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Abstract 

In agricultural systems plant diseases caused by soil borne fungi are regarded as the 

most devastating. Wheat is recognized as an important crop worldwide, but it is highly 

susceptible to Take-all disease caused by the soil ascomycete fungus 

Gaeumannomyces graminis var. tritici (Ggt). Interest in biological control of Take-all 

has increased due to a lack of resistant wheat cultivars and chemical pesticides. 

Although this disease has been extensively studied it is still regarded as an excellent 

model for biological control of plant root diseases. Pseudomonas bacteria in the P. 

fluorescens complex are well recognized for their plant growth promoting and disease 

suppressive properties and they can often be found to be prevalent in controlling Take-

all. In this work Pseudomonas isolates from the rhizosphere and endosphere of two 

wheat varieties, Hereward High Take-all Build up (H-TAB) and Cadenza Low Take-all 

Build up (L-TAB) were investigated. These isolates were screened for the presence or 

absence of two rhizosphere fitness loci, wsm and fecB, involved in host recognition 

and iron acquisition, respectively. It was found that these loci were significantly 

differentially associated with the two wheat cultivars where wsm was more abundant 

within the Hereward isolates while the fecB was found more within the Cadenza 

isolates.  In addition, these isolates were tested for their in vitro inhibition of Ggt, which 

led to the identification of six strong Ggt growth inhibition isolates. Furthermore, testing 

these antagonistic isolates in the presence of the plant revealed that isolate 25R-7 

was able to reduce the number of infected roots on Cadenza, while isolate 30R-11 

reduced the number of infected roots on Hereward. Overall, the mixture of the six 

strong isolates reduced the number of infected roots in both cultivars more than that 

of individual strains. In addition the structure of bacterial communities associated with 

five wheat varieties (two L-TAB and three H-TAB) along with one barley (Unknown-
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TAB) grown continually at the same site in three fields for a period of 5 years were 

investigated. The main difference in the structure of bacterial communities was based 

on field type and the rhizosphere samples separated well from those of bulk soil. 

Overall, no significant differences were found between the cultivars over time. The soil 

DNA concentrations of Ggt along with the soil DNA concentrations of bacteria, 

Pseudomonas and fungi were also studied from the same treatments. Year-to-year 

variation was the major factor in determining the amount of bacterial, Pseudomonas, 

fungal and Ggt DNA in the three fields. 
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CHAPTER 1- Introduction 

The major challenge of crop production in the twenty-first century is the sustainable 

production of enough food to feed the ever growing human population (Berg, 2009). 

Soil-borne plant pathogens, in particular fungi and oomycetes, are the main causes of 

yield reductions in agricultural ecosystems (Raaijmakers et al., 2009). Also the current 

improper applications of agricultural pesticides and fertilizers lead to long term 

environmental and health effects (Berg, 2009; Lugtenberg & Kamilova, 2009). 

Bread wheat, Triticum aestivum, is grown worldwide and is considered as one of the 

four main important crops. However, it is highly susceptible to Take-all disease of 

wheat, which challenges the successful cultivation and breeding of this crop (Schreiner 

et al., 2010; Jenkyn et al., 2014; McMillan et al., 2014). The disease was reported in 

South Australia as early as 1852 (Kwak & Weller, 2013).  

Take-all disease of wheat is caused by the soil-borne ascomycete fungus 

Gaeumannomyces graminis var. tritici (Ggt) leading to economically devastating 

losses in wheat crop yield and quality (Schreiner et al., 2010; Jenkyn et al., 2014; 

McMillan et al., 2014). This fungus is able to infect wheat grown under both high and 

low precipitation, thus making it the most devastating wheat disease around the world 

(Yang et al., 2011; Kwak & Weller, 2013). Ggt is a homothallic fungus, and its growth 

conditions in soil range from 4˚C - 30˚C and with pH of 3 – 10 (Kwak & Weller, 2013). 

The ability of Ggt to cause disease (pathogenicity) and the severity of this attack 

(virulence) depends on its colonization of the root and the production of enzymes and 

toxins that targets plant tissue for further invasion (Daval et al., 2011). This fungus is 

especially damaging to graminaceous species like wheat and barley and other 

temperate cereals, with the exception of oats and some other grasses (Jenkyn et al., 
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2014). In culture the optimum growth temperature for Ggt ranges between 20˚C - 25˚C 

with a colony growth rate of 6-10 mm per day (Kwak & Weller, 2013). 

Although extensively studied, Take-all disease still poses a challenge for plant 

pathologists, due to the lack of effective fungicide treatments and resistant cultivars. 

Historically, crop rotation using non graminaceous species was used to manage Take- 

all disease (Cook, 2003). However, given the great demand for wheat and the lack of 

economically attractive break crops, wheat is commonly grown in short rotations where 

Take-all is a major issue. Soil fumigation with methyl bromide has been used for the 

complete control of Take- all disease, but this chemical is now banned as it causes 

ozone depletion. Moreover, chemical fungicides that act as microtubule assembly 

inhibitors or biosynthesis inhibitors, have also been used but were found to be effective 

on the seedling phase only resulting in inconsistent or economically invalid treatments 

(Kwak & Weller, 2013; Yang et al., 2014). Recent governmental policies and consumer 

views tend to disfavour the use of agrochemicals due to their negative effects on the 

environment and human health (Lugtenberg & Kamilova, 2009). Thus, there is great 

interest in establishing alternative biological approaches for controlling plant diseases. 

 

1.1 Plant root microbiome  

Soils are recognized as one of the richest microbial ecosystems on earth (Bulgarelli et 

al., 2013). In plants, bacterial communities can be found in different tissues; on leaves, 

roots or with in the plant as endophyte (Andreote et al., 2009). Endophytic bacteria 

colonize the internal tissues of their host plant without having any negative effect 

(Ryan et al., 2008). Such bacteria may be involved in plant growth promotion and 

disease suppression (Andreote et al., 2009). The soil surrounding the roots can be 
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divided into bulk, rhizoplane and rhizosphere compartments (Bulgarelli et al., 2013; 

Philippot et al., 2013; Edwards et al., 2015). In comparison to bulk soil, the rhizosphere 

harbours increased microbial numbers and activities. The rhizosphere is defined as 

the soil compartment under the influence of plant roots (Hirsch & Mauchline, 2012; 

Bakker et al., 2013). This nutrient rich area attracts microbes from the surrounding 

bulk soil to carry out important functions for plant health (Berg & Smalla, 2009). The 

plant associated microorganisms facilitate nutrient uptake, stress tolerance and 

disease resistance (Berg, 2009). Many factors aid in shaping the rhizosphere 

microbiome. For instance, the soil chemical and physical properties, pH, particle size, 

texture, environmental factors (e.g. temperature and rainfall), plant species and 

genotype, and growth stage, have all been implicated (Berg & Smalla, 2009; McMillan 

et al., 2011; Hirsch & Mauchline, 2012). The roots affect the soil architecture, pH and 

concentration of antimicrobials along with quorum sensing signals through 

rhizodeposition (Lundberg et al., 2012; Haichar et al., 2014). Out of the rhizodeposits, 

root exudates are carbon rich nutrient sources released into bulk soil (Berg & Smalla, 

2009). Plants release 5-21% of their total photosynthetically fixed carbon through root 

exudation. Various abiotic and biotic factors, including plant species and growth stage, 

determine the quantity and quality of root exudates (Haichar et al., 2014).The plants 

use their released exudates to attract beneficial microbes which in turn aid the host 

growth, help tolerate salt and drought stresses and provide protection from soil borne 

pathogens (Mendes et al., 2013; Philippot et al., 2013; Steinauer et al., 2016; Mahoney 

et al., 2017). Thus it is expected that a great plant diversity will lead to more diverse 

microbial communities through the variable range of exudate composition (Steinauer 

et al., 2016). In addition, many studies have shown that plants exert a species- specific 

effect to determine the composition and the abundance of rhizosphere microbes 
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(Philippot et al., 2013). For example, it was found that the fluorescent Pseudomonas 

spp. associated with the rhizosphere of flax and tomato were different from each other 

and that of bulk soil (Siciliano et al., 1998). Also, it was reported that the cereal 

rhizospheres like oats and wheat are often enriched with cellulose degraders (Turner 

et al., 2013a). Thus, implicating the importance of the presence of plant cell wall 

material in shaping the rhizosphere. 

