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Abstract

Approximately 40% of global energy use can be attributed to buildings; in commercial buildings

around 20% of the total energy used comes from small power loads. In the UK, this percentage

is expected to reach up to 50% in highly efficient offices in the next 20 years. This trend makes

small power loads in commercial buildings one of the fastest growing load categories.

Quantitative energy audits for the analysis of the energy performance of buildings are conven-

tionally divided into two approaches, calculation, based on algorithms and equations, and

measurement, which performs some level of direct monitoring. These quantitative energy audit

approaches are common tools for evaluating the potential for reducing energy demand in build-

ings. Small power load estimations in office buildings present challenges for both approaches

due to the large number of such loads and their heterogeneous nature, and results in significant

uncertainty in these estimations. This thesis investigates the sources of uncertainty of the small

power energy estimations for the different audit approaches, and proposes and tests a number

of methods and techniques to overcome these weaknesses in the auditing process.

For the calculation approach, insufficient input parameter specifications have been identified

as the main source of uncertainty, which is associated with variability in the model output. A

sensitivity analysis method has been developed to identify the inputs that most contribute to

such output variability and that require additional effort to strengthen their accuracy in order
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to minimize the likely error in calculated small power energy consumption. These influential

parameters have been found to depend not only on the information sources available, but also

on the calculation method used and the type of load estimated.

Regarding the measurement approach, its uncertainty is related to the number of meters used,

which increases the quality of the information, but also the complexity of the hardware installa-

tion. An extrapolation method for providing the relationship between the number of appliances

monitored and the accuracy obtained in the final energy estimations has been proposed. Results

showed a logarithmic relationship between the number of desks monitored in a case study

office and the relative standard uncertainty percentage obtained in the energy estimations for

the aggregated load of the PCs. The method informs about the level of metering infrastructure

required in accordance with the level of uncertainty that can be accepted for the small power

energy estimations.

Non-Intrusive Appliance Load Monitoring (NIALM) methods, as a solution for small power

individual load estimation in office buildings, have also been explored through a practical study.

The disaggregation capabilities for the different electrical signatures, and their dependence

on appliance type and number have been investigated. Although the overall accuracy in the

disaggregation process was found to be significantly smaller for offices than for domestic sce-

narios, some signature combinations, such as the Root Meter Square Increments and the Steady

Harmonic Increment, were found to achieve up to 90% of accuracy in the disaggregation process.

The outcomes from this study contribute to the extension of the use of existing NIALM methods

from domestic to office buildings in the field of small power disaggregation.
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Chapter 1

Introduction

”Great things are done by a series of small

things brought together.”

Vincent Van Gogh (1853– 1890)

The aim of the research presented in this thesis is to contribute to the field of quantitative energy

audits in office buildings by improving the ways in which small power energy consumption is

estimated. For this, the different existing quantitative approaches are investigated, recognizing

their weaknesses, and a number of methods and techniques are proposed, developed, and

assessed to overcome those weaknesses. This chapter presents the background and motivation

for the research on the basis of the identified challenges and opportunities associated with the

energy assessment process in the small powers category. The problem statement is defined and

split into a set of research objectives along with the scope of the thesis. Contributions of the

research are stated and the thesis outline is presented at the end of the chapter.
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1.1 Background

Tackling climate change is one of the greatest challenges facing the 21th Century. Energy saving

constitutes a primary measure for the protection of the environment and for the reduction of the

use of polluting fossil fuels. Energy audits are a crucial tool to ascertain the efficiency of energy

use and a basis on which to make any decision for enhancing energy management [2].

Currently, the global energy use contributed by buildings is about 40%, of which a significant

proportion might be wasted due to faults at the operation stages [3]. It is estimated that the

potential energy savings to be achieved in the building sector could be between 20% and 40% [4].

Environmental awareness is one of the drivers for the implementation of energy efficiency

measures, other underlying reasons being financial rewards and environmental policies.

International environmental policies, such as ISO 50002 [5] released by the International Or-

ganization for Standardization (ISO) in June 2011, defines the minimum set of requirements

leading to the identification of opportunities for the improvement of energy performance. At

national level, some of the main institutions delivering standards related to building practices are

organizations such as the Building Services Research and Information Association (BSRIA), the

Chartered Institution of Building Services Engineers (CIBSE), the British Standards Institution

(BSI), and the ASHRAE.

Energy consumption of existing buildings can often be reduced by introducing cost-effective

measures and cost savings that contribute to the profitability of organizations once the initial

capital cost has been repaid [6]. This estimate is derived from changes that can be achieved

with little or even negative cost, such as reducing behavioural barriers [7]. However, other

initial investment costs required for energy management strategies are considerable and it is

necessary to analyse the potential energy-saving effects of the energy strategies in advance, so

that electricity use can be more accurately estimated and the return on investment can be more
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accurately analysed.

The building sector accounts for approximately 40% of the global primary energy demand and,

within the commercial sector, office and retail buildings are those with the biggest CO2 emis-

sions [8]. This energy consumption has been forecast to increase in the coming years, thereby

having a direct impact on resource and environmental exhaustion [9]. Private initiatives, together

with government intervention, which promote energy efficiency, limit energy consumption, and

raise social awareness about the rational use of energy will be essential to make possible a

sustainable energy future [10].

Energy audits can provide a basis on which decisions can be made for the achievement of

energy savings [4]. It is required, then, to implement an energy audit approach that reflects the

aforementioned awareness of environmental issues, as well as to account for energy policies

and to implement new available technologies to facilitate the process. However, there is no

unanimous agreement on how to assess the energy aspect of building performance and judge

whether any unnecessary energy use is occurring in a building [11]. This research analyses the

main approaches concerning building energy performance assessment, particularly for office

buildings, focusing on small power load estimations.

1.2 Thesis motivation

Electricity is primarily used for cooling, lighting, and powering appliances across all sectors -

residential, commercial, and industrial [12]. The importance of energy efficiency for office equip-

ment however, is becoming more relevant as manufacturers continue to drive down the capital

cost of such equipment while operation costs increase. According to Kamilaris et al. [13], small

power in commercial buildings contribute significantly to the total overall energy consumption,

accounting for more than 20% of primary energy used in commercial buildings in the U.S., with

3



Section 1.2 Page 4

this percentage expected to increase by 40% in the next 20 years. This has made small power

loads in non-commercial buildings one of the fastest growing load categories in the U.S. [14].

This trend is followed by others countries, such as the UK, where small power appliances have

also become a significant source of energy end-use, accounting for up to 50% in high-efficient

buildings [15].

An experimental study highlighting the importance of small power loads in non-commercial

buildings, is the “Blackout event” project launched by the sustainable service team at the Univer-

sity of Reading, UK 1 2. The university sustainability team participated in the a “Blackout project”

held on Friday November 2015, where the amount of energy that could be saved over one week-

end was monitored by auditing buildings after switching off all small appliances, where possible.

The project was carried out by volunteers students and staffs who explored 15 buildings on the

University of Reading Whiteknights campus, switching off all the small appliances that were

being left on across the university, with the aim of working out how much energy is being wasted

over a typical weekend. The audit took place from Friday the 8th November at 4pm to Monday

11th November at 10am. Table 1.1 shows the savings achieved by switching off equipment over

the 60 hour weekend.
1sustainability.nus.org.uk/blackout/articles/students-lead-the-way-with-university-energy-audits
2storify.com/carboncountdown/blackout
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Table 1.1: Total savings by switching off equipment during a 60 hour weekend*

Equipment Number switched off Power (kW) Energy (kWh) Economic (£)**

PC (on-sleep) 205 18450 1107 129

Monitor (on-off) 486 2430 146 17

Printer / photocopier 41 4100 246 29

Desk fan 390 7800 468 54

Electric heater 11 16500 990 115

Water boilers 3 60 4 0.48

Total 1136 49340 2960 344

*This information has been provided by the Sustainable Service Team of the University of Reading.

**Electricity cost 0.12 £/ kWh

Extrapolating results in Table 1.1 to a complete year (52 weekends), would result in and annual

savings of 153,920 kWh and £17,888.

In office buildings the rapid market penetration of consumer electronics has expanded the small

power category and consumption from plug loads has significantly increased. However, the

energy use and reduction strategies for plug loads have so far received little attention. Small

power equipment in offices are evolving into dominant loads and the identification of strategies

for reducing their consumption has been recognised as an effective measure to improve energy

use for office buildings by making them part of the basic building design and educating tenants

and owners on their efficient energy use [16].

Rumsey Engineers measured the energy consumption of a representative selection of small

power loads at 334 Packard Foundation offices [17]. The engineers assumed equipment and

practices to be unchanged and estimated and compared the buildings’ annual energy usage
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baselines after implementing efficiency measures (in heating, ventilation, air conditioning

(HVAC), and lighting) and again after implementing the efficiency measures alongside reducing

plug load consumption. The study presents plug loads as a relevant proportion of the building

and shows how, as the offices become more energy efficient, this relevance increases significantly

(see Figure 1.1).

Figure 1.1: Annual energy usage of 300 case study of office buildings.

1.2.1 Quantitative audit approaches

Quantitative energy audits for the analysis of the energy performance of buildings, are popular

tools for achieving energy savings in buildings [4]. Historically, quantitative audits can be divided

into two types or approaches, calculation and measurement. Small power load estimations in

office buildings, due to their large number and heterogeneous nature, present challenges for

both approaches.

Calculation approach, based on algorithms and equations for delivery of the final energy estima-

tions [18], carry out an intrinsic uncertainty associated with the model inputs. For small power

loads in offices, the high dependence of energy consumption on end-use behaviour [19], makes
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their specific input extremely variable and case dependent, leading to a degree of uncertainty

around each input parameter and, therefore, the accuracy of the model outputs [20].

Measurement approach, perform some level of direct monitoring, that can range from the use of

individual appliance/system hardware meters, in bottom-up metering techniques, to the use

of a single meter for the monitoring of the whole building/area energy consumption, which is

then broken down using calculation models, in top-down metering techniques. Both techniques

present a compromise in terms of the number of meters, which increase the quality of the

information, but also in terms of the complexity of the hardware installation. This relationship is

more critical in the case of small power equipment in offices due to their large numbers.

A number of researchers, such as Pieter de Wile [21], Hong et al. [4] and Menezes et al. [15], the

latter focus on small power equipment, have performed practical studies highlighting the gap

between predicted, or calculated, and measured energy performance of buildings, presenting

this gap as a new framework for investigation.

Engineers from AECOM, the industry sponsor for the present thesis research, followed the

energy assessment methodology reported in CIBSE TM22 technical report [22] to conducted

energy audits in commercial buildings [1, 23–25]. The TM22 quantitative energy assessment

methodology, originally developed by the PROBE studies in 1999, is currently extensively used in

the UK industry and overseas and provides a systematic way of undertaking an energy survey

(see Appendix A). For practical reasons, a common practice for conducting these audits is

the attribution of the unknown energy percentage (unmatched energy between measurement

and calculated estimations) to small power, resulting in an overloading of small power to the

detriment of other systems.

One of those reviewed audits [1], taken as an example to illustrate the above-mentioned audit

practice, provides the following (Table 1.2) annual electrical energy break-down by end use
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system over a total area of 1,500m2.

Table 1.2: Total site annual electrical energy break-down in the 1,500m2 commercial building targeted [1]

Equipment Annual kWh

Space heating 353290

Catering 287860.9

Lighting 328870.8

Space cooling 238674

Refrigeration 172268.6

Unmeasurable small power 71055.9

Small power 118980.4

Fans 165686.6

Pumps 6622.6

Measured 1684513

According to the audit report, the initial calculated energy consumption was 1,613,462.1 kWh,

but, in order to reconcile this value with that measured (2,243,791.5 kWh), the difference (71,055.9

kWh), called Unmeasurable small power, was attributed to the “Small powers” equipment cat-

egory. This practice is very common and saves time for auditors, but can result in an overesti-

mation of the contribution of small power and lower percentage estimation for the rest of the

equipment. Figure 1.2 shows the initial and the reconciled energy break down 3 obtained using

the calculated and the measured total energy value.

3The reconciliation has be done by replacing the estimated with the measured values, following the standard
TM22 procedure.
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(a) Initial, using the calculated value

(b) Reconciled, using the measured value

Figure 1.2: Percentage energy break down per equipment before and after the energy reconciliation in
in the 1,500m2 commercial building targeted [1], resulting in a 4% percentage difference for the “small
powers” estimates.

There is an increase of 4% in the energy consumption percentage of the “small powers” between
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piechart 1.2a (where total energy consumption = 1613462.1 kWh) and piechart 1.2b, (where total

energy consumption = 2243791.5 kWh) in which ”small powers” = small powers + Unmeasur-

able small power). A decrease in the percentage of ”lighting” and ”space heating” can also be

observed.

A potential solution for avoiding row energy estimations when dealing with small power in

office buildings is to install sub-metering equipment in each individual appliance. This would

provide detailed information about end-use energy consumption and performance [7]. However,

this information comes at a high cost in terms of infrastructure, to which the installation and

maintenance time cost also needs to be considered.

Some innovative monitoring methods, such as Non-Intrusive Appliance Load Monitoring (NIALM)

have been recognized as a potential alternative for intrusive metering techniques [26]. The ability

to obtain the level of information of a bottom-up technique at the infrastructure cost of a top-

down one is particularly interesting for small power energy estimations. However, and although

being first developed in the 1990s [27], this is still not considered a mature technology for imple-

mentation in commercial buildings [28], mainly due to the large number and heterogeneous

nature of small appliances typically founded in these buildings.

A proper understanding of small power loads is crucial to determine sources of error in the audit

process and improve energy estimations in office buildings. However, current energy assessment

models and techniques are not sufficiently accurate to overcome the issues that entail this chal-

lenge, which has been largely unexplored by the academic community. This thesis constitutes an

analysis of the different energy audit approaches for small power energy estimations, identifying

weaknesses and proposing different methods and techniques to overcome them.
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1.3 Problem statement, objectives and scope

1.3.1 Problem statement

The central problem addresses by this thesis is the deficiencies identified in the implementation

process for quantitative energy audits in office buildings regarding small power load estima-

tions. Figure 1.3 presents (in red) the main challenges identified in the academic literature and

industrial report reviewed for the two main energy assessment approaches.

Figure 1.3: Deficiencies identified in the implementation of the two main quantitative energy audits
approaches in terms of small power estimations in office buildings.

These implementation deficiencies can negatively effect not only the final small power consump-

tion estimation, recognized as a significant part of the total energy use in buildings, but also the

estimations of the rest of the building systems, resulting in poor quality of the overall energy

assessment.

In order to meet the aim of the research presented in this thesis, i.e. improve small power load

estimations for quantitative energy audits in office buildings, and after a thorough review of the
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existing literature, the problem statement has been split into a number of general objectives

formulated as follows.

1.3.2 Objectives

On the basis of the problem statement and the gaps in the literature highlighted above, the

research objectives addressed in this thesis are the followed:

1. Create a sensitivity analysis method for calculation models to evaluate how the variation

in the output of the model can be apportioned to different input factor uncertainties.

2. Conduct a comparative study to identify the most efficient meter installation strategy, i.e.

bottom-up or top-down, in a typical office building for monitoring small power loads.

3. Evaluate the relationship between estimation accuracy and cost of implementation (in

terms of complexity and intrusiveness) for bottom-up techniques, by relating proportional

metering to total appliance load prediction.

4. Explore the use of top-down techniques for obtaining information at the individual appli-

ance level through a practical study in an office buildings.

5. Following objective 4, analyse the disaggregation capabilities for the different signature

categories 4, depending on the electrical nature and number of small appliances under

monitoring, in order to facilitate the implementation of NIALM methods in energy audit

for office building.
4A classification for the different categories of electrical signatures has been provided in Chapter 2.
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1.3.3 Scope

The scope of the research presented in this thesis is focused on the proposition, analysis and test

of different methods for improving small power energy estimation for energy audits. Further

technical aspects associated with the deployment of the solution, as well as social and regulatory

aspects are not within the scope of this thesis. Corresponding assumptions and justification for

decisions taken during the research process are presented in the methodology sections of the

chapters.

For calculation approaches, a sensitivity analysis method for ranking the input factors in order

of importance is proposed. The method is not designed to quantify the input factors absolute

significance as this is not considered to significantly contribute to the decision making regarding

the optimal calculation model selected in an energy audit.

For metering approaches, using two different monitoring techniques, the research performs

a comparison of the information quality obtained for two levels of energy analysis: individual

appliances and aggregated. The comparison focuses on the monitoring hardware character-

istic: sampling frequency, number of meters needed, type of data recorded, etc, but does not

undertake other potential analytic variables, such as monitoring time or number of appliances

under monitoring. These aspects of the monitoring process might also have an impact on the

information delivered, but due to time and material constraints have not been considered in this

research.

For NIALM methods, the research focuses on the third implementation stage, electrical signature

identification, since major deficiencies in this stage have been identified as a major cause

for the prevention of the extended use of NIALM methods in energy audits for commercial

buildings. The other three implementation stages, hardware installation, event detection, and

load disaggregation, also present areas for improvement, but they are not considered in this
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research.

1.4 Thesis contribution

The thesis objectives presented in the previous section of this chapter are achieved through the

following contributions:

1. The development of a sensitivity analysis (SA) methods for quantitative energy assessment

models, evaluating the relevance of the different inputs in the energy audit process. This

SA method can be used by energy auditors to select a calculation model based on the

quality of information available and the appliance types in a given building in order to

minimize the likely error in the calculation of small power consumption. Although the

method proposed is conceived for the specific field of small power load calculations, it

could be applied to other areas of energy auditing or areas of building services where a

formal sensitivity analysis is required.

2. The performance of a comparative case-study for top-down and bottom-up metering

techniques at different levels of energy analysis, providing new strategies for improving

data analysis and proposing alternative ways for presenting and interpreting small power

energy profiles.

3. The provision and testing of a statistical extrapolation method for aggregated energy

estimation to calculate the relation between the number of appliances monitored and the

accuracy obtained in the estimation, along with the probability of overestimates or lower

estimate energy assessments, depending on the percentage of appliances monitored. This

method is created to inform energy auditors about the level of metering infrastructure

14



Section 1.4 Page 15

needed according to the level of inaccuracy they are willing to accept for their energy

estimations.

4. Testing of alternative methods for load status detection using practical case studies to

demonstrate the capabilities of NIALMs and to inform about further research lines that

should be followed for the efficient usage of these methods in small power energy estima-

tions.

5. The provision of a significant contribution in the knowledge field of electrical signature with

the goal of enhancing the implementation of NIALM methods in energy audits, depending

on the appliances under monitoring and the signature that best identifies them.

1.4.1 Publications

The outcomes and findings of the research presented in this thesis are being disseminated

through the following publications:

Peer review conference papers:

• Rodriguez, A, Potter, B, Smith, S T, Kiff, A. Small power load disaggregation in office buildings

based on electrical signature classification, 2016 IEEE International Energy Conference

(ENERGYCON). Leuven, Belgium.

• Rodriguez, A, Potter, B, Smith, S T, Kiff, A. Sensitivity analysis for small power energy

assessments under the TM22 audit framework, CIBSE ASHRAE Technical Symposium 2017.

Loughborough University, Leicestershire, UK.

Journal papers: (In preparation for submission)
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• Rodriguez, A, Potter, B, Smith, S T. Sensitivity analysis for small power energy assessments

under the TM22 audit framework, target journal: Energy and Buildings - in prep (from

Chapter 3)

• Rodriguez, A, Potter, B, Smith, S T. Comparative study of metering techniques for small

power in office buildings, target journal: Energy and Buildings - in prep (from Chapter 4)

• Rodriguez, A, Potter, B, Smith, S T. NIALM performance for small load appliance iden-

tification based on electrical signature classification, target journal: Power and Energy

Technology Systems - in prep (from Chapter 5)

1.5 Thesis outline

The remainder of the thesis is structured as follows:

• Chapter 2: Literature review provides a critical evaluation of relevant literature on quan-

titative energy audits for office buildings with a focus on small power energy consumption

and the challenges faced for its estimation. Identified gaps in the literature are stated in

the conclusion of the chapter.

• Chapter 3: Improving calculation approaches describes the challenges coming from the

information feed into the calculation models for small power energy estimations and

proposes a sensitivity analysis method for overcoming and improving these sources of

uncertainties.

• Chapter 4: Improving metering approaches tackles the challenges faced by the main

monitoring techniques typically implemented in the measurement audit approach by

identifying the most efficient monitoring strategy for auditing scenarios and improving
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ways of analysing and presenting their information, facilitating the work of energy auditors

and decision makers.

• Chapter 5: NIALM performance for small load appliance identification secures and de-

scribes the disaggregation capabilities that can be obtained by the different categories of

electrical signatures and that could be used to create an optimal NIALM method depending

on the types and number of appliances under monitoring.

• Chapter 6: Summary and conclusions summarises and concludes the contributions pre-

sented in this thesis and states new lines of research for future works.
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Chapter 2

Literature review

This chapter provides a foundation that supports the research conducted in this thesis, it gives

a critical evaluation of relevant literature on quantitative energy audits with a focus on small

power energy consumption estimations in office buildings. The gaps identified in the literature

are presented in the concluding section of the chapter.

2.0.1 Energy audits for buildings

The British Standard Institute (BSI) launched a publication in 2012 [29], that describes an energy

audit as the “systematic inspection and analysis of energy use and energy consumption of a

site, building, system or organization with the objective of identifying energy flows and the

potential for energy efficiency improvements and reporting them”. The terms energy audit and

energy assessment are being used interchangeably in this thesis because the latter is also widely

accepted in the industry and appears in multiple publications and standards. In accordance

with this definition, there are a wide number of energy audit/assessment methodology standards

produced by different institutions and international organizations, such as: the Building Services
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Research and Information Association (BSRIA) [30]; the Chartered Institution of Building Services

Engineers (CIBSE) [6, 31]; the British Standards Institution (BSI) [29, 32]; the American Society

of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) [33]; the International

Standards Organization (ISO) [5]; and the British Department of Energy and Climate Change

(DECC) [34].

All these standards agree that energy audits of buildings are a crucial tool to ascertain the

efficiency of energy use in buildings and are the basis for any decision making for enhancing

energy management. Some of them only constitute advice and guidance for undertaking audits,

but others set out absolute requirements that have to be met if a user wishes to make a claim of

compliance with the standard. The definitions provided by those standards for energy audits

also vary significantly, depending of the level of detail and human skills required for their

implementation. A simple preliminary audit, based on energy invoices, can be performed with

basic information and little specialist knowledge about energy. An improved audit, on the other

hand, often requires records of sub-meter readings and/or the performance of an on-site survey,

while a full audit requires detailed information and expertise to break down energy end-use on

an individual system basis [35].

The following sections critically evaluate the research efforts and applications concerning energy

audit/assessment for existing buildings by focusing on two critical aspects: the assessment

performance criteria; and the method used to quantify the energy use.

2.0.2 Energy performance assessment criteria for existing buildings

Environmental assessment schemes for buildings, including an assessment of the efficiency and

effectiveness of the use of energy in buildings are based on performance and/or feature specific

energy assessment criteria [3]. For the former, credits are awarded according to the performance
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level measured against established performance indicator benchmarks and the final score graded

according to the total awarded credits of all items assessed. For the latter, credits are awarded

when criteria of specified features are met and the final score graded according to the total

awarded credits of all items assessed [36].

Feature-specific criteria, although more easily implemented, are less realistic as the presence of

the targeted features in a design does not necessarily mean that corresponding energy targets

would be achieved in practice. Lombard et al. [8] provide an overview of this and others energy

certification schemes issues in buildings. The use of performance-based criteria, on the other

hand, is much more precise as it is based on quantifiable performance indicators that can

provide the relevant information to allow improved energy performance in buildings. Poel et

al. [37] conducted a number of performance-based assessment studies for existing buildings

in several European countries and provided the owners with specific advice for implementing

energy efficient measures.

2.0.3 Quantitative energy audit approaches

Quantitative energy performance-based assessment methods are the process of determining

the amount of energy use or energy performance indicators of a given building based on the

information collected. Utility bills, building audit data, end-use sub-metering systems, central

monitoring systems, and computer simulations are the most common energy data sources used

to quantify building energy uses in audit according to several relevant authors [8, 20, 38, 39].

Regarding the energy data source undertaken, Swan and Ugursal [3] presented a review of the

research and applications of quantitative energy audits to propose a framework to classify the

energy quantification assessments into three approaches: calculation-based; measurement-

based; and hybrid methods, the latter being a combination of the former two. This classification
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was later considered and reviewed in recent energy assessment surveys and research [4, 11, 40].

The calculation approach is based on algorithms that can be implemented into complicated

dynamic simulations [41], or simple steady-state models [42]. All calculation models have three

common implementation stages: gather the input data from the influential factors; perform the

calculation algorithms; and deliver the relevant information or performance indicator [18].

Collection of adequate information, however, can at times be challenging with many sources

of inaccuracy. This is because input factors are subjected to many sources of uncertainty and

this imposes a limit of confidence in the response of the model. This issue is addressed in a

pilot study carried out by De Wilde [21] to assess the so-called ‘performance gap’ between the

actual monitored energy use and the calculation model predictions, the study highlighted how

uncertainty in input data affects the accuracy of the information delivered.

In the measurement approach the input information is obtained by monitoring at different levels

of detail and granularity, from a simple energy bill [40] to detailed end-use sub-metering [7].

Some monitoring techniques (also called Hybrid approach), based on energy bills or on central

meters, are a low-cost combined strategies which implement a calculation model to split energy

by end-uses. However, this type of break-down of energy use can be very unrealistic and,

as they are based on assumptions, they involve the same type of issues as the Calculation

approach. Therefore, the accuracy of disaggregated consumption at system level has a high level

of uncertainty.

In contrast, sub-metering based monitoring techniques offer profuse performance information

of great use to auditors and for building maintenance. However, and according to relevant

literature [8, 43, 44], this techniques also comes with its own disadvantage, i.e., the complexity of

the metering infrastructure as each system needs to be monitored individually and this makes

the method expensive and intrusive.
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2.0.3.1 Small power in quantitative energy audits, the challenge

Small power refers to any electrical device which plugs into a socket and is distributed throughout

a building. This definition excludes large systems used for heating, ventilation, cooling, water

heating, and lighting which are directly connected to the mains [45].

Small electrical power loads constitute a significant part of the total energy use in buildings, office

equipment being the fastest growing energy use within commercial buildings [6]. As buildings

become more energy efficient, small power appliances become a more significant source of

energy end-use [16], accounting for more than 20% of primary energy used in commercial

buildings in the U.S. This percentage is expected to increase by 40% in the next 20 years [46], and

in the UK it is expected to reach up to 50% in highly efficient offices [15]. This trend makes small

power loads in commercial buildings one of the fastest growing load categories [14].

Small power consumption in office building needs, therefore, to be carefully considered when

performing energy audits in these buildings. However, due to their heterogeneous electrical

nature and larger number they represent a challenge for both quantitative energy estimation

approaches.

For the calculation approach, small power energy estimation relies on inputs from occupancy

profiles (in [47] a model for estimating peak small power equipment loads in UK office buildings

based on occupant density was suggested), and the type of activity performed (in [48] the

impact of office productivity and cloud computing on energy consumption was analysed). This

makes energy estimations very complex and time consuming for auditors, who will relied on

assumptions based on their personal experience and benchmarks that can be outdated, which

will make these estimations unreliable. Research conducted for small power energy consumption

in UK office buildings highlights the deficiencies of the benchmarking provided by CIBSE Guide

F [49], largely used in calculation methods.
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The measurement approach is considered an effective strategy for estimating small power energy

consumption in quantitative audits [50]. The accuracy of the metering techniques is correlated

with the complexity and the level of metering granularity where high levels of metering infras-

tructure provide performance information of great use to auditors and for building maintenance,

particularly at individual appliance level. However, large monitoring complexity usually makes

the monitoring expensive, intrusive, and difficult to manage. Kamilaris et al. [13] conducted a

literature review survey on the state of the art regarding work performed related to electric energy

consumption for small powers in office and commercial buildings, and revealed the complexity

of the current techniques used for measuring the energy consumption of office plug loads.

Although the overall impact of small power loads in total energy estimations has great relevance

for the assessment of energy consumption in office buildings, there is a lack of practical studies

investigating the implementation of the different energy audit approaches for small power energy

estimation, especially in non-domestic buildings.

2.1 Calculation models for energy audits

A typical model used to calculate building energy is comprised of three elements: inputs (in-

fluential factors); calculation algorithm; and outputs (energy performance indicators). It is the

calculation algorithm used that will determine the types of inputs required and, consequently,

the outputs provided. Accordingly, calculation-based models can be classified as dynamic and

steady-state [20]. The former, often adopted for detailed simulations, are capable of capturing

buildings’ influential dynamic factors, such as thermal, systems, etc [41]. Meanwhile, in the

latter models the dynamic factors are ignored or simplified by correlation factors, this greatly

decreases the calculation complexity [42].

