B (DRE-LRE) Direct real estate and listed real estate 

Fund C DRE-ALL) Direct real estate, cash, listed real estate, aggregate stocks, bonds of 

various maturities (No minimum return constraint) 

Fund D  (DRE-ALL1) Direct real estate, cash, listed real estate, aggregate stocks, bonds of 

various maturities (With minimum return constraint) 

Note: The minimum return constraint is that the target return should be equal to or greater than the average return on the IPD All 

Property Index. See text for further discussion. 

The first strategy employs the use of cash as a liquidity buffer. This approach is referred to as Fund A 

and it is common among UK real estate funds as can be seen from Appendix A. The second strategy 

adds listed real estate to a portfolio of direct real estate investments. This is referred to as Fund B and 
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is used in funds such as Legal & General’s Pension Property Fund. Two further strategies are then 

examined using formal optimization procedures. In each case, portfolios are constructed by combining 

direct real estate with a wider selection of liquid assets; cash, listed real estate, aggregate stocks and 

bonds of various maturities. The third strategy, which is referred to as Fund C (DRE-ALL), does not 

have a minimum return requirement, while the fourth strategy, labelled Fund D (DRE-ALL1), includes 

a requirement that the returns of the portfolio equal at least the average total return on the IPD UK 

real estate index over the same period.  

For the first and second portfolios, once the investment manager determines the proportion of cash 

or listed real estate that should be included in the blended real estate portfolio, the blending process 

consists of adding this proportion of liquid asset to the direct real estate portfolio. The return of the 

blended/hybrid portfolio can be obtained from the Equation 1 below:  

Rp=[rDRE*wDRE]+[rLA*wLA]        6(1) 

Where: 

Rp= Return of the blended real estate portfolio 

 rDRE and rLA = return of the direct real estate portfolio and selected liquid asset, respectively 

wDRE and wLA = weight of direct real estate and the selected liquid asset in the blended portfolio 

For the portfolios that include a wider selection of liquid assets, the optimal combination of such assets 

is determined as follows. First, an optimal allocation to the various liquid assets is determined using an 

extension of the mean-variance optimisation procedure of Markowitz (1952). The extension is made 

to accommodate the practice of evaluating the performance of managers relative to a benchmark (Rudd 

& Rosenberg, 1980; Roll, 1992; Rudolf et al., 1999). The optimisation problem is formulated in terms 

of tracking error and its volatility as opposed to absolute returns and its volatility. Tracking error is 

defined as the standard deviation of the difference between the portfolio returns and the benchmark 

return. In this context, it measures how closely the blended portfolio follows the returns on the 

benchmark index. Mathematically: 

TEP=σ(rPt-rbt)         6(2) 

Another common approach to measuring the relationship between two variables is the correlation 

coefficient. However, tracking error is preferred here for the optimization procedure because the 

correlation coefficient is not a measure of congruence, but the strength of linear relationship. Thus, a 

high level of correlation is necessary but not a sufficient condition for minimising the tracking error 
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variance of a portfolio. Given the variance of the portfolio returns and benchmark returns as well as 

the correlation between a portfolio and the benchmark, the tracking error can be estimated using the 

relation below: 

TEP=(σP
2+σb

2-2ρσpσb)
0.5

  6(3) 

Where: 

 𝑇𝐸𝑃 is the tracking error of a portfolio 

 𝜎𝑃
2 is the variance of portfolio returns  

 𝜎𝑏
2 the variance of benchmark returns and 

 𝜌 represents the correlation between the returns of the portfolio and the returns on the benchmark.  

A general form of the tracking error optimisation model seeks to minimise the tracking error variance 

for a given expected excess return. The following numerical optimisation model is implemented:  

 
min

wk
∑ (rindex,t- ∑ wkrk,t

N

k=1

)

2

    

T

k=1

 
           

6(4) 

Subject to:  

∑ (rindex,t- ∑ wkrk,t
N
k=1 )T

t=1 =0  

∑ wk
N
k=1 =1  

L<wk<U 

Where:  

rindex,t = the return on the direct real estate benchmark at time t 

rk,t = the return on the kth asset at time t 

wk = the weight assigned to the kth asset 

The optimizer selects a combination of assets that provide the lowest tracking error relative to the IPD 

UK index returns, subject to the constraints of zero expected tracking error, unit sum of weights and 

a set allocation to direct real estate. The weight set for direct real estate ranged from 0% to 90%, in 

10% intervals. The optimal combination of liquid assets was then determined for the remainder of the 

portfolio in each case. Discussion in this chapter focuses on liquid asset allocations of 10 to 30% which 

represents the range of allocation by UK hybrid real estate funds. For example, the Legal and General 

Hybrid Property Fund consists of a 30% liquid asset allocation whereas typical open-ended real estate 
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funds contain a 10% liquid asset allocation.We also include a pure replication portfolio that is made up 

entirely of liquid assets to demonstrate the possibility of using liquid assets alone to proxy the direct 

real estate market.  

Tracking error optimisation models are subject to limitations. As they minimise in-sample tracking 

error with respect to a benchmark, this could lead to over-fitting the data in-sample at the expense of 

additional out-of-sample tracking error. The in-sample over-fitting may also result in an unstable 

portfolio structure that requires frequent rebalancing and incurs significant transaction costs 

(Gregoriou et al., 2005). The models also make use of the covariance matrix, which means that they 

suffer from the weaknesses generated by the use of correlation as a measure of dependency. Correlation 

is a short-term statistic which lacks stability. Its estimation is sensitive to outliers, non-stationarity and 

volatility clustering. Some authors have suggested using vector autoregressive (VAR) models to 

measure the relationship between variables. For example, Alexander and Dimitriu (2004) compared 

the theoretical and empirical properties of the classic mean tracking error models with an enhanced 

MTE model that has an additional feature allowing for use of the cointegration between the tracking 

portfolio and the index. They found no clear advantages in using the enhanced version of the MTE 

model. 

Nonetheless, it has been shown that tail events exist where parameters such as correlation change 

drastically. It is, therefore, better to calculate a conditional correlation which estimates correlation 

based on all information available up to a particular time point. Several approaches can be used to 

estimate the conditional correlation. A rolling correlation is easy to estimate and is capable of capturing 

time-variation and clustering of cross asset returns. However, there is no clear theoretical or empirical 

basis for selecting a window length. Furthermore, Anderson and Romaindo (2008) observed that, since 

all the windows in a rolling correlation analysis are given the same weight, they tend to adjust very 

slowly to new information. This problem becomes greater with longer window lengths. There could 

be huge changes in correlation estimates when there are abnormally small or large return observations, 

especially when these observations enter or leave the window. Forbes & Rigobon (2002) found that 

rolling correlation coefficients tend to be prone to bias. They explained that, as volatility increases in 

one asset market, heteroscedasticity in returns may cause the correlation coefficient to be biased 

upward (see also Chong et al., 2012). 

To make up for the drawbacks of the rolling correlation method, Engle (2002) suggests using the 

Dynamic Conditional Correlation (DCC) model. Many studies have used the DCC model within the 

real estate literature (Cotter and Stevenson, 2007; Chong et al., 2009; Liow et al., 2008; Fei et al., 2010; 

Case et al., 2012; Heaney & Sriananthakumar, 2012; Sing and Tan; 2013). The DCC model calculates 
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the conditional correlations as a function of past volatilities of assets and the covariance between them. 

Given that all past information is used in the optimisation process, there is no difficulty in selecting a 

window length as with rolling correlations. Engle (2002) found that the multivariate and univariate 

volatility forecasts are consistent with each other. The volatility forecasts and the correlations of the 

original assets remain unchanged when new variables are added to the system, depending on the way 

the model is revised. Also, when applied to typical financial applications, it was found that DCC models 

revealed important time varying features that might otherwise be difficult to quantify. 

The Dynamic Conditional Correlation model estimates a GARCH (1,1) specification, employing the 

resulting standardized residuals to estimate the time varying correlation matrix. In order to accomplish 

this, the residuals are transformed by their estimated standard deviations  Ξt=
εt

√ht
⁄  .  

The covariance matrix can be expressed as Ht≡DtRtDt , where Dt is a diagonal matrix of univariate 

GARCH volatilities. Rt=Q
t
*-1Q

t
Q

t
*-1 is the time varying correlation matrix, with Q

t
 as described by: 

Q
t
=(1 − a − b)Q̅+a(Ξt-1Ξ'

t-1)+Q
t-1

   6(5) 

Q̅ is the unconditional covariance of standardized residuals resulting from the first stage estimation, 

and Q
t
* is a diagonal matrix composed of the square root of the diagonal elements of Q

t
. As with the 

standard GARCH (1, 1) model, the coefficients of the DCC(1, 1) model are estimated by maximum 

likelihood using the algorithm of Broyden–Fletcher–Goldfarb–Shanno (BFGS). The log-likelihood 

function, under the assumption of conditional multivariate normality can be displayed as follows: 

L(ϑ)=-
1

2
[TN ln (2π)+ ∑ ln|Ht+Ξt

' Ht
-1Ξt|

T

t=1

] 

        

 6(6) 

where Ξt is an N×1 vector stochastic process, with Ht=Et-1(ΞtΞt
' ), being the N×N conditional 

variance-covariance matrix. 

6.3 DATA 

This study uses UK data to analyse the effects of adding different combinations of liquid assets to a 

direct real estate portfolio over the period 1987 to 2015. Quarterly total return rates for direct real 

estate investments were sourced from MSCI IPD (splicing the IPD UK monthly index with the larger 

IPD UK quarterly index when latter begins in Q1 2000), while total returns for listed real estate, 
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government bonds, equities and cash were all sourced from DataStream.3 The in-sample portfolios 

were estimated from Q1 1987 as this was the earliest date from which quarterly return rates for direct 

real estate were available. Out-of-sample portfolios were estimated from the start of 1991, based on a 

five-year window. So the first out-of-sample portfolio is estimated using data from Q1 1987 to Q1 

1991, then the next is estimated by rolling the window forward by one quarter, repeating this process 

up to the second quarter of 2015. In total, 78 out-of-sample portfolios are estimated. 

One of the issues with direct real estate return series is that they are appraisal based, which means they 

tend to understate the risk of the underlying asset class. This leads, in turn, to an over-allocation to 

direct real estate in multi-asset optimisation studies (see Marcato & Key, 2007). In this study, the weight 

allocated to direct real estate has been set at particular thresholds and does not interfere with the relative 

allocation to different liquid assets in the portfolio. This is shown later by the results, as allocations 

within the liquid asset component remain stable, irrespective of the proportion allocated to direct real 

estate. However, the direct real estate index also serves as a benchmark against which the performance 

and tracking error of each portfolio is assessed, which is a potential limitation of the analysis conducted 

here. 

Another criticism of direct real estate indexes is the difficulty in passively replicating their returns. The 

reason for this criticism is the belief that an investor must hold a large number of properties to diversify 

unsystematic risk. For example, while Callender et al. (2007) found that investing in 30 to 50 properties 

could achieve a large amount of risk reduction, they found that more properties were necessary to 

achieve very low levels of tracking error against the market index. However, their study was based on 

the use of naïve diversification, which ignores the potential gains from deliberate structuring of a 

portfolio to reduce systematic risk. Moreover, Boudry et al. (2013) have subsequently found that real 

estate portfolios do a good job of tracking index returns when these portfolios contain at least 20 

assets. 

The most common liquid assets in the portfolios of UK open-ended property funds are cash and listed 

real estate, but the liquid asset universe is expanded in this study to include the two main classes of 

liquid, publicly traded assets; bonds of various maturities and aggregate stocks. While many investors 

view the stable income flows of real estate to be bond-like, Shepard et al. (2015) found the long-run 

behavior of real estate returns to be more equity-like, i.e. cyclical and growth sensitive. Thus, the role 

that both bonds and general equities could play in replicating direct real estate returns is investigated. 

The UK FTSE all share index is used to represent the aggregate equity market while returns for bonds 

                                                           
3 Note that the opportunity set has been limited to UK assets to avoid the added complications of currency 
fluctuations. This omission does not detract from the general points that the study seeks to make. 
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of various maturities are drawn from the Thomson Reuters DataStream bond indexes. The 3-month 

UK Treasury bill return is used as the proxy for cash.   

Table 6(II) Summary Statistics and Correlation Coefficients for Quarterly Total Return Rates 

(Q1 1987 – Q1 2015)  

 

  
Direct Real 
Estate 

Listed 
real estate 

General 
stocks 

Bonds 
10yr+ 

Bonds 
10yr 

Bonds 
7yr 

Bonds 
5yr 

Bonds 
3yr 

Bonds 
2yr Cash 

Panel A: summary statistics 

Mean 2.31 2.90 2.70 2.40 2.24 2.06 1.89 1.75 1.60 1.36 

Median 2.59 4.72 3.77 2.14 2.34 1.99 1.73 1.64 1.30 1.31 

Maximum 9.92 43.98 27.11 15.96 15.12 9.45 10.66 7.32 5.92 3.48 

Minimum -12.96 -34.18 -30.61 -9.38 -8.26 -5.91 -4.77 -2.12 -1.12 0.09 

Std. Dev. 3.06 12.03 8.44 4.67 3.99 3.11 2.64 1.81 1.45 0.90 

Sharpe ratio 0.31 0.13 0.16 0.22 0.22 0.22 0.20 0.21 0.16 0.00 

TE w.r.t. DRE 0.00 11.00 8.27 5.76 5.41 4.83 4.46 3.94 3.74 3.26 

Panel B: Correlation Coefficients 

Direct real 
estate 1.0000                   

Listed real 
estate 0.4514 1.0000                 

General stocks 0.2388 0.0637 1.0000               

Bonds 10yr + -0.0704 0.0848 0.0662 1.0000             

Bonds 10yr -0.1637 0.0501 0.0751 0.9613 1.0000           

Bonds 7yr -0.2235 0.0536 0.0792 0.9082 0.9757 1.0000         

Bonds 5yr -0.2218 0.0472 0.0816 0.8542 0.9475 0.9765 1.0000       

Bonds 3yr -0.2624 0.0159 0.1136 0.7498 0.8604 0.9163 0.9591 1.0000     

Bonds 2yr -0.2850 -0.0279 0.0846 0.6318 0.7556 0.8220 0.8850 0.9668 1.0000   

Cash -0.0787 -0.0675 0.0288 0.0404 0.1057 0.1499 0.2248 0.3584 0.5140 1.0000 

 

Note: Bonds 10yr+ = Bonds with maturity greater than 10 years; Bonds 10yr = 10 year bonds; Bonds 7yr = 7 year bonds; Bonds 5yr = 5 

year bonds; Bonds 3yr = 3 year bonds; Bonds 2yr = 2 year bonds; TE w.r.t. DRE = Tracking error with respect to IPD All Property 

index; Sharpe ratio = Risk-adjusted returns with respect to the risk-free rate i.e. 3-month UK T-bill rate; Std. Dev. = Standard deviation 

of returns. 

Table 6(II) shows the quarterly return and risk characteristics of the various assets that are used to 

estimate optimal hybrid real estate portfolios. Listed real estate had the highest return and variability 

of all the selected liquid assets. Meanwhile, the returns for shorter-term bonds were found to be lower 

than those for longer-term bonds – implying an upward sloping yield curve over the majority of the 

period analysed.  

Concerning the relationship between direct real estate returns and the returns of the liquid assets, the 

correlation coefficient between direct real estate and listed real estate is the highest, followed by the 

correlation between direct real estate and stocks (Table 6(I)). It is interesting to note that the correlation 

between direct real estate and listed real estate is far greater than the correlation between the two stock 

series - listed real estate and general stocks. This may be indicative of the fact that listed real estate is 

more associated with the direct real estate market than the general stock market. Negative correlation 
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between is observed between direct real estate all the bond maturities. However, the absolute value is 

higher for shorter maturity bonds than longer maturity bonds. The correlation between the various 

bond maturities themselves is quite high, often more than 0.70. The correlation between cash and 

bonds is also higher for shorter maturity bonds than longer-maturity bonds.  

Although the correlation coefficient between direct real state and listed real estate was the highest of 

all the selected liquid assets, due to the very high standard deviation, the tracking error with respect to 

direct real estate turned out to be very high. A high tracking error implies that, compared to the returns 

of  returns the other liquid assets, the returns of listed real estate does not does not have a close 

association with the returns on the IPD direct real estate benchmark portfolio. This implies that adding 

general stocks or listed real estate to a blended real estate portfolio may result in the resulting portfolio 

exhibiting a risk and return profile that is quite different from those of the real estate benchmark. The 

tracking error between cash and direct real estate was the lowest, implying that cash may be the most 

suitable asset to be added to the direct real estate portfolio. The returns of shorter-term bonds exhibited 

lower tracking errors to direct real estate than longer-term bonds. 

6.4 RESULTS 

The optimal allocations for the blended real estate portfolios are now discussed, looking first at the in-

sample allocations and then the out-of-sample results. Funds A and B were made up of pre-determined 

allocations to direct real estate and either cash or listed real estate, with no optimization as per Moss & 

Farrelly (2015). Funds C and D were then constructed using the tracking error optimisation approach, 

with the aim of finding the combination of direct real estate and the selected liquid assets that produced 

the lowest tracking error. Fund C had no minimum return constraint and Fund D was constrained to 

produce returns that matched the average total returns on the direct real estate benchmark.  

6.4.1 IN-SAMPLE ALLOCATIONS, RISK AND RETURNS OF BLENDED REAL 
ESTATE PORTFOLIOS 

Prior to comparing risk and return for the various approaches, the allocations from the in-sample 

optimization exercise were as follows. Without minimum return constraints, Table 6(III) shows that 

about 80% of the allocation to liquid assets in Fund C went to cash, while the remaining allocation was 

to listed real estate and to general equities. Although the reported proportions change in line with the 

overall allocation to liquid assets, once the allocations are rescaled to reflect only the liquid component, 

the mix of liquid assets remains constant. The allocation to cash remains at 80%, while listed real estate 

and general stocks made up 12% and 8%, respectively. The high allocation that cash receives is broadly 

in line with the investments made by existing UK open-ended real estate funds. However, the addition 
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of some listed real estate and general stocks could still improve the tracking error of these portfolios 

relative to the direct real estate market.  

For Fund D, with a constraint that the returns of the portfolio should at least equal the average return 

of direct real estate, long-term bonds with maturities greater than 10 years gain significant allocations 

(33% of the liquid asset component). Again, the proportion of each liquid asset to the total liquid asset 

allocation is very consistent. The allocation to cash dropped from 80% to about 25% of the liquid asset 

component, while the allocation to general stocks increased from 8% to about 24%, and listed real 

estate increased to 19%. This suggests that, to remove the negative performance impact of the so called 

cash drag, other types of liquid assets are likely to be required within a blended real estate portfolio. 

An examination of the returns of the various blended real estate funds presented in Table 6(III) shows 

that the in-sample tracking error of Fund C (DRE-ALL) with respect to direct real estate was the 

lowest. This is followed by Fund A (DRE-CASH). However, the returns of the two portfolios that 

have the lowest tracking error were also quite low when compared to the direct real estate index. For 

example, with just a 10% allocation to liquid assets, there is a significant drop in return from 2.31% to 

2.22% for Fund A and 2.25% for Fund C. In contrast, although Fund B (a mix of direct and listed real 

estate) produced the highest tracking error, it generated consistently higher returns than the direct real 

estate index, matching the findings of Farrelly and Moss (2014) and NAREIT (2011). The in-sample 

returns of Fund D, which includes the minimum return constraint, were also higher than the return on 

the direct real estate index, but with a far lower tracking error than the portfolios where listed real 

estate was used in isolation. 
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Table 6(III)  In-Sample Statistics of Blended/Hybrid Real Estate Portfolios  

PERFORMANCE STATISTICS ALLOCATIONS 

Portfolio 

Return  

 

Excess 

return wrt 

DRE 

Portfolio 

Standard 

Deviation 

 

Tracking 

Error 

Correlation 

with Real 

Estate Stocks 

Bonds (10+ 

years) 

Bonds (10 

year) 

Bonds (7 

years) 

Bonds (5 

years) 

Bonds (3 

years) 

Bonds (2 

years) 

Listed real 

estate 

Cash 

 

Direct real 

estate 

Fund A Direct real estate and cash 

1.3624 -0.9505 0.9028 3.3561 -0.0787 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

2.0278 -0.2851 2.1387 1.0068 0.9920 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.70 

2.1228 -0.1901 2.4415 0.6712 0.9973 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.80 

2.2178 -0.0950 2.7495 0.3356 0.9946 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90 

Fund B Direct real estate and listed real estate 

2.9025 0.5897 12.0337 11.0032 0.4433 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

2.4976 0.1847 5.0047 3.3010 0.7627 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.70 

2.4397 0.1268 4.1977 2.2006 0.8578 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.80 

2.3819 0.0690 3.5517 1.1003 0.9527 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.90 

Fund C Direct real estate and all liquid assets (No minimum return constraint) 

1.6611 -0.6287 1.7745 2.7989 0.4332 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.00 

2.1174 -0.1886 2.4215 0.8397 0.9802 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.24 0.70 

2.1872 -0.1257 2.6316 0.5598 0.9925 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.16 0.80 

2.2477 -0.0629 2.8365 0.2799 0.9984 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.90 

Fund D Direct real estate and all liquid assets (with minimum return constraint) 

2.3129 0.0000 3.6384 3.7454 0.3828 0.23 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.25 0.00 

2.3162 0.0033 2.7587 1.1236 0.9293 0.07 0.10 0.00 0.00 0.00 0.00 0.00 0.06 0.07 0.70 

2.3151 0.0022 2.8128 0.7491 0.9703 0.05 0.07 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.80 

2.3140 0.0011 2.9153 0.3745 0.9931 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.90 
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The foregoing discussion indicates that cash is the most suitable standalone asset to be included in 

direct real estate portfolios to improve liquidity without significantly altering the risk-return profile. 

However, adding listed real estate and a small amount of general stocks represents the optimal strategy. 

This optimal strategy still leads to a loss in returns because the unconstrained portfolios contain a large 

amount of cash, so the so-called cash drag remains. Thus, if concerned with return as well as tracking 

error, an investment manager may have to also include long-term bonds, especially those with 

maturities longer than ten years. More would have to be invested in listed real estate and general equities 

as well. The investor must accept a slightly higher tracking error if they require returns that are closer 

to direct real estate returns.  

6.4.2 OUT-OF-SAMPLE ALLOCATIONS, RISK AND RETURNS OF BLENDED 
REAL ESTATE PORTFOLIOS 

As noted earlier, a shortcoming of the tracking error optimisation model is that the in-sample estimates 

may be over-fitted, which could result in higher out-of-sample tracking errors. How well the model 

performs depends on whether out-of-sample outcomes corroborate the in-sample results. Hence, in 

this section, the allocations and subsequent performance of blended real estate portfolios over different 

five year windows is studied. This analysis of the out-of-sample portfolios also enables us to see 

whether the composition of the optimal portfolios remains the stable across different windows or 

whether some rebalancing would be required. 

As with the allocations obtained in-sample, the out-of-sample allocations for the various combinations 

of liquid assets remain similar, irrespective of the overall weight to liquid assets in the portfolio. This 

consistency implies that, once the optimal allocation is obtained, there is no need to re-run the 

allocation if the liquid asset weight is to be increased or decreased. All that is required is to rescale the 

allocations to individual liquid asset classes to reflect the new overall weight of liquid assets relative to 

direct real estate.  

Figure 6(1) shows the liquid asset allocations within the blended real estate portfolios. The portfolios 

that have a 10%, 20% and 100% allocation to liquid assets are used as examples. It can be seen that 

the pattern of allocation remains the same irrespective of how much liquid asset is contained therein. 

The left hand panel of Figure 6(1) shows the results for the unconstrained optimal portfolios. The 

liquid component of these blended portfolios is invested heavily in cash, especially prior to 2007. The 

only assets that had a significant allocation in the liquid component apart from cash is listed real estate. 

After 2007, though, general stocks and listed real estate together received allocations averaging about 

40% of the liquid asset allocations. 
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Figure 6(1) Allocations within Blended Real Estate Portfolios (Out of Sample) 

Fund C: No minimum return constraint Fund D: With minimum return constraint 
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Notes: Bonds 10yr+ = Bonds with maturity greater than 10 years; Bonds 10yr = 10 year bonds; Bonds 7yr = 7 year bonds; Bonds; 5yr = 5 year bonds; 

Bonds 3yr = 3 year bonds; Bonds 2yr = 2 year bonds; Stocks = General stocks; LRE = Listed real estate; Cash = 3-month T-bills; Fund C = Optimisation 

is done without any minimum return constraint; Fund D = Optimisation is done with a constraint that target return should be equal to or greater than 

the average return on the IPD All Property Index.   
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The right-hand panel of Figure 6(1) shows the allocation in the constrained optimal portfolios. Clearly, 

these portfolios are more diversified than those in the left panel. The four assets that received 

significant allocations here are cash, listed real estate, general stocks and long-term bonds. Long-term 

bonds (10+ years) dominate the allocations between 1997 and 2003. Cash dominated the portfolio 

prior to 2000 and after 2007 but does not gain any allocations between 2000 and 2007. Short and 

medium term (3, 5 and 7 year) bonds also received allocations at various points within these portfolios.   

Figure 6(2) shows the returns of the various blended real estate series alongside the returns on the IPD 

UK index. It can be seen that the returns of the blended Fund A (containing cash) and Fund C 

(unconstrained portfolio drawing on all liquid assets) track the benchmark more closely than their 

counterparts. This is also apparent from Table 6(IV), where the tracking error reported for Fund C 

(DRE-ALL) is the lowest, followed by that of Fund A (DRE-CASH). The combination of listed and 

direct real estate (Fund B) had the highest tracking error. This result was consistent across all levels of 

liquid asset allocation. The tracking error per quarter for Fund C ranges from 0.29% for the portfolio 

with only 10% weighting to liquid assets to 2.90% for that which contains only liquid, publicly traded 

assets. For Fund A, the tracking error ranges from 0.32% for the portfolio with 10% liquid assets to 

3.16% where cash is the only asset in the portfolio.  

With only 10% allocated to listed real estate, the tracking error for Fund B is 1.06%. This increases to 

10.56% tracking error per quarter where only listed real estate is held. Imposing a minimum return 

requirement on the minimum tracking error model also increases the tracking error, but not as much 

as observed for the listed real estate and direct real estate mix. The tracking error ranged from 2.64% 

to 8.82%.  

Table 6(IV) shows that of the different blended portfolios, the only one that recorded return 

enhancement when the allocation to liquid assets was increased was Fund B. However, there are 

differences when compound growth is considered instead of arithmetic average return rate. This shows 

that using listed real estate alone only enhanced returns up to a certain threshold. This was due largely 

to the volatility in listed real estate returns. Listed real estate also has the highest drawdown – a measure 

of risk which indicates how much an investment value would fall from peak-to-through until a new 

maximum is reached. Consequently, the portfolios for Fund B recorded the highest standard deviations 

among all the portfolios constructed.  

None of the other portfolios showed an increase in return with the addition of liquid assets. On the 

contrary, the returns for Fund A (which contains cash and listed real estate) falls with every increase in 

the liquid asset allocation. Table 6(IV) shows that as much as 53% can be lost by substituting direct 

real estate for cash. This means that the lower tracking error observed earlier for the blended portfolio 
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containing cash often comes at the cost of significant losses in return. The challenge then is to find a 

way of reducing tracking error without sacrificing significant returns.  

Including a wider selection of liquid assets and employing the Minimum Tracking Error optimisation 

procedure results in lower tracking error than simply adding cash to a direct real estate portfolio. From 

Table 6(IV), it can be seen that Fund C (DRE-ALL) produced lower tracking errors than Fund A 

(DRE-CASH), while providing returns that were higher. The loss in return required to achieve this low 

tracking error was 37%, compared to the 53% observed for Fund A. Meanwhile, in the case of Fund 

D (DRE-ALL1), unlike the in-sample results – which were subject to the minimum return constraint 

– the out-of-sample returns fell short of the returns on the IPD benchmark. This notwithstanding, the 

returns obtained from Fund D were higher and closer to direct real estate returns than those obtained 

for Fund C (DRE-ALL). Yet the tracking error increased slightly with the imposition of the minimum 

return constraint. 
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Figure 6(2) Out of Sample Returns of Blended Real Estate Portfolios (20% Allocation to Liquid Assets) 

Fund A (DRE-CASH) 
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Notes: DRE = IPD All Property Index; Fund A = A naïve mix of cash and the IPD All Property Index; Fund B = A naïve mix of listed real estate and the IPD All Property Index; Fund C = An optimised 

blend of the IPD All Property Index and selected liquid assets. Fund D = An optimised blend of the IPD All Property Index and selected liquid assets. Optimisation is done with a constraint that target return 

should be equal to or greater than the average return on the IPD All Property Index. 
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Table 6(IV) Quarterly Out-Of-Sample Summary Statistics of Blended Real Estate Portfolios 

Liquid asset percentage  Selection of liquid assets 

10 percent liquid (90% direct real 
estate) 

FUND A 
(DRE_CASH

) 
FUND B 

(DRE_LRE) 
FUND C 

(DRE_ALL) 
FUND D 

(DRE_ALL1) DRE 

Tracking error with respect to DRE (%) 0.3157 1.0561 0.2909 0.4037 0.0000 

Average return (%) 2.0885 2.2462 2.1249 2.1882 2.2065 

Average excess returns (%) -0.1180 0.0397 -0.0816 -0.0183 0.0000 

Standard deviation (%) 2.7127 3.4542 2.8128 2.9565 3.0216 

Sharpe ratio 0.3825 0.3461 0.3819 0.3847 0.3825 

Index value 670.05 773.36 692.37 731.03 742.18 

Maximum drawdown 0.3145 0.4003 0.4110 0.3877 0.3886 

Change in return with respect to DRE (%) -5.3471 1.8013 -3.6981 -0.8283 0.0000 

20 percent liquid (80% direct real 
estate)           

Tracking error with respect to DRE (%) 0.6315 2.1122 0.5794 0.8039 0.0000 

Average return (%) 1.9705 2.2860 2.0428 2.1780 2.2065 

Average excess returns (%) -0.2360 0.0795 -0.1637 -0.0285 0.0000 

Standard deviation (%) 2.4056 4.1186 2.6226 2.9467 3.0216 

Sharpe ratio 0.3823 0.2999 0.3782 0.3825 0.3825 

Index value 604.28 797.66 644.99 723.49 742.18 

Maximum drawdown 0.2771 0.4482 0.4642 0.4173 0.4219 

Change in return with respect to DRE (%) -10.694 3.6026 -7.4190 -1.2899 0.0000 

30 percent liquid (70% direct real 
estate)           

Tracking error (%) 0.9472 3.1683 0.8690 1.2063 0.0000 

Average return (%) 1.8525 2.3257 1.9611 2.1616 2.2065 

Average excess returns (%) -0.3540 0.1192 -0.2454 -0.0449 0.0000 

Standard dev. (%) 2.1010 4.9220 2.4503 2.9905 3.0216 

Sharpe ratio 0.3816 0.2590 0.3715 0.3714 0.3825 

Index value 544.37 814.27 600.56 711.33 742.18 

Max drawdown 0.2381 0.4940 0.5153 0.4518 0.4507 

Change in return wrt DRE (%) -16.041 5.4040 -11.124 -2.0345 0.0000 

100% liquid (pure replication)           

Tracking error with respect to DRE (%) 3.1574 10.5609 2.8967 4.0173 0.0000 

Average return (%) 1.0267 2.6040 1.3884 1.9938 2.2065 

Average excess returns (%) -1.1798 0.3975 -0.8181 -0.2128 0.0000 

Standard deviation (%) 0.6237 11.7270 2.1409 4.4406 3.0216 

Sharpe ratio -0.0388 0.1324 0.1577 0.2123 0.3825 

Index value 254.44 693.23 355.74 581.39 742.18 

Maximum drawdown 0.0000 0.7580 0.7358 0.6301 0.5708 

Change in return with respect to DRE (%) -53.471 18.013 -37.077 -9.6420 0.0000 

Notes: DRE = IPD All-Property Portfolio; Fund A = A naïve mix of cash and the IPD All Property Portfolio; Fund B = A naïve mix of 
listed real estate and the IPD All Property Portfolio; Fund C = An optimised blend of the IPD All Property Portfolio and the all selected 
liquid assets. Optimisation is done without any minimum return constraint; Fund D = An optimised blend of the IPD All Property 
Portfolio and the all selected liquid assets. Optimisation is done with a constraint that target return should be equal to or greater than the 
average return on the IPD All Property Portfolio 
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6.4.3 ANALYSIS OF THE TIME VARYING RELATIONSHIP BETWEEN 
HYBRID FUND RETURNS AND DIRECT REAL ESTATE  

To account for potential temporal instability in relationships, rolling tracking errors are estimated using 

a 20-quarter (five year) window. As can be seen from Figure 6(3), the Portfolio containing direct real 

estate and listed real estate consistently had the highest tracking error relative to the direct real estate 

benchmark over the whole period. This confirms the results of previous studies and concerns raised 

by industry practitioners regarding the incorporation of listed real estate in direct real estate portfolios 

and also the results of the static tracking error presented earlier. The best combination remains cash 

and the blended real estate Fund C – which contains all liquid assets.   

Tracking error generally increased for all the hybrid real estate funds during the periods around the 

recent Global Financial Crisis (2007 – 2008). Appendix 6(C) contains the summary statistics for the 20 

quarter rolling tracking error for the four blended real estate funds. As indicated earlier, the blended 

real estate fund C (containing all liquid assets) recorded the lowest tracking errors which ranged from 

a minimum of 0.0162% per quarter (containing a 10% allocation to liquid assets) to a maximum of 

5.4733 per quarter (for the pure replication fund). This means that even with no allocation to direct 

real estate, the maximum tracking error recorded for blended real estate fund C was less than 6% per 

quarter. This compares to a minimum of 0.0695% to a maximum of 22.49% tracking error for the 

blended real estate fund B (listed real estate – direct real estate mix). Blended real estate Funds A and 

D recorded a range of 0.0256% – 8.29% and 0.0256% - 6.92% respectively.  

Different estimates of correlation are presented in Table 6(V). The average dynamic conditional 

correlation was identical to the 20 quarter rolling correlation for most funds. As observed by Chong et 

al. (2012) and Forbes & Rigobon (2002), where there were differences, the average conditional 

correlation was mostly lower than the average rolling correlation. At lower levels of direct real estate 

allocation, the correlation between Fund A (DRE-CASH) was very low, even negative at times. 

However, with very little allocation to direct real estate, the correlation between hybrid real estate Fund 

A and direct real estate increases remarkably. Fund A mostly had a higher correlation to direct real 

estate than all the other funds. This is attributable to the very low volatility of cash which makes it less 

likely to significantly alter the return pattern of the direct real estate portfolio when added to this 

portfolio.  
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Figure 6(3): 20-Quarter (5 year) Rolling Tracking Error  
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Notes: DRE = IPD All-Property Portfolio; DRE-CASH = A naïve mix of cash and the IPD All Property Portfolio; DRE-LRE = A naïve mix of listed real estate and the IPD All Property Portfolio; DRE-

ALL = An optimised blend of the IPD All Property Portfolio and the all selected liquid assets. Optimisation is done without any minimum return constraint; DRE-ALL1 = An optimised blend of the IPD All 

Property Portfolio and the all selected liquid assets. Optimisation is done with a constraint that target return should be equal to or greater than the average return on the IPD All Property Portfolio 
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Interestingly, blended real estate fund B (LRE-DRE) recorded very stable correlation pattern relative 

to direct real estate. Even for the pure replication portfolio, containing no allocation to direct real 

estate, the correlations coefficients were above 0.45 over the entire sample period. This is due to the 

fact that as a stand-alone asset, listed real estate had a very high correlation with direct real estate. 

Consequently, when correlation is used as the main measure of association, blended portfolios 

containing listed real estate show a stable correlation pattern with direct real estate. What this result 

implies is that for investors who wish to have real estate portfolios that have significant allocations to 

liquid assets, especially more than 50%, listed real estate may represent a good choice of asset than any 

other stand-alone asset. However, it is clear from the foregoing discussion that a multi-asset approach 

is best at producing the best blended or hybrid real estate portfolios. 

Table 6(V) Comparison of Static, 4 and 20 Quarter Rolling, and DCC Estimates 

10% liquid 
Fund A  
(DRE-CASH) 

Fund B 
(DRE-LRE) 

Fund B 
(DRE-ALL) 

Fund C 
(DRE-ALL1) 

Dynamic conditional 
correlation 0.9989 0.8931 0.9941 0.9629 

Static correlation 0.9997 0.9555 0.9976 0.9911 

4 quarter rolling correlation 0.9999 0.7013 0.9823 0.9010 

20 quarter rolling correlation 0.9999 0.8918 0.9966 0.9663 

20% liquid     

Dynamic conditional 
correlation 0.9950 0.7839 0.9772 0.8992 

Static correlation 0.9987 0.8691 0.9889 0.9640 

4 quarter rolling correlation 0.9996 0.4911 0.9422 0.7356 

20 quarter rolling correlation 0.9993 0.7663 0.9843 0.8969 

30% liquid     

Dynamic conditional 
correlation 0.9864 0.6959 0.9504 0.8280 

Static correlation 0.9961 0.7839 0.9710 0.9195 

4 quarter rolling correlation 0.9987 0.3684 0.8880 0.6098 

20 quarter rolling correlation 0.9980 0.6763 0.9600 0.8206 

100% Liquid     

Dynamic conditional 
correlation -0.1067 0.4558 0.2146 0.3387 

Static correlation -0.1194 0.4956 0.4114 0.4736 

4 quarter rolling correlation -0.2505 0.1328 0.0755 0.0263 

20 quarter rolling correlation -0.1934 0.4369 0.3671 0.3824 

Notes: DRE = IPD All-Property Portfolio; Fund A = A naïve mix of cash and the IPD All Property Portfolio; Fund B = A naïve mix 
of listed real estate and the IPD All Property Portfolio; Fund C = An optimised blend of the IPD All Property Portfolio and the all 
selected liquid assets. Optimisation is done without any minimum return constraint; Fund D = An optimised blend of the IPD All 
Property Portfolio and the all selected liquid assets. Optimisation is done with a constraint that target return should be equal to or 
greater than the average return on the IPD All Property Portfolio; DCC = Dynamic Conditional Correlation 
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Figure 6(4) Dynamic Conditional Correlations between Direct Real Estate and Hybrid Real Estate Returns (20% Liquid) 
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6.5 CONCLUSION 

Managers of open-ended real estate funds have typically used cash, and sometimes listed real estate, to 

enhance the liquidity profile of their portfolios. Focus on the performance and liquidity of such funds 

has increased in the wake of market shocks and with the increased emphasis on liquidity by institutional 

investors, including the rising number of Defined Contribution pension funds. DC pension funds have 

been offering daily traded funds to contributors as opposed to monthly or even quarterly traded funds, 

raising the question as to whether real estate is a possible option in such a framework. Thus, with these 

developments, there is a need to design real estate funds with adequate liquidity to meet the 

requirements of such investors.  

The inclusion of listed real estate in direct real estate portfolios has been found to enhance the returns 

of such portfolios, along with providing more liquidity. However, many investment managers are 

reluctant to use listed real estate within blended real estate portfolios owing to the fact that its inclusion 

can result in a high tracking error relative to a direct real estate benchmark – implying that the resulting 

portfolio fails to provide the investor with property-like returns. Meanwhile, the use of cash has been 

found to result in significant drags on portfolio return. The challenge for real estate funds then is to 

find a way of minimising tracking error with the direct real estate market without significant loss of 

returns or alteration to the fundamental performance features of direct real estate assets. 

This study explores the possibility of expanding the asset universe beyond cash and listed real estate to 

see if it is possible to produce portfolios that deliver property-like returns along with enhanced liquidity. 

In addition to cash and listed real estate, general stocks and bonds of various maturities were used as 

options for addition to direct real estate portfolios. To create the blended real estate portfolios, 

Minimum Tracking Error optimisation procedures were utilised. This procedure is an extension of the 

classic Mean-Variance optimisation procedure and was implemented with and without a minimum 

return constraint in order to observe the most effective combinations of liquid assets in meeting 

portfolio objectives.  

The results show that using a wider array of assets produced lower tracking errors than those obtained 

by using a cash-only liquidity buffer. The returns obtained were higher than those obtained through a 

direct real estate and cash mix, without significant increase in tracking error. In comparison, the returns 

of the direct real estate and listed real estate combination did not perform well in replicating the 

performance of the underlying direct real estate market. As in other studies, the direct-listed real estate 

combination produced enhanced returns, but this study shows that the terminal value obtained over 
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the period for this strategy was lower if a certain threshold allocation to listed real estate was crossed. 

This is due to the high volatility and drawdown of listed real estate as a stand-alone asset.  

One key question which this study seeks to answer is which assets should be included in the 

blended/hybrid real estate portfolio. The results from this study shows that the answer depends on 

whether the fund manager is concerned solely with tracking direct real estate returns as closely as 

possible or is also concerned with earning returns that are not significantly lower than direct real estate 

returns. A pure, unconstrained tracking error minimization portfolio consists largely of cash along with 

a limited amount of listed real estate and general stocks. The dominance of cash in this portfolio lends 

some credence to the current allocation within UK unlisted real estate fund portfolios. However, 

imposing a minimum return constraint where the portfolio must at least match the average return of 

the direct market resulted in a more diversified portfolio, with cash playing a limited role. These 

constrained portfolios had significant allocations to long term bonds, listed real estate and general 

stocks.   