 

1.2 Exudates 

Free living microorganisms in the soil are attracted by plant root secreted compounds 

(Lugtenberg et al., 2001). The root exudates can be grouped into (a) low-molecular 

weight compounds like sugars, amino acids, phenolics, organic acids and other 

secondary metabolites, (b) high-molecular weight polysaccharides (mucilage) and 

proteins (Haichar et al., 2014). The recruitment of microbes by the plant is evident to 

some extent by the ability of plant associated bacteria to degrade a range of plant 

released aromatics in the rhizosphere (Neal et al., 2012). Also many bacterial strains 

were found to be positively chemotactic towards various components from root 

exudates (Brencic & Winans, 2005). For instance, flavonoids attract symbionts, such 

as Bradyrhizobium japonicum, they also stimulate mycorrhizal spore germination and 

hyphal branching, and influence quorum sensing (Philippot et al., 2013; Haichar et al., 

2014). In legumes the concentration of flavonoids exuded increases in the presence 

of the compatible Rhizobium species which leads to the activation and expression of 

nod genes in rhizobia. The rhizobia then produce Nod factors which upon contact with 

receptors on host plants stimulate curling of root hairs around the invading rhizobia, 

entry of rhizobia into the plant through infection threads, and nodule development 

(Haichar et al., 2014). 
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Strigolactones are root exudate signal molecules that stimulate extra-radical hyphae 

formation leading to arbuscular mycorrhiza fungi (AMF) symbiosis with plants (Haichar 

et al., 2014; Haldar & Sengupta, 2015). The mutualistic associations formed between 

the plants and the AMF aid their survival in nutrient poor environments (Siciliano et al., 

1998). However, it was found that Brassicaceae like Arabidopsis thaliana are not well 

colonized by arbuscular mycorrhizal fungi (Lundberg et al., 2012). Neal et al. (2012) 

showed that Pseudomonas putida strain KT2440 is recruited in maize rhizosphere by 

benzoxazinoid, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA). 

The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene control 

systemic and induced plant immune responses (Vacheron et al., 2013; Lebeis et al., 

2015). Lebeis et al. (2015) compared the endosphere and rhizosphere bacterial 

communities of wild type Arabidopsis thaliana Col-0 with a set of isogenic 

phytohormone mutants either lacking or dependent on one of SA, JA and ethylene 

signalling pathways. Overall their results showed that elimination of the three 

phytohormones resulted in an abnormal root microbiome compared to wild type. The 

leaf immune regulator, SA, was found to influence the composition of specific bacterial 

families in the root microbiome and was either used as a growth signal or carbon 

source by these groups. van de Mortel et al. (2012) showed that treating A. thaliana 

with P. fluorescens SS101 induced systemic resistance to P. syringe p tomato through 

SA signalling pathways rather than the JA/ethylene pathway. Thus, implicating an 

important role played by SA in plant and rhizobacteria interactions. 

Notz et al. (2001) used a lacZ reporter gene linked with the phlA structural gene of 

phlABCD cluster to investigate factors influencing the expression of phl gene for the 

biosynthesis of 2,4-diacetylphloroglucinol , 2,4-DAPG, in P. fluorescens strain CHA0 

in the rhizosphere of maize, wheat, bean and cucumber. It was found that the phl gene 
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expression was enhanced in maize and wheat rhizosphere in comparison to cucumber 

and was thought to be caused by inherented differences in root exudation between 

monocots and dicots. Also, host genotype, cultivar and plant age were important 

factors (Brencic & Winans, 2005).  

de Weert et al. (2002) investigated cheA mutants derived from the efficient tomato root 

colonizer P. fluorescens strain WCS365. The cheA gene controls flagella-driven 

chemotaxis, and the mutant had impaired motility compared to the wild type. It was 

concluded that malic acid and citric acid are the main chemo-attractants in tomato 

exudate.  

Taken together, the above examples show the diversity of molecules and signalling 

pathways that have been implicated in recruitment of microbes by plants.  

 

1.3 Methods to study the rhizosphere microbiome 

The rhizosphere is colonized by bacteria, fungi (including the arbuscular mycorrhizal 

fungi (AMF)), oomycetes, viruses, and archaea (Philippot et al., 2013). Several factors 

including plant species, growth stage, type of exudation, and rhizo-deposition affect 

the bacterial diversity in this region of the soil (Gomes et al., 2001). Classical 

community profiling is based on pure culture isolation, metabolic, morphologic, and 

physiological traits (Kent & Triplett, 2002; Lenc et al., 2015). These included plate 

counts, microscopy, community level physiological profile (CLPP) and sole carbon 

source utilization (SCSU) patterns (Liu et al., 2006; Andreote et al., 2009).  

Early studies on rhizosphere microbiomes utilized fatty acid methyl ester (FAME) 

profiles, which gave poor insight on the composition of microbial structure (Siciliano et 

al., 1998). Methods based on nucleic acid extraction and amplification have been 
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proposed to overcome the limitations of culture dependent techniques and low 

resolution FAME (Andreote et al., 2009). In addition fingerprinting techniques have 

been used for community analysis such as single strand conformation polymorphism 

(SSCP), denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment 

length polymorphism (T-RFLP) where the differential banding patterns indicate 

differences in the microbial community but taxonomic assignment is achieved by 

sequencing of the band of interest except for T-RFLP (Kent & Triplett, 2002). Smalla 

et al. (2007) compared the 16S rRNA fingerprints of four soils generated by three 

methods DGGE, T-RFLP and SSCP. Although variations occurred between the three 

profiles the overall interpretation of the results were the same for the three 

fingerprinting methods. Also it was concluded that the T-RFLP is better for routine 

analysis due to automation availability unlike the other two methods which are subject 

to gel-gel variations. Yet the PCR based methods are preferentially used due to ease 

of analysing many samples and ability to tailor primers for organisms of interest (Kent 

& Triplett, 2002). 

Bulgarelli et al. (2012) advanced the field by using pyrosequencing of 400 bp PCR 

amplicons of the bacterial 16S rRNA gene targeting the V5–V6 variable gene 

segments to analyse the root associated microbiome of two A. thaliana accessions, 

Shakdara and Landsberg, in two different soil types, silt-clay rich and sand rich. 

Lundberg et al. (2012) also used 454 pyrosequencing of the 16S rRNA gene to 

analyse the rhizosphere and endosphere of eight inbred A. thaliana accessions grown 

in two different soil types under controlled conditions. In both studies, the soil type was 

identified as the major factor determining the composition of the bacterial communities, 

whereas, the host genotype affected individual groups to a lesser extent. 
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Turner et al. (2013b) investigated the rhizosphere microbiome associated with wheat 

(Triticum aestivum var. Paragon), oat (Avena strigose accession S75) and pea (Pisum 

sativum var. Avola) grown in the same soil using RNA based comparative 

transcriptomics. Again, it was found that the rhizosphere microbiome of the different 

plants was different from bulk soil. Also, the effect of legume (pea) on its associated 

rhizosphere community was stronger than that of the cereals (oats and wheat). 