One of the primary sources of uncertainty for models which calculate building energy is the
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input factor specification; this relates to the degree of uncertainty around each input parameter

and is often disregarded during the audit process, particularly in the case of input factors for

small power due to their variability and large number, leading to questions over the accuracy of

the model outputs [51]. Different research in the field [15, 47] has conducted energy surveys in

UK offices where small power equipment loads were estimated using a calculation approach.

These studies concluded that the final small power calculations led to significant overestimation

of the current loads and this impacts other system energy consumption estimations.

2.1.1 Sensitivity Analysis for energy audit

According to Satelli et al [52], Sensitivity Analysis (SA) is the study of how variation in the response

of a model can be apportioned to different sources of variation by the information with which it

is fed. In this way, a SA approach can be adopted to identify which of the uncertain input factors

is more important in determining the uncertainty of the output of a model and, therefore, which

input uncertainty should be chosen to reduce the most uncertainty of the output.

Modellers and practitioners from various disciplines, such as economic science [53], environ-

mental science [54], computer science [55] and energy assessment models in building [56], have

made use of some kind of sensitivity analysis method to analyse the quality of their model-based

studies.

As stated by Coakley et al. [20], the built environment presents a complex challenge in terms of

energy modelling and accurate prediction. Any given building is characterized by a multiplicity

of parameters, including: material properties; occupancy levels; equipment schedules; plant

operation; and weather conditions, among others. Such parameter diversity results in a wide

range of different sources of uncertainty, however, few published case studies incorporate this

work in their analyses [57–59].
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For small power loads, the high dependence of energy consumption on end-use behaviour [19],

makes their specific input extremely variable and case dependent. However, no practical studies

have been undertaken for small power energy calculation methodologies.

2.1.1.1 Sensitivity analysis classification

The first registered science review of SA methods was undertaken by Rabitz et al. in 1989 [60], and

they argued that SA tools could play an increasingly important role in understanding and finding

solutions to complex, chemically based problems. A few years later, in the 1990s, Hamby et al. [61]

presented a comprehensive review of more than a dozen sensitivity analysis methods. Their

review was undertaken from the simplest approach, one which requires varying parameter values

applied one-at-a-time to partial differentiation sensitivity techniques, along with correlation

analysis used to determine relationships between independent and dependent variables. More

recently, Satelli et al. [62] proposed a new taxonomy, later undertaken by other researchers [63,64],

for the classification 1 of the different SA in three categories.

Local SA which examines small perturbations of the input space, typically one variable at a time

(OAT), investigating the local response of the output function to variation in its input parameters.

This analysis is done by computing the partial derivatives [65] (in various order) of the output

with respect to that factor to obtain a sensitivity ranking. The term ‘local’ refers to the fact

that all derivatives are taken at a single point, known as a ‘baseline’ or ‘nominal value’ point,

from the hyperspace of the input factors. Although the method is relatively simple and well

established, it does not provide insight into how the interactions between input parameters

influence the output, thus it is not the best option when comparing various input factors with

different magnitude ranges.

1This classification is arbitrary and its only purpose is to provide a justified, ordered presentation of the different
SA methodologies. However, alternative taxonomies can be used.
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Global SA is where the input parameters are varied simultaneously and the sensitivity is mea-

sured over the entire range of the input space. Global SA methods are based on the affirmation

that the exploration of a number of specific data points, judiciously chosen from the hyperspace

of the input factors, is more effective, in the sense of being informative and robust, than deriva-

tive values estimated at a single data point at the centre of that space, as is the case in local

SA [66].

Variance-based sensitivity analysis, also called the Sobol method [67], is a common form of global

SA in which the variance of the output of the model is decomposed into fractions attributed

to the different inputs. This is a good option for models where various input variables can be

affected by uncertainty of different orders of magnitude, as is the case in MT22 calculation

models. However, the method is more complex than local methods and comes with a larger

computational cost 2.

Screening SA methods are based on the experience that often only a few of the input parameters

have a significant effect on the model output. They are considered to be qualitative SA methods

as they rank the input factors in order of importance, but do not attempt to quantify relative

importance. The simplest and most common approach of screening SA is that based on an

enhanced OAT methodology. The practice of reverting to the baseline point in order to compute

any new effect is what makes for the poor efficiency of a typical OAT method. An improved OAT

method would be one where having moved one step in one input factor, that factor is kept while

the next factor is also moved, and so on until all factors have been moved one step each. This

type of trajectory is presented as ‘Elementary Effects’ (EE) in Campolongo et al’s research [68],

where the use of the EE analysis method is proved to work as a global analysis at the cost and

complexity of a local one.

2Computational cost is defined as the number of times that the model has to be evaluated.
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Morris’ method is a common example of screening SA [69]. For the implementation of the

method, the EE of each input factor is calculated following the OAT approach, but it randomly

samples points from the whole input hyperspace. In this way the method provides an unbiased

estimation of the direct impact of each factor and of their interfactor iteration by the evaluation

of the mean µ and standard deviation σ of their EE distribution. The Morris method is an

established SA with applications in different fields [59,70], however, its implementation in energy

audits remain limited and have not been fully analysed.

2.2 Measurement techniques for energy audits

A number of measurement techniques for energy assessment in existing building were found in

the literature analysed, ranging from bill-based methods to individual plug meters to monitor

methods. Such as the case study conducted by Yan et al. [71] based on two existings build-

ings, where the total energy consumptions from energy bills was effectively disaggregated into

the consumptions of three groups of end-uses (i.e., the HVAC, internal-consumers and other-

consumers). Lanzisera et al. [72], on the other side, used 455 wireless plug-load power meters,

obtaining a detailed data collection of the small powers from a case study office. Other techniques

use diverse levels of metering granularity, such as Menezes at al. [73] that monitored a number

of typical individual small powers for obtaining an appliance type load through extrapolation; or

Amenta and Tina [74], that proposed an individual load demand disaggregation method based

on electrical load specific features using only a few meters, introducing the potential benefits

of Non Intrusive Appliance Load Monitoring (NIALM) techniques in real scenarios. All these

measurement techniques obtain their input information from monitoring at different levels of

detail and granularity and can, therefore, be classified according to this.

Swan and Ugursal [75] introduced a classification for the energy consumption estimation strate-
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gies of the residential sector into two main categories based on the reference to the hierarchal

position of data inputs. This classification, reviewed years later by Grandjean et al. [76], es-

tablished a finer segmentation of the available strategies into two categories, the top-down

technology based and the bottom-up technology based. The former considers the aggregated

energy consumption and then identifies the contribution of each considered end-use unit, and

the latter uses input data from a lower hierarchal level and then extrapolates them to obtain

the electricity consumption at a higher level. Although this classification was intended for the

domestic electricity sector as a whole, Wang et al. [3] adopted this conceptual framework for

measurement based quantification techniques.

The following sub-section presents the top-down/bottom-up classification applied to mea-

surement techniques, from the simplest energy bill to the detailed end-use sub-metering and

monitoring, stating their weaknesses when dealing with small power energy estimations.

2.2.1 Top-down

Top-down techniques, need to be combined with calculation models to disaggregate total energy

consumption into end-use. To perform energy monitoring, dedicated hardware needs to be

deployed in the main electric distribution board, in specific branches or circuits, depending on

the area to be monitored. Popular commercial meters for implementing top-down monitoring

are the ZEM-30 Energy Monitor from Episensor [77] and the TED Pro from TED [78].

In the top-down approach developed by Field et al. [43], the total energy bill is broken down

into individual energy end-use. For the calculation of each type of end-use, input parameters,

such the rated electrical load, the electrical load factor, the usage pattern, and the usage factor,

were collected. A large discrepancy between the aggregated end-use calculated and the total

metered consumption was found in the study, indicating larger uncertainty in the collection of
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these parameters. This measurement technique offers aggregated energy profile information

with a relatively low metering infrastructure complexity. However, the lack of detail regarding the

energy consumption of individual end-uses eliminates the capability for the identification of key

areas for improvement in the reduction of energy consumption. This problem becomes more

pronounced for small powers where the input information largely depends on the usage patterns

(e.g., usage factor, time schedule) which are based on assumptions and benchmarking [38] and,

therefore, cannot be used to guarantee the accuracy of the breakdown estimations.

2.2.2 Bottom-up

Bottom-up techniques offer information at the individual system level by placing separate

metering hardware on each relevant circuit branch or on individual equipment. Smart power

outlets, or smart plugs, represent typical appliance level energy monitoring. These meters stand

in between the wall socket and the electric appliances to measure their consumption and control

their operation. Popular products in this category are Energy Hub Socket from Energy Hub [79],

Watts-Up PRO [80] and 4-noks [81].

Ridi et al. et al. [82] carried out a survey on intrusive load monitoring. The survey consists of

measuring the electricity consumption of one or a few appliances using a low-end metering

device located close to the appliance that is being monitored. Their review concluded that

this measurement technique has the capability to provide accurate, detailed information about

energy use at the individual system level and, in doing so, can identify specific areas for improve-

ment. However, the implementation of device-level monitoring in buildings can be very complex

and intrusive, particularly when monitoring small powers, and is usually considered to be too

expensive for practical application in common buildings [83].
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2.3 NIALM: Alternative measurement method for energy audits

in commercial buildings

Calculation approaches for small power energy come with a certain level of uncertainty associ-

ated with the input factors. The measurement approach seems to solve some of these problem

to a certain degree, especially when using a large sub-metering infrastructure, however, they

can be very difficult and expensive to implement due to the large degree of intrusiveness and

complexity. In contrast, Non Intrusive Appliance Load Monitoring (NIALM) methods, presented

in this section, constitute a simpler and less expensive alternative technology for overcoming

these weaknesses, and are of particular interest in the case of small power energy estimations.

NIALM methods basically apply a single, centralised hardware to monitor aggregated electricity

consumption, which is then disaggregated into individual circuit/device levels from the over-

all signal [13]. These kind of energy disaggregation methods were first developed by George

Hart [27]. In his early publications, Hart presents a method based on steady-state power metrics

to describe the power draw of home appliances. The method strategy relied on the fact that

when an individual appliance changed its state from off to on, the change would be unique to

the mentioned appliance. Following Hart’s work, many prestigious institutions and independent

researchers, along with Hart’s research group at the Massachusetts Institute of Technology (MIT),

continued to develop non-intrusive monitoring strategies by exploring the diversity in signatures

and the disaggregation methods used for identifying appliances [84–86].

Previous research in the field has mostly focused on residential buildings where NIALM methods

have been reported to work well. For instance, Marceau and Zmeureanu [87] presented a

NIALM method to disaggregate the total electricity consumption of a house where only the

main electric entrance was monitored and three major end uses (water heater, baseboard heater,
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and refrigerator) were disaggregated, obtaining an error of less than 10%. Park [88] developed

a NIALM method to disaggregate the power consumption of a few typical small appliances in

residential buildings based on an algorithm which includes a switching function, a truth table

matrix, and a matching process. The methods obtain very good results for the appliance under

monitoring, but continuous variable appliances and identical power consumption appliances

were not disaggregated, possibly due to the low sampling frequency used (one minute).

Although the potential benefits of applying this monitoring strategy to commercial buildings

have been recognized since the field’s conception, in the commercial domain NIALM has been

largely unexplored by the academic community. This is a result of the larger heterogeneity and

the number of building facilities involved, particularly if small power is also to be considered.

According to Batra et al. [28], most of the NIALM methods made for residential purposes cannot

currently be applied to commercial buildings.

Most of the work applied to energy disaggregation in commercial buildings was completed at

MIT [89, 90], where researchers have presented approaches to disaggregate a set of large end

use consumers, such as chillers, fans, pumps, and different HVAC loads. However, significant

research for small power disaggregation in commercial buildings has not yet been undertaken.

A typical NIALM method has four stages of implementation. Firstly, a monitoring hardware

installation is used to obtain a signal; secondly, an event detection algorithm is implemented to

detect on/off switchings; then, signal processing techniques are used to identify and extract elec-

tric signatures; and finally, a disaggregation algorithm is used to separate individual appliance

loads from the overall signal [26, 91].

The following sub-sections provide relevant background to these four stages of implementation

in order to identify the main gaps and challenges that prevent the extensive use of NIALM

methods in commercial buildings, and with a special interest in small power disaggregation.
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2.3.1 Monitoring hardware

The role of the monitoring hardware is to acquire the aggregated load measurement at an

adequate sample frequency rate to capture the key load patterns and characteristics. In [92]

260 papers and reports related to the electric energy consumption for small powers in office

and commercial buildings were reviewed. The review concluded that NIALM techniques have

advantages compared to intrusive sub-metering as they are easier to install and maintain and

data acquisition is simpler. Also, although intrusive meters are typically based on cheaper

meters, their cost scales linearly with the number of sensors. NIALM techniques constitute a

cheaper alternative by applying single centralized sensing hardware for monitoring aggregated

electricity consumption in a facility/area . Data gathering for NIALM methods implementation

are based on top-down metering techniques, and can, therefore, use the same type of monitoring

and hardware (e.g., ZEM [77], TED [78], etc). Bergues et al. [93] introduce the use of NIALM

techniques for enhancing electricity audits in residential buildings and compare it with the

traditional bottom-up metering techniques at the plug-level, resulting in a 14.8% error for the

NIALM system when disaggregating the 17 appliances targeted in the subject home.

Several literature surveys related to NIALM methods [46, 82, 85] concluded that hardware with

higher sampling frequency increases accuracy in disaggregation results as more detailed signal in-

formation is available, thereby allowing the use of frequency-based signatures that are especially

useful for appliances with similar power consumption rates. However, the time and hardware to

complete the processing increases with the sample rate frequency and the equipment for such

systems is more costly [94].

According to the surveys reviewed, NIALM methods can be divided into two groups with regard

to the monitoring hardware used for their implementation, i.e., Low frequency hardware and

High frequency hardware.
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Low frequency hardware installation is implemented by using inexpensive systems. This kind of

hardware only allows the detection of macroscopic electrical signatures registered in the amount

of power drawn and in consumption patterns. Barasli et al. [95] developed an algorithm using

clustering methods and a generic algorithm that identifies appliance use by optically reading

the existing domestic meters every few seconds. This algorithm needs to be run for between

five to ten days to find patterns and identify individual appliances. The authors successfully

detected major domestic loads, such as refrigerators and cookers, although it was left to the user

to name the identified loads. However, as the electrical grid in the UK runs at a 50 Hz cycle, to

capture a basic wave shape a minimum of 100 Hz sample rate would be required, according to

Nyquist-Shannon theorem [96].

High frequency hardware installation (from 1 kHz up to 100 kHz) is usually more expensive

than low frequency hardware, it focuses on microscopic signatures based on harmonics and

waveforms. In [97] the authors develop a NIALM method to disaggregate residential appliances

based on noise capture in the power line. This approach, which requires high-frequency sam-

pling (from 100 Hz to 100 MHz), recognises devices by their spectral fingerprint. The goal of the

research was to detect the event in the home, rather than to monitor energy use. The authors

demonstrated an identification accuracy of 85% to 90%, although only during a single switching

event, not when more than one appliance switched state simultaneously or in quick succession.

According to Armel [98], 1kHz can be considered a suitable sample rate for harmonic analysis,

for a higher sampling rate data transmission and storage problems are likely to occur and for fre-

quencies higher than 15 kHz the noise captured is likely to obscure any gains in signal detection

for commercial buildings.
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2.3.2 Event detection

In [99] an overview of the methods used in the NIALM system is presented and categorized into

event-based or non-event-based methods. The event-based method uses an edge detection

algorithm on the power consumption curve to detect the appliances when a change in the curve

occurs, e.g., on/off switchings. Most research works in the literature use event-based methods.

Anderson et al. [100] used the power metric to select an event detection algorithm in their NIALM

implementation, and Milioudis et al. [101] present an event detection novel methodology to

improve the disaggregation process in NIALM methods.

Non-event-based methods, on the other hand, implement a multi-scale edge detector algorithm

that continuously samples the aggregated data for inference. Few works have been conducted

using non-event-based methods. The Hidden Markov Model in [102] is an example of non-event

detection. The approach presents the potential to increase the efficiency of domestic electricity

load identification.

Non-event -based methods have the advantage of not needing an initial training period, however,

event-based methods are more computationally efficient, therefore, they are more commonly

used within NIALM applications. Event-based methods allow the definition of two types of

operational states: the steady-state and the transient-state [103]. The former derives from the

equilibrium operational conditions between events in which the waveform is periodic, and the

latter from the transitory operational event in which a short-lived burst of energy is produced

during the start-up period. Some researchers focus on the identification of steady state electrical

signatures [27, 104], others concentrate on the transient signatures [96, 105], while a significant

number use a combination of the two [106, 107].

The steady and transient operational states can also be detected in both the time domain and

the frequency domain, as stated in several related surveys [108, 109]. The former shows how a

34



Section 2.3 Page 35

signal changes over time, and the latter how much of this signal lies over a range of frequencies.

A signal can be converted between the time and frequency domains with a pair of mathematical

operators: the Fast Fourier Transform (FFT), which converts the time function into a sum of sine

waves of different frequencies; and the Inverse Fast Fourier Transform (IFFT), which converts the

frequency domain function back to its corresponding time function [110].

2.3.3 Electrical signature

The term electrical signature refers to a specific signal feature that characterises the behaviour of

the load. These signatures are measurable parameters of the load that provide information about

the nature of individual appliances [111]. They can be classified depending on the operating

status and, among those, the domain in which they are detected.

The steady-state analysis makes use of features derived under the steady operation state of the

appliances and their differences or changes with respect to the next steady state. The variations

can be related to the current, the active and reactive power, the load admittance, the harmonic

content, etc [108].

Hart [111], the first to develop NIALM methods, describes a method based on steady state

increments in the time domain of real and reactive power signals of home appliances. The

method involves the identification of real and reactive power increments between consecutive

steady states. Although the method constituted an important advancement in the field of

electrical signature detection, it presents some significant issues, such as its incapacity to detect

load-variable appliances and distinguish between appliances that operate between similar power

values.

To overcome the difficulties distinguishing between appliances that operate between similar

power levels, harmonics can be used as a complementary signature to complement load identifi-
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cation. Harmonic analysis can detect numerous appliances, including variable loads, however,

high sample rates are required [112]. According to the Nyquist sampling theorem, the sample

rate needs to be more than twice the frequency of the harmonic that is to be captured [85].

Srinivasan et al. [113] have developed a NIALM method that applies the Fast Fourier Transform

algorithm (FFT) to extract current harmonics of appliances in their steady state. The method

proposed by Srinivasan et al. achieved an average classification accuracy of 85%. However, a long

training period is required as all possible ON/OFF operation combinations among the appliances

need to be previously learned by the method. When the number of appliances increases, the

combination of ON/OFF states increases exponentially and so do the training patterns needed.

More recent research [114] has improved this training period by combining the analysis of the

steady state current harmonics with the rate of change of the transient signal. This method,

developed by Meehan et al., senses when an appliance switches on and off and uses a two-step

classification algorithm to identify which appliance has caused the event. In the first step, once

an event has been detected, the difference in the steady FFT harmonic amplitudes before and

after the event is found, then the first three harmonics are selected for the calculation of the

feature.

Several reviews [85, 108] stated that most of the appliances observed in the field have partially, or

completely, repeatable transient profiles due to their unique physical characteristic(s) in terms

of what transient signatures can be considered for load identification. The transient behaviour is

found to have a smaller overlap in comparison to steady state signatures, their major limitation

being the high sampling rate required for their capture.

The MIT group, led by Leeb and Norford, has extended the basic NIALM method proposed

by Hart by the incorporation of transient signals in the time domain [90]. The researchers

observed that the shape of transient events can be used as a feature for appliance detection.
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Later researchers [115] have contributed to this sighting by using power spikes, or overshoots,

during the transitional stage of the device as a feature for its detection.

Transient signatures in the time domain are used in many of the NIALMs methods with, or in

combination with, others types of signatures. The most commonly used signatures for repre-

senting the shape of switching transients are wave spikes, these can be represented in different

ways: Crest Factor (C F = Ipeak /Ir ms); Form Factor (F F = Ir ms/Iav g ) and Peak-Average Ratio

(Rpa = Ipeak /Iav g ) [107] or the duration of the peak in time [116].

In [117], transient signals for harmonic analysis are considered for load identification. In this

experimental study, the authors used the third-order harmonic content to discriminate between

a computer and an incandescent bulb.

An extension to harmonics is the spectral envelope which is a collection of the first several

coefficients of the short-time averages of the FFT applied on a signal [118]. However, although

the spectral envelope can detect numerous appliances, including variable-load appliances,

the method suffers from several drawbacks and the performance regarding accuracy on load

identification has not been characterised for many practical scenarios [26].

The different electrical signatures for the event-based NIALM methods reviewed in this section

can be classified under the proposed framework in Figure 5.5.

2.3.4 Machine learning techniques for load disaggregation

The last stage in a NIALM method is the implementation of a disaggregation algorithm to separate

individual appliance loads from the overall signal. There are many types of disaggregation

algorithm that can be clustered under the umbrella of machine learning methods. Machine

learning, in the context of data mining, explores the study and construction of algorithms which
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Figure 2.1: Proposed electrical signature classification

can learn from and make predictions on data. According to the literature [84, 99, 121–123],

machine learning methods can be divided into two main groups, supervised and unsupervised

learning techniques.

Supervised machine learning techniques require labeled data for training the classifier so that it

can recognise the appliances from the aggregated data. The extracted features are matched with

a database of load signatures already available in order to identify an event associated with an

operation of an appliance. The goal of supervised machine learning techniques is to approximate

the mapping function, Y = f(X), between input variables, (x), and an output variable, (Y), so that

a new input data, (x’), can be predicted from the output variable, (Y’). This prediction can be

based on optimization methods which minimise the error function 3 by systematically choosing

input values or by pattern recognition methods which recognise the patterns and regularities in

the input data [84].

3The error function defines the difference between the real and the predicted data.
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Supervised learning problems can be further grouped into regression problems where the output

variable is numerical or quantitative, such as the size or the temperature value and classification

problems, and where the output variable is categorical, such as “yes” and “not”, or “green” and

“blue”.

Unsupervised machine learning techniques, on the other hand, do not require any previous

training, so the need for data training can be eliminated. Unlike most of the supervised load

disaggregation approaches, the unsupervised methods are non-event-based. The goal for unsu-

pervised learning techniques is to model the underlying structure or distribution function, f(X),

of the input data, but in this case without knowing the corresponding output variable, (Y).

Unsupervised learning problems can be further grouped into clustering problems where the

goal is to discover the inherent groupings in the data, such as grouping customers by purchasing

behaviour and associated problems, where the goal of the rule learning is to discover rules that

describe large portions of the data, such as people who buy X also tend to buy Y.

In [44],an unsupervised approach to determine the number of appliances in the household is

proposed. The method creates clusters of the steady-state power consumption of the appliance

changes and then employs a matching algorithm to reconstruct the original power signals

using them. The method was successful when disaggregating large appliances, but presented

difficulties with the small ones.

In [124] the temporal ordering implicit in on/off events of devices to uncover motifs (episodes)

corresponding to the operation of individual devices are extracted and then subjected to a

sequence of constraint checks to ensure that the resulting episodes are interpretable. The

preliminary results of the study showed the capabilities of the model in distinguishing devices

with multiple power levels.

There is no leading machine learning technique due to the variability of the sets of appliance

39



Section 2.3 Page 40

categories, the different types of measurements, sampling frequencies, and feature selections.

Most machine learning approaches, nevertheless, are based on supervised techniques and few

unsupervised techniques are reported for NIALM tasks. In [13] supervised and unsupervised

NILM techniques are compared, results show the former to be more accurate with errors around

2-5%, while the latter are less accurate (5-15% errors). The use of unsupervised methods can,

therefore, be explored for residential environments where there are usually only tens of different

loads with predictable signatures, but these methods do not seem appropriate for commercial

buildings.

2.3.4.1 Algorithms for supervised machine learning

Algorithms for supervised machine learning can be divided into parametric and non-parametric

algorithms, according to the degree of assumptions taken in the learning process [125]. In

the former, assumptions about the learning process are made and these can greatly simplify

the learning process, but they can also limit what can be learned. Non-parametric machine

learning algorithms, on the other hand, do not make strong assumptions as they are free to learn

any functional form from the training data. Non-parametric methods are often more flexible

and achieve better accuracy, but they require much more data and training time. Examples of

non-parametric algorithms include Decision Trees, Naive Bayes and K-Nearest Neighbors.

The Decision Trees algorithm performs classification in two initial phases and is evaluated in

a third one. The first phase is the tree building, or growth phase, in which the tree is built by

recursively splitting the data into two or more branches. The value of splitting points depends

upon how well separated, or “pure”, the differences are between appliance signatures [121]. In

the second phase, or tree pruning phase, the algorithm keeps growing by splitting nodes as

long as the new splits increase the branches “purity”. The process makes use of the training
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data set for optimisation, by eliminating any leaf that increases the error rate4 [126]. Finally, in

the performance evaluation phase, once the tree is fully grown and then pruned, the decision

tree model can be used to predict the class value for new patterns. In the evaluation stage,

the prediction accuracy of the decision tree classifier is evaluated using the training data set.

The 10-fold cross-validation and the leave-one-out cross-validation are standard validation

methods [127]. Decision tree algorithms are fast at learning and making predictions and can

achieve high levels of accuracy for a broad range of problems without the requirement for any

special data pre-processing, thus providing high transparency within the classification process.

In [128] a building energy demand predictive model, based on the decision tree method and

which is able to classify and predict categorical variables, is developed. The advantage of the

model over other widely used modelling techniques lies in its ability to generate accurate predic-

tions with interpretable flowchart-like tree structures that enable users to quickly extract useful

information. The method has been applied to estimate residential building energy performance

indices by modelling building energy use intensity levels. The results demonstrate that the use

of the decision tree method can classify building energy demand loads accurately, at 93% for

training data and 92% for test data.

Naive Bayes are statistical learning algorithms for predictive modelling comprised of two types

of probabilities that can be calculated directly from the training data [129], the probability of

each class and the conditional probability for each class given each input value.

In [130], a naive Bayes classifier was used to detect state change and identify individual devices.

The approach assumed that each device’s state was completely independent of the other devices,

so that devices such as TVs and DVD players, with their highly-correlated operation, were difficult

to disaggregate. Naive Bayes methods are called naive because they assume that each input

4The error rate is a measure of the number of wrong predictions.
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variable is independent, this assumption is often unrealistic for real data.

In a K-Nearest Neighbors model predictions are made for a new data point by searching through

the entire training set for the most similar K instances (the neighbours) and summarizing the

output variable for those K instances. Saitoh et al. [131] reported on the use of the K-Nearest

Neighbors model for the identification of 35 appliances sampled at 4.4 kHz from which nine

current-based features were extracted. For each feature the observed values, or input variables,

were normalised using the average and standard deviation and a disaggregation accuracy of

80.5% was achieved. To determine the similarity between values the Euclidean distance between

each input variable was used. However, in very high dimensions (a great number of input

variables), results can negatively affect the performance of the algorithm and require much

memory space to store all the data. To reduce this dimensional problem, only the most relevant

variables can be used, however, this will affect the accuracy of the model predictions [132].

2.4 Conclusion and literature gaps

In this chapter, a literature review of previous research relating to different quantification ap-

proaches for energy audits in buildings has been presented. Relevant concepts in sensitivity

analysis theory and NIALM methods implementation along with different calculation models

and measurement techniques have been discussed with a focus on how these concepts overlap

with past research on small power load disaggregation.

Among commercial buildings, and especially office buildings, energy quantification shows that

small power appliances are large electricity consumers. Understanding small power loads is

therefore, a crucial factor to consider in order to improve estimation. However, current energy

assessment approaches are not sufficiently accurate and NIALM techniques are not mature

enough to overcome the issues that entail this challenge. This conclusion is supported by recent
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field studies which have demonstrated the importance of reducing small power loads in office

buildings [16] and how many issues remain open in this domain [13].

The methodologies used to quantify energy use in existing buildings can be divided into two

broad categories or approaches, calculation and measurement approaches. Both approaches

present significant weaknesses when dealing with small power load estimations, specially in

non-domestic buildings. After a review of the relevant literature on quantitative energy audits,

the gaps identified are presented below.

1. For calculation approach models, there is a lack of knowledge on how the variation in

the output of a model can be apportioned to different input factor uncertainties, which

imposes a limit of confidence in the energy estimations. Sensitivity analysis can be used

to explore this impact, however, non of these analysis has been undertaken for the use of

calculation models in small power energy estimations.

2. The measurement approach can be implemented through top-down or bottom-up tech-

nologies. For the former, there are not estimations strategies that can provide details of

energy consumption of individual end-uses without drawing upon the use of calcula-

tion models and their associated input inaccuracies. And for the latter, there is a lack of

experimental research for reducing the complexity of bottom-up techniques for obtain-

ing aggregated energy estimation without significantly compromising the final output

accuracy.