A number of future studies could be conducted in this area. The asset universe could be expanded 

further to include non-UK real estate and liquid assets. This would result in additional challenges 

stemming from foreign exchange risk and the difficulty in finding foreign assets that can be 

incorporated without significantly changing the risk and return profile of the underlying direct real 

estate portfolio. The use of factor models, as done in hedge fund and private equity markets, could 

also be explored to determine how direct real estate returns might be replicated to enable investors 

take advantage of the benefits of direct real estate investments with minimal liquidity risk. Finally, this 

study used historical returns in the estimation of the portfolio weights. Hence, another area that could 

be explored is the use of forward looking risk and return measures in the construction of the blended 

real estate portfolios. 
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Figure 6(5) Dynamic Conditional Correlations between Direct Real Estate and Hybrid Real Estate Returns (20% Liquid) 
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APPENDICES 

Appendix 6(A) Allocation within Balanced UK Unlisted Real Estate Fund Portfolios as at March 2017 

 Name of Fund 

Fund  

Type4 Retail 
Office
s 

Industrial
s Others  Cash Total 

AEW UK - Core Property Fund PAIF 33.40 28.60 23.50 9.60 4.80 100 

AEW UK Real Return Fund PAIF 37.80 4.90 0.00 54.50 2.80 100 

Aviva Investors Pensions Limited MPF 29.90 38.80 15.30 8.80 7.30 100 

BlackRock UK Property Fund PUT 28.00 25.70 23.20 16.90 6.40 100 

CBRE UK Property PAIF PAIF 35.90 23.50 26.40 9.30 4.90 100 

COIF Charities Property Fund PUT 23.10 44.30 30.80 1.60 0.10 100 

Fidelity UK Real Estate Fund EPUT 16.30 39.20 34.50 - 9.90 100 

UK Property Fund PUT 32.30 30.80 31.90 2.60 2.40 100 

Hermes Property Unit Trust EPUT 22.30 38.10 22.70 12.50 4.40 100 

Kames Active Value Property Fund MPT 45.10 25.50 15.50 4.20 9.70 100 

Kames Capital UK Active Value 
Property Unit Trust 

PUT 
34.40 36.30 13.50 2.80 13.00 100 

Keills Property Trust EPUT 16.90 24.70 11.40 42.80 4.30 100 

Legal and General Assurance 
(Pensions Management) Ltd 

MPF 
22.80 34.30 16.10 12.70 14.10 100 

Lothbury Property Trust PUT 47.40 25.80 15.30 7.10 4.40 100 

Mayfair Capital Property Income 
Trust for Charities 

EPUT 
22.40 28.80 32.70 11.10 5.00 100 

Mayfair Capital Property Unit Trust PUT 26.60 42.30 27.70 1.50 2.00 100 

Rockspring Hanover Property Unit 
Trust 

PUT 
26.80 26.80 45.20 - 1.10 100 

Royal London Property Fund PAIF 33.20 29.40 20.40 11.00 6.00 100 

Savills IM UK Income & Growth PUT 36.90 6.00 40.30 13.40 3.40 100 

Schroder UK Real Estate Fund PAIF 24.50 38.00 19.10 10.00 8.40 100 

Standard Life Investments Pooled 
Pension Property Fund 

MPF 
39.10 31.60 20.10 0.20 8.90 100 

The Charities Property Fund CIF 28.80 20.80 22.70 23.30 4.50 100 

The Local Authorities Property 
Fund 

EPUT 
26.30 39.90 25.10 1.00 7.70 100 

The M&G UK Property Fund FCP 35.70 23.10 22.70 10.80 7.90 100 

Threadneedle Pensions Ltd MPF 38.00 25.80 19.30 6.20 10.60 100 

Threadneedle Property Unit Trust PUT 32.80 33.30 24.80 5.10 3.90 100 

UBS Triton Property Fund PNP 34.50 20.00 32.70 12.60 0.20 100 

Source: AREF (2017) 

                                                           
4 Fund type abbreviations: PUT - Property Unit Trust; EPUT - Exempt Property Unit Trust; MPF - Managed Pension Fund; 

PNP - Balanced Property Partnership; LP - Limited Partnership; CIF - Common Investment Fund; ICVC - Investment 

Company with Variable Capital; APUT - Authorised Property Unit Trust; PAIF - Property Authorised Investment Fund; 

SCA - Société en commandite par actions (Luxembourg) 
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Appendix 6(B) In-Sample Statistics of Blended/Hybrid Real Estate Portfolios (Rescaled) 

All liquid assets and direct real estate (without minimum return constraint)   

Stocks 
Bonds 
(Aggregate) 

Bonds 
(10+ 
years) 

Bonds (10 
year) 

Bonds (7 
years) 

Bonds (5 
years) 

Bonds (3 
years) 

Bonds (2 
years) Listed real estate Treasury bills 

Total weight of 
liquid assets 

0.23 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.25 1.00 

0.23 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.25 0.90 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.80 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.70 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.60 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.50 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.40 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.30 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.20 

0.24 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.19 0.24 0.10 

All liquid assets and direct real estate (with minimum return constraint)  

Stocks 
Bonds 
(Aggregate) 

Bonds 
(10+ 
years) 

Bonds (10 
year) 

Bonds (7 
years) 

Bonds (5 
years) 

Bonds (3 
years) 

Bonds (2 
years) Listed real estate Treasury bills 

Total weight of 
liquid assets 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 1.00 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.90 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.80 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.70 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.60 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.50 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.40 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.30 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.20 

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.80 0.10 
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Appendix 6(C) Summary Statistics – 20 Quarters Rolling Tracking Error 

Date DRE_CASH DRE_LRE DRE_ALL DRE_ALL1 

10% Liquid         

Average 0.1355 0.8416 0.1653 0.3113 

Standard deviation 0.1438 0.4779 0.1277 0.1752 

Maximum 0.8286 2.2492 0.5473 0.6917 

Minimum 0.0256 0.0695 0.0162 0.0256 

20% Liquid         

Average 0.2710 1.6831 0.3295 0.6208 

Standard deviation 0.2876 0.9558 0.2537 0.3496 

Maximum 1.6572 4.4984 1.0947 1.3959 

Minimum 0.0513 0.1391 0.0324 0.0599 

30% Liquid         

Average 0.4065 2.5247 0.4943 0.9307 

Standard deviation 0.4313 1.4337 0.3806 0.5244 

Maximum 2.4857 6.7475 1.6420 2.0939 

Minimum 0.0769 0.2086 0.0487 0.0898 

40% Liquid         

Average 0.5421 3.3663 0.6591 1.1571 

Standard deviation 0.5751 1.9116 0.5074 0.6898 

Maximum 3.3143 8.9967 2.1893 2.7669 

Minimum 0.1025 0.2782 0.0649 0.1022 

50% Liquid         

Average 0.6776 4.2079 0.8238 1.5519 

Standard deviation 0.7189 2.3895 0.6342 0.8740 

Maximum 4.1429 11.2459 2.7367 3.4898 

Minimum 0.1282 0.3477 0.0811 0.1497 

60% Liquid         

Average 0.8131 5.0494 0.9886 1.9694 

Standard deviation 0.8627 2.8674 0.7610 1.2498 

Maximum 4.9715 13.4951 3.2840 5.2902 

Minimum 0.1538 0.4173 0.0973 0.1533 

70% Liquid         

Average 0.9486 5.8910 1.1534 2.1812 

Standard deviation 1.0065 3.3453 0.8879 1.2176 

Maximum 5.8001 15.7443 3.8313 4.8858 

Minimum 0.1794 0.4868 0.1136 0.2096 

80% Liquid         

Average 1.0841 6.7326 1.3181 2.4927 

Standard deviation 1.1503 3.8232 1.0148 1.3915 

Maximum 6.6286 17.9934 4.3787 5.5837 

Minimum 0.2051 0.5564 0.1298 0.2396 

90% Liquid         

Average 1.2196 7.5742 1.4829 2.7772 

Standard deviation 1.2940 4.3010 1.1416 1.5679 

Maximum 7.4572 20.2426 4.9260 6.2256 

Minimum 0.2307 0.6259 0.1460 0.2300 

100% Liquid         

Average 1.3551 8.4157 1.6477 3.0921 

Standard deviation 1.4378 4.7789 1.2684 1.7492 

Maximum 8.2858 22.4918 5.4733 6.9173 

Minimum 0.2563 0.6955 0.1622 0.2556 
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Appendix 6(D) Allocations within Blended Real Estate Portfolio With 10% Liquid Assets (Out Of Sample) 

All liquid assets (No minimum return constraint) 

 

 

 

 

 

 

  

All liquid assets (With minimum return constraint) 

 

 

 

 

 

 

 

Appendix 6(E) Allocations within Blended Real Estate Portfolio with 30% Liquid Assets (Out Of Sample) 

All liquid assets (No minimum return constraint) 
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Appendix 6(F) Allocations within Blended Real Estate Portfolio with 40% Liquid Assets (Out of sample) 

All liquid assets (No minimum return constraint) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

All liquid assets (With minimum return constraint) 

 

Appendix 6(G) Allocations within Blended Real Estate Portfolio with 100% Liquid Assets (Out Of Sample) 

All liquid assets (No minimum return constraint) 

 

 

 

 

 

 

 

 

 

 

All liquid assets (With minimum return constraint) 
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Appendix 6(H) Out of Sample Returns of Blended Real Estate Portfolios – 10% Liquid Asset 

DRE-CASH 

 

 

 

 

 

DRE-LRE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DRE-ALL 

 

 

 

 

 

 

 

 

 

 

 

DRE-ALL1 

 

 

-15

-10

-5

0

5

10

15

Q
4 

19
91

Q
3 

19
92

Q
2 

19
93

Q
1 

19
94

Q
4 

19
94

Q
3 

19
95

Q
2 

19
96

Q
1 

19
97

Q
4 

19
97

Q
3 

19
98

Q
2 

19
99

Q
1 

20
00

Q
4 

20
00

Q
3 

20
01

Q
2 

20
02

Q
1 

20
03

Q
4 

20
03

Q
3 

20
04

Q
2 

20
05

Q
1 

20
06

Q
4 

20
06

Q
3 

20
07

Q
2 

20
08

Q
1 

20
09

Q
4 

20
09

Q
3 

20
10

Q
2 

20
11

Q
1 

20
12

Q
4 

20
12

Q
3 

20
13

Q
2 

20
14

Q
1 

20
15

DRE DRE_ALL1

-15

-10

-5

0

5

10

15

Q
4 

19
91

Q
3 

19
92

Q
2 

19
93

Q
1 

19
94

Q
4 

19
94

Q
3 

19
95

Q
2 

19
96

Q
1 

19
97

Q
4 

19
97

Q
3 

19
98

Q
2 

19
99

Q
1 

20
00

Q
4 

20
00

Q
3 

20
01

Q
2 

20
02

Q
1 

20
03

Q
4 

20
03

Q
3 

20
04

Q
2 

20
05

Q
1 

20
06

Q
4 

20
06

Q
3 

20
07

Q
2 

20
08

Q
1 

20
09

Q
4 

20
09

Q
3 

20
10

Q
2 

20
11

Q
1 

20
12

Q
4 

20
12

Q
3 

20
13

Q
2 

20
14

Q
1 

20
15

DRE DRE_ALL

-15

-10

-5

0

5

10

15

Q
4 

19
91

Q
3 

19
92

Q
2 

19
93

Q
1 

19
94

Q
4 

19
94

Q
3 

19
95

Q
2 

19
96

Q
1 

19
97

Q
4 

19
97

Q
3 

19
98

Q
2 

19
99

Q
1 

20
00

Q
4 

20
00

Q
3 

20
01

Q
2 

20
02

Q
1 

20
03

Q
4 

20
03

Q
3 

20
04

Q
2 

20
05

Q
1 

20
06

Q
4 

20
06

Q
3 

20
07

Q
2 

20
08

Q
1 

20
09

Q
4 

20
09

Q
3 

20
10

Q
2 

20
11

Q
1 

20
12

Q
4 

20
12

Q
3 

20
13

Q
2 

20
14

Q
1 

20
15

DRE DRE_CASH

-15

-10

-5

0

5

10

15

Q
4 

19
91

Q
3 

19
92

Q
2 

19
93

Q
1 

19
94

Q
4 

19
94

Q
3 

19
95

Q
2 

19
96

Q
1 

19
97

Q
4 

19
97

Q
3 

19
98

Q
2 

19
99

Q
1 

20
00

Q
4 

20
00

Q
3 

20
01

Q
2 

20
02

Q
1 

20
03

Q
4 

20
03

Q
3 

20
04

Q
2 

20
05

Q
1 

20
06

Q
4 

20
06

Q
3 

20
07

Q
2 

20
08

Q
1 

20
09

Q
4 

20
09

Q
3 

20
10

Q
2 

20
11

Q
1 

20
12

Q
4 

20
12

Q
3 

20
13

Q
2 

20
14

Q
1 

20
15

DRE_ALL DRE_LRE



  

208 

 

Appendix 6(I) Out of Sample Returns of Blended Real Estate Portfolios – 30% Liquid Asset 
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Appendix 6(J) Out of Sample Returns of Blended Real Estate Portfolios – 40% Liquid Asset 
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Appendix 6(K) Out of Sample Returns of Blended Real Estate Portfolios – 100% Liquid Asset 
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Appendix 6(L) Historical Returns of Blended Real Different Real Estate Series  
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Appendix 6(M) Conditional Correlations – 10% Liquid Assets  
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Appendix 6(N) Conditional Correlations – 30% Liquid Assets 
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Appendix 6(O) Conditional Correlations – 40% Liquid Assets 
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Appendix 6(P) Conditional Correlations – 100% Liquid Assets  
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CHAPTER SEVEN – ASSET SELECTION IN THE 

PRESENCE OF INFLATION/INTEREST RATE 

BENCHMARKS FOR DC PENSION FUNDS 

7.0 INTRODUCTION 

The goal of this study is to provide analysis of the inflation/interest rate-hedging ability of real estate 

and other assets which pension funds typically invest in, namely, stocks, bonds, commodities, hedge 

funds and private equity (UBS, 2015). We believe that this subject has become very important in light 

of the growing importance of DC pension funds most of whose investment objectives are tied to 

specific inflation and interest rate measures. An understanding of the inflation-hedging ability of 

various assets along with their return and risk characteristics is thus important for DC investors looking 

to improve their investment portfolios. 

Inflation represents a general increase in the prices of goods and services within an economy. It is one 

of the leading macroeconomic indicators that causes significant distortions in the overall performance 

of financial markets. An asset is considered an inflation hedge if it eliminates or at least reduces the 

uncertainty regarding future real returns (Bodie, 1976).  

Inflation-hedging is important not only for private investors who see inflation as a threat to their 

purchasing power but also for institutional investors such as pension funds and life insurance 

companies who face payments that are indexed (conditionally or fully) to inflation or wage indexes 

(Amenc et al. , 2008). Thus Kramer (2017) identified inflation protection is one of the central objectives 

of strategic asset allocation. Inflation hedging is also consistent with the idea of liability driven 

investment that has gained prominence within the pension fund industry especially following the 2008 

financial crisis. 

Although there has been a prolonged period of low inflation, investors with long holding periods need 

to be mindful of the eroding effects of inflation as well as inflationary shocks (Hoesli et al., 2008). 

Moreover, low inflation rate environments are often accompanied by low asset returns, making it even 

more difficult for investors to find inflation-hedging assets (Arnold, 2016). 

The inflation and interest rate benchmarks employed in our analysis are those commonly used by DC 

pension funds for the purposes of performance evaluation and benchmarking. In Chapter 2, we 

reviewed the Statements of Investment Principles (SIPs) of a number of UK DC pension funds. We 

found that several DC Master-trust pension funds benchmark their returns that are in line with these 

rates. For example, NEST, Legal and General and The People’s Pension (TPP) link their investment 
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objectives to CPI inflation or RPI inflation. A few other master trust pension funds such as NOW 

Pension employ risk-free interest rates such as the UK Treasury Bill interest rate, the London Interbank 

Offering Rate (LIBOR) or Sterling Overnight Index Average (SONIA). In other jurisdictions, 

governments and regulatory agencies explicitly require DC pension funds to guarantee a minimum rate 

of return. These minimum return guarantees are often set in line with inflation/interest rate 

movements. Countries such as Belgium, Czech Republic, Germany and Switzerland have some form 

of minimum return guarantee in place. Antolin et al. (2012) observed that almost all countries with 

mandatory DC pension schemes were more likely to impose such requirements given the importance 

of these funds in retirement income provision. With this in mind, we do not limit the analysis in this 

chapter to just one inflation rate. We use alternative measures of inflation as well as interest rates. 

Amenc et al. (2008) observed that, in order to mitigate inflation risk, investors have often adopted 

strategies including the holding of index-linked bonds and the use of dedicated over-the counter 

derivative instruments such as inflation swaps. They found these approaches to be rather costly as they 

generate modest performance. Furthermore, the capacity of the inflation-indexed bond market has 

been found to be insufficient relative to the collective demand institutional and private investors. Over-

the counter inflation derivative instruments have a significant level of counterparty risk. This finding 

means that it is important for investors to look to other assets which could potentially be an inflation 

hedge without requiring a large sacrifice of returns.  

Several studies have analysed the inflation hedging ability of assets such as stocks, bonds, real estate 

and alternative assets such as gold. The goal of these studies is to provide empirically analyse the 

relationship between inflation and the returns of these assets over time. Assets that are found to have 

a close relationship with inflation may be used in place, or in addition to, index-linked bonds and 

inflation swaps. However, Spierdijk and Umar (2013) concluded that the majority of these studies focus 

on aggregate level data which could result in inaccurate conclusions as the behaviour of an asset on a 

sector level may be different from the behaviour at an aggregate level. The authors found that the 

inflation hedging ability of assets within the same asset class varies across industries, maturities, and 

investment horizon. 

In this chapter, we use a number of contemporary approaches to carry out a systematic, sector-level 

analysis of the short and long-run inflation hedging ability of real estate and a wide range of traditional 

and alternative assets that pension funds typically hold. We analyse the ability of 47 different asset 

classes and sectors including real estate, stocks, bonds and alternative assets such as commodities, 

hedge funds and private equity. For stocks, we investigate the hedging ability of different stock sectors 

or industries. For bonds, we analyse the hedging ability of different bond maturities. Spierdijk and 
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Umar (2013) observed that as with different stock sectors, the hedging ability of bonds may differ 

across different maturities, issuer and risk-rating. We hope that the approach adopted in this study 

would help to identify assets which DC pension funds should hold in order to hedge against specific 

measures of inflation and interest rate changes. The analysis in this chapter would uncover assets and 

sectors that should be considered by DC pension funds seeking to protect the purchasing power of 

their investment portfolios.  

This chapter begins with a discussion of the concept of inflation hedging and how this is relevant to 

DC pension funds. The mechanics of inflation and interest rate hedging are described and empirical 

evidence of the inflation and interest rate hedging ability of various assets are presented. We go on to 

analyse the performance of the various assets relative to the chosen inflation/interest rates. The 

correlation structure of the various assets relative to the various benchmarks is also analysed. We then 

use autoregressive distributed lag model of Pesaran et al. (2001) to analyse the long-run inflation-

hedging ability of the various assets. An error-correction version of the ARDL model is also used to 

estimate the long-run coefficients and the speed of adjustment to equilibrium following a shock to 

inflation and interest rates. The Toda and Yamamoto (1995) approach to testing Granger Causality is 

also used to examine the short-run relationship and the direction of causality between inflation/interest 

rates and the returns of the various assets and sectors.  

 This study covers the period 1991 – 2015. Although we do not explicitly divide the study period into 

pre- and post- GFC periods, a comparison of the results of this study with studies conducted prior to 

the 2008 financial crisis may reveal how the relationship between asset returns and inflation been 

altered following the crisis.  

On the whole, we found real estate to be a consistent hedge against four inflation and interest rate 

measures that are of interest to UK DC pension funds. Like real estate, bonds were also a good hedge 

against inflation and interest rate changes. However, we did not find inflation-index bonds to possess 

a short-term hedging ability, although over the long-run, they were found to be a hedge against almost 

all inflation and interest rates. We found it interesting that index-linked bonds had a stronger 

relationship with interest rates than inflation rates against which they are benchmarked. Aside real 

estate and bonds, a number of stock sectors and commodities offered some inflation and interest rate 

hedge. We find that a lot more assets were a hedge over the long-run but not over the short-run. A 

policy implication of this result is that, minimum return legislations which require DC pension funds 

to deliver returns in line with inflation or interest rates may not impact negatively on portfolio 

diversification unless they have to be delivered upon on a short-term period-by-period basis. 
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7.1 THEORY OF INFLATION HEDGING 

In this section, we discuss the key economic theories that underlie the analysis of inflation/interest rate 

hedging ability of assets. The Fisher (1930) hypothesis and the Two-Fund Separation Theorem of 

Tobin (1958) have shaped research on the impact that inflation and interest rates have on the 

investment and asset allocation decision of individuals and institutional investors. While the Fisher 

hypothesis forms the basis for expectations that the returns of assets must compensate investors for 

inflation, the two-fund separation theorem is the intuition behind the use of risk-free interest rates as 

a benchmark against which investment performance is measured. The work of Fama & Schwert (1977) 

has also significantly shaped research on the inflation-hedging characteristics of various assets.  

7.1.1 THE FISHER HYPOTHESIS  

The idea of inflation hedging is believed to date back to Fisher (1930) who hypothesises that the real 

interest rate equals the nominal interest rate less an anticipated rate of inflation. This means that the 

ex-ante nominal rate of return contains the market's perception of expected inflation. Fisher (1930) 

holds that the real and monetary sectors of the economy are largely independent, implying that the 

expected real rate and expected inflation are unrelated. This is equivalent to saying that the nominal 

interest rate and the expected inflation move parallel to each other i.e. that there is a one-for-one 

adjustment in the nominal interest rate to the anticipated rate of inflation. Mathematically:  

1+R=(1+r)(1+p)                                                                     7(1) 

where: 

R= the nominal rate of interest 

r = the nominal interest rate 

p = inflation rate 

The Fisher hypothesis is often formulated by stating that expected real interest rates and expected 

inflation are statistically uncorrelated. In principle, the Fisher hypothesis can be extended to any asset 

e.g. stocks, bonds and real estate. In this sense, the hypothesis should be restated to the effect that the 

nominal asset returns are expected to move one for one with the expected level of inflation.  

Although a positive relationship has been observed between interest rates and inflation, several 

empirical studies have failed to confirm the Fisher hypothesis in its strictest form. A number of studies 

have attempted to reconcile these deviations. These justifications include the wealth effect (Mundell, 

1963; Tobin, 1965) and the tax effect (Darby, 1975; Feldstein, 1976). 
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Mundell (1963) and Tobin (1965) argue that the nominal rate would tend to rise by less than unity with 

a change in inflation through the effects of inflation on real rates. An exogenous growth in money 

supply, they explain, would result in an increase in the nominal rate and velocity of money but a 

decrease in real interest rate. In other words, with an increase in inflation, people would hold less of 

money balances but not of other assets. This would drive interest rates down.  

Darby (1975) and Feldstein (1976) demonstrated that in the presence of taxes and interest income, 

nominal rates must increase by more than unity in response to an increase in inflation for a given after-

tax real rate of interest. They predicted that the nominal rate would have to increase at a rate of 1 (1-t)⁄  

where t is the proportional tax rate on interest income. The Darby-Feldstein explanation was further 

modified by Nielsen (1981) and Gandolfi (1982) who found that although interest rates increased by 

more than unity in response to a change in inflation rate, the change was not as high as posited by 

Darby (1975) and Feldstein (1976).  

According to the Efficient Capital Market theory of Fama (1970), the amount of information that 

would be reflected in prices depends on how efficient a market is. Fama (1970) proposed three different 

forms of efficiency: (i) weak form (ii) semi-strong form and (iii) strong form. Geyser and Lowies (2001) 

explains that the Fama (1970) hypothesis implies that all information available on the market is 

immediately reflected in the prices so that any increase in inflation would lead to an increase in the 

nominal value of financial assets such as stocks and bonds.  

7.1.2 FAMA AND SCHWERT FRAMEWORK 

Fama & Schwert (1977) adapted the Fisher (1930) framework to test if assets were a hedge against 

inflation. Within the Fama & Schwert (1977) framework, asset returns are tested against a measure of 

actual inflation as well as a measure of expected inflation. The only observable data are the actual 

inflation and nominal asset returns. The expected and unexpected inflation have to be estimated.  

The measure of actual inflation used in most studies has been the CPI inflation rate. Studies focused 

on the UK have however used the RPI inflation rate which until 2013 was the official measure of 

inflation in the United Kingdom (Limmack and Ward, 1988; Barkham et al., 1997; Chen and Foo, 

2006; Hoesli et al., 2008). 

T-bills have traditionally been viewed as a reflection of agent’s changing perception of future inflation 

and have been used as a measure of expected inflation in several studies  (Fama & Schwert, 1977); 

Ferris and Makhija, 1987). Andrande and Clare (1994) pointed out that using T-bill returns as a proxy 

for expected inflation helps to circumvent the problem of generating expected inflation using auxiliary 

regression models. They however found in their study that T-bill rates were not a good proxy for 
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expected inflation in the UK. Similarly, Ratner (1989) found that T-bill interest rates were a good proxy 

for expected inflation over the period studied by Fama & Schwert (1977) but not for the period covered 

by the study of Ferris and Makhija (1987). Consequently, the authors advise that researchers should 

actually test the hypothesis that T-bill interest rates were a good proxy before proceeding to use them.  

Fama and Gibbons (1982) suggested an approach to extract expected inflation rates from T-bill rates. 

This approach has also been used in several studies to estimate expected inflation. The starting point 

of this approach is that the risk-free interest rate is the sum of the expected real rate of return and an 

expected rate of inflation. If the real rate of return is assumed to be constant, then risk-free interest 

rates such as T-bill interest rates can be appropriate proxy for expected inflation. If real interest rates 

are not seen as constant but change over time, they can be estimated using univariate time series 

approaches such as the Box-Jenkins or ARIMA models have (Barkham et al., 1996; Gartzlaff, 1994; 

Hoesli et al., 2008). 

7.1.3 TWO-FUND SEPARATION THEOREM 

Tobin (1958) posits that portfolio choice can be separated into two stages. In the first stage, an investor 

determines the optimal mix of risky assets. Once this mix is determined, the second stage consists of 

adding a certain amount of risk-free assets to the portfolio of risky assets. The fraction of the investor’s 

capital that is put in the optimal portfolio of risky assets versus the risk-free portfolio is based on 

his/her risk-aversion. Investors who do not wish to bear any risk at all will put their capital in the risk-

free asset. 

A risk-free asset is defined as one without any exposure to financial risks. This asset pays a specified 

unit in a currency at a certain date in the future in every possible state of the world (Hoojman, 2016). 

The idea of Tobin (1958) is believed to have helped popularise the idea of index-investing. The famous 

Sharpe ratio of Sharpe (1966) which measures the performance of assets relative to the risk-free rate 

of return was developed from the Two-Fund Separation Theorem. 

Governments are considered creditworthy as they have unlimited taxing authority and can in theory 

print additional money to meet their outstanding obligations. Demodaran (2010) however contends 

that in reality, no asset fully satisfies all the characteristics of a risk-free asset as it is almost impossible 

to eliminate all financial risk. Likewise Hoojman (2016) states that risk-free rates are a theoretical 

concept and the returns on government securities are proxies or estimators of this return. 

Although in practice, the government bonds have been viewed as risk-free assets, some authors have 

questioned this belief. For example, negative yields have been observed on several Euro-area 

government bonds (Capital IQ, 2016). This in itself contradicts the fact that humans prefer direct over 
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delayed consumption (Frederick et al., 2002). Fisher (1930) maintains that nominal bond yields must 

compensate investors for inflation and the time value of money. Additionally, the negligibility of credit 

risk has also been especially questioned following the recent financial crisis. 

Alternative proxies for the risk-free rate include overnight interest swaps such as LIBOR, EONIA, 

SONIA, as well as repurchase rates. Market implied risk-free rates such as those constructed by Hull 

et al. (2004) and Blanco et al. (2015) have also been used within the finance literature.  

Notwithstanding the difficulty in getting a good risk-free proxy, the concept of risk-free rates has been 

a key building block for many theories in finance. These include the modern portfolio theory of 

Markowitz (1952), the two-fund separation theory of Tobin (1958), the Capital Asset Pricing Theorem 

and the Sharpe Ratio of Sharpe (1964) and the option pricing theorem of Black and Scholes (1973). As 

discussed earlier, risk-free interest rates such as T-bill rates have often been used as a proxy for expected 

inflation within the inflation-hedging literature, especially those that work within the Fama & Schwert 

(1977) framework. The existence of a long-run relationship between asset returns and the risk-free rate 

is interpreted to mean that the asset is a hedge against expected inflation (Fama & Schwert, 1977).  

7.2 LITERATURE REVIEW 

7.2.1 INFLATION HEDGING ABILITY OF REAL ESTATE 

In this section, we review the empirical studies on the inflation-hedging ability of real estate. We also 

provide a summary of studies on other markets. Peyton et al. (2008) outlined a number of reasons why 

real estate can be thought to be an attractive investment: (i) merely being part of the investment 

universe (ii) a means to diversify portfolios (iii) its ability to generate attractive risk-adjusted returns (iv) 

its ability to hedge against inflation or deflation (v) a generator of strong cash flows. Similar reasons 

are provided by Hoesli (1994): (i) real estate’s diversification effect owing to the fact that it does not 

have a perfect correlation with other asset classes (ii) real estate’s ability to provide better protection 

against inflation.   

Real estate is believed to be a good hedge against inflation as a general increase in prices is often 

accompanied by rising rent and an increase in the prices of properties. Landlords can adjust rents to 

compensate for inflation. Increases in inflation expectations could also motivate households to invest 

in real estate.  Also, an increase in the demand for real estate would consequently put pressure on house 

prices. An increase in the returns of real estate could also lead to an increase in the number of 

households that invest in real estate. This could lead to an increase in inflation (Zhou and Clements, 

2010). Also, as household income (GDP) increases, inflation increases as well as households increase 

their demand for goods and services. Since a general increase in the demand of goods means a demand 
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for housing and housing services, real estate returns are expected to increase. This way, the return on 

real estate would increase with an increase in inflation. Park and Bang (2012) found that GDP may 

actually dominate CPI in accounting for changes in commercial real estate returns. Miles (1996) 

however observed that although real estate’s income return (rents) can be renegotiated, due to the 

nature of lease agreements, it is only when returns, it is only when rents are renegotiated that the stream 

of payments which gives property its value would reflect price rises. 

Several studies have gone on to empirically examine the ability of real estate to hedge against inflation 

and other macroeconomic variables. If true, the inflation hedging ability of real estate would be very 

desirable especially for pension funds and other institutional investors who need to match real 

(inflation-adjusted) liabilities (Hoesli et al., 2009). In terms of the assets included in these analysis, we 

can distinguish between those that analysed real estate in isolation and those that analyse real estate 

along with other assets. These studies have been summarised in Chapter 3. 

Studies which focus exclusively on real estate tend to carry out sector level analysis within the same 

country These studies have mostly shown that different property types or sectors could have different 

hedging ability (Hartzell et al., 1987; Limmack and Ward, 1988; Barkham et al., 1996; Barber et al., 

1997; Huang and Hudson-Wilson, 2007; Gyourko and Linneman, 1988; Rubens et al, 2001; Zhou and 

Clements, 2010). For example, Gyourko and Linneman (1988) found that although the overall US real 

estate market does not provide a hedge against inflation, different property types provide mixed results. 

Residential real estate were a better hedge than commercial and residential real estate. Rubens et al. 

(1989) found that residential real estate were a hedge against actual, expected and unexpected inflation.  

Other studies have compared the hedging ability of real estate across countries (Stevenson, 2001a; 

Chen and Foo, 2006; Demary, 2009; Demary and Voigtlander, 2009). A few other estate studies have 

compared the hedging ability of different real estate investment vehicles within the same country or 

across countries (Hoesli, 1994; Obereiner and Kurzrock, 2012). 

A multi-asset approach has been adopted by a number of studies. Here, the inflation-hedging ability 

of real estate is analysed along with other assets, mostly stocks and bonds. A few have included 

alternative assets such as commodity and gold. In fact, one of the earliest studies in this area, Fama & 

Schwert (1977), was carried out within a multi-asset context. The inflation hedging ability of real estate 

was analysed along with US Stocks, Bonds and Treasury bills. The study found that US residential real 

estate offered a hedge against both expected and unexpected inflation, US Bonds offered a partial 

hedge and Stocks offered a perverse hedge. Other studies such as Newell (1996), Stevenson and Murray 

(1999), Amenc et al. (2008) and Attie and Roachie (2009) have followed in this trajectory. Alternative 

assets were analysed along with real estate in the studies of Amenc et al. (2009). Attie and Roachie 
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(2009) analysed the inflation hedging ability of commodities along with Stocks and Bonds. Gold was 

analysed in the study of Case et al. (2012). 

Another point of departure for studies on the inflation hedging ability of real estate is the data series 

that is used in the analysis. Most of the early studies within the real estate literature found real estate to 

be a partial hedge against inflation (e.g. Hoesli et al., 1997; Barber et al., 1997; Quan and Titman, 1999) 

Studies on the inflation-hedging ability of real estate stocks however found them to behave more like 

stocks and so were a perverse hedge against inflation. Later studies have however produced mixed 

results (see Demary and Voigtlander, 2009; Amenc et al., 2009; Simpson et al., 2007). Fama (1981) 

attributes the findings relative to stocks to the fact that most models do not take into account variables 

such as real activity, price uncertainty and monetary shocks. It is important to also distinguish between 

short-run and long-relationships. Over longer horizons, several studies have found stocks to have a 

positive relationship with inflation as per the Fisher Hypothesis. Hoesli et al. (2008) attributed the 

mixed result for direct versus listed real estate to difficulties in measuring real estate returns and a lack 

of high frequency data over long periods. Hoesli et al. (2008) further observed that private market 

assets were particularly different in their behaviour relative to inflation than publicly traded assets 

owing to what they described as a ‘data composition’ effect. Consequently, the authors recommended 

that a distinction is made of private market assets and public assets given the conceptual and data issues 

related to each class of assets. Research on private market assets such as real estate entails the use of 

appraisal-based data. Appraisal-based data is known to be influenced by appraiser behaviour and may 

also be distorted by appraisal smoothing. On the other hand, the use of securitised real estate returns 

would imply using data that reflect not only the performance of the underlying real estate assets but 

also capture factures such as leverage of firms and the behaviour of investment managers. Real estate 

was generally found to be an inflation hedge when appraisal based series were used (e.g. Hartzell et al., 

1987; Limmack and Ward, 1988). When security-based return series were analysed, the results often 

suggest that real estate is a perverse hedge against inflation (Park et al., 1990; Liu et al., 1997). Hoesli 

et al. (1997) argue that this may be due to the fact that appraisers typically adjust the value of their 

estimate by an inflation factor which may account for the positive coefficient often observed between 

inflation and appraisal-based real estate returns. 

Two approaches have dominated the empirical literature on inflation hedging within the context of 

real estate: the classical OLS technique of Fama & Schwert (1977) and cointegration analysis The 

classical OLS approach of Fama & Schwert (1977) as well as its variations, is arguably the most used 

analytical tool for analysing the inflation hedging ability of real estate investments. The approach has 

however been criticised by more recent authors who argue among other thing that OLS regression 

analysis is based on the assumption that the underlying data is stationary. If this assumption of 
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stationarity does not hold, the results obtained from such an analysis would be spurious (Granger and 

Newbold, 1974; Phillips, 1986; Brooks, 2008). Spurious relationships occur when two variables are 

found to follow a common pattern and the regression process picks up a statistically significant 

relationship but in actual fact, no causal relationship exists. Tarbet (1996) observed that the results of 

most of the studies that analysed the inflation hedging ability of real estate using regression analysis 

displayed signs of mis-specification. The Durbin-Watson statistics for example were often very low. 

Recent studies have examined the stationarity of the underlying data and select an appropriate model 

according to the data characteristics. Several studies have gone on to analyse the inflation-hedging 

ability of assets using cointegration analysis. The concept of cointegration is based on the belief that in 

the long run certain variables may be associated although there may be a divergence between them 

over the short-term. If the two variables are cointegrated, there is an underlying tendency for them to 

converge towards equilibrium over the long run. Cointegration analysis allows for the relationship 

between non-stationary time series to be investigated, enabling the detection of any underlying 

relationships.   

Although the cointegration approaches of Engle & Granger (1987) and the Johansen (1988, 1991) have 

been applied extensively in the real estate literature, these approaches have also been found to have 

some drawbacks. For example, the two models require all the variables to be integrated of the same 

order.  Again, the Johansen (1988, 1991) approach which is based on maximum likelihood method has 

been described as an asymptotical efficient estimator. This means that the parameter estimates would 

be subject to small sample bias when applied to small sample sizes.   

The ARDL model of Pesaran et al. (2001) on the other hand has gained popularity and has been used 

to test the hedging ability of assets in several markets. The model has several advantages over the 

traditional approaches to cointegration. The model does not require the variables to be integrated of 

the same order i.e. one could the approach could be used to test for cointegration when the variables 

being analysed are a combination of I(0) and I(1). It is also argued in a number of studies that this 

approach provides more robust estimates when the sample size is small (De Vita & Abbott, 2002; 

Atkins & Coe, 2002; Nam and Lee, 2012; Lotz and Gupta, 2013). Shin and Greenwood-Nimmo (2014) 

have further proposed a non-linear ARDL model that is capable of simultaneously capturing the 

asymmetry and nonlinear relationship between different macroeconomic variables.   

The use of ARDL model for econometric analysis has also been bolstered by the introduction of a 

complete module within econometric packages such as EViews and Stata. For example, EViews 9 has 

a complete suite that enables users to carry out comprehensive ARDL analysis. For example, there is 

a module that automatically selects the appropriate lag length for each independent variable and the 
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most parsimonious model. It also includes tests for cointegration using bounds test and a provision 

for directly estimating the error term (co-integrating coefficient) as well as the short and long run 

coefficients. Several diagnostic tests can also be undertaken to determine the suitability of the selected 

model. 

A growing number of studies have used the approach of Pesaran et al. (2001) to analyse the inflation-

hedging ability of real estate especially following the 2008 global financial crisis when interest in the 

relationship between different assets and macroeconomic variables was renewed (see Anari and Kolari, 

2002; Gupta and Ingesi-Loltz, 2011; Zhou and Clements, 2010; Katrakilidis and Tachanas, 2012; Koon 

and Lee; 2013; Bahmani-Oskooee et al., 2016; Yeap and Leen, 2017). None of these studies have 

however been based on the United Kingdom.  

Anari and Kolari (2002) was one of the earliest studies to employ the use of the ARDL model to real 

estate. They examined the impact of inflation on homeowner equity by examining the relationship 

between inflation and housing investments. They used house prices instead of total returns. They 

believed that even though the total return on housing cannot be accurately measured, house prices 

fully reflect the total return on housing. They believed that valuable long-run information could be lost 

when returns or a differenced time series is used in the analysis. Another point of departure for Anari 

and Kolari (2002) is that they used an inflation measure that excluded housing costs to avoid any 

potential bias in the estimation of the effects of inflation on house prices. They found that the Fisher 

coefficients were consistently higher than one, an indication that housing investments are a stable 

inflation hedge over the long run. Anari and Kolari (2002) obtained a Fisher coefficient of 1.08 for 

existing houses and 1.26 for new houses. As this is significantly greater than 1 as predicted by Darby’s 

version of the Fisher equation, they concluded that housing investments are a stable inflation hedge 

over the long run. 

Zhou and Clements (2010) used ARDL cointegration technique to test the long-term relationship 

between real estate prices and different measures of inflation. The inflation measures used were actual 

inflation is proxied by the Chinese Real Estate Price Index, expected inflation is obtained using ARIMA 

estimates. Unexpected inflation is the difference between these two. Even at the 10% significance level, 

Zhou and Clements (2010) could not reject the null hypothesis of no cointegration as the F-statistic 

obtained fell within the lower and upper bounds. They pointed out however that a limitation of their 

study is that they was their use of house prices instead of total returns.  Granger tests however showed 

short-term causal relationship from residential real estate to actual inflation. A bi-directional causal 

relationship was observed between residential real estate and expected inflation. Non-residential real 

estate granger-caused both actual and expected inflation over the period.  
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Koon and Lee (2013) used the ARDL model to investigate the long-run and short-run inflation hedging 

ability of residential real estate in Hong Kong over the period 1980 – 2011. They found that small and 

medium size residential property in Hong-Kong provide a better hedge over both the short and long 

term. Stocks only provide a hedge against inflation in the long term but not the short term. Time 

deposits fail to serve as an inflation hedge in over both the short and long term.  

Bahmani-Oskooee et al. (2016) used both the linear ARDL model of Shin and Pesaran (2001) and the 

nonlinear ARDL (NARDL) model of Shin and Greenwood-Nimmo (2014) to analyse the symmetric 

and asymmetric effects on inflation on house prices in all 52 states in the United States of America. 

They found long-run cointegration between house prices and inflation in 30 of the 52 states. The non-

linear model revealed more cointegration relationship than the non-linear model. The study also 

revealed that income and interest rates have asymmetric effects on house prices in almost all states.  

Yeap and Lean (2017) decomposed CPI inflation and Energy inflation in Malaysia into positive and 

negative changes and used the NARDL model of Shin and Greenwood-Nimmo (2014) to analyse the 

asymmetric and non-linear relationship between house prices and inflation in both the short and long-

run. They found that house prices react asymmetrically to both consumer and energy inflation in the 

short-run but not in the long-run. Only detached houses react symmetrically to consumer and energy 

inflation in the long-run and short run.  

This study differs from these previous studies in a number of ways. First, the cointegration and causality 

tests we implement both take into account the different levels of integration between the variables. 

The ARDL approach to cointegration and the Toda-Yamamoto Granger Causality Test are designed 

to accommodate I(0) and I(1) variables. The Toda-Yamamoto Granger Causality test can also be 

implemented whether or not the variables are cointegrated.   

Also, most of the studies that have used the ARDL framework have been based on the housing market, 

few have analysed the commercial real estate market. This study is also the first to analyse UK 

commercial property market using this approach. In addition to commercial real estate, we have 

analysed a broad range of assets that typify the assets in a DC pension fund’s investment portfolio. In 

all, we analyse 47 assets and sectors.  

Another point of departure in our studies is the fact that we have carried out our analysis using 

alternative measures of inflation and interest rate changes. This way, the results of this studies are 

relevant to a broad range of DC pension funds in the UK, whether they use an inflation benchmark or 

an interest rate benchmark. The results of our simulations using interest rate benchmarks, in a sense, 
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are analogous with the results of studies that have analysed the ability of assets to hedge against 

expected inflation.  

7.2.2 INFLATION HEDGING ABILITY OF OTHER ASSETS 

Apart from real estate, other assets have been suggested as assets that have the potential to hedge 

against inflation. The approaches adopted in the studies of these assets has been more diverse than 

what is observed within the real estate literature.  

7.2.2.1 Stocks 

The inflation hedging ability of stocks has been extensively studied in the finance and economics 

literature. The general belief has been that as stocks represent claims to real estate, the Fisher hypothesis 

should hold for them. Stockholders are expected to be compensated for changes in price levels, on 

average. Also, Miles (1996) stated that the income return on equities is very likely to increase with 

inflation as price movements in themselves would mean higher revenues for companies and hence 

higher dividend pay-outs. 

Studies conducted in the early 70s however found that the total returns on stocks were in actual fact 

negatively correlated with expected inflation, especially over the short-run. In the long-run however, 

stocks may serve as a good hedge against inflation. Three explanations that have been provided for 

this negative effect of inflation on stock returns are the proxy hypothesis (Fama, 1981; Kaul, 1987), 

the money illusion hypothesis (Modigliani and Cohn, 1979) and the information frictions (Barnes et al, 

1999). Spierdijk and Umar (2013) analysed the inflation-hedging ability of US stocks, bonds and T-bills 

at the sector-level between 1983 and 2012. They found that stocks exhibited very little hedging ability 

prior to the 2008 financial crisis. However, following 2008, several stock sectors began to exhibit 

statistically significant hedging ability, even over the short-run. In particular, they found that stock 

sectors and sub-sectors related to oil and gas, utilities, basic materials, industrials and financials possess 

attractive inflation-hedging abilities especially following the 2007-2008 financial crisis period.  They 

also found that short-term bonds such as T-bills exhibit better hedging ability than long-term bonds. 