Mendes et al. (2014) used DNA shotgun sequencing to explore the soybean 

rhizosphere from the South-Eastern Brazilian Amazon. Similar to previous studies the 

rhizosphere bacterial communities clustered separately from the bulk soil. From these 

studies it was concluded that the plant species and soil characteristics were identified 

as the main influencing factors shaping the rhizosphere microbiome. In addition, 

although plant rhizosphere selection is being widely studied, the mechanisms deriving 

the selection are still poorly understood (Philippot et al., 2013). Furthermore, 

determining the nature of the signalling molecules that move between the plants and 

the microbes remains an important question to be answered. Metabolomics can offer 

possible tools to explore the plant-microbe communication through exudates (Haichar 

et al., 2014). Also, important functions were found to be enriched in the rhizosphere 

such as nitrogen, potassium, phosphorus metabolism systems and iron uptake and 

metabolism systems. These functions are thought to benefit the host plant (Fig.1).  

Donn et al. (2015) used methods of selective microbial culturing, terminal restriction 

fragment length polymorphism (T-RLFP) and pyrosequencing of 16S rRNA V5-7 

region to investigate the tight bond and lose bond microbial communities associated 

with wheat grown under filed conditions. Their results demonstrated that although the 

presence of the plant and its growth stage had an influence on the selection of cultured 

bacteria, there was no significant effect of plant genotype on the selection of microbial 
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communities using the other two methods. Thus, suggesting that no single method 

can provide a detailed view of a complex system such as the soil microbial 

communities (McSpadden Gardener & Weller, 2001).   
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Figure 1: Plant growth promoting rhizobacteria can modulate root development and influence plant nutrition. PGPR: Plant 

Growth Promoing Rhizobacteria (Vacheron et al., 2013). 
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More recently, next generation sequencing has been widely used to examine the 

rhizosphere microbial communities with great resolving power (Philippot et al., 2013). 

Using high throughput NGS, microbial specific databases and efficient clustering 

algorithms, it is now possible to classify the soil microbiome to operational taxonomic 

units (out) or even to species level (Mahoney et al., 2017). Moreover, it is important to 

expand the knowledge from composition to functions using metatrascriptomics and 

proteomics (Turner et al., 2013a).   

It can be concluded that traditional physiological and biochemical methods depend on 

the ability to cultivate the isolates and test for their phenotypic features (respiration, 

enzyme production, catabolic potential) (Liu et al., 2006). However, many 

microorganisms cannot be cultivated under laboratory conditions (McSpadden 

Gardener & Weller, 2001; Kirk et al., 2004; Hirsch et al., 2010). In addition many are 

present in low numbers (Liu et al., 2006; Jousset et al., 2017). Thus, soil microbiologist 

have shifted to molecular techniques to study the diversity of soil bacteria (Liu et al., 

2006). Although the PCR based methods might have their own bias based on primers 

used, other factors such as design, sampling, source, extraction protocols, choice of 

fragment DNA/RNA, availability of sequence information and the choice of statistical 

analysis all are important in determining the outcomes of soil microbial diversity study 

(Kent & Triplett, 2002; Hirsch et al., 2010; Turner et al., 2013b). Also the choice of 

technique used depends on the availability of equipment and expertise (Smalla et al., 

2007).  

Overall despite the caveats associated with each method, the use of different 

techniques in combination can aid better understanding of a complex system such as 

the soil (Dunbar et al., 2000; Kirk et al., 2004). 
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1.4 Microbial Communities Associated with Plants 

The proper functionality of the ecosystem depends on the microbial community which 

in turn play important roles in plant and animal health, including humans (Pfeiffer et 

al., 2014). All plants are associated with microbes and depending on the type of this 

association, it can be defined as mutualistic or pathogenic or commensal (Knief et al., 

2011). Aerial parts of the plant termed as the phyllosphere are colonized by different 

bacteria, yeast, and fungi, though bacteria usually dominate. While only limited 

numbers of bacterial endophytes can be recovered from internal plant tissues, 

enormous numbers of epiphytic bacteria can be isolated from the surface of healthy 

plants (Lindow & Brandl, 2003; Bakker et al., 2013). This suggests that the 

phyllosphere has a greater richness of bacterial species. However, the diversity of 

bacterial communities in the phyllosphere tends to be less than that of the rhizosphere 

probably due to the short life span of leaves, higher nutrient richness in the 

rhizosphere, and the ability of microorganisms to survive in soil in a dormant state for 

long periods of time (Vorholt, 2012). Moreover, the difference in the microbial 

community of the leaves from that of the roots might be due to the physiochemical 

variations between these two environments. For instance, pigmented bacteria are less 

frequently encountered in the rhizosphere, similarly Azospirillum fail to establish on 

leaves (Lindow & Brandl, 2003). Most of the microbiological work on the phyllosphere 

has focused on leaves, with some work on buds and flowers (Lindow & Brandl, 2003).  

Innerebner et al. (2011) demonstrated the effects of two epiphytic leaf colonizing 

bacterial genera Methylobacterium and Sphingomonas spp. on the growth of plant 

pathogenic Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Their 

results showed that while the presence of Methylobacterium didn’t affect the 

pathogen’s growth, the presence of Sphingomonas spp. suppressed pathogen 
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population and prevented the onset of severe disease symptoms. This control was 

explained to be due to competition for macro elements and space, production of 

antimicrobial compounds, and the induction of systemic host resistance. 

 In addition, the plant’s health depends on the composition of the rhizosphere microbial 

community. These microbes help the plants to acquire micro and macro nutrients from 

the soil (Siciliano & Germida, 1999). The plant tend to support and enrich the microbial 

density around the roots as it excretes up to 40% of its photosynthetic products into 

the rhizosphere (Berendsen et al., 2012). The rhizosphere is defined as the narrow 

zone of soil surrounding roots where plant metabolic exudates are released. These 

exudates attract and stimulate the growth of plant growth promoting rhizobacteria 

(PGPR) (Compant et al., 2005). According to Bergsma-Vlami et al. (2005) rhizosphere 

compatibility is an important feature for the success of biological control and this 

compatibility is determined by the fact that the host plant determines the genotype of 

its associated bacteria including the ones with antagonistic traits. For instance, 

Mauchline et al. (2015) found that the first year wheat genotype has great influence 

on the selection of the associated soil microbial communities with specific influence 

on Pseudomonas spp. Thus, exploring antagonistic bacteria associated with plants is 

important for many applications in biotechnology such as biological control of plant 

pathogens, and the isolation of bioactive compounds (Kowalchuk et al., 2002). 

 

1.5 Wheat Microbiota 

In the past wheat breeders have focused on the above ground plant traits for increased 

yield but now the importance of belowground parts are becoming increasingly 

appreciated for disease resistance, stress tolerance and efficient water and nutrient 
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uptake (Corneo et al., 2016; Mahoney et al., 2017; Kavamura et al., 2018). The plants 

characteristics are known to influence the endophytic and rhizosphere microbial 

communities (Siciliano & Germida, 1999). Donn et al. (2015) using culturing methods 

of selected microbial populations, found that the presence of wheat plant and its 

growth stage were the major factors influencing the rhizosphere microbial community 

in comparison to bulk soil.   