3. The application of NIALM methods in office buildings remains immature due to the larger

number and heterogeneous nature of typical office appliances. The third stage of general

NIALM methods, electrical signature identification, has been identified as one of the main

reasons for NIALM not being used extensively in office energy audits, and even so, a
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study of the most suitable set of signatures, depending on the electrical appliances under

disaggregation, has not been yet undertaken.

These gaps are addressed by the work presented in this thesis in order to build upon existing

methods, to overcome their weaknesses, and to improve the ways in which small powers energy

consumption is estimated.
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Chapter 3

Improving the calculation approach

3.1 Introduction

The review of energy calculation models, presented in Chapter 2, was concluded with identi-

fication of the gaps in the literature. One of those gaps is concerned with the challenge faced

by energy calculation approaches when collecting adequate input information, particularly for

small power loads which are highly dependent on end-use behaviours and a large source of

energy consumption in office buildings. It has been encountered in the literature that one of

the primary sources of uncertainty in all building energy calculation is the input parameters

specification. This relates to the degree of uncertainty in the model output and raises questions

about the accuracy 1 of the calculation model. Therefore, in order to gain a proper understanding

of the influence of small power on energy estimations, it is crucial to determine sources of error

in the model input information. This subject is the cornerstone of the research presented in this

chapter. Consequently, a Sensitivity Analysis (SA) approach has been adopted which studies

1For this research the sensitivity is evaluated over the entire space of inputs, so that, the metric used is the
accuracy.
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how the variation in the output of a calculation model can be apportioned to different sources of

variation in the inputs.

There are a large number of calculation models currently in use in the UK industry based on

CIBSE TM22 methodology [133–135]. This methodology offers a systematic way of undertaking

an energy survey, reporting the results, and calculating likely savings from changes in use,

technology, or management. It was developed from energy survey techniques used in office case

studies and in the Probe series of published POEs in Building Services in the CIBSE Journal [22,31].

The guide report establishes three levels of assessment, from a simple to a system specific energy

breakdown, depending on the input information provided to the model; it is the third of these

which is applicable to the estimation of small power loads. As such, Appendix A presents the

TM22 quantitative energy assessment framework and explains the type of assessment provided

at each level.

This chapter undertakes a sensitivity analysis of four calculation models for small power energy

estimation following the TM22 framework. The first three models are industry established

calculation procedures [31, 136, 137], and the fourth, specifically created for this study based

on relevant academic literature [133, 134] and industrial energy audit reports 2, addresses the

issue of waste energy during working hours associated with user behaviour. In order to allow

comparison between these models, the Morris method [69] was implemented and simulated

in Matlab (R17, Mathworks). This SA method has been adapted to incorporate a number of

modifications for better alignment to the CIBSE TM22 framework.

The study provides a tool that can help auditors to decide the optimal energy calculation model

for each building scenario by better understanding the significance of the input information to

their final energy estimations.

2This model has not be created to improve existing ones, but for extend the test of the sensitivity analysis method
proposed in this chapter. Details of its design and characteristic will are provided in the methodology section.
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3.1.1 Morris method

The Morris method [69] is a Screening SA method comprised of individually randomised Local

SA methods; it evaluates the response of output to change in one model input at a time. The

sensitivity of response to the model base line is also considered, with the method designed to

reduce the number of local calculations or runs needed to accurately identify the most relevant

input factors. In this way, the Morris method can be considered a sudo-global method with the

relative simplicity of a One at A Time (OAT) method.

The method relies on the estimation of the elementary effects (e) for each of the randomly

sampled points on the input space of experimentation (Ω). Assuming a number (k) of input

factors, the input space can be described as Ω = X1, ..., X j , ...Xk with each input factor having

a uniform distribution in their set of values X j = (0,1/(n −1),2/(n −1), ...,1), where n is the set

size and the range is from 0 to 1. The Elementary Effect (EE) for the i-th value (xi ) of the input

parameter (X j ) is given by Equation 3.1:

e j i =
y(X1, ..., X j (xi +∆), ..., Xk )− y(X1, ..., X j , ..., Xk )

∆
(3.1)

where:

(X1, ..., X j , ..., Xk ) are the initial values, or base-case, for the input parameters and y(X1, ..., X j ,

..., Xk ) is the model output.

(X1, ..., X j (xi+∆), ..., Xk ) is the perturbed sample, where the single value xi ε X j has been modified

by a perturbation ∆.

And y(X1, ..., X j (xi +∆), ..., Xk ) is the model output after the perturbation, while all other input

parameters remain constant. This perturbation or variation is a multiple of 1/(n −1) [52].

In order to detect the linear (OAT) and non-linear (global) effects, the method implements r

evaluations of the EE for each of the input parameters (X j ) which are then used to calculate the
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mean µ j (Equation 4.7) and the standard deviation σ j (Equation 4.6) of each input. In this way,

the Morris method can be considered a combination of OAT analyses, that becomes global when

its design considers the effect of all the input iterations.

µj =
∑r

1 Fe j

r
(3.2)

σ j =
√

1

r

r∑
1

(Fe j −µ j )2 (3.3)

where Fe j = (e j ,1, ...e j ,i , ..e j ,r ) is the EE distribution function for input factor X j .

The Morris method can be classified as a screen method, as such it ranks the input factors

in order of importance, but does not quantify their absolute significance. This input ranking

classification uses µ and σ as its estimation factors, satisfying the purpose of the research by

isolating the most important factor from among a large number that might affect the model

output. The Morris method is a well-established SA, with applications in many fields [59, 70],

however, its implementation in energy assessment estimation remains limited and has not been

fully explored.

3.2 Methodology: The adapted SA method

This section presents the modifications incorporated to adapt the Morris method to perform

SA on TM22 calculation approaches for small power loads. It also provides an implementation

methodology for this adaptation, along with an explanatory example for better understanding

and interpretation of the method results.
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The aim is to determine which input factors contribute most to the output variability in the

TM22 calculation models, those that will, therefore, require additional effort to strengthen their

accuracy.

3.2.1 Refinement adaptive measures

The application of the Morris method to evaluate TM22 energy calculation models has been

enhanced by a number of adaptive refinement measures.

1. Re-scale input factor ranges: In the original method, the input factors considered are of

uniform range, between [0, 1], with their values assumed in the set (0,1/(n −1),2/(n −
1), ...,1). In TM22 calculation models, input factor ranges have different lengths and ranges

of magnitude, thus two re-scaling input ranges are used to match the corresponding small

power input factor ranges to the Morris method requirements.

Discrete input range: the initial continuous input range is stratified to create the new

discrete one where the single input values are equally spaced between them. To do this,

each of the input factors, X j , are assigned a uniform distribution with lower, x j mi n , and

upper, x j max , boundaries, and the sampling stratification, or subdivision, is performed

in accordance with the established degree of freedom, n, with a constant distance be-

tween values of γ = (x j max − x j mi n)/(n − 1). The resultant new stratified range for the

input factor X j is: (x j mi n , x j mi n +γ, ..., x j mi n + iγ, ..., ...x j max), that can by represented by:

(x j 1, x j 2, ..., x j i , ..., x j n), where x j i is the ith-sample point for the discrete input range X j .

Normalized trajectory range: the discrete input range is normalised to allow the use of

the Euclidean distance for the calculation of the trajectory between two points. In order

to re-scale the discrete input range to the range [0, 1], and maintain a constant step
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∆= 1/(n −1) between sampling points, as is required by the Morris method, the feature

scale process is used. According to this process, the resulting normalised trajectory range for

the input factor X j is: (
x j 1−x j mi n

x j max−x j mi n
, ...,

x j i−x j mi n

x j max−x j mi n
, ...,

x j n− j x j mi n

x j max−x j mi n
), that can be represented

by: (t j 1, ..., t j i , ..., t j n), where t j i is the ith-sample point from the normalised trajectory range

X j .

2. Morris’ experimental design reduces the number of model evaluations needed by per-

forming r evaluations of the elementary effect for randomly chosen sample points for

each input factor X j , resulting in a total design-cost of O (r ∗ (k + 1)), with k being the

number of input variables [69]. However, this design does not guarantee equal probability

sampling for each input factor and has been shown, in some cases, to give misleading

information [68].

The proposed method overcomes this problem through a systematic evaluation of all the

sampled points in the input experimental spaceΩ. This increases the computational cost

of the new experimental design to be O (n ∗ (k +1)), where n is the size of input range

for each input parameter (k). This extra computational cost is not of significance to the

study due to the improvements in cpu operational speed since Morris’ patent for ”Non-

Intrusive appliance monitor apparatus” in 1989 [111], and the relatively low number of

input parameters under consideration. This change provides equal probability sampling

for each input factor.

3. Standardise the elementary effect: The differences, in terms of unit and magnitude, of

the small power input factors are not considered in the original Morris method and

this issue can lead to misinterpretation of results. To overcome it, Sin et al. [63] pro-

posed the use of a non-dimensional standardised elementary effect (se). For the input
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X j , F se j = se j 1, ...se j i , ...se j n . This new elementary effect is calculated by multiplying

each element ee j i by an standardisation factor. This factor is obtained by dividing the

standard deviations of the discrete input factor range values, X j = x j 1, ...x j i , ...x j n , by

the standard deviations of the output values obtained for each of those inputs values,

y j = y j 1(x j 1), ...y j i (x j i ), ...y j n(x j n). According to this, the se for the i th value of the discrete

input factor range, X j , is given by Equation 3.4:

se j i = e j i

σX j

σy j

(3.4)

This SEE distribution re-scaling allows for comparison of common input factors across

different calculation models.

4. The monotonicity: The use of the estimated mean µ, as calculated in Equation 4.7 to detect

the overall influence of the input factors, could be prone to failing in the identification

of a factor of considerable influence on the model. If the standardised elementary effect

distribution of the input factor Xj, given by F se j = (se j ,1, ...se j ,i , ..se j ,r ), contains both

positive and negative elements, i.e., if the model is non-monotonic, some effects may

neutralise each other, producing a low value for µ, even for an important factor. The

use of the mean in the absolute value for the F see j , given in Equation 3.5, addresses

the immediate problem, although it introduces another by eliminating the information

contained in the sign of the effect [68].

µ∗
j =

∑r
1

∣∣F se j
∣∣

r
(3.5)

To attend to this issue, a new estimation factor (Φ j =
∣∣µ j −µ∗ j

∣∣) which contains the in-
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formation on the sign of the effect is proposed. This enhancement measure comes at

no noticeable computational cost and allows the analysis of the monotonocity of the

model, i.e., ifΦ has a low value, the output function is monotonic, if it has a high value this

indicates non-monotonicity.

5. The skewness: The difference between the median and the mean of the standard elementary

effect distribution also contains relevant information, indicating the degree of dispersion

(spread) and skewness in the data, and pinpointing outliers. In probability statistics,

skewness is a measure of the asymmetry of the probability distribution of a real-valued

random variable about its mean. In accordance with the notion of non-parametric, the

skew for the input X j is given by Equation 3.26.

ξ j =
µ j −m j

σ j
(3.6)

where µ j is the mean, m j is the median, and σ j is the standard deviation for the se j

distribution.

3.2.2 Implementation methodology

The detailed methodology for implementation of the adapted SA method and interpretation of

the results are provided in this section. This methodology is implemented in three stages:

1. Specify the starting points for the model elements: Input value matrix (Matrix X), Trajectories

matrix (Matrix T), Base-case matrix (Matrix B) and Calculation model (Function Y).

2. Perform SA in two separate steps: OAT analysis and Global analysis.

3. Results interpretation: Representative sensitivity features and SA graph.
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A mathematical explanation for each step of this methodology is presented in the following

subsections.

3.2.2.1 Starting points

Assuming a system with k input factors: X1, ...X j , ...Xk , the probability density function of each

of those factors is considered to be a continuous uniform range bounded by their maximum and

the minimum values. These assumptions simplify the code and allow the coverage of the whole

potential range of the values for each input parameter, giving the same probabilistic weight to

each value.

The number of discrete points n, or sampling resolution, of each input range needs to be specified

to establish the experimental space dimension or the number of ‘levels’ over which the variable

can be sampled. More points result in a higher sampling resolution and therefore, in a better

accuracy, but involve more calculations.

For the first stage of the implementation methodology, three matrices are created to define what

is called the input space of experimentationΩ: Matrix X, containing the discrete input ranges;

Matrix T, containing the normalised trajectory ranges for each input; and Matrix B, containing n

random base-case scenarios for the k input variables, and a Function Y defined to represent the

calculation model.

Matrix X [Eq. 3.7] is generated by dividing the range of each input factor into n intervals equally

spaced by γ= (x j max −x j mi n)/(n −1), where x j max and x j mi n are the maximum and minimum

values of the input factor X j , respectively. The (k x n) dimensional matrix represents the region

of experimentation, where the row sub-index i (i = 1,2....n) indicates the value within an input

range set, and the column sub-index j, ( j = 1,2....K ), the input factor itself.
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X =



x1,1 .. x j ,1 .. xk,1

.. .. .. .. ..

x1,i .. x j ,i .. xk,i

.. .. .. .. ..

x1,n .. x j ,n .. xk,n


(3.7)

To create Matrix T [Eq. 3.8], the feature scaling method is implemented to rescale the range

of each input parameter (each column of Matrix X 3.7) to [0,1], maintaining a step size of

∆ = 1/(n − 1) between each input value. This (n x k) matrix generates a Euclidean space of

trajectories for all the values of Matrix X 3.7, allowing the calculation of the Euclidean trajectory,

or distance, between any of those two values. Matrix T 3.8 has the same sub-index of Matrix X 3.7,

but represents the position of the input values contained in Matrix X and not the magnitude

values themselves.

T =



t1,1 .. t j ,1 .. tk,1

.. .. .. .. ..

t1,i .. t j ,i .. tk,i

.. .. .. .. ..

t1,n .. t j ,n .. tk,n


(3.8)

Matrix B [Eq. 3.9] is created with n random base-case potential scenarios and contains the

position sub-index i of the input range values in Matrix 3.7.

Each row’s sub-index l (l=1,2....n), represents one of the randomly generated scenarios and each

column’s sub-index j indicates the input factor (j=1,2,...k).
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B =



b1,1 ... b j ,1 ... bk,1

... ... ... ... ...

b1,l ... b j ,l ... bk,l

... ... ... ... ...

b1,n ... b j ,n ... bk,n


(3.9)

Note that Matrix B [Eq. 3.9] has the same dimensions as Matrix X [Eq. 3.7], (k x n). Whilst not

compulsory for the method implementation, this reduce the computational complexity of the

code 3.

Function Y [Eq. 3.10] represents the calculation approach model under study, and y the output

variable of interest (scalar) in function of the k input parameters, with a single value for each

of the n base-cases. The l-th base-case scenario (l = 1, 2....n), the model output, yl , is given by

Equation 3.10:

Yl (X1, ...X j , ...Xk ) = yl (3.10)

3.2.2.2 SA implementation

The One- At-a-Time analysis (OAT) is a simple and common approach in SA. The method changes

one input variable at a time, all others remain at their base-case value, and analyses the effect

produced on the output.

In order to undertake an OAT analysis, only the l = 1 row from Matrix B 3.9 is considered,

array 3.11:

3The computational complexity is the amount of resources required for running the algorithm of the code.

55



Section 3.2 Page 56

B1 =
[

b1,1 ... b j ,1 ... bk,1

]
(3.11)

Substituting the position sub-index i in array 3.11 by the corresponding magnitude values of

Matrix X [Eq. 3.7] given in this position, the first base-case is obtained, array 3.12:

BC1 =
[

xb1,1 ... xb j ,1 ... xbk,1

]
(3.12)

Applying the BC1 into function Y 3.10, the output y1(x) for the first base-case is obtained.

Once the base-case of our local analysis has been defined, the first input X1 is taken as a variable

and the other inputs remain fixed at their given base-case values. Function Y will now be

dependent only on a single variable, moving along the input X1 discrete range given in the first

column of Matrix X (3.13), excluding the value x j ,i = xb j ,l .

X1 =



x1,1

...

x1,i

...

x1,n


(3.13)

According to Morris [69], the elementary effect constitutes an estimation of the variation in the

output of a model due to a perturbation taking place in one of the values of an input factor, while

all the other inputs remain constant. For the input parameter X j , the elementary effect of its

i th − value is given by Equation 3.14
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e j ,i =
yl (∆x j ,i )− yl

∆ j ,i
∀i 6= l

ei , j = 0 ∀i = l

(3.14)

where:

yl is the model output for the base case l;

x j ,i is the i-th-value of input factor X j ;

∆x j ,l is the perturbation over the undertaken value; and

∆ j ,i = (t j ,i − tb j ,i ) is the distance separation between the initial and the perturbed value in

accordance with the normalized Euclidean trajectory space given by Matrix T 3.8

Accordingly, the elementary effects distribution for the n values of the input X1, excluding value

x1i = xb1l , is given in Equation 3.15:

Fe1,1 =
[

e1,1 ... e1,i ... e1,n

]
(3.15)

where Fe j ,l = Fe1,1 is the probability density function for X1 and B ase − case1.

To allow the comparison of the input factors across different calculation models, the Standardised

Elementary Effect se is calculated. For the input X j , the Standardised Elementary Effect (SEE) is

obtained by multiplying each of its element e j i by the standardisation factor, this is calculated

by dividing the standard deviations, σX j , of the whole range of values of the input factor, X j =
x j 1, ...x j i , ...x j n , by the standard deviations, σy j , of the whole range of values of the outputs

obtained for this input factor, y j = y j 1(x j 1), ...y j i (x j i ), ...y j n(x j n). Accordingly, the SEE for the i th

value of the input, X j , is given by equation 3.16:
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se j ,i = e j ,i

σX j

σy j

(3.16)

The probability density function of the SEE for input X j and base-case 1 is given by Equation

3.17:

F se j ,1 =
[

se j ,1 ... se j ,i ... se j ,n

]
(3.17)

The mean of the values (µ) and the mean of the absolute values (µ∗) of the SEE probability

density function of input X j are given by equation 4.7 and 3.19, respectively:

µ j =
∑n

1 F se j ,1

n
(3.18)

µ∗
j =

∑n
1

∣∣F se j ,1
∣∣

n
(3.19)

where
∣∣F se j ,1

∣∣= [∣∣se j ,1
∣∣ , ...,

∣∣se j ,i
∣∣ , ...,

∣∣se j ,n
∣∣]

The absolute value of the means can be used as an estimator of the level of impact of each of the

input factors over the model output. However, this local SA only considers a single base-case l=1,

in which the impact of interaction effects between the input parameters has not been evaluated.

In order to consider this impact, n base-cases, l = 1,2, ....n, over the experimental space given by

Matrix X, have been considered.

In the Global SA, the same procedure used for the OAT analysis for base-case l = 1, is imple-

mented for the rest of the base-cases, l = 2, ....n, given in Matrix B 3.9.

Considering input X j , Matrix Mse j 1 of dimension (n x (n-1)) and containing the SEE distribu-

tion functions for all base-cases are generated. Each of the rows in Matrix Mse j represents a
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probability density function of the SEE for one of the n base-cases.

Mse j =



se1,1 ... se1,i ... se1,n

... .. ... ... ...

sel ,1 ... sel ,i ... sel ,n

... ... ... ... ....

sen,1 ... sen,i ... sen,n


j

(3.20)

The mean of the values (µ) and the mean of the absolute values (µ∗) of Matrix Mse j is calculated,

allowing the estimation of the grade of monotonicity for each input parameter X j in accordance

with Equation 3.21.

Φ j =
∣∣µ j

∣∣− ∣∣µ∗ j
∣∣ (3.21)

where:

µ j =
∑n

1 M se j ,1

n
(3.22)

µ∗
j =

∑n
1

∣∣M se j ,1
∣∣

n
(3.23)

To consider the effects of the different iterations of input values in each base case, the standard

deviation for each input factor X j is calculated in accordance with Equation 4.6.

σ j =
√√√√ 1

n2

n2∑
1

(F (Mse j )−µ j )2 (3.24)

where F (Mse j ) is the probability density function of Matrix Mse j 1 values.
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To analyse the behaviour of the Standardised Elementary Effects distribution, the median, or

middle value, for the probability density function G(Mse j ), is calculated for each of the input

factors X j , in accordabce with Equation 3.25.

m j i s the [
(n +1)

2
]th value o f G(Mse j ) (3.25)

where G(Mse j ) is the probability density function F (Mse j ) sorted in ascending order.

Finally, the degree of skewness of the SEE distribution is calculated according to Equation 3.26.

ξ j =
µ j −m j

σ j
(3.26)

3.2.2.3 Results interpretation

As a result of the implementation of this method, four representative sensitivity features are

identified and the information extracted is presented in the shape of graphs, this allows the

ranking of the model inputs in terms of importance. The Representative Sensitivity Features,

identified as the estimation factors for each input factor, are identified in two stages, Primary SA

and Secondary SA.

The Primary SA provides an initial ranking of the input factors in accordance with their relative

impact on the output, and is based on two sensitivity measures for each input factor X j :

1. Direct effect (µ∗ j ): is given by the mean of the absolute values (µ∗
j ) of the SEE Matrix MX j

The reason for considering µ∗ j instead of µ j , as in the original Morris method, is that if

the Matrix MX j contains elements of the opposite sign, which occurs when the model

is non-monotonic 4, when computing its mean some effects may cancel each other out.

4Some models are base-case dependent, that means that they can increase or decrease depending on the
base-case considered.
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Thus, a factor which is important, but whose effect on the output has an oscillating sign,

may be erroneously considered as negligible. For this reason µ∗ j is considered to be better

than µ j to rank factors in order of importance. A high value of µ∗ j indicates an input factor

with a significant influence on the output.

2. Indirect effect (σ j ): this sensitivity feature is a measure of the variation or dispersion of the

SEE on Matrix Mse j . A low standard deviation indicates that the SEE values tend to be close

to the overall mean (which indicates that the overall effect of the input factor is almost

independent of the values assigned to other factors), while a high standard deviation

indicates that the SEE values are spread over a wider range of values (which indicates a

factor involved in interaction with other factors, or with non-linear effects).

The Secondary SA provides additional information about the SEE distribution sign consistency

and deviations with respect to the general behavioural trend. It is based on two estimation

factors, Degree of monotonicity and Degree of skewness:

1. Degree of monotonicity (Φ j ): the mean of the absolute values (µ∗
j ) of Matrix Mse j provides

an estimation free of any non-monotonic input to output behavior that could be present

in the mean of the values (µ), thus the difference between those means (Equation 3.21)

is a measure of the monotonicity of the model for the input factor. A high value of (Φ j )

indicates a model with a large degree of non-monotonicity for a specific input factor (which

means the sign of the output distribution will not always be consistent with the input).

2. Degree of skewness ξ j : this sensitivity feature is a measure of the asymmetry of the SEE

distribution function with respect to its mean. It is calculated by comparing the mean

and the median of the distribution, in accordance with Equation 3.26. If the Mean (µ j ) is

greater that the median (m j ), the Elementary effects distribution is skewed to the right (i.e.,
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it has a positive sign), which means there are more values greater than the mean than there

are values lower for the input SEE factor distribution. If the Mean (µ j ) is lower that the

median (m j ), the Elementary effects distribution is skewed to the left (i.e., has a negative

sign), which means there are more values smaller than the mean than there are values

greater for the input SEE factor distribution. A high value of ξ j , on either side indicates an

input factor with a large skewness Elementary Effects distribution function (i.e., there is a

relatively high number of elementary effect values outside of the mean value or general

trend).

The information provided by the representative sensitivity features for all the input factors, can

be presented in two SA graphs.

The Primary SA graph: each of the points in Figure 3.6 correspond to one of the input parameters.

The horizontal axis represents the direct effect, µ∗, on the output produced by the input, and the

vertical axis represents the indirect effect, σ, created by the other inputs.
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Figure 3.1: Input factors classification graph obtained from the Primary SA, based on the direct (horizontal
axis) and indirect (vertical axis) effects of each input X over the model output.

Depending on the position occupied by the point, the input factor can be classified into four

primary types:

1. X1: Low direct and high indirect impacts.

2. X2: High direct and high indirect impacts.

3. X3: Low direct and low indirect impacts.

4. X4: High direct and low indirect impacts.

Factors X1 and X3 can be neglected as their relative impact on the output value is very low.

The position of factors X2 and X4, on the other hand, indicates an important influence on the
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output, independent of the values assigned to other factors for X4 and largely influenced by

these iterations for X2.

From the point of view of an energy audit, input X2 is the factor which would require more time

and effort as uncertainties in its range of values need to be reduced, not only for itself but also

for the remainder of the inputs.

The Secondary SA graph: each of the points in Figure 3.7 correspond to one of the input parame-

ters. The horizontal axis represents the grade of non-monotonicity,Φ, and the vertical axis the

grade of skewness, ξ, of the model output for each input.

Figure 3.2: Input factors classification graph obtained from the Secondary SA, based on the degrees of
non-monotonicity (horizontal axis) and skewness (vertical axis).

Depending on the position occupied by the point, the input factor can be classified into four

secondary types 5:

5Note that all the inputs present a positive sign for the degree of skewness, which means that the SEE distribution
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1. X1: Low degree of non-monotonicity and high degree of skewness.

2. X2: High degree of non-monotonicity and high degree of skewness.

3. X3: Low degree of non-monotonicity and low degree of skewness.

4. X4: High degree of non-monotonicity and low degree of skewness.

From the point of view of an energy audit, input X3 will not need special requirements, for

what can be neglected, as has been suggested in the Primary SA. Factor X1, on the other hand,

although has been categorized as a negligible factor by the Primary SA, has a high degree of

skewness and ,therefore, some of their values can be significant for the final energy estimations.

Factors X2 and X4 have bee classified as important factors by the Primary SA. This affirmation

is reinforced by the Secondary SA, which also identified them as very non-monotonic, which

means the sign of the output will depend very much on the value taken by the inputs.

3.2.3 Explanatory example for the adapted SA method

To facilitate the understanding of the implementation methodology for the adapted SA method,

an explanatory example is included in this section, along with some relevant graphs to aid

interpretation of the results.

1. Starting points:

For the implementation example k=3, input factors, X1; X2; X3, are considered. Table 3.1

presents the maximum and minimum values for those factors 6.

is skewed to the right. Negative signs mean a skewness to the left, but the same input classification will be kept.
6These values are aleatory and do not have any significance.
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Table 3.1: Maximum and minimum values for the inputs in the explanatory example.

Input Variables X1 X2 X3

Minimum Value 10 60 20

Maximum Value 100 280 48

To simplify the example, a sample resolution of n = 5 has been chosen. A robust implemen-

tation of the method would require n = 100 or above in order to consolidate results as it is

from this n-value that results begin to stabilise .

Matrix Xex is generated by dividing the range of the three input factors into n=5 equally

spaced intervals. The (5 x 3) dimensional matrix is given by 3.27.

Xex =



10 60 20

32.5 115 27

55 170 34

77.5 225 41

100 280 48


(3.27)

To create Matrix Tex , the range of each input parameter has been rescaled to [0, 1], with

step size ∆= 1/(5−1). The (5 x 3) dimensional matrix is given by 3.28.

Tex =



0 0 0

0.25 0.25 0.25

0.50 0.50 0.50

0.75 0.75 0.75

1 1 1


(3.28)

Matrix Bex 3.29 is the base-case matrix, containing only position sub-index i from matrix
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Xex 3.27.

Bex =



5 2 5

3 4 3

4 5 2

2 3 1

1 1 4


(3.29)

For the implementation example, the calculation model given by function Yex 3.30 has

been considered.

Yex(X1, X2, X3)l = X1 ∗ (150∗X2 +X 2
2 +X3/15) (3.30)

This equation does not represent any energy model, it has been chosen only for explanatory

purposes.

2. SA implementation:

In order to undertake an OAT analysis, only the row l = 1 row from Matrix Bex 3.29 is

considered:

Bex1 =
[

5 2 5

]
(3.31)

In accordance with according with Matrix Xex 3.27, the input value magnitude for the first

base-case is given by 3.32:

B ase − caseex1 =
[

xb1,1 xb2,1 xb3,1

]
=

[
x1,5 x2,2 x3,1

]
=

[
100 115 48

]
(3.32)
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Applying the base − caseex1 into function Yex 3.30 :

y1(x) = 100∗ (5∗115−1152 +48/15) = 402980 (3.33)

where y1(x) = 402980 is the output for the first base-case.

Once the base-case of the OAT SA has been fully defined, the first input X1 is taken as a

variable and the remainder are keep fixed at the given base-case values: X2 = x2,2 = 115 ;

X3 = x3,5 = 48. Yex will now be dependent only on a single variable.

y1(x1,i ) = x1,i ∗ (5∗115−1152 +48/15) (3.34)

The value of this variable will be moved along the input X1 discrete range, given in the first

column of matrix Xex , where the value xb1,1 = x1,5 = 100 has been excluded.