T-bills in particular were found to be a good hedge against inflation. Boudoukh et al. (1993) also 

analysed the inflation-hedging ability of stocks at the sector level. They analysed the inflation-hedging 

ability of stocks from different industries between 1953 and 1993. They concluded that stocks in non-

cyclical industries offer better protection against inflation.  

7.2.2.2 Bonds 

Inflation-linked bonds have been viewed by many investors as a natural hedge against inflation as the 

real interest rates that ILBs pay is fixed at the beginning of the term. The nominal rate that these bonds 
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pay is adjusted periodically by the rate of inflation (Campbell et al.. 2009). Orsolio (2012) however 

contends that it is a misconception that the primary role of ILBs is to serve as a hedge against inflation. 

This misconception, the author attributes to a lack of understanding as to how ILBs actually work. 

They explain that since index-linked bonds are still bonds, the price changes between the time of issue 

and maturity is subject to the prevailing interest rate. Although price changes may not matter for 

investors who hold ILBs to maturity, it is important for investors with a target a fixed investment 

horizon.  Amenc et al. (2008) observed that the use of inflation-linked bonds and interest rate swaps 

represents a costly approach to inflation-hedging given the relatively low returns of these investments. 

They concluded that a combination of real estate, commodities and index-linked bonds represented a 

better and cost-saving solution to merely using inflation-linked bonds or interest rate swaps. Park and 

Bang (2012) observed that although Korean investors had access to inflation-indexed bonds, these 

assets were not necessarily viewed as an inflation hedge due to the illiquidity of the ILB market. 

A few studies have analysed the inflation-indexed ability of bonds. Surprisingly, these studies did not 

find index-linked bonds to be a good hedge against inflation. 

Short-term bonds are expected to adjust rapidly to changes in expected inflation. Consequently, these 

bonds may not contain an inflation risk premium. This could make them poor hedges against 

unexpected inflation. Miles (1996) stated that conventional bonds may not be a good hedge against 

inflation as the capital values and coupon payments are fixed in nominal terms. 

Fama & Schwert (1977) note that long-term bonds based on rolling forward short-term bond contracts 

are less likely to reject the Fisher hypothesis with respect to long-run expected inflation than interest 

rates based on holding long-term bonds held until maturity. Bekaert and Wang (2010) found that the 

hedging ability of short-term bonds, specifically T-bills, with respect to expected inflation increases 

with investment horizon. Hoevenaars et al. (2008) found similar results with respect to total inflation. 

Bekaert and Wang (2010) found that short-term bonds do not provide protection against unexpected 

inflation. Regarding long-term bonds, Hoevenaars et al.(2008) found that they offer inflation 

protection over the long run and not the short-run. Attie and Roachie (2009) and Bekaert and Wang 

(2010) did not find long-term bonds to be a good hedge against inflation either within the short-run 

or long-run. 

7.2.2.3 Alternatives 

A number alternative assets have been analysed with quite a number of them being found to be a good 

hedge against inflation. In particular, the inflation hedging ability of commodities such as oil and gold 

have received a lot of attention. Commodities have historically been used as a store of value as they 
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represent real assets. It is believed that any shocks or changes within the economy would be quickly 

reflected in the prices of commodities. Bird (1984) found commodities offer a hedge against inflation 

but different commodities behaved differently relative to inflation. Tin, they believed, offered a better 

hedge against inflation particularly because of its low storage cost. Commodities have also been found 

to be a hedge against inflation by studies such as Halpern and Warsager (1998); Greer (2000); Gorton 

and Rouwenhorst (2005) and Worthington and Parlavani (2006). Furlong and Ingenito (1996) however 

point out that since the early 80s, the hedging ability of most commodities has weakened. Of the 

different types of commodities, gold has often been singled out as offering a particularly good hedge 

against inflation (Baur & McDermott, 2010; McCown and Zinnerman, 2006, Dimson et al., 2012). 

However, a significant number of studies question the ability of gold to hedge against inflation. 

Mahdavi and Zhou (1997) point to gold’s volatile returns especially in the long run. Of the six countries 

they analysed, Chua & Woodward (1982) found gold to provide an effective hedge against both 

expected and unexpected inflation only in the USA. Gold was also found by Wang et al. (2011) to 

behave differently in different market conditions. Generally, gold was a good hedge only when 

momentum is high.  

Apart from commodities, very few alternative assets have received attention within the inflation 

hedging literature. Parajuli and Chang (2015) used a generalised capital asset pricing model to determine 

the inflation hedging ability of private equity as opposed to listed stocks. They found that private equity 

offered superior inflation hedging abilities to stocks. 

7.3 METHODOLOGY 

We begin our analysis with an assessment of the performance of the various assets relative to the 

inflation/interest rate measures analysed in this study. We also examine the relationship between asset 

returns and inflation/interest rate changes over the short run. The static and dynamic conditional 

correlations between the various assets and the selected inflation and interest rates are examined to 

give us a sense of the assets that have the closest relationship with inflation and interest rates and how 

this relationship has evolved over time.   

7.3.1 AUTOREGRESSIVE DISTRIBUTED LAG (ARDL) MODEL 

We follow a growing body of studies that have employed the ARDL model to determine the inflation 

long-run inflation/interest rate hedging ability of real estate and alternative assets (Anari & Kolari, 

2002; Zhou and Clements, 2010; Inglesi-Lotz and Gupta, 2011; Katrakilidis and Tachanas, 2012; Koon 

and Lee, 2013; Bahmani-Oskooee et al., 2016; Yeap and Lean, 2017; Fang et al., 2018).  
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ARDL models are time series models where the dependent variable is a function of its own lags, other 

variables and their lags. ARDL is convenient for modelling I(0) and I(1) variables together and for the 

testing of Cointegration relationships. In ARDL, all variables are assumed to be endogenous. Hence, 

both the regressant and regressors enter the models with lags, and they correct for potential 

endogeneity of the regressor through appropriate augmentation (Pesaran and Shin, 1999). A more 

detailed theoretical framework for the ARDL approach along with other models employed in this 

thesis has been provided in Chapter 4.  

Given that 𝑦𝑡 is the dependent variable (asset return) and x1,⋯,xk are k explanatory variables 

(inflation/interest rate), a general ARDL(p,q
1
,…..q

k
) model is given by:  

y
t
=a0+a1t+ ∑ ψ

i
y

t-i

p

t=1

+ ∑ ∑ β
j,lj

xj,t-lj
,+ϵt

q
j

lj

k

j=1

 

               

7(2) 

where: 

𝜖𝑡 are the usual innovations  

𝑎0 is the constant term 

 a1, ψ
i
, β

j,lj
 are respectively the coefficients associated with a linear trend, lags of the k regressors xj,t for 

j=1,⋯k.  

The first step in the application of ARDL models is an estimation of the intertemporal dynamics. Here, 

we are interested in the relationship between 𝑦𝑡 on both its own lags as well as the contemporaneous 

and lagged values of the 𝑘 regressors 𝑥𝑗,𝑡. Equation 7(2) can be cast into the following representation:  
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7(3) 

 

where we use the first difference notation, ∆=(1-L). Given that equation 3 does not explicitly solve 

for 𝑦𝑡, it is often considered as a regression for intertemporal dynamics. Within a more practical setting, 

equation 3 can be restated as:  
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The second representation of the ARDL model attempts to derive the long-run relationship between 

𝑦𝑡 and the 𝑘 regressors. This representation solves for  𝑦𝑡 in terms of 𝑥𝑗,𝑡. Having estimated the 

regression equation in model 4, we can use equation 5 to derive the long-run parameters post-

estimation.  The second representation is formulated thus:  

y
t
=ψ-1(1) (a0

*+a1t+ ∑ β
j
(1)xj,t

k

j=1

+ ∑ β
j
*(L)∆xj,t+ϵt

*

k

j=1

) 

 

   7(5) 

 

Once we establish the existence of a long-run relationship between the variables, we use the error 

correction specification of the ARDL model to estimate the magnitude of the long-run relationship 

and how stable this long-run relationship is. The length of time it takes for the relationship to be 

restored when there is a shock is also investigated using the error-correction specification of the ARDL 

model.  The speed of adjustment reflects the rate at which the long-run equilibrium relationship is 

restored if an unexpected event causes the return of a given asset and the inflation/interest rate 

benchmark to drift apart. In a sense, this shows the ability of the asset to serve as a hedge over the 

short run. 

Equation 6 is the Conditional Error Correction form of the ARDL model in equation (1):  

∆y
t
=a0+a1t-ψ(1)ECt-1+ (ψ*̃(L)∆x,t-1) + ∑ β

j

k

j=1

(L)∆xj,t+ϵt  7(6) 

The error correction term, denoted as ECt-1, represents the Cointegrating relationship when y
t
 and 

x1,t,⋯,xk,t are cointegrated.  

Pesaran et al (2001) propose the bound test for cointegration as a test on parameter significance in the 

Cointegrating relationship of the conditional error correction model. The test is a standard F – or Wald 

test for the following null and alternative hypotheses:  

       H0          ψ(1) ∩  {Bj(1)}
k

j=1
= 0  (Variables are not cointegrated) 
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H1          ψ(1) ∩  {Bj(1)}
k

j=1
≠ 0  (Variables are cointegrated) 

The computed test statistic is compared to two asymptotic critical values that correspond to the polar 

cases of all variables being purely I(0) or purely I(1). This implies that the critical values lie in the lower 

and upper tails, respectively, of a non-standard mixture distribution involving integral functions of 

Brownian motions. When the test statistic is below the lower critical value, one fails to reject the null 

and concludes that cointegration is not possible. If however the test statistic is above the upper critical 

value, one rejects the null and concludes that cointegration is indeed possible. In either cases, 

knowledge of the Cointegrating rank is not necessary. However, when the test statistic falls between 

the lower and upper critical values, it is important to have knowledge of the Cointegrating rank to 

proceed any further.  

Pesaran et al. (2001) offer five alternative interpretations of the Conditional Error Correction model 

depending on whether deterministic terms integrate into the error correction term. The ARDL model 

can be formulated with: (i) No constant and trend; (ii) Restricted constant and no trend; (iii) 

Unrestricted constant and no trend; (iv) Unrestricted constant and restricted trend and (v) Unrestricted 

constant and unrestricted trend.  

7.3.2 GRANGER CAUSALITY TEST – TODA AND YAMAMOTO (1995) 
APPROACH 

One way of thinking about the ability of an asset to hedge against a particular benchmark is to examine 

the contribution that the benchmark makes in the prediction of the asset’s return or vice versa. This 

predictability can be assessed by employing the principles of Granger causality to examine whether the 

past values of returns of the asset being examined aids in the prediction of the inflation/interest rate 

changes or vice versa. This is undertaken using either the restricted or unrestricted versions of the 

models below:  

 𝑥t= ∑ α1i𝑥t-i+ ∑ β
1i

𝑦t-i

l

i=1

+γ
1
Et-1+ε1t

l

i=1

    7(7) 

 y
t
= ∑ α2i𝑦t-i
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i=1

+ ∑ β
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i=1

+γ
2
Et-1+ε2t    7(8) 

Where 𝑥 and 𝑦 represent asset returns and the inflation/interest rate respectively. The restricted 

version of each equation only includes the lagged values of respective dependent variable. The third 
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term in both equations is an error correction term, which should be included where there is evidence 

that the variables are cointegrated (Engle & Granger, 1987). 

Wald test is used to test whether all of the lagged values of 𝑥 and 𝑦 equation are simultaneously equal 

to zero in order to find out whether 𝑥 granger causes 𝑦.  

If ∑ β ≠0, 𝑥 Granger causes 𝑦;  

If both ∑ α ≠0 and ∑ β ≠0, then there exists a bidirectional causality between 𝑥 and 𝑦.  

It is important to understand that granger causality does not imply one variable causes changes in the 

other. When we say that x1t,x2t, …. , xnt Granger-cause 𝑦𝑡, we mean that past values of x are correlated 

with current values of y. Granger-causality can run in one direction, both directions or there is no 

Granger-causality at all.  

Whiles the Granger representation theorem suggests that for there to be cointegration among two 

variables, there must be a causal relationship running in at least one direction, some studies have 

however shown that this is not necessarily the case. For example, Ogaki and Reinhart (1998) provide 

an example to show that a cointegrated time series does not necessarily have an error correction 

representation. Gujarati (2003) also indicated that relationship between two variables does not 

necessarily imply causality.  

In this study, we employ the Granger non-causality approach of Toda and Yamamoto (1995) to test 

the relationship between asset returns and the inflation/interest rates. This approach has the advantage 

that it can be applied without first testing the cointegration properties of the system. Also, if the order 

of integration does not exceed the fitted lag length of the model, then the Toda and Yamamoto (1995) 

approach can be applied whether the series are integrated in levels or first differences (i.e. I(0) AND 

I(1) (Toda and Yamamoto, 1995; Zapata and Rambaldi; 1997; Caporale and Pittis, 1999).  

Following Fang et al. (2018), we specify the following equations to establish the relationship between 

asset returns and the selected inflation/interest rates:  

ln(y
t
)=β

0
1+ ∑ β

1i
1 lny

t-i

K+d max

i=1

+ ∑ β
2i
1 lnxt-i+εt
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2 lnxt-i

K+d max

i=1
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 7(10) 

 

where d max =maximum order of integration.  

The coefficient matrices of the last 𝑑 𝑚𝑎𝑥 lagged vectors in the model not used in the estimation as 

these are regarded as zeros. This way, we can test linear or non-linear restrictions on the first k 

coefficient matrices using the standard asymptotic theory (Toda and Yamamoto, 1995).   

In equations 9 and 10, the hypothesis that asset return is does not Granger-cause inflation/interest rate 

movements is tested using the following: H0: β
0
1=0, i=1,2,……K. The hypothesis that 

inflation/interest rate movements does not Granger-cause asset return changes is also testing as 

follows: H0: β
0
2=0, i=1,2,……K. 

7.4 RESULTS AND DISCUSSIONS 

7.4.1 RELATIVE PERFORMANCE MEASURES 

Before proceeding to carry out the econometric analysis, it is useful to analyse some relative 

performance metrics. This is important for two reasons. The first reason is that many industry 

practitioners rely on these measures to determine which assets produce the best performance relative 

to a benchmark. Secondly, these measures act as a complement to the econometric analysis. For 

example, whiles the econometric models may show that the returns of an asset an inflation move 

closely together, they do not indicate how this would translate into profit or additional returns for an 

investor. In this section, we discuss various measures of performance that explicitly link the returns of 

an asset to the returns of a benchmark. Most investors would want to know how much excess return 

an asset or investment is able to generate relative to a target position or benchmark. The measure of 

return which captures this is the excess return and is calculated thus:  

E(r)=E[rPt-rbt]                                                                   7(11) 

One of the key measures of relative performance within the asset management industry is the tracking 

error. This measures how closely the returns of a portfolio follows (or tracks) the returns of a 

benchmark portfolio. Within the context of this study, inflation/interest rates serve as the benchmark. 

We define tracking error as the standard deviation of the difference between the returns of an 
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investment and the returns on a specified benchmark or target position. Mathematically, this can be 

specified as:  

TEP=σ(rPt-rbt)                                                                    

7(12) 

Bringing together the tracking error and excess returns yields the Sharpe ratio. In this chapter, we 

measure a generalised Sharpe ratio which uses a specific measure of inflation or interest rate as the 

target return. This way, the Sharpe ratio gives the risk (tracking error) per unit of return earned on the 

asset or portfolio.  

Shape ratio=
E[rPt-rbt]

σ(rPt-rbt)
                                                                   7(13) 

 

The results of the various relative performance measures presented in Appendix 7(B) to 7(E) point to 

the fact that real estate, bonds and private equity are the best assets that a DC pension fund can hold 

if it measures its performance against inflation and interest rate changes.  

Based on the relative performance measures, we can conclude that real estate, bonds and private equity 

are the most suitable assets to hold in order to achieve the goal of producing the best performance 

relative to inflation and interest rate changes.  

Although the exact ordering varies, for all the benchmarks analysed, assets with the lowest tracking 

error were bonds and UK direct real estate. In fact, the assets with the 10 lowest tracking error were 

consistently bonds and direct real estate sectors. On the other hand, technology stocks and 

commodities (oil) had the highest tracking error to the inflation/interest rates with tracking errors of 

17.44% and 20.86% per quarter respectively.   

Index-linked bonds and short-term bonds recorded the lowest average excess returns, along with 

commodities. These assets recorded average excess returns of less than 1% per quarter. This is 

consistent with Miles (1996) who found that although commodities generated positive excess returns 

over the period analysed, the excess returns they produced were far below those of equities. The various 

real estate sectors delivered only moderate excess returns, with the office sector delivering the highest 

return of all the real estate sectors (1.51% per quarter). Stocks and private equity sectors took the top 

spots in terms of average excess returns delivered over the period. Technology stocks recorded an 
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average excess return of 3.93% per quarter whiles US venture capital delivered 3.85% per quarter over 

the period.  

Irrespective of the inflation or interest rate benchmark used, real estate assets, bonds and private equity 

sectors consistently delivered the highest return per unit of risk (tracking error). The three commodity 

sectors, aggregate commodities, oil and gold recorded the lowest Sharpe ratios owing to their high 

tracking error relative to the inflation and interest rates and their not so impressive excess return 

figures.  

Another measure of relative performance is the success ratio. The success ratio captures an asset’s 

ability to produce returns in excess of the inflation/interest rate benchmark on a period-by-period 

basis. Real estate consistently produced the highest success ratio of the assets analysed with returns in 

excess of inflation 80% of the time and returns exceeding interest rates over 75% of the time. Again, 

the poorest success ratio came from commodities which only produced positive excess returns relative 

to both inflation and interest rates about 50% of the time.   

This foregoing discussion does not appear to support the view that commodities are a natural hedge 

against inflation. Although real estate does not deliver the excess returns, it is clear from the results 

that its moderate results are commensurate with the low tracking error it produces relative to the 

various inflation/interest rate benchmarks. This gives it a high Sharpe ratio, compared to other assets. 

The returns on real estate are also consistently exceeded the quarterly inflation and interest rates.  
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Table 7(I): Descriptive Statistics – All Assets 

Asset 
Average 
return 

Standard 
Deviation 

Index 
growth 

Autocorrel,
1 

Autocorrel,
2 

Autocorrel,
3 

Autocorrel, 
4 

Inflation and Interest Rates               
UK Consumer Price Index  0.57 0.66 172.15 0.03 0.05 0.01 0.40 

UK Retail Price Index 0.70 0.67 195.94 -0.06 0.11 -0.34 0.43 

UK Treasury Bills (3 months) 1.11 0.70 281.37 0.98 0.95 0.91 0.86 

London Interbank Offering Rate 1.15 0.69 293.80 0.98 0.94 0.90 0.85 

IPD Property Sectors               

IPD All Property 2.09 3.16 712.85 0.75 0.49 0.25 0.11 

Industrial 2.28 2.94 835.76 0.75 0.50 0.28 0.15 

Office 2.08 3.38 707.64 0.77 0.54 0.32 0.15 

Retail 2.23 3.31 809.29 0.73 0.44 0.20 0.10 

Other Real Estate Vehicles        

AREF – All Funds 1.78 3.13 538.38 0.79 0.53 0.31 0.18 

AREF – All Balanced Funds 1.79 3.76 546.03 0.78 0.52 0.27 0.16 

Hybrid Real Estate  1.95 4.14 600.09 0.64 0.33 0.14 0.05 

Bonds        

Index linked bonds - 0-5 Years 1.34 1.28 352.84 0.05 0.30 -0.07 0.10 

Index linked bonds - 5+ years 2.07 3.16 682.35 0.12 -0.08 -0.11 -0.02 

Bonds – All lives 2.03 3.09 623.89 0.13 -0.18 0.07 0.09 

Bonds – 10 + years 2.41 4.49 843.95 0.07 -0.18 0.10 0.02 

Bonds – 10 year  2.19 3.68 701.65 0.16 -0.16 0.01 0.01 

Bonds – 7 year 2.04 2.91 631.55 0.18 -0.08 0.01 0.05 

Bonds – 5 year 1.79 2.39 511.93 0.21 -0.08 0.02 0.08 

Bonds – 3 year 1.63 1.62 452.18 0.34 0.13 0.15 0.15 

Bonds – 2 year 1.44 1.30 381.07 0.52 0.27 0.28 0.24 

Stocks 

Aggregate stocks 2.14 8.09 663.85 -0.01 -0.02 0.00 0.01 

Listed real estate 2.64 11.68 563.36 0.16 0.00 -0.05 -0.11 

Oil 2.74 9.07 928.93 -0.19 0.03 -0.11 0.07 

Basic Materials 2.95 13.07 652.39 0.08 -0.13 -0.13 -0.08 

Industrial 3.29 10.86 1278.45 -0.10 0.16 -0.19 0.08 

Construction 2.80 10.41 800.44 0.01 0.01 -0.18 0.04 

Industrial goods and services 2.91 9.51 985.12 -0.08 0.13 -0.09 0.04 

Consumer goods 3.71 10.63 1907.78 -0.11 -0.02 -0.14 -0.03 

Health care 2.88 7.17 1125.70 0.03 -0.16 0.14 0.12 

Consumer services 2.55 8.75 743.29 -0.02 0.04 -0.03 0.09 

Telecom 3.12 12.57 891.55 0.12 0.07 0.07 0.26 

Technology 4.50 20.82 1230.61 0.08 0.01 0.17 -0.03 

Utilities 3.47 7.11 1946.79 0.10 -0.03 0.27 -0.06 

Banks 3.44 13.75 966.71 0.03 -0.09 0.06 -0.05 

Insurance 3.07 11.54 932.05 -0.07 0.10 -0.02 0.07 

Financial services 3.26 10.34 1210.38 0.15 -0.04 -0.01 -0.18 

Alternatives in US$               

Emerging stock market  3.05 13.17 834.48 0.13 -0.10 0.03 -0.13 

Developed ex UK stocks  2.46 8.73 670.84 0.07 0.00 -0.01 -0.10 

Commodities – all  0.91 11.66 132.40 0.11 -0.03 -0.11 -0.08 

Commodities – oil  2.26 17.46 214.87 0.11 -0.05 0.00 -0.02 

Commodities – gold  1.35 6.40 295.59 -0.02 0.21 0.07 0.07 

Hedge funds  1.72 3.52 483.12 0.25 0.07 0.02 -0.11 

US private equity  3.68 5.01 2874.85 0.38 0.28 0.13 0.09 

US venture capital  4.42 11.72 3805.54 0.60 0.48 0.33 0.04 

Developed ex US private equity  3.56 7.19 2581.47 0.23 0.14 -0.08 0.02 

Emerging private equity  1.87 5.38 519.64 0.43 0.21 0.04 -0.02 

Alterantives in GB£               

Emerging stock market  2.94 14.22 712.59 0.21 -0.06 -0.03 -0.19 

Developed ex UK stocks  2.29 9.67 572.86 0.22 0.04 -0.08 -0.16 

Commodities – all  0.78 12.48 113.07 0.15 -0.09 -0.08 -0.02 

Commodities – oil  2.18 18.27 183.49 0.15 -0.08 0.00 0.00 

Commodities – gold  1.22 8.31 252.42 0.09 -0.01 0.01 0.11 

Hedge funds  1.57 6.11 412.56 0.19 -0.04 -0.08 -0.17 

US private equity  3.58 7.67 2454.95 0.25 0.05 0.03 -0.01 

US venture capital  4.26 12.54 3249.70 0.54 0.35 0.22 -0.02 

Developed ex US private equity  3.64 11.00 2204.42 0.16 -0.03 -0.08 -0.05 

Emerging private equity  1.81 8.36 443.74 0.28 -0.04 -0.04 -0.15 
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7.4.2 CORRELATION ANALYSIS 

An interesting result from the Pearson (Static) and dynamic correlation coefficients presented in Table 

7(II) is the fact that indexed-linked gilts were among the assets with the lowest correlation to inflation. 

The total returns of inflation-indexed bonds were found to be more highly correlated with interest 

rates than with inflation rates, against which their interest payments and face value are indexed.  Short-

term index-linked gilts for example had the highest correlation with T-bill interest rates. The results of 

the correlation analysis does not collaborate the assertion of Stump (2003) inflation-linked bonds are 

directly linked to changes in inflation than other types of bonds. Schofield (1996) explains that the low 

correlation observed between index-linked bond returns and inflation is due to the fact that regression-

based analysis do not show the strong association expected between index-linked bonds and inflation 

owing to the fact that the correlation analysis does ignores the impact of lagged indexation.   

As in Amenc et al. (2008), we found that nominal bonds have a negative correlation with changes in 

inflation but a positive correlation with interet rates. Amenc et al. (2008) explained that bond returns 

can be decomposed into real yield and expected inflation. In the short run when expected and actual 

realised inflation deviate from each other, the returns of bonds would have a low or even negative 

correlation with inflation. In the long run however, they found a long-run cointegrating relationship 

between inflation and bond returns. This result was attributed to the fact that, in the long-run, expected 

and actual inflation converge.   

The only benchmark that the various real estate sectors were positively correlated with was the UK 

RPI. The correlation between real estate and CPI inflation as well as the two interest rates was negative. 

Miles (1996) found the correlation of UK commercial property to be negative. However, the magnitude 

(-0.05) of the correlation coefficient was 0.05. They concluded that there low correlation implies that 

there may actually be no immediate link between nominal returns on commercial real estate and 

inflation. Tarbet (1996) concluded that static regression was not suitable for real estate given the long 

rental review periods which impose a nominal rigidity on the market.  

UK stocks and commodities were found to be highly correlated with both CPI and RPI inflation based 

on both static and dynamic conditional correlation estimates. Some stock sectors also had a high 

correlation with interest rates. Banking sector stocks for example exhibited one of the highest 

correlations with respect to interest rates. Amenc et al. (2008) linked this to the fact stocks such as 

utilities and infrastructure stocks typically have revenues that are highly correlated with inflation and 

so provide returns that tend to be in line with inflation. 

  



  

240 
 

Table 7(II): Static and Dynamic Correlations  

  CPI RPI LIBOR T-BILL 

Real Estate 
Static  
Correl. 

DCC  
Static  
Correl. 

DCC  
Static  
Correl. 

DCC  
Static  
Correl. 

DCC  

IPD All Property -0.09 -0.06 0.21 0.07 -0.15 -0.14 -0.19 -0.14 

IPD Industrial -0.07 -0.06 0.19 0.05 -0.11 -0.11 -0.14 -0.12 

IPD Office -0.13 -0.13 0.17 0.03 -0.20 -0.04 -0.23 -0.03 

IPD Retail -0.05 -0.02 0.22 0.07 -0.06 -0.14 -0.09 -0.14 

Other Real Estate Vehicles                 

AREF – All Funds -0.12 -0.06 0.19 0.05 -0.12 -0.14 -0.16 -0.15 

AREF – All Balanced Funds -0.08 -0.10 0.23 0.07 -0.10 -0.11 -0.14 -0.12 

Hybrid Real Estate  -0.06 -0.05 0.18 0.03 -0.11 -0.08 -0.13 -0.06 

Stocks                 

Aggregate stocks 0.10 0.06 0.29 0.23 0.05 0.14 0.03 0.21 

Oil 0.08 0.07 0.04 0.00 0.06 0.14 0.02 0.02 

Basic Materials 0.27 0.30 0.31 0.27 0.05 0.12 0.01 0.08 

Industrial 0.14 0.11 0.11 0.14 0.01 0.00 0.00 0.10 

Construction 0.19 0.16 0.15 0.13 -0.02 -0.11 -0.03 -0.06 

Industrial goods and services 0.17 0.13 0.15 0.16 0.03 0.04 0.02 0.15 

Consumer goods 0.22 0.09 0.11 0.09 0.05 -0.01 0.04 0.03 

Health care 0.08 -0.03 -0.12 -0.12 0.10 0.02 0.12 0.16 

Consumer services 0.07 0.03 0.05 0.03 0.02 0.03 0.02 0.12 

Telecom 0.01 -0.03 -0.01 0.01 0.07 0.18 0.06 0.17 

Technology -0.04 -0.03 0.08 0.10 0.02 0.16 -0.01 0.23 

Utilities 0.03 -0.02 0.02 0.04 0.16 0.10 0.18 0.29 

Banks 0.03 -0.03 0.05 -0.02 0.13 0.15 0.15 0.31 

Insurance 0.02 -0.05 0.00 -0.02 0.00 0.05 0.01 0.24 

Financial services 0.06 0.06 0.15 0.13 -0.02 0.07 -0.04 0.14 

Listed real estate 0.04 0.06 0.11 0.07 -0.07 -0.04 -0.07 0.04 

Index Linked Bonds                 

Index linked bonds - 0-5 Years 0.07 0.06 0.15 0.16 0.34 0.27 0.35 0.37 

Index linked bonds - 5+ years -0.05 -0.04 0.04 0.07 0.01 0.05 0.02 0.22 

Bonds                 

Bonds – All lives 0.02 -0.06 -0.31 -0.29 0.20 0.10 0.24 0.12 

Bonds – 10 + years -0.06 -0.13 -0.32 -0.32 0.13 0.08 0.15 0.10 

Bonds – 10 year  0.01 -0.04 -0.28 -0.20 0.18 0.10 0.21 0.16 

Bonds – 7 year 0.06 -0.01 -0.26 -0.20 0.23 0.12 0.28 0.17 

Bonds – 5 year 0.06 0.00 -0.26 0.07 0.25 0.13 0.31 0.17 

Bonds – 3 year 0.09 -0.01 -0.29 -0.24 0.40 0.23 0.45 0.22 

Bonds – 2 year 0.10 -0.05 -0.29 -0.25 0.53 0.29 0.60 0.27 

Alternatives in GB£                 

Emerging stock market 0.12 0.14 0.22 0.17 0.00 0.06 -0.08 -0.06 

Developed ex US stocks 0.09 0.10 0.26 0.18 0.03 0.09 -0.07 0.03 

Commodities - all 0.16 0.23 0.50 0.40 0.08 0.14 -0.01 0.05 

Commodities - oil 0.06 0.17 0.39 0.35 0.09 0.16 0.01 0.05 

Commodities - gold 0.11 0.19 0.24 0.29 -0.10 -0.06 -0.17 -0.16 

Hedge funds 0.08 0.08 0.29 0.21 0.22 0.35 -0.01 0.06 

US private equity 0.12 0.14 0.27 0.21 0.05 0.17 -0.09 -0.02 

US venture capital 0.02 0.09 0.12 0.12 0.13 0.32 0.03 0.14 

Developed ex US private equity 0.10 0.15 0.29 0.27 0.06 0.11 -0.06 -0.01 

Emerging private equity 0.12 0.16 0.22 0.20 -0.15 -0.01 -0.21 -0.09 

Alternatives (IN US$)                 

Emerging stock market  0.11 0.13 0.17 0.15 0.00 0.06 -0.04 -0.01 

Developed ex UK stocks  0.06 0.04 0.19 0.11 0.03 0.09 0.00 0.05 

Commodities – all  0.15 0.18 0.47 0.36 0.08 0.14 0.04 0.11 

Commodities – oil  0.05 0.13 0.36 0.32 0.09 0.16 0.04 0.09 

Commodities – gold  0.07 0.14 0.17 0.18 -0.10 -0.06 -0.12 -0.19 

Hedge funds  0.03 0.04 0.25 0.14 0.22 0.35 0.17 0.30 

US private equity  0.10 0.08 0.23 0.14 0.04 0.17 0.00 0.10 

US venture capital  -0.01 0.02 0.05 0.01 0.13 0.32 0.09 0.23 

Developed ex US private equity  0.10 0.14 0.33 0.30 0.06 0.11 0.00 0.05 

Emerging private equity  0.11 0.12 0.19 0.13 -0.15 -0.01 -0.20 -0.06 
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Figure 7(1) - Dynamic Conditional Correlations – Selected Assets 
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7.4.3 INFLATION/INTEREST RATE HEDGING ABILITY OF ASSETS 

In order to carry out the cointegration analysis, we first test for stationarity in the various data series 

using the Augmented Dickey Fuller (ADF) test and the Phillips Perron unit root test.  The results were 

presented earlier in Chapter 4 (Table 4(IV)). As in Zhou and Clements (2010), the results were mixed. 

Although most of the asset returns were found to be I(1), a few assets such as the IPD office sector, 

utilities stocks, technology stocks, index-linked bonds and aggregate bonds were found to be I(0). 

LIBOR interest rates were not found to be stationary by the ADF test, even after first differencing, 

however the Phillips Perron approach did. As explained in the methodology section, the ARDL model 

of Pesaran et al. (2001) is able to handle a mix of I(0) and I(1) variables within the same equation. 

Hence, we proceed to use this approach in the estimation of the long-run relationship between 

inflation/interest rates and asset returns.  

Following Anari & Kolari, (2002) and Zhou and Clements (2010), we use the bounds test to examine 

the long-run cointegration relationship between inflation/interest rates and the returns of real estate, 

alternative and traditional asset classes and sectors.  If the computed F-statistic is higher than the upper 

bound critical value, we reject the null hypothesis of no cointegration and accept the alternative 

hypothesis. Once we conclude that there is a long-run cointegration relationship between an asset’s 

return and the inflation/interest rate, we proceed to use an error-correction specification of the ARDL 

model to determine the long-run coefficient and the error-correction coefficient. The long-run 

coefficient shows the relationship between the variables when there is no short-run shock. In other 

words, it is the relationship from which the variables deviate but always return to. To determine 

whether there is a stable long-run relationship between an asset’s return and the inflation/interest rate, 

it is important for the error-correction coefficient to be negative and significant. The error-correction 

coefficient shows how quickly the equilibrium relationship between the returns of an asset and 

inflation/interest rate is restored if a shock causes the returns of the asset and the inflation/interest 

rate to drift apart.   

We use the Block Exogeneity Wald Test (Granger Causality Test) to analyse the short-run relationship 

between inflation/interest rates and the asset returns. Granger Causality Tests are used to determine 

whether a change in inflation/interest rates induces a change in the return of a particular asset or vice 

versa. If there is a unidirectional or bidirectional causality, we can conclude that there is a short-run 

relationship between inflation and the asset being analysed (Chu and Sing, 2004; Zhou and Clements, 

2010). In carrying out the causality test, we use the approach of Toda and Yamamoto (1995). Like the 

ARDL model, the Toda and Yamamoto (1995) approach can be used irrespective of the order of 

integration of the variables and whether or not the variables are cointegrated. 
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In the following sections, we present the results of both the ARDL analysis and the Toda and 

Yamamoto Granger Causality Tests. We put the assets into four groups – real estate, alternatives, stocks 

and bonds.  

7.4.3.1 Real Estate  

The results show that UK direct real estate is a good hedge against all the inflation and interest rates. 

Apart from the office sub-sector which was found to not be cointegrated with CPI inflation, almost all 

the other sectors significantly cointegrated with the four inflation and interest rates. This result means 

that irrespective of the inflation/interest rate benchmark that is of interest to a DC pension fund, 

including direct real estate in its portfolio would result in a better portfolio. As in this study, 

Wurtzebach et al. (1991) found the UK office real estate sector to be a poor hedge against inflation, 

especially when vacancy rates were taken into account. 

The long-run coefficients confirm the fact that UK real estate provides a complete hedge against 

inflation and interest rate changes as the coefficients are all above 1. The long-run coefficient for the 

IPD industrial real estate sector relative to RPI inflation was 2.50, the highest of the real estate sectors 

and in fact for all the assets analysed in this study. The result implies that, on average, the industrial 

real estate sector returns increased by 2.5% for any 1% increase in RPI inflation. The results of Park 

and Bang (2012) were even higher. The long-run elasticity of the CBRE office returns was estimated 

at 6.261, meaning that for every 1% change in inflation, office real estate prices increased by 6.26%.   

We however found that the speed of adjustment of direct real estate returns to equilibrium following 

interest rate and inflationary shocks was however among the lowest of the various asset classes 

analysed. This is also quite consistent with the results of many other studies that analysed real estate. 

Park and Bang (2012) estimated that the error-correction coefficient for inflation and commercial real 

estate in was -0.016 compared to for equities that was -0.292.  Similarly, Barber and White (1995) 

observed that it takes time for real estate to react to inflationary shocks. Even after three years, less 

than 40% of the erosion in real values caused by inflation had been recaptured. 

An issue of concern for econometric analysts when dealing with private market assets is that of 

appraisal smoothing and its impact on the results obtained when the returns of these assets are used 

along with publicly traded assets. Appraisal smoothing, as discussed earlier, does not only affect the 

volatility of private market assets but impacts on the turning points – i.e. the ability of asset returns to 

respond to changes in market fundamentals (Devaney and Diaz, 2011). Using the unsmoothed direct 

real estate series obtained from the J. Fisher et al., 2003) model, we did not see any significant change 

in the results of the Bounds test. We however observe a modest increase in the speed of adjustment 
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to equilibrium. For example, before unsmoothing, the speed of adjustment of the retail real estate 

sector to CPI inflation was 0.62% per quarter but increased to 2.25% per quarter when the series was 

unsmoothed. Similarly, the retail real estate sector’s speed of adjustment following a shock to T-bill 

interest rates increased from 0.37% per quarter to 5.96% per quarter. These figures still fell below what 

was obtained for publicly traded assets such as stocks and bonds. This points to the fact that private 

market assets adjust more slowly to changes in market fundamentals.  Tarbet (1996) explains that due 

to the long rental review periods, even if inflation is properly forecast, the real estate market could still 

not quickly react to inflationary shocks. Tarbet (1996) explains that due to the long rental review 

periods, even if inflation is properly forecast, the real estate market could still not quickly react to 

inflationary shocks.  

The error correction coefficients in Hoesli et al. (2008) were found to be negative and significant in all 

the models analysed. However, they found that the adjustment to inflation shocks occurs gradually, 

though the error correction process rather than through direct, in-period changes to returns.  For the 

analysis using UK data, the magnitude of the coefficients ranted from -0.15 in the stocks and REIT 

model. However, the coefficient for private real estate was only -0.04. When the unsmoothed series 

was used in the analysis, Hoesli et al. (2008) found that the error-correction coefficient was higher, 

indicating a faster adjustment to long-run equilibrium position. Similarly, the error-correction 

coefficient was higher when the MIT transaction based real estate series was used for the US analysis 

than when the NCREIF series was used.   

Another issue worth exploring is whether the vehicle used to access the direct real estate market has 

an impact on the inflation or interest rate protection received by an investor. Table 7(III) contains the 

results obtained when we analysed the returns of 4 different direct real estate vehicles and the selected 

inflation and interest rate benchmarks. The 4 vehicles are the IPD All Property Portfolio, the 

AREF/IPD All Unlisted Funds Index, the AREF/IPD Balanced Unlisted Funds Index and a Hybrid 

real estate fund with a 70:30 allocation to direct real estate and listed real estate respectively. The results 

show that all four vehicles possess the ability to hedge against the selected inflation and interest rate 

benchmarks. The noticeable difference is the speed of adjustment following any disequilibrium. The 

speed of adjustment was consistently higher for the hybrid real estate series irrespective of the 

benchmark being hedged against. This may also be as a result of the fact that the hybrid real estate 

series contains some exposure to publicly traded asset (listed real estate) and so may be responding 

faster to changes in market fundamentals. 
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Table 7(III) Autoregressive Distributive Lag Model - Direct Real Estate  

 Bounds Test Long-Run Coefficient Error-Correction Coefficient 

 CPI RPI LIBOR TBILL  CPI RPI LIBOR TBILL  CPI RPI LIBOR TBILL  

IPD Property Sectors             

IPD All Property 3.30* 14.18*** 7.62*** 10.03*** 1.45*** 2.15** 1.17*** 1.17*** -0.0062** -0.0005*** -0.0324*** -0.0035*** 

Industrial 5.66** 13.12*** 5.29** 5.99** 1.84*** 2.5 1.21*** 1.20*** -0.0050*** -0.0004*** -0.0201*** -0.0240*** 

Office 2.49 10.71*** 7.98*** 9.50*** - 2.02** 1.15*** 1.15*** - -0.0005*** -0.0357*** -0.0037*** 

Retail 4.35** 13.84*** 6.43*** 9.06*** 1.38*** 1.84*** 1.20*** 1.20*** -0.0062* -0.0008*** -0.0304*** -0.0037*** 

Other Real Estate Vehicles            

AREF – All Funds 9.94*** 14.68*** 3.51* 4.13** 1.63*** 2.01** 1.12*** 1.12*** -0.0105*** -0.0072** -0.0257*** -0.0283*** 

AREF – All Balanced Funds 8.48*** 14.15*** 3.87* 4.32** 1.56*** 1.99** 1.11*** 1.19*** -0.0091*** -0.0059** -0.0247*** 0.0261*** 

Hybrid Real Estate  7.97*** 8.45*** 6.89*** 3.29* 1.53*** 1.60*** 1.14*** 1.16*** -0.0195*** -0.0146*** -0.0598*** -0.0407*** 

Unsmoothed IPD Property Sectors            

IPD All Property 4.57** 11.04*** 6.42*** 7.94*** 1.48*** 2.02** 1.17*** 1.18*** -0.0157*** -0.0137*** -0.0691*** -0.0718*** 

Industrial 6.09*** 10.94*** 4.83** 4.35** 1.72*** 2.37 1.22*** 1.21*** -0.0141*** -0.0098*** -0.0442*** -0.0493*** 

Office 3.31* 8.83*** 6.68*** 7.23*** 1.43*** 2.00* 1.15*** 1.16*** -0.0118*** -0.0133*** -0.0801*** -0.0767*** 

Retail  3.78* 9.78*** 3.74* 5.72*** 1.34*** 1.90** 1.12*** 1.13*** -0.0225*** -0.0138*** -0.0474*** -0.0596*** 

 

Table 7(IV)  Block Exogeneity Wald Test (Granger Causality Test) – Real Estate 

 

Dependent variable: Asset Return  

(Chi-Square) 

Dependent variable: Inflation/Interest rate  

(Chi-Square) 

 CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL 

IPD Property Sectors            

IPD All Property 5.29* 26.95*** 10.52** 6.65* 2.13 35.13*** 9.90** 24.52*** 

IPD Industrial 11.38*** 31.41*** 24.11*** 7.36* 2.87 14.60*** 10.97 30.87*** 

IPD Office 3.87 19.80*** 4.99 6.16 1.73 24.32*** 8.61** 15.28*** 

IPD Retail 4.89* 28.50*** 13.59*** 7.20* 1.92 38.73*** 6.29* 30.06*** 

Other Real Estate Vehicles         

AREF – All Funds 2.93 13.12** 5.84 13.11** 2.17 47.43*** 45.57*** 47.43*** 

AREF – All Balanced Funds 2.69 13.69*** 7.57* 6.90* 1.33 47.43*** 32.07*** 34.98*** 

Hybrid Real Estate  13.89*** 13.99*** 8.58** 10.52** 0.91 18.29*** 15.68*** 14.94*** 

Unsmoothed IPD Property Sectors         

IPD All Property 6.08** 25.37*** 11.20** 7.91** 0.75 33.57*** 4.85 24.09*** 

IPD Industrial 20.15*** 26.54*** 22.55*** 7.35* 7.81* 28.51*** 7.83** 32.72*** 

IPD Office 5.00* 20.01*** 9.19** 9.75** 0.68 21.95*** 4.74 13.97*** 

IPD Retail 3.87 22.02*** 13.93*** 4.37 2.63 29.73*** 7.32** 33.12*** 
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The results of the Toda Yamamoto Granger Causality test show that real estate is a good hedge against 

inflation and interest rates over the short-run as causality is observed in at least one direction between 

inflation/interest rate changes and real estate returns. The test revealed a bi-directional causal 

relationship between real estate returns and inflation/interest rate movements with an exception being 

CPI inflation which is Granger-caused by real estate return changes but not the other way round. Our 

results confirm that of Chu and Sing (2004) who found short-term granger causality between real estate 

prices and inflation. On the other hand, Zhou and Clements (2010) found no dynamic short-run causal 

relationship between real estate prices and various measures of inflation in China. They however had 

mixed results when they analysed residential and non-residential real estate sectors separately. 