Bergsma-Vlami et al. (2005) compared the effect of different host plants wheat, sugar 

beet, lily and potato, on rhizosphere bacteria with an interest in fluorescent 

Pseudomonas spp. in two types of Take-all soils, conducive and suppressive, 

respectively. They found that wheat influenced an increase in populations of 

fluorescent Pseudomonas spp. from 2 x 105 to 6x106 CFU/g root in conducive soil and 

from 8x105 to 4x106 CFU/g root in suppressive soil. Similarly, the endophytic bacterial 

population can be influenced by the host plant genotype (Robinson et al., 2015). 

Mauchline et al. (2015) compared the rhizosphere bacteria of two wheat cultivars 

(Hereward and Cadenza) under field conditions with different Take-all inoculum 

building properties.. Overall the 16S rRNA - gene amplicon analysis showed a highly 

complex microbiome, where high genetic diversity was encountered within the P. 

fluorescens group. In addition, more Pseudomonas were associated with Hereward 

than Cadenza. Thus it was concluded that the first year grown wheat variety had a 

selective pressure on Pseudomonas genomic diversity.  Corneo et al. (2016), used T-

RFLP of 16S rRNA - V3-V5 region to explore the rhizosphere microbiome of twenty 

four wheat genotypes. Analysis of alpha-diversity using Shannon index showed no 

significant difference in the associated rhizosphere bacterial diversity between the 

studied genotypes. However, there were significant difference in plant biomass and 

yield. 
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Recently, Mahoney et al. (2017) investigated the rhizosphere microbiome of nine 

wheat cultivars grown on two sites under field conditions and subject to minimum 

tillage management. Their analysis of 16S rDNA targeting the V1-V3 hypervariable 

region suggested that the wheat genotype had a minor but significant influence on the 

rhizosphere bacterial diversity with bacterial frequencies being different between the 

cultivars. However, no significant differences were observed for the Pseudomonas 

spp. between the cultivars. Kavamura et al. (2018), through 16S rRNA amplicon 

sequencing, showed the effect of long term nitrogen fertilization regime on the 

rhizosphere microbiome of the wheat cultivar Cadenza. Their results show that the 

application of organic nitrogen in the form of farm yard manure resulted in the highest 

bacterial diversity and richness and this microbiome appeared to be stable with time. 

In contract application of high levels of inorganic nitrogen negatively affected the 

bacterial community stability and showed reduced richness and diversity. Thus, 

indicating the role of biotic and abiotic factors in shaping plant associated 

microbiomes. 

This suggest that in addition to the plant species, soil type, season, climate, 

agricultural managements, sampling and analysis are also important factors 

influencing the rhizosphere bacterial communities (Kavamura et al., 2018). 

Overall for a high demand crop such as wheat sustainable production can be achieved 

through breeding wheat cultivars that can recruit beneficial microbes and thus reduce 

input in agriculture (Mahoney et al., 2017). This suggests the potential of microbiome 

manipulation for future sustainable agriculture (Corneo et al., 2016).  
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1.6 Disease suppressive soils 

Soils can be defined according to their ability to carry or suppress plant disease as 

conducive or suppressive soils, respectively (Lugtenberg et al., 2013). Often 

suppressive soils have been associated with the presence of beneficial microbes 

(Raaijmakers & Weller, 2001; Mazzola et al., 2004; Mavrodi et al., 2012a,b; Philippot 

et al., 2013). In addition, plants are able to defend themselves against soil borne 

diseases by stimulation of the growth of beneficial microflora (Mavrodi et al., 2012b; 

Kwak & Weller, 2013). A comparison of the rhizosphere of both healthy and diseased 

wheat plants has shown that larger microbial populations are associated with Take-all 

diseased wheats (McSpadden Gardener & Weller, 2001). 

Take-all decline is a natural form of disease suppression that occurs after a severe 

outbreak of the disease in very susceptible wheat or barley monoculture fields, which 

leads to higher yields and reduced disease severity in the consequently grown crops 

in the same field (McSpadden Gardener & Weller, 2001; Kwak & Weller, 2013; Jenkyn 

et al., 2014). This disease supressiveness was thought to be achieved by a build-up 

in antagonistic microorganisms (McSpadden Gardener & Weller, 2001), such as 

populations of fluorescent Pseudomonas spp. (Liu et al., 2009). Raaijmakers et al. 

(1997) stated that mixing small amounts of a Take-all suppressive soil with conducive 

soil is sufficient to transform the latter into a suppressive soil.  In addition to Take-all 

decline, soil disease suppressiveness has been reported for other diseases including 

potato scab caused by Streptomyces spp., Fusarium wilt, and Rhizoctonia damping-

off of sugar beet (Emmert & Handelsman, 1999; Berendsen et al., 2012). The host 

plant also plays a role in this selection, for instance in Washington a site with wheat 

monoculture history was known to be suppressive to apple root rot caused by 

Rhizoctonia. However within three years of planting apple orchids on this site the soil 
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was conducive to Rhizoctonia with altered composition, with less Pseudomonas putida 

and more P. syringae and P. fluorescens bv. III (Mazzola & Gu, 2002). 

In Washington state (USA) and the Netherlands it was found that Take-all decline was 

achieved after a period of wheat monoculture due to an increase in the antibiotic 2,4-

diacetylphloroglucinol (2,4-DAPG) produced by fluorescent Pseudomonas spp. (Kwak 

& Weller, 2013). In Inland Pacific Northwest (PNW) it was found that seed treatments 

with biocontrol species of  Bacillus and Pseudomonas increased resistance to Ggt and 

Rhizoctonia solani AG8 (Mavrodi et al., 2012b; Yang et al., 2014). In addition, 

biocontrol agents Bacillus pumilus 7 km and P. fluorescens CHAO were found to 

increase defence responses in wheat inoculated with Ggt through inducing the 

production of wheat peroxidases and glucanases (Daval et al., 2011). Thus, the 

implementation of indigenous or introduced biocontrol agents tend to be a promising 

approach for sustainable management of plant root disease, like Take- all, caused by 

fungi (Cook, 2003; Liu et al., 2009; Yang et al., 2011; Kwak & Weller, 2013). Research 

on Take-all has focused on Pseudomonas spp., Bacillus spp., and Actinomycete spp. 

(Schreiner et al., 2010; Malfanova et al., 2011; Yang et al., 2011).  

 

1.7 Biological Control 

1.7.1 Overview 

Microorganisms can aid in plant disease suppression, this disease elimination can be 

specific due to the antagonistic action of a few microbes or it can be general due to a 

combination of biotic and abiotic factors and the total microbial community (Lenc et 

al., 2015). Thus biological control can be defined as the use of microbial antagonists 

to impact pathogen growth or infectivity. An example is given by controlling soil borne 
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plant diseases using plant growth promoting bacteria (PGPB) (Raaijmakers & Weller, 

1998; Lugtenberg & Kamilova, 2009; Daval et al., 2011; Gao et al., 2012; Chen et al., 

2013). These bacteria live in close association with the plants either in the rhizosphere 

(de Boer et al., 2015), on the plant as epiphytes, or within the plants as endophytes 

(Berg et al., 2005). PGPB benefit the plant using a single trait or a combination of 

mechanisms e.g: (1) increasing the availability of mineral nutrients, (2) production of 

plant growth stimulating compounds, (3) protection against pathogens using their 

antagonistic traits, (4) induction of host resistance (Innerebner et al., 2011; de Boer et 

al., 2015; Lenc et al., 2015). Thus, understanding the mechanisms used by PGPB to 

enhance plant growth might lead to better utilization of these agents in plant disease 

suppression (Compant et al., 2005). 