X1ex =



10

32.5

55

77.5


(3.35)

For the first value (i = 1) of input X1, the elementary effect will be given by equation 3.36:

e1,1 = 40298−402980

1
=−362682 (3.36)

Where∆1,1 =
∣∣t1,5 − t1,1

∣∣= 1 is the Euclidean distance between the initial and the perturbed

value.
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and y(∆x1,1 ) = 40298 is the output of the perturbed value x1,1.

The EE probability density function for X1 is given by Equation 3.37 7:

Fee1,1ex =
[
−362682 −362682 −362682 −362682

]
(3.37)

And the SEE probability density function for the input X1 and base-case 1, by Equation

3.38:

F see1,1 =
[

12.189 12.189 12.189 12.189

]
1

(3.38)

where σX j = 35.57 and σy j = 1.0585 ·106.

For the other two inputs, X2 and X3 the distribution is given by Equations 3.39 and 3.40,

respectively.

F se2,1 =
[
−45.186 −244.006 −343.417 −442.827

]
1

(3.39)

F se3,1 =
[

0.003 0.003 0.003 0.003

]
1

(3.40)

Note that F se1,1 and F se3,1 have constant SEE values, which means that the change rate in

the output due to these inputs is also constant.

The mean of the values (µ j ) of Matrix MX j :

µ1 = 12.189, µ2 =−268.859 and µ3 = 0.003 (3.41)

7Note that e1,5 is not considered as e1,5 = b1,1.
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and the mean of the absolute values (µ∗
j ) of Matrix MX j :

µ∗
2 = 12.189, µ∗

2 = 268.859 and µ∗
3 = 0.003 (3.42)

The absolute value of the means can be used as an estimator of the level of impact of each

of the input factors over the model output. However, this OAT SA only considers a single

base-case l=1, in which the impact of the interaction effects between the input parameters

has not been evaluated. In order to consider this impact, a global analysis needs to be

performed. Thus, n base-cases, l = 1,2, ....n, covering the whole experimental space given

by matrix Xex , have been considered.

For the Global analysis, the SEE matrix for inputs X1, X2 and X3 are given by Equations 3.43,

3.44 and 3.45, respectively.

Mseex1 =



12.189 12.189 12.189 12.189 0

−51.032 −51.032 0 −51.032 −51.032

−110.093 −110.093 −110.093 0 −110.093

0 16.346 16.346 16.346 16.346


1

(3.43)

Mseex2 =



−45.187 0 −244.006 −343.417 −442.827

−134.204 −188.879 −243.555 0 −352.905

−266.148 −343.191 −420.233 −497.276 0

−46.994 −79.302 0 −143.919 −176.227

0 −4.519 −14.459 −24.401 −34.342


2

(3.44)
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Mseex3 =



0.0026 0.0026 0.0026 0.0026 0

0.0014 0.0014 0 0.0014 0.0014

0.0020 0 0.0020 0.0020 0.0020

0 0.0009 0.0009 0.0009 0.0009

0.0003 0.0003 0.0003 0 0.0003


3

(3.45)

The value sel ,i = 0 indicates the value that has been excluded from the input range in each

base-case, i.e., the input values that coincide with the base-case values (i=l).

Note that all the elements in matrix Mseeex2 and Mseeex3 have the same sign, negative for the

former and positive for the latter; this indicates that both inputs are monotonic, i.e., the

output always decreases when X2 decreases and increases when X3 increases, although

the latter occurs very slowly. On the other hand, each of the rows of X1 has a different sign,

which means that the input non-monotonicity is case dependent, i.e., the output increases

or decreases with the input depending on the base-case.

This Global SA method has been applied to the implementation example and the repre-

sentative feature parameters obtained and presented in Table 3.2. In order to obtain more

robust results n=100 base-cases, instead of n=5, have been taken for the calculation of the

parameters in Table 3.2 .

Table 3.2: Representative feature parameters for each input factor.

SA Parameters X1 X2 X3

Direct effect (µ∗∗∗) 132.168 202.300 0.002

Interaction effect (σ) 37.752 126.530 0.001

Monotonicity (Φ) 9.896 0.181 0

Skewness (ξ) 0.323 0.200 0
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3. Result interpretation:

To better understand and interpret the numerical results from Table 3.2, a number of

explanatory graphs are presented and analysed in this section.

Graphs 3.3a, 3.4a and 3.5a represent the variation (given by the SEE distribution) of the

model outputs y j against the range of values for each input X j (for j=1; j=2 and j=3,

respectively). Each line in the graph, plotted in a different colour, represents a different

base-case.

Graphs 3.3b, 3.4b, and 3.5b represent the cumulative density frequency, where the hori-

zontal axis is the allowable domain for the SEE distribution function and the vertical axis

is the normalised probability, between zero and one. It increases from zero to one as we

move from left to right on the horizontal axis. The median and the absolute value of the

mean are represented by a red and a black line, respectively.

(a) SEE values against X1 for each base-case. (b) se1 cumulative density frequency.

Figure 3.3: Results interpretation for the X1 input
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(a) SEE values against X2 for each base-case. (b) se2 cumulative density frequency.

Figure 3.4: Results interpretation for the X2 input

(a) SEE values against X3 for each base-case. (b) se3 cumulative density frequency.

Figure 3.5: Results interpretation for the X3 input

From the observation of the the graphs, the following findings can be obtained:

• Each line of the a-graphs contains the SEE values given for one of the rows (or base-

case) of Matrix Mseex1 . The steeper the slope of this line, the more significant is the
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input to the output, see Graph 3.3a; and the shallower the slope, the more insignifi-

cant, see Graph 3.5a.

• Some of the lines in graph 3.3a increase with the value of the input range, and others

decrease, meaning that the monotonicity of the model is base-case dependent for

input X1. This implementation example demonstrates the importance of the use

of µ∗ instead of µ, to avoid the cancellation of some SEE values by others with the

opposite sign 8.

• The horizontal axes of the b-graphs contain the range of dispersion, i.e., standard

deviation, for the SEE on Matrix Mseex j for the different input factors. Graph 3.4b

presents a large plotting dispersion of approximately 600 units 9, indicating a wide

SEE distribution function. On the other hand, Graph 3.5b shows a low dispersion of

the SEE values, approximately 3e10−3, which indicates a small standard deviation

value for this input.

• A graphical representation of the skewness of the model for the different inputs is also

presented in the (b) graphs. This allows a comparison between the red line (median

of the elementary effect distribution) and the black line (mean of the absolute value

of the distribution). For Graphs 3.3b and 3.4b, the mean is smaller than the median,

which means there are more values greater than the mean than there are smaller for

these input factors X1 and X2, especially for the former. In Graph 3.5b both lines are

superposed, this indicates a Gaussian distribution shape for the elementary effect

distribution function.

The SA method provides an easier way to present these results and the findings for the

8It is important to remember that µ∗ and µ are calculated for the whole value distribution given in Matrix Mseex1
9This unit will be determined by the magnitude of the input factor.
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three input factors into two single graphs:

Primary analysis:

Each of the points in Figure 3.6 correspond to one of the input parameters. The horizontal

axis represents the direct effect, µ∗, on the output produced by the input, and the vertical

axis represents the interaction effect, σ, created by the others inputs.

Figure 3.6: Primary SA

According to Figure 3.6,X2 is the most relevant input, with a large value for µ∗ and σ,

followed by X1 and finally by X3, which can be considered as having negligible influence.

Secondary analysis:

Each of the points in Figure 3.7 correspond to one of the input parameters. The horizontal

axis presents the grade of monotonicity, Φ, of the model for each input and the vertical
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axis the grade of skewness, ξ.

Figure 3.7: Secondary SA

According to Figure 3.7, X2 has the most asymmetric elementary effect distribution, with

the larger non-monotonic and positive skewness behaviour. Factor X1, has a relatively

low degree of non-monotonicity, but with a high skewness compared with the rest of the

inputs, while factor X3, has presented none of those behaviours.

Finally, taking into account both Primary and Secondary results, input X2 seems to be the most

relevant, thus effort should be made to reduce uncertainties in its range of values during the

auditing process. Input factor X1 has, in general, less impact on the output than X2, however,

its behaviour is significantly asymmetric 10, which means that some specific values of X1 can

10More values greater than the mean of the distribution than there are lower.
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outweigh X2 in terms of influential impact on the output, therefore, special care is advised when

information is collected for this input.

Both analyses show that X3 is the lowest significant input to the output, and therefore less audit

time should be spent in qualifying its values.

3.3 Case-study

3.3.1 Calculation models

For this case-study the adapted methods have been applied to four different energy calcula-

tion methods. The first three models are well established within industry and the fourth was

specifically created for this case-study.

Model A. CIBSE TM22 software:

As part of the TM22 guidance, CIBSE provides a Microsoft Excel spreadsheet that can be used for

estimation of energy consumption within buildings by end use [22, 31]. The total annual small

power energy usage, ET , is calculated by Equation 3.46 :

ET =Un ∗PL ∗FL ∗Oh ∗ (F∗
ON + (8760−Oh)∗F∗

w /Oh) (3.46)

where:

ET is the total annual energy consumption;

Un is the number of installed units;

PL is the nameplate load;

FL is the load factor;

Oh is the operational hours;

F∗
ON is the ON load factor;
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F∗
w is the wastage load factor; and

8760 is the number of hours in a year.

*Asterisked data are optional, which means the model can still be implemented if this information

is not available.

Model B. CIBSE TM54:

The CIBSE TM54 Technical calculation model [136] is based on the use of dynamic simulation

modelling to calculate energy loads within the building, however, calculation estimates for

certain types of consumption are required, with small power loads being one such example. The

model was initially introduced for the design stage, but it also provides a reasonable approach

for estimation of energy use in an occupied building. The total annual small power energy usage,

ET , is calculated using Equation 3.47:

ET =Un ∗ ((PON ∗Oh)+ (P∗
w ∗ (8760−Oh))) (3.47)

where:

ET is the total annual energy consumption;

Un is the number of installed units;

PON is the average ON power;

PW ∗ is the average waste power;

Oh is the operational hours; and

8760 is the number of hours in a year.

*Asterisked data are optional, which means the model can still be implemented if this information

is not available.

Model C. Energy Consumption Guide 35:
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This model provides an alternative approach for estimating the number of units installed based

on the occupancy density and the kind of appliance, it assumes that small power demand per

unit floor area is closely related to occupancy density. Energy Consumption Guide 35 [137],

published by BRESCU and BSRIA in 1995, was the first guide to use this approach to calculate

energy efficiency in offices. This strong correlation between the small power load demand and

the occupant density has also been corroborated by recent practical studies on office buildings,

such as the Welsh School of Architecture [47]. The total annual small power energy usage, ET , is

calculated by Equation 3.48:

ET =Od ∗Pr ∗PL ∗FL ∗Oh (3.48)

where:

ET is the total annual energy consumption;

Od is the annual averaged occupancy density;

Pr is the annual total number of persons;

PL is the nameplate load;

FL is the load factor; and

Oh is the operational hours.

Model D. Consumption behaviour:

Recent studies involving surveys in commercial buildings have shown the large impact of oc-

cupant behaviour on small power energy waste [133, 134]. Defining waste energy as the energy

consumed consumed which is not associated with specific occupant activity, this calculation

model is proposed in this thesis as a method to address the lack of energy awareness of building

users.
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The proposed model incorporates a new input parameter, the “Waste Time Factor” (Tw ) that

accounts for the portion of time, in hours, that the appliances are wasting energy, i.e., consuming

energy without being used for work or other occupant activity. In this way, the new model

considers three operational modes: ON (when appliances are consuming energy that is used

only to produce work), OFF (when appliances are not consuming any energy), and Waste (when

appliances are consuming energy but they are not producing any work: sleep mode, stand-by

mode, appliances left ON but not being used, etc). The total number of hours in a year (8760

hours) is divided into those three modes and the total annual small power energy usage, ET , is

calculated according with that to the Equation 3.49:

ET =Un ∗PL ∗Oh ∗ (FON +Fw ∗Tw ) (3.49)

where:

ET is the total annual energy consumption;

Un is the number of installed units;

PL is the nameplate load;

FON is the ON load factor;

FW is the Waste load factor11;

Oh is the operational hours; and,

Tw is the waste time factor.

During the remaining portion of time, 8760−Oh ∗ (1+Tw ), the appliances are considered to be

in OFF mode and not consuming any energy.

11Note that FW = 0 only if there is not any energy wastage, otherwise FW 6= 0
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3.3.1.1 Calculation models input parameters

Within the calculation models considered in the study, some input parameters are common and

others are model specific. In order to facilitate comparison and analysis of the models, Table 3.3

has been created to present a classification of all the input parameters in accordance with Level

III of the TM22 methodological framework presented in the literature review, along with their

description and an indication of the model in which they are used.

Table 3.3: Description table for input data to energy models

Input Description Model
Number of Units

Units: Number of individual appliances installed A C D
Un

Occupancy Density Number of persons per Unit B
Od (Person/Unit)

Persons: Total number of people B
Pr

Power Consumption
Nameplate Load : Nominal power rate per unit

PL (W) A C D
*Average ON Power: Average power consumed during

PON (W) operational hours B
**Averaged Waste Power: Average waste power

Pw (W) B
***Load Factor: Percentage of the actual load used with

FL (%) respect to the name-plate (NP) Load A B
*ON Load Factor: Ratio of load used with respect to the NP

FON (%) during operational hours A D
**Waste Load Factor: Percentage of waste load used with respect to

Fw (%) the NP during non-operational hours A D

Hours per Year
Operation Hours: Productive hours in a year (different from the

Oh (h) occupancy hours) A B C D

Management Factor
Waste Time Factor: Number of hours in a year that the appliance is

Tw (h) consuming waste energy D
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3.3.2 Information sources

To demonstrate the benefits of the approach in the evaluation of post-occupancy calculation

models for office buildings, two case study open space offices of 30 m2 of conditioned floor area

with five types of small power equipment (PCs, laptops, screens, printers, and fridges) has been

considered. The first one, a typical office with a fix number of staffs performing administrative

work and the second one, a co-working space with a fluctuating number of stuffs from different

backgrounds and companies sharing workspace.

In order to replicate a standard preliminary audit process, the range in Number of Units, Occu-

pational Density, Nameplate Load, Average ON Power, and Average Waste Power values for the

different small power equipment types, has been obtained from established industrial bench-

marking sources [15, 138, 139].

The range in Number of Units, Occupational Density, Nameplate Load, Average ON Power, and

Average Waste Power values for the different small power equipment types are based on bench-

marking [15, 138, 139].

Based on previous audits, the Operational hours range for PCs, laptops, and screens has been

assumed to be from 1040 hours (equivalent to operating 4 hours/day, 5 days/week) to 3120 hours

(equivalent to operating 10 hours/day, 6 days/week) for the typical office and from 624 hours

(equivalent to operating 4 hours/day, 3 days/week) to 7280 hours (equivalent to operating 20

hours/day, 7 days/week) for the co-working office. Except for fridges, that have been assumed

to be operating the whole year (8760 hours) and for printers, where benchmarking in [138] has

been used.

The Waste Time Factor range has been considered to go from 0 hours to (8760−mi n(Oh)) for

each of the small powers, except for the fridge which is assumed to operate constantly without

waste.
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The three load factors, as calculated in Equation 3.50 12, are used for the different small powers

except the fridge which uses Fw = 0 and Fl = Fon (and therefore Pv = Pon).

Fl = Pv ∗100/Pl ; Fon = Pon ∗100/Pl and Fw = Pw ∗100/Pl (3.50)

According to this information, Table 3.4 for the typical office and Table 3.5 for the co-working

office, have been created. These tables do not intend to constitute a benchmark for small powers,

rather they provide a set of input parameter values for the current case studies. The range in

values for input factors in a real energy audit would depend on the specific building scenario

(i.e., information available) and the auditor criteria.

12Where Pv is the averaged actual power rate and the remaining variables are described in Table 3.3.
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Table 3.4: Value ranges for the input parameters presented in Table 3.3 for a typical office.

Equipment Un Pl Pv Pon Pw Fl Fon Fw Oh Tw Od Pr

- (W) (W) (W) (W) (%) (%) (%) (%) (h) - -

PC
10 480 48 52 1 4 5 0 1040 0 0.5 19

25 1200 97 120 53 20 25 11 3120 7720 1 25

Laptop
10 50 12 30 1 9 23 1 1040 0 0.5 19

25 130 36 40 20 72 80 40 3120 7720 1 25

Screen

15”-21”

19 240 20 25 0 8 10 0 1040 0 1 19

50 260 36 45 1 15 20 0.5 3120 7720 2 25

Printer

Multi-use

1 1440 550 600 260 30 32 14 260 0 20 19

2 1850 1060 1400 350 74 82 21 520 8240 30 25

Fridge

Small

1 100 90 90 0 25 25 0 8760 0 20 19

2 300 120 120 0 85 85 0 8760 0 30 25
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Table 3.5: Value ranges for the input parameters presented in Table 3.3 for a co-working office.

Equipment Un Pl Pv Pon Pw Fl Fon Fw Oh Tw Od Pr

- (W) (W) (W) (W) (%) (%) (%) (%) (h) - -

PC
8 480 48 52 1 4 5 0 624 0 0.8 10

30 1200 300 600 150 30 35 22 7280 8136 1 30

Laptop
8 50 12 30 1 9 23 1 624 0 0.8 10

30 130 90 100 50 85 90 50 7280 8136 1 30

Screen

15”-21”

8 240 20 25 0 8 10 0 624 0 0.8 10

50 260 40 53 10 30 40 1 7280 8136 1.7 30

Printer

Multi-use

1 440 140 250 30 20 25 10 130 0 10 10

4 1850 1250 1600 250 75 85 28 1400 8136 40 30

Fridge

Small

1 65 55 55 0 12 12 0 8760 0 10 10

4 300 250 250 0 95 95 0 8760 0 40 30

3.3.3 Results

The Adapted SA has been implemented on the four calculation models presented in section 1.2.1.

of this chapter, using the ranges of input factor values provided in Table 3.4 and Table 3.5.

As an example of the method implementation, the Primary (Figure 3.8) and Secondary (Figure

3.9) graphs obtained for the PCs from the first case study have been presented and analysed in

this section .

Primary SA:

Sub-Figures 3.8a, 3.8b, 3.8c, and 3.8d, show the graphical results obtained from the implementa-
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tion of the Primary SA method to models A, B, C, and D, respectively. Each point in the graphs

corresponds to one of the PC input parameters (presented and described in table 3.3), repre-

sented with respect to the absolute value of the mean, µ∗ (x-axis), and the standard deviation, σ

(y-axis). Logarithmic values have been used to represent those sensitivity features in order to

make small distances between points visually perceptible.

(a) Model A applied on PCs (b) Model B applied on PCs

(c) Model C applied on PCs (d) Model D applied on PCs

Figure 3.8: Primary SA graphs: Estimated mean (µ∗) of the absolute values and standard deviation (σ) of
the different input factors of the four case-study models (applied on PCs’ energy estimation)

Considering the position (or values of µ∗ and σ) of the input factor points on the four graphs
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in Figure 3.8, and in accordance with the classification Figure 3.6, the input factors for the four

models under study can be analysed and compared to obtain the following relevant findings:

• The Waste Time factor (Tw) from model D is the most relevant input parameter, as it has

the highest µ∗ and σ values. In model B, Average Waste Power (Pw) also presents a high

value for the measurement parameters, indicating that models B and D should not be

used if there is great uncertainty associated with waste energy related inputs. The analysis

reveals the high levels of uncertainty associated with the ”Waste” related factors, thus direct

monitoring of these factors would be recommended with the exception of the Wastage

Load factor (Fw), which shows a relatively low relevance for both models A and D.

• For models A and C Operational Hours (Oh) and Nameplate Load (Pl) are the most influ-

ential factors. The effect of these two input factors shows approximately constant values

across the different models in which they are contained, A, C, and D. This means that

model B would be an option to be considered in the case of great uncertainties associated

with those factors.

• There are inputs with a very low impact on output, some do not even appear in the figures

due to their low values. Units and Occupancy Density are the least influential factors among

the models, benchmarks and assumptions can be used for these inputs.

• Large values ofµ∗ are associated whit high values ofσ. This makes sense as large influential

inputs have more weight over the model output and, therefore, minimal variation in their

effects due to external variations will be translated into large impacts in the model output.

Secondary SA:

Sub-figures 3.9a, 3.9b, 3.9c, and 3.9d, show the graphical results obtained from the implemen-

tation of the Secondary SA method to models A, B, C, and D, respectively. Each point in the
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figures corresponds to one of the PC input parameters, represented with respect to the grade of

non-monotonicity,Φ (x-axis), and the grade of skewness, Sk (y-axis). Logarithmic values have

been used to represent those sensitivity features in order to make small distances between points

visually perceptible 13.

(a) Model A applied on PCs (b) Model B applied on PCs

(c) Model C applied on PCs (d) Model D applied on PCs

Figure 3.9: Secondary SA graphs: Estimated degree of non-monotonicity (Φ) and degree of skewness (ξ)
of the different input factors of the four case-study models (applied on PCs’ energy estimation)

Considering the position (or values ofΦ and ξ) of the input factor points on the four graphs in

13Note that the logarithmic value for a numbers n: 0 < n < 1 is negative.
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Figure 3.9 and according to the classification Figure 3.7, the input factors for the four models

under study can be analysed and compared between them, obtaining the following relevant

findings:

• Models B, C, and D are monotonic for all their input factors. This facilitates the energy audit

process as it ensures the output sign is consistent with the input (i.e., it always increases or

decreases with the input). In model A, all inputs follow the same pattern with the exception

of the Operational Hours (Oh). This last input is the only one that presents a certain degree

of non-monotonicity, that is, does not maintain the same sign in its input-output relation

for the whole set of base cases considered (i.e., it sometimes increases and sometimes

decreases with the input).

• None of the input factors have a symmetric SEE distribution function, which means there

is not an equally partitioned number of values on both sides of the mean. Almost all inputs

have a negative sign for the degree of skewness, which means that there are more values

on the left of the SEE distribution than on the right. Only the Nameplate Load (Pl) in model

B presents the opposite trend with a negative value.

• The Units (Un) factor from model B, classified as a low impact factor by the Primary SA,

is the most asymmetrical. Regarding the value of Un for this model, and according to

Equation 3.26, the Mean (µ j ) is much greater that the median (m j ), which means there are

a large number of SEE values greater than the mean, or the general behaviour trend.

• In a similar way, factors Un and Fon for model A, also classified as low impact factors in the

Primary SA, have a relatively high degree of skewness, and therefore, especial effort needs

to be taken to reduce uncertainties in their value ranges as some of those values (deflected

from the mean trend) can have a large impact on the output.
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Taking into account the Primary and Secondary SA, Table 3.6 has been created to rank the

importance of input factors with respect to the output results. It highlights (in bold) the relevance

of some factors that, although considered negligible in the Primary SA, can contain specific high

impact values.

Table 3.6: Input factor impact ranking for PCs from the typical office case study.

Input factors High Impact Low Impact

Model A Pl; Oh Fw; Fon; Un

Model B Oh; Pw Pon; Un

Model C Pl; Oh Pr; Od

Model D Oh; Tw Fon; Fw; Un

Factors classified as High Impact, where the associated uncertainties will largely affect the output,

need to be prioritised when collecting information for energy audits, and for Low Impact factors,

where the associated uncertainties will not significantly affect the output, benchmarking and

assumptions can be taken without risk of affecting the energy estimation, except for highlighted

factors that, due to their complex (asymmetric or non-monotonic) behaviour, can contain

specific values that can largely affect final energy estimations.

The proposed SA method categorizes the sensitivity of the model output to the uncertainties

associated to the different inputs. Table 3.6 can be used to identify where will be more efficient

reduce uncertainties for the improvement of the final model estimation.

3.3.3.1 Visual result representation

To incorporate the remaining small appliances considered in each case study and easily enable

interpretation of the data, the results obtained from the Primary and Secondary SA have been

reformed into chrome maps and presented in Figures 3.10 and 3.12, for the first case study, and

Figures 3.11 and 3.13, for the second case study. These maps provide a visual indicator of the
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performance of the model depending on the kind of appliances considered in the assessment

and the initial information available (Tables 3.4 and 3.5) for each of the calculation models. The

colour bar at the right of each map indicates the mapping of data values into the chrome maps,

by a monotonically increasing color scale that goes from the minimum to the maximum numeric

values of the map.

Primary SA:

The relative impact of the input factors for each model is indicated through the colour tonality of

the Primary chrome maps, Figures 3.10 and 3.11, and quantified in the colour bar at the right of

each map. This colour variable is calculated for each appliance’s Primary SA graph (e.g. Figure 3.9

for the PCs) as the Euclidean distance from the origin of the graph to the corresponding input

factor point (Equation 3.51). Logarithmic values of d1 have been used to allow visual recognition

of the results in the graphical representation.

d1 =
√
µ∗2 +σ2 (3.51)

The Primary SA chrome maps can be used to identify the most suitable calculation model and

relevant input information for an audit depending on the scenario or the case study. For the first

case study, the typical office, the following four Primary SA chrome maps were obtained, one for

each calculation model considered.
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(a) Model A for all the appliances (b) Model B for all the appliances

(c) Model C for all the appliances (d) Model D for all the appliances

Figure 3.10: Primary SA chrome maps: impact of the different input factors (x-axis) for each of the small
power considered in the typical office case study (y-axis)

The analysis of Figure 3.10 resulted in the several relevant findings.

• Regarding the appliances targeted in the study: PCs and laptops have the major relevance

in the final outputs across the four calculation models. Fridges, by contrast, are not very

relevant in any of the model calculations, specially in model B.

• In terms of the different input factors feeding the calculation models: The number of

Operational Hours, Oh, maintains a high impact in the energy estimation of the four
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models. Others high impact factors are the nominal power rates Pl for models A, C and D

and the energy wastage related inputs, Pw and Tw, for models B and D.

And the less influential input factors are, the number of Units, Un, for model A and B and

the Occupancy density, Od, and number of Persons, Pr, for models C; and the ON Load

factor, Fon, for model D.

For the second case study, the co-working office, the following four Primary SA chrome maps

were obtained, one for each calculation model considered.
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(a) Model A for all the appliances (b) Model B for all the appliances

(c) Model C for all the appliances (d) Model D for all the appliances

Figure 3.11: Primary SA chrome maps: impact of the different input factors (x-axis) for each of the small
power considered in the co-working office case study (y-axis)

Although each chrome-map presents a case dependent input ranking for each specific calcula-

tion model, i.e. they cannot be directly compared between them, the contrast of Figures 3.10

and3.11 provides an overview of the models sensibility depending on the case studies. Being

model A the most sensible and D the less affected by the change of scenario.

The analysis of Figure 3.11 and its contrast with Figure 3.10 resulted in the several relevant

findings.
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• Regarding the appliances targeted in the study: PCs and laptops continue to have a major

relevance in the final outputs across the four calculation models, closely followed by the

Printers. Again, Fridges are the less relevant across models, although this impact has

notably increased for model C.

• In terms of the different input factors feeding the calculation models: he number of

Operational Hours, Oh, continues to have a high impact over the four models, slightly

decreasing for model A and increasing for model B. The energy wastage related inputs, Pw

and Tw, remains as high impact factors for models B and D and the nominal power rates,

Pl, impact slightly decrease for models A and C.

The less influential input factors continue to be the ON Load factor, Fon, for model D

and the number of Units, Un, for model A and B, although the impact of this last factor

has slightly decreased. For model C, only the Occupancy density, Od, remains as a low

influential input factors, since the relative impact of the number of Persons, Pr, has notably

increased.

Secondary SA:

The relative complexity (e.i., the degree of non-monotonicity and deflection from the mean

trend) of the input factors for each model is indicated through the colour tonality in the Sec-

ondary chrome maps, Figures 3.12 and 3.13, and quantified in the colour bar at the right of each

map. This colour variable is calculated for each appliance’s secondary SA graph, as the Euclidean

distance from the origin of the graph to corresponding input factor point (Equation 3.52). Log-

arithmic values of d2 have been used to allow visual recognition of the results in the graphical

representation.

d2 =
√
Φ∗2 +Sk2 (3.52)
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For the first case study, the typical office, the following four Secondary SA chrome maps were

obtained, one for each calculation model considered.

(a) Model A for all the appliances (b) Model B for all the appliances

(c) Model C for all the appliances (d) Model D for all the appliances

Figure 3.12: Secondary SA chrome maps: complexity of the different input factors (x-axis) for each of the
small power considered in the typical office case study (y-axis)

Once the most influential inputs have been detected through the Primary SA method, the

Secondary SA chrome maps in Figure 3.12 can be used to detect additional information regarding

asymmetries on the output due to the input effects. This helps to understand the significance

of the different input factors on the final energy estimations, as stated in some of the relevant
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findings below.

• PCs, laptops and screens have the most general asymmetric behavior and fridges the most

symmetric behavior across the four calculation models.

• Regarding the input factor impact on the asymmetric of the model response: the Averaged

ON Power, Pon, have the higher impact for model B; the Occupancy Density, Od, and

the Number of Persons, Pr, for model C; and the Number of Units, Un, for model D. The

asymmetric behaviour is distributed between the different input factors for model A.