7.4.3.2 Alternatives 

Amenc et al. (2008) found alternative assets to be a good hedge against inflation. However, we found 

very few of the to be cointegrated with inflation, a noticeable exception being US private equity and 

hedge funds was a hedge against both measures of inflation. Quite a number of alternative assets were 

however found to be able to hedge against both interest rates. 7 out of the 10 alternative assets a hedge 

against at least one interest rate measure and 6 were a hedge against both. 

Regarding the long-run relationship between the various alternative assets and the two interest rates, 

we found that most produced a coefficient greater than 1, implying that they were a complete hedge 

against inflation. Commodities however produced a long-run coefficient of 0.92 and 0.95 relative to 

LIBOR and T-bill interest rates respectively. This implies that they were only a partial hedge against 

inflation. 

The error-correction coefficients were remarkably high for many alternative assets. Commodities for 

example recorded an error correction coefficient of 0.1537 relative to LIBOR and 0.1671 relative to 

T-bills, suggesting that about 77% and 86% respectively of a disequilibrium is corrected per annum. 

As discussed in the data chapter, the issue of return smoothing does not pertain only to real estate. 

Hedge funds and other private market alternatives have also been reported to suffer from significant 

autocorrelation in return patterns (Fund and Hsieh, 2000; Eling, 2006; Getmansky et al., 2004). 

Consequently, we used the technique of J. Fisher et al., 2003) to unsmooth the returns of all private 

market alternative assets namely hedge funds and private equity. Like real estate, unsmoothing of the 

returns of the private market alternative assets had a noticeable impact on the speed of adjustment for 

most alternative assets that are not publicly traded. The results of the Bounds test however did not 

change significantly.   
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Another challenge in a UK DC fund holding alternative assets is that they are exposed to foreign 

exchange risk. Converting the returns of an asset from one currency to another may distort the time-

series features of the asset and possibly its ability to hedge against inflation and interest rates. We found 

that converting the rates from US$ to UK pound sterling led to some of the assets losing their 

inflation/interest rate hedging ability.  

Unlike the results of the long-run ARDL estimates, we found that several of the alternative assets had 

a short-run causal relationship with UK inflation/interest rates. This result holds whether the returns 

were in US dollars or converted into pound sterling. 
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Table 7(V) Autoregressive Distributive Lag Model – Alternative Assets 

 Bounds Test Long-run coefficient Error correction coefficient 

 CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL 

Alternatives in US$             

Emerging stock market  1.91 4.99** 2.05 2.65 - 1.60*** - - - -0.0329*** - - 

Developed ex UK stocks  1.95 3.31* 6.76*** 4.52** - 1.32*** 1.13*** 1.14*** - -0.0389*** -0.1400*** -0.1098*** 

Commodities – all  2.83 1.71 3.95* 4.04* - - 0.92*** 0.95*** - - -0.1537*** -0.1671*** 

Commodities – oil  2.13 1.04 2.02 2.37 - - - - - - - - 

Commodities – gold  1.52 1.19 2.76 2.94 - - - - - - - - 

Hedge funds  8.38*** 6.81*** 7.90*** 8.40*** 1.24*** 1.22*** 1.08*** 1.09*** -0.030*** -0.0389*** -0.1134*** -0.1232*** 

US private equity  5.91** 6.72*** 7.07*** 6.23*** 1.96*** 1.94*** 1.45*** 1.44*** -0.0083*** -0.0008*** -0.0375*** -0.0379*** 

US venture capital  2.92 3.04 3.52* 4.44** - - 1.46*** 1.48*** - - -0.0345*** -0.0372*** 

Developed ex US private equity  1.95 0.96 3.17 4.25** - - - 1.53*** - - - -0.0290*** 

Emerging private equity  1.98 2.95 3.53* 3.75* - - 1.23*** 1.15*** - - -0.0018*** -0.0269*** 

Alternatives in GB£             

Emerging stock market  1.98 6.28*** 2.62 3.41* - 1.68***  1.20*** - -0.0313***     - -0.0867*** 

Developed ex UK stocks  2.4 7.20*** 6.47*** 5.79** - 1.41*** 1.11*** 1.12*** - -0.0448*** -0.1358*** -0.1213*** 

Commodities – all  2.12 1.37 3.15 2.85 - - - - - - - - 

Commodities – oil  0.24 0.94 2.02 1.97 - - - - - - - - 

Commodities – gold  1.98 0.9 4.63** 4.82** - - 1.07*** 1.07*** - - -0.0511*** -0.0530*** 

Hedge funds  3.54* 4.34** 8.63*** 3.34* 1.18*** 1.18*** 1.06*** 1.07*** -0.0456*** -0.0484*** -0.1169*** -0.0944*** 

US private equity  2.35 3.76* 8.69*** 5.71** - 1.83*** 1.45*** 1.42*** - -0.0119*** -0.0487*** -0.0487*** 

US venture capital  2.04 3.86* 2.77 3.25 - 1.71*** - - - -0.0211*** - - 

Developed ex US private equity  2.33 1.81 3.13 4.02* - - - 1.44*** - - - -0.0490*** 

Emerging private equity  0.26 2.08 2.71 4.01* - - - 1.06*** - - - -0.0576*** 

Unsmoothed Private Market Alternatives             

Hedge funds  2.96 3.59* 6.82*** 4.60* - 1.27*** 1.10*** 1.11*** - -0.0464*** -0.1573*** -0.1237*** 

US private equity  2.62 1.8 4.92** 3.25 - - 0.90*** - - - -0.1988*** - 

US venture capital  2.44 1.09 3.52* 1.9 - - 1.47*** - - - -0.0345*** - 

Developed ex US private equity  0.36 1.17 2.78 2.97 - - - - - - - - 

Emerging private equity 8.74*** 10.54*** 6.81*** 4.52* 1.17*** 1.17*** 1.00*** 1.02*** -0.0542*** -0.0569** -0.2387*** -0.1642*** 
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Table 7(VI)  Block Exogeneity Wald Test (Granger Causality Test) – Alternative Assets 

 
Dependent variable: Asset Return 

(Chi-Square) 
Dependent variable: Inflation/Interest rate 

(Chi-Square) 

 CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL 

Alternative Assets (In US$)            

Emerging stock market  0.34 12.82** 8.42** 11.28** 0.78 18.67*** 3.57 8.91* 

Developed ex UK stocks  0.44 10.50** 7.45* 3.96 0.40 16.07*** 7.45* 3.96 

Commodities – all  3.78 1.96 16.43*** 1.67 3.77 0.61 1.43 3.55 

Commodities – oil  23.96*** 23.16*** 15.56*** 3.17 6.43 18.27*** 1.01 1.64 

Commodities – gold  4.03 0.02 1.69 4.03 14.67*** 1.39 0.73 1.37 

Hedge funds  0.1 8.69* 6.26* 0.88 0.11 14.90*** 4.82 18.33*** 

US private equity  6.87** 16.56*** 7.89** 4.90 0.97 18.72*** 6.74* 15.84*** 

US venture capital  1.64 4.51 1.93 3.08 1.71 2.88 2.19 5.29 

Developed ex US private equity  0.34 8.34* 1.10 3.52 1.45 36.62*** 6.41* 34.85*** 

Emerging private equity  3.01 7.11 5.44 7.09* 3.72 26.41*** 15.04*** 12.81*** 

Alternatives in GB£         

Emerging stock market  0.00 12.41** 8.80** 11.96*** 0.01 38.38*** 4.72 18.74*** 

Developed ex UK stocks  0.16 15.02*** 7.00* 5.46 0.01 34.77*** 9.34** 24.96*** 

Commodities – all  28.84*** 13.62*** 10.42** 0.81 4.64 14.75*** 0.70 9.17** 

Commodities – oil  29.96*** 22.63*** 11.27** 2.92 6.62 18.72*** 0.52 5.08 

Commodities – gold  0.96 6.46 6.47* 8.24** 0.75 16.96*** 1.04 11.36*** 

Hedge funds  0.07 11.76*** 0.42 2.88 1.58 19.98*** 6.88** 56.42*** 

US private equity  2.90 20.88*** 6.16** 7.74* 1.18 34.37*** 14.35*** 48.67*** 

US venture capital  1.69 12.55** 9.06** 6.21 1.01 8.18* 6.69* 21.30*** 

Developed ex US private equity  1.03 9.52** 3.68 3.98 0.40 38.86*** 8.36** 44.66*** 

Emerging private equity  2.70 11.37** 6.34* 7.93** 0.59 46.47*** 15.72*** 33.08*** 

Unsmoothed Private Market Alternatives         

Hedge funds  0.09 8.39** 6.25* 0.87 0.11 9.01** 4.82 18.83*** 

US private equity  7.17** 16.55*** 6.82* 4.90 0.90 19.59*** 7.98** 15.84*** 

US venture capital  1.26 4.21 9.88** 3.08 1.13 3.23 1.72 5.29 

Developed ex US private equity  0.56 8.20* 3.23 3.52 1.46 38.71*** 6.51* 34.85*** 

Emerging private equity 5.65* 7.53 6.69 7.09* 1.81 28.65*** 14.13 12.81*** 
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7.4.3.3 Bonds 

Like real estate, almost all the bond sectors were a hedge against inflation and interest rate movements. 

In a few cases where bonds failed to hedge against interest rates, these were long-term bonds with 

maturity exceeding 7 years. This suggests that short-term bonds are more likely to keep up with 

inflation and interest rate changes than long-term bonds. 

The long-run coefficients for the various bond sectors always exceeded 1 – implying nominal bonds 

were a complete hedge against inflation and interest rate changes. Interestingly, we find that the long-

run coefficients increased with the maturity of the bonds. For example, a 10% change in CPI inflation 

results in a 12.5% change in the return of 2 year bonds, 12.7% change in the return of 3 year bonds 

and so on, up to a 14.3% change in the return of bonds with maturity greater than 10 years. This result 

also provides evidence of an upward sloping yield curve. 

The speed of adjustment to equilibrium also follows a noticeable trend. The speed of adjustment is 

were found to be higher for shorter maturity bonds than for longer maturity ones providing further 

proof that shorter-maturity bonds had a more stable long-run relationship with inflation and interest 

rate changes. 

Inflation indexed bonds have long been viewed as a natural hedge against inflation. However, as noted 

in our earlier discussions, the inflation-hedging ability of these bonds has been questioned by some 

authors. The results of the correlation analysis undertaken earlier also appear to cast doubt on the 

inflation-hedging ability of index-linked bonds. However, as noted by Schofield (1996), correlation 

analysis may not be able to pick up the relationship between inflation and index-linked bonds due to 

the fact that correlation analysis only works with contemporaneous relationships.  

In order to investigate the hedging ability of inflation-indexed bonds, analyse the relationship between 

inflation/interest rates and the total returns from index-linked bonds. We include index-linked bonds 

with maturity less than 5 years and those with maturity over 5 years.  The results show that the total 

returns of both index linked bonds are a good hedge against inflation and interest rate movements over 

the long-run as both bonds were cointegrated with all 4 inflation/interest rate benchmarks.  

The long-run coefficients are also greater than one, demonstrating that index-linked bonds are a 

complete hedge against inflation/interest rates over the long run. As with nominal bonds, we find that 

the long-run coefficient is higher for longer-maturity index-linked bonds than shorter-maturity ones. 

For example, a 10% change in CPI inflation would result in about 12.10% change in the total returns 

of 0-5 year inflation-indexed bonds and a 16.10% change in the returns of inflation-indexed bonds 

with maturity greater than 5 years. A 10% change in T-bill interest rate would result in a 10.4% change 
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in the returns of 0-5 year index-linked bonds and a 14.4% change in the returns of 5+ year index-linked 

bonds. 

Interestingly, we did not find a causal relationship between index-linked bond total returns and any of 

the inflation/interest rates analysed. This implies that inflation-indexed bonds may not be a good hedge 

against inflation/interest rate changes over the short run, contrary to the belief that these bonds are a 

natural hedge against inflation in particular.  

Nominal bonds on the other hand were found to be a good hedge against inflation/interest rate 

changes over the short-run as several of these bonds had a short-run causal relationship with at least 

one inflation and interest rate. Inflation/interest rate changes often lead (Granger-cause) bond returns 

in the short-run. In a number of cases too, we observed a bi-directional causality which implies that 

bond return changes could also be used to predict future inflation/interest rate changes. 
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Table 7(VII) Autoregressive Distributive Lag Model – Stocks and Bonds  
  Bounds Test Long-run coefficient Error-correction coefficient 

 CPI  RPI  LIBOR TBILL CPI  RPI  LIBOR TBILL CPI  RPI  LIBOR TBILL 

Stocks             

Aggregate stocks 4.27** 2.16 4.08* 4.03* 1.22*** - 1.08*** 1.09*** -0.0429** - -0.1186*** -0.1132*** 

Listed real estate 3.47* 2.85 6.39*** 3.39* 1.28*** - 1.12*** 1.12*** -0.0653** - -0.1340*** -0.1036** 

Oil 6.35*** 6.39*** 4.80** 4.44** 1.46*** 1.41*** 1.25*** 1.26*** -0.0248** -0.0271** -0.1013*** -0.0952*** 

Basic Materials 1.51 1.76 2.08 3.84* - - - 1.21*** - - - -0.1196*** 

Industrial 4.12** 4.34** 3.31* 3.93* 1.36*** 1.32*** 1.23*** 1.24*** -0.0288* -0.0366* -0.0964** -0.1022*** 

Construction 1.75 3.44* 3.72* 3.06 - 1.71** 1.20*** - - -0.0193*** -0.0842***  - 

Industrial goods and services 5.09** 5.40** 4.84** 4.81** 1.30*** 1.27*** 1.17*** 1.18*** -0.0389 -0.0484** -0.0785** -0.0817** 

Consumer goods 5.37** 5.64** 5.60** 3.27 1.46*** 1.41*** 1.28*** - -0.0323 -0.0312** -0.0889**  - 

Health care 8.70*** 8.45*** 8.59*** 2.62 1.39*** 1.39*** 1.22*** - -0.0330** -0.0366* -0.0682**  - 

Consumer services 6.56*** 6.80*** 5.51** 5.61** 1.25*** 1.23*** 1.13*** 1.14*** -0.0754*** -0.0836*** -0.0971** -0.0997** 

Telecom 3.10 3.44* 3.01 3.00 - 1.25*** - - - -0.0660** - - 

Technology 3.20 3.13 3.01 3.01 - - - - - - - - 

Utilities 3.58* 3.74* 3.94* 2.87 1.59*** 1.52*** 1.34*** - -0.0171** -0.0183** -0.0490* - 

Banks 7.65*** 5.30** 4.55** 3.88* 1.59*** 1.43*** 1.31*** 1.25*** -0.0917*** -0.0585*** -0.0622** -0.0839*** 

Insurance 3.81* 3.97* 3.58* 3.54* 1.28*** 1.26*** 1.16*** 1.16*** -0.0609** -0.0645** -0.0739** -0.0712* 

Financial services 3.00 2.17 7.04*** 7.00*** - - 1.26*** 1.26*** - - -0.1183*** -0.1217*** 

Index Linked Bonds             

Index linked bonds - 0-5 Years 8.00*** 9.05*** 15.01*** 14.66*** 1.21*** 1.19*** 1.03*** 1.04*** -0.0159*** -0.0159*** -0.0662*** -0.0618*** 

Index linked bonds - 5+ years 5.87** 19.70*** 19.41*** 19.37*** 1.65*** 1.62** 1.39** 1.44** -0.0083*** -0.0069*** -0.0111*** -0.0099*** 

Nominal Bonds              

Bonds – All lives 6.45*** 11.54*** 3.56* 4.14** 1.33*** 1.33*** 1.14*** 1.14*** -0.0230*** -0.0285*** -0.0900*** -0.0813*** 

Bonds – 10 + year 5.62** 7.28*** 3.45* 3.71* 1.43*** 1.39*** 1.17*** 1.19*** -0.0226*** -0.0276*** -0.0975*** -0.0859*** 

Bonds – 10 years  4.43** 4.94** 2.78 3.30* 1.37*** 1.34*** - 1.16*** -0.0191*** -0.0236*** - -0.0915** 

Bonds – 7 year 5.02** 6.96*** 3.12 3.71* 1.36*** 1.32*** - 1.14*** -0.0170*** -0.0242*** - -0.0918*** 

Bonds – 5 year 5.89** 6.72*** 3.56* 4.13** 1.29*** 1.26*** 1.10*** 1.11*** -0.0187*** -0.0245*** -0.1121*** -0.1020*** 

Bonds – 3 year 9.30*** 12.77*** 5.60** 7.24*** 1.27*** 1.25*** 1.08*** 1.08*** -0.0147*** -0.0267*** -0.1479*** -0.1349*** 

Bonds – 2 year 9.14*** 10.26*** 5.80** 7.21*** 1.25*** 1.21*** 1.05*** 1.06*** -0.0230*** -0.0231*** -0.2062*** -0.1702*** 
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Table 7(VIII) Block Exogeneity Wald Test (Granger Causality Test) – Stocks and Bonds 

 
Dependent variable: Asset Return  

(Chi-Square) Dependent variable: Inflation/Interest rate (Chi-Square) 
 CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL 

Stocks            

Aggregate stocks 0.20 1.65 4.82 1.87 1.01 0.01 5.17 3.28 

Listed real estate 0.50 10.04 6.16 8.53** 0.05 9.63 19.10** 11.68*** 

Oil 0.06 4.15 0.43 3.12 0.32 8.96* 8.18** 12.89** 

Basic Materials 0.20 8.30* 4.43 5.43 1.32 17.40*** 1.31 12.17*** 

Industrial 0.02 3.43 3.43 2.42 0.09 5.20 1.87 2.66 

Construction 0.94 7.62 1.84 2.31 3.30* 17.35*** 12.05** 9.83** 

Industrial goods and services 0.01 2.44 3.81 1.24 0.13 4.53 1.49 2.70 

Consumer goods 0.01 0.34 2.27 2.46 0.03 0.71 3.75 4.20 

Health care 0.36 1.15 5.67 5.37 0.38 0.27 1.70 2.00 

Consumer services 1.75 5.42 2.54 0.17 0.35 7.40 5.60 7.39* 

Telecom 1.08 5.69 3.81 1.57 1.52 3.86 2.83 3.68 

Technology 0.74 3.40 3.29 0.83 5.35 1.48 0.71 1.56 

Utilities 0.03 8.69* 4.49 9.13* 1.16 4.37 3.08 2.53 

Banks 0.58 0.42 5.23 5.02 0.04 1.38 10.46** 7.05* 

Insurance 0.58 0.52 2.1 2.84 0.61 3.14 4.39 4.24 

Financial services 0.51 4.13 3.98 5.94 0.17 7.80* 5.99 7.35* 

Index Linked Bonds            

Index linked bonds - 0-5 Years 0.62 1.84 5.74 0.76 0.09 6.92 0.81 2.35 

Index linked bonds - 5+ years 0.07 7.15 0.24 1.03 0.26 6.21 1.75 4.26 

Nominal Bonds            

Bonds – All lives 12.27*** 13.82*** 15.65*** 1.59 4.44 9.64** 0.59 2.17 

Bonds – 10 + years 9.40*** 12.87** 11.34** 1.94 1.60 9.16* 0.39 0.77 

Bonds – 10 year  15.85*** 18.18*** 14.11*** 1.69 3.83 8.84* 14.11*** 2.77 

Bonds – 7 year 18.14*** 18.10*** 15.53*** 2.00 5.87 9.38* 15.53*** 5.34 

Bonds – 5 year 20.78*** 22.80*** 20.57*** 3.02 6.32* 10.82** 1.23 6.91* 

Bonds – 3 year 17.61*** 22.32*** 29.25*** 6.46* 6.24 7.15 1.09 6.46* 

Bonds – 2 year 15.12*** 16.16*** 38.26*** 9.53** 5.25 7.06 2.17 9.53** 
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7.4.3.4 Stocks 

Overall, the results show that several stock sectors were a good hedge against inflation and interest rate 

changes over the long-run. At least 10 of the 16 stock sectors were cointegrated with each of the 

benchmarks analysed. The aggregate stock portfolio analysed was found to be an effective hedge 

against all but one of the benchmarks. 6 of the 16 stock sectors analysed were found to be a hedge 

against all four inflation and interest rate benchmarks. Three additional stock sectors, consumer goods, 

health care and utilities, were a found to be a hedge against inflation but not interest rates.    

All the stock sectors were found to be cointegrated with the inflation/interest rate benchmarks had a 

significant long-term coefficient. The coefficients were all greater than unity, implying that they were a 

complete hedge against inflation and interest rate changes. The highest coefficient was recorded by 

utility and banking sector stocks. For every ten percent change in inflation or interest rate, the returns 

of both utility stocks and bank stocks increased by 15.9%. Aggregate stocks recorded the lowest long-

run coefficient of 1.08, an almost one-to-one movement relative to inflation and interest rate changes. 

Compared to the private market assets such as real estate, stocks exhibited a high speed of adjustment 

following a shock to inflation or interest rates. Interestingly, we found the speed of adjustment 

following an interest rate shock to be consistently higher than the speed of adjustment to inflation rate 

shocks. This may be an indication that stock returns are more sensitive to interest rate changes than 

inflation  

From Table 7(VIII), we can see that only very few stocks had a short-run causal relationship with the 

various inflation/interest rates. In the few instances where a causal relationship was detected, we found 

that it went from asset returns to the inflation/interest rates i.e. stock returns granger-cause 

inflation/interest rate movements.  Remarkably, construction sector stock returns were found to lead 

(granger-cause) all 4 inflation and interest rates.  Three stock sectors were also found to be a good 

hedge against interest rate movements as they granger-cause both LIBOR and T-bill interest rates. 

These are the listed real estate, oil and banking sector stocks. Campbell and Shiller (1988) however 

found that inflation leads stock returns.  

Listed real estate had the highest speed of adjustment to equilibrium with as much as 63% of any 

disequilibrium being corrected within 4 quarters (one year).    

7.5 CONCLUSION 

In this Chapter we employed cointegration and causality techniques that take into account the degree 

of integration of the variables to clarify the relationship between real estate returns and selected 
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inflation and interest rates. The autoregressive distributed lag model (Pesaran & Shin, 1998; Pesaran et 

al., 1999) and the Toda & Yamamoto (1995) approach to testing granger causality are used along with 

dynamic conditional correlations and relative performance metrics to determine the assets that should 

be included in the portfolio of DC pension funds that seek to provide returns in line with specific 

inflation and interest rates. One of the short-comings of traditional cointegration tests is that they 

require the all the variables to be integrated of the same order (Engle & Granger, 1987; Johansen, 1988 

and Johansen & Juselius, 1990). The ARDL model can be used to test the long-run cointegration 

relationship whether the variables are I(0) or I(1). Given that this study is located within the context of 

DC pension funds, we also analyse the inflation/interest rate hedging ability of stocks, bonds and 

alternative assets that institutional investors such as pension funds typically invest in (UBS, 2015).  

This study offers a systematic analysing the inflation and interest rate hedging ability of a broad range 

of assets that institutional investors typically invest in. We carry out a sector-level analysis of a broad 

range of assets. We analyse the ability of 47 different asset classes and sectors including real estate, 

stocks, bonds and alternative assets such as commodities, hedge funds and private equity. For stocks, 

we investigate the hedging ability of different stock sectors or industries. For bonds, we analyse the 

hedging ability of different bond maturities. Spierdijk and Umar (2013) observed that as with different 

stock sectors, the hedging ability of bonds may differ across different maturities, issuer and risk-rating. 

This study is situated in within the context of UK Master-trust DC pension funds. Many of these funds 

benchmark their performance against inflation and/or interest rate benchmarks of their choosing. 

Examples of these benchmarks include CPI Inflation, RPI inflation, T-bill interest rates, SONIA 

interest rate etc. International evidence shows that some pension funds also benchmark against 

economic variables such as GDP and wage growth rates. The results of the study are also relevant to 

institutional investors such as life insurance companies and investment firms whose obligations are 

tied to inflation and interest rate movements.   

A study of the ability of real estate and other alternative assets to hedge against inflation and interest 

rate movements is also very timely in view of the current call for UK DC Pension funds to become 

more diversified. Given that most of these funds have explicit investment objectives tied to domestic 

inflation and interest rates, the question is whether they should limit their portfolios to UK assets such 

as stocks, inflation-indexed bonds and nominal bonds or is it appropriate for them to incorporate real 

estate, international stocks and bonds as well as alternative investments such as commodities, private 

equity and hedge funds? This study contributes to this discussion. 
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This study contributes to the real estate literature by combining multiple approaches to clarify the 

relationship between asset return and selected inflation/interest rates. The study also presents new 

evidence on the dynamic relationship between asset returns and inflation/interest rates. Few studies 

have touched on this issue following the recent financial crisis. - This study covers the period 1991 

– 2015. This period spans the period of the 2007-2008 financial crisis. The results of this study can be 

compared to those carried out prior to the crisis to see if the relationship between inflation and asset 

returns has been affected by the crisis.   

Unlike previous studies that analyse real estate along with the traditional asset classes of stocks and 

bonds, we also examine the inflation hedging ability of alternative assets such as hedge fund, 

commodities and private equity. This would show us whether these assets offer a hedge against UK 

inflation and interest rates especially since most of these alternatives are denominated in US$ and not 

primarily traded in the United Kingdom. This aspect of our study also shows whether it is worth 

diversifying internationally when local inflation and interest rates are being hedged against.  

The results show that real estate is a hedge against all the inflation and interest rates analysed. All the 

four real estate sectors – retail, office, industrial and the aggregate property – were found to be a hedge 

against the different inflation and interest rates over both the short-run and long-run. Long-run results 

show that real estate was a complete hedge as they all produced long-run coefficients greater than 1.0, 

satisfying the definition of a complete hedge per the Darby (1975) version of the Fisher (1930) 

hypothesis. Short-run Toda & Yamamoto (1995) Granger causality tests also show that all real estate 

sectors are able to offer a short-term inflation hedge. We further find that the inflation-hedging ability 

of real estate is retained even when different real estate investment vehicles such as the AREF balanced 

fund, the AREF All Funds or blended/hybrid real estate vehicles are used. We investigated the issue 

of appraisal smoothing in the results obtained. We observe that the main result that changes is the 

error-correction coefficient which increased remarkably. Hoesli et al. (2017) believes that such a result 

merely confirms the fact that private asset market assets take a long time to respond to changes in 

economic fundamentals.  

Index-linked bonds have been viewed by many investors as a natural hedge against inflation (Orsolio, 

2012; Kramer, 2017). The results of our analysis revealed that inflation-indexed bonds are not a good 

hedge over the short-term, although they are cointegrated with inflation in the long-run. The dynamic 

conditional correlation and the Granger causality test results point to the fact that inflation-indexed 

bonds are not a good short term hedge. The DCC estimates actually suggest that inflation-indexed 

bonds are be more strongly correlated with interest rates than inflation. This is consistent with the 

position of Orsilio (2012) that inflation-indexed bonds are still bonds and their total returns are subject 
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to interest rate changes. Some authors such as Schofield (1996) maintain that the weak results obtained 

is as a result of the lagged indexation phenomenon. Nominal bonds on the other hand were found to 

be a good hedge over the short and long run. The long-term coefficients show that longer maturity 

bonds adjust their returns by a higher percentage for any change in inflation than shorter-maturity ones 

pointing to an upward slopping yield curve.  

Further, we find that several stock sectors were a hedge against inflation over the long run but not over 

the short-run. Ironically, alternative assets which are mostly not denominated in GBP or primarily 

traded in the UK were a better short-term hedge. However, few alternative assets were found to be a 

hedge over the long-run. Results obtained when we used unsmoothed series in place of the original 

series for private market alternative assets were similar to what we obtained for real estate. The error-

correction coefficient increased compared to what was obtained for the original series.  
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APPENDICES 

Appendix 7(A)  List of Variables 

ASSET ABBREVIATION 
IPD Real Estate   

IPD All Property UKRE_IPD   

IPD Industrial UKRE_IPDIND  
IPD Office UKRE_IPDOFF  
IPD Retail UKRE_IPDRET  
Other Real Estate Vehicles  
AREF – All Funds AREF_ALL 
AREF – All Balanced Funds AREF_LRE 
Hybrid Real Estate  AREF_BAL 
Stocks   
Aggregate stocks UKS_ALL  
Oil UKS_OIL  
Basic Materials UKS_BMAT  
Industrial UKS_IND  
Construction UKS_CONST  
Industrial goods and services UKS_INDGDSV  
Consumer goods UKS_CGDS  
Health care UKS_HCARE  
Consumer services UKS_CSVS  
Telecom UKS_TEL  
Technology UKS_TEC  
Utilities UKS_UTIL  
Banks UKS_BANK  
Insurance UKS_INS  
Financial services UKS_FSV  
Listed real estate UKS_REALEST  
Index Linked Bonds   
Index linked bonds - 0-5 Years UKILB_0_5  
Index linked bonds - 5+ years UKILB__5  
Bonds   
Bonds – All lives UKB_ALL 
Bonds – 10 + years UKB_10_  
Bonds – 10 year  UKB_10Y  
Bonds – 7 year UKB_7Y  
Bonds – 5 year UKB_5Y  
Bonds – 3 year UKB_3Y  
Bonds – 2 year UKB_2Y  
Alternatives (IN US$)   
Emerging stock market (in US$) EM_SM 
Developed ex UK stocks (in US$) DEV_SMEXUK 
Commodities – all (in US$) COMM_ALL 
Commodities – oil (in US$) COMM_OIL 
Commodities – gold (in US$) COMM_GOLD 
Hedge funds (in US$) HFRI 
US private equity (in US$) US_PE 
US venture capital (in US$) US_VC 
Developed ex US private equity (in US$) DEXUS_PE 
Emerging private equity (in US$) EM_PE 
Alternatives (in GB£)   
Emerging stock market (in GB£) EM_SM_GBP 
Developed ex UK stocks (in in GB£) DEV_SMEXUK_GBP 
Commodities – all (in in GB£)) COMM_ALL_GBP 
Commodities – oil (in in GB£)) COMM_OIL_GBP 
Commodities – gold (in in GB£)) COMM_GOLD_GBP 
Hedge funds (in in GB£)) HFRI_GBP 
US private equity (in in GB£)) US_PE_GBP 
US venture capital (in in GB£)) US_VC_GBP 
Developed ex US private equity (in in GB£)) DEXUS_PE_GBP 
Emerging private equity (in in GB£)) EM_PE_GBP 

Inflation/Interest Rates   
UK Consumer Price Index UK_CPI 
UK Retail Price Index UK_RPI 
London Inter-Bank Offering Rate LIBOR 
UK Treasury Bills - 3 Months T_BILL 
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Appendix 7(B)  Relative Performance Metrics (Consumer Price Index) 

 

  

 
Excess  
returns 

Tracking  
error  

Sharpe  
Ratio 

Success  
ratio  

Static  
Correl.  

DCC  
 

Real Estate       

IPD All Property 1.52 3.28 0.46 0.8 -0.09 -0.06 

IPD Industrial 1.7 3.06 0.56 0.8 -0.07 -0.06 

IPD Office 1.51 3.53 0.43 0.8 -0.13 -0.13 

IPD Retail 1.66 3.4 0.49 0.82 -0.05 -0.02 

Other Real Estate Vehicles             

AREF – All Funds 1.21 3.28 0.37 0.80 -0.12 -0.06 

AREF – All Balanced Funds 1.22 3.87 0.31 0.81 -0.08 -0.10 

Hybrid Real Estate  1.38 4.22 0.33 0.71 -0.06 -0.05 

Stocks             

Aggregate stocks 1.56 8.05 0.19 0.66 0.1 0.06 

Oil 2.17 9.04 0.24 0.62 0.08 0.07 

Basic Materials 2.38 12.91 0.18 0.61 0.27 0.3 

Industrial 2.71 10.79 0.25 0.65 0.14 0.11 

Construction 2.23 10.3 0.22 0.6 0.19 0.16 

Industrial goods and services 2.33 9.43 0.25 0.66 0.17 0.13 

Consumer goods 3.14 10.51 0.3 0.62 0.22 0.09 

Health care 2.31 7.15 0.32 0.63 0.08 -0.03 

Consumer services 1.98 8.73 0.23 0.64 0.07 0.03 

Telecom 2.55 12.59 0.2 0.63 0.01 -0.03 

Technology 3.93 20.86 0.19 0.63 -0.04 -0.03 

Utilities 2.89 7.12 0.41 0.71 0.03 -0.02 

Banks 2.87 13.75 0.21 0.6 0.03 -0.03 

Insurance 2.5 11.55 0.22 0.66 0.02 -0.05 

Financial services 2.69 10.32 0.26 0.65 0.06 0.06 

Listed real estate 2.07 11.68 0.18 0.66 0.04 0.06 

Index Linked Bonds             

Index linked bonds - 0-5 Years 0.77 1.39 0.55 0.74 0.07 0.06 

Index linked bonds - 5+ years 1.5 3.26 0.46 0.69 -0.05 -0.04 

Bonds             

Bonds – All lives 1.45 3.15 0.46 0.66 0.02 -0.06 

Bonds – 10 + years 1.84 4.58 0.4 0.64 -0.06 -0.13 

Bonds – 10 year  1.61 3.73 0.43 0.64 0.01 -0.04 

Bonds – 7 year 1.47 2.95 0.5 0.69 0.06 -0.01 

Bonds – 5 year 1.22 2.44 0.5 0.71 0.06 0 

Bonds – 3 year 1.06 1.69 0.62 0.72 0.09 -0.01 

Bonds – 2 year 0.87 1.4 0.62 0.75 0.1 -0.05 

Alternatives in GB£             

Emerging stock market 2.37 14.16 0.17 0.59 0.12 0.14 

Developed ex US stocks 1.72 9.63 0.18 0.62 0.09 0.10 

Commodities - all 0.21 12.39 0.02 0.56 0.16 0.23 

Commodities - oil 1.60 18.24 0.09 0.61 0.06 0.17 

Commodities - gold 0.65 8.27 0.08 0.52 0.11 0.19 

Hedge funds 1.00 6.09 0.16 0.64 0.08 0.08 

US private equity 3.00 7.62 0.39 0.69 0.12 0.14 

US venture capital 3.69 12.54 0.29 0.63 0.02 0.09 

Developed ex US private equity 3.07 10.95 0.28 0.65 0.10 0.15 

Emerging private equity 1.23 8.31 0.15 0.56 0.12 0.16 

Alternatives (IN US$)             

Emerging stock market  2.48 13.11 0.19 0.60 0.11 0.13 

Developed ex UK stocks  1.89 8.72 0.22 0.67 0.06 0.04 

Commodities – all  0.34 11.58 0.03 0.56 0.15 0.18 

Commodities – oil  1.69 17.44 0.1 0.58 0.05 0.13 

Commodities – gold  0.78 6.39 0.12 0.55 0.07 0.14 

Hedge funds  1.15 3.56 0.32 0.68 0.03 0.04 

US private equity  3.1 4.99 0.62 0.79 0.1 0.08 

US venture capital  3.85 11.75 0.33 0.69 -0.01 0.02 

Developed ex US private equity  2.99 7.16 0.42 0.70 0.10 0.14 

Emerging private equity  1.29 5.35 0.24 0.60 0.11 0.12 
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Appendix 7(C)  Relative Performance Metrics (Retail Price Index) 

 
Excess  
returns 

Tracking  
error  

Sharpe  
Ratio 

Success  
ratio  

Static  
Correl.  DCC  

Real Estate       

IPD All Property 1.39 3.09 0.45 0.80 0.21 0.07 

IPD Industrial 1.57 2.89 0.54 0.80 0.19 0.05 

IPD Office 1.38 3.33 0.41 0.78 0.17 0.03 

IPD Retail 1.53 3.22 0.47 0.80 0.22 0.07 

Other Real Estate Vehicles       

AREF – All Funds 1.08 3.08 0.35 0.80 0.19 0.05 

AREF – All Balanced Funds 1.09 3.67 0.30 0.80 0.23 0.07 

Hybrid Real Estate  1.25 4.07 0.31 0.71 0.18 0.03 

Stocks       

Aggregate stocks 1.43 7.92 0.18 0.66 0.29 0.23 

Oil 2.04 9.06 0.22 0.63 0.04 0.00 

Basic Materials 2.25 12.88 0.17 0.61 0.31 0.27 

Industrial 2.58 10.80 0.24 0.65 0.11 0.14 

Construction 2.10 10.33 0.20 0.59 0.15 0.13 

Industrial goods and services 2.20 9.43 0.23 0.66 0.15 0.16 

Consumer goods 3.01 10.58 0.28 0.63 0.11 0.09 

Health care 2.18 7.29 0.30 0.63 -0.12 -0.12 

Consumer services 1.85 8.74 0.21 0.65 0.05 0.03 

Telecom 2.41 12.60 0.19 0.62 -0.01 0.01 

Technology 3.80 20.78 0.18 0.60 0.08 0.10 

Utilities 2.76 7.13 0.39 0.69 0.02 0.04 

Banks 2.74 13.74 0.20 0.59 0.05 -0.02 

Insurance 2.36 11.56 0.20 0.66 0.00 -0.02 

Financial services 2.56 10.26 0.25 0.65 0.15 0.13 

Listed real estate 1.93 11.63 0.17 0.66 0.11 0.07 

Index Linked Bonds       

Index linked bonds - 0-5 Years 0.63 1.35 0.47 0.69 0.15 0.16 

Index linked bonds - 5+ years 1.37 3.20 0.43 0.67 0.04 0.07 

Bonds       

Bonds – All lives 1.32 3.36 0.39 0.62 -0.31 -0.29 

Bonds – 10 + years 1.71 4.75 0.36 0.59 -0.32 -0.32 

Bonds – 10 year  1.48 3.93 0.38 0.64 -0.28 -0.20 

Bonds – 7 year 1.33 3.15 0.42 0.66 -0.26 -0.20 

Bonds – 5 year 1.08 2.65 0.41 0.65 -0.26 0.07 

Bonds – 3 year 0.93 1.92 0.48 0.64 -0.29 -0.24 

Bonds – 2 year 0.74 1.63 0.45 0.64 -0.29 -0.25 

Alternatives (IN GB£)       

Emerging stock market 2.24 14.09 0.16 0.58 0.22 0.17 

Developed ex UK stocks 1.59 9.51 0.17 0.61 0.26 0.18 

Commodities - all 0.08 12.15 0.01 0.55 0.50 0.40 

Commodities - oil 1.47 18.02 0.08 0.61 0.39 0.35 

Commodities - gold 0.51 8.17 0.06 0.49 0.24 0.29 

Hedge funds 0.87 5.95 0.15 0.63 0.29 0.21 

US private equity 2.87 7.52 0.38 0.68 0.27 0.21 

US venture capital 3.56 12.48 0.29 0.63 0.12 0.12 

Developed ex US private equity 2.94 10.82 0.27 0.65 0.29 0.27 

Emerging private equity 1.10 8.23 0.13 0.57 0.22 0.20 

Alternatives (IN US$)       

Emerging stock market  2.34 13.07 0.18 0.57 0.17 0.15 

Developed ex UK stocks  1.76 8.63 0.20 0.66 0.19 0.11 

Commodities – all  0.21 11.36 0.02 0.54 0.47 0.36 

Commodities – oil  1.56 17.23 0.09 0.58 0.36 0.32 

Commodities – gold  0.65 6.32 0.10 0.55 0.17 0.18 

Hedge funds  1.01 3.42 0.30 0.63 0.25 0.14 

US private equity  2.97 4.91 0.61 0.78 0.23 0.14 

US venture capital  3.72 11.71 0.32 0.68 0.05 0.01 

Developed ex US private equity  2.86 7.00 0.41 0.70 0.33 0.30 

Emerging private equity  1.16 5.30 0.22 0.61 0.19 0.13 
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Appendix 7(D)  Relative Performance Metrics (LIBOR) 

 
Excess  
returns 

Tracking  
error  

Sharpe  
Ratio 

Success  
ratio  

Static  
Correl.  DCC  

Real Estate       

IPD All Property 0.94 3.33 0.28 0.79 -0.15 -0.14 

IPD Industrial 1.13 3.09 0.36 0.77 -0.11 -0.11 

IPD Office 0.93 3.58 0.26 0.72 -0.20 -0.04 

IPD Retail 1.08 3.42 0.32 0.74 -0.06 -0.14 

Other Real Estate Vehicles       

AREF – All Funds 0.63 3.28 0.19 0.72 -0.12 -0.14 

AREF – All Balanced Funds 0.64 3.89 0.16 0.74 -0.10 -0.11 

Hybrid Real Estate  0.80 4.27 0.19 0.66 -0.11 -0.08 

Stocks       

Aggregate stocks 0.99 8.08 0.12 0.65 0.05 0.14 

Oil 1.59 9.05 0.18 0.59 0.06 0.14 

Basic Materials 1.80 13.06 0.14 0.59 0.05 0.12 

Industrial 2.14 10.87 0.20 0.63 0.01 0.00 

Construction 1.65 10.45 0.16 0.58 -0.02 -0.11 

Industrial goods and services 1.76 9.52 0.18 0.63 0.03 0.04 

Consumer goods 2.56 10.62 0.24 0.60 0.05 -0.01 

Health care 1.73 7.14 0.24 0.63 0.10 0.02 

Consumer services 1.40 8.76 0.16 0.62 0.02 0.03 

Telecom 1.97 12.54 0.16 0.60 0.07 0.18 

Technology 3.35 20.82 0.16 0.60 0.02 0.16 

Utilities 2.32 7.03 0.33 0.65 0.16 0.10 

Banks 2.29 13.68 0.17 0.59 0.13 0.15 

Insurance 1.92 11.56 0.17 0.62 0.00 0.05 

Financial services 2.11 10.37 0.20 0.63 -0.02 0.07 

Listed real estate 1.49 11.75 0.13 0.64 -0.07 -0.04 

Index Linked Bonds       

Index linked bonds - 0-5 Years 0.19 1.23 0.15 0.55 0.34 0.27 

Index linked bonds - 5+ years 0.92 3.23 0.29 0.64 0.01 0.05 

Bonds       

Bonds – All lives 0.88 3.03 0.29 0.61 0.20 0.10 

Bonds – 10 + years 1.26 4.46 0.28 0.57 0.13 0.08 

Bonds – 10 year  1.04 3.62 0.29 0.63 0.18 0.10 

Bonds – 7 year 0.89 2.83 0.31 0.62 0.23 0.12 

Bonds – 5 year 0.64 2.31 0.28 0.61 0.25 0.13 

Bonds – 3 year 0.48 1.49 0.32 0.59 0.40 0.23 

Bonds – 2 year 0.29 1.10 0.27 0.58 0.53 0.29 

Alternatives (IN GB£)       