Bacterial organic acids and siderophores can solubilize the poorly soluble inorganic 

nutrients in the soil (Berg, 2009). Pseudomonas spp. can solubilize the phosphate and 

make it available to the plants. This is achieved through acidification with gulconic acid 

to chelate the cations bound to phosphate and phosphatases or phytases that 

hydrolyse organic and inorganic phosphate (Vacheron et al., 2013). The non-

fluorescent Pseudomonas stutzeri has nitrogen fixing genes (nif), and is able to fix 

nitrogen in rice paddies and has genes for ethylene inhibition which are thought to 

promote plant growth by reducing the impact of ethylene on root development (Rediers 

et al., 2009; Silby et al., 2011). Many PGPR bacteria including Pseudomonas spp. 

have the ACC deaminase coding gene (acdS), which degrades ACC into 

ammoniumand α-ketobutyrate. The ACC, 1-aminocyclopropane- 1-carboyclic acid, is 

an ethylene precursor in plants. Thus, by lowering the ethylene levels, the ACC 

deaminase producing bacteria reduce the biotic and abiotic stress on the plant and 

enhance root growth (Berg, 2009; Silby et al., 2011; Vacheron et al., 2013). Volatile 
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organic compounds (VOC) of Bacillus subtilis strain GB03 indirectly enhance iron 

uptake by A. thaliana through rhizosphere acidification and up-regulation of FRO2 and 

IRT1 genes, coding for Fe3+ chelate reductase and Fe2+ transporter; respectively 

(Vacheron et al., 2013). Pseudomonas siderophores are well known for solubilizing 

iron thus making it available to the bacteria and plants (Rainey, 1999; Faraldo-Gómez 

& Sansom, 2003; Neal et al., 2012). In dicots and non graminaceous monocots iron 

uptake is through surface reduction while grasses can produce phytosiderophores 

such as mugineic acid from barley, avenic acid A from oat, and 2' -deoxymugineic acid 

from wheat. Thus either through iron reduction or use of microbial siderophores these 

benefits are achieved (Leong, 1986). 

Antagonistic effects of PGPB can be achieved through different mechanisms such as 

(i) competition for colonization sites, nutrients and minerals, (ii) inhibition of the 

pathogen by antibiotics, toxins and surface-active compounds called bio-surfactants, 

and (iii) parasitism, that may involve production of extracellular cell wall degrading 

enzymes such as chitinase and β -1,3 glucanase (Berg et al., 2005). This suggests 

that the antagonistic effect is a combination of one or more of the above mentioned 

mechanisms (Shoda, 2000; Raaijmakers & Weller, 2001). 

 

1.7.2 The ability of Pseudomonas fluorescens to suppress fungal diseases in 

soil  

Pseudomonas spp. are saprophytic bacteria that actively colonize the rhizosphere of 

many different plants. They can enhance plant growth by pathogen exclusion (Rainey, 

1999). This exclusion is achieved through their ability to secrete molecules such as 

iron scavenging siderophores, cyclic lipopepetides to aid motility, phenazines and anti-
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fungal compounds pyoluteorin and pyrrolnitrin, along with hydrogen cyanide, which is 

a volatile metalloenzyme inhibitor (Fig. 2) (Rainey, 1999; Haas & Keel, 2003). Mutants 

with impaired growth rates or defects in LPS O-antigen synthesis showed sub-optimal 

colonization (Lugtenberg & Dekkers, 1999; Lugtenberg et al., 2001). The antagonistic 

traits of fluorescent Pseudomonas spp. makes it an interesting target to study (Lenc 

et al., 2015). For example, strains that synthesize the antifungal metabolite 2,4-

diacetylphloroglucinol (2,4-DAPG) have the ability to suppress many soil borne fungal 

diseases like Take-all disease of wheat (Raaijmakers & Weller, 1998). In addition, 

different genotypes of DAPG-producing Pseudomonas were shown to differ in their 

ability to suppress Take-all disease of wheat (Bergsma-Vlami et al., 2005). This 

suggests a selective pressure exerted by the wheat to select for specific genotypes of 

DAPG-producing Pseudomonas which are highly adapted to the wheat rhizosphere 

(Raaijmakers & Weller, 2001). 

Motility seems to be another important trait for the initiation of successful colonization 

as evidenced by the findings that non-motile mutants of P. fluorescens lost their ability 

to colonize the roots (Capdevila et al., 2004; Alsohim et al., 2014). Root exudate 

derived chemotaxis often initiates this motility (Bais et al., 2004). 

Due to the complex nature of the rhizosphere, it is predicted that a diverse combination 

of genes is associated with its colonization. To date various genes involved in nutrient 

acquisition, motility, chemotaxis, adhesion, secretion and stress responses are found 

to be associated with Pseudomonas rhizosphere colonization ability (Walsh et al., 

2001; Jackson et al., 2005; Silby et al., 2009). 

This ecological fitness of Pseudomonas spp. as a PGPB is defined by their 

performance and it is considered to be a sophisticated phenotype affected by various 
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environmental conditions (Rainey, 1999). For instance, the influence of the plant 

genotype on the selection of associated Pseudomonas spp. was highlighted by 

Mauchline et al. (2015) where the high Take-all inoculum builder wheat variety 

(Hereward) supported a population of Pseudomonas spp. with antagonistic traits. 

However, the low Take-all inoculum builder wheat variety (Cadenza) supported 

Pseudomonas spp. that were better adapted to host communication and nutrient 

acquisition. In addition, Mavrodi et al. (2012) have shown the effects of irrigation on 

the selection of antibiotic producing Pseudomonas spp. where phenazine-1-carboxylic 

acid (Phz+) producers dominated dryland wheat rhizosphere, while the 2,4-

diacetylphloroglucinol producers (Phl+) were associated with wetland wheat 

rhizosphere.  

The traditional way of introducing a biocontrol organism has in many cases failed to 

achieve desirable control under field conditions. Thus manipulating the rhizosphere to 

favour the growth of a specific genotype of the control organism seems to be a 

promising new approach in plant disease management (Thomashow & Weller, 1988; 

Mauchline et al., 2015).
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Figure 2: Antibiotics produced by strains of Pseudomonas fluorescens (Haas & Keel, 2003).
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1.7.2.1 Pseudomonas rhizosphere fitness genes 

The rhizosphere is a nutrient rich area surrounding the roots and is influenced by its 

exudates (Lugtenberg & Dekkers, 1999). Many soil bacterial genes and traits are 

shown to be involved in root colonization (Capdevila et al., 2004). 

Several Pseudomonas species interact with the plants and some are known to 

contribute to plant health either directly by inducing the plant immune system or 

indirectly by antagonising pathogens (Silby & Levy, 2004; Silby et al., 2011). Important 

environmental functions include motility, nutrient scavenging, stress responses, 

detoxification and regulation (Rainey, 1999; Gal et al., 2003; Silby et al., 2011). Niche 

specific genes are over expressed in a particular environment and thus are considered 

the main contributors to the colonization success in that environment in comparison to 

the regularly expressed genes in a range of environments (Rainey, 1999; Gal et al., 

2003). Silby & Levy (2004) found that 22 genes had elevated expression in soil in 

comparison to laboratory media. The use of promotor trapping strategy, in vivo 

expression technology (IVET), has enabled the assignment of rhizosphere induced 

genes (rhi) into six groups: attachment and surface colonization, nutrient acquisition, 

stress responses, antibiotic production, secretion and unknown (Jackson et al., 2005; 

Rediers et al., 2003). 