For the second case study, the co-working office, the following four Secondary SA chrome maps

were obtained, one for each calculation model considered.
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(a) Model A for all the appliances (b) Model B for all the appliances

(c) Model C for all the appliances (d) Model D for all the appliances

Figure 3.13: Secondary SA chrome maps: complexity of the different input factors (x-axis) for each of the
small power considered in co-working office case study (y-axis)

The analysis of Figure 3.13 and its contrast with Figure 3.12 resulted in the several relevant

findings. Regarding the appliances targeted in the study:

• PCs, laptops and screens continue to have a high asymmetric behavior models A and B,

but this behaviour has notably decreased for model C and D.

• The low asymmetric behavior of the fridge across the four calculation models has decreased

even more.
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Regarding the input factor impact on the asymmetric of the model response: the Averaged

ON Power, Pon, has the higher impact for model B; the Occupancy Density, Od, and the

Number of Persons, Pr, for model C; and the Number of Units, Un, for model D. The

asymmetric behaviour is distributed between the different input factors for model A.

• Regarding the input factor impact on the asymmetric of the model response: the high

impact of Averaged ON Power, Pon, for model B has notably increased, as well as the impact

of the Load factor, Fl, for model A and the impact of the Number of Units, Un for model

D. The Occupancy Density, Od, and the Number of Persons, Pr, remain with similar high

impact for model C.

3.4 Summary and discussion

Previous work documented the effectiveness of SA methods for the evaluation of calculation

models in several fields [53–55], including energy calculation models in buildings [56]. However,

these studies have not focused on small powers, even though these types of power are considered

to be a major source of uncertainty for energy audits. In this chapter, a SA method for evaluating

the influence of small power on energy estimations has been defined and tested by two case

studies, a detailed methodology of the process and relevant results have also been presented.

To create the new SA method, the established Morris method has been modified through a

number of adaptive refinement measures in order to overcome the deficiencies of this last SA

method when implemented in calculation approaches for small power loads. These adaptive

refinement measures related to what was called the space of experimentation: re-scaling the

input factors’ value ranges for homogenising the space and performing a systematic evaluation

of all its points; and also to the elementary effect distributions of each input: standardising their
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estimation factors, incorporating an additional analysis of the symmetry of the distribution, and

providing a visual representation of the results in the shape of chrome-maps.

The resulting adapted method provides two levels of analysis. Firstly, the Primary SA creates

an initial ranking of the input factors according to the overall significance of the input over the

output. Secondly, the Secondary SA supplies additional information about the monotonicity

and skewness on the output value distribution due to each input. Through these two levels of

analysis, the method helps to determine the input factors that contribute most to the output

variability and to determine the calculation model that best works for a specific energy audit

scenario, depending on the appliances and information sources available.

To test the practicability of the new SA method, a case study has been proposed. For this, four

different calculation models, operating under the CIBSE TM22 methodology umbrella, were

chosen and a range of input values for a set of small powers obtained from established industrial

benchmarking sources and assumptions based on previous audits for two different case studies

or scenarios: a typical office with a fix number of staffs performing administrative work and a

co-working space with a fluctuating number of stuffs from different backgrounds and companies

sharing work-space.

Chrome-maps obtained from the implementation of the Primary SA highlighted the appliances

with a major relevance in the final estimation output; data from these appliances should be

made a priority during the audit, such as the PC and laptop, and the appliances that, by contrast,

are not very relevant and simple benchmarking can be used, such as the fridges, across the four

evaluated calculation models for both case studies.

This intial SA also identify a number of High Impact inputs , such as the number of operational

hours and the energy wastage related inputs for models B and D, which means more effort is

required to reduce uncertainty in their value ranges in both case studies whichever model is
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chosen for the audit.

The Secondary SA chrome maps can be used to identified input factors that, although classified

as Low Impact by the Primary SA, contain specific values that can have a complex impact on the

output, i.e., they may deflect from the mean trend. As the number of Units in model A and the

Occupancy Density in model C, for the first case study, and the number of Persons in model C,

for the second case study. Special care needs to be taken for these factors when selecting the

individual values for their input range as they can largely affect final energy estimations.

These improvements extends those proposed by Campolongo et al. [68] and of Sin et al. [63] on

the generalization of Morris method, allowing it implementation for the analysis of calculation

models operating under the CIBSE methodology. The improved method provides a classification

of the different input factor depending on their relevance for the final model estimation, allowing

to identify which input uncertainty should be chosen to reduce the most uncertainty of the

model output and thereby, helping to optimize the auditors’ time management and the overall

audit process.

The present paper contains the first study to undertake small powers as the specific target for

the SA. However, although the method was originally conceived for the specific field of small

power load calculations, it could be applied to other areas of energy auditing, or areas of building

services, where a formal sensitivity analysis is required. Further studies should be conducted to

determine the effectiveness of extending the method to these new areas of implementation.
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Chapter 4

Improving the measurement approach

4.1 Introduction

The previous chapter described the challenges related to the uncertainty associated with the

information fed into the models used in the calculation approach for small power energy estima-

tions. Moreover, it proposed a sensitivity analysis method for the identification and ranking of

these sources of uncertainties which is dependent on their relation to the model output. This

chapter tackles the challenges related to uncertainties associated with the metering techniques

used in the measurement approach introduced in the Literature Review chapter of this thesis.

The measurement approach involves some degree of monitoring. This approach offers accu-

rate performance information to auditors and those involved in building maintenance [140].

According to Carrel et al. [7], residential energy savings that are a result of direct monitoring

at the appliance level can account for up to 12 % savings of a building’s overall consumption.

This approach can be complex of implement, especially considering small power loads. In office

buildings, small power loads account for more than 20 % of the total energy used [141], and up to

50 % in highly efficient buildings [15]. However, few practical studies about the benefits derived
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from the use of direct monitoring of small power loads in office buildings have been conducted.

This chapter assesses the two main measurement techniques categories, bottom-up and top-

down, presented in the literature review chapter [3, 75, 76]. In the bottom-up techniques, each

item is monitored individually and then summed up for the estimation of total energy consump-

tion. Top-down techniques use the aggregated energy consumption monitored from a single

central meter which is then broken down into individual items or systems, using calculation

models. These last techniques offer detailed information about aggregated energy profiles with a

relatively low complexity of metering infrastructure. However, break-down energy strategies for

the top-down technique are based on assumptions about appliance use profiles, and therefore,

increase the uncertainty of their small power energy estimations [38]. Bottom-up techniques,

on the other hand, offer information at the individual system level, but these techniques can be

expensive and intrusive [83]. It becomes crucial to understand the particularities of these two

metering techniques, to identify the most efficient monitoring strategy for auditing different

office scenarios, and to improve ways to analyse and present their information.

In order to compare these two measurement approaches, bottom-up and top-down techniques,

the findings from a case study of an office building in which they are implemented are analysed.

This allows identification of the benefits and disadvantages of each category and proposes further

lines of research which involve alternative measurement strategies along with an study of the

uncertainties associated to this new strategies.

4.2 Methodology: metering techniques for small power loads

This section presents the hardware installation used for the implementation of the two metering

techniques evaluated in this chapter, along with the comparison of the corresponding data sets
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obtained. To do this, two offices at the University of Reading 1 were considered for a case study.

The total area, approximately 30m2, is divided into two office-rooms; office A is occupied by

the University’s energy management team, and office B is occupied by the University’s cleaning

management team. Within these two rooms a total of 16 appliances were targeted for the study.

Four are shared or common user appliances, made up of: one small refrigerator, two multi-use

printers, and one shredder. And the remaining twelve are individual user appliances, made up

of twelve desks (eight PC-based and four laptop-based). Appendix B presents a summary table

with relevant information for the appliances monitored (i.e., plug meter connected, appliance

type, manufacture and power rate for operative and sleep mode) and specifications for the

experimental design. The appliances were monitored using two different metering techniques

over a period of five non-consecutive weeks (from 18th August to 4th September, 2017; 2nd to

11th October, 2017; 6th to 13th November, 2017 and 24th November to 3r d December, 2017)

4.2.1 Monitoring hardware

To obtain the individual appliance energy consumption data, a wireless, pass-through socket

monitoring system (4-noks smart plugs kit [81]) was used to monitor each targeted appliance.

The power consumption data from the 16 individual appliances data are collected using individ-

ual smart plugs and sent via a gateway to a PC configured to retrieve active power averaged data

every 10 seconds using a Modbus master simulator. This sample rate has been chosen due to the

amount of data traffic created by the smart plugs used in the monitoring. Login intervals of less

than 10 seconds have been tested, resulting in issues of data transmission. Figure 4.1 presents

the topology of the 4-noks metering system experimental set-up, and Appendix C shows the

schematic layout of the smart plugs distribution over the two offices case study area.

1The selection of the monitored area was subjected to availability and suitability for the metering system
connection.
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Figure 4.1: 4-noks metering system experimental set-up

The monitored appliances are fed by three separate electrical circuits (6L1 connected to phase

I, 6L3 connected to phase III, and 8L1 connected to phase I) on the local distribution board

that are exclusive to the case study office space. To obtain the small power aggregated load, the

instantaneous active power feeding each circuit is monitored using a Measuring Transmitting

Unit (MTU) manufactured by TED [78] (see Figure 4.2b). For that, current data are collected

through three current transformer 2 (CTs) connected around each of the three electrical circuits

and instantaneous voltage data from the corresponding phase (Figure 4.2a).

2The current transformer measure alternating current by producing a current in its secondary which is propor-
tional to the current in its primary.
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(a) MTU circuit and phase connectors. (b) MTU installation in the unit board.

Figure 4.2: MTU monitoring equipment and installation.

The MTU is connected via Ethernet to a data-logger that stored the instantaneous active power

readings from each of the three electrical circuits every 10 seconds 3. These three datasets are

3Lower sampling frequencies showed issues in data transmission.
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summed up to obtain the total energy consumed by the small powers. Table 4.1 presents the

MTU monitoring layout (e.i., the wire, phase, CT connector and the appliances fed for each

circuit).

Table 4.1: MTU monitoring layout explanation.

Wires Phase* CTs Circuit Appliances

Black I A 6L1-office A kitchen Small fridge and instant boiler.

Red III B 6L3-office A right wall and office B 5 Desks, 2 printers, 1 shredder

Blue I C 8L1 office A main wall 7 Desks**

* From the three-phase electric power distribution system. ** Desktop computer or PC.

4.3 Result analysis

In this section, the databases obtained by each technique are compared, to establish the mea-

sure(s) of ”truth” that will be used to evaluate uncertainties, along with the information provided

at two different levels of analysis, the aggregated total load level and the individual appliance

load level. The aim is to analyse the information provided by each metering technique and

propose ways to expand it.

4.3.1 Data meter comparison

The consumption data gathered by the two metering techniques during the 43 monitored days

provided two databases: one containing the 16 individual energy consumption profiles (one for

each appliance targeted); and a second one with the aggregated energy consumption of all the

small power feeds by the three electrical circuits under monitoring. Table 4.2 present the two
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databases used to analyse the metering techniques under study.

Table 4.2: Case study data bases

Database Data packages Description Meter

I 16 datasets Individual appliances energy consumption profiles 16 Smart plugs

II 3 datasets Aggregated appliances energy consumption profile MTU

Both databases from Table 4.2 are compared to obtain the profile errors ε′ (Equation 4.1) and ε′′

(Equation 4.2), defined as the difference, in kWh, between the two databases total energy read,

considering Database I and Database II as the ”True” value, respectively.

ε′ =
∣∣∣∣kW hI −kW hI I

kW hI

∣∣∣∣∗100 (4.1)

ε′′ =
∣∣∣∣kW hI I −kW hI

kW hI I

∣∣∣∣∗100 (4.2)

Where power kW hI is the aggregated energy from the 16 appliance profiles of Database I and

kW hI I from the three circuit profiles of Database II. The major sources, or cause, of these “error”

during the monitoring period have been experimentally identified and are presented below:

1. Singular communication issues in the MTU causing the signal to drop to zero value.

2. An instant water boiler rated 2400W and directly connected to the mains that has only

been monitored by the the MTU meter, along with other unidentified temporary small

appliances (e.g., mobile phone chargers, small desk fans, etc).

3. The MTU and the smart plugs monitoring system are not exactly synchronized, i.e., their

data are not continually harmonized over time.
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4. Differences in the sampling procedure of both meters: the MTU sampling active power in-

stantaneous values every 10 seconds and the Smart Plugs averaged values over a 10 second

period This difference between meter readings become more noticeable for appliances

with fast active power fluctuates. Figure 4.3 presents the printer profile comparisons of the

two meters during a thirty-minute period (blue for the MTU profile and red for the smart

plug) as an example of this reading mismatching.

Figure 4.3: Comparisons of the MTU and Plugs power profile reads for the printer.

These differences in the readings are due to the monitoring sampling frequency restrictions

that, according to the Nyquist Theorem, must be at least twice the highest analogue

frequency component of the signal, which means that with a sample rate of 0.1Hz it is

not possible to accurately monitor signals with frequency contents higher than 0.2Hz

(profile changes happening within 20 second periods), as is the case for printers, PCs,

and laptops. Individual consumption profiles for these appliances, using 100Hz sample
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rate, are presented in Appendix D. According to these profiles, printers are the appliance

most affected by the fourth identified error cause with sharp fluctuations of nearly 1000 W

magnitude and a time interval between them of approximately eight to 20 milliseconds.

Compensation measures have been implemented for each of the identified causes of profile

error. These measures do not necessarily improve the accuracy of either of the two meters, rather

they reduce the differences between their readings to allow comparison between them.

1. The zero values in the MTU profiles, which are due to singular communication issues,

are identified and averaged with the previous and later value. This measure assumes the

average of the two closest neighbour values provides a better estimation than the zero

value.

2. Peaks bigger that 200W are assumed to be caused by the instant water boiler as the remain-

ing appliances have lower power rate nameplates. These peaks are identified in the MTU

profile and removed through signal processing techniques.

3. To synchronize the monitor readings, curve fitting techniques have been used. A linear

interpolation has been implemented to synchronize MTU values with those of the smart

plugs. These new interpolations of the MTU values are estimations of the original readings,

some degree of accuracy in the MTU profile can be lost with the implementation of this

measure.

The resulting “compensated errors” during the whole 43-days monitoring period, for the mini-

mum, maximum and averaged vales after the implementation of the compensation measures,

are provided in Table 4.3).
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Table 4.3: Compensated errors band vales for ε′k and ε′′k .

Error band Minimum Maximum Averaged

ε′′′k (%) 4.1 15.3 9.6

ε′′′′′′k (%) 3.9 13.3 9.3

In the following section the information extracted in the field of small power energy by the

bottom-up (Database I) and the top-down (Database II) metering techniques at both levels, i.e.,

individual appliance and total energy consumption performance, is analysed and methods to

expand them proposed. The different uncertainties associated with those methods considered

and their energy estimation validated in accordance with the correspondent ”compensated

error”.

4.3.2 Energy audit benefits obtained from aggregated appliances energy use

data

An accurate estimation of the total energy consumed by the aggregated small powers can provide

a significant improvement to the energy audit process. The performance of large office building

systems, such as mechanical ventilation, heating, cooling, and lighting, are usually centrally

controlled and monitored, and thus their performance parameters can be relatively easily ob-

tained. Information relevant to small power energy performance, by contrast, is more complex

to obtain. This is a result of their heterogeneous nature and high dependency on occupancy

consumption behaviours. In typical audits, energy estimations are made for large systems (either

using calculation models or direct monitoring), and the remaining energy is attributed to small

power loads, often leading to over-estimations, and thereby causing errors for the rest of the

systems energy assessed, e.g., the oversize of the air conditioning load [6]. Thus, aggregated
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small power energy estimations need to be considered to ensure accurate energy audits.

Relevant existing top-down techniques are presented and discussed in the followed subsections

and an alternative bottom-up method for the monitoring of aggregated appliances energy use

data proposed and tested.

4.3.2.1 Analysis of top-down existing techniques

In a typical energy audit that undertakes a measurement approach, aggregated energy consump-

tion is collected by top-down techniques and consumption profiles are usually presented in two

ways, as either power consumption profiles (W), or as energy consumption profiles (kWh), the

latter usually averaged per hour, day, week, etc.

Figure 4.4 shows these typical profile shapes for the MTU reading, using dataset II from Table 4.2,

during two consecutive weeks (21st August to 3r d September). The top profile provides detailed

information about energy consumption behaviour, i.e., when energy is being used. For a normal

working day, energy consumption starts around 0430 becoming higher from 0800 to 1700,

coinciding with occupancy hours. The bottom profile reports the amount of energy consumed

per day, allowing an easy direct comparison between days, weeks, etc. For example, during the

second weekend (2nd −3r d September) around 1.5 kWh/day more was consumed than during

the first weekend (26th −27th August). Moreover, comparing Monday 21st (a normal working

day) with Monday 28th August (an unoccupied day4) it can be seen than the former consumed

about the double kWh energy of the latter.

4August bank holiday in UK.

112



Section 4.3 Page 113

Figure 4.4: Power and energy consumption profiles from 21st August to 3r d September.

The analysis of the power and energy profiles presented in Figure 4.4 is an extended technique

in energy audits and presents a useful tool to better understand energy demand and general

consumption behaviours. However, they can be complex and difficult to interpret, particularly

for highly variable systems such as small powers.

An alternative way to present aggregated energy profilers is the use of chromo-maps, where data

magnitudes are represented by different colour intensities. These maps can be very useful for

providing a picture of the overall energy performance, making occupancy pattern data visible

and understandable at a glance.

Three consecutive weeks of data (from the 21st August to the 10th September) 5 are presented

5This typical holiday period was chosen to evidence the influence of occupancy profiles.
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in Figure 4.5, using both profile representations, power consumption lines (at the top) and a

chromo-map (at the bottom). In the chromo-map graph the horizontal axis contains the 24 hours

of the day, the vertical axis the days of the week stacked for three individual weekly power profiles

(at 10 second sampling rate). The colour-bar at the right of the map relates the logarithmic value

of the power with this color intensity scale, from maximum to minimum values, making it easier

to identify peaks and base lines.

Figure 4.5: Power consumption profiles from the 21st August to the 10th September 2017

In accordance with Figure 4.5, the chromo-map representation (at the bottom) makes easier

the identification of unoccupied days (e.g. Monday 28th August) and the detection of incre-

ments in the base-load energy consumption (e.g., Wednesday 23r d and Thursday 24th August,

and the weekend from Friday 1st to Monday 4th September), in comparisons with the power
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consumption lines representation (at the top), which makes very difficult to identify this infor-

mation. Chromo-maps are, then, considered as the best visual tool for comparing weekly power

consumption profiles in this case study.

Figure 4.6 presents the plot of the seven individual daily power profiles (at 10 second sampling

rate) for the week of the 21st to the 27th August. Again, with both profiles, power consumption

lines (at the top) and a chromo-map (at the bottom).

Figure 4.6: Power consumption profiles from the 21st to the 27th of August.

In contrast with Figure 4.5, the daily power consumption behavior can be observed on both

profiles in Figure 4.6. The shape of these profiles indicate occupancy hours to be around 0700

to 1630, during this hours the power consumption profile is very oscillating, with a base line
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of around 400 W6 and during no occupied hours the power consumption base load, when the

fridge is switched-off, is nearly null 7.

Using the chromo-map profile irregularities such as difference between occupancy hours, e.g.

a detected finish time on Friday of 1500, are easy to spot. However, for identifying the reason

of unusual behaviour, such as the consumption increase of 50 W registered during the nights

of Wednesday to Friday as a result of one of the hot desks being left on in room A, individual

consumption profiles are needed (Figure 4.7 presents the hot desk individual power profile

during 23r d to 24th of August monitored by a smart plug.).

Figure 4.7: Hot desk leaved on from 23r d to 24th of August

4.3.2.2 Use of bottom-up techniques at the aggregated level

An important issue for bottom-up techniques, and one which has not been tackled by the

literature reviewed, is the relation between the percentage of appliances monitored and the

6log (400) ≈ 6
7log (0.1) ≈−2
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accuracy obtained in the estimation of the aggregated energy consumed by the small power loads.

To address this, an extrapolation method that provides accurate estimations of the total energy

consumed for each of the possible permutations of an individual meter has been proposed. The

method is implemented in four stages:

1. In the first stage, the aggregated energy collected by each of the individual meters during

the monitoring period is calculated, creating a set of energy values 4.3:

e = {
ei

}
(4.3)

where:

i is the meter counter (i=1,2,....n);

n is the total number of individual meters considered;

and ei is the total aggregated energy, in kWh, monitored by meter i during the period t.

2. In order to consider all the possibilities for the metering granularity, in the second stage

of the method all of the possible permutations of the n elements from set e are obtained

and the values of their elements summed up, resulting in n-sets of aggregated permuted

energy values:

pk = {
p j

}
k = {mk∑

1
ei

}
k (4.4)

where:

k represents the numbers of meters considered in the permutations (k=1,2....n);

mk the length of each k-permutation set, given by:
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• mk = n!/ ((n − i )) i !; for i<n

• mn = n; for i=n

and j is the value counter for the elements of the sets (j=1,2....mk ).

3. In the third stage, each of the previous n-sets are extrapolated for estimating the energy

that would be consumed if all the 12 meters were considered, this obtained n-sets of

estimated total energy values:

Ek = {
E j

}
k = {

p j ∗ (n/k)
}

k (4.5)

4. In the fourth and final stage, the uncertainty 8 is expressed as a standard deviation of the

dispersion of each set Ek , in accordance with Equation 4.6:

σk =
√

1

mk

mk∑
1

(E j −µk )2 (4.6)

where µk is the mean of the the set Ek , and is given by Equation 4.7;

µk =
∑mk

1 E j

mk
(4.7)

and the relative standard uncertainty percentage (RUP) is given by Equation 4.8.

RU Pk = σk

µk
∗100 (4.8)

8In accordance with the EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement. [142],
when the uncertainty component is evaluated experimentally, it can be expressed as a standard deviation of the
dispersion of repeated measurements.
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Once defined, the new proposed extrapolation method is tested by its implementation on the 12

individual desk profiles from Database I (Table 4.2) 9. Figure 4.8 presents the RU Pk obtained for

the permutations of 11 meters10.

Figure 4.8: RUP of the aggregated desk energy estimation depending on the number k of meter used

In Figure 4.8, each RU Pk value is represented by a blue star and the exponential regression fitting

line in red (i.e., given by the equation y = ba1x
1 ). The fitting line shows relatively small squared

errors of prediction (SSE), which means a good fit of the model to the data. The graph presents

an exponential decay shape where the RUP values decay exponentially with k, a large initial value

is followed by an abrupt collapse which approaches the RUP=0 value asymptotically. Plotting the

data on a logarithmic scale rearranged them into a linear regression line, as shown in Figure 4.9.

9The shared appliance profiles (fridge, printers, and shredder) are considered separately.
10Note that k=12 is excluded from the implementation of the extrapolation method because to include it would

mean monitoring the complete set of desks.
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Figure 4.9: RUP logarithmic values of the aggregated desk energy estimation depending on the number k
of meter used

In Figure 4.9, each RU Pk logarithmic value is represented by a blue star and the new regression

fitting line is shown in yellow (i.e., given by the equation log (y) = a2x +b2), with a similar SSE

value to the exponential one. Both equations maintain the exponential-logarithmic relationship

(i.e., a1 ≈ a2 and b1 ≈ log (b2)). This relationship between RUP percentage and the number of

meters used means that the variation between consecutive values of RUP is greater for low values

of k and decreases dramatically when the number of meters used increases. Translated to the

present case study, this means that, for instance, increasing the number of meters from k=1 to

k=6 will achieve a reduction in the RUP of nearly 25%, but the addition of more meters would

only improve the prediction by a maximum of 10%.

The study of the range in values for the different numbers of monitored appliances also provides

significant additional information relevant to the statistical analysis. In Figure 4.10 each blue box

represents the variation in samples of one set Ek , and offers a visual presentation of the degree of
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dispersion of the different sets which, as shown in the graph, decreases with the increase in the

number of meters. On each box, the central red mark indicates the normalised median (Mk ) 11

for each of the correspondent number of desks monitored, given by the middle value separating

the greater and lesser halves of the data set, the bottom and top edges of the box indicate the

25th and 75th percentiles, respectively, and the whiskers extend to the most extreme data points

without considering outliers, which are plotted individually using the ’+’ symbol. The last ”box”

appears as a single line because the set E12 contains only one energy estimation value.

The confidence interval limits for each set Ek are defined by Equation 4.9.

C Ik =µk ± t1−α/2,mk−1
σkp
mk

(4.9)

where µk is the mean (considered as the ”true” value by the method), σk the standard deviation

and mk the size of each set Ek ; and α is the desired significance level, that defines the confidence

coefficient 1−α. The upper and lower limits for each mean µk provided by a 95% two-sided

confidence interval are also represented in Figure 4.10 by a green and pink asterisk respectively.

11Each median value is divided by its correspondent mean value.
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Figure 4.10: Box plot graphical of the normalised energy distribution against the number of desks moni-
tored.

The confidence interval is an indication of how much uncertainty there is in the method esti-

mation of the ”true”’ value (defined as the mean of the distribution). A low number of desks

monitored in Figure 4.10 provides wider confidence intervals, meaning more uncertainty in the

method estimation.

The skewness of the Ek set distribution can be also analysed, as a measure of the asymmetry,

or more precisely, the lack of symmetry of the data around the sample mean. This magnitude

contains relevant information, indicating the degree of dispersion and existing outliner values

in the data, which are values behaving outside general. If the skewness is negative, the data are

spread out more to the left of the mean than to the right. If it is positive, the data are spread out

more to the right, zero representing a normal distribution. The skewness percentage Sk of each

energy estimated set Ek is defined by Equation 4.10.
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Sk =
1

mk

∑mk
1 (E j −µk )3(√

1
mk

∑mk
1 (E j −µk )2

)3 ∗100 (4.10)

Figure 4.11 represents the skewness percentages for each Ek against the number of meters used.

Figure 4.11: Skewness percentage of the energy distribution set against the number of meter.

In accordance with Figure 4.11, only the set E6 has a normal distribution, i.e. the possibilities of

over-estimated or lower-estimated the results are 50%-50%. The use of more meters will result in

the probability of over-estimate the total energy consumption values up to nearly 60% for k=1

(right skewness of the distribution); and the use of fewer meters will result in the probability of an

under-estimation of these values down to nearly 60% for k=11 (left skewness of the distribution).
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4.3.2.3 Bottom-up method validation

The aggregated energy consumed by the four shared appliance profiles from Database I (i.e., one

fridge, two printers, and one shredder) is subtracted from the MTU total energy read (Database II)

and this new energy value divided by the mean µ12 (from Equation 4.7), obtaining a normalised

MTU energy value (K W hI I−Sh). This new value is compared with each of the median (Mk)

estimated by the extrapolation method in accordance with Equation 4.11.

ε′k =
∣∣∣∣K W hI I−Sh −Mk

K W hI I−Sh

∣∣∣∣∗100 (4.11)

Where ε′k is the error, or difference, between the MTU energy read and the extrapolation method

estimations. The relative error ε′k for each of the twelve method estimations during the monitored

period is given by Table 4.4.

Table 4.4: Relative error for each of the extrapolation method estimations

Desk 1 2 3 4 5 6 7 8 9 10 11

Mk 0.892 0.989 0.993 0.998 1.000 1.000 1.000 1.001 1.002 1.002 1.010

ε′′′k (%) 23.0 14.7 14.4 13.9 13.8 13.8 13.8 13.7 13.6 13.6 12.9

This comparative value goes from 12.9% to 23%, with all the estimated values, except the one

corresponding to k=1, below the maximum bound of ε′ (15.3%) provided by the boundary

Table 4.3.

The proposed extrapolation method provides a way of understanding the uncertainties associ-

ated with the proportion of the total appliances monitored. In this way, the method can serve

energy auditors to decide the level of meter infrastructure needed depending on the grade of

uncertainty they are willing to accept for their final energy estimations. However, further research
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work should be designed for a more robust validation of the method through a comprehensive

coverage of appliance loads, a larger database incorporating other classes of appliance.

4.3.3 Energy audit benefits obtained from individual appliance energy use

data

Typically, end-use energy estimations in audits have been restricted to large systems and used

to spot possible malfunctions and misuses, and to identify energy efficient measures, e.g.,

refurbishment of the system or investment in a more efficient one. Small powers, due both to

their dependence on consumption behaviour and their large number, present a challenge for

collecting data consumption at the individual level, for what, when monitored in energy audits,

small power loads are typically considered as a unique aggregated system (i.e., miscellaneous

items, office equipment, etc). However, the decrease in energy consumption of the large system

in highly efficient buildings is increasing the relevance of individual small powers. This makes

the identification of specific consumption behaviour (such as campaigns to switch off computers

during non-occupied hours), or the replacement of high energy consumer appliances (such as

old printers or fridges) efficient energy measures to consider.