Emerging stock market 1.90 13.19 0.14 0.57 0.00 0.06 

Developed ex UK stocks 1.31 8.75 0.15 0.61 0.03 0.09 

Commodities - all -0.24 11.63 -0.02 0.54 0.08 0.14 

Commodities - oil 1.11 17.42 0.06 0.57 0.09 0.16 

Commodities - gold 0.20 6.50 0.03 0.50 -0.10 -0.06 

Hedge funds 0.57 3.43 0.17 0.62 0.22 0.35 

US private equity 2.53 5.03 0.50 0.72 0.05 0.17 

US venture capital 3.27 11.65 0.28 0.72 0.13 0.32 

Developed ex US private equity 2.41 7.18 0.34 0.67 0.06 0.11 

Emerging private equity 0.72 5.53 0.13 0.57 -0.15 -0.01 

Alternatives (IN US$)       

Emerging stock market (in US$) 1.90 13.19 0.14 0.57 0.00 0.06 

Developed ex UK stocks (in US$) 1.31 8.74 0.15 0.61 0.03 0.09 

Commodities – all (in US$) -0.24 11.63 -0.02 0.54 0.08 0.14 

Commodities – oil (in US$) 1.11 17.41 0.06 0.57 0.09 0.16 

Commodities – gold (in US$) 0.20 6.50 0.03 0.49 -0.10 -0.06 

Hedge funds (in US$) 0.57 3.43 0.17 0.62 0.22 0.35 

US private equity (in US$) 2.53 5.03 0.50 0.72 0.04 0.17 

US venture capital (in US$) 3.27 11.65 0.28 0.72 0.13 0.32 

Developed ex US private equity (in US$) 2.41 7.18 0.34 0.67 0.06 0.11 

Emerging private equity (in US$) 0.72 5.53 0.13 0.57 -0.15 -0.01 
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Appendix 7(E)  Relative Performance Metrics (Treasury Bills) 

 
Excess  
returns 

Tracking  
error  

Sharpe  
Ratio 

Success  
ratio  

Static  
Correl.  DCC  

Real Estate       

IPD All Property 0.99 3.36 0.29 0.77 -0.19 -0.14 

IPD Industrial 1.17 3.12 0.38 0.77 -0.14 -0.12 

IPD Office 0.98 3.61 0.27 0.73 -0.23 -0.03 

IPD Retail 1.12 3.44 0.33 0.73 -0.09 -0.14 

Other Real Estate Vehicles       

AREF – All Funds 0.67 3.31 0.20 0.72 -0.16 -0.15 

AREF – All Balanced Funds 0.68 3.92 0.17 0.75 -0.14 -0.12 

Hybrid Real Estate  0.84 4.29 0.20 0.67 -0.13 -0.06 

Stocks       

Aggregate stocks 1.03 8.09 0.13 0.65 0.03 0.21 

Oil 1.63 9.08 0.18 0.59 0.02 0.02 

Basic Materials 1.85 13.09 0.14 0.59 0.01 0.08 

Industrial 2.18 10.88 0.20 0.63 0.00 0.10 

Construction 1.69 10.45 0.16 0.58 -0.03 -0.06 

Industrial goods and services 1.80 9.53 0.19 0.64 0.02 0.15 

Consumer goods 2.60 10.63 0.24 0.61 0.04 0.03 

Health care 1.77 7.12 0.25 0.63 0.12 0.16 

Consumer services 1.44 8.76 0.16 0.62 0.02 0.12 

Telecom 2.01 12.55 0.16 0.60 0.06 0.17 

Technology 3.39 20.84 0.16 0.60 -0.01 0.23 

Utilities 2.36 7.02 0.34 0.65 0.18 0.29 

Banks 2.34 13.67 0.17 0.60 0.15 0.31 

Insurance 1.96 11.55 0.17 0.63 0.01 0.24 

Financial services 2.16 10.39 0.21 0.64 -0.04 0.14 

Listed real estate 1.53 11.75 0.13 0.63 -0.07 0.04 

Index Linked Bonds       

Index linked bonds - 0-5 Years 0.23 1.22 0.19 0.58 0.35 0.37 

Index linked bonds - 5+ years 0.96 3.22 0.30 0.64 0.02 0.22 

Bonds       

Bonds – All lives 0.92 3.01 0.31 0.61 0.24 0.12 

Bonds – 10 + years 1.30 4.44 0.29 0.57 0.15 0.10 

Bonds – 10 year  1.08 3.60 0.30 0.63 0.21 0.16 

Bonds – 7 year 0.93 2.80 0.33 0.63 0.28 0.17 

Bonds – 5 year 0.68 2.27 0.30 0.62 0.31 0.17 

Bonds – 3 year 0.52 1.44 0.36 0.61 0.45 0.22 

Bonds – 2 year 0.34 1.04 0.32 0.59 0.60 0.27 

Alternatives (IN GB£)       

Emerging stock market 1.83 14.29 0.13 0.59 -0.08 -0.06 

Developed ex UK stocks 1.19 9.74 0.12 0.59 -0.07 0.03 

Commodities - all -0.33 12.51 -0.03 0.56 -0.01 0.05 

Commodities - oil 1.07 18.28 0.06 0.60 0.01 0.05 

Commodities - gold 0.11 8.46 0.01 0.47 -0.17 -0.16 

Hedge funds 0.47 6.16 0.08 0.62 -0.01 0.06 

US private equity 2.47 7.77 0.32 0.69 -0.09 -0.02 

US venture capital 3.16 12.54 0.25 0.62 0.03 0.14 

Developed ex US private equity 2.54 11.06 0.23 0.62 -0.06 -0.01 

Emerging private equity 0.70 8.53 0.08 0.54 -0.21 -0.09 

Alternatives (IN US$)       

Emerging stock market (in US$) 1.94 13.21 0.15 0.58 -0.04 -0.01 

Developed ex UK stocks (in US$) 1.36 8.76 0.15 0.63 0.00 0.05 

Commodities – all (in US$) -0.20 11.66 -0.02 0.54 0.04 0.11 

Commodities – oil (in US$) 1.16 17.44 0.07 0.55 0.04 0.09 

Commodities – gold (in US$) 0.24 6.52 0.04 0.51 -0.12 -0.19 

Hedge funds (in US$) 0.61 3.47 0.18 0.62 0.17 0.30 

US private equity (in US$) 2.57 5.06 0.51 0.72 0.00 0.10 

US venture capital (in US$) 3.32 11.68 0.28 0.73 0.09 0.23 

Developed ex US private equity (in US$) 2.45 7.23 0.34 0.67 0.00 0.05 

Emerging private equity (in US$) 0.76 5.56 0.14 0.57 -0.20 -0.06 

 



  

263 

 

Appendix 7(F)  Relative Performance Metrics – Unsmoothed Private Market Asset Return Series 

  Consumer Price Index Retail Price Index 

Unsmoothed IPD Sectors Excess return Tracking error Sharpe ratio Success ratio Static Correl DCC  Excess return Tracking error Sharpe ratio Success ratio Static Correl DCC  

IPD All Property 1.62 5.34 0.30 0.76 0.01 0.05 1.49 5.27 0.28 0.73 0.12 0.11 

IPD Industrial 1.77 5.06 0.35 0.73 0.02 0.06 1.64 5.01 0.33 0.72 0.09 0.10 

IPD Office 1.65 5.63 0.29 0.76 -0.04 -0.04 1.52 5.53 0.27 0.74 0.10 0.10 

IPD Retail 1.30 5.00 0.26 0.71 0.00 0.00 1.17 4.95 0.24 0.69 0.09 0.08 

Unsmoothed Private Market Alternatives              

Hedge funds  0.16 11.57 0.01 0.55 0.17 0.20 0.03 11.36 0.00 0.54 0.47 0.37 

US private equity  1.24 17.51 0.07 0.59 0.07 0.16 1.10 17.30 0.06 0.58 0.38 0.34 

US venture capital  0.81 6.38 0.13 0.55 0.07 0.14 0.68 6.31 0.11 0.55 0.17 0.19 

Developed ex US private equity  0.69 3.45 0.20 0.63 0.03 0.02 0.56 3.35 0.17 0.60 0.18 0.09 

Emerging private equity  1.73 4.61 0.38 0.73 0.13 0.13 1.60 4.59 0.35 0.72 0.16 0.13 

  

  LIBOR Interest Rate T-bill Interest Rate 

Unsmoothed IPD Sectors Excess return Tracking error Sharpe ratio Success ratio Static Correl DCC  Excess return Tracking error Sharpe ratio Success ratio Static Correl DCC  

IPD All Property 1.04 5.43 0.19 0.68 -0.13 -0.14 1.09 5.45 0.20 0.69 -0.15 -0.12 

IPD Industrial 1.19 5.16 0.23 0.73 -0.12 -0.09 1.24 5.18 0.24 0.72 -0.15 -0.08 

IPD Office 1.07 5.71 0.19 0.70 -0.15 -0.09 1.12 5.72 0.20 0.70 -0.17 -0.04 

IPD Retail 0.73 5.09 0.14 0.65 -0.12 -0.12 0.77 5.12 0.15 0.66 -0.16 -0.14 

Unsmoothed Private Market Alternatives              

Hedge funds  -0.42 11.64 -0.04 0.51 0.06 0.14 -0.38 11.67 -0.03 0.51 0.02 0.10 

US private equity  0.66 17.52 0.04 0.57 0.06 0.17 0.70 17.55 0.04 0.57 0.01 0.08 

US venture capital  0.23 6.50 0.04 0.51 -0.10 -0.06 0.28 6.52 0.04 0.49 -0.12 -0.19 

Developed ex US private equity  0.11 3.37 0.03 0.59 0.15 0.29 0.16 3.41 0.05 0.59 0.10 0.23 

Emerging private equity  1.15 4.69 0.25 0.63 0.01 0.13 1.19 4.71 0.25 0.63 -0.02 0.02 
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Appendix 7(G)  Diagnostic Test Results - Consumer Price Index 

  Serial correlation LM Test Heteroskedasticity Ramsey Reset test 
  F-statistic Prob. F-statistics Prob. F-statistic Prob. 

Real Estate        
IPD All Property 0.4160 0.6611 2.4485 0.0160 0.0027 0.9586 
Industrial 0.0319 0.9686 3.2439 0.0020 0.0384 0.8450 
Office 0.1906 0.8268 2.0565 0.0495 0.0016 0.9679 
Retail 0.1978 0.8209 2.6997 0.0084 0.0003 0.9859 
Other Real Estate Vehicles       
AREF – All Funds 2.2167 0.1155 3.3432 0.0016 0.0010 0.9750 
AREF – All Balanced Funds 0.6669 0.5162 2.7322 0.0061 0.3535 0.5538 
Hybrid Real Estate  0.4229 0.6566 1.7910 0.0904 0.4700 0.4949 
Stocks       
Aggregate stocks 0.0133 0.9868 0.4967 0.6101 3.6857 0.0580 
Listed real estate 0.1363 0.8728 0.4621 0.7094 0.0737 0.7866 
Oil 0.6493 0.5249 1.5353 0.2107 11.8316 0.0009 
Basic Materials 0.4447 0.6425 3.5893 0.0032 0.4068 0.5253 
Industrial 1.2681 0.2865 1.1184 0.3529 0.0927 0.7614 
Construction 0.4137 0.6625 0.3957 0.8506 0.0003 0.9863 
Industrial goods and services 1.4139 0.2485 0.0782 0.9249 0.3828 0.5376 
Consumer goods 0.1145 0.8919 1.2220 0.2993 0.8162 0.3687 
Health care 0.9829 0.3782 1.9896 0.1210 0.0201 0.8876 
Consumer services 1.0762 0.3455 0.8791 0.5139 0.1229 0.7268 
Telecom 0.2215 0.8018 0.9280 0.5183 0.0733 0.7873 
Technology 1.5782 0.2130 2.6797 0.0057 0.1815 0.6713 
Ultilities 0.0985 0.9063 1.0990 0.3733 3.6541 0.0598 
Banks 0.5385 0.5855 0.2944 0.7457 1.5853 0.2112 
Insurance 1.0869 0.3416 0.0103 0.9898 0.0147 0.9039 
Financial services 0.1061 0.8994 1.5654 0.2032 2.1941 0.1420 
Index-Linked Bonds       
Index-Linked Bonds (0-5) 0.2756 0.7598 1.4749 0.1963 0.0116 0.9146 
Index-Linked Bonds (5+) 0.1178 0.8890 1.6015 0.1563 0.8160 0.3689 
Bonds       
Bonds – All lives 0.1515 0.8597 0.8418 0.5558 2.0406 0.0444 
10+ year bonds 0.2153 0.8068 0.6628 0.7028 4.0385 0.0476 
10 year bonds 0.3898 0.6784 0.4981 0.8335 4.9992 0.0280 
7 year bonds 0.2089 0.8119 0.8402 0.5423 4.0637 0.0469 
5 year bonds 0.4060 0.6676 0.8406 0.5420 2.4882 0.1184 
3 year bonds 0.5207 0.5960 0.6916 0.6570 0.0092 0.9240 
2 year bonds 0.7664 0.4678 1.0539 0.3966 0.1790 0.6733 
Alternatives in GB£       
Hedge funds 1.5353 0.2213 5.1808 0.0001 0.0990 0.7538 
US private equity 2.2149 0.1153 4.1455 0.0020 0.0990 0.7538 
US venture capital 0.1745 0.8402 2.0395 0.0807 4.8367 0.0305 
Developed ex US private equity 2.7135 0.0720 3.2375 0.0064 1.7942 0.1839 
Emerging private equity 0.8035 0.4516 1.5754 0.1167 0.1264 0.7231 
Emerging stock market 1.6291 0.2026 2.1921 0.0308 0.0096 0.9223 
Developed ex US stocks 0.7825 0.4605 7.6682 0.0000 0.2985 0.5862 
Commodities – all  0.8639 0.4253 6.8123 0.0000 0.7046 0.4830 
Commodities - oil 0.0262 0.9741 2.3033 0.0337 0.2425 0.6237 
Commodities - gold 2.3498 0.1025 0.7605 0.6980 4.6107 0.0350 
Alternatives in US$       
Hedge funds 0.1804 0.8352 1.1896 0.3194 0.0374 0.8472 
US private equity 0.6467 0.5264 2.0604 0.0567 2.1020 0.1508 
US venture capital 0.4238 0.6560 3.8928 0.0018 8.8221 0.0039 
Developed ex US private equity 2.4879 0.2882 0.8718 0.5972 1.8981 0.1726 
Emerging private equity 0.4183 0.6595 1.1373 0.3467 0.1468 0.7025 
Emerging stock market 0.3335 0.7173 1.0246 0.3856 0.0241 0.8769 
Developed ex US stocks 0.0037 0.9963 3.4356 0.0043 0.7143 0.4004 
Commodities – all 0.4816 0.6195 5.1360 0.0001 0.8054 0.4229 
Commodities - oil 0.1426 0.8673 1.8909 0.0809 0.4399 0.5090 
Commodities - gold 0.1063 0.8993 0.8755 0.5164 3.0843 0.0826 
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Appendix 7(H)  Diagnostic Test Results – Retail Price Index  

 Serial correlation LM Test Heteroskedasticity Ramsey Reset test 

  F-statistic Prob. F-statistics Prob. F-statistic Prob. 

Real Estate        
IPD All Property 1.1254 0.3294 3.3515 0.0033 0.1797 0.6727 
Industrial 0.4701 0.6266 3.5095 0.0024 1.0287 0.3134 
Office 1.3648 0.2611 2.5847 0.0182 0.3012 0.5846 
Retail 0.0484 0.9528 3.9328 0.0001 0.0189 0.8909 
Other Real Estate Vehicles       
AREF – All Funds 0.4166 0.6607 2.7142 0.0137 0.3600 0.5816 
AREF – All Balanced Funds 0.2719 0.7626 2.8632 0.0073 0.4821 0.4894 
Hybrid Real Estate  0.4940 0.6120 0.8783 0.5272 0.1085 0.7427 
Stocks       
Aggregate stocks 0.1446 0.8655 0.1403 0.9356 2.7661 0.0997 
Listed real estate 0.2501 0.7793 1.8913 0.0809 0.0143 0.9053 
Oil 0.1728 0.8416 0.9271 0.4797 10.7036 0.0015 
Basic Materials 0.1449 0.8653 1.4446 0.1907 0.6528 0.4215 
Industrial 1.0625 0.3500 1.0759 0.3733 0.0220 0.8825 
Construction 0.9477 0.3917 0.7718 0.5726 0.0006 0.9800 
Industrial goods and services 1.4551 0.2388 0.0418 0.9591 0.7916 0.3759 
Consumer goods 0.0540 0.9474 1.1813 0.3115 2.8760 0.0933 
Health care 0.6688 0.5151 1.8875 0.0815 1.2476 0.2672 
Consumer services 0.2579 0.7733 0.3506 0.7052 0.0058 0.9392 
Telecom 0.0683 0.9340 1.4986 0.1884 0.0614 0.8048 
Technology 1.8474 0.1644 4.5423 0.0001 0.1195 0.7305 
Ultilities 0.2199 0.8031 1.5247 0.1457 1.7171 0.1938 
Banks 0.5531 0.5771 0.2196 0.8032 1.4569 0.2305 
Insurance 1.1655 0.3164 0.0179 0.9822 0.0006 0.9801 
Financial services 0.2885 0.7501 1.7410 0.1479 2.1731 0.1440 
Index-Linked Bonds       
Index-Linked Bonds (0-5) 0.2438 0.7842 1.3126 0.2662 0.0637 0.9493 
Index-Linked Bonds (5+) 0.0129 0.9872 1.9066 0.0887 4.8078 0.0310 
Nominal Bonds       
Bonds – All lives 0.5558 0.5757 0.4442 0.8164 2.2264 0.0286 
10+ year bonds 0.4259 0.6546 0.6419 0.6683 2.4592 0.1205 
10 year bonds 0.0600 0.9418 0.5530 0.7664 3.6989 0.0578 
7 year bonds 0.0011 0.9989 0.6459 0.6932 3.4904 0.0651 
5 year bonds 0.0878 0.9160 1.0956 0.3715 2.1143 0.1496 
3 year bonds 0.6404 0.5296 0.8570 0.5299 0.0208 0.8857 
2 year bonds 0.0771 0.9258 1.6667 0.1388 0.4295 0.5140 
Alternatives in GB£       
Hedge funds 0.7429 0.4792 2.5717 0.0096 0.0540 0.8169 
US private equity 0.2514 0.7783 2.4924 0.0368 1.8615 0.1759 
US venture capital 0.4559 0.6355 2.9731 0.0056 11.3223 0.0012 
Developed ex US private equity 1.1848 0.3107 3.6401 0.0048 0.8580 0.3568 
Emerging private equity 1.1269 0.3287 1.3059 0.2687 0.0490 0.8253 
Emerging stock market 2.0341 0.1378 1.5245 0.1394 0.0348 0.8525 
Developed ex US stocks 0.1058 0.8997 2.8790 0.0095 0.3974 0.5301 
Commodities - all 0.6366 0.5316 3.5440 0.0058 0.5997 0.4408 
Commodities - oil 1.1688 0.3157 0.8240 0.5544 0.0517 0.8207 
Commodities - gold 0.1133 0.8930 0.3984 0.7545 2.2193 0.1398 
Alternatives in US$       
Hedge funds 0.9429 0.3937 0.8971 0.5127 0.1403 0.7089 
US private equity 1.2155 0.3018 1.5123 0.1740 6.5840 0.0121 
US venture capital 0.4102 0.6648 4.1250 0.0011 8.3114 0.0050 
Developed ex US private equity 0.0999 0.9050 1.5675 0.1091 1.9661 0.1651 
Emerging private equity 1.1269 0.3287 1.3059 0.2687 0.0490 0.8253 
Emerging stock market 0.4388 0.6464 0.9006 0.5438 0.0509 0.8221 
Developed ex US stocks 0.2881 0.7504 0.9583 0.4479 0.2727 0.6028 
Commodities - all 1.3006 0.2776 3.2507 0.0154 0.0967 0.7565 
Commodities - oil 1.3667 0.2605 1.4036 0.2224 0.0136 0.9073 
Commodities - gold 1.9658 0.1460 0.7750 0.5109 3.8680 0.0523 
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Appendix 7(I)  Diagnostic Test Results - LIBOR Rate 

 Serial correlation LM Test Heteroskedasticity Ramsey Reset test 

  F-statistic Prob. F-statistics Prob. F-statistic Prob. 

Real Estate        
IPD All Property 0.4200 0.6585 3.2858 0.0013 0.0006 0.9801 
Industrial 1.8226 0.1685 3.5707 0.0006 0.0818 0.7756 
Office 0.0110 0.9890 1.4067 0.2212 0.3202 0.5729 
Retail 0.0325 0.9681 2.1029 0.0296 1.1503 0.2868 
Other Real Estate Vehicles       
AREF – All Funds 0.6472 0.5261 3.3847 0.0048 5.0677 0.0269 
AREF – All Balanced Funds 0.9500 0.3912 2.6512 0.0077 0.4521 0.5033 
Hybrid Real Estate  2.2319 0.1144 0.9223 0.5344 0.2933 0.5897 
Stocks       
Aggregate stocks 0.0332 0.9673 0.4746 0.7943 0.2629 0.7932 
Listed real estate 1.1759 0.3143 0.7259 0.7420 3.5921 0.0620 
Oil 0.1583 0.8539 0.6142 0.6535 1.3034 0.2566 
Basic Materials 0.3662 0.6945 1.9158 0.0873 6.7314 0.0112 
Industrial 1.4599 0.2378 0.3051 0.8739 1.2956 0.2581 
Construction 0.3317 0.7186 0.0453 0.9558 1.2352 0.2693 
Industrial goods and services 0.9600 0.3869 0.1183 0.9757 1.2265 0.2711 
Consumer goods 0.5499 0.5790 1.3418 0.2607 5.0267 0.0274 
Health care 0.8891 0.4149 1.1095 0.3636 0.0031 0.9559 
Consumer services 0.1980 0.8207 0.0935 0.9634 0.5706 0.4520 
Telecom 0.0824 0.9209 1.1848 0.3222 0.0647 0.7999 
Technology 1.8522 0.1636 4.5130 0.0001 0.1584 0.6917 
Ultilities 1.2124 0.3028 2.0941 0.0391 2.4093 0.1245 
Banks 0.5505 0.5786 1.0738 0.3459 1.3933 0.2409 
Insurance 1.2147 0.3016 0.7393 0.4802 0.1766 0.6753 
Financial services 1.3783 0.2577 0.9061 0.5058 0.1475 0.7019 
Index-Linked Bonds       
Index-Linked Bonds (0-5) 0.1378 0.8715 1.4085 0.2292 2.9251 0.0044 
Index-Linked Bonds (5+) 0.1826 0.8335 1.4101 0.2286 7.6419 0.0070 
Bonds       
All lives 1.0078 0.3695 0.5586 0.8087 0.9064 0.3674 
10+ year bonds 0.1971 0.8216 0.9814 0.4705 0.0281 0.8672 
10 year bonds 0.1534 0.8580 0.9047 0.5400 0.3525 0.5544 
7 year bonds 1.1282 0.3286 0.9846 0.4480 0.2669 0.6068 
5 year bonds 0.8493 0.4315 1.1526 0.3379 1.1906 0.2784 
3 year bonds 0.2421 0.7856 0.6077 0.7480 0.0386 0.8448 
2 year bonds 0.6781 0.5104 0.8133 0.5788 1.2274 0.2711 
Alternatives in GB£       
Hedge funds 0.8983 0.4112 0.8983 0.4112 0.5618 0.4556 
US private equity 0.4121 0.6636 1.5282 0.1784 0.0298 0.8634 
US venture capital 0.3855 0.6813 2.5386 0.0201 10.3429 0.0018 
Developed ex US private equity 0.4172 0.6602 1.9616 0.1071 3.6485 0.0593 
Emerging private equity 0.1387 0.8707 1.7528 0.1076 0.7033 0.4041 
Emerging stock market 0.8832 0.4173 1.6921 0.1219 0.9897 0.3227 
Developed ex US stocks 0.5838 0.5600 0.7836 0.5851 0.6518 0.4217 
Commodities – all  0.2858 0.7521 2.6862 0.0194 3.7012 0.0577 
Commodities - oil 0.1992 0.8198 0.4475 0.9049 0.5528 0.4594 
Commodities - gold 0.1344 0.8745 0.4032 0.8750 2.4739 0.1195 
Alternatives in US$       
Hedge funds 0.2544 0.7760 0.8450 0.5215 2.3108 0.1321 
US private equity 0.8743 0.4209 1.7886 0.1107 0.1681 0.6828 
US venture capital 0.6270 0.5367 3.9483 0.0016 5.9536 0.0168 
Developed ex US private equity 0.8024 0.4521 1.8019 0.0680 1.4397 0.2339 
Emerging private equity 1.8886 0.1574 2.6886 0.0261 0.1976 0.6578 
Emerging stock market 1.4208 0.2474 1.4407 0.2001 1.8217 0.1808 
Developed ex US stocks 0.2238 0.8000 1.3341 0.2573 1.2063 0.2751 
Commodities – all 1.2837 0.2825 2.6300 0.0169 1.3908 0.1680 
Commodities - oil 1.2199 0.3007 0.5142 0.8603 0.5812 0.4481 
Commodities - gold 1.9120 0.1537 1.4961 0.2293 3.4829 0.0652 
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Appendix 7(J)  Diagnostic Test Results – T-Bill Rate 

  Serial correlation LM Test Heteroskedasticity Ramsey Reset test 
  F-statistic Prob. F-statistics Prob. F-statistic Prob. 

Real Estate        

IPD All Property 0.3540 0.7030 2.4067 0.0179 1.4278 0.2357 

Industrial 1.2056 0.3050 2.7055 0.0083 1.7887 0.1849 

Office 0.0139 0.9862 0.9314 0.4495 0.0039 0.9505 

Retail 0.3165 0.7296 2.0429 0.0447 3.8949 0.0519 
Other Real Estate Vehicles       

AREF – All Funds 0.6472 0.5261 3.3847 0.0048 5.0677 0.0269 

AREF – All Balanced Funds 0.2580 0.7733 5.9635 0.0000 2.4518 0.1215 

Hybrid Real Estate  0.1699 0.8440 0.9468 0.4899 0.0069 0.9339 
Stocks       

Aggregate stocks 0.0090 0.9958 0.4654 0.7609 0.3047 0.7613 

Listed real estate 2.1945 0.1178 2.1437 0.0475 0.9064 0.3438 

Oil 0.1704 0.8436 1.0538 0.3728 2.6961 0.1041 

Basic Materials 0.2029 0.8167 2.8461 0.0198 1.3630 0.2462 

Industrial 1.4404 0.2424 0.5528 0.6975 1.1983 0.2766 

Construction 0.3210 0.7263 0.0495 0.9517 1.4205 0.2364 

Industrial goods and services 0.9012 0.4098 0.3985 0.8093 1.1630 0.2837 

Consumer goods 0.2916 0.7478 2.1203 0.1030 8.6908 0.0041 

Health care 1.1337 0.3266 1.5130 0.1939 0.3219 0.5719 

Consumer services 0.1877 0.8292 0.1228 0.9465 0.6114 0.4363 

Telecom 0.0860 0.9177 1.1793 0.3251 0.0651 0.7992 

Technology 1.8556 0.1631 4.5309 0.0001 0.1732 0.6784 

Ultilities 0.7009 0.4991 2.7657 0.0092 3.8718 0.0524 

Banks 0.6561 0.5215 3.2611 0.0062 1.2793 0.2612 

Insurance 1.2052 0.3044 0.7699 0.4660 0.1803 0.6721 

Financial services 0.2961 0.7444 1.9579 0.0927 0.0702 0.7917 

Index-Linked Bonds       

Index-Linked Bonds (0-5) 0.1826 0.8335 1.4101 0.2286 2.7644 0.0070 

Index-Linked Bonds (5+) 1.0240 0.3633 11.13 0.0000 1.4771 0.1431 

Nominal Bonds       

Bonds – all lives 0.6167 0.5421 0.6669 0.6994 0.8273 0.4104 

10+ year bonds 0.7118 0.4936 1.2954 0.2732 1.0790 0.3018 

10 year bonds 1.6318 0.2017 1.3247 0.2550 1.7137 0.1940 

7 year bonds 0.5038 0.6061 0.7751 0.5916 1.8131 0.1817 

5 year bonds 0.3535 0.7033 0.7366 0.6216 2.8959 0.0925 

3 year bonds 0.0870 0.9167 0.5421 0.7748 0.8892 0.3484 

2 year bonds 0.2896 0.7493 0.6636 0.6792 0.2381 0.6268 

Alternatives in GB£       

Hedge funds 0.5585 0.5741 1.9505 0.0940 0.1778 0.6743 

US private equity 0.0176 0.9825 4.2794 0.0032 0.4273 0.5150 

US venture capital 0.3044 0.7384 1.6025 0.1282 13.2915 0.0005 

Developed ex US private equity 1.2134 0.3020 4.3621 0.0064 2.5055 0.1170 

Emerging private equity 0.2138 0.8079 4.9816 0.0011 0.1189 0.7310 

Emerging stock market 1.4746 0.2347 1.6603 0.1404 0.5331 0.4673 

Developed ex US stocks 0.5344 0.5880 2.2811 0.0431 0.0678 0.7953 

Commodities – all  0.4892 0.6148 3.5033 0.0062 0.1997 0.6561 

Commodities - oil 0.6600 0.5196 0.1941 0.9910 0.0425 0.8371 

Commodities - gold 0.3026 0.7397 1.3328 0.2579 5.4707 0.0216 

Alternatives in US$       

Hedge funds 0.1908 0.8266 0.1908 0.8266 2.6120 0.1098 

US private equity 0.5650 0.5705 1.9630 0.0920 0.0501 0.8234 

US venture capital 0.6360 0.5320 3.9529 0.0016 5.8975 0.0173 

Developed ex US private equity 1.7455 0.1815 1.5891 0.1185 1.6686 0.2003 

Emerging private equity 0.2138 0.8079 4.9816 0.0011 0.3732 0.5429 

Emerging stock market 0.3247 0.7237 0.9773 0.4533 0.1189 0.7310 

Developed ex US stocks 0.2867 0.7514 1.7458 0.1469 0.6873 0.4093 

Commodities – all 2.5277 0.0856 6.2080 0.0002 0.9064 0.3672 

Commodities - oil 1.2199 0.3007 0.5142 0.8603 0.4088 0.5244 

Commodities - gold 1.8842 0.1578 1.4913 0.2304 3.4000 0.0684 
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CHAPTER EIGHT – AN EXAMINATION OF THE ROLE 

OF REAL ESTATE IN THE INFLATION AND INTEREST 

RATE HEDGING PORTFOLIOS OF DC PENSION FUNDS 

8.0 INTRODUCTION 

This chapter revisits the role of real estate within the portfolio of institutional investors, such as DC 

pension funds, whose main concern is the preservation of the capital value of their investments as well 

as those who require a minimum required rate of return on their investment. In particular, this chapter 

seeks to understand the role that real estate plays within the resulting portfolios by analysing the 

performance implication of including or excluding direct real estate in such portfolios. The results of 

this study are also relevant to institutional investors such as investment funds and life insurance 

companies that have minimum return promises tied to given inflation and interest rate benchmarks. 

Monetary policies put in place in the US and Europe following the recent global financial crisis (2007 

- 2008) could pave the way for rising inflation. In particular, a low interest rate environment has resulted 

in a continuous rise in money supply. An injection of liquidity to stimulate the economies of many 

developed countries could also push up price levels (Koniarski and Sebastian, 2015). These policies 

have also created a bond market with very low returns, leading investors to explore other asset classes 

to improve their yields and gain inflation protection (Shepard, 2015).  

A rising inflation level is of great concern for institutional investors such as pension funds whose 

liabilities are linked to price and wage inflation. Individual investors are also concerned about rising 

inflation as it affects their real capital. The debate over which assets possess the ability to protect 

investors against a fall in their capital has been revived especially following the increase in dominance 

of DC pension funds. Many DC funds in the United Kingdom have their performance objectives 

stated in line with specified inflation and interest rates.   

In this chapter, we examine the ability of real estate to provide protection against inflation within a 

portfolio context. Many of the studies that have analysed the inflation-hedging ability of real estate 

have mostly focused on the interdependcies between asset returns and inflation (Campbell and Viciera, 

2005; Hoevenas et al., 2008; Jurek and Viciera, 2011). However, Koniarski and Sebastian (2015) pointed 

out that these approaches could lead to conclusions about inflation-hedging abilities that can be 

misleading. For example, an asset could move in conjunction with an inflation or interest rates but 
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then the rate of inflation or interest rate could always be higher than the returns of that asset. If this is 

the case, that asset is actually a bad hedge despite the close interdependence.  

Although several studies have analysed the benefits of adding real state to a multi-asset portfolio, very 

few of these studies have considered real estate’s role in portfolios constructed to hedge against of 

inflation and interest rate changes. In general, very few quantitative studies exist to address the question 

of of how the average investor should structure his portfolios in the presence of inflation and 

interest rate changes. Bruno & Chincarini (2011) cite three possible reasons for the lack of 

quantitative studies in this area. Firstly, maximising real returns effectively means maximising nominal 

returns. Given that many studies have already examined the issue of maximising nominal returns, it is 

felt that the carrying out studies that focus on maximising real returns was not worth pursuing 

separately. Secondly, very little theoretical work has focused on which asset classes and in what 

proportion would be good hedges or would provide positive real returns. Thirdly, it could be difficult 

to find a model that provides a good hedge in both high and low inflationary environments. 

A few studies have explored the optimal composition of inflation hedging portfolios (e.g. Bruno & 

Chincarini, 2010; Bruno & Chincarini, 2011; Twomey et. al, 2011; Downing et al., 2012; Briere and 

Signori, 2012;   Crawford et al., 2013; Koniarski and Sebastian, 2015, Ogunc and Ogunc, 2016). Of 

these studies, Koniarski and Sebastian (2005) is the only one that focuses on the role of real estate 

within inflation hedging portfolios.  

In this chapter, we construct different portfolios designed to help preserve the purchasing power of 

DC members’ contributions. The role of real estate within the resulting portfolios is of particular 

interest. We initially assume a DC investor who seeks to hedge against a given inflation and interest 

rate. Thus, the objective is to minimise the risk of achieving a negative real rate of return. We then 

consider a more ambitious investor who wishes to maximise risk-adjusted returns. The risk-adjusted 

returns used is a modified version of the Sharpe ratio of Sharpe (1966) and the Sortino ratio of Sortino 

and Van Der Meer (1991). The Sharpe ratio is usually calculated relative to the risk-free rate of return. 

But we use both an inflation rate and interest rate. The Sortino ratio is just like the Sharpe ratio but 

only considers the risk of achieving negative real returns. We run a separate optimisation that excludes 

direct real estate in order to determine the role that real estate plays in the various portfolios. In our 

study, we use four different optimisation models that measure risk relative to a chosen benchmark – 

tracking error and semi-variance of tracking error. While acknowledging that other downside risk 

measures such as Value-at-Risk and Conditional Value-at-Risk are useful, we do not use them in this 
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thesis because of their drawbacks when used within a portfolio context. These drawbacks are 

highlighted in our literature review.  

Two different inflation and interest rate benchmarks are chosen to reflect the range of benchmarks 

used by UK DC pension investors. Inflation rate benchmarks reflect the preferences of those 

funds/investors who desire to protect the real value of their capital over time. The interest rate 

benchmarks on the other hand reflect the preferences of those investors who wish to earn a minimum 

of a risk-free rate over time. This study is relevant within environments such as the UK where DC 

pension funds have stated inflation and interest rates against which they benchmark their performance.   

We find that adding real estate to inflation-hedging portfolios leads to a reduction in tracking-error for 

all the portfolios. This means that for the similar returns, a portfolio containing some real estate 

allocations would have a lower tracking error compared to another portfolio that does not have any 

real estate. Interestingly, the portfolios that include real estate also recorded higher returns, especially 

for the tracking error portfolios. In terms of allocations, we find that tracking error portfolios and 

Sharpe ratio portfolios were heavily invested in bonds. However, when the measure of risk is changed 

to account only for downside risk, the bonds receive a much lower allocation. The portfolios based on 

tracking error were also found to be diversified i.e. a lot more assets gain allocations. Although in a few 

cases, an 80-20 stock-bond portfolio generated cumulative returns that were higher than the returns of 

our inflation-hedging portfolios, the tracking error and the standard deviation and tracking error of the 

80-20 portfolios far exceeded those of our inflation-hedging portfolios.  

8.1 LITERATURE REVIEW 

8.1.1 INFLATION HEDGING PORTFOLIOS 

Boasen et al. (2011) observed that institutional investors such as life insurance companies and pension 

funds are most concerned with minimising downside deviation whiles maintaining a certain level of 

returns. This is because most of the policies of these life insurance companies and defined contribution 

funds contain a certain element of return guarantee/promise.  

In the chapter 1, we discussed the issue of return guarantees as it relates to defined contribution 

pension funds and how this makes it imperative for them to invest in assets that enable them to deliver 

on these guarantees, sometimes on a periodic basis. Bodie (2003) notes that transaction costs, agency 

costs, and cognitive limitations provide important theoretical justifications for financial intermediaries 

to supply user-friendly, guaranteed retail investment products that have only a small number of well-

understood options. A guarantee of a minimum rate of return could then be a good substitute for what 
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they described as “a course in statistics”. Altmann (2001) also argues that one means of improving the 

investment options available to DC plan members in the U.K, may be to introduce measures based on 

U.S,-style ‘safe harbour’ guidelines under ERISA, These guidelines, as discussed in Papke (2004) specify 

that the sponsor must provide sufficiently varied investment alternatives to allow the participant an 

opportunity to materially affect the potential returns on assets and account risk; allow the participant 

to choose from at least three investments, each of which must be diversified and each with different 

risk/return characteristics (employer’s securities may not be one of the three); allow the participant to 

change investments with a frequency that is appropriate for the expected market volatility of the 

investment; and provide sufficient information for the participant to make investment decisions.  

An analysis of the Statement of Investment Principles of UK Master Trust pension funds that have 

been established to help companies meet their responsibilities under Auto-Enrolment have specific 

inflation and interest rate measures that they aim to benchmark their performance against. These rates 

can also be considered as the promised return to contributors who join the scheme. Invariably, 

members of these funds would expect to earn returns that broadly follow the DC scheme’s chosen 

performance benchmark. For example, the UK National Employment Savings Trust (NEST) has three 

different investment objectives all tied to the UK CPI inflation. The foundation stage, covering the 

first five years aims to keep pace with inflation, after charges. The growth phase promises a return of 

3% above inflation while the consolidation phase keeps pace with inflation whiles minimising volatility. 

NOW Pensions hedges the returns of the various funds against the SONIA rate.  The people’s pension 

trustees expect the returns on the default fund to exceed CPI inflation and the wage growth rate over 

the long run. Legal and general promises real rates of return net of fees. The fund uses both the CPI 

and RPI to design its annuity contracts when members retire.  

The challenge for DC pension schemes that have obligations tied to specific inflation and interest rate 

benchmarks is to construct portfolios that would generate returns in line with changes in the 

benchmark. This portfolio would determine a combination of assets that would generate sufficient 

returns while at the same time protect investors against inflation rate changes, especially on the 

downside (Bruno & Chincarini, 2011).  

Ogunc and Ogunc (2016) examined the role that Treasury Inflation Protected Securities (TIPS) play 

within multi-asset portfolios. They implemented three different investment objectives. The first 

objective was to maximise real returns. The second minimises risk whiles the third objective maximises 

risk-adjusted returns. They found that portfolios containing TIPs improved the efficiency of portfolios 

during both the pre and post-crisis periods.  
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Briere and Signori (2012) investigate the optimal asset allocation for investors who seek to hedge 

against inflation in both volatile and stable macroeconomic environments. The found that in volatile 

economic environments, stocks, cash, inflation-indexed bonds and precious metals play an important 

role in investment portfolios. In a stable environment however, pro-cyclical stock sectors, nominal 

bonds and cash play a significant role within investment portfolios.  

Bruno & Chincarini (2011) examined the possibility of hedging against inflation within investment 

portfolios that contain a full set of assets available to a US investor. They used both tracking-error and 

semi-variance optimisation to determine the best allocation for investors who wish to hedge against 

inflation. For investors who wish to minimise downside deviation, the best allocation often did not 

include stocks. The portfolios were made up of treasury bonds, gold, some oil and emerging market 

equities. The portfolios were found to perform well out-of-sample with the average returns being 

positive and close to the target real returns. The tracking errors were also relatively low. The authors 

suggest using rolling window analysis to determine how the allocations change over time.  

Within the specific context of inflation-hedging, Koniarski and Sebastian (2015) used a downside risk 

approach instead of the mean-variance approach of Markowitz (1952) to determine the optimal 

allocations within the inflation-hedging portfolios. They used Lower Partial Moments to measure the 

risk of asset’s returns falling below the inflation rate. They explained that Lower Partial Moments are 

useful for studying optimal inflation-protection over different horizons as they can account for the 

downside deviation of assets and asymmetric return distributions. They compared the results of their 

correlation analysis to results of the LPM analysis and concluded that assets exhibiting a high 

correlation with inflation do not necessarily produce low LPMs. They found that real estate had the 

most attractive inflation-hedging property over the medium and long-term. Cash is only a good hedge 

against inflation only over the short-term. Similarly, bonds outperform stocks in terms of their 

inflation-hedging ability over the medium term but not over the long-term.   

8.1.2 BENCHMARK RELATIVE RETURN AND RISK MEASURES 

Although the mean-variance optimisation model of Markowitz (1952) remains the most standard and 

widely used portfolio optimisation tool in the investment industry today (Boasson et al., 2011), many 

researchers have questioned the measurement of risk in terms of variance of expected portfolio returns. 

One of the main arguments against using variance as a measure of risk the fact that it is based on an 

assumption that investors weight the probability of negative returns equally against the probability of 

positive returns (Fishburn, 1977; Tse et al., 1993; Swisher and Kasten, 2005). Boassen et al (2011) 

found that for most investment managers, the challenge following the recent global financial crisis is 
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the selection of optimal portfolios that would enable them minimise downside risk while improving 

the upside return of their investments. Many of these managers have turned consequently turned to 

use of alternative measures of risk – particularly those that help them minimise downside risk whiles 

at the same time improve the upside potential of their investments.  Another problem with using the 

variance is its assumption of normality of asset return distributions. Another drawback of the variance 

is that it measures dispersion around the mean and so cannot be customised for individual investors. 

In other words, it ignores investor's risk aversion. Several studies have found that investment returns 

are not normally distributed (Fama and Roll, 1968; Jansen and De Vries, 1991).  