Pseudomonas fluorescens strains are commonly studied for their biocontrol and plant 

growth promotion. Unlike P. aeruginosa PAO1 and P. syringe, the saprophytic P. 

putida strain KT2440 and the P. fluorescens strains Pf01, Pf-5 and SBW25 lack 

pathogenesis genes (Silby et al., 2011). Although the rsp gene cluster products of 

SBW25 resemble the type III secretion system (T3SS) of pathogenic bacteria, it does 

not seem to elicit plant defences suggesting that it probably targets another host, for 
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instance fungi (Jackson et al., 2005; Silby et al., 2011). P. fluorescens SBW25 protects 

sugar beet from damping-off disease caused by Pythium ultimum (Rainey, 1999; 

Alsohim et al., 2014). 

Rainey (1999) and Gal et al. (2003) used IVET to screen P. fluorescens SBW25 fitness 

genes in the rhizosphere of sugar beet. The former employed an expression trapping 

system with a promotor-less copy of panB while the latter used a dapB promotor-less 

system. The panB gene encodes for ketopantoate hydroxymethyltransferase required 

for the synthesis of pantothenate while the dapB gene encodes for diaminopimelate 

(DAP), an important peptidoglycan component, which is limited in soil. The dapB 

mutant phenotype is adequate for IVET selection since diaminopimelate auxotrophy 

is lethal to growing cells, while non-growing cells can remain viable for long periods 

(Silby & Levy, 2004). 

 In the first trapping system twenty rhizosphere induced genes were identified, six of 

which were unique while fourteen shared homology with [GenBank] sequences 

encoding genes in secretion, nutrient acquisition and stress responses. In the second 

IVET system twenty five rhizosphere induced genes were identified, of these a gene 

involved in cellulose synthesis wssE and a putative amidohydrolase gene were of 

interest. The wss operon is made of ten genes that encode acetylated cellulose 

polymer and is required for rhizosphere and phyllosphere fitness. The putative 

amidohydrolase gene was found to share some similarity with plant derived nitrilase 

which is required for the synthesis of the plant hormone indole acetic acid (IAA). Thus, 

suggests a role in plant growth promotion (Gal et al., 2003).  

The dapB system was also used by Jackson et al. (2005) to investigate the rsp gene 

cluster of SBW25. Rediers et al. (2009) also used P. stutzeri dapB mutant to screen 

for rice colonization and infection (cii) genes. Of the induced genes, induction of bcp 
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gene was explained as a response to oxidative stress. Proteins involved in the 

adaptation to various stresses in the rhizosphere, YhbH, Hfq, and MiaA were also 

induced. They also pointed to a possible role of pta-encoded phosphortransacetylase 

in providing energy form acetyl phosphate metabolism for nitrogen fixation in rice 

rhizosphere. 

Silby & Levy (2004) found some overlap between their fusion products and those 

found by Gal et al. (2003), Rainey (1999) and Rediers et al. (2009) suggesting that 

these loci are important for the general soil colonization rather than the specific 

rhizosphere colonization. 

Lipopolysaccharides (LPS) of Gram negative bacteria consist of Lipid-A, core, and O-

antigen and act as receptors for bacteriophages. Bacterial LPS affects the colony 

morphology and plays an important role in determing cell surface charge, attachment 

and biofilm formation (Spiers & Rainey, 2005). Pseudomonas mutants with defect in 

the O-antigen had impaired colonization on potato roots implicating a possible role of 

LPS in root colonization (Lugtenberg et al., 2001). In P. fluorescens SBW25 the wrinkly 

spreader (WS) morphotype is one of many different niche specialist genotypes that 

emerge following experimental propagation spatially structured microcosms 

(McDonald et al., 2009). The fuzzy spreader is a type of WS with mutation in fuzY the 

fourth gene of the five-gene fuzVWXYZ operon. The gene fuzY encodes a β-

glycosyltransferase that is predicted to modify surface lipopolysaccharide. This is 

implicated in suppressing the mat WS types and conferring resistance to SBW25ϕ2 

phage (Ferguson et al., 2013). Thus indicating the efficient ability of bacteria to adjust 

with specific niches. LPS in the outer membrane contains several heptoses which are 

phosphorylated. In addition, the LPS are strongly associated with porins and thus 

affect resistant to antibiotics. In the mutants with altered LPS, the space between the 
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pore protein and LPS becomes wider enabling the binding of polymyxin B. While the 

narrower pore opening makes the mutants less effective in competing for low level 

nutrients in the rhizosphere (De Weert et al., 2006).  

Phenazines also play a role in determining the colony morphology and play critical 

roles in biofilm formation. In P. aeruginosa the presence of phenazines results in 

smooth colonies while mutants start to wrinkle. This is because in smooth wild type, 

phenazines act as an alternate electron acceptors for the cells in the absence of 

oxygen. While in phenazine lacking mutants, wrinkeling is a starategy to increase the 

surface area and balance the intracelluar redox state of cells within the community 

(Dietrich et al., 2013). Phenazines are naturally produced heterocyclic compounds 

with substitutions at different points around their rings. They serve as signal molecules 

for biofilm formation and promote redox homeostasis. Also, phenazines can enhance 

biofilm formation by increasing the availability of iron (Wang et al., 2011). Their redox 

potential allows them to be reduced by bacterial cells and act as electron shuttles 

between the bacterium and an external substrate following reaction with extracellular 

higher potential oxidants like ferric iron and oxygen. This redox potential is mainly 

responsible for their antagonistic biological activity, where they act as antibiotics in soil 

and virulence factors during infection (Price-Whelan et al., 2006; Dietrich et al., 2013). 

Furthermore, phenazine production downregulates the genes for siderphore 

biosynthesis and transport (Wang et al., 2011). In most phenazine producing 

pseudomonads, the phenazine encoding genes are arranged in one core operon; 

phzABCDEFG. Environmental conditions, population density and quorum sensing are 

among these and the levels of iron, oxygen and phosphate affect the expression of 

phenazine biosynthesis genes (Price-Whelan et al., 2006). Mazzola et al., (1992), has 

shown that phenazine producers; P. aureofaciens 30-84 and P. fluorescens 2-79 are 
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able to colonize wheat roots better than phenazine-lacking (Phz-) mutants due to 

reduced competition with resident microflora.  

The role of the biosurfactant viscosin from P. fluorescens SBW25 in aiding swarming 

motility, biofilm formation and plant protection was described by Alsohim et al. (2014). 

Viscosin is a cyclic lipopepetide (CLP) synthesized by large nonribosomal peptide 

synthases (NRPS), viscA, viscB and viscC (De Bruijn & Raaijmakers, 2009). 

Mauchline et al. (2015) analysis of Pseudomonas isolates from wheat endosphere and 

rhizosphere showed that phenotypic gene clusters of LPS, pili synthesis and viscosin 

operons were strongly associated with activities like microbial suppression, plant 

association/manipulation or scavenging and growing on plant material.  

In Gram negative bacteria, iron uptake is regulated by Fur protein which acts as a 

repressor binding to DNA and preventing transcription. Under low intracellular iron 

concentration Fur loses its transcription repressor ability. In addition to this system, 

bacteria like Escherichia coli have genes for iron uptake through ferric citrate system 

fecABCDE. Binding of iron loaded siderophore to TonB- dependent FecA membrane 

receptor activates the expression of the corresponding gene cluster. These genes 

encode the periplasmic binding protein FecB, the cytoplasmic membrane proteins 

FecC and FecD and the ATPase FecE (Faraldo-Gómez & Sansom, 2003). 