The information extracted from the use of currently used bottom-up techniques are analysed,

and an alternative top-down method for the monitoring of individual appliance energy use data

explored and tested.

4.3.3.1 Analysis of bottom-up existing techniques

The infrastructure for bottom-up monitoring techniques is more intrusive and complex than

that for top-down techniques. However, in return they provide more detailed information about

consumption behaviour for individual appliances, and thus allow the identification of potential

125



Section 4.3 Page 126

malfunctions or inefficient appliance usage. This section explores the information collected by

these techniques through a classification of the appliances into different categories based on

their energy consumption profiles.

As for total aggregated energy estimations, the most popular way of presenting the consumption

profiles for the different appliance types is through profiles of both power consumption (W)

and energy consumption (kWh). This section presents the profiles of three different appliance

types monitored during two consecutive weeks, from 18th August to 4th September, 2017, during

which period the consumption behaviour and occupancy profile of the office staff was observed

and registered.

Figure 4.12 presents the individual power consumption profile of the fridge in office A.

Figure 4.12: Fridge power and energy consumption profiles from 18th August to 4th September, 2017.

The profile in Figure 4.12 presents a regular shape, relatively constant during the evaluation

period with a daily base line energy consumption of around 0.45 kWh. The power profile for
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the fridge is also very regular. It shows a cyclical behaviour of 1 hour 36 minutes 32 seconds,

comprised of one ON-period of 23 minutes 30 seconds maintaining an average power of 80 W,

and one OFF-period of 1 hour 13 minutes 2 seconds, which allows the energy consumption of

the fridge to be estimated at 18 Wh of constant energy consumption, or 4.3kWh per day (24

hours). The remaining difference (0.45-0.43=0.002kWh) is caused by the energy peaks which

appear at the beginning of some ON-periods and which are due to the fridge’s compressor cycle.

These peaks last for a very short period of time, around 10 to 20 seconds, and have variable

lengths between 100 to 800 W, which means the resolution of the meters, 10 seconds, is not

enough to properly register these power peaks. The flat profile shape of the fridge evidences its

low dependency on the occupancy profile, and thus benchmarking and/or calculation models

can be used without a high impact on the final energy estimation for this appliance. However,

there will be a risk of missing failures and/or unexpected usages.

Figure 4.13 presents the profile of a PC and a laptop based desk.

(a) PC desk. (b) Laptop desk.

Figure 4.13: Desks power and energy consumption profiles from 18th August to 4th

Figure 4.13 presents a clear link between the desk energy profiles and the occupancy profiles.
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It demonstrates a typical office hours profile, starting around 08:30 and finishing about 17:00,

with null energy consumption during nights, weekends, and unoccupied days (eg., Monday 28th

August). In general, the PC-based desk (see Figure 4.13a) has a higher power rate consumption

and daily energy consumption than the laptop-based desk (see Figure 4.13b), although the

latter has a higher continuous base line that can be observed during unoccupied days. The

strong link with occupancy profiles suggests that calculation approaches can be used for this

type of appliance if there is good knowledge of the occupancy times of the office (e.g., the

implementation of the approximation method proposed in Section 4.3.2.2. of this chapter).

Figure 4.14 presents the profiles of the printers in offices A and B.

(a) Office A printer. (b) Office B printer.

Figure 4.14: Printer power and energy consumption profiles from 18th August to 4th

The highly variable profiles, presented in Figure 4.14, for both printers suggest their energy

consumption is highly dependent not only on the occupancy profiles, but also on the consump-

tion behaviour of staff. There is no clear pattern, thus the use of benchmarking for this type of

appliance can lead to a high degree of inaccuracy (e.g., during the two week period, both printers

present a difference of 2.45 kWh). Figure 4.14b indicates high usage of the printer in office B
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during the second weekend of monitoring, this was due to a failure in the appliance operation.

Such unexpected behaviours can only be spotted through individual appliance monitoring.

Bottom-up techniques can be also used to provide an overall estimation of the percentage

of energy consumption by appliance type and help identify in which areas it would be more

valuable to implement energy efficient measures.

(a) Energy percentage per appliance type (b) Average energy percentage per appliance unit

Figure 4.15: Energy consumption percentage classification representations.

Figure 4.15 shows two different ways of presenting the energy consumption percentage classi-

fication for the different types of appliances monitored. The first Pie chart (see Figure 4.15a),

the most common representation used in energy audits, shows the energy percentage for each

appliance type over the total small power consumption. According to this chart, PC desks are the

most energy demanding, followed by the printer and the laptop desks. However, this ranking

classification changes when the second Pie chart is considered (see Figure 4.15b) as it shows

percentages according to the number of appliances in each category. According to this last

classification, the printers consume the most energy, followed by the fridge. It is also interesting

to note that the laptop-based desks consume more energy than the PC-based desks, even though
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their power nameplates are lower, as a result of their more intense use. These analyses can

be valuable for the efficient implementation of energy measures (e.g., a sensible investment

regarding a possible appliance renovation would be to replace the printers.).

4.3.3.2 Use of top-down techniques at the individual appliance level

Traditional top-down end use energy break-down techniques provide an assessment for sys-

tems and equipment in energy audits, however, they need to be combined with calculation

methods and, therefore, rely on assumptions that cannot guarantee the accuracy of the energy

estimations [20]. Against these assumption-based energy break-down techniques, Non-Intrusive

Appliance Monitoring (NIALM) techniques provide the energy consumption of the individual

loads using a purely metering strategy. The method suggested by Hart [27] relies on the identifica-

tion of variations in the consumption of power to detect the status (ON or OFF) of loads 12. This

section proposes and implements a load status detection algorithm over the aggregated load

readings collected through the MTU meter (Database II from Table 4.2), using the information

from smart plugs (Database I from Table 4.2) for verification, to understand the potential capa-

bilities of NIALM techniques in office building environments with a large number of variable

loads (e.g., printers, PCs, etc), allowing research lines for further studies in the field. The event

detection identification algorithms are based on Meehan et al’s method [114]. In accordance

with this method, a moving window of M samples from the MTU power consumption signal is

used for the event detection, two conditions must be met for an event to be identified.

1. The first condition is that the absolute magnitude of the power signal should be greater

than a certain threshold value during the established moving window.

For S = s1, s2..si , ...sn , being n the length of the power signal, an event i occur when:

12Though more information is required to identify some kinds of loads.
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∣∣∣∣∣ 1

M

M−1∑
k=0

PRMSsi +1 −
1

M

M−1∑
k=0

PRMSsi

∣∣∣∣∣>α (4.12)

where PMTU is the power consumption signal and α is the fixed positive threshold value

for this signal, above which an event, i ∈N , is considered to have occurred; 75% of the

smallest appliance’s nameplate power rate has been chosen for the establishment of this

parameter 13.

2. The second condition that must be fulfilled is that the previous event detected must not

have occurred during the threshold period T, in accordance with Equation 5.3.

∃i ∈N | ∣∣tRMSevent i − tRMSevent (i+1)

∣∣> T (4.13)

Where T = (
p ·∆t

)
seconds, ∆t being the sampling time period and p the number of

samples for establishing the threshold period.

This threshold established the steady and the transient sequences for each event, and

therefore, it needs to be considered when identifying all the appliance categories presented

in this chapter. For the present case study, due to the relatively large sample rate period (10

seconds), p=1 sample has been chosen 14. Nevertheless, there remains the limitation that

events that occur within the 10 second sampling period will not all be identified correctly.

If the two previous conditions are met, an event is detected and can be labeled ON or OFF

depending on the direction of the change in magnitude.

For testing the potential of NIALM as an alternative top-down disaggregation method, the

detection algorithm was implemented, for a few hours, over the three CT MTU input power

13Based on empirical tests and the Meehan et al. method [114].
14Any transient period lower that 10 seconds has been registered for the targeted appliances.
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readings (Table 4.1) during the morning of the 21st of August, 2017. Figure4.16 presents the

event detection on the profile readings from circuit 6L1 which feeds the fridge and instant water

boiler 15.

Figure 4.16: CT-A power reading event detection, for the morning of the 21st of August 2017

The electrical circuit 6L1 monitored by CT-A is the less complex in terms of disaggregation as it

only contains two distinguishable appliances with large fluctuation periods in comparison to

the 10 second sample rate of the meter. With this configuration, a high degree of event detection

can be seen in Figure 4.16, where the MTU profile reading is presented in blue and the fridge

15The instant water boiler is only monitored by the MTU.
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smart plugs in red, and switching ON and OFF events are marked with green and red asterisks,

respectively.

Figure 4.17 presents the event detection on the MTU (in blue) and the individual smart plugs

(red for the printer) profile readings from circuit 6L3, feeding the right wall of office A and the

whole office B, with five desks, two printers, one shredder.

Figure 4.17: CT-B power reading event detection, for the morning of the 21st of August 2017

Much more complexity for the event detection scenario can be observed in Figure 4.17 for the

electrical circuit 6L3 monitored by CT-B. This is not only due to the larger number of appliances,

but also to the high operational variability of their consumption profiles. Although some degree
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of event detection is achieved for the desks (before 09:00 and after 09:30), the high variability of

the appliances, especially the printer (red curve) which fluctuates with a higher frequency than

the meter sample reading (as explained in Appendix D), makes the process of event identification

highly inaccurate when printers are operating. This can be seen in Figure 4.17 which shows the

hours from 09:00 to 09:30.

Figure 4.18 presents the event detection on the profile readings from circuit 8L1 which feeds the

seven desks.

Figure 4.18: CT-C power reading event detection, for the morning of the 21st of August 2017

A larger degree of event detection with respect the previous scenarios can be also obtained for

134



Section 4.3 Page 135

the electrical circuit 8L1 monitored by the CT-C current clamp, as seen in Figure 4.18, where MTU

reading are presented in blue and the individual smart plugs readings in different colours. This is

because although desks have a high fluctuation variability, (around 200 millisecond period) these

fluctuations are relatively small when compared with their averaged power rate magnitudes

(around 20 W), as explained in Appendix D. Therefore, fluctuations do not interfere with the

power threshold given the first condition of the proposed event detection method. However,

there is the issue of event overlapping, as can be observed between 12:00 and 13:00, where some

events are not being detected due to their proximity to each other in time (i.e, lower than the

time threshold T given in the second condition of the proposed event method).

4.3.3.3 Top-down method validation

For the method validation, the seven desks fed by the electrical circuit 8L1 and monitored by

the CT-C current clamp have been considered. The aggregated number of operational ,or ON-

status, hours of the desks have been identified by the load status detection algorithm during

the week from 21st to 28th of August (138.66 hours assuming there is not event overlapping)

and multiplied by an averaged desk power consumption (82W 16 assumed to be constant for all

desks). Figure 4.19 shows the switching on (green dots) and off (red circles) events detected by

the algorithm during the validation period.

16Average power consumption for PCs, laptops and monitors from CIBSE Guide F [143].
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Figure 4.19: Detected switching on and off events in circuit 6L3 from 21st to 28th of August.

Assuming an equitable consumption, the energy estimated for each desk will be K W hN I ALM , j =
1.57kW h. This estimation is compared with the total energy monitored by each of the seven

correspondent plug meters (K W hPlug j from Database I), in accordance with Equation 4.14.

ε′′j =
∣∣∣∣K W hPlug j −K W hN I ALM

K W hPlug j

∣∣∣∣∗100 (4.14)

Where ε′′j is the error, or difference, between each of the individual plug meter energy read and

the NIALM method estimations. The relative error ε′′j for each of the seven desk monitored is
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provide by Table 4.5.

Table 4.5: Relative error for each of the NIALM method estimations.

Desk 1 2 3 4 5 6 7

K W hPl ug , j 1.34 1.46 2.07 1.44 1.49 1.59 1.16

ε′′′′′′j (%) 17.2 7.5 24.1 9.0 5.4 1.2 35.3

This comparative value goes from 1.2% to 35.3%, with an averaged percentage error of 14.2%,

nearly coinciding with the maximum bound of ε′′ (13.3%) provided by the boundary Table 4.3. A

relative low error in the estimations, considering the assumptions made about the appliances

power rates and the issues of event overlaps.

This practical implementation does not constitute a rigourous validation of the NIALM method,

rather it presents an example of the potential capabilities of this techniques and a visual indica-

tion of some of the issues raised by this implementation in a real case. It also informs further

research lines that should be followed to properly implement NIALM techniques for small power

disaggregation.

4.4 Summary and discussion

The implementation of measurement techniques for small power monitoring currently face a

number of challenges concerning metering infrastructure and interpretation of the collected

data. The overall energy contribution of small appliances, especially for office areas, has been

recognised, however, a rigorous study for better understanding and overcoming the challenges

has still not been undertaken.

In this chapter, two common measurement techniques first introduced in the literature review,

bottom-up and top-down, have been implemented in a case study office using two different
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monitoring systems: a set of smart plugs for bottom-up techniques; and a centralised meter

directly connected to the mains for the top-down techniques. The corresponding databases

obtained for each technique have been analysed and compared in order to understand the

causes for their differences. These causes are associated with the different technologies used

in the meters and in the implementation of the infrastructure (e.g., synchronization, sampling

frequency, appliances that can be monitored only by the central meter, etc). Once identified,

a number of compensation measures have been proposed to neutralize these differences, es-

tablishing a set of error boundary values for allowing comparison and methods validation. The

information extracted in the field of small power by these two monitoring techniques and the

potential benefits derived from their use have been explored and compared. This analysis has

been done at two monitoring levels, the aggregated and the individual appliance energy end-use.

Regarding small power energy assessment at the aggregated level, a number of graphical tools

were implemented to present and analyse the centralised meter’s data (i.e., the top-down tech-

nique’s data), including a comparison of typical energy profile representations and chromo-maps.

The benefits of the latter graphic representation for providing a better picture of the overall en-

ergy performance have been recognised (e.g, occupancy patterns and irregular data are visible at

a glance and easier to interpret and compare). The benefits of the use of bottom-up techniques

at this monitoring level have also been explored. For that, the relation between the number of

appliances monitored and the accuracy obtained in the estimation of the total energy consump-

tion have been considered. To facilitate this, a statistical extrapolation method was created and

implemented in a practical study. The method provides a statistical technique to calculate this

relation and inform the probability of over- or under-estimations of energy use depending on the

percentage of appliances monitored. This method informs auditors about the level of monitoring

granularity needed to achieve the required accuracy standards for their energy consumption
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estimations.

Regarding small power energy assessment at the individual level, the energy profiles from the

smart plugs readings (i.e., the bottom-up technique) have been classified based on occupancy

and energy consumption behaviour, considering the impact of substituting the use of direct

metering by benchmarking and calculation models. Accordingly, for appliances such as fridges,

which have continuous cyclical profiles, direct monitoring can be substituted by benchmarking

without greatly affecting energy consumption estimations. For others, such as those associated

with an individual user, like PCs and laptops, calculation approaches are suitable if occupancy

profiles are well known. However, individual monitoring would be advisable for shared appli-

ances, such as printers, which are highly dependent on consumption behaviours. It is, never-

theless, important for auditors to consider that the use of benchmarking and/or calculation

models carries the risk of missing information regarding the identification of mis-usage and

any irregular performance of specific appliances. To explore the use of top-down techniques

at this individual level, a method for load status detection is proposed and implemented in a

case study. The method, based on two detection conditions, constituted the first step for NIALM

implementation. The NIALM technique has the benefits of the bottom-up approach, but with

the low level of infrastructure and intrusiveness of the top-down approach. Visual examples,

from the case study are provided which demonstrate the capabilities of NIALM techniques and,

although the study does not constitute a rigorous validation for the method, it informs further

research lines that should be followed for the efficient implementation of NIALM techniques in

small power disaggregation. Some important practical issues have also been highlighted, such

as the need for a high sampling frequency rate for small power disaggregation.

From the analysis of the two measurement techniques implemented in this research study, two

novel contributions have been obtained: the formulation of an extrapolation method, using
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bottom-up techniques at the aggregated level, and the exploration of NIALM method capabili-

ties, using top-down techniques at the individual level. These two contributions constitute a

notable improvement in the field of data analysis and energy auditing, since they pursue the

same information which is achieved when monitoring at individual appliance level, but propose

a lower metering infrastructure configuration than traditional measurement techniques. Both

methods were implementing for the case study, including an analysis of the uncertainties associ-

ated with their energy estimations and a validation assessment based on the error boundaries

established at the beginning of the chapter. Limitations which should direct future research

for both method have also been described, such as the convenience for a more comprehensive

coverage of appliance loads for the extrapolation method and the need for more robust signature

values for NIALM methods implementation. This last issue constitutes the central research topic

of the next chapter.
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Chapter 5

NIALM performance for small load

appliance identification

5.1 Introduction

The previous chapter tackled the challenges faced by classical measurement techniques, an-

alyzing the benefits and drawbacks of their implementation at two levels of appliance load

monitoring: aggregated and individual. For the latter, the potential capabilities of NIALM tech-

niques for load disaggregation have been proved along with the identification of a number of

factors that prevent them to be extensively implemented in energy audits. Further research work

has been suggested for this specific area. This chapter undertakes this this line of research and

delves into those factors, as well as into the uncertainty associated with NIALM techniques for

small power load disaggregation in offices.

The benefits of NIALM techniques for the disaggregation of small power in domestic buildings

has also been tested by a number of researchers [88, 97] since the technique was first introduced
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in 1989 [111], and this has led to the development of numerous NIALM methods. However, the

implementation of these methods is limited to the domestic sector with its smaller number of

loads in comparison to those of commercial buildings. Despite the fact that the potential benefits

of applying this technology to commercial buildings have been recognized from the field’s

foundation [144], most NIALM methods are not directly applied to commercial buildings [28].

According to Hart [27], electrical signatures are defined as the characteristic features extracted

from the current and voltage signal that can be resolved to separate individual appliance loads

and so provide information about the activity of individual appliances. This chapter considers

that the lack of understanding of the optimal electrical signatures combination in the disaggre-

gation process is a fundamental reason for not extending the use of NIALMs to the commercial

sector. In order to tackle this issue, a typical generic NIALM method is considered and imple-

mented using a set of electrical signatures under the classification framework suggested in the

literature review section of this thesis. Under the hypothesis that a better understanding of the

signatures electrical characteristics would provide the necessary information for successfully

implement NIALM methods in energy audits, experiments which recreate residential and office

environments have been conducted to compare the disaggregation capabilities of each signa-

ture category dependent on the types and number of appliances under monitoring. The novel

contribution of this chapter, therefore, is not in the implementation of the NIALM method itself,

but in the analysis of the disaggregation capabilities of the different combinations of signature

categories.

The findings described in this chapter outline the aspects which most influence the effectiveness

of existing NIALM method regarding the electrical signatures combination used and constitute

a knowledge contribution to the field of NIALM methods implementation in energy audits for

office buildings.
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5.2 Methodology

The most commonly used NIALM methods have several principle stages: firstly, the use of a

monitoring system to obtain the consumption signal; secondly, implementation of an ON/OFF

event detection algorithm; thirdly, the extraction of a specific electrical signature; and finally,

the implementation of a disaggregation algorithm which is first trained, using an individual

appliance profiles database, and then used to separate individual appliance loads from the

overall signal.

In order to establish a generic method, this section covers the four stages of a common NIALM

method, presented in Figure 5.1. A detailed explanation of each of the stages justifies the

decisions made for the method establishment, including the selection of the different electrical

signatures, a fundamental part of this study.

Figure 5.1: NIALM model work flow
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Once the generic NIALM method is established and the experimental data set up, the model is

implemented for individual appliance identification and in an experimental case study which

recreates a house and an office area.

5.2.1 First NIALM stage: Monitoring system installation

The first step in the implementation of a typical NIALM method is the selection of an appropriate

monitoring system (sensor and raw data acquisition hardware). This allows the acquisition of

aggregated load data at an adequate sample frequency rate and resolution to identify distinctive

load patterns and electrical characteristics. Prior to the selection of the monitoring system, a

number of technical requirements need to be considered. These are discussed in the following

section.

5.2.1.1 Monitoring equipment considerations

There are a wide variety of data acquisition systems on the market which are designed to measure

the aggregated load of a building [91]. In order to choose the most suitable monitoring device

for small power disaggregation in office buildings, a number of technical requirements and

constraints need to be considered:

• the resolution of the hardware should supersede the value of the magnitude under moni-

toring. The closer the magnitude value to the error, the lower the accuracy of the method;

• the electrical grid in the UK runs at a 50Hz cycle (period of 0.02 seconds), so according

to the NyquistShannon theorem [96], a minimum of 100 Hz sample rate (a period of 0.01

seconds) is needed for an analysis of wave shape and signal changes;

• another sampling frequency issue to consider is the probability of event simultaneity,
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the probability of which increases with the number of appliances on the network being

monitored, or when a short-cycle appliance is in operation;

• with regard to the sampling frequency, the 1 to 15 kHz range is of particular interest

(although little work has been done in these frequencies), since this is where harmonics

would begin to become available. The noise captured using frequencies higher than 15

kHz is likely to obscure any gains in signal detection for commercial buildings [98], and so

sets a maximum sample rate;

• medium-high frequency metering equipment is more expensive than low frequency sam-

pling meters. There are a large number of commercially available 1 Hz meters, these are

considered to be medium-high frequency, [98]; and

• there are hardware limitation issues, e.g., data gathering traffic, storage capacity, data

streaming, etc, which increase with the sample frequency.

The 1 kHz sample rate range is, then, of particular interest since it is at this frequency that

transient features begin to be captured with no excessive high frequency noise.

According to these considerations, a high-resolution monitoring system, which collects at a

sample rate of 1 millisecond, has been chosen for the experimental set up of the present study,

ensuring quality of information at low data management complexity. The monitoring system

consists of a 15 A extension cord to which the different appliances were plugged. For safety

reasons, no direct connections were made to the wires of the cord, instead a security box was

created to house a current transformer, thereby allowing safe data collection. For this, a Pico

current [145] data logger 1 is connected to a portion of the live cable line separated from the

extension cord and extracted outside the box, creating a short loop. The live conductor cable loop

1The logger has 2% of vertical resolution over the total reading.
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is protected by heat shrink sleeving so that the entire assembly is safely and doubly insulated.

The current data logger is used in combination with a 2204 PicoScope [11] that collects, and then

stores, current data at a sample rate of 1 millisecond. These data can be accessed via USB for

subsequent analysis. The different components of the high-resolution monitoring system are

presented in Figure 5.2.

Figure 5.2: Different components of the high-resolution monitoring system.
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5.2.2 Second NIALM stage: Event detection

NIALM methods can be categorised into event-based or non-event-based methods. The former

uses an edge detection algorithm on the power consumption curve to detect which appliances

record a change in the curve, and the latter continuously samples the aggregated data for

inference.

For the case study, event-based methods have been chosen since they are more computationally

efficient than the non-event based methods, and therefore, are more commonly used within

typical NIALM applications [99].

5.2.2.1 Signal preprocessing

To facilitate the event detection stage, the root mean square (RMS) averaged over several cycles

of the current signal is calculated. This average is an extended signal preprocessing technique,

that provides a better measure of the current than the alternating current (AC) signal which

continually changes from zero up to the positive peak, and so facilitates the implementation of

the detection event algorithm.

A graphical representation of a small portion of the AC signal is presented in Figure 5.3, where

the crossing points of the signal with the horizontal axis of the representative coordinate system

can be visually identified. Three consecutive zero crossing points correspond to a whole cycle of

the wave, which lasts for approximately 20 milliseconds.

The Root Meter Square (RMS) of the current signal over a given number m of wave cycles is

calculated using Equation 5.1:

IRMS =
(

Ip
2

)
m·c ycle

(5.1)

where I is the monitored current signal and m · c ycle the averaged periods.
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Figure 5.3: Zero crossing points in a wave cycle.

This signal transformation reduces the sample rate of the new signal, but also makes the event

detection process easier for what is the most common operational mode for commercial meters.

5.2.2.2 Event detection algorithm

The event detection algorithm, based on Meehan et al’s method [114], is the same as that

proposed in Chapter 4. The method uses a moving window of M samples of the RMS current

signal to identify changes in its amplitude and requires two conditions in order for an event to

be identified. The first condition requires that the absolute magnitude of the RMS current signal

should be greater than a certain threshold value during the established moving window.

For S = s1, s2..si , ...sn , being n the length of the RMS current signal, an event i occur when:

∣∣∣∣∣ 1

M

M−1∑
k=0

IRMSsi +1 −
1

M

M−1∑
k=0

IRMSsi

∣∣∣∣∣>α (5.2)

where α is the fixed positive threshold value of IRMS , above which an event, i ∈N , is considered

to have occurred.

The second condition that must be fulfilled is that the previous event detected must not have
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occurred during the last p samples, in accordance with Equation 5.3.

∃i ∈N | ∣∣tRMSevent i − tRMSevent (i+1)

∣∣> T (5.3)

Where T = (
p ·m · c ycle

)
seconds and each cycle takes approximately 0.02 seconds.

This last condition allows the appliances enough time to settle into the steady state, and thereby

prevents parts of the same transient signal being detected as spurious events. However, it also

adds the limitation that events that occur within this period T will not all be identified correctly.

This second condition also established the steady and the transient sequences for each event, as

is graphically represented in Figure 5.4.

Figure 5.4: Steady state and transient segment wave definition.

This method assumes that the load is switched and that there is a steady state from which it

is moving, therefore, it will not work with constantly varying loads (e.g., automatic dimming

lighting or variable speed pumps). However, this restriction is not applicable to general small

power office loads and will not be considered in this research.

According to Figure 5.4, the following definitions can be applied to describe an RMS current

signal:

• Si = si1 , si2 , ...si j , ...sini
, is the RMS signal segment between the consecutive events i and i+1

and ni is the length of the segment (sini
= si+1).

• Si stead y = si1 +p, ...si j , ...sini
−p is the RMS steady state signal segment after event i.
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• Si tr ansi ent = si1 −p, .....si 1 +p is the RMS transient state signal segment during event i.2.

Extrapolating these definitions to the original monitored current signal gives:

• S∗
i = s∗i1

, s∗i2
, ...s∗i j

, ...s∗in∗
i

is the monitored signal segment between the consecutive events i

and i+1 and n∗
i is the length of the segment.

• S∗
i stead y = s∗i1

+p∗, ...s∗i j
, ...s∗in∗

i

−p∗ is the monitored steady state signal segment after event

i.

• S∗
i tr ansi ent = s∗i1

−p∗, ...s∗i j
, ..s∗i 1 +p∗ is the monitored transient state signal segment during

event i 3.

5.2.3 Third NIALM stage: Electrical signatures extraction

In the third stage of the NIALM method, once steady state and transient state have been estab-

lished for the monitored signal, characteristic electrical signatures are identified and extracted.

In order to cover a systematic review of the most common identified signatures types, which

are presented in Figure 5.5, and a study of their disaggregation capabilities, the literature review

offers a comprehensive classification of types.

2Note that while a fixed length has been defined for transient state, steady states have a variable length by
definition.

3There are m ·20 s∗ samples of the original monitored signal between two consecutive samples of the RMS
averaged signal.
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Electrical Signature
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Domain
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Figure 5.5: Proposed electrical signature classification

One representative signature for each of the proposed categories is chosen for the experimental

part of the study, this provides a study of the information and requirements associated with

each of these categories. The selection of the representative signatures takes into account the

monitoring system’s technical specifications and capabilities.

5.2.3.1 Steady- state in time domain signature

RMS current increment (Ψi ), used in the first NIALM method developed by Hart in the 1980s,

has been chosen as the representative steady- state/time domain signature. This signature can

be used to identify the device causing the load when the current draw of the devices is distinct

and well known 4.

To extract the current RMS Increment signature, the IRMS average value between consecutive

events is calculated. For each event i the RMS Increment between these averaged intervals is

4To implement this method and initial “on” operational state has been assumed for all the appliances.
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calculated in accordance with Equation 5.4.

Ψi =
∣∣∣IRMSi+1 − IRMSi

∣∣∣ (5.4)

where IRMSi is the average value of the IRMS
(
Si stead y

)
calculated between the event i and i+1,

and IRMSi+1 is the average value of the IRMS
(
Si+1 stead y

)
calculated between the event i+1 and

i+2.

The RMS Incr ementi signatureΨi , is identified as an On event for positive values and an Off

event for negatives.

5.2.3.2 Steady-state in frequency domain signature

The disaggregation method used by Meehan et al. [114], based on steady state current harmonics

for a similar set of small power systems, analyses the current signal steady state in frequency

domain, obtaining good results. According to this method, the third odd harmonics of the

spectrum gives a sufficient approximation of the signal and distinguishes each appliance.

To extract the current Steady Harmonic Increments (Sh3) signature, the Discrete Fast Fourier

Transform (DFFT), Ii
(
e j w

)
of the steady state monitored signal segment after each event i,

I
(
S∗

i stead y

)
, is calculated, according to Equation 5.5.