8.1.2.1 Target Returns 

Benchmark relative risk measures take into consideration returns relative to a certain threshold. The 

threshold captures the investor’s perspective of risk.  For example, an investor concerned with capital 

preservation would set a threshold of zero so that the probability of losing their initial investment 

would be viewed as risky. An investor with a 10% required return would consider any return below 

this rate to be risky. Often, institutional investors use a certain peer performance benchmark to 

measure their downside risk (Boason et al., 2011). By far, the most common benchmarks used by 

investment managers are a risk-free rate of return and the inflation rate (see Sivitanides, 1998; Sing and 

Ong, 2000, Cheng, 2001; Cheng and Wolverton, 2001; Kroencke and Schincler, 2010, Koniarski and 

Sebastian, 2015).  

Vilkancas (2014) found that although target rate of return is often selected by investors based on their 

risk preferences, in practice, this rate is often set equal to a risk-free rate, an expected rate of return or 

zero. Similarly, an OECD (2012) survey found that most countries have a minimum return benchmark 

for DC pension funds often set the expected return equal to the average return on this benchmark. 

Sivitaides (1998) constructed three different efficient frontiers using the mean-semideviation 

framework. The first efficient frontier uses a target return of 0%, indicating the risk borne by an 

investor who defines risk as any loss of initial principal. The second efficient frontier is constructed 

using a target return set equal to the risk-free rate. The study used the return on the 5-year Treasury 

security rate. The third target return is the weighted average rate of return for all four NCREIF property 

types. This reflects the risk preferences of institutional investors who use the NCREIF property index 

as their performance benchmark. 

Sing and Ong (2000) used a three target returns to determine the effect of target returns on portfolio 

allocation and performance. They used target rate of returns of 0%, 1% and 2%. Koniarski and 
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Sebastian (2015) consider an investor who seeks to purely hedge against inflation, thus, they set target 

rate of return to inflation rate i.e. real rate of return of 0. Afterward, they consider an ambitious investor 

who wishes to obtain real rates of return ranging from 1% to 3%. Crawford used the percentage change 

in inflation over non-overlapping periods as the target rate of return. 

Cheng (2001) used four possible target returns in their analysis of downside risk portfolios. They used 

0% to represent the preference of an investor who is concerned with maintaining their capital. The 

second target return was the average return on the one-year Treasury bill rate. This is used to represent 

the preferences of an investor who requires at least the risk-free rate of return on their investment. The 

third and fourth target returns were set 8% and 12% respectively.  

Similarly, Kroencke and Schindler (2010) used four different target return rates in their analysis. First, 

they used a target return of zero to capture the situation where at least the nominal preservation of 

capital is considered the investment goal. They also used the average return on an equally weighted 

portfolio as the target return rate. The third benchmark they used is the risk-free rate of return, 

specifically the 3-month US Treasury Bill rate. Finally, they use the US inflation rate, measured by the 

US consumer price index. They noted that the four thresholds that they use are just a selection from a 

wide range of feasible reference points that investors may use.  

In this thesis, I have used as target returns selected inflation and risk-free interest rates. Instead of 

imposing arbitrary target returns higher aimed at obtaining returns that are higher than the inflation or 

risk-free rates, I have employed the use of two risk-adjusted measures, namely, the Sharpe and Sortino 

ratios. I believe this would result in more optimal portfolios than simply setting absolute target returns. 

The problem with setting absolute return targets is that tend to be too high or too low and so may 

need to be changed regularly. The OECD survey on pension regulations has shown that countries such 

as Switzerland which used to have absolute minimum return requirements have moved to the use of 

relative benchmarks. Both the Sortino ratio and Sharpe ratio have been found to give be consistent 

with the utility or preference functions of investors. Platinga and Groot (2002) studied the link between 

performance measures and utility functions. They compared the rankings obtained based on 6 different 

measures of risk-adjusted returns and three different preference functions. The risk-adjusted return 

measures they examined were the Sharpe ratio, the Sortino ratio, Sharpe’s alpha, Foust Index and 

Upside Potential ratios. The preference functions are the quadratic utility function, power utility 

function and the prospect theory value function. They found that the Sharpe ratio, Sharpe’s alpha and 

expected return correspond with the preferences of investors with a low level of risk aversion whereas 

the Sortino ratio, Fause Index and Upside potential correspond with the preferences of investors with 
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intermediate to high risk aversion. Similarly, Cerny (2003) found that the Sharpe ratio has a close 

relationship with investors’ quadratic utility function. 

8.1.2.2 Semi-Variance 

Semivariance as a special case of downside risk measurement has received a lot of support of all the 

various measures of downside risk. Ballestero (2005) defines semi-variance as the weighted sum of 

squared deviations from a certain threshold, considering only those returns that fall below this 

threshold. Markowitz (1959, 1970) contended that since investors are often more concerned with 

downside risk than overall volatility, using semi-variance as a measure of risk rather than variance leads 

to better portfolios. Markowitz (1970) showed that the mean-variance and mean-semivariance models 

can produce the same results when the returns are normally distributed. However, when this is not the 

case, the semivariance model produces better optimal solutions.   

Roy (1952) was one of the first to discuss the idea of downside risk as it relates to portfolio selection. 

He uses the concept of 'safety-first’ where an investor measures the probability of his investment value 

falling short of a given disaster level. In particular, he posits that investors will prefer the safety of their 

principal first anytime they are faced with uncertainty. Markowitz (1959) presented the semivariance as 

an alternative to the variance which could lead to the construction of better portfolios but did not 

apply it in his study due to the computational complexity of implementing downside risk models at the 

time. Markowitz (1970) found that if returns were normally distributed, both the variance and 

semivariance would produce the same allocation. However, if returns are not normally distributed, the 

semivariance is more likely to produce a better solution.  

Hogan and Warren (1972) proved the convexity and differentiability of mean-semivariance models. 

Their analysis showed the theoretical and computational viability of downside risk models. Fishburn 

(1977) used a utility function to model downside risk based on investors' risk-aversion level and target 

returns. Bawa (1978) generalised the model of Fishburn (1977) to an nth order 'safety-first' rule. Tse et 

al. (1993) applied the safety-first idea of Fishburn (1977) in a dynamic structure. Since the early 1990’s, 

the actual application of downside risk measures to the portfolio optimisation problems. Sortino and 

Meer (1991) proposed a downside deviation and a reward-to-downside variability ratio (Sortino ratio) 

as tools that could be applied in the selection of optimal portfolios. Balzer (1994) discussed the issue 

of skewness in asset return data and issues relating to the application of downside variance. Merriken 

(1994) proved that semivariance could be applied to different hedging policies. Other studies that have 

used semi-variance in the context of portfolio allocation include Nawrocki (1999), Kroencke and 

Schindler (2010), Boasson et al. (2011) and Cumova and Nawrocki (2011).  
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Boasson et al. (2011) found the use of semivariance for the measurement of risk to be consistent with 

the intuitive perception of risk of investors who aim to measure the downside risk of their investment. 

Optimisation using this approach is most suitable for institutional investors such as pension funds and 

life insurance companies who aim to minimise downside risk. Boassen et al. (2011) compared and 

tested the differences between the minimum semivariance approach to portfolio allocation and the 

traditional mean-variance approach. They found that the mean semivariance approach produced 

portfolios that were quite different from the mean-variance approach. The mean semivariance 

approach produced returns that at least helps maintain and even improve the expected returns of a 

portfolio. 

The use of semi-variance for the construction of real estate portfolios has been undertaken by studies 

such as Sivitanides (1998), Sing and Ong (2000), Cheng and Wolverton (2001). In comparing mean-

variance and downside risk, Sivitanides (1998) and Sing and Ong (2000) analysed which of the two 

models produced less risky portfolios given a certain expected return. Cheng and Wolverton (2001) 

commented that the approach adopted by, Sivitanides (1998) and Sing and Ong (2000) were flawed as 

both approaches use different risk measures. Whiles the mean-variance approach focuses on the 

variance, downside risk portfolios use the semi-variance. Consequently, each approach would be 

inferior when judged from the perspective of the other. Cheng (2001) believes a common dimension 

that could be used to determine which approach is produced better portfolios is the expected return 

and terminal wealth of the terminal portfolios. Cheng (2001) used bootstrap simulations to compare 

the performance and return distribution of the traditional mean-variance analysis and downside risk 

approach to construct portfolios that included direct real estate. They found that the allocations 

suggested for direct real estate by the downside optimisation model was closer to allocations observed 

in practice for institutional investors such as pension funds. Furthermore, they found that the return 

distribution of the downside portfolio tended to be negatively skewed with a smaller left tail. The 

median of semi-variance portfolios were also found to be higher than those obtained within mean-

variance portfolios. They concluded that downside risk models lead to better portfolios than mean-

variance portfolios.  Cheng (2001)’s approach was based on Nawrocki (1991) who compared the 

performance of mean-variance portfolios and downside risk portfolios using common stock data.  

8.1.2.3 Value at Risk 

Another measure of downside risk that has received significant attention within the finance literature 

especially following the recent financial crisis is the value-at-risk (VAR) measure and its counterpart, 

the conditional value-at-risk (CVAR). Value at risk (VaR) is a measure of risk which provides an 

estimate of the amount of loss that could be expected over a given time horizon with a given level of 
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confidence. VaR therefore reflects the potential downside risk that an investment faces in nominal 

terms (Jorion, 2006). VaR’s appeal lies in the fact that it is easy to understand and is widely used by 

regulators especially within the banking industry. The results that are produced by VaR models are 

easily understood by staff from all areas of an organisation (Bohdalova, 2007).   

Although intuitively appealing, VaR models have some theoretical and practical limitations that most 

asset allocators and portfolio managers believe limit their usefulness in the construction of investment 

portfolios (Arztner et al., 1999; Szego, 2004; Zhang and Rachev, 2004; Sereda et al., 2010). Sereda et 

al. (2010) found that most institutional investors use VaR only when required by regulators or when 

they wish to present a measure of risk that is simple for clients to interpret.  

Unlike risk measures such as variance and semi-variance, there is no standard approach for calculating 

VaR. Several VaR models and implementation techniques have been applied in the estimation of risk. 

These models have been found to produce varied estimates of risk for similar or even the same 

portfolio (Bohdalova, 2007; Guldimann, 1995; Dowd et al, 2004).  

Value at risk as a measure of risk has been found to not be coherent due to its violation of the sub-

additivity property required of good risk measures. Combining several assets in a portfolio could result 

in a combined VaR level that is higher than the sum of individual asset VaRs. This means that the value 

at risk model inherently discourages diversification. (Arztner et al., 1999; Danielson et al., 2005).  

VaR has been shown to be ill-behaved as a function of portfolio positions and tends to exhibit multiple 

local extrema. This tends to be a major handicap when VaR models are used to determine the optimal 

mix of assets to be included in an investment portfolio (McKay and Keefer, 1996; Mauser and Rosen, 

1999). Longin (2005) suggests using VaR primarily when one is interested in extreme events. 

Value-at-risk is also an incomplete measure of risk as it cannot give any information regarding the 

amount of losses that would be incurred once the VaR limit is exceeded. In other words, VaR ignores 

extreme events that fall below the specified quantile. This limitation of VaR is remedied by CVaR 

models which measure the extent of losses that would be incurred beyond the VaR limit. It also 

captures the probability of those losses occurring. However, Boassen et al. (2011) note that within an 

optimisation framework, the use of CVaR requires an assumption regarding the return distribution or 

a large amount of return observations that fall below the target return. This naturally presents a 

problem when using real world data, unless simulation techniques are used. For a sample of 100 return 

observations, a 99% CVaR would be based on only 1 observation only. The analysis in this thesis is 

based on historical data. Consequently, the use of CVaR would be problematic. The sample size would 
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be reduced even further when we carry out the rolling window analysis that is subsequently use for our 

out-of-sample analysis. Both VaR and CVaR require an investor to specify a probability level and 

cumulative losses (Weiner, 1998). The investor also has to specify an investment horizon, mostly a 

short-term one, ranging from 1 to 10 days. This makes VaR and CVaR models unsuitable for long-

term investors. Campbell et al (2001) show that the longer the time period, the less efficient and precise 

is the VAR frontier. Alexander and Batista (2002) found that mean-VaR optimisations do not improve 

upon the optimisation in MVA models. On the contrary, mean-VaR models resulted in more volatile 

portfolios. In applying VaR models to a portfolio context, the objective function is often to maximise 

expected returns given a VaR or CVaR. The goal is to directly control the asymmetric distribution of 

residual errors, and for constraining one of its tail means to not exceed some pre-specified value.  

Although a few studies have applied VaR and CVaR in the construction of investment portfolios, 

within the specific context of inflation hedging, no study has to our knowledge applied value at risk 

models. By far the most popular investment objective when it comes to constructing inflation-hedging 

portfolios is the minimisation tracking error minimisation and/or the semi-variance of tracking error ( 

Consequently, while we acknowledge the intuitive appeal of VaR models, they are not selected for the 

analysis in this chapter.  

8.1.3 BENCHMARK RELATIVE RISK-ADJUSTED RETURNS  

Modern Portfolio Theory started with the seminal work of Professor Harry Markowitz of the 

University of Chicago in 1952. Markowitz was the first to quantify risk and also provide a framework 

that demonstrated that diversification could work to reduce risk and also enhance investors’ returns. 

The work of Markowitz has underpinned by financial economics, probability and statistical theory. 

Markowitz’s work, published in the Journal of Finance in 1952, demonstrated how investors can 

combine assets efficiently into diversified portfolio by correctly accounting for the risk and returns of 

the asset as well as the correlation between the individual assets (Lettau et al., 2002). The mean-variance 

optimisation model of Markowitz (1952) still remains the most standard and widely used portfolio 

optimisation tool in the investment industry today (Boasson et al., 2011). 

The Sharpe ratio was first introduced by Sharpe (1966) as a measure for comparing mutual fund 

performance. The measure was originally christened the ‘reward-to-variability’ ratio. The Sharpe ratio 

is based on the idea that investors should be compensated with additional returns for investing in assets 

other than Treasury securities. The additional return that an investor earns over and above the risk-

free rate is known as the excess return (Feibel, 2003). Although the return on there is a general 

consensus among investment professionals and academics that the return on government securities 
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ought to be used, there is no consensus as to whether long-term or short-term government security 

rates. Whiles academic studies favour short-term Treasury bill rates, most practitioners prefer using 

short term rates as they are less volatile and are consistent with the goal of estimating long-term 

required rate of return (Hirt and Block, 2004; Cornell et al, 1997). The Sharpe ratio shows whether 

higher returns from an investment are enough to compensate the investor for the level of additional 

risk taken or whether decreases in volatility is enough to make up for decreases in portfolio returns 

(Schnesweis et al., 2010). The Sharpe ratio has been described by several authors as the best gauge of 

how successfully an investment manager balances the goal of return maximization and minimizing the 

volatility in their portfolios. For their contribution to investment management industry, Harry 

Markowitz, William Sharpe and Merton Miller were jointly awarded the Nobel Prize in 1990. 

Although the Sharpe ratio is the most commonly used measure of risk-adjusted return, it has undergone 

several refinements over the past fifty years. McLeod and Vuuren (2004) believes that the several 

refinements that the Sharpe ratio has undergone in itself is proof of how significant this ratio is.  

Perhaps the most widely known modification to the Sharpe ratio is the Sortino ratio (Fiebel, 2003). 

The Sortino ratio is a modification of the Sharpe ratio which uses downside risk as its denominator 

and a target rate of return in place of the hurdle (risk-free) rate. This measure is credited to Dr. Frank 

Sortino and his colleagues at the Pension Research Institute of the San Francisco State University. The 

expanded risk/return paradigm developed at the Pension Research Institute has come to be known as 

Post-Modern Portfolio Theory. The methods provide a framework that considers investors 

preferences for upside volatility over downside risk. Downside risk is defined in terms of target semi-

variance or semi-deviation. Post-modern portfolio theory suggests that all moments of return 

distribution (mean, standard deviation, skewness and kurtosis) have to be taken into account in the 

construction of investment portfolios. Although the idea of downside risk measurement was 

popularised by Sortino and Van de Meer 1991, Roy (1952) was the first to discuss the idea. Roy (1952) 

used the concept of ‘safety-first’ where an investors measure the probability of his investment value 

falling short of a given disaster level. Roy (1952) posits that investors will prefer the safety of their 

principal first anytime they are faced with uncertainty. 

8.2 OPTIMISATION APPROACH 

In order to model the preferences of an investor interested in seeking protection from inflation, we 

use an extension of Markowitz (1952) mean-variance model with an objective function related to 

inflation and inflation rate changes. Per Bruno & Chincarini (2011), the model maximises real return 

subject to minimising the nominal deviation from the inflation or interest rate benchmark:  
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min[V(rP,t,t+k-πt,t+k)]           8(1) 

s.t. rP,t,t+k-πt,t+k=μ̃
P
 

where:  

rP,t,t+k is the return on the portfolio from time t to t+k 

 πt,t+k is the inflation or interest rate being hedged against from time t to t+k 

Since the objective is to select a group of assets for the investor that achieves this goal, the problem 

can be re-written as:  

 
min [V (∑ wi,tri,t,t+k-πt,t+k

N

i=1

)]         
8(2) 

 
s.t (∑ wi,tri,t,t+k

N

i=1

-πt,t+k) =μ̃
P

   
 8(3) 

The above can be written in matrix notation as:  

 min

w
w'Σw-2w'γ 

 8(4) 

s.t.        w'μ=μ̃
P
+πt,t+k  

Where γ is an N-dimensional vector of the covariances between individual asset returns and the liability 

benchmark returns over the horizon from t to t+k, Σ is the variance-covariance matrix of returns of 

the asset classes and the returns of the liability benchmarks and 𝑤 represents the weights of the 

portfolio of asset classes. 

 
γ= [

C(r1,πt,t+k)

⋮
C(rN,πt,t+k)

] 
8(5) 

Constraints are added to prohibit short selling of asset classes by setting asset weights equal to or 

greater than zero (0) and also that the portfolio weights sum to one.  

Bruno & Chincarini (2011) again suggest an alternative model to more accurately specify an investor’s 

optimisation problem in terms of minimising downside risk, rather than variance:  
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8(6) 

s.t.  (∑ wi,tri,t,t+k-πt,t+k
N
i=1 )=μ̃

P
  

We do not only limit our optimisations to DC funds who only desire to preserve their capital but also 

those who aim to achieve returns in excess the inflation and interest rate benchmarks they have 

adopted. One of the ways of accounting for the need to earn a premium in excess of inflation is to 

increase the target return beyond the inflation rate as done in Koniarski and Sebastian (2015). Another 

approach is to maximise risk-adjusted returns. Risk-adjusted measures are motivated by the belief that 

investors are risk-averse and would consequently want to be compensated for every unit of risk they 

are exposed to (Platinga and Groot, 2002). Consequently, we use two of the most important measures 

of risk-adjusted performance measures – the Sharpe ratio and Sortino ratios. The Sortino ratio is similar 

to the Sharpe ratio but uses the downside semivariance thereby penalizing only returns that fall below 

a certain user-specified rate. 

In this study, we also explore two measures of risk-adjusted returns – a generalised Sharpe ratio and 

Sortino ratios. As indicated by Arzac and Bawa (1977) deriving a measure such as the Sharpe ratio gives 

portfolio managers a tool which they can use to evaluate the efficiency of several candidate portfolios. 

Amenc et al. (2010) hold that the maximization of risk-adjusted returns is fully consistent with financial 

theory. The CFA Institute’s Global Investment Performance Standards (2012) requires that firms 

present at least one composite-level measure of performance. Among the measures proposed are the 

beta coefficient, tracking error, modified duration, information ratio, Sharpe ratio, Treynor ratio, value 

at risk (VaR), volatility and credit ratings.   

The Sortino ratio and Sharpe ratio which we employ in this study have been found to be consistent 

with the utility or preference functions of investors. For example, Platinga and Groot (2002) studied 

the link between performance measures and utility functions. They compared the rankings obtained 

based on 6 different measures of risk-adjusted returns and three different preference functions. The 

risk-adjusted return measures they examined were the Sharpe ratio, the Sortino ratio, Sharpe’s alpha, 

Foust Index and Upside Potential ratios. The preference functions are the quadratic utility function, 

power utility function and the prospect theory value function.  They found that the Sharpe ratio, 

Sharpe’s alpha and expected return correspond with the preferences of investors with a low level of 

risk aversion whereas the Sortino ratio, Fause Index and Upside potential correspond with the 

preferences of investors with intermediate to high risk aversion. Similarly, Cerny (2003) showed that 
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the Sharpe ratio is closely related to an investor’s quadratic function. Ogunc and Ogunc (2016) explored 

the objective of maximising the Sharpe ratio in determining the role of Treasury inflation protected 

securities (TIPS) within portfolios constructed to offer inflation protection.  

In this study, we use a generalised form of the Sharpe ratio where the risk-free rate is replaced with the 

selected inflation and interest rate benchmarks: 

 
Shape ratio=

E[rP,t,t+k-πt,t+k]

𝜎[rP,t,t+k-πt,t+k]
 8(7) 

where σp is the portfolio standard deviation.  

Similarly, a generalised Sortino ratio is used. The target return is replaced with the returns on the 

selected inflation and interest rate benchmarks:  

 Sortino Ratio=
E[rP,t,t+k-πt,t+k]

√1
n

∑ (rP,t,t+k-πt,t+k)
2
f(t)n

i=1

 
8(8) 

f(t)=1 if return < target return 

f(t)=0 if return ≥ target return 

In-sample portfolios are estimated from the first quarter of 1991 to the first quarter of 2015 for which 

we have data available for all the 32 variables. The out of sample portfolios are estimated from the 

beginning of 1991 plus five additional years. This estimate is used to construct portfolios for the next 

quarter. The window is then expanded forward by a quarter and a new portfolio re-estimated. This 

process is repeated until the first quarter of 2015. Quarterly rebalancing is possible as almost all the 

asset sectors included are liquid, except for real estate. However, the use of a hybrid real estate for 

example makes it easier for DC pension funds to rebalance their real estate holdings more frequently 

without significant costs. A quarterly rebalancing period is also consistent with the practice among 

pension funds (Blake et al., 2009; Ibbotson and Kaplan, 2000; Bams et al., 2016; De Jong and Driessen, 

2013).  

In this study, we convert the returns of all the non-UK asset returns into GB£ terms. Moss & Farrelly 

(2015) found that unhedged GBP-based performance matrices for various assets that they examined 

in their study were closely related. Also, currency risk was found to be neutral over the sample period. 
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Risk and return improved slightly for a UK investor whose when returns were estimated in GBP rather 

than US$ terms. 

8.3 RESULTS 

The analysis in this chapter is in three parts. We first determine the optimal mix of assets within the 

various inflation and interest rate hedging portfolios. The risk and return metrics of the various 

portfolios are also analysed. The second part investigates whether direct real estate can improve the 

inflation hedging ability of portfolios designed to act as a hedge against the selected inflation and 

interest rate benchmarks. To demonstrate the role of real estate within these inflation and interest rate 

hedging portfolios, we run the analysis with and without direct real estate. In the third part, we 

determine whether the specific real estate investment vehicle used affects the allocation to direct real 

estate within the various inflation and interest rate hedging portfolios and the subsequent performance 

of these portfolios. We run the simulations using three real estate return series – the AREF IPD 

unlisted funds index, the IPD UK direct real estate index and a hybrid real estate index. As mentioned 

earlier, the AREF IPD unlisted fund index represents the returns that accrue to investors net of fees.  

The hybrid real estate index is constructed by blending the AREF IPD real estate fund series and a 

listed real estate index in the ratio 80:20. This is similar to the approach used by Legal and General, the 

largest DC pension fund in the UK. This approach is also used by empirical studies such as NAREIT 

(2011), Farrelly and Moss (2014) and Lee (2014). The effective exposure to real estate then is the sum 

of both listed and unlisted real estate allocations. Consequently, where a mix of direct and listed real 

estate is used, we drop listed real estate from the asset universe.  As an additional robustness check, we 

also run the analysis using an unsmoothed IPD UK direct real estate series. One of the issues raised 

about the use of appraisal based real estate indices is whether a smoothing bias exists and how to deal 

with this bias. Researchers are divided as to whether such as bias exists and also whether there is an 

appropriate way to deal with this bias (Cheng, 2001).  

8.3.1 DESCRIPTIVE STATISTICS 

Table 8(I) presents the summary statistics for the assets included in this study as well as the selected 

inflation and interest rate benchmarks. Technology stocks have the highest mean return of 4.5% per 

quarter whiles gold has the lowest average return of 1.22% per quarter. These two rates therefore 

represent the range of achievable portfolio returns. Commensurate with the high returns technology 

stocks provide, they also had the highest standard deviation along with oil. Short-term bonds recorded 

the lowest volatility of all the selected assets. For the 1990 – 2006 sample period however, venture 

capital recorded the highest expected return, followed by bank stocks. Technology stocks still had the 
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highest standard deviation of 24.45% for the 1990 – 2006 sample period while gold still recorded the 

lowest average return of 1.09%. 

Within the context of inflation hedging or index tracking in general, the preferred measure of risk is 

the tracking error relative to a selected benchmark. Short-term bonds exhibit the smallest tracking error 

relative to all the selected inflation and interest rates. Technology stocks, which recorded the highest 

expected return also had the highest tracking error relative to each inflation and interest rate 

benchmark. Another measure of the interdependence between asset returns and the returns on a 

selected benchmark is the correlation coefficient between the two series. Short-term bonds had the 

highest correlation relative to both interest rates. Oil had the highest correlation with RPI inflation 

while stocks (basic materials in particular) were the most highly correlated with CPI inflation. 

The skewness of the return distribution of the various return series is also of interest in this chapter. A 

skewness value of less than -1 or greater than 1 shows that there is significant asymmetric distribution. 

Positive skewness implies that the distribution is skewed to the right with a small right tail. This is 

representative of higher downside risk. A negative value for skewness is indicative of a left skew with 

a small left tail and is representative of lower downside risk. As can be seen in Appendix 7(A) almost 

all the stock and bond sectors are symmetrically distributed. Of the four real estate return series, the 

unsmoothed IPD series and listed real estate series are found to be symmetrically distributed. The IPD 

all property portfolio returns and AREF unlisted fund series as well as the blended real estate series 

exhibited a negative skew. This implies that real estate assets would generally exhibit lower downside 

risk. The only stock series that exhibited a positive skew is technology stock. This implies that 

technology stocks exhibit higher downside risk. Of the various alternative assets, we found that hedge 

fund and US venture capital were skewed in opposite directions. Whiles hedge fund series were 

negatively skewed, venture capital exhibited significant positive skewness. 
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Table 8(I): Descriptive Statistics (1990 – 2015) 

  
  

 
 
 

MEAN 

  

 

STD. 

DEV  

TRACKING ERROR CORRELATION 

CPI RPI LIBOR TBILL CPI RPI 
LIBO
R 

TBIL
L 

Real Estate                   

AREF Real Estate Funds 1.78 3.13 3.28 3.08 3.28 3.31 -0.12 0.19 -0.12 -0.16 

Blended/Hybrid real estate 1.95 4.16 4.22 4.07 4.27 4.29 -0.06 0.18 -0.11 -0.13 

IPD All Property  2.09 3.17 3.28 3.09 3.33 3.36 -0.09 0.21 -0.15 -0.19 

Unsmoothed IPD All Property 2.19 5.33 5.34 5.27 5.43 5.45 0.01 0.12 -0.13 -0.15 

Listed real estate  2.64 11.68 11.68 11.63 11.75 11.75 0.04 0.11 -0.07 -0.07 

Stocks:                      
Oil and gas 2.74 9.07 9.04 9.06 9.05 9.08 0.08 0.04 0.06 0.02 

Basic materials 2.95 13.07 12.91 12.88 13.06 13.09 0.27 0.31 0.05 0.01 

Industrials 3.29 10.86 10.79 10.80 10.87 10.88 0.14 0.11 0.01 0.00 

Construction 2.8 10.41 10.30 10.33 10.45 10.45 0.19 0.15 -0.02 -0.03 

Industrial goods and services 2.91 9.51 9.43 9.43 9.52 9.53 0.17 0.15 0.03 0.02 

Consumer goods 3.71 10.63 10.51 10.58 10.62 10.63 0.22 0.11 0.05 0.04 

Health care 2.88 7.17 7.15 7.29 7.14 7.12 0.08 -0.12 0.10 0.12 

Consumer services 2.55 8.75 8.73 8.74 8.76 8.76 0.07 0.05 0.02 0.02 

Telecommunications 3.12 12.57 12.59 12.60 12.54 12.55 0.01 -0.01 0.07 0.06 

Technology 4.5 20.82 20.86 20.78 20.82 20.84 -0.04 0.08 0.02 -0.01 

Utilities 3.47 7.11 7.12 7.13 7.03 7.02 0.03 0.02 0.16 0.18 

Banks 3.44 13.75 13.75 13.74 13.68 13.67 0.03 0.05 0.13 0.15 

Insurance 3.07 11.54 11.55 11.56 11.56 11.55 0.02 0.00 0.00 0.01 

Financial Services 3.26 10.34 10.32 10.26 10.37 10.39 0.06 0.15 -0.02 -0.04 

Bonds:                      
10+ year bonds 2.41 4.49 4.58 4.75 4.46 4.44 -0.06 -0.32 0.13 0.15 

10 year bonds 2.19 3.68 3.73 3.93 3.62 3.60 0.01 -0.28 0.18 0.21 

7 year bonds 2.04 2.91 2.95 3.15 2.83 2.80 0.06 -0.26 0.23 0.28 

5 year bonds 1.79 2.39 2.44 2.65 2.31 2.27 0.06 -0.26 0.25 0.31 

3 year bonds 1.63 1.62 1.69 1.92 1.49 1.44 0.09 -0.29 0.40 0.45 

2 year bonds 1.44 1.3 1.40 1.63 1.10 1.04 0.10 -0.29 0.53 0.60 

Alternatives:                 
Emerging market stocks 2.94 14.22 14.16 14.09 14.26 14.29 0.12 0.22 -0.03 -0.08 

Developed market stocks 2.29 9.67 9.63 9.51 9.70 9.74 0.09 0.26 -0.02 -0.07 

Commodities - Oil 2.18 18.27 18.24 18.02 18.24 18.28 0.06 0.39 0.07 0.01 

Commodities - Gold  1.22 8.31 8.27 8.17 8.42 8.46 0.11 0.24 -0.12 -0.17 

Hedge fund 1.57 6.11 6.09 5.95 6.10 6.16 0.08 0.29 0.07 -0.01 

US private equity 3.58 7.67 7.62 7.52 7.72 7.77 0.12 0.27 -0.02 -0.09 

US venture capital 4.26 12.54 12.54 12.48 12.50 12.54 0.02 0.12 0.09 0.03 

Developed ex-US private equity 3.64 11 10.95 10.82 11.01 11.06 0.10 0.29 0.01 -0.06 

Emerging market private equity 1.81 8.36 8.31 8.23 8.49 8.53 0.12 0.22 -0.14 -0.21 

Note: Tracking error = Tracking error between asset and inflation/interest rate measure; CPI = UK Consumer Price Index; RPI = UK 
Retail Price index; LIBOR = LIBOR interest rate; TBILL = 3-month Treasury bill interest rate 

 

  



  

286 

 
 

8.3.2 IN-SAMPLE PORTFOLIO COMPOSITION 

We estimated two sets of in-sample portfolios. The first in-sample portfolio weights were estimated 

using data from the first quarter of 1991 to the first quarter of 2015 and the second using data from 

1991 to 2006. This is done to isolate the effect of the last financial crisis (2007-2008) on the optimal 

composition of inflation and interest rate hedging portfolios.  

It is clear that the investment objective has a far greater impact on the allocation to the various assets 

than the specific inflation or interest rate benchmark being hedged against. The differences in allocation 

between the two interest rates – T-bill and LIBOR rates was found to be very small compared to the 

differences in allocation within the two inflation hedging portfolios. The time period analysed also had 

a significant impact on the suggested allocation to the various assets. In other words, the most 

significant influences on the allocation to various assets were the investment objective, time frame 

analysed and the type of benchmark (inflation or interest rate). The actual inflation or interest rate i.e. 

CPI vs RPI or T-bill vs LIBOR were not found to be significant in determining the portfolio 

composition.   

We found that Real estate received significant allocations within all the portfolios prior to 2006. 

However, when the analysis period was extended to 2015, the allocation to real estate fell sharply. This 

happens irrespective of the model used and is in contrast to what we observed for bond allocations. 

For example, the average allocation to direct real estate within mean-tracking error portfolios ranged 

from 16 to 28%.  Once the analysis period was extended to cover the entire 1990 – 2015 sample period, 

real estate allocations fell to a range of 10 to 18%.  

A comparison of the allocations for the two sample periods (1991-2006 and 1991 – 2015) reveals that 

bonds have become more prominent in the various inflation/interest rate hedging portfolios. For 

example, bonds received an allocation ranging from 22% to 24% in Sortino ratio portfolios prior to 

2006, this however jumped to between 71% and 72% when the entire 1990 – 2015 sample period was 

analysed. Bonds were found to dominate portfolios that use tracking error as the risk measure but not 

those that use semi-deviation of tracking error.  

The analysis also shows that stocks tend to receive higher allocations when downside risk measures are 

used. For example, stocks received very little allocations within mean-tracking error and Sharpe ratio 

portfolios. Stocks however received significant allocation within semi-variance and Sortino ratio 

portfolios. The Sortino ratio portfolios suggest an allocation of 19 to 20% for the 1990 – 2006 sample 

period and 13 – 14% for the entire sample period. 
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Likewise alternative assets only received significant allocations within downside risk portfolios and not 

within tracking error portfolios. The mean tracking error model for example suggested an allocation 

of 3% to 5% to alternative assets irrespective of the time period analysed. The highest allocation for 

alternative assets was within the Sortino maximising portfolio which suggested an allocation of 23% 

to 24% for the 1990 – 2006 sample period.  

8.3.3 OUT-OF-SAMPLE PORTFOLIO COMPOSITION 

As observed in-sample, bonds still dominated the allocations within the various inflation and interest 

rate hedging portfolios especially within portfolios based on tracking error variance. Bonds received 

an average allocation of 47% within mean-tracking error and Sharpe ratio portfolios. The suggested 

allocation was as high as 77% for mean-tracking error portfolios hedged against T-bill interest rate. 

Bond allocations within portfolios based on semi-variance and Sortino ratio portfolios ranged from 

19% to 51%.   

Apart from bonds, real estate also received significant allocations across most of the models examined, 

receiving allocations that ranged from 16% to 34%. The mean tracking error and mean semi-variance 

models suggested an allocation of between 16% and 34% to direct real estate while the Sharpe and 

Sortino ratio portfolios suggest an allocation between 20% and 30% depending on the specific 

inflation/interest rate benchmark being hedged against. 

Consistent with the results obtained in-sample, we observed that stocks received the biggest allocation 

of between 33% and 35% within Sortino ratio portfolios. However, mean-tracking error model 

allocates no more than 3% to stocks. An optimal stock allocation of between 16% and 27% is suggested 

by the mean-semi-variance model.  

As with stocks, alternative assets received more allocation in the two downside risk portfolios (semi-

variance and Sortino ratio portfolios). The allocation suggested by both downside risk portfolios 

ranged from 13% to 26% whiles mean-tracking error and Sharpe ratio portfolios allocated between 

5% and 10% to alternative assets.  
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Figure 8(1): Inflation Hedging Portfolio (Consumer Price Inflation) 
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Looking at the pattern of allocations in Figure 8(1), we observe that the allocations within portfolios 

hedged against the two inflation rates tend to be remarkably similar to each other, so are the portfolios 

hedged against the two interest rates. A close inspection reveals some subtle differences, especially 

between the two inflation rate hedging portfolios. A comparison of the portfolios produced by the 

various optimisation models however show significant differences. An implication of this result is that 

the investment objective being pursued drives the pattern in allocation than the specific inflation or 

interest rate benchmark being hedged against. It is also clear from Figures 8(1) and 8(2) that portfolios 

based on downside risk produced more diversified portfolios than those based on tracking error 

variance. For example, two-year bonds dominate the mean-tracking error and Sharpe ratio portfolios 

which use the tracking error variance as the measure of risk.  However, the allocations within mean-

semi-variance and Sharpe ratio portfolios over time show a wider array of assets over time.  

Real estate received significant allocations irrespective of the investment objective being pursued 

especially between 1995 and 2004 or in some cases, between 1995 and 2007. The allocation to real 

estate however falls sharply between 2007 and 2012 especially in the models that maximise risk-

adjusted returns. This result also implies that real estate would continue to play a significant role in 
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inflation and interest rate hedging portfolios, unless in periods where real estate returns shift from the 

fundamentals.  

Figure 8(2): Interest Rate Hedging Portfolios (LIBOR) 
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Sharpe ratio portfolios 
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Note: MTE = Portfolios constructed to minimise the tracking error between the portfolio returns and the selected inflation/interest rate; 

Semi-variance portfolios = Portfolios constructed to minimise the downside risk between portfolio returns and the selected 

inflation/interest rate; Sharpe ratio portfolios = Portfolios constructed to maximise risk adjusted returns; Sortino ratio portfolio = 

Portfolio constructed to maximise the risk-adjusted downside risk 

8.3.4 OUT-OF-SAMPLE PORTFOLIO RISK AND RETURN 

Table 8(II) shows that all the mean-tracking error and Sharpe ratio portfolios produced returns that 

were nearly symmetrically distributed. On the other hand, mean semi-variance and Sortino ratio 

portfolios produced returns that were negatively skewed. This is indicative of the fact that minimising 

the downside risk increases the negative skewness of the returns, implying lower downside risk. Our 

results are similar to Chen (2001) who also found the returns of semi-variance portfolios to be 

negatively skewed. 

In terms of risk, mean tracking error models had the lowest standard deviation, commensurate with 

their low returns. The standard deviation of Sharpe ratio portfolios were lower than those of Sortino 

and Semi-variance portfolios. Interestingly however, we found that mean tracking error and Sharpe 

ratio portfolios produced lower semi-variance out-of-sample than mean semi-variance and Sortino 
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ratio portfolios. We believe this is largely due to the fact that the portfolios based on downside were 

heavily invested in high-volatility assets such as stocks and alternative assets. This is also evidenced by 

their high average returns. Moreover, the analysis of the return distributions carried out earlier show 

that downside risk portfolios do indeed provide significant downside risk protection, evidenced by the 

significant negative skewness.  

Table 8(II): Descriptive Statistics - Out-of-sample Portfolios  

    CPI RPI LIBOR TBILL 

MTE 
  
  
  
  
  
  
  
  

Average returns 1.44 1.48 1.44 1.42 

Standard deviation 1.01 1.11 0.98 0.96 

Median 1.40 1.42 1.46 1.35 

Maximum 4.06 4.36 3.70 3.51 

Minimum -1.83 -1.76 -1.90 -1.92 

 Skewness -0.19 -0.49 -0.11 -0.52 

 Kurtosis 3.73 3.67 3.36 3.66 

 Jarque-Bera 2.15 4.50 0.56 4.91 

 Probability 0.34 0.11 0.76 0.09 

MSV 
  
  
  
  
  
  
  
  

Average returns 2.33 2.49 2.06 1.79 

Standard deviation 4.54 3.62 3.06 3.56 

Median 2.62 2.86 2.27 1.85 

Maximum 12.06 10.59 8.97 8.36 

Minimum -23.98 -12.11 -14.17 -22.79 

 Skewness -2.33 -1.77 -1.08 -4.09 

 Kurtosis 15.81 12.03 6.24 30.31 

 Jarque-Bera 595.99 301.65 48.61 2607.84 

 Probability 0.00 0.00 0.00 0.00 

Sharpe 
  
  
  
  
  
  
  
  

Average returns 1.83 1.76 2.41 2.36 

Standard deviation 1.84 2.62 4.97 4.67 

Median 2.14 2.20 2.25 2.26 

Maximum 6.42 7.01 20.16 20.09 

Minimum -6.87 -16.03 -20.59 -19.55 

 Skewness -1.60 -0.42 -4.07 -0.38 

 Kurtosis 9.39 11.35 28.54 11.99 

 Jarque-Bera 163.51 226.04 2305.02 261.17 

 Probability 0.00 0.00 0.00 0.00 

Sortino 
  
  
  
  
  
  
  
  

Average returns 2.40 2.65 2.68 2.96 

Standard deviation 5.01 4.38 5.23 5.86 

Median 2.87 3.11 3.32 3.21 

Maximum 12.73 12.68 19.59 29.33 

Minimum -23.43 -12.78 -15.22 -18.14 

 Skewness -1.72 -0.53 -0.44 0.66 

 Kurtosis 10.70 4.57 5.45 9.22 

 Jarque-Bera 228.18 11.47 21.79 129.82 

 Probability 0.00 0.00 0.00 0.00 

As expected, Sortino ratio portfolios produced the highest average return of the four models examined. 

These portfolios produced between 2.40% and 2.96% per quarter over the period examined. Mean-

tracking-error portfolios produced the lowest expected return of between 1.42% and 1.48% depending 
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on the inflation or interest rate benchmark being hedged against. Mean semi-variance portfolios 

produced returns that were greater than Sharpe ratio portfolios when inflation rates were being hedged 

against, but not when interest rates were being hedged against.  

In order to determine how well the various inflation and interest rate hedging portfolios perform, we 

compared the returns of these portfolios first to the inflation/interest rate benchmark being hedged 

against. We also compared the returns of the optimised portfolios to a traditional 80-20 stock-bond 

allocation, which reflects the historical allocations within DC pension portfolios.  

It is clear from the results from the return evolutions in Figure 8(3) that returns from the various 

inflation and interest rate hedging portfolios were always higher than the returns on the respective 

inflation/interest rate benchmarks. An implication of this result is that, over the long run, a DC fund 

that constructs its investment portfolios using any of the models employed in this study would be able 

to deliver cumulative minimum return rates that exceed the respective inflation or interest rate.  

Apart from the mean-tracking error portfolio hedged against CPI inflation, all the other portfolios out-

performed the traditional 80-20 stock-bond portfolio in terms of expected returns. Of the various 

optimised portfolios, mean-tracking error portfolios produced the lowest cumulative returns. Whiles 

an investment in 3-month Treasury bills at the beginning of 1991 would have yielded an ending value 

of £28,137 in 2015, a mean-tracking error portfolio hedged against T-bills would have grown to a 

slightly higher value of £28,754 over the same period. An investment in the Sortino ratio portfolio 

hedged against the T-bill rate over the same period would however have grown to £80,290.14.  

As explained earlier, the relevant risk measure when a benchmark is being hedged against is the tracking 

error. From Appendix 8(Q) we see that in all cases, the tracking error of the various inflation hedging 

portfolios were lower than those observed for the 80-20 stock-bond portfolios. The same result is 

obtained when we measure risk in term the standard deviation of returns. Here again, for each 

benchmark, the standard deviation observed for the 80-20 portfolio exceeded the standard deviation 

of all the various inflation hedging and interest rate hedging portfolios.   