The toxin/antitoxin genes (TA) are made of stable toxin that can harm the cell and an 

unstable antitoxin that can inactivate it (Andersen et al., 2017). Toxin-antitoxin (TA) 

are of three types in Type I and III  antitoxins are RNAs while in type II they are proteins 

while the toxins are always proteins (Van Melderen, 2010). TA have been found to 

have roles in antibiotic resistance, phage inhibition, stress responses, biofilm formation 

and pathogenicity (Pandey & Gerdes, 2005; Van Melderen, 2010; Wood & Wood, 
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2016). The type II TA system are the most common. Ten toxin families have been 

identified of these, ParE targets DNA gyrase and thus affects replication by generating 

double strand breaks. While RelE and HigB affects translation by targeting the 

translating ribosome and inducing mRNAs cleavage (Van Melderen, 2010). For 

instance in E. coli the TA systems are stress-response element that aids cell survival 

under unfavourable growth conditions. The relBE locus encodes for RelE toxin and 

RelB antitoxin, where the latter counteracts the activity of the former by direct protein-

protein interaction. That is during amino acid or glucose starvation, activation of RelE 

leads to translation inhibition by mRNA cleavage (Pandey & Gerdes, 2005). Clinical 

isolates of P. aeruginosa were found to harbour higBA TA (HigB/HigA) system in which 

the antitoxin HigA masks the toxicity of the toxin HigB (Wood & Wood, 2016). Deletion 

of the antitoxin gene higA results in phenotypes with impaired virulence such as those 

with reduced growth, swarming and biofilm formation, and with decreased production 

of pyocyanin and pyochelin (Wood & Wood, 2016; Andersen et al., 2017). The TA 

system is still a subject of ongoing research (Andersen et al., 2017). 

From the above, it can be concluded that the wide range of identified rhizosphere 

induced genes provide a broad range of possibilities for use as markers to identify the 

loci under specific plant selection. 

 

1.8 Aims and Objectives 

The overall project objective was to explore the effect of wheat cultivars grown under 

field conditions on the associated microbiome under Take-all disease conditions. To 

address this five wheat cultivars were grown continuously in the same plot over three 

different fields at Rothamsted research. In addition, the isolated Pseudomonas spp.  
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were investigated for selective recruitment by the wheat and for ability to control Take-

all in vitro. To achieve the previous objectives, the following specific questions were 

investigated: 

- Do different wheat cultivars select for specific genotypes of the associated 

Pseudomonas spp.? This question was answered in chapter three through 

investigating some important rhizosphere colonization loci. 

- Do the Pseudomonas isolates differ in their ability to inhibit the growth of Take-

all fungi in vitro? The answer to this question was addressed in chapter four. 

- Can we see the same in vitro inhibition when tested on the host plant? This 

question was addressed in chapter five. 

- How do differential TAB (Take-all inoculum build-up) wheat cultivars shape their 

microbiome over time and in comparison between three different field sites? The 

answer was explored in chapter six. 
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CHAPTER 2- Materials and Methods 

2.1 Media 

Analytical grade media supplied by Difco (Difco laboratories Ltd, Oxford), Merck 

(Merckserono, Middlesex, U.K), or Sigma (Sigma-Aldrich Company Ltd., Dorset, U.K) 

were used. The recipe of Maniatis et al. (1989) was used to prepare each medium. All 

the below listed media were prepared by adding the components to one litre of 

deionised water. For solid medium, Agar (Difco) was added to the prepared broth to a 

final concentration of 1.5% (15g L-1). The media were sterilized by autoclaving at 121 

°C for 20 mins. Filter sterilization through (0.22 µm) MillexTM Milipore® filter was used 

for heat labile substances which were added to the sterile media after cooling to 50°C. 

Pre-warmed medium (20 ml) was added to each Petri dish (SLS, Scientific Laboratory 

Supply Ltd). 

 King’s medium B (KMB) (King et al., 1954): To 1 L of water, proteose peptone (Difco) 

20 g, K2HPO4 1.5 g, Mg2SO4.7H2O 1.5 g, glycerol 10 ml, were added.  

Pseudomonas Selective Agar (PSA): Pseudomonas Agar Base (OxoidTM) was 

supplemented with antibiotics CFC (Cephalothin 25 mg, Fucidin 5 mg, and Cetrimide 

5 mg). 

Potato Dextrose Agar (PDA): was purchased from OxoidTM. 

Phosphate Buffered Saline (PBS): For 1 L of water NaCl 8 g, KCl 0.2 g, Na2HPO4 

1.15 g, KH2PO4 0.2 g, adjust pH to 7.3. 

Full strength LB agar (Swarming motility): For 1.2 L of water, tryptone (Fulka) 12g, 

Yeast extract (Oxoid) 6 g, NaCl (Sigma-Aldrich) 12 g were added, mixed and heated 

to dissolve. 400 ml of the dissolved mix were distributed into 500 ml Duran bottles. 1 
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g of Agar (Sigma-Aldrich) was added to each bottle and the medium was sterilized by 

autoclaving.  

Low strength (1/10) LB agar (Swimming motility): For 1.2 L of water, tryptone 

(Fulka) 1.2 g, Yeast extract (Oxoid) 0.6 g, NaCl (Sigma-Aldrich) 1.2 g were added, 

mixed and heated to dissolve. 400 ml of the dissolved mix were distributed into 500 

ml Duran bottles. 1 g of Agar (Sigma-Aldrich) was added to each bottle and the 

medium was sterilized by autoclaving.  

 

2.2 Culture maintenance 

All bacterial strains were grown on King’s medium B (KA (agar) or KB (broth) at 27°C, 

shaking for 16 h or static (agar) for 48h).  

From -80 °C frozen stocks, all Pseudomonas species were freshly grown on KB agar 

overnight at 27 °C. When liquid culture was needed, a single colony growing on an 

overnight plate of KMB agar was used to inoculate (10-30 ml) a KMB broth. The 

inoculated broth was then incubated overnight in an orbital shaker set at 27 °C and 

200 rpm (Forma Scientific). The Gaeumannonmyces graminis var. tritici (Ggt) was 

grown by placing a 0.5 cm plug of growing hypha on PDA agar and the plates were 

incubated for 7 days at 24 °C. Plugs from the original plate were stored in sterile water 

at 4°C and were plated occasionally.  

 

2.3 Genomic DNA extraction 

For DNA extraction from Pseudomonas spp, a single colony grown on KA was used 

to inoculate 10 ml KB. The culture was incubated overnight on an orbital shaker at 

27˚C (Forma Scientific). One millilitre (1 ml) of broth was used for DNA extraction using 
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a GeneJet Genomic DNA extraction kit following the manufacturer’s instructions 

(Thermo Scientific). The quantity and quality of eluted DNA was determined using a 

NanoDrop® (ND-1000 UV-Vis Spectrophotometer) (LabTech).  The eluted DNA was 

stored at -20°C until needed.  

 

2.4 Gel electrophoresis 

Bioline Molecular Grade Agarose powder was used to prepare gels for 

electrophoresis. Gels were made to a final concentration of 1% (w/v) depending on 

the volume used. Agarose powder was dissolved in 0.5X Ambion® TBE buffer (10X 

solution contains 0.89 M Tris, 0.89 M Borate, 0.02 M EDTA). Biotium Gel Red TM 

(10,000X in water) was added to a final concentration of 0.1 mg ml-1.  The extracted 

DNA (4 µl) was mixed with (1 µl) of 5X  DNA loading dye (200 mM Tris-HCl, 5  mM 

EDTA, 30% (v/v) glycerol, 0.1% (w/v in water) bromophenol blue, 0.1% (w/v in water) 

xylene cyanol) prior to loading in gel. BIOLINE HyperLadder TM was used as a DNA 

band size marker. The gel was used in Alpha Laboratories Gel tanks at a voltage of 

90 V for 40 mins. On completion of the run, DNA bands were visualized using a GBOX 

(Syngene) gel documentation system.  