IStead y i

(
e j w

)
=

n∗
i −2p∗∑

1
I
(
S∗

i stead y

)
e− j w (5.5)

where IStead y i
(
e j w

)
is a complex function of the angular frequency w of the steady segment of

the signal between event i and event i+1. This complex function can be also expressed as:

IStead y i

(
e j w

)
=

∣∣∣IStead y i

(
e j w

)∣∣∣e jθ(w) (5.6)
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where
∣∣IStead y i

(
e j w

)∣∣ is called the magnitude function and θI Stead y i (w) the phase function.

The third odd harmonic amplitude is extracted from the signal before and after an event i and

the absolute value of the difference of these two magnitudes calculated and expressed as a

percentage of the fundamental harmonic amplitude, corresponding to w=50Hz, as presented in

Equation 5.7.

Sh3 =
∣∣IStead y (i−1)

(
e150 j

)∣∣− ∣∣IStead y i
(
e150 j

)∣∣∣∣IStead y i
(
e50 j

)∣∣ ∗100 (5.7)

5.2.3.3 Transient signatures in time domain signature

Crest Factor coefficient (CF) The Crest Factor coefficient (CF) is the measure of the ratio of the

signal peak to its effective value, and is a good indicator of how extreme the peaks are in the

waveform. It is, therefore, a very common transient signature used in a large number of NIALM

methods [107, 131, 147, 148].

The Crest factor coefficient signature for the signal transient segment i, is calculated by Equation

5.8:

C Fi = M ax (|IRMS (Si tr ansi ent )|)
Ψi

(5.8)

where M axIRMS (Si tr ansi ent ) is the maximum absolute value of the RMS segment signal during

the transient i andΨi is the Increment signature value after event i.

5.2.3.4 Transient signatures in frequency domain signature

For identification of a representative transient signature in the frequency domain, the third

harmonics of the signal during the transient period is extracted and its relative amplitude

compared to the fundamental frequency.
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The Transient Harmonic Increments (T h3) signature is calculated in a similar way to the Steady

FFT Harmonic Increments, except that the DFFT is calculated for the steady state monitored

signal segment previous to an event i, Equation 5.9, and for the transient state monitored signal

segment during the event i, Equation 5.10.

IStead y (i−1)

(
e j w

)
=

∣∣∣IStead y (i−1)

(
e j w

)∣∣∣e jθ(w) (5.9)

ITr ansi ent i

(
e j w

)
=

∣∣∣ITr ansi ent i

(
e j w

)∣∣∣e jθ(w) (5.10)

The relative amplitude of the third harmonics steady-transient increment, compared to the

fundamental frequency amplitude of the transient, is calculated in accordance with Equation

5.11.

T h3 =
∣∣IStead y (i−1)

(
e150 j

)∣∣− ∣∣ITr ansi ent i
(
e150 j

)∣∣∣∣ITr ansi ent i
(
e50 j

)∣∣ ∗100 (5.11)

The first two odd harmonics, which correspond to 50 Hz and 150Hz, are extracted for the

corresponding magnitude function,
∣∣IStead y i∗

(
e j w

)∣∣ and
∣∣ITr ansi ent (i−1)∗

(
e j w

)∣∣, the absolute

difference of the harmonic amplitude is calculated and the third harmonic increment, T h3, is

expressed as a percentage of the input current at the first.

5.2.4 Fourth NIALM stage: The disaggregation algorithm implementation

Once the signatures have been extracted from the electrical wave, a disaggregation algorithm

is used to separate individual appliance loads from the overall signal. Supervised learning

techniques, as reported in the literature review, are more convenient for the present case study as

they obtain a higher accuracy for appliance identification [149]. Since the aim of this thesis is to
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investigate the disaggregation capabilities of different sets of electrical signatures, it is preferable

to use a deterministic classification technique, such as Decision Trees, rather than other non-

deterministic techniques, such as the Support Vector Machine which relies on optimization

theory, or the Bayesian inference which is based on probability theory. Moreover, the Decision

Trees classifier has general performance characteristics that stand out in comparison with other

disaggregation algorithms, especially with regard to its tolerance for irrelevant attributes and its

transparency in the classification process [132].

The Decision Trees algorithm performs its classification in two phases, the tree building and

the tree pruning phases. Once the tree has been fully grown and then pruned, the decision tree

model can be used to predict the class value for new patterns. For a detailed explanation of the

decision tree classifier algorithm see Appendix E.

In a third stage, the evaluation stage, the prediction accuracy of the decision tree classifier is

evaluated. When a large amount of data are available, a large sample can be used for training and

a further independent and large sample of different data can be used for testing. For these cases,

a typical validation method used is the K-fold validation method. This comprises the partitioning

of a data set D into n subsets Di and then running the decision tree classifier algorithm n times,

each time using a different training set (D −Di ) and validating the results on Di . However, in

many cases there is not a large supply of data available and this limits the amount of data that

can be used for testing. In those cases, a certain amount of data can be exchanged for testing

and training purposes. In the holdout method, the data is split randomly into two independent

subsets: training and testing. Generally, 2/3 of the data are selected for the training set and the

remaining 1/3 for the testing data set. The classification model is built using the training data,

and later validated using the testing set. The holdout method is an alternative solution when

there is not enough data for both training and testing separately. A detailed explanation of the
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decision tree classifier validation algorithms used in this study is included in Appendix F.

5.2.4.1 Accuracy metric

To test the degree of confidence in the NIALM method implemented in the experimental study,

the accuracy of the decision tree algorithm has been assessed by comparing the output results of

the classifier with its expected targets using a confusion matrix.

The confusion matrix is a typical receiver operating characteristics (ROC) technique for super-

vised learning of classifier algorithms comprised of a specific table layout that allows visualization

of the performance of the classifier algorithm. Each column of the matrix represents the in-

stances in a predicted class, while each row represents the instances in an actual class (or vice

versa). That is: if the instance is positive and it is classified as positive, it is counted as a True

Positive (TP); if it is classified as negative, it is counted as a False Negative (FN). On the other

hand: if the instance is negative and it is classified as negative, it is counted as a True Negative

(TN); and if it is classified as positive, it is counted as a False Positive (FP). Table 5.2.4.1 presents

the confusion matrix elements, where the numbers along the major diagonal represent the

correct decisions made.

PREDICTED CLASS

Class=Yes Class=No

ACTUAL
Class=Yes TP FN

CLASS Class=No FP TN

Several common metrics can be calculated from the confusion matrix, as the precision( 5.12)

and overall accuracy( 5.13) of the classifier.

Pr eci si on = T P

T P +F P
(5.12)
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Over al l Accur ac y = T P +T N

T P +F N +T N +F P
(5.13)

In the precision Equation 5.12, the True Positive predicted values are dividing between all the

predicted positive values (true and false), and for the accuracy Equation 5.13, the True values

are divided between all the values. The different metrics should be used based on the values

considered ”relevant” for each evaluation, precision for one specific class and accuracy for all

the classes.

The decision trees algorithm and the confusion matrix evaluation are implemented using KNIME,

a free discrete software tool for data analysis and visualization that integrates components for

machine learning and data mining. For a detailed explanation of the KNIME implemented

algorithm see Appendix G.

5.2.5 Individual profile database

To construct an Individual Profile Database, a small (around 150 m2) office area in the University

of Reading was chosen. This office contained: four heaters (H); two fans (F); eight personal

computers, each with one screen (PC); four incandescent lamps (IL); and a small kitchen with

two kettles (K), two coffee machines (CM), and one microwave (M). These appliances were

considered to be suitable for the research purpose because they can usually be found in both an

office 5 and a dwelling.

Each individual appliances was switching ON/OFF during different periods, in order to register

their typical operational modes. This process was repeated 10 times for each appliance. Ta-

ble 5.1 presents the approximate monitoring periods, nameplate power rates and correspondent

5In accordance with Section 12 of Guide F ”Electrical power systems and office equipment” [138].

157



Section 5.3 Page 158

amperages 6 assuming a constant voltage of 230 volts, for each of the targeted appliance.

Table 5.1: ON period, power rate, and amperage for the different appliances under monitoring.

Appliance Power (W) Amperage (A) ON period (s)

Kettle (K) 3000 13 30

Heater (H) 750 23.26 200

Coffee Machine (CM) 800 3.48 40

Fan (F) 30 0.13 200

Incandescent Lamp (IL) 40 0.17 200

Microwave (M) 1000 4.5 50

Personal Computer (PC) 270 1.17 200

5.3 Results analysis and discussion

In this section, the individual profiles are analysed graphically and numerically in order to

understand the different monitoring requirements and electrical characteristics. The disaggrega-

tion capabilities of the different signature categories are also analysed for both individual and

aggregated appliance loads.

5.3.1 Individual appliance signal patters analysis

Graphical and numerical analyses of the different electrical signatures for each appliance have

been undertaken and their specific characteristics are presented and discussed. For this purpose,

6The power and amperage values are based on the nameplate provided by the manufactures, these are usually
greater than the operational values.
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a set of four different signal profiles for each appliance is presented in this section. Sub-figures

5.6a, 5.6b, 5.7a, 5.7b, 5.8a, 5.8b, 5.9a, 5.9b, 5.10a, 5.10b, 5.11a, 5.11b correspond to the time-

domain patterns (RMS averaged of the AC signal) and sub-figures 5.6c, 5.6d, 5.7c, 5.7d, 5.8c, 5.8d,

5.9c, 5.9d, 5.10c, 5.10d, 5.11c, 5.11d to the frequency domain patters (FFT of the AC signal).

(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.6: Kettle electrical signal profiles.
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(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.7: Microwave electrical signal profiles.
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(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.8: Coffee machine electrical signal profiles.
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(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.9: Heater electrical signal profiles.
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(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.10: Fan electrical signal profiles.
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(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.11: Incandescent lamp electrical signal profiles.
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(a) Time Domain / Steady State (b) Time Domain / Transient State

(c) Frequency Domain / Steady State (d) Frequency Domain / Transient State

Figure 5.12: Desk (PC and screen) electrical signal profiles.

A preliminary visual analysis of these profiles provides relevant information about the electrical

characteristics of the different appliances and allows the identification of some signature features,

such as large switching on transient spikes and specific harmonic content.

Within each figure, each graph (a) provides information about the steady operational state of the

different appliances in the time domain. Based on these profiles, the different appliances can be

classified as large load appliances (i.e., K, CM, M, H), with a RMS Increment signature greater

than one ampere, and low load appliances (i.e., PC, IL, F), with a RMS Increment smaller that 1

ampere. Small loads and pattern fluctuations (Fl) in variable loads, as for PC, are susceptible to

similar RMS Increment sizes.
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Each graph (b) provides information about the transient behaviour of the appliance in the time

domain. Flat pattern profiles, such as those for K, CM, and H, indicate a lack of significant

transient behaviour and, consequently, absence of information from the transient time domain

signatures. M, F, and IL, on the other hand, are expected to have distinguishable Crest Factors,

and the PC, with a fluctuating profile, will have a variable Crest Factor.

Each graph (c) provides information about the harmonic content of the different appliances

during their steady operational states, this harmonic content is strongly related to the type of

load. Linear nonreactive loads, such as K, CM, and IL, do not generate harmonics of their own.

Neither do linear reactive loads, such as H, F, and M, but their impedance changes with respect

to the frequency and, therefore, each harmonic gives additional information about the load.

The nonlinear loads, such as the PC, contain circuit components that distort the waveform and

generate their own harmonic.

In each figure, each graph (d) provides information about the harmonic content of the different

appliances during their transient operational sates. The transient harmonic content is similar to

steady state once, where only linear reactive and nonlinear loads present noticeable harmonics.

However, the magnitude of the harmonics is amplified during the transient state, as can be

clearly seen in the M profile, Figure 5.7d.

5.3.1.1 Signature characteristic parameters

The previous graphical analysis helps to understand the electrical behaviour of the different

appliances and to set down a number of adjustable parameters for identification of the respective

signatures. Four different parameters have been defined in this section and, although they

are presented here specifically for this case study, the same considerations are required for

the implementation of any NIALM method based on event detection. This is because the
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establishment of those parameters determines the kind of appliance that can be disaggregated.

The parameter m represents the number of cycles undertaken for the RMS average. The two

cycle RMS average works well for detecting the large loads appliance (i.e., K, CM, M, H) switching

events, but seems inadequate for low load appliances (i.e., PC, IL, F), particularly for the PC due

to its fluctuations. Larger values for m smooth the signal and remove sharp fluctuations, however,

averages over large numbers of cycles lead to loss of information, especially with small loads,

such as F and IL. To overcome this problem, a value of m=30, experimentally tested, has been

found to be suitable for use during the event detection stage. This new average considerably

smooths the PC signal fluctuations, making the event detection process easier, although some

fluctuations are still detected and need to be recognised as such in the disaggregation method

and when the probability of event overlapping is incremented. Once the event locations have

been detected, the previous two cycles RMS average is again considered and used for signature

identification and extraction, thus avoiding the information loss associated with large m values 7.

The parameter α is the positive IRMS threshold value that establishes the first condition for

the event detection method, as stated in Equation 5.2. To establish this parameter, 75% of the

smallest appliance’s RMS current has been chosen as the condition in accordance with empirical

testing and Meehan et al’s method [114]. Thus, α= 0.075 A, based on consideration of the RMS

Increment of the smallest appliance, F, which is approximately 0.1. Smaller appliances initially

considered in the study, such as the mobile charger, were discarded as their RMS Increment, at

0.03 A, was indistinguishable from the background noise.

The parameter p is the number of samples of the RMS signal sequence between consecu-

tive events and accomplishes the second condition for the event detection method, accord-

ing to Equation 5.3. This parameter established the steady and the transient sequences for

7Note that the probability of event overlapping is not reduced in this way.
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each event. Large p-values ensure the detection of the characteristic whole transient signal

shape, however, they also add the limitation that events that occur within Tr ansi ent t i me =(
p ·m ·0.02

)
second s will not all be identified correctly, especially in scenarios which involve a

large number of appliances. For this study, a value of p=15 has been chosen, allowing a transient

identification time of 0.6 seconds, enough to capture the initial energy burst peaks of appliances

such as M and F through the Crest Factor, and to minimize a potential event overlap 8.

5.3.2 Signature dataset

Following the implementation of the third stage of the NIALM method, the electrical signature

extraction, and in accordance with the representative signatures selected in section 5.2.3. and the

adjustable parameters established in subsection 5.3.1.1., a Signature Dataset is obtained from

the initial Individual Profile Database. For steady state signatures, ON and OFF events have been

considered (20 values for each signature), and for the transient states signatures only ON events

have been considered (10 values for each signature). Tables 5.2 and 5.3 present the average

magnitude for each signature and appliance over the considered values and their corresponding

standard deviation, σ, for time domain and frequency domain, respectively.

This new Signature Dataset is used for training the decision tree classifier and for an initial

comparison of the electrical signature recognition capability. A first glance at the tables provides

an idea of the distinguishable capacity of the different signatures, e.g.,Φmagnitude values are

quite different between appliances, however, they remain very similar for CM and M, and for F

and the Fl. Others signatures are characteristic of some specific appliances, e.g., the Crest Factor

for M and IL.

The harmonic analysis allows the identification of the type of load. Linear nonreactive loads

8Note that the RMS average for the event detection process is done over 30 cycles.
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Table 5.2: Steady Sate Signature Dataset

Time Domain Frequency Domain
SP Ψ (A) σΨ (A) Sh3 (%) σSh3 (%)
K 11.52 0.06 2.03 0.37
M 6.46 0.12 23.71 3.62
CM 3.71 0.15 1.84 0.17
H 3.28 0.16 0.33 0.2
F 0.10 0.02 2.84 0.36
IL 0.14 0.01 2.81 0.40
PC 0.40 0.03 101.80 14.67
Fl 0.06 0.03 129.47 82.78

Table 5.3: Transient State Signature Dataset

Time Domain Frequency Domain
SP CF (A) σC F (A) T h3 (%) σT h3 (%)
K 0.25 0.06 0.25 0.34
M 1.98 0.88 57.00 1.41
CM 0.06 0.01 3.07 0.22
H 0.06 0.03 02.55 0.72
F 0.06 0.01 211.23 8.56
IL 0.14 0.26 11.81 7.43
PC 0.02 0.01 38.18 24.24
Fl 0.11 0.04 0 0

have low harmonic content (i.e, K, CM and H) and nonlinear loads have high harmonic content

(i.e., PC).

The comparison of the standard deviation with their signature magnitude provides relevant in-

formation about the “quality” of the signature, where this concept is understood as the appliance

identification capability of the signature, inversely proportional to the standard deviation value.

For example, small appliances loads, such as F and IL, have relatively large standard deviation

values with respect to their transient signatures, which means a poor signature “quality” due to

background noise effecting transient signals in small loads.
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5.3.3 Individual appliance identification

To test the individual appliance identification capability of each of the electrical signatures, the

k-fold cross-validation method is implemented. This method realises a partition of the Signature

Dataset, which contains 80 samples, into k=10 disjoint subsets, each of which contain eight

samples, and taking one partition for testing purposes and using the remainder, 72 samples, for

training the classifier algorithm. The process is repeated with each of the remaining nine folders

and the mean accuracy is averaged over the 10 iterations. For each iteration, therefore, two

datasets are created: the training dataset, with 72∗10 = 720 pieces of data to train the decision

tree algorithm, and the testing dataset, with 8∗10 = 80 pieces of data to test the validity of the

method.

A confusion matrix is used to test the effectiveness of the algorithm. In each iteration, the

disaggregation precision for each individual appliance is calculated using Equation 5.12, and the

overall disaggregation accuracy for all the appliances is calculated using Equation 5.13.

Table 5.4 presents the averaged results for the 10 iterations where each column corresponds to

individual signatures. In the same way, each row corresponds to an individual load and the All

row represents the total load aggregation.

In accordance with Table 5.5, Φ is the signature that achieves the highest overall accuracy.

However, by consideration of Table 5.4, it can be seen that there are some identification issues

between the F and the fluctuation, and between CM and H, as was suggested by the values in

Table 5.2.

The remainder of the signatures (i.e., CF, Sh and Th) present similar overall accuracy, as can be

seen in Table 5.5, however, their precision values depend on which appliances are considered,

e.g., Fl have poor precision values for CF and Sh, but a very high value for Th.

Thus, Tables, 5.5 and 5.4, highlighted the different disaggregation capabilities of the signatures
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App. Pr ec.Ψ σΨ Pr ec.C F σC F Pr ec.Sh σSh Pr ec.T h σT h

K 1 0 1 0 0.04 0.05 0.07 0.08

M 1 0 1 0 1 0 1 0

CM 0.96 0.05 0.24 0.10 0.86 0.17 1 0

H 0.96 0.05 0.04 0.05 0.28 0.12 0.52 0.15

F 0.86 0.05 0.18 0.04 0.96 0.08 0.27 0.19

IL 1 0 0.82 0.16 0.56 0.08 0.23 0.01

PC 1 0 0.96 0.05 0.70 0.025 0.43 0.04

Fl 0.86 0.05 0.16 0.02 0.28 0.04 1 0

Table 5.4: Individual loads precision recognition averaged over 10 iterations

* Precision (Prec.)

App. Accu.Ψ σΨ Accu.C F σC F Accu.Sh σSh Accu.T h σT h

All 0.97 0.01 0.57 0.02 0.59 0.05 0.58 0.02

Table 5.5: Overall accuracy recognition averaged over 10 iterations

* Accuracy (Accu.)

depending on the appliances. However, their interpretation is very limited, as the training and

testing datasets are populated by the same data.

5.3.4 Aggregated appliances identification

To create an Aggregated Profile Dataset for testing and comparing the disaggregation capabilities

of the generic NIALM method in dwellings and offices, and considering the limitations of the

monitoring hardware equipment (13 Amperes maximum), two different sets of scenarios have

been created with a number of profiles chosen from the Individual Profile Dataset and randomly

aggregated. The first set includes ten domestic scenarios comprised of seven appliance profiles:

one kettle; one heater; one coffee machine; one fan; one incandescent lamp; one microwave;

and one PC profile. The second is a set of ten office scenarios which includes 23 appliance

profiles: two kettles; four heaters; two coffee machines; two fans; four incandescent lamps; one
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microwave; and eight PCs. Ten different aggregated profiles have been created for each scenario

and the NIALM method implemented in each to analyse the disaggregation capabilities of the

different signature combinations.

5.3.4.1 NIALM for domestic appliance disaggregation

In accordance with the implementation stages of the generic NIALM method, the on/off switch-

ing events are first identified, and then the different electrical signatures are extracted from the

set of ten domestic scenarios, providing 40 on-events signatures and 20 off-events signatures 9

for each of the seven appliances, with a total of 420 signature for the whole set of ten scenarios,

that constituted the Signature Domestic Dataset for each of the seven appliances, thus providing

a total of 420 signatures for the whole set of ten scenarios to constitute the Signature Domestic

Dataset. Figure 5.13 presents an example of the aggregated profiles from the set of domestic

scenarios.
9Only the two steady state signatures can be extracted during off-events.
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Figure 5.13: RMS aggregated MATLAB profiles for the domestic scenario.

To test the efficiency of the different electrical signatures when recognising individual appliances

over aggregated load, the holdout-validation method is applied to the Signature Domestic Dataset.

In the hold-out method the relevant data have been used in two different ways: the Signature

Dataset, with 80 samples, in the learning process; and the Signature Domestic Dataset, with 420

samples, in the testing validation 10.

To find the optimal combination of signatures for disaggregating the different appliance sets,

all the possible signature iterations or combination have been considered. Table 5.6 presents

the averaged overall disaggregation accuracies obtained for each of the signature combinations,

differentiating between large loads 11 and low loads 12.

The comparison of Tables 5.5 and 5.6 shows how the load disaggregation efficiency of the generic

10Note that these 420 signatures are from known appliances and, therefore, can be used for validation purposes.
11With a RMS Increment signature greater than 1 Ampere
12With an RMS Increment smaller that 1 Ampere.
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Table 5.6: Overall accuracy for all the possible Signature combinations for the domestic scenarios

Signature
Large loads Low loads

Combination Acc. ON Acc. OFF Acc. ON Acc. OFF
Φ 0.96 0.95 0.70 0.80

CF 0.60 — 0.5 —
Sh 0.53 0.75 0.54 0.38
Th 0.50 — 0.30 —
Φ+CF 1 — 0.75 —
Φ+Sh 0.97 0.95 0.54 0.75
Φ+Th 0.50 — 0.74 —

CF+Sh 0.53 — 0.54 —
CF+Th 0.50 — 0.50 —
Sh+Th 0.50 — 0.54 —
Φ+CF+Sh 1 — 0.54 —
Φ+CF+Th 1 — 0.80 —
Φ+Sh+Th 0.90 — 0.54 —

CF+Sh+Th 0.50 — 0.54 —
Φ+CF+Sh+Th 1 — 0.70 —

NIALM method is reduced when dealing with more than one appliance. Signatures with large

standard deviation values negatively effect the disaggregation ability when used in combination

with others signatures, which is a result of imprecise identification metrics, e.g., Th signature for

large loads and Sh signature for low loads.

In general, low loads achieve lower accuracies than do large ones. This is mainly due to the

variable electrical signal of the PC and the background noise which negatively affects the Φ

disaggregation capabilities.

For the identified on-events, the higher accuracy for a single signature is achieved by Φ, with

96% and 95% accuracy for the large loads and 70% and 80% for low loads, in on and off events

respectively. These accuracies are improved when also considering CF, achieving 100% of overall

accuracy, as this signature reduces the identification issue caused by the similarΦ value between

CM and H, and between F and Fl. For the low loads, the identifiable capability ofΦ is improved
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when combined with CF and Th, with 80% disaggregation accuracy for on-events.

In the identification of off-events, transient signatures are not considered as there are no electrical

transient behaviours when the case study appliances are switched off. For these events, the

higher accuracies are again achieved byΦ, but in this case they are not improved by the addition

of Sh, as occurred in the on-events.

5.3.4.2 NIALM for office appliances disaggregation

The procedure followed for evaluating the disaggregation capabilities of the generic NIALM

method in the set of office scenarios was the same as that for the domestic set, but it used 23

aggregated profile loads, thus creating the Signature Office Dataset comprised of 1380 signatures,

920 extracted from on-events and 460 from off-events. Figure 5.14 presents an example of the

aggregated profiles from the set of office scenarios.

Figure 5.14: RMS aggregated MATLAB profiles for the office scenario.
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As for the domestic scenarios, the holdout-validation method was applied over the aggregated

load profiles and all the possible signature combinations considered. Table 5.7 presents the

averaged overall disaggregation accuracies obtained for each of the signature combinations for

the office set of ten scenarios.

Table 5.7: Overall accuracy for all the possible Signature combinations for the office scenario

Signature
Large Loads Low Loads

Combination Acc. ON Acc. OFF Acc. ON Acc. OFF
Φ 0.84 0.82 0.32 0.32

CF 0.54 — 0.25 —
Sh 0.50 0.65 0.24 0.22
Th 0.35 — 0.20 —
Φ+CF 0.88 — 0.30 —
Φ+Sh 0.88 0.85 0.34 0.30
Φ+Th 0.40 — 0.22 —

CF+Sh 0.38 — 0.30 —
CF+Th 0.30 — 0.25 —
Sh+Th 0.30 — 0.28 —
Φ+CF+Sh 0.90 — 0.34 —
Φ+CF+Th 0.82 — 0.38 —
Φ+Sh+Th 0.75 — 0.21 —

CF+Sh+Th 0.45 — 0.22 —
Φ+CF+Sh+Th 0.82 — 0.32 —

Comparing Tables 5.6 to Table 5.7, the reduction in the disaggregate accuracy with the appliances

number increment can be seen. Nevertheless, a similar trend to that of the domestic scenarios is

maintained, especially for large loads where the higher accuracy for a single signature is achieved

again by Φ, with 84% for the on-events and 82% for off-events. These accuracies are again

improved when combined with CF andΦ, achieving 88% of disaggregation accuracy with such a

combination, and an even higher accuracy of 90% being reached by theΦ, CF, and Sh signature

trio. Signature Th negatively affects the disaggregation ability when used in combination with

other signatures.
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For the low load appliances, by contrast, the identifiable capability of all signatures is significantly

reduced, the higher percentage being achieved by theΦ, CF, and Sh signature trio, with only 38%

overall accuracy in on-events.

5.4 Summary and discussion

The work presented in this chapter assesses the implementation of existing NIALM methods

for the disaggregation of electricity consumption of small power equipment in office buildings,

where the aim is to improve the accuracy of these methods in commercial energy audits.

Research in this field has led to the introduction of numerous NIALM methods since they

were first developed in the early 1990s. These methods have been shown to work well for

disaggregating small power in domestic dwellings. However, in the commercial domain NIALM

has been largely unexplored, mainly due to the larger number of loads which exist in comparison

to those of residential buildings. This increase in the complexity of energy disaggregation, from

residential to commercial, means most NIALM methods made for residential use cannot be

directly applied to commercial buildings.

In order to address this issue, based on a decision tree algorithm, a generic NIALM method is

implemented in four stages. The analysis of the third stage, the electrical signature extraction,

is recognised in the literature review chapter as a fundamental aspect of the disaggregation

process. A set of seven different types of small appliances, typically found in both domestic

and office environments, have been selected for this research. The results outline three aspects

which influence the effectiveness of implementation of the NIALM method in this stage: the

adjustable electrical parameters used in the monitoring process; the specific electrical signature

combination chosen; and the number of aggregated appliances.

An initial analysis of the electrical behaviour of the different appliances reveals three relevant
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adjustable parameters in the identification of the different electrical signatures:

1. The number of cycles taken to deduct the RMS average, this increment smooths the signal

from background noise, but with the cost of eliminating electrical information.

2. The positive IRMS threshold value that establishes the first condition for the event detection

method. For this research, this parameter was defined as 75% of the RMS current of the

smallest appliance, loads with IRMS thresholds of the same order as the background noise

were removed from the study.

3. The number of samples of the RMS signal sequence between consecutive events that

accomplishes the second condition for the event detection method. This parameter

established the steady and the transient sequences for each event. Large p-values ensure

the detection of the characteristic whole transient signal shape, however, they also add the

limitation that events that occur within transients may not be detected.

The specific electrical signature combination that better characterises the different small appli-

ance loads in office buildings was also analysed in this chapter. To do so, a Signature Dataset

was created which contained averaged signature magnitudes and their corresponding standard

deviation for each appliance switching on/off event, thereby allowing an analysis of the individ-

ual recognition capability of each of the targeted electrical signatures. This revealed relevant

information about the different appliance identification capability of each signature and their

dependence on the appliance type.

Finally, an investigation into the number of aggregated appliances as a factor which affects the

disaggregation capability of the different signatures was also undertaken. To do so, an Aggregated

Profile Dataset was created to test and compare the disaggregation capabilities of the generic

NIALM method in a set of domestic scenarios with seven aggregated appliances, and a set
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of office scenarios with 23 aggregated appliances. The overall accuracy in the disaggregation

process was found to be significantly smaller for office scenarios, mainly due to the larger number

of loads in comparison to the domestic scenarios, thus incrementing the probability of events

overlapping, especially for those classified low loads, with RMS current increments lower than

1 Ampere, where the use of the generic NIALM method failed to accurately disaggregate any

appliances.