The results also show that, although the composition of the various optimised portfolios did not 

change significantly when the specific inflation or interest rate is altered, we observed that, in terms of 

terminal value, there were some significant differences. For example, portfolios hedged against RPI 

inflation often provided higher terminal values than those hedged against CPI inflation. Similarly, 

LIBOR hedging portfolios also provided higher returns than T-bill hedging portfolios. For example, a 

£10,000 investment in the MTE portfolio hedged against CPI inflation at the start of 1991 would 
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produce an ending value of £29,335 by 2015 whiles the same amount invested in the MTE portfolio 

hedged against RPI would have produced £30,030. If the same amounts were invested in Sortino ratio 

portfolios, the CPI hedging portfolio would produce £54,839 and the RPI portfolio would have an 

ending value of £67,902.  

8.3.5 THE ROLE OF REAL ESTATE IN INFLATION/INTEREST RATE 
HEDGING PORTFOLIOS 

In order to analyse the role that real estate plays within the various portfolios, we drop real estate from 

the opportunity set and re-run the optimisation models. The results of the analysis without real estate 

are compared to the earlier results that include real estate.  The summary statistics of the various 

optimisations without real estate are shown in Table 8(III).  

We can see from a comparison of Table 8(II) and Table 8(III) that across all portfolios and 

benchmarks, the portfolios containing direct real estate consistently had lower tracking errors relative 

to the benchmarks against which they are hedged. The standard deviation of the portfolios that include 

direct real estate were also lower than the standard deviation of the portfolios that do not include direct 

real estate 

We however found that including direct real estate in inflation and interest rate hedging portfolios does 

not necessarily lead to improved returns. A return improvement is seen in mean-tracking error and 

mean semi-variance models. However, for their risk maximising counterparts, the Sharpe and Sortino 

maximising portfolios, including direct real estate led to a fall in returns in most cases. This is probably 

due to the fact that direct real estate mostly replaced bonds in the risk-minimising portfolios. Since 

direct real estate returns are higher than bond returns, this leads to an increase in returns in the returns 

of those portfolios. However, including direct real estate in Sharpe and Sortino maximising portfolios 

results in a fall in the allocation to high earning assets such as stocks and alternative assets, which 

contribute a significant part to the returns of these portfolios. Consequently, this places a drag on the 

returns of these portfolios. 

Another issue which we seek to explore in this chapter is whether the real estate return series, and for 

that matter, the vehicle used to access the real estate market has an effect on the composition and 

performance of inflation hedging portfolios. We use four different real estate series to represent the 

different real estate vehicles: The AREF/IPF Unlisted fund index represents exposure to the real estate 

market through unlisted funds whiles the IPD All Property Index represents direct exposure to the 

real estate market. In addition to the actual IPD All Property Index, we use an unsmoothed IPD All 
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Property Index to account for the perceived appraisal smoothing associated with appraisal based return 

series. We also make use of a blended real estate consisting of 80% AREF/Unlisted fund and 20% 

listed real estate. This represents exposure to the direct real estate market through blended/hybrid real 

estate products such as those offered by Legal and General. A detailed discussion of these products is 

in Chapter 6.  

A visual inspection that the portfolios constructed using the various real estate series did not reveal 

any obvious differences. However, when we compared the out-of-sample returns of the various 

optimised portfolios constructed using the different real estate vehicles, we observed that the returns 

of the portfolios constructed using the AREF/IPD unlisted fund return series to proxy real estate 

investments were remarkably similar to those of the IPD All Property Index return series. Similarly, 

the portfolios constructed using the blended/hybrid real estate return series also generated returns that 

were very similar to the returns of the unsmoothed IPD All Property Index series. This is possibly 

because the both the unsmoothing process and the addition of listed real estate to a direct real estate 

portfolio serve to induse some volatility in the real estate portfolios. A practical implication of this 

result is that using blended/hybrid property return series has the same or similar effect as unsmoothing 

the IPD All Property Index returns. These results are consistent with the results obtained by Baum 

(2006) who found that using direct real estate data or unlisted fund data did not result in significant 

differences in allocations. Significant differences were however found when listed real estate returns 

were instead used in portfolio optimisation models to gain access to real estate.  
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Table 8(III): Out-of-Sample Returns – Portfolios with no Direct Real Estate 

    MTE MSV Sharpe Sortino 80-20 

CPI 

  

  

  

  

  

  

  

  

  

  

Average returns 1.3266 2.5381 1.8645 2.5226 2.5484 

Index value 26783.99 60747.44 39495.08 59596.49 56118.53 

Tracking error 1.265 4.591 2.321 5.090 6.8262 

Standard deviation 1.103 4.665 2.280 5.124 6.8097 

Average excess returns 0.827 2.038 1.365 2.023 2.0484 

Semi-deviation 1.030 4.912 2.454 5.216 7.3188 

Sharpe ratio 0.653 0.444 0.588 0.397 0.3001 

Sortino 0.803 0.415 0.556 0.388 0.2799 

Maximum 4.256 11.287 10.591 15.163 16.9879 

Minimum -1.819 -12.434 -6.874 -12.027 -15.9182 

Success ratio 0.740 0.714 0.818 0.701 0.6753 

RPI 

  

  

  

  

  

  

  

  

  

  

Average returns 1.309 2.267 1.843 2.950 2.5484 

Index value 26427.11 50350.45 38143.92 79341.56 56118.53 

Tracking error 1.3217 4.3377 3.1130 5.9346 6.7430 

Standard deviation 1.1945 4.3959 3.1354 5.9766 6.8097 

Average excess returns 0.8088 1.7666 1.3430 2.4499 1.8488 

Semi-deviation 1.1921 5.2597 4.3426 5.3526 7.1985 

Sharpe ratio 0.6119 0.4073 0.4314 0.4128 0.2742 

Sortino 0.6785 0.3359 0.3093 0.4577 0.2568 

Maximum 4.7305 11.2388 13.1992 28.8202 16.9879 

Minimum -1.8196 -12.5204 -16.0324 -12.1753 -15.9182 

Success ratio 0.7532 0.7532 0.8052 0.7273 0.6623 

LIBOR 

  

  

  

  

  

  

  

  

  

  

Average returns 1.2821 1.9068 2.4207 3.0753 2.5484 

Index value 25933.0 40062.0 53978.0 87487.0 56118.53 

Tracking error 1.2114 3.2274 5.6779 5.8095 6.8310 

Standard deviation 1.0070 3.2645 5.6916 5.8473 6.8097 

Average excess returns 0.7821 1.4069 1.9207 2.5753 1.5914 

Semi-deviation 1.0772 3.5705 6.1989 5.6360 7.5148 

Sharpe ratio 0.6456 0.4359 0.3383 0.4433 0.2330 

Sortino 0.7261 0.3940 0.3099 0.4569 0.2118 

Maximum 3.8751 16.1575 26.3232 25.1349 16.9879 

Minimum -1.9570 -10.6391 -20.5886 -16.9891 -15.9182 

Success ratio 0.7662 0.7792 0.7792 0.7143 0.6623 

TBILL 

  

  

  

  

  

  

  

  

  

  

Average returns 1.2860 1.8408 2.3833 3.2745 2.5484 

Index value 26006.0 37483.0 53074.0 95538.0 56118.53 

Tracking error 1.2285 3.7587 5.4408 7.0062 6.8461 

Standard deviation 1.0179 3.7820 5.4586 7.0472 6.8097 

Average excess returns 0.7860 1.3409 1.8834 2.7746 1.6393 

Semi-deviation 1.0722 5.1818 5.9074 7.2360 7.4975 

Sharpe ratio 0.6398 0.3567 0.3462 0.3960 0.2395 

Sortino 0.7331 0.2588 0.3188 0.3834 0.2186 

Maximum 3.6896 17.0284 26.3232 28.4204 16.9879 

Minimum -1.9774 -19.3072 -19.5451 -27.3876 -15.9182 

Success ratio 0.7662 0.7922 0.7922 0.7143 0.6623 
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Figure 8(3): Out-of-sample returns 

UK CPI  

 

 

UK RPI 

 

LIBOR 

 

TBILL 

 

Note: MTE = Mean- tracking error portfolio; MSV = Mean-semi-variance portfolio; Sharpe = Sharpe ratio portfolio; Sortino = Sortino ratio maximizing portfolio; UKCPI = UK Consumer Price 

Index; UK RPI = UK Retail Price Index; TBILL = 3 month Treasury bill rate   
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8.4 CONCLUSION 

In this study, we have analysed the composition and performance of various portfolios constructed to 

provide returns that help to preserve the purchasing power of the pension pot of DC investors. The 

optimal allocation to real estate and other alternative assets as well as the allocation to stocks and bonds 

were also analysed. We proceeded to discuss the risk and return implications of the various 

inflation/interest rate hedging portfolios. We compared the risk and return features of the the various 

inflation/interest rate hedging portfolios to the risk and return features of a traditional stock-bond 

portfolio which invests 80% to stocks and 20% to bonds. In order to analyse the portfolio role of real 

estate, we initially run all the analysis with real estate and then re-run our analysis without direct real 

estate. Building on the preceding chapters, the chapter also explores how the choice of real estate 

vehicle affects the allocation and performance of the resulting portfolios. Four real estate return series 

representing different real estate vehicles are used in our analysis: the AREF/IPF Unlisted fund index, 

the IPD UK All Property index (actual), an unsmoothed IPD UK All Property Index and a 

blended/hybrid real estate index. Here, we find that the optimisation Results obtained from using the 

IPD series are quite similar to those obtained when the AREF balanced fund series was used. Similarly, 

a 70:30 hybrid real estate series produced results identical to an unsmoothed real estate series. A 

practical implication of this result is that, as with using unsmoothed real estate returns in portfolio 

construction, using the returns of a hybrid/blended real estate series could potentially help avoid the 

issue of over-allocation to real estate within portfolios. This approach may be more practical for 

investors as the blended/hybrid portfolios are investible and hence the risk and returns are likewise 

realisable.  

On the whole, we find that the optimisation (investment) objective being pursued is has is of more 

significance than the specific inflation or interest rate benchmark being hedged against. In the UK case, 

we find that once a DC pension scheme decides on whether to hedge against inflation or hedge against 

a risk-free rate, it does not appear to matter whether the specific inflation or risk-free interest rate they 

use. In terms of portfolio risk, we find that tracking error and Sharpe ratio portfolios provided lower 

standard deviation than semi-variance and Sortino ratio portfolios. However, we find that, semi-

variance and Sortino ratio portfolios provided more downside risk protection than their counterpart 

tracking error and Sharpe ratio portfolios.  

A close examination of the composition of the various portfolios shows that the portfolios constructed 

using semi-variance as the measure of risk shows remarkable diversification than those that use tracking 

error. In particular, bonds dominate mean – tracking error and Sharpe ratio portfolios. This result 

holds both in-sample and out-of-sample.  
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We find that real estate receives significant allocations in the various portfolios.  However, in almost 

all these portfolios, we observe a sharp fall in real estate allocations following the recent global financial 

crisis (2007-2008) possibly due to the fact that real estate returns deviated significantly from the 

fundamentals as observed by Lizieri (2013). In-sample analysis covering the entire 1990 – 2015 sample 

period show a fall in the real estate allocations, compared to higher allocations obtained when the sub-

sample period (1990 – 2006) was analysed. This result is confirmed by the suggested allocations within 

out-of-sample portfolios which also show very little allocation to real estate between 2007 and 2013.  

Again, we find that stocks and alternative assets receive very little allocations within portfolios that 

employ downside risk measures (semi-variance and Sortino ratio) than within portfolios based on 

tracking error (mean-tracking error and Sharpe ratio).  

A comparison of the returns of the various inflation and interest rate hedging portfolios and the 

inflation/interest rate benchmarks against which they are hedged shows that all the optimised 

portfolios produced cumulative returns higher than their respective benchmarks. This means that in 

all cases, it is better for DC pension funds to construct optimised portfolios hedged against the various 

benchmarks than to invest in the benchmarks themselves. For example, it is better to invest in the 

mean-tracking error portfolio that is hedged against T-bills than to directly invest in T-bills as the 

former provided less than a third of the returns that the latter delivered. This is especially true as the 

tracking error of the various portfolios relative to the various benchmarks are reasonably low, implying 

that the mean-tracking error portfolios do a good job of mimicking T-bill return patterns.  

Further, we compared the out-of-sample returns of the various optimised portfolios to a traditional 

80-20 stock-bond portfolio and found that almost all the inflation hedging portfolios out-performed 

the traditional 80-20 stock-bond portfolios. In terms of risk also, the tracking error of the 80-20 stock 

bond portfolio was higher for an 80-20 stock-bond portfolio than for the various optimised portfolios. 

This shows that the portfolios optimised portfolios do a better job of tracking the inflation and interest 

rates than a naïve 80-20 stock-bond portfolio. The standard deviation for the 80-20 portfolios were 

also higher than the standard deviation of all the various inflation and interest rate hedging portfolios.  

Including real estate in inflation and interest rate hedging portfolios was found to always lead to lower 

tracking error and standard deviation. However, in terms of returns, we find that including real estate 

did not always lead to improved returns.  We used alternative real estate vehicles to see if this affected 

the performance of the various portfolios. We found that the vehicle that is used to access the real 

estate market did not significantly affect the performance of the resulting portfolios as all the portfolios 

had similar risk-return characteristics. In particular, we found that the returns obtained from portfolios 

that created using the IPD All-Property portfolio were more like the portfolios constructed using the 
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AREF/IPF unlisted fund return series. On the other hand, the unsmoothed IPD All-property portfolio 

return series produced returns that were similar to the Blended/Hybrid property real estate portfolio 

that contains a 20% allocation to listed real estate. This result implies that investment managers who 

wish to avoid some of the problems associated with using the IPD All property portfolio could use 

the blended/hybrid real estate in their optimisations given that adding listed real estate to a property 

portfolio induces volatility - similar to results of unsmoothing the appraisal-based IPD property 

portfolio returns.   

A limitation of this study is that we do not consider transaction costs and the fees that an investment 

manager charges for managing the various portfolios in this study. Future studies can model the cost 

of rebalancing and how this would impact on the allocations and performance of the various portfolios. 
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APPENDICES 

Appendix 8(A)   Descriptive Statistics (1990 – 2015) 

  
 

Mean 

 

Median 
 Max  Min 

 Std. 

Dev. 

 

Skew 

 

Kurtosis 

JB 

Test 

 

Prob. 

Real Estate                   
AREF unlisted real estate 

funds 
1.78 2.26 8.04 -13.44 3.13 -1.9 9.08 207.47 0 

Blended/hybrida real estate 1.95 2.36 13.04 -13.18 4.16 -1.07 5.32 40.08 0 

IPD all property portfolio 2.09 2.44 12.06 -12.96 3.17 -1.33 9.07 177.68 0 

Unsmoothed IPD all property  2.19 2.04 23.94 -25.15 5.33 -0.85 13.75 478.64 0 

Listed real estate 2.64 4.86 33.08 -34.18 11.68 -0.65 3.72 8.95 0.01 

Stocks                   

Oil and gas 2.74 4.09 25.58 -26.64 9.07 -0.47 3.53 4.7 0.1 

Basic materials 2.95 4 27.93 -43.8 13.07 -0.83 4.29 17.81 0 

Industrials 3.29 4.15 29.3 -31.35 10.86 -0.49 3.98 7.82 0.02 

Construction 2.8 4.18 22.66 -24.64 10.41 -0.34 2.59 2.59 0.27 

Industrial goods and services 2.91 3.15 22.51 -26.94 9.51 -0.53 3.62 6.12 0.05 

Consumer goods 3.71 4.21 32.95 -32.27 10.63 -0.05 4.01 4.16 0.12 

Health care 2.88 3.36 24.49 -14.59 7.17 0.07 3.41 0.77 0.68 

Consumer services 2.55 3.26 21.2 -21.88 8.75 -0.52 3.45 5.24 0.07 

Telecommunications 3.12 3.74 46.02 -25.2 12.57 0.46 4.38 11.11 0 

Technology 4.5 4.82 127.04 -54.61 20.82 1.77 14.44 579.36 0 

Utilities 3.47 3.94 21.36 -13.67 7.11 0 2.62 0.58 0.75 

Banks 3.44 4.01 40.54 -38.79 13.75 -0.16 3.92 3.81 0.15 

Insurance 3.07 5.09 29.47 -30.84 11.54 -0.43 3.27 3.25 0.2 

Financial Services 3.26 4.76 23.04 -23.75 10.34 -0.39 2.92 2.44 0.3 

Bonds                   

10+ year bonds 2.41 1.84 15.96 -9.29 4.49 0.23 2.98 0.87 0.65 

10 year bonds 2.19 2.38 11.52 -8.26 3.68 0.04 3.21 0.2 0.91 

7 year bonds 2.04 2.02 8.61 -5.58 2.91 -0.06 2.86 0.13 0.94 

5 year bonds 1.79 1.7 7.51 -4.57 2.39 -0.02 3.04 0.01 1 

3 year bonds 1.63 1.5 5.69 -2.11 1.62 0.47 2.99 3.54 0.17 

2 year bonds 1.44 1.17 5.03 -1.12 1.3 0.87 3.47 13.26 0 

Alternatives                   

Emerging market stocks 2.94 3.83 34.53 -40.62 14.22 -0.24 3.01 0.97 0.62 

Developed market stocks 2.29 3.4 21.55 -32.68 9.67 -0.78 4.08 14.6 0 

Commodities - Oil 2.18 3.65 45.23 -57.68 18.27 -0.35 3.62 3.5 0.17 

Commodities - Gold  1.22 1.28 20.78 -24.2 8.31 -0.11 3.01 0.19 0.91 

Hedge fund 1.57 1.89 15.02 -27.25 6.11 -1.04 6.96 80.72 0 

US private equity 3.58 4.33 22.04 -31.3 7.67 -0.92 6.49 63.1 0 

US venture capital 4.26 4.22 80.51 -28.78 12.54 2.3 16.03 771.31 0 

Developed ex-US private 

equity 
3.64 3.9 31.8 -37.07 11 -0.45 4.83 16.74 0 

Emerging market private 

equity 
1.81 2.1 27.82 -33.01 8.36 -0.51 6.15 44.32 0 

Benchmarks                   

CPI Inflation 0.57 0.47 4.72 -0.73 0.66 2.62 17.2 925.57 0 

RPI Inflation 0.7 0.6 2.15 -2.13 0.68 -0.47 5.23 23.65 0 

LIBOR  1.15 1.28 2.99 0.13 0.69 0.09 2.71 0.47 0.79 

3- month T-bill rate 1.11 1.22 3.18 0.09 0.7 0.2 3.01 0.63 0.73 
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Appendix 8(B)   Descriptive Statistics (1990 – 2015) 

  
  

 
 
 

MEAN 

  
 
STD. 
DEV  

TRACKING ERROR CORRELATION 

CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL 

Real Estate 
  

                

AREF Real Estate Funds 1.78 3.13 3.28 3.08 3.28 3.31 -0.12 0.19 -0.12 -0.16 

Blended/Hybrid real estate 
1.95 4.16 

4.22 4.07 4.27 4.29 -0.06 0.18 -0.11 -0.13 

IPD All Property  2.09 3.17 3.28 3.09 3.33 3.36 -0.09 0.21 -0.15 -0.19 

Unsmoothed IPD All Property 2.19 5.33 5.34 5.27 5.43 5.45 0.01 0.12 -0.13 -0.15 

Listed real estate  
2.64 11.68 

11.68 11.63 11.75 11.75 0.04 0.11 -0.07 -0.07 

Stocks:                      

Oil and gas 2.74 9.07 9.04 9.06 9.05 9.08 0.08 0.04 0.06 0.02 

Basic materials 2.95 13.07 12.91 12.88 13.06 13.09 0.27 0.31 0.05 0.01 

Industrials 3.29 10.86 10.79 10.80 10.87 10.88 0.14 0.11 0.01 0.00 

Construction 2.8 10.41 10.30 10.33 10.45 10.45 0.19 0.15 -0.02 -0.03 

Industrial goods and services 2.91 9.51 9.43 9.43 9.52 9.53 0.17 0.15 0.03 0.02 

Consumer goods 3.71 10.63 10.51 10.58 10.62 10.63 0.22 0.11 0.05 0.04 

Health care 2.88 7.17 7.15 7.29 7.14 7.12 0.08 -0.12 0.10 0.12 

Consumer services 2.55 8.75 8.73 8.74 8.76 8.76 0.07 0.05 0.02 0.02 

Telecommunications 3.12 12.57 12.59 12.60 12.54 12.55 0.01 -0.01 0.07 0.06 

Technology 4.5 20.82 20.86 20.78 20.82 20.84 -0.04 0.08 0.02 -0.01 

Utilities 3.47 7.11 7.12 7.13 7.03 7.02 0.03 0.02 0.16 0.18 

Banks 3.44 13.75 13.75 13.74 13.68 13.67 0.03 0.05 0.13 0.15 

Insurance 3.07 11.54 11.55 11.56 11.56 11.55 0.02 0.00 0.00 0.01 

Financial Services 3.26 10.34 10.32 10.26 10.37 10.39 0.06 0.15 -0.02 -0.04 

Bonds:                      

10+ year bonds 2.41 4.49 4.58 4.75 4.46 4.44 -0.06 -0.32 0.13 0.15 

10 year bonds 2.19 3.68 3.73 3.93 3.62 3.60 0.01 -0.28 0.18 0.21 

7 year bonds 2.04 2.91 2.95 3.15 2.83 2.80 0.06 -0.26 0.23 0.28 

5 year bonds 1.79 2.39 2.44 2.65 2.31 2.27 0.06 -0.26 0.25 0.31 

3 year bonds 1.63 1.62 1.69 1.92 1.49 1.44 0.09 -0.29 0.40 0.45 

2 year bonds 1.44 1.3 1.40 1.63 1.10 1.04 0.10 -0.29 0.53 0.60 

Alternatives:                 

Emerging market stocks 2.94 14.22 
14.16 14.09 14.26 14.29 0.12 0.22 -0.03 -0.08 

Developed market stocks 2.29 9.67 9.63 9.51 9.70 9.74 0.09 0.26 -0.02 -0.07 

Commodities - Oil 2.18 18.27 18.24 18.02 18.24 18.28 0.06 0.39 0.07 0.01 

Commodities - Gold  1.22 8.31 8.27 8.17 8.42 8.46 0.11 0.24 -0.12 -0.17 

Hedge fund 1.57 6.11 6.09 5.95 6.10 6.16 0.08 0.29 0.07 -0.01 

US private equity 3.58 7.67 7.62 7.52 7.72 7.77 0.12 0.27 -0.02 -0.09 

US venture capital 4.26 12.54 12.54 12.48 12.50 12.54 0.02 0.12 0.09 0.03 

Developed ex-US private equity 3.64 11 10.95 10.82 11.01 11.06 0.10 0.29 0.01 -0.06 

Emerging market private equity 1.81 8.36 8.31 8.23 8.49 8.53 0.12 0.22 -0.14 -0.21 
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Appendix 8(C)   Descriptive Statistics (1990 – 2006) 

      Tracking error Correlations 

  
Avg. 
Ret  St. Dev.  CPI RPI LIBOR TBILL CPI RPI LIBOR TBILL 

Real Estate           

AREF Real Estate Funds 2.49 1.96 2.25 2.06 2.26 2.30 -0.27 0.00 -0.56 -0.63 

Blended/hybrid real estate  2.72 2.89 3.05 2.98 3.10 3.14 -0.12 -0.04 -0.39 -0.47 

IPD All Property  2.69 2.15 2.39 2.21 2.41 2.45 -0.22 0.04 -0.51 -0.56 

Unsmoothed IPD All Property 2.86 3.73 3.87 3.74 3.88 3.89 -0.10 0.07 -0.26 -0.26 

Listed real estate  3.65 9.82 9.81 9.88 9.89 9.92 0.05 -0.06 -0.13 -0.18 

Stocks:            

Oil and gas 3.36 7.83 7.84 7.88 7.88 7.90 0.02 -0.05 -0.08 -0.12 

Basic materials 3.32 10.32 10.19 10.31 10.35 10.36 0.21 0.04 -0.05 -0.07 

Industrials 3.65 11.73 11.64 11.76 11.71 11.72 0.16 -0.02 0.08 0.04 

Construction 3.66 10.20 10.05 10.19 10.27 10.27 0.25 0.05 -0.12 -0.12 

Industrial goods and services 3.05 9.80 9.68 9.81 9.73 9.74 0.20 0.01 0.17 0.15 

Consumer goods 3.85 12.09 11.89 12.03 12.03 12.05 0.33 0.12 0.15 0.11 

Health care f3.24 7.39 7.27 7.43 7.25 7.25 0.21 -0.03 0.32 0.31 

Consumer services 2.89 8.96 8.90 8.99 8.89 8.90 0.13 -0.03 0.17 0.14 

Telecommunications 3.00 14.01 13.99 14.04 13.93 13.93 0.05 -0.02 0.20 0.18 

Technology 4.65 24.54 24.60 24.55 24.50 24.52 -0.06 0.01 0.11 0.05 

Utilities 4.07 7.69 7.66 7.75 7.60 7.59 0.09 -0.06 0.22 0.23 

Banks 5.45 12.10 12.05 12.22 12.04 12.04 0.11 -0.16 0.15 0.15 

Insurance 3.25 11.41 11.39 11.49 11.34 11.35 0.06 -0.10 0.16 0.14 

Financial Services 4.05 10.52 10.52 10.57 10.55 10.58 0.05 -0.04 -0.04 -0.09 

Bonds:            

10+ year bonds 2.62 4.12 4.16 4.28 4.00 3.98 0.02 -0.20 0.32 0.34 

10 year bonds 2.37 3.53 3.53 3.66 3.39 3.36 0.09 -0.14 0.36 0.41 

7 year bonds 2.27 2.86 2.84 3.00 2.72 2.68 0.14 -0.14 0.38 0.44 

5 year bonds 2.01 2.38 2.39 2.55 2.25 2.21 0.12 -0.16 0.36 0.44 

3 year bonds 1.93 1.59 1.61 1.80 1.46 1.41 0.18 -0.17 0.42 0.51 

2 year bonds 1.79 1.23 1.26 1.46 1.08 1.02 0.24 -0.15 0.51 0.61 

Alternatives:           

Emerging market stocks 3.61 14.19 14.16 14.19 14.27 14.31 0.07 0.03 -0.15 -0.22 

Developed market stocks 2.86 8.58 8.60 8.58 8.63 8.67 0.02 0.05 -0.07 -0.16 

Commodities - Oil 4.09 17.31 17.40 17.22 17.43 17.46 -0.11 0.17 -0.23 -0.29 

Commodities - Gold  1.09 7.81 7.91 7.79 7.99 8.01 -0.10 0.08 -0.35 -0.39 

Hedge fund 2.40 5.42 5.47 5.35 5.48 5.54 -0.01 0.17 -0.10 -0.20 

US private equity 4.38 6.82 6.84 6.73 6.90 6.95 0.02 0.20 -0.14 -0.24 

US venture capital 5.46 14.17 14.21 14.15 14.15 14.19 -0.03 0.06 0.07 -0.02 

Developed ex-US private 
equity 4.80 10.37 10.37 10.23 10.45 10.50 0.04 0.27 -0.13 -0.24 

Emerging market private 
equity 1.47 6.93 6.95 6.86 7.02 7.07 0.01 0.15 -0.18 -0.27 
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Appendix 8(D)   Mean Tracking Error Portfolios: In-sample Allocations  

  1990 - 2006 1990 - 2015 

  CPI RPI LIBOR T-bill CPI RPI LIBOR T-bill 

Real Estate:                  

Direct real estate 19% 28% 18% 16% 11% 18% 10% 10% 

Listed real estate  0% 0% 0% 0% 0% 0% 0% 0% 

Total real estate 19% 28% 18% 16% 11% 18% 10% 10% 

Stocks:                  

Oil and gas 0% 0% 0% 0% 0% 0% 0% 0% 

Basic materials 0% 0% 0% 0% 1% 0% 0% 0% 

Industrials 0% 0% 0% 0% 0% 0% 0% 0% 

Construction 0% 0% 0% 0% 0% 0% 0% 0% 

Industrial goods and services 0% 0% 0% 0% 0% 0% 0% 0% 

Consumer goods 2% 1% 0% 0% 1% 0% 0% 0% 

Health care 0% 0% 0% 1% 1% 0% 0% 0% 

Consumer services 0% 0% 0% 0% 0% 0% 0% 0% 

Telecommunications 0% 0% 0% 0% 0% 0% 0% 0% 

Technology 0% 0% 1% 0% 0% 0% 1% 1% 

Utilities 0% 0% 0% 0% 0% 0% 0% 0% 

Banks 0% 0% 0% 0% 0% 0% 0% 0% 

Insurance 0% 0% 0% 0% 0% 0% 0% 0% 

Financial Services 0% 0% 0% 0% 0% 0% 0% 0% 

Total stocks 2% 1% 1% 1% 3% 0% 1% 1% 

Bonds:                  

10+ year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

10 year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

7 year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

5 year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

3 year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

2 year bonds 74% 66% 77% 78% 81% 74% 85% 86% 

Total bonds 74% 66% 77% 78% 81% 74% 85% 86% 

Alternatives:                 

Emerging market stocks 1% 0% 0% 0% 0% 0% 0% 0% 

Developed market stocks 0% 0% 0% 0% 0% 0% 0% 0% 

Commodities - Oil 1% 1% 1% 1% 1% 2% 2% 2% 

Commodities - Gold  1% 1% 0% 1% 2% 2% 0% 0% 

Hedge fund 0% 0% 0% 0% 0% 0% 2% 1% 

US private equity 0% 0% 0% 0% 0% 0% 0% 0% 

US venture capital 0% 0% 0% 0% 0% 0% 0% 0% 

Developed ex-US private equity 0% 1% 0% 0% 0% 0% 0% 0% 

Emerging market private equity 2% 1% 3% 2% 2% 1% 0% 0% 

Total alternatives 5% 4% 4% 4% 5% 5% 4% 3% 
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Appendix 8(E)   Mean Semivariance Portfolios: In-Sample Allocations  

  1990 - 2006 1990 - 2015 

  CPI RPI LIBOR T-bill CPI RPI LIBOR T-bill 

Real Estate:                  

Direct real estate 17% 17% 12% 13% 7% 5% 1% 1% 

Listed real estate  0% 0% 0% 0% 1% 1% 0% 0% 

Total real estate 17% 17% 12% 13% 8% 6% 1% 1% 

Stocks:                  

Oil and gas 1% 1% 1% 1% 0% 0% 0% 0% 

Basic materials 1% 1% 0% 0% 2% 2% 0% 0% 

Industrials 0% 0% 0% 0% 0% 0% 0% 0% 

Construction 1% 1% 1% 1% 0% 0% 0% 0% 

Industrial goods and services 0% 0% 0% 0% 0% 0% 0% 0% 

Consumer goods 1% 1% 1% 1% 0% 0% 0% 0% 

Health care 3% 3% 3% 2% 2% 2% 2% 2% 

Consumer services 0% 0% 0% 0% 1% 1% 1% 0% 

Telecommunications 0% 0% 0% 0% 0% 0% 0% 0% 

Technology 0% 0% 0% 0% 0% 0% 0% 0% 

Utilities 4% 4% 2% 2% 0% 0% 0% 0% 

Banks 0% 0% 0% 0% 1% 1% 0% 0% 

Insurance 3% 3% 1% 1% 1% 1% 0% 0% 

Financial Services 0% 0% 0% 0% 1% 1% 0% 0% 

Total stocks 14% 14% 9% 8% 8% 8% 3% 2% 

Bonds:                  

10+ year bonds 6% 6% 3% 3% 21% 0% 0% 0% 

10 year bonds 6% 6% 4% 3% 0% 0% 0% 0% 

7 year bonds 6% 6% 5% 4% 0% 0% 0% 0% 

5 year bonds 6% 6% 5% 4% 0% 0% 0% 0% 

3 year bonds 5% 5% 5% 5% 37% 71% 16% 0% 

2 year bonds 10% 10% 44% 47% 5% 6% 74% 92% 

Total bonds 39% 39% 66% 66% 63% 77% 90% 92% 

Alternatives:                 

Emerging market stocks 0% 0% 0% 0% 0% 0% 0% 0% 

Developed market stocks 1% 1% 1% 1% 2% 1% 0% 0% 

Commodities - Oil 3% 3% 1% 1% 0% 0% 2% 1% 

Commodities - Gold  3% 3% 1% 1% 3% 2% 1% 1% 

Hedge fund 4% 4% 2% 2% 0% 0% 0% 0% 

US private equity 5% 5% 2% 2% 5% 1% 0% 0% 

US venture capital 4% 4% 1% 1% 3% 2% 1% 1% 

Developed ex-US private equity 6% 6% 1% 1% 2% 1% 0% 0% 

Emerging market private equity 3% 3% 2% 2% 3% 1% 0% 0% 

Total alternatives 29% 29% 11% 11% 18% 8% 4% 3% 
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Appendix 8(F)   Sharpe Ratio Portfolios: In-sample allocations (1990 – 2006 and 1990 – 2015) 

  1990 - 2006 1990 - 2015 

  CPI RPI LIBOR T-bill CPI RPI LIBOR T-bill 

Real Estate:                  

Direct real estate 32% 32% 35% 35% 16% 15% 7% 8% 

Listed real estate  0% 0% 0% 0% 0% 0% 0% 0% 

Total real estate 32% 32% 35% 35% 16% 15% 7% 8% 

Stocks:                  

Oil and gas 0% 0% 2% 1% 0% 0% 0% 0% 

Basic materials 0% 0% 0% 0% 0% 0% 0% 0% 

Industrials 0% 0% 0% 0% 0% 0% 0% 0% 

Construction 0% 0% 0% 0% 0% 0% 0% 0% 

Industrial goods and services 0% 0% 0% 0% 0% 0% 0% 0% 

Consumer goods 0% 0% 1% 1% 1% 1% 2% 2% 

Health care 0% 0% 0% 0% 2% 3% 7% 6% 

Consumer services 0% 0% 0% 0% 0% 0% 0% 0% 

Telecommunications 0% 0% 0% 0% 0% 0% 0% 0% 

Technology 0% 0% 0% 0% 1% 1% 1% 1% 

Utilities 0% 0% 0% 0% 1% 2% 8% 7% 

Banks 0% 0% 0% 0% 0% 0% 0% 0% 

Insurance 0% 0% 0% 0% 0% 0% 0% 0% 

Financial Services 0% 0% 0% 0% 0% 0% 0% 0% 

Total stocks 0% 0% 3% 2% 5% 7% 18% 16% 

Bonds:                  

10+ year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

10 year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

7 year bonds 0% 0% 0% 0% 0% 0% 18% 9% 

5 year bonds 0% 0% 0% 0% 0% 0% 0% 0% 

3 year bonds 0% 0% 0% 0% 6% 26% 42% 55% 

2 year bonds 64% 64% 58% 59% 68% 47% 0% 0% 

Total bonds 64% 64% 58% 59% 74% 73% 60% 64% 

Alternatives:                 

Emerging market stocks 0% 0% 0% 0% 0% 0% 0% 0% 

Developed market stocks 2% 2% 0% 0% 0% 0% 0% 0% 

Commodities - Oil 1% 1% 1% 1% 1% 1% 2% 2% 

Commodities - Gold  0% 0% 0% 0% 0% 0% 0% 0% 

Hedge fund 0% 0% 0% 0% 0% 0% 0% 0% 

US private equity 0% 0% 2% 1% 3% 4% 10% 9% 

US venture capital 0% 0% 0% 1% 1% 1% 3% 3% 

Developed ex-US private equity 0% 0% 1% 1% 0% 0% 0% 0% 

Emerging market private equity 0% 0% 0% 0% 0% 0% 0% 0% 

Total alternatives 3% 3% 4% 4% 5% 6% 15% 14% 
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Appendix 8(G)   Sortino Ratio Portfolios: In-Sample Allocations 

  1990 - 2006 1990 - 2015 

  CPI RPI LIBOR T-bill CPI RPI LIBOR T-bill 

Real Estate:                  

Direct real estate 32% 34% 32% 33% 3% 3% 3% 3% 

Listed real estate  0% 0% 0% 0% 1% 1% 1% 1% 

Total real estate 32% 34% 32% 33% 4% 4% 4% 4% 

Stocks:                  

Oil and gas 1% 1% 1% 1% 0% 0% 0% 0% 

Basic materials 1% 1% 1% 1% 2% 2% 2% 2% 

Industrials 0% 0% 0% 0% 4% 4% 4% 3% 

Construction 2% 2% 2% 2% 0% 0% 0% 0% 

Industrial goods and services 0% 0% 0% 0% 1% 1% 1% 1% 

Consumer goods 3% 3% 3% 3% 0% 0% 0% 0% 

Health care 3% 3% 3% 3% 3% 3% 3% 3% 

Consumer services 0% 0% 0% 0% 1% 1% 1% 1% 

Telecommunications 0% 0% 0% 0% 0% 0% 0% 0% 

Technology 0% 0% 0% 0% 0% 0% 0% 0% 

Utilities 5% 5% 5% 5% 0% 0% 0% 0% 

Banks 5% 4% 5% 5% 1% 1% 1% 1% 

Insurance 0% 0% 0% 0% 1% 1% 1% 1% 

Financial Services 0% 0% 0% 0% 1% 1% 1% 1% 

Total stocks 20% 19% 20% 20% 14% 14% 14% 13% 

Bonds:                  

10+ year bonds 5% 5% 5% 5% 24% 23% 23% 22% 

10 year bonds 4% 4% 4% 5% 0% 0% 0% 0% 

7 year bonds 4% 4% 4% 4% 0% 0% 0% 0% 

5 year bonds 3% 3% 4% 4% 0% 0% 0% 0% 

3 year bonds 3% 3% 3% 3% 46% 48% 49% 50% 

2 year bonds 3% 3% 3% 3% 1% 1% 0% 0% 

Total bonds 22% 22% 23% 24% 71% 72% 72% 72% 

Alternatives:                 

Emerging market stocks 0% 0% 0% 0% 0% 0% 0% 0% 

Developed market stocks 0% 0% 0% 0% 1% 1% 1% 1% 

Commodities - Oil 4% 4% 4% 4% 2% 2% 2% 2% 

Commodities - Gold  0% 0% 0% 0% 1% 1% 1% 1% 

Hedge fund 1% 1% 1% 1% 0% 0% 0% 0% 

US private equity 6% 6% 6% 6% 2% 2% 2% 2% 

US venture capital 7% 6% 7% 7% 3% 3% 3% 3% 

Developed ex-US private equity 6% 6% 6% 6% 1% 1% 1% 1% 

Emerging market private equity 0% 0% 0% 0% 0% 0% 0% 0% 

Total alternatives 24% 23% 24% 24% 10% 10% 10% 10% 
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Appendix 8(H)   Average Out-of-Sample Allocations – Mean-Tracking Error and Mean-

Semi-Variance Portfolios 

  Mean-Tracking Error Model Mean-Semi-Variance Model 

  CPI RPI LIBOR T-bill CPI RPI LIBOR T-bill 

Real Estate:                  

Direct real estate 16% 22% 17% 16% 27% 32% 21% 19% 

Listed real estate  0% 0% 0% 0% 2% 1% 1% 1% 

Total real estate 17% 23% 17% 16% 29% 34% 21% 20% 

Stocks:                  

Oil and gas 0% 0% 0% 0% 2% 2% 2% 2% 

Basic materials 0% 0% 0% 0% 1% 1% 1% 1% 

Industrials 0% 0% 0% 0% 2% 1% 1% 1% 

Construction 0% 0% 0% 0% 2% 1% 1% 1% 

Industrial goods and services 0% 0% 0% 0% 2% 1% 1% 1% 

Consumer goods 0% 0% 0% 0% 3% 2% 2% 1% 

Health care 0% 0% 0% 0% 4% 3% 3% 2% 

Consumer services 0% 0% 0% 0% 2% 1% 1% 1% 

Telecommunications 0% 0% 0% 0% 2% 2% 1% 1% 

Technology 0% 0% 0% 0% 2% 2% 2% 2% 

Utilities 0% 0% 1% 1% 3% 3% 2% 2% 

Banks 0% 0% 0% 0% 1% 1% 1% 0% 

Insurance 0% 0% 0% 0% 1% 1% 1% 1% 

Financial Services 0% 0% 0% 0% 1% 1% 1% 1% 

Total stocks 2% 2% 3% 3% 27% 23% 18% 16% 

Bonds:                  

10+ year bonds 0% 0% 0% 0% 4% 4% 4% 3% 

10 year bonds 0% 0% 0% 0% 4% 4% 4% 4% 

7 year bonds 0% 0% 0% 0% 4% 4% 5% 5% 

5 year bonds 0% 0% 0% 0% 4% 4% 5% 5% 

3 year bonds 0% 1% 0% 0% 4% 4% 6% 6% 

2 year bonds 75% 66% 75% 77% 4% 5% 22% 28% 

Total bonds 75% 68% 75% 77% 25% 25% 46% 51% 

Alternatives:                 

Emerging market stocks 0% 0% 0% 0% 1% 1% 1% 0% 

Developed market stocks 1% 1% 0% 0% 1% 1% 1% 1% 

Commodities - Oil 1% 2% 1% 1% 3% 2% 3% 3% 

Commodities - Gold  2% 2% 1% 1% 3% 2% 2% 2% 

Hedge fund 0% 1% 0% 0% 2% 2% 2% 1% 

US private equity 0% 0% 0% 0% 3% 3% 2% 2% 

US venture capital 1% 0% 1% 0% 2% 3% 2% 2% 

Developed ex-US private equity 0% 0% 0% 0% 2% 2% 2% 2% 

Emerging market private equity 1% 1% 1% 1% 2% 2% 2% 1% 

Total alternatives 6% 7% 5% 5% 19% 18% 15% 13% 
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Appendix 8(I)   Average Out-of-Sample Allocations – Sharpe Ratio and Sortino Ratio 

Portfolios 

  Sharpe Ratio Portfolios Sortino Ratio Portfolios 

  CPI RPI LIBOR T-bill CPI RPI LIBOR T-bill 

Real Estate:                  

Direct real estate 24% 26% 30% 29% 18% 22% 19% 20% 

Listed real estate  0% 0% 0% 0% 2% 2% 1% 1% 

Total real estate 24% 26% 30% 29% 20% 24% 20% 21% 

Stocks:                  

Oil and gas 0% 0% 2% 2% 3% 4% 4% 6% 

Basic materials 1% 1% 2% 1% 3% 3% 2% 2% 

Industrials 0% 0% 0% 0% 2% 2% 2% 1% 

Construction 0% 0% 0% 0% 2% 2% 2% 2% 

Industrial goods and services 0% 0% 0% 0% 2% 2% 2% 1% 

Consumer goods 1% 2% 1% 1% 3% 3% 3% 2% 

Health care 1% 1% 1% 1% 3% 3% 3% 3% 

Consumer services 0% 0% 0% 0% 2% 2% 2% 1% 

Telecommunications 0% 0% 0% 0% 2% 2% 2% 2% 

Technology 2% 2% 2% 2% 3% 4% 6% 6% 

Utilities 2% 3% 5% 4% 3% 3% 3% 3% 

Banks 0% 0% 0% 0% 1% 1% 2% 2% 

Insurance 0% 0% 0% 0% 2% 2% 1% 1% 

Financial Services 0% 0% 0% 0% 2% 1% 1% 1% 

Total stocks 8% 9% 13% 12% 33% 33% 35% 35% 

Bonds:                  