 

2.5 PCR 

All polymerase chain reactions were carried out in bench-top Thermal Cyclers (Techne 

P3 or BioRAD T100). PCRBIO Taq Mix Red was the PCR mix used in all the PCR 

reactions. Cycling conditions varied based on the primers. Primers used in this work 

were supplied by Eurofins (Eurofins Genomics, Ebensburg, Germany). 
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2.6 PCR purification 

PCR products were purified using a QIAquick PCR Purification Kit (Qiagen) following 

the manufacturer instructions. The purified PCR products were eluted in 50 µl of 

supplied elution buffer. For Eurofins sequencing services, 15 µl of the purified PCR 

product were mixed with 2 µl of either forward or reverse primers. 

 

2.7 Motility assay   

For swarming motility, full-strength LB with 0.25% agar was used. Agar plates were 

freshly made by pipetting 30 ml of sterile molten agar into 88 mm Petri dishes. The 

plates were allowed to set at room temperature for up to 4 h. The plates were then 

allowed to dry for 30 mins with lids open in a class 2 safety cabinet. Using a sterile 

wire a single colony from an overnight culture was stabbed into the centre of LB plate, 

with the wire touching the bottom of the plate. For each isolate three replicas were 

made. The inoculated plates were then incubated without stacking in static incubator 

set at 27 °C (BINDER growth chamber). For swimming motility, 1/10 strength LB agar 

with 0.25% agar was used. The plates were prepared and the assay was conducted 

as described for swarming motility assay. Plates were monitored at 18, 24, and 42 h 

and images were taken using gel documentation system G:BOX (Syngene). The 

growth area were later measured using ImageJ software. 

 

2.8 Seed sterilization validation 

Wheat (Triticum aestivum) seeds of unknown variety were kindly provided by the 

University of Reading glass houses to validate the seed sterilization process and carry 

out initial plant assay. The seeds were surface sterilized by immersion in 2.5% (v/v 
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with with sterile n H2O) solution of house-hold bleach for 3 mins followed by 3 rinses 

in sterile n H2O. The seeds were then allowed to air dry for up to 3 h in class 2 safety 

cabinet (Labogene) (Weller & Cook, 1983). Air dried seeds were place in 25 ml sterile 

tubes with 5 ml of sterile PBS and 4 glass beads (3 mm). The tubes were vortexed for 

1 min. Serial dilution was the prepared in a 96 well plate by mixing 20 µl of the seed/ 

PBS mixture with 180 µl of fresh sterile PBS. The drop spot method was used where 

10 µl of each dilution was spotted on KA plate, with each dilution replicated 6 times. 

The plates were incubated at 27 °C and the plates were monitored for growth at 24 

and 48 hrs. The process was replicated 3 times. In addition air dried seeds were placed 

on 20 ml water agar (WA) plates and incubated at room temperature for a week. 

 

2.9 Soil core bioassay and Take-all index (TAI) 

For the soil core bioassay, five soil cores, 5.5 cm diameter and 10 cm deep were taken 

in a zig-zag transect across each plot. Cores were inverted into plastic drinking cups 

(11 cm with water draining holes drilled in the bottom) which contained a basal layer 

of 30 cm3 damp sand. The top of the inverted soil core was pressed to the sides of the 

cup. The soil was lightly watered and 10 wheat seeds (cv. Herewered) placed on the 

surface (originally the bottom of the core). Seeds were covered with a layer of 

horticultural grit, and the pots were transferred to a controlled environment room for 5 

weeks (16 h day, 70% relative humidity, day/night temperatures 15/10 °C and watered 

twice weekly). After 5 weeks the plants were removed and the roots were washed with 

water. The roots were assessed for Take-all lesions in a white dish under water and 

the total numbers of plants and roots, along with the number of plants and infected 

roots were recorded. The percentage of plants and roots infected were calculated as 

a measure of the infectivity of the soil (McMillan et al., 2011) . For Take-all index, adult-
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plant samples (5 x 20 cm row length per plot) were taken from each field trial (Growth 

stage 71-73, milk development). Plant samples were transported back to the field 

laboratory, roots were washed from free soil, the tops chopped off and the remaining 

stem bases and root system air dried in a polytunnel for 4-5 days and then stored at 

room temperature before assessment for Take-all disease. Stored dried whole plant 

root systems were soaked in water for approximately 15-20 mins and then assessed 

in a white dish under water and scored for Take-all to calculate the Take-all index. The 

proportion of roots infected for each whole plant root system was estimated and 

graded into six categories: no symptoms, slight 1 (1-10% roots infected), slight 2 (11-

25%), moderate 1 (26-50%), moderated 2 (51-75%) and severe (>75%). Using this 

the Take-all index was calculated for each plot; (1 x percentage plants in slight 1 

category) + (2 x percentage plants in slight 2 category) + (3 x percentage plants in 

moderate 1 category) + (4 x percentage plants in moderate 2 category) + (5 x 

percentage plants in sever category); divided by the number of categories slight 1 to 

severe; with maximum TAI 100 (McMillan et al., 2014).  
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CHAPTER 3- Great Harpenden 2 Rhizosphere fitness loci 

Summary: 

Many studies have shown that plants are able to shape their microbiomes 

Psuedomonas fluorescens successfully colonizes the rhizosphere of many plants and 

is well recognized for its plant growth promoting and disease suppressive properties 

(Rainey, 1999; Spiers et al., 2000; Silby et al., 2009). It is also widely investigated for 

controlling Take-all disease of wheat caused by Gaeumannomyces graminis var. tritici 

(Ggt) (Raaijmakers & Weller, 1998; Mavrodi et al., 2007; Yang et al., 2014). 

Rhizosphere fitness is an important trait used to measure rhizosphere colonization. 

This fitness is encoded by a pool of rhizosphere fitness genes (rhi). The rhi genes 

encode for many important colonization traits such as host recognition, motility and 

antagonism. An investigation by Mauchline et al. (2015) highlighted a possible 

selection exerted by sequential planting of wheat varieties, whereby wheat variety 

grown in the first year influenced the associated fluorescent Pseudomonas spp. 

regardless of which wheat variety was grown in the second year. To further investigate 

this finding, the same set of Pseudomonas spp. isolated by  Mauchline et al. (2015) 

were screened for the differential harbouring of four putative rhi fitness loci; wsm , 

viscB, tox and fecB. The wsm locus is thought to aid in colonization while fecB likely 

plays a role in iron acquisition and probably antagonism. A Dot blot and polymerase 

chain reaction (PCR) approach was used to screen for the presence and absence of 

these loci. Statistical analysis on the outcomes of gene presence and absence showed 

a significant effect driven by first year wheat (p= 0.046) on the selection of either gene. 

The analysis also showed that the wsm locus was more associated with isolates of 

first year Hereward (p < 0.001) compared with the fecB gene (p < 0.001) which was 
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more associated with isolates from Cadenza background. Thus these results agree 

with earlier findings of Mauchline et al. (2015). 

 

3.1 Introduction 

The soil surrounding the roots can be divided into bulk soil