In this way, the chapter contributes towards meeting the objectives of the thesis, as it provides

a better understanding of the electrical signatures which better characterize different small

appliance loads and evidences that an initial analysis of the information provided by these

signatures may address the existing limitation when implementing NIALM methods in office

buildings, by increasing the accuracy and number of appliances that can be disaggregated (e.g.,

from 8 appliances, using current existing domestic methods, to 23 appliances, according with

this study).

Further researches should therefore include follow-up work designed to evaluate the effective-

ness of NIALM methods in real energy audits, incorporating findings from this thesis.
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Chapter 6

Discussion and thesis conclusions

The evaluation of two main quantitative energy audit approaches has led to the proposal of

three methods for ranking and quantifying uncertainty in small power estimation in commercial

buildings; one for each of the research areas covered in this project. That is: the problems

associated with uncertainty in small power energy estimations in calculation models; the chal-

lenges faced by the different energy measurement techniques; and the potential use of NIALM

methods in office buildings for small power disaggregation. Although these methods undertake

different approaches, they all pursue the same aim and there is no restriction to them being

combined to complement each other in a holistic approach that can be used to inform auditors

and researchers within the sector. Such an integrated approach will depend on the audit scenario

and accuracy requirements. The experimental case study presented in Chapter 5, for instance,

can make use of a generic NIALM method for disaggregation of the so called Large loads 1, for

which 90% disaggregation accuracy was achieved, and a calculation model for the remaining Low

loads 2. An additional comprehensive approach, suitable for scenarios with large numbers of a

1With RMS current increments higher than 1 Ampere.
2With RMS current increments lower than 1 Ampere.
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specific load, can make use of the extrapolation method proposed in Chapter 4 for the estimation

purposes and again, can implement a calculation model for the remaining ones. To inform the

selection of the optimal calculation model (i.e., the one with less uncertainty associated to its

estimations), depending on the appliances and information available in both scenarios, the SA

method proposed in Chapter 3 can be used.

The outcomes of this thesis not only contribute to the growing academic field of small power

energy data analysis, but impact industrial practices through actual energy audits. This chapter

aims to provide the final conclusions to the thesis, including discussion and evaluation of the

research aims and contributions.

6.1 Research summary

Recent surveys [4, 11] have divided traditional quantitative audits into two approaches: calcu-

lation, which uses mathematical equations for energy estimations, and measurement, which

involves some level of direct energy monitoring. Furthermore, the latter can be implemented

through what has been defined in this thesis, in accordance with Swan and Ugursal’s [75] classifi-

cation, as bottom-up techniques, i.e., from end-users to total aggregate energy, and top-down

techniques, i.e., breaking down total energy consumption into end-users.

The best energy estimation strategy depends on the audit requirements, the scenario under

evaluation, and the information available. In accordance with the relevant literature reviewed

in Chapter 2, calculation approaches have the advantage of little, or no, hardware installation.

However, their accuracy is highly dependent on the quality of the input variables and their

associated uncertainties. Measurement approaches, on the other hand, overcome some of the

uncertainties by direct monitoring of the energy consumption, but at the cost of increasing

complexity in the hardware installation. This complexity is proportional to the level of accuracy
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obtained in the final estimations, going from a high level in bottom-up techniques, to a low

level using top-down techniques, with possible intermediate levels when the techniques are

combined.

The central problem of this research concerns the deficiencies identified in the implementation

process for quantitative energy audits in office buildings in terms of small power load estimations

through this classification. The motivation for the investigation of this problem arises from the

importance of small power loads in energy audits, particularly in highly efficient buildings where

they constitute an important part of the overall energy consumption, and errors in estimations

can negatively affect the whole audit process.

The accuracy of small powers energy estimations achieved by the different audit approaches

will be highly dependent on the sources of uncertainty associated with the input data or the

monitoring technique used, for the calculation and measurement approach, respectively. The

study of the effects of these uncertainties on the energy estimations is covered by three aspects:

the identification of the source of uncertainty; the proposition methods used to assess this un-

certainty; and the experimental tests of the methods. These research lines are undertaken by the

three contribution chapters of this thesis where each proposes a different method for evaluating

the uncertainty associated with a specific audit strategy. Figure 6.1 presents a framework of the

three proposed methods proposed for addressing the different audit strategies for small power

load estimations: the adapted SA method for the calculation approach; and the remaining two

for the measurement approach, i.e., the extrapolation method for bottom-up techniques and the

NIALM method for top-down techniques.
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Small Power energy estimation

Calculation

Approach

Measurement

Approach

SA Method

(Chapter 3)

Bottom-up

Technique

Top-down

Technique

Extrapolation

Method

(Chapter 4)

NIALM

Method

(Chapter 5 )

Figure 6.1: Proposed methods for overcoming the deficiencies detected in the different small power load
estimations.

Calculation and metering approaches can be combined to optimise the audit process. For exam-

ple, using calculation models for appliances with well-known input parameters (i.e., parameters

with low uncertainty), and metering techniques for more uncertain ones. The proposed SA

and extrapolation methods can help decide to which extent each of the approaches should be

implemented to optimise the process.

Regarding NIALM methods, the contribution of this thesis is only in the electrical signature

stage, other aspects of the method still need to be considered for it to be efficiently implemented

in office buildings. However, as seen in the results described in this thesis, NIALMs may be

considered as a solution for small power loads estimations in office buildings, overcoming the
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uncertainties from the use of calculation methods at the low infrastructure cost of the top-down

techniques.

6.2 Research contributions

The aim of this thesis, to identify and propose methods to assess the uncertainty in quantitative

energy estimations in office buildings for small power loads, has been met by addressing five

supporting research objectives.

The first objective, to create a sensitivity analysis method for calculation models to evaluate

how the variation in the output of a model can be apportioned to uncertainty in different in-

put factors, was addressed by the work presented in Chapter 3, where a new SA method was

proposed for evaluation of the relevance of the input uncertainties in the energy audit process.

SA methods to analyse the quality of calculation-based models have been used by modellers

and practitioners from various disciplines [53–55], including in energy assessment models in

buildings [56]. However, no practical studies have been undertaken for small power energy

calculation methodologies.

The SA method proposed in this thesis is based on the Morris method [69], a well-established SA

method with applications in different fields [59, 70]. The new method overcomes Morris’ limi-

tations for small power calculation models by implementing a number of adaptive refinement

measures. The resultant adapted method was designed to be implemented in two stages: the

Primary SA, providing an initial ranking of the input factors; and the Secondary SA, supplying

additional information about the monotonicity and skewness of the output due to each of the

inputs. This constituted the first SA method specific to small power energy estimations. Its

capabilities were demonstrated through a case study where the new SA method was applied

in four different energy calculation models, operating under the TM22 framework umbrella,
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and using established industrial benchmarking sources and assumptions for the input values.

Results from the case study present how the accuracy on the final energy estimation depends

on the input information and the calculation model used. The new SA method will help energy

auditors to select the optimal calculation model for a specific building scenario based on the

quality of information available.

According to recent research into the current state of the art regarding work performed which

relates to the electric energy consumption for small power loads, there remains great potential

for energy savings through measurement techniques [4, 13], however, there has been a lack of

practical studies which investigate the implementation of these techniques for small power

energy estimation, especially in non-domestic buildings. To overcome this issue, objective

2, to conduct a comparative study to identify the most efficient meter installation strategy in

a typical office building for monitoring small power loads, was addressed in Chapter 4. This

was done through assessment of two common measurement technique, bottom-up and top-

down, implementing both in an office case study scenario at the University of Reading, and

using two databases obtained by two different monitoring systems, a set of smart plugs for

monitoring at individual appliance level, and a centralised meter directly connected to the mains

for monitoring at aggregated appliance level. The small power energy estimations obtained

by top-down and bottom-up techniques at both monitoring levels were analysed and ways

of improving them explored. Graphical tools to present and analyse the meter’s data were

included and compared, highlighting the benefits of chromo-maps to provide a picture of the

overall energy performance to make occupancy pattern data visible and understandable at a

glance. Additionally, possible appliance profile classifications were made based on occupancy

and energy behaviour profiles, such as continuous-periodic appliance profile types (e.g., the

fridge) where it is less disturbing to substitute the use of direct metering by benchmarking
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or assumptions, and high-variable appliance profile types (e.g., the printer) where the use of

individual meters will be more beneficial.

Kamilaris et al. [13] conducted a literature review survey on the state of the art work performed

related to electric energy consumption for small powers in office and commercial buildings. They

revealed the complexity of the current techniques used for measuring the energy consumption

of office plug loads. According to Wang and Shengwei Yan [3], this complexity is the reason why

these techniques are mainly being used to provide detailed energy data for research or validation

purposes, while it is usually considered to be too expensive for practical applications in common

buildings. As a result, a novel extrapolation method that provides accuracy of the total energy

estimation for each of the possible permutations of the individual installed sub-meters has been

proposed and tested in Chapter 4, fulfilling objective 3 of this thesis: to evaluate the relationship

between estimation uncertainty and cost of implementation of sub-metering techniques in terms

of complexity and intrusiveness. The method was implemented, through four stages, in the office

case study scenario, and considered all the possible sub-meter combinations of the 12 individual

meters installed in each of the desks over a period of 43 days, from 18th August to 3r d December

2017 (five no consecutive weeks). The relative percentage of uncertainty, measured against the

percentage of the monitored desks calculated, showed a logarithmic relation that indicated the

number of desks that need to be monitored depends on the relative uncertainty that the energy

assessment is willing to accept. For example, to obtain a relative uncertainty lower than 10%

it is necessary to monitor more than half the desks. The medians and confidence intervals of

the different sets of energy estimations were also calculated to provide additional information.

According to this last piece of information, the use of more than half of the meters is likely to

result in a over-estimation of the total energy consumption values, and the use of fewer than the

half is likely to result in an under-estimation. The information provided by this extrapolation
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method can serve as a useful guide for auditors to determine the minimum level of metering

granularity necessary to achieve the desired level of accuracy in their final energy estimates.

Based on the literature reviewed, NIALM methods are considered to be a metering technique able

to provide information about the energy consumed by individual appliances using a top-down

measurement approach. The benefits of NIALM methods for the disaggregation of small power

in domestic buildings has also been tested by a number of researchers [88, 97], however, in the

commercial domain NIALM has been largely unexplored by the academic community. The initial

implementation of these methods is also described in Chapter 4, and attains objective 4: to

explore the capability of alternative measurement techniques for traditional load disaggregation

methods for small power in office buildings.

The first step in the implementation of a typical NIALM technique is the load status detection.

Chapter 4 explained the exploration of the capabilities of a proposed detection method in a

case study to understand the potential capabilities of NIALM techniques in office environments.

The method relies on the identification of variations in the aggregated consumption power to

detect the status (ON or OFF) of the loads. An event detection identification algorithm was

implemented over the aggregated profiles collected by the centralised meter connected to the

three electrical circuits feeding the office sockets. Monitoring of the first circuit, feeding only

a fridge and an instant water boiler, and the third circuit, feeding seven PC desks, obtained a

high degree of event detection. For this last circuit, although presenting some overlapping issues,

an estimation of the energy consumed by the seven PCs, based on their averaged power rates

and operational number of hours determined by the algorithm, was conducted and achieved

an averaged relative error of 14.2%, with respect the plug meters installed in each of the office

appliances (relative low considering the assumptions made). The second circuit, by contrast,

with five PC desks, two printers, and one shredder, was less efficient regarding the event detection
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algorithm implementation, not only due to the larger number of appliances, but also to the

high operational variability of the printers’ consumption profiles 3 . This case study does not

claim to be a rigorous validation of the method, rather it constitutes an initial assessment of the

potential capabilities of NIALM techniques and points out some of the issues which arise from

its implementation in a real case and, introducing the research line taken in Chapter 5.

The work conducted in Chapter 5 took care of the final objective, to analyse the electrical char-

acteristic specifications and disaggregation capabilities for the different signatures for NIALM

techniques in office buildings. According to relevant literature in the field [28], the implemen-

tation of NIALM methods is limited to the domestic sector and most of these methods cannot

be directly applied to commercial buildings. This limitation is thought to be due to, amongst

other reasons, the lack of understanding of the optimal electrical signatures combination in the

disaggregation process. In Chapter 5 this research gap is tackled by defining a typical generic

NIALM method based on a set of electrical signatures, previously classified in the literature re-

view section. The generic NIALM method is used to analyse the individual recognition capability

of each of the electrical signatures for seven targeted appliance types. The results from this case

study revealed information about the different appliance identification capability of each of the

signatures, depending on the appliance type, e.g., the RMS current increment (Φ) is the signature

that achieves the highest overall disaggregation accuracy across all the appliances. Finally, the

generic NIALM method was implemented in both a domestic scenario (with seven aggregated

appliances), and an office scenario (with 23 aggregated appliances) and the accuracy of the

disaggregation process analysed. This accuracy was found to be significantly smaller for office

scenarios, mainly due to the larger number of loads in comparison to the domestic scenarios,

thus incrementing the probability of events overlapping.

3In comparison with the 10 second sample rate of the meter
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The findings presented in this last chapter have built on the work conducted by Batra et al. [28],

by assessing the validity of general NIALM methods for residential buildings when applied to

commercial buildings, focusing on small power loads, and demonstrating, through a practical

example, how a better understanding of the optimal electrical signatures combination is likely to

enhance the disaggregation process.

The implementation of NIALM method in office audits can enable significant energy savings

by tracking individual appliances over time, without having to install dedicated sensors across

an entire building. This process can also help identify inefficient or malfunctioning appliances,

and allows energy auditors to determine whether or not replacing them will ultimately be a

cost-effective decision.

6.3 Further work

A set of assumptions, stated in Chapter 1, have been made during the research presented here

due to the complexity of the energy estimation approaches reviewed, particularly for small

powers, and issues related to implementation of the research solutions on real energy audits.

Consequently, these assumptions can be considered in future works.

For calculation approaches, the SA method proposed in Chapter 5 is only able to provide a

ranking of the input factors in their order of importance. A more sophisticated global SA method,

able to quantify the input factors absolute significance over the output, would allow comparison

between different audit scenarios. Although this SA method was conceived for the specific field

of small power load calculations, it could be applied to other systems, such as Ventilation and

Air-Conditioning systems, or areas of energy auditing, such as in gas consumption assessments.

For the comparative study of the measurement approaches performed in Chapter 4, other ana-

lytic variables of the monitoring process, such as monitoring time or the number of appliances,
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can also be assessed by more extensive case studies. This would allow consideration of all

the potential aspects of the monitoring process that might have an impact on the information

delivered.

Regarding NIALM techniques, the research conducted and reported in Chapter 5 has focused on

the third implementation stage, electrical signature identification. However, the other three im-

plementation stages, hardware installation, event detection, and load disaggregation, also present

areas of improvement and further work needs to be done in these research areas. Additionally, it

would be useful to evaluate the practicality of NIALM techniques by allowing experienced energy

auditors to interact with a prototype system and share their opinions for the creation of more

robust signature values and a more comprehensive coverage of appliance loads.

6.4 Concluding remarks

The importance of small loads in commercial building audits have been highlighted by the

literature reviewed in this thesis, along with the deficiencies which exist regarding their energy

assessment. For these reasons this thesis has sought to advance understanding in these areas,

hoping that the research presented is taken further in the field, taking note of the recommenda-

tions for further work presented throughout.

Drawing on the existing knowledge base and industry experience that the EngD affords, this

research project has brought together the fields of energy calculation models sensitivity anal-

ysis, metering techniques, and load disaggregation techniques. New methods for assessing

calculation and metering energy estimation approaches for small powers have been generated,

and a relevant contribution has been made towards amelioration of the problem of NIALM

implementation in the commercial sector.

In summary, the three research areas covered in this thesis have built a foundation of methodolo-
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gies that can be used both in industry and in academic fields. For the former, by providing a tool

that can help auditors to choose the optimal energy assessment strategy for small power load

estimations and, for the latter, by better understanding the significance of uncertainty within the

different energy estimation methods.
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Appendix A

CIBSE TM22 methodology

The TM22 quantitative energy assessment framework used in Chapter 3, was originally de-

veloped by the PROBE studies and first published in 1999. It provides a systematic way of

undertaking an energy survey, reporting the results, and calculating likely savings from changes

in use, technology or management [22]. In 2006, a second edition of the TM22 was published,

updating the previous edition by describing procedures for compliance with emerging energy

performance legislation and included treatment of on-site energy generation and renewable

energy sources [31].

The TM22 methodology establishes three levels of detail for creating energy end-use breakdowns.

Figure A.1 illustrates the underlying structure of the TM22 assessment framework, depicting the

breakdown of energy consumption into three levels of information subcategories.
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Figure A.1: TM22 tree diagram illustrating the breakdown of energy use.

Each level provide a degree of energy assessment:

Level 1: Simple building assessment: Assessment for a simple building, which has just one

building type with at most two energy suppliers including grid electricity, with no special energy

use or occupancy features.

Level 2: General building assessment: An overall assessment of a more complex building that

can include areas of different building types, with up to five energy suppliers and special features

or non-standard usage, accounted for by exclusion or adjustment.

Level 3: System assessment: Assessment of the energy performance of individual systems in a

building against benchmarks for that building. This level is applicable to the estimation of small

power loads.

Each of those level, requires different inputs factor:

• Level I:

– Total Annual Energy (Wh): the aggregated energy consumed by each appliance type

in one year.

• Level II:

– Total Load (W): the total installed power for the appliance type.
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– Effective Hours (h): the total time (in hours) that each appliance is using its nominal

full load.

• Level III:

– Power Consumption (W): the power consumed per individual unit in order to provide

service.

– Number of Units: the number of installed individual appliances.

– Operational Hours (h): the number of hours per year that the appliance is delivering

a required service. This is not necessary the same that Occupational Hours (h) 1.

– Management Factor (%): the fraction of the time enabled the appliance is working.

Those inputs can be obtained from different sources, table A.1 presents some of the mains typical

input data used depending on the assessment level.

1Occupational Hours is the number of hours per year that the building is occupied.
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Input data Level 1 Level 2 Level 3

Annual energy consumption (kWh): gas and

electricity bills for at least one year

Yes Yes Yes

Total gross area (m2) Yes Yes Yes

Building type (Benchmarking) Yes Yes Yes

Annual energy consumption (kWh) for each en-

ergy suppliers.

No Yes Yes

Sub-areas types: natural ventilated, AC, etc No Yes Yes

Main system specifications: lighting, ventila-

tion/cooling

No Yes Yes

Effective occupancy hours per year No Yes Yes

Modelling including weather No Yes Yes

CHP and others existing renewables No Yes Yes

The system energy use data that can be ob-

tained from: sub-metered, a detailed survey or

modelling

No No Yes

Table A.1: TM22 methodology input data by assessment levels.
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Appendix B

Informative monitored appliances table for

Chapter 4 case study

This appendix presents a table with the appliances monitored in the case study of Chapter 4.

The summary table specifies the plug meter number connected to each appliance, the appliance

type (e.i. Desk or Shared), a brief description and the power rate for operative and sleep mode.

Plug meters are connected to a single devices (e.i. PC, laptop, monitor) or a combinations of

them (e.i. PC and monitor, laptop and monitor) depending on the offices set up. However, for

the case study experimental design each desk has been considered as an individual appliance.

The so called Desk 0 corresponds to the laptop used only during the data collection. This desk,

although monitored by plug meter 98, had not been used in the case study.

The instant water boiler is directly connected to the mains, for what a plug meter cannot be

connected to this appliance that is only monitored by the MTU.
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Appendix C

Schematic layout of smart plugs for the

bottom-up metering techniques

This appendix presents the wireless smart plugs distribution layout used for the bottom-up

monitoring of the 16 individual appliances targeted for chapter 4 study. The case-study scenario

consist in a 30m2 naturally ventilated office area, divided into two rooms: office A, occupied

by the energy management team of the university; and office B, occupied by the cleaning

management team of the university.
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Figure C.2: Smart plugs schematic layout for room B
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Appendix D

Individual power consumption profiles for

appliances with high frequency content

This appendix presents the consumption profile of two appliances with high frequency content

from the case study in Chapter 4. A high-resolution monitoring system, composed by a Pico

current meter system connected to a 2204 PicoScope, allows input readings at a sample frequency

of 100Hz. Profile peaks are detected and their distances measure.

Figure D.1 shows one printer power consumption profile. It presents high variability on their

peaks, or fluctuation, achieving nearly 1000 W of magnitude and a time interval between them

of 8 to 20 millisecond approximately.
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Figure D.1: Printer power profile at 100Hz sample rate.

Figure D.2 shows one PC power profile. It presents a smother variability on the peaks or fluc-

tuation magnitudes (around 20 W) and a time interval between them of 40 to 260 millisecond

approximately.
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Figure D.2: PC power profile at 100Hz sample rate.
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Appendix E

Decision tree classifier algorithm

This appendix contains further details on the Decision Trees algorithm used in Chapter 5. The

algorithm performs classification in two phases and is evaluated in a third stage, in accordance

to Shafer et al. [150]:

1. The tree building phase: or growth phase, in which the tree is built by recursively spliting

the data into two or more branches. The value of a split point depends upon how well

separate or ”pure” the differences between appliance signatures are. The most popular

technique for evaluating the quality of the split is the Gini Index [121].

The Gini Index Gini index is an impurity-based criterion that measures the divergences

between the probability distributions of the target attributes or appliances’ signatures

values. It has the advantage that its calculation requires only the distribution of the load

type in each of the partitions level or node. When a node t containing n samples, is split in

k partitions, the quality of the split can be computed by Equation E.1:

Gi niSpl i t =
k∑

i=1

ni

n
G I N I (i ) (E.1)
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Where ni is the the number of samples at partition i and GINI is the Gini Index for the

node t, given by equation E.2.

Gi ni (t ) = 1−∑
j

p2
j (E.2)

Where p j is the relative frequency of the appliance j at node t.

When a split divides the node into two branches, the quality of the split is computed as:

Gi niSpl i t =
n1

n
Gi ni1 + n2

n
Gi ni2 (E.3)

To find the best split point for a node, each of the node’s signatures lists is scanned and

splits are evaluated based on that signature. The signature containing the split point with

the lowest value for the Gini index is then used to split the node.

2. The tree pruning phase: In the three building phase the algorithm three keeps growing by

splitting nodes as long as the new splits increase brunches that increase ”purity”. The tree

creation process is optimized by the training data set, so eliminate any leave will increase

the error rate 1 of the tree, however, this fact does not implies that the full tree does the

best job for for predictions on new data [126].

A decision tree algorithm makes its best split first, at the root node, where there are the

largest number of samples. As the nodes gets smaller, idiosyncrasies of the particular

training samples at a node come to dominate the process, in a way that, the smaller the

node become, the grater the danger of over-fitting 2. One way to overcome this issue, is to

1The error rate is the proportion of error make over a whole set of instances, and it measures the overall
performance of the classifier.

2Insufficient samples in a node causes the tree to use other training samples data that are irrelevant for the
classification task, which in decision trees that are more complex that necessary.
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set up a minimum leaf size. Another approach is to allow the tree to grow as long as there

are splits that appear to be significants in the training data and then eliminate the splits

that prove to be unstable by cutting away leaves through a process called pruning [126].

A common pruning method used in NIALMs, based on the minimum description length

principle, replaces each node with its most popular class, starting at the leaves, but only

if the prediction accuracy doesn’t decrease, thus extracting the maximum amount of

information from the data without over-fitting [151].

3. The performance evaluation phase: Once the tree has been fully grow and then pruned,

the decision tree model can be use to predict the class value for new patterns. In the

evaluation stage the prediction accuracy of the decision tree classifier is evaluated. To

do so, the error rate on a data set that did not play o part in the in the formation of the

classifier, the test or evaluation data set, is calculated. When a lot of data is available, a

large sample can be used for training; and another, independent large sample of different

data for testing. Provided both samples are representative, the error rate on the test set will

give a good indication of future performance. However, in many cases there is not a vast

supply of data available. This limits the amount of data that can be used for testing, and

the problem becomes how to make the most of a limited dataset. In those cases, a certain

amount is held over for testing, this is called the holdout procedure, and the remainder

used for training. In order to find the optimal balance between training and testing, there

are several validation methods. Tenfold cross-validation is the standard way of measuring

the error rate of a learning scheme on limited data; for reliable results, 10 times 10-fold

cross-validation. But many others reliable methods, as the leave-one-out cross-validation,

can be used instead [123].
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Appendix F

Validation methods for the decision three

algorithm

This appendix presents additional information for the practical study conducted in chapter 5, in

which two different validation methods have been used, the K-fold and the holdout methods.

The K-fold validation method consists of partitioning a data set D into n subsets Di and then

running a given algorithm n times, each time using a different training set D −Di and validating

the results on Di . The K-fold validation method allows to alternate between training and testing

when the dataset is relatively small to maximize the error estimation [127].

In cross validation a fixed number k is decided as the number of folds that is going to be used.

According to the fold number that is selected, the data is portioned into k mutually exclusive

subsets which are of approximately equal size. Data D is then divided into k subsets: D1,D2, ...Dk,

where each of these subsets is referred to as a fold. All the folds, except the first one are taken

and the subset D2,D3, ...Dk , becomes the training data and the decision tree model is trained

and is tested on the first fold D1. On the next iteration, the second fold D2 becomes the testing

subset, and another tree model is trained on the rest of the subsets D1,D3, ...Dk. This procedure

225



Section F.0 Page 226

is repeated k times since every fold is going to act as a testing subset for once, as is graphically

represented in Figure F.1.

Figure F.1: k-fold cross validation method.

When all the iterations are completed, the accuracy rates that are calculated at the end of each

iteration using the testing subset are summed, and then divided by the number of folds to find

the average classification rate. Cross validation accuracy (CVA) is calculated as follows;

CV A = 1

k

k∑
i=1

Ai (F.1)

where k is the number of folds and Ai is the accuracy measure that belongs to a specific fold.

The holdout method is also referred to as the simplest cross-validation method. This method

is probably the simplest and most commonly used practice among the evaluation methods.

The data is split randomly into two independent subsets: training and testing. The split ratio

that is preferred generally is; selecting the training set from 2/3 of the data and testing data

from the remaining 1/3 [123]. After the data is split into training and testing, a classification

model is built by the inducer using the training data. Later on, this model is used to calculate

the misclassification rate or the performance of the built model. Predictions are made based
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on the classification model by using the testing data as it can be seen from Figure F.2 The

holdout method is used when there is enough data that can be used for both training and testing,

separately [122].

Figure F.2: Holdout validation method.
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Appendix G

Decision Tree code in KNIME

This appendix contains the disaggregation and validation work flow for the decision tree algo-

rithm implement in Chapter 5.

Figure G.1: Decision Tree code in KNIME

Each unit-element of the algorithm in Figure G.1 is represented by a node an linked to others by

pipelines. The specific configuration of those nodes are presented below.

• File Reader: This node reads data from a URL location.

• Column Rename: This node gives each data column a electrical signatures name.

• Counting Loop Start: This node starts a loop that is executed a predefined number of times.

At the end of the loop, the Loop-End, collects the results from all loop iterations. All nodes
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in between are executed as many times as specified in the Loop-Start, twenty for the case

study of Chapter 5.

• X-Partitioner: This node is the first in a cross validation loop. At the end of the loop the

X-Aggregator collects the results from each iteration. All nodes in between these two node

are executed ten times (number of cross validation iterations). The partitions for the cross

validation are sampled randomly.

• Partitioning: This node is the first in a hold validation loop (does not appear in the example

provided by Figure G.1). It splits data into two partitions, train and test data.

• Decision Tree Learner: This node induces the classification decision tree, with a nominal

target attribute (the signature type). The other attributes from the case study are numerical.

Numeric splits are always binary (two outcomes), dividing the domain in two partitions

at a given split point. The quality measure for split calculation used is the gini index. The

minimum number of records per node selected for the case study is one, meaning that if

the number of records is smaller or equal to this number the tree is not grown any further.

• Decision Tree Predictor: This node uses the existing decision tree to predict the class value

for new patterns. In this node the target column (column containing the true class label)

and the prediction column (column containing the prediction label) are determined.

• X-Aggregator: This node is the end of a cross validation loop and follows a X-Partitioner

node. It collects the result from the predictor node, compares predicted class and real class

and outputs the predictions for all rows and the iteration statistics.

• Scorer: Compares the target and predict columns by their attribute value pairs and shows

the confusion matrix.
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• Row Filter: The node allows for row filtering.

• Column filter: This node allows columns to be filtered from the input table while only the

remaining columns are passed to the output table, including the column names.

• Loop End: This node, at the end of a loop, is used to mark the end of a workflow loop and

collects the intermediate results by row-wise concatenation of the incoming tables. The

start of the loop is defined by the loop start node, which defines how often the loop should

be executed. All nodes in between are executed that many times.

• Statistics: This node calculates statistical moments

230