10+ year bonds 0% 0% 2% 2% 4% 4% 4% 4% 

10 year bonds 1% 2% 1% 1% 4% 3% 3% 3% 

7 year bonds 7% 6% 5% 4% 3% 3% 3% 3% 

5 year bonds 0% 0% 0% 0% 3% 3% 3% 3% 

3 year bonds 2% 3% 12% 10% 3% 3% 3% 3% 

2 year bonds 51% 47% 27% 33% 3% 3% 3% 3% 

Total bonds 61% 58% 47% 49% 21% 19% 19% 19% 

Alternatives:                 

Emerging market stocks 0% 0% 0% 0% 3% 2% 2% 2% 

Developed market stocks 0% 0% 0% 0% 1% 1% 1% 1% 

Commodities - Oil 1% 1% 1% 1% 4% 3% 3% 4% 

Commodities - Gold  1% 2% 1% 1% 4% 3% 3% 3% 

Hedge fund 1% 0% 0% 0% 2% 2% 2% 1% 

US private equity 2% 2% 2% 2% 4% 4% 4% 3% 

US venture capital 2% 2% 5% 5% 3% 3% 6% 7% 

Developed ex-US private equity 0% 0% 0% 0% 4% 3% 3% 3% 

Emerging market private equity 0% 0% 0% 0% 2% 2% 2% 2% 

Total alternatives 7% 8% 10% 10% 26% 24% 26% 25% 
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Appendix 8(J)   MTE Portfolios: Out-of-Sample Allocations  
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Appendix 8(K)   MSV Portfolios: Out-of-Sample Allocations  
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Appendix 8(L)   Sharpe Ratio Portfolios: Out-of-Sample Allocations  
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Appendix 8(M)   Sortino Ratio Portfolios: Out-of-Sample Allocations  
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Appendix 8(N)   Out-of-Sample Returns 
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Appendix 8(O)   Descriptive Statistics - Out-of-sample Portfolios with Direct Real Estate 

    CPI RPI LIBOR TBILL 

MTE 
  
  
  
  
  
  
  
  

Average returns 1.44 1.48 1.44 1.42 

Standard deviation 1.01 1.11 0.98 0.96 

Median 1.40 1.42 1.46 1.35 

Maximum 4.06 4.36 3.70 3.51 

Minimum -1.83 -1.76 -1.90 -1.92 

 Skewness -0.19 -0.49 -0.11 -0.52 

 Kurtosis 3.73 3.67 3.36 3.66 

 Jarque-Bera 2.15 4.50 0.56 4.91 

 Probability 0.34 0.11 0.76 0.09 

MSV 
  
  
  
  
  
  
  
  

Average returns 2.33 2.49 2.06 1.79 

Standard deviation 4.54 3.62 3.06 3.56 

Median 2.62 2.86 2.27 1.85 

Maximum 12.06 10.59 8.97 8.36 

Minimum -23.98 -12.11 -14.17 -22.79 

 Skewness -2.33 -1.77 -1.08 -4.09 

 Kurtosis 15.81 12.03 6.24 30.31 

 Jarque-Bera 595.99 301.65 48.61 2607.84 

 Probability 0.00 0.00 0.00 0.00 

Sharpe 
  
  
  
  
  
  
  
  

Average returns 1.83 1.76 2.41 2.36 

Standard deviation 1.84 2.62 4.97 4.67 

Median 2.14 2.20 2.25 2.26 

Maximum 6.42 7.01 20.16 20.09 

Minimum -6.87 -16.03 -20.59 -19.55 

 Skewness -1.60 -0.42 -4.07 -0.38 

 Kurtosis 9.39 11.35 28.54 11.99 

 Jarque-Bera 163.51 226.04 2305.02 261.17 

 Probability 0.00 0.00 0.00 0.00 

Sortino 
  
  
  
  
  
  
  
  

Average returns 2.40 2.65 2.68 2.96 

Standard deviation 5.01 4.38 5.23 5.86 

Median 2.87 3.11 3.32 3.21 

Maximum 12.73 12.68 19.59 29.33 

Minimum -23.43 -12.78 -15.22 -18.14 

 Skewness -1.72 -0.53 -0.44 0.66 

 Kurtosis 10.70 4.57 5.45 9.22 

 Jarque-Bera 228.18 11.47 21.79 129.82 

 Probability 0.00 0.00 0.00 0.00 
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Appendix 8(P)   Descriptive Statistics – Out-of-Sample Portfolios without Direct Real Estate 

  MTE MSV SHARPE SORTINO 

CPI  Mean 1.3266 2.5381 1.8645 2.5226 

  Median 1.2651 2.8770 1.6397 2.9107 

  Std. Dev. 1.1107 4.6958 2.2946 5.1572 

  Maximum 4.2558 11.2870 10.5912 15.1628 

  Minimum -1.8188 -12.4337 -6.8735 -12.0269 

  Skewness 0.0659 -0.7584 0.0393 -0.3895 

  Kurtosis 3.5307 4.3585 7.3516 3.7364 

  Jarque-Bera 0.9593 13.3028 60.7754 3.6869 

  Probability 0.6190 0.0013 0.0000 0.1583 

RPI  Mean 1.3088 2.2665 1.8429 2.9498 

  Median 1.1903 2.4887 1.6642 3.1158 

  Std. Dev. 1.2023 4.4248 3.1560 6.0158 

  Maximum 4.7305 11.2388 13.1992 28.8202 

  Minimum -1.8196 -12.5204 -16.0324 -12.1753 

  Skewness 0.0587 -0.9195 -1.6166 0.8041 

  Kurtosis 3.5784 5.1552 16.8051 6.9731 

  Jarque-Bera 1.1175 25.7527 644.9817 58.9451 

  Probability 0.5719 0.0000 0.0000 0.0000 

LIBOR  Mean 1.2821 1.9068 2.4207 3.0753 

  Median 1.2151 1.9396 1.8166 3.3488 

  Std. Dev. 1.0136 3.2859 5.7289 5.8856 

  Maximum 3.8751 16.1575 26.3233 25.1349 

  Minimum -1.9570 -10.6391 -20.5886 -16.9891 

  Skewness -0.1363 0.3467 0.5019 0.0507 

  Kurtosis 3.6485 8.9267 10.0323 5.9175 

  Jarque-Bera 1.5878 114.2373 161.8961 27.3421 

  Probability 0.4521 0.0000 0.0000 0.0000 

TBILL  Mean 1.2860 1.8408 2.3833 3.2745 

  Median 1.1460 1.7425 1.7282 3.6034 

  Std. Dev. 1.0246 3.8068 5.4944 7.0934 

  Maximum 3.6896 17.0284 26.3233 28.4204 

  Minimum -1.9774 -19.3072 -19.5451 -27.3876 

  Skewness -0.0990 -1.1808 0.7372 -0.2700 

  Kurtosis 3.5273 17.1156 10.8166 8.2542 

  Jarque-Bera 1.0180 657.1507 202.9998 89.5058 

  Probability 0.6011 0.0000 0.0000 0.0000 
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Appendix 8(Q)   Out-of-sample returns – Portfolios with Direct Real Estate 

    MTE MSV Sharpe Sortino 80-20 

CPI 
  
  
  
  
  
  
  
  
  
  

Average returns 1.4426 2.3255 1.8323 2.4013 2.5484 

Index value 29334.77 52828.98 38854.80 54838.63 56118.53 

Tracking error 1.2043 4.4909 1.8944 4.9539 6.8262 

Standard deviation 1.0089 4.5441 1.8414 5.0060 6.8097 

Average excess returns 0.9426 1.8256 1.3323 1.9013 2.0484 

Semi-deviation 1.0258 5.9428 2.5236 6.0487 7.3188 

Sharpe ratio 0.7827 0.4065 0.7033 0.3838 0.3001 

Sortino 0.9189 0.3072 0.5279 0.3143 0.2799 

Maximum 4.0644 12.0618 6.4181 12.7270 16.9879 

Minimum -1.8308 -23.9830 -6.8735 -23.4255 -15.9182 

Success ratio 0.7792 0.7403 0.8312 0.7143 0.6753 

RPI 
  
  
  
  
  
  
  
  
  
  

Average returns 1.4763 2.4881 1.7563 2.6538 2.5484 

Index value 30029.58 61597.03 36160.56 67902.40 56118.53 

Tracking error 1.3123 3.4884 2.5168 4.1860 6.7430 

Standard deviation 1.1085 3.6193 2.6179 4.3818 6.8097 

Average excess returns 0.7767 1.7885 1.0567 1.9541 1.8488 

Semi-deviation 0.8692 5.0005 4.1548 4.1456 7.1985 

Sharpe ratio 0.5918 0.5127 0.4199 0.4668 0.2742 

Sortino 0.8935 0.3577 0.2543 0.4714 0.2568 

Maximum 4.3551 10.5902 7.0141 12.6773 16.9879 

Minimum -1.7598 -12.1095 -16.0324 -12.7820 -15.9182 

Success ratio 0.6623 0.8312 0.7922 0.7143 0.6623 

LIBOR 
  
  
  
  
  
  
  
  
  
  

Average returns 1.4386 2.0573 2.4088 2.6840 2.5484 

Index value 29191.86 44899.03 54878.56 66783.38 56118.53 

Tracking error 0.8717 3.0345 4.7923 5.1953 6.8310 

Standard deviation 0.9759 3.0637 4.9661 5.2282 6.8097 

Average excess returns 0.4816 1.1003 1.4518 1.7270 1.5914 

Semi-deviation 0.9067 4.0285 6.3784 5.8797 7.5148 

Sharpe ratio 0.5525 0.3626 0.3029 0.3324 0.2330 

Sortino 0.5311 0.2731 0.2276 0.2937 0.2118 

Maximum 3.7032 8.9672 20.1626 19.5903 16.9879 

Minimum -1.9029 -14.1734 -20.5886 -15.2211 -15.9182 

Success ratio 0.7403 0.7403 0.7792 0.7013 0.6623 

TBILL 
  
  
  
  
  
  
  
  
  
  

Average returns 1.4178 1.7884 2.3612 2.9551 2.5484 

Index value 28754.09 36055.41 53573.33 80290.14 56118.53 

Tracking error 0.8414 3.5850 4.5473 5.8174 6.8461 

Standard deviation 0.9616 3.5582 4.6719 5.8648 6.8097 

Average excess returns 0.5088 0.8793 1.4521 2.0460 1.6393 

Semi-deviation 0.8557 5.5850 5.8656 5.4578 7.4975 

Sharpe ratio 0.6046 0.2453 0.3193 0.3517 0.2395 

Sortino 0.5945 0.1574 0.2476 0.3749 0.2186 

Maximum 3.5108 8.3610 20.0901 29.3253 16.9879 

Minimum -1.9206 -22.7907 -19.5451 -18.1433 -15.9182 

Success ratio 0.7532 0.7273 0.7662 0.6753 0.6623 
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Appendix 8(R)   Out-of-Sample Returns – Portfolios with no Direct Real Estate 

    MTE MSV Sharpe Sortino 80-20 

CPI 

  

  

  

  

  

  

  

  

  

  

Average returns 1.3266 2.5381 1.8645 2.5226 2.5484 

Index value 26783.99 60747.44 39495.08 59596.49 56118.53 

Tracking error 1.265 4.591 2.321 5.090 6.8262 

Standard deviation 1.103 4.665 2.280 5.124 6.8097 

Average excess returns 0.827 2.038 1.365 2.023 2.0484 

Semi-deviation 1.030 4.912 2.454 5.216 7.3188 

Sharpe ratio 0.653 0.444 0.588 0.397 0.3001 

Sortino 0.803 0.415 0.556 0.388 0.2799 

Maximum 4.256 11.287 10.591 15.163 16.9879 

Minimum -1.819 -12.434 -6.874 -12.027 -15.9182 

Success ratio 0.740 0.714 0.818 0.701 0.6753 

RPI 

  

  

  

  

  

  

  

  

  

  

Average returns 1.309 2.267 1.843 2.950 2.5484 

Index value 26427.11 50350.45 38143.92 79341.56 56118.53 

Tracking error 1.3217 4.3377 3.1130 5.9346 6.7430 

Standard deviation 1.1945 4.3959 3.1354 5.9766 6.8097 

Average excess returns 0.8088 1.7666 1.3430 2.4499 1.8488 

Semi-deviation 1.1921 5.2597 4.3426 5.3526 7.1985 

Sharpe ratio 0.6119 0.4073 0.4314 0.4128 0.2742 

Sortino 0.6785 0.3359 0.3093 0.4577 0.2568 

Maximum 4.7305 11.2388 13.1992 28.8202 16.9879 

Minimum -1.8196 -12.5204 -16.0324 -12.1753 -15.9182 

Success ratio 0.7532 0.7532 0.8052 0.7273 0.6623 

LIBOR 

  

  

  

  

  

  

  

  

  

  

Average returns 1.2821 1.9068 2.4207 3.0753 2.5484 

Index value 25933.0 40062.0 53978.0 87487.0 56118.53 

Tracking error 1.2114 3.2274 5.6779 5.8095 6.8310 

Standard deviation 1.0070 3.2645 5.6916 5.8473 6.8097 

Average excess returns 0.7821 1.4069 1.9207 2.5753 1.5914 

Semi-deviation 1.0772 3.5705 6.1989 5.6360 7.5148 

Sharpe ratio 0.6456 0.4359 0.3383 0.4433 0.2330 

Sortino 0.7261 0.3940 0.3099 0.4569 0.2118 

Maximum 3.8751 16.1575 26.3232 25.1349 16.9879 

Minimum -1.9570 -10.6391 -20.5886 -16.9891 -15.9182 

Success ratio 0.7662 0.7792 0.7792 0.7143 0.6623 

TBILL 

  

  

  

  

  

  

  

  

  

  

Average returns 1.2860 1.8408 2.3833 3.2745 2.5484 

Index value 26006.0 37483.0 53074.0 95538.0 56118.53 

Tracking error 1.2285 3.7587 5.4408 7.0062 6.8461 

Standard deviation 1.0179 3.7820 5.4586 7.0472 6.8097 

Average excess returns 0.7860 1.3409 1.8834 2.7746 1.6393 

Semi-deviation 1.0722 5.1818 5.9074 7.2360 7.4975 

Sharpe ratio 0.6398 0.3567 0.3462 0.3960 0.2395 

Sortino 0.7331 0.2588 0.3188 0.3834 0.2186 

Maximum 3.6896 17.0284 26.3232 28.4204 16.9879 

Minimum -1.9774 -19.3072 -19.5451 -27.3876 -15.9182 

Success ratio 0.7662 0.7922 0.7922 0.7143 0.6623 
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Appendix 8(S)   Out-of-Sample Returns – CPI Hedging Portfolios with Different 

Direct Real Estate Vehicles 

    

UK 
unlisted 
funds 

UK IPD 
direct real 
estate 

Unsmoothed 
UK IPD direct 
real estate 

Blended real 
estate 

MTE 

  

  

  

  

  

  

  

  

  

  

Average returns 1.4426 1.4478 1.3442 1.3650 

Index value 29334.77 29425.13 27160.03 27588.76 

Tracking error 1.2043 1.1764 1.2383 1.2531 

Standard deviation 1.0089 0.9772 1.0576 1.0715 

Average excess returns 0.9426 0.9478 0.8443 0.8650 

Semi-deviation 1.0258 0.9964 1.0916 1.0307 

Sharpe ratio 0.7827 0.8057 0.6818 0.6903 

Sortino 0.9189 0.9512 0.7734 0.8392 

Maximum 4.0644 3.7911 4.1148 4.2527 

Minimum -1.8308 -1.8259 -1.8424 -1.7529 

Success ratio 0.7792 0.7792 0.7662 0.7532 

MSV 

  

  

  

  

  

  

  

  

  

  

Average returns 2.3255 2.1919 1.7668 2.3451 

Index value 52828.98 46766.63 35532.00 54748.57 

Tracking error 4.4909 4.8340 3.6447 3.7584 

Standard deviation 4.5441 4.8947 3.6872 3.7652 

Average excess returns 1.8256 1.6920 1.2668 1.8451 

Semi-deviation 5.9428 6.8718 4.6941 4.1646 

Sharpe ratio 0.4065 0.3500 0.3476 0.4909 

Sortino 0.3072 0.2462 0.2699 0.4431 

Maximum 12.0618 10.8448 9.6885 11.3445 

Minimum -23.9830 -27.0465 -15.1164 -12.1084 

Success ratio 0.7403 0.7403 0.7273 0.7403 

Sharpe 

  

  

  

  

  

  

  

  

  

  

Average returns 1.8323 1.8361 1.8163 1.8839 

Index value 38854.80 38971.37 38137.08 40075.16 

Tracking error 1.8944 1.8777 2.1563 2.2982 

Standard deviation 1.8414 1.8198 2.1374 2.2660 

Average excess returns 1.3323 1.3361 1.3163 1.3839 

Semi-deviation 2.5236 2.5894 2.5239 2.5306 

Sharpe ratio 0.7033 0.7116 0.6105 0.6022 

Sortino 0.5279 0.5160 0.5215 0.5469 

Maximum 6.4181 6.2209 10.4223 11.5718 

Minimum -6.8735 -6.6641 -6.8768 -6.8768 

Success ratio 0.8312 0.8442 0.8312 0.8312 

Sortino 

  

  

  

  

  

  

  

  

  

  

Average returns 2.4013 2.4658 2.5612 2.4136 

Index value 54838.63 58509.25 62686.45 50772.85 

Tracking error 4.9539 4.6151 4.4857 6.2533 

Standard deviation 5.0060 4.6494 4.5378 6.3307 

Average excess returns 1.9013 1.9659 2.0612 1.9137 

Semi-deviation 6.0487 5.1092 4.6616 9.0014 

Sharpe ratio 0.3838 0.4260 0.4595 0.3060 

Sortino 0.3143 0.3848 0.4422 0.2126 

Maximum 12.7270 12.6984 13.1434 13.0617 

Minimum -23.4255 -17.4062 -12.0023 -37.9640 

Success ratio 0.7143 0.7143 0.7273 0.7273 
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Appendix 8(T)   Out-of-Sample Returns – Libor Hedging Portfolios with Different 

Direct Real Estate Vehicles 

    

UK 
unlisted 
funds 

UK IPD 
direct real 
estate 

Unsmoothe
d UK IPD 
direct real 
estate 

Blended 
real 
estate 

 

MTE 
  
  
  
  
  
  
  
  
  
  

Average returns 1.4386 1.4313 1.3143 1.3186  

Index value 29191.86 29041.32 26578.41 26666.48  

Tracking error 0.8717 0.8641 0.9530 0.9405  

Standard deviation 0.9759 0.9618 0.9930 0.9864  

Average excess returns 0.4816 0.4742 0.3573 0.3616  

Semi-deviation 0.9067 0.9019 0.8581 0.8888  

Sharpe ratio 0.5525 0.5489 0.3749 0.3844  

Sortino 0.5311 0.5258 0.4164 0.4068  

Maximum 3.7032 3.5544 3.8793 3.8793  

Minimum -1.9029 -1.8976 -1.9578 -2.0038  

Success ratio 0.7403 0.7403 0.6234 0.6364  

MSV 
  
  
  
  
  
  
  
  
  
  

Average returns 2.0573 1.7934 1.8627 1.7434  

Index value 44899.03 35951.98 37448.83 33986.55  

Tracking error 3.0345 3.8388 3.9916 4.1855  

Standard deviation 3.0637 3.8598 4.0207 4.2415  

Average excess returns 1.1003 0.8364 0.9057 0.7864  

Semi-deviation 4.0285 5.6824 6.0354 6.8495  

Sharpe ratio 0.3626 0.2179 0.2269 0.1879  

Sortino 0.2731 0.1472 0.1501 0.1148  

Maximum 8.9672 8.6378 9.7746 11.3414  

Minimum -14.1734 -24.5682 -24.6120 -28.4169  

Success ratio 0.7403 0.7013 0.7273 0.7403  

Sharpe 
  
  
  
  
  
  
  
  
  
  

Average returns 2.4088 2.1791 2.3318 2.3894  

Index value 54878.56 46743.59 50797.74 53077.44  

Tracking error 4.7923 4.4171 5.3782 5.3626  

Standard deviation 4.9661 4.5755 5.5430 5.5315  

Average excess returns 1.4518 1.2221 1.3748 1.4324  

Semi-deviation 6.3784 6.2031 5.4366 5.1975  

Sharpe ratio 0.3029 0.2767 0.2556 0.2671  

Sortino 0.2276 0.1970 0.2529 0.2756  

Maximum 20.1626 19.9391 26.3248 26.3248  

Minimum -20.5886 -20.5886 -20.5886 -20.5886  

Success ratio 0.7792 0.7662 0.6883 0.6623  

Sortino 
  
  
  
  
  
  
  
  
  
  

Average returns 2.6840 2.9689 2.7029 3.0931  

Index value 66783.38 83888.19 69888.74 86907.98  

Tracking error 5.1953 4.8194 4.4028 6.3197  

Standard deviation 5.2282 4.8727 4.4287 6.4060  

Average excess returns 1.7270 2.0119 1.7459 2.1361  

Semi-deviation 5.8797 4.8051 4.5346 5.5723  

Sharpe ratio 0.3324 0.4175 0.3965 0.3380  

Sortino 0.2937 0.4187 0.3850 0.3833  

Maximum 19.5903 14.8197 12.3127 34.9356  

Minimum -15.2211 -11.5963 -12.0513 -18.5009  

Success ratio 0.7013 0.7013 0.6753 0.6623  
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Appendix 8(U)   Out-of-sample returns – MTE Portfolios using Different Direct Real Estate Vehicles 

CPI Hedging 

   

 

LIBOR Hedging 
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Appendix 8(V)   Out-of-sample allocations – MSV Portfolios using Different Direct Real Estate Vehicles 

CPI Hedging 

   

 

LIBOR Hedging 
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CHAPTER NINE – CONCLUSIONS  

9.0 MOTIVATION FOR AND OBJECTIVES OF THE THESIS 

With the increase in the significance of Defined Contribution (DC) pensions within the pension 

industry of most countries, there are concerns among regulatory agencies that contributors may not 

have adequate income replacement at retirement given that the amount of pension income is not 

known with certainty. Concerns exist also regarding the impact that increased competition can have 

on the amount of risk that these funds take as they try to produce superior returns than their 

counterparts (Ibbotson, 2007; Ruloff, 2005; Harrison et al., 2014). These concerns were explored in 

Chapter 2.  One of the proposals that has been put forward to manage risk within DC pension funds 

industry is the establishment of minimum return guarantees (Antolin et al., 2012; Piggott and Sane, 

2009; Dorfman et al., 2009). The goal of these minimum return guarantees is primarily to preserve the 

purchasing power of the pension pot to ensure that at the very least, contributors would not be left 

with a pension amount that is less in real terms than the value of their accumulated contributions.  

By their nature, defined contribution pension schemes do not provide any assurance that a certain 

amount would be given to contributors at retirement. This is contrary to how defined benefit pension 

schemes operate – the amount of money that would be received at retirement is reasonably certain. 

The amount of money that a contributor receives under defined contribution pension arrangement is 

dependent on the total amount contributed and the returns that have been earned on these 

contributions less any fees. It is possible therefore that the pensioner could end up with less than what 

he/she contributed under defined contribution schemes. As discussed by Chapter 2, this concern has 

led many regulatory agencies to establish minimum return guarantees. In some cases, the DC pension 

fund guarantees the nominal amount of the member’s total contribution. Yet such an arrangement 

only guarantees the monetary value of the contributions and not the value of goods and services that 

can be obtained. Hence, some other regulatory agencies require that the real value of the contributions 

should be guaranteed.  This means that that the total contribution should be increased periodically by 

the rate of inflation. Again, some other regulatory agencies believe that the contributions should earn 

the risk-free rate of interest and not merely keep pace with inflation.  

In addition to producing returns which ensure that the purchasing power of DC contributions are 

preserved, there is an increasing emphasis on liquidity as a key objective among DC pension funds.   

One of the main attractions of real estate is its ability to produce returns that keep pace with inflation. 

Defined benefit pension funds have historically allocated a significant proportion of their portfolios to 

direct real estate and other real estate assets.  With the increasing focus on liquidity however, many DC 



  

322 

 

pension funds have found themselves in a position where they are unable to include real estate in their 

portfolios because of its perceived illiquidity. Expert interviews conducted as part of this thesis  

revealed that the restriction on illiquid assets for UK DC funds is not as a result of any regulation per 

say, but is a function of how the DC pension funds carry out their investment activities. The majority 

of DC pension funds carry out their investment activities through external fund management firms. 

Many of these funds who are subject to UCITs rules. UCITs rules explicitly prohibit investment in 

assets, such as real estate, that are deemed to be illiquid. 

Regulators in some countries also have limits on the amount that can be invested in specific assets. 

Given that the recent financial crisis (2007-2008) originated from the housing market, limits on real 

estate investments, especially direct real estate investments, have been put in place by regulators in 

many countries. Indirect real estate investments such as REITs are still permitted in most jurisdictions. 

This raises the question of whether the benefits of direct real estate can be obtained by investing 

indirectly. Or if it is possible to earn property-like returns without being fully invested in properties. 

This subject was pursued in Chapters 2 and 5.  

The objectives of this thesis were twofold: One was to determine the optimal allocation within DC 

pension real estate portfolios in the light of increasing liquidity requirement by pension trustees and 

regulatory agencies. The second is to determine the optimal combination of real estate and other 

alternative assets, along with stocks and bonds that would help pension funds protect the purchasing 

power of DC pension investors.  

This thesis contributes to the real estate financial literature across three different areas: inflation 

hedging, strategic asset allocation and the management of liquidity risk. In this thesis, we implement 

an approach which constructs investment portfolios that provide returns hedged against inflation and 

interest rate changes while, at the same time, ensuring that they incorporate the liquidity needs of DC 

pension trustees and regulators.  As suggested by Dessner et al. (2012), the objective of inflation-

protection has to be pursued without compromising other investment objectives such as liquidity, 

target returns and volatility constraints.  

As discussed in Chapter 3, while several studies have examined the ability of real estate and other assets 

prior to the 2008 financial crisis, few studies have revisited this issue following the crisis. With the 

changing interdependency between assets and macroeconomic variables, we find it important to 

analyse the inflation and interest rate hedging ability of different assets. This is particularly important 

given the increasing dominance of DC pension funds whose primary objective is to protect the 

purchasing power of members’ contributions. A review of the statements of investment principles of 

several Master trust pension funds in the UK shows that most of them have inflation and interest rate 
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protection as a key investment objective. Outside the UK, we show that several regulatory agencies, 

especially in countries where DC pension funds are mandatory, have introduced some form of 

minimum return requirement tied to inflation and interest rate measures.   

Ling and Naranjo (1997) noted that most of the empirical studies on the inflation hedging, especially 

within the real estate literature, have focused on examining the relationship of various assets and the 

macro-economy. Dessner et al. (2012) believe that instead of identifying the assets that possess the 

ability to hedge against inflation, a diversified approach should be adopted by investors. Our study 

contributes to the limited literature on the construction of inflation and interest rate hedging portfolios.  

An aspect of this thesis is dedicated to examining the optimal allocation within real estate fund 

portfolios in light of the increasing emphasis on liquidity by DC pension trustees, regulators and even 

contributors when choosing where to allocate capital. Our study is one of the first to explicitly examine 

the optimal allocation within hybrid/blended real estate funds. Previous studies  have focused on the 

performance implication of the current allocation within open-ended real estate funds that have added 

cash and/or listed real estate to a their property portfolios. In this thesis, we do not take the current 

allocations as given. Instead, we consider the possibility of expanding the liquid asset universe to 

include cash, listed real estate, general stocks and bonds of various maturities.  

9.1 SUMMARY, FINDINGS AND POLICY IMPLICATIONS 

Chapters 1 through 4 set the foundation for the empirical analysis conducted in Chapters 5 to 8. 

Chapter one introduces the thesis. In addition to presenting the objective of this PhD project and the 

motivations for the various studies, this chapter also provides a general introduction to pensions and 

highlight the changes that have occurred on the pension landscape globally. The issues of liquidity and 

capital perseveration within the context of DC pension funds are also touched on.  

Chapter 2 extends the context provided on pension funds by focusing on the occupational UK pension 

sector. In this chapter, we provided what can be described as styled facts on the UK pension market. 

After giving an overview of the occupational pension sector in the United Kingdom and the main 

changes that have taken place, we proceed to do two sets of analysis. We first analysed the annual 

reports and Statements of Investment Principles of selected master trust pension funds. The analysis 

revealed that most of these funds have explicit objectives regarding capital preservation and also 

regarding how liquid they want their investments to be. We found that funds such as NEST have return 

objectives tied to CPI inflation whiles funds such as NOW Pensions have risk-free interest rates such 

as SONIA and T-bill interest rate as their benchmark. A second set of analysis was conducted to 

understand the differences in allocations to various assets within the portfolios of DB and DC pension 
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funds. We analysed survey results from the Pension Protection Fund, Schroders and UBS. An analysis 

of the asset allocation patterns shows that the portfolios of DC pension funds were less diversified 

than their counterpart DB pensions. DC pension funds had allocations in excess of 80% to equities 

alone at the beginning of 2013, confirming the concerns raised by DCIF and other analysts. However, 

there are indications that these funds are increasing their allocations to bonds, real estate and other 

alternative assets.   

In Chapter 3, we carry out a review of the empirical studies on the role that real estate plays within the 

portfolios of institutional investors such as pension funds. We identified two strands of literature – 

one that examines the role of real estate within multi-asset portfolios and a second strand that looks at 

the inflation hedging characteristics of real estate investments. For the first strand that considers the 

inflation-hedging ability of real estate, we found that the classic regression analysis of Fama & Schwert 

(1977) and cointegration analysis have dominated the literature. We review the limitations of these 

approaches and discuss newer approaches that have been proposed to deal with these limitations. In 

particular, we found the autoregressive lag model of Pesaran et al. (2001) has received increased 

attention as it is able to accommodate variables irrespective of their level of integration. Again, we find 

that the mean-variance model of Markowitz (1952) has been used extensively in analyzing the portfolio 

role of real estate. The real estate allocations suggested by these models have been found to be greater 

than what was observed in practice. Also, these models were found to have challenges relating to 

parameter uncertainty and the distribution properties of the various assets. We went on to review 

several studies that have been proposed and used to determine the portfolio role of real estate. Most 

of these models produced allocations which were much lower than the mean-variance framework. The 

results of these studies have also been found to be more robust.   

In Chapter 4, we present the data used in this thesis. We also explore the time series features of the 

returns of the various assets as well as the selected inflation/interest rates. We observed that most of 

these series suffer from non-normality. Real estate and the other private market assets were found to 

exhibit serial correlations. Stationarity tests further confirmed that while many return indices were 

stationary at levels I(0), a few were stationary in first difference I(1). After gaining an insight into the 

time series features of the data series, we proceeded to select the appropriate models for the empirical 

analysis we conduct subsequently. We provide a detailed background to these models in the second 

part of Chapter 4. 

The goal of Chapter 5 is to help us understand the liquidity issues that DC pension funds are faced 

with and how this affects their investment to illiquid asset classes such as DC pension funds. The 

chapter highlights the multi-faceted nature of liquidity and its causes. We explore different measures 
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that can be used to estimate the different aspects or dimensions of liquidity such as tightness, depth, 

resilience, breadth and immediacy. We were able to map each measure of liquidity to the different 

aspects/dimensions of liquidity. We found through an extensive review of the literature that apart from 

REITs, application of the different measures of liquidity within the field of real estate has been quite 

limited. Some measures have not yet been applied at all to real estate investments. An exploration of 

these measures would improve an understanding of the real estate market. We also explored different 

ways in which DC pension funds can manage liquidity within their investment portfolios. We identified 

the incorporation of liquidity matrices into asset allocation techniques and the use of derivative/hybrid 

instruments that allow investors to access illiquid asset classes without bearing all the liquidity risk 

inherent in these investments. Other approaches include the use of debt and sensitivity/stress test 

analysis. 

The focus of Chapter 6 is on one of the approaches that DC pension funds adopt to manage liquidity 

within their investment portfolios – the holding of blended/hybrid investment products. This chapter 

analyses the optimal mix of liquid assets within hybrid/blended real estate portfolios that contain a 

certain amount of liquid assets. We expand the liquid asset universe to include cash, listed real estate, 

general stocks and bonds of various maturities. The goal is to combine these assets in a way that both 

enhances liquidity as well as delivers property-like returns. The Mean-Tracking error optimisation 

model is used to create portfolios that minimise the tracking error between direct real estate returns 

and the returns of the hybrid/blended real estate portfolios. Compared to the current practice of 

limiting the liquid asset universe to cash and/or listed real estate, we find that expanding the liquid 

asset universe results in lower tracking errors than those obtained by using only cash or listed real 

estate. The returns obtained from these portfolios are also higher than those from a cash-only liquidity 

buffer. We observe however that the returns obtained from the minimum tracking error portfolios 

tend to be lower than the returns obtained from a pure property portfolio. To avoid this, minimum 

return constraints are imposed to ensure that the returns obtained from the hybrid/blended portfolios 

match the returns that could be obtained from a pure property portfolio. Understandably, imposing a 

minimum return constraint results in higher tracking error and lower correlation with the underlying 

property portfolio. An examination of the allocation within the blended portfolios shows that the 

unconstrained mean-tracking error portfolios are invested heavily in cash especially prior to 2007. This 

may explain the current allocation within open-ended real estate funds which mostly have cash as the 

only liquidity buffer. With the imposition of a minimum return constraint, the liquid-asset allocations 

become more diversified. In addition to cash, other liquid assets such as listed real estate, general stocks 

and long-term bonds receive significant allocations.  
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In Chapter 7, we reassess the inflation and interest rate hedging characteristics of real estate using 

contemporary approaches that take into the account the different levels of integration of variables. The 

autoregressive distributed lag model of Pesaran et al. (2001) is used to test the long-run cointegration 

relationship between inflation and asset returns whiles the Toda & Yamamoto (1995) approach for 

testing for Granger Causality is used for testing the short-run causal relationship between the variables. 

In addition to these approaches, we also use the dynamic conditional correlation within a GARCH 

framework to examine the relationship between asset returns and inflation/interest rates.  

Overall, the results show that several assets possess the ability to hedge against inflation and interest 

rate changes over the long-run. However, the real problem appears to be finding assets that can offer 

an inflation-hedge over the short-run. The policy implication of this result is that an insistence by 

regulators and pension trustees that the fund managers should deliver returns in line with inflation on 

a period-to-period basis could result in a lack of diversification of those portfolios. This could result 

in an over-investment in assets that are perceived to be inflation hedges such as index-linked bonds, 

inflation swaps etc. As noted by Amenc et al. (2009) this is expensive in the long-run as these 

investments typically offer low returns and are subject to counterparty risk. Most of these assets are 

thinly traded, resulting in liquidity concerns. A lack of diversification is a risk in itself as a market shock 

could prove catastrophic. We find that real estate is a good hedge against almost all the inflation and 

interest rates analysed in Chapter 7. The results were consistent over both the long-run and short-run. 

We found also that real estate investment vehicle used does not alter or diminish the inflation/interest 

rate hedging ability of real estate. This result implies that irrespective of the inflation or interest rate 

being hedged against, DC pension funds would benefit from holding real estate as part of their 

investment portfolios. Surprisingly, most of the tests did not find index-linked gilts to be a complete 

hedge against inflation/interest rate changes. Although index-linked gilts were a good hedge over the 

long-run, they were not found to be a hedge over the short-run. The lagged indexation phenomenon 

has been blamed for the inability of index-linked gilts to offer a short-term hedge against inflation. 

Although the returns of these bonds are supposed to change with any change in inflation rate, in 

practice, the returns of index-linked bonds are adjusted 3 to 8 months after the official declaration of 

the inflation rate (Schofield, 1996). Several stock sectors were found to be a good hedge over the long-

term as they were found to be cointegrated with at least one inflation and/or interest rate. However, 

very few stock sectors exhibited a short-term causal relationship with the inflation/interest rates.  

Over the short-run however, we found several alternative assets possess the ability to offer a hedge 

against inflation, witnessed by a causality in at least one direction by several alternative assets. This 

result is confirmed by the fact that the error-correction coefficients of some alternative assets were also 

quite high. In fact, private equity sectors had error-correction coefficients that exceeded most UK 
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domiciled assets. We also investigate the effect of appraisal smoothing on the results of our analysis. 

We found that the conclusions reached on the inflation and interest rate hedging ability of these assets 

did not change when the unsmoothed IPD real estate sector and private market alternative asset return 

series were analysed. The the speed of adjustment to equilibrium (error-correction coefficient) 

increased remarkably. Hoesli et al. (1997) observed that this shows that private market assets do not 

adjust that quickly to market information. Similarly, we found that conversion of the returns of 

alternatives from USD to GBP did not alter the conclusion of the various tests. 

In Chapter 8, we construct different inflation and interest rate hedging portfolios. The composition 

and the risk and return features of the various optimisation models are analysed. The effect on portfolio 

composition and the risk-return features of portfolios hedged against alternative inflation and interest 

rates are also discussed. We then compare the risk and return features of these portfolios to a traditional 

stock-bond portfolio. The role of real estate within the various portfolios is also investigated. As an 

add-on, we analyse the effect of using different real estate investment vehicles on the risk and return 

of the respective portfolios. We find that given the same optimisation framework, the use of CPI or 

RPI inflation rates do not produce portfolios that show any significant differences in composition or 

risk-return features. Similarly, using LIBOR interest rate or T-bill interest rates did not result in 

different portfolio structures. Portfolios based on semi-variance as a measure of risk were far more 

diversified than those that utilise tracking error of returns. The tracking-error portfolios were heavily 

invested in bonds and real estate. These portfolios produced remarkably low tracking errors out-of-

sample. However, their returns were among the lowest of the various models. We feel that these 

portfolios are appropriate for periods where DC asset managers wish to pursue a low-risk investment 

strategy. The allocation within this portfolio accords with the practice within the asset management 

industry where investment managers gradually move the accumulated funds of the DC contributor 

into bonds as they get close to retirement. Some funds also use this strategy when the DC member has 

just started saving to help them accumulate enough funds before they pursue a riskier strategy in the 

growth phase. The belief is that investing in new DC members’ assets in risky assets could discourage 

them if the strategy backfires and they lose even part of their contribution. We also found that the 

cumulative returns of the various inflation and interest rate hedging portfolios exceeded the cumulative 

inflation and interest rate growth. A practical application of this result is that it is better to construct 

an optimised portfolio than to invest in T-bills or inflation-indexed bonds that deliver the benchmark 

returns with more certainty. For example, between 1991 and 2015, an investment in T-bills would have 

produced just about a third of the cumulative returns of the low-risk tracking error portfolio. We also 

found that the optimised portfolios out-performed the traditional 80-20 portfolios in all cases. This 

result also means that the current 80-20 equity-bond allocation within DC pension funds is sub-optimal 
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at best. Adding real estate to the portfolio leads to improved tracking error relative to all the inflation 

and interest rate benchmarks. This means that real estate improves the hedging ability of the various 

portfolios. However, we found that omitting real estate from the portfolio did not always result in a 

fall in the returns of the portfolios. Understandably, the returns depends on the asset that replaces real 

estate when real estate is omitted from a particular optimisation process. From this, we can conclude 

that the primary role that real estate plays within the inflation and interest rate hedging portfolios is to 

enhance the ability of the portfolio to hedge or closely track the inflation or interest rate.  

9.2 LIMITATIONS AND AREAS OF FUTURE RESEARCH 

Many of the issues discussed in this thesis are relevant not just to the United Kingdom but to other 

jurisdictions as well. The analysis in this thesis can be applied to countries, especially those where there 

are strict regulations such as those regarding minimum returns and those limiting the amount that can 

be invested in some asset classes. However, the analysis in this thesis has been limited to the United 

Kingdom. The UK was used primarily because of data availability and also because DC funds in the 

United Kingdom are free to select their own performance benchmarks. Consequently, using the UK 

as a case study has allowed us to explore a range of benchmarks and liquidity requirements.  

Although Chapter 5 explores a large number of liquidity measures that can be applied to understand 

the how liquidity is measured in DC pension portfolios, we did not actually apply them in the chapter. 

In Chapter 6, we focused on blended/hybrid real estate investments as a route through which DC 

pension funds can gain access to the real estate market. Future studies could directly incorporate the 

liquidity measures explored in this chapter to understand the differences between proposed and actual 

allocation to real estate investment managers. We believe this could result in more realistic allocation 

to real estate than observed in previous studies. 

In Chapter 6, we considered the possibility of adding liquid, publicly traded assets to a portfolio of UK 

properties. This analysis assumes that the investor is only interested in UK assets. Here again, it is 

possible to expand the liquid asset universe beyond UK assets. Obviously, this would mean dealing 

with foreign exchange risk and regulations that exist in the target country. The analysis in this chapter 

can also be applied to other illiquid assets such as commodities, farmland, infrastructure etc. It is also 

possible to create a fund which combines different illiquid assets and liquid, publicly traded assets to 

enable investors have access different alternative assets.  

An obvious problem with the econometric models used in the analysis in Chapter 7 is that although 

they help in identifying assets that have short and long-run association with the selected inflation and 

interest rates, they do not provide any guidance on how an investor should combine these assets in a 
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portfolio to obtain optimal inflation protection. This limitation is addressed in Chapter 8 which 

proposes and implements a number of portfolio optimisation techniques that help construct inflation 

and interest rate hedging portfolios. Other techniques may exist that can also enable investors address 

this issue of optimal allocation within inflation and interest rate hedging portfolios. Future studies 

could build on the ideas in this thesis and implement other models and techniques in the construction 

of portfolios to hedge against inflation and interest rate changes.  

Also, the econometric models used in Chapter 7 do not consider the effects of possible structural 

breaks and non-linear relationship between asset returns and the inflation/interest rate benchmarks. 

This represents an area of future research which could be explored. State-space models could also be 

used to explore the time-varying nature of the relationship between asset returns and macroeconomic 

variables such as inflation and interest rates.  

The analysis in the portfolio chapter were also undertaken without incorporating transaction costs and 

other rebalancing costs. Obviously, these could have an effect on the allocation to different assets as 

the post-transaction cost returns may be different, especially if the transaction costs in the various 

markets are significantly different from each other. Future studies could consider the effects of 

transaction costs incurred on various investment strategies to determine the options that would be in 

the best interest of investors.  

These limitations notwithstanding, the present study makes important contributions to the literature 

on designing portfolios that could help Defined Contribution pensions to address the issue of liquidity 

within their investment portfolios. The techniques proposed in this Chapter could also be applied 

within DC pension funds for the selection of assets to offer an optimal hedge against inflation and 

interest rate changes. 
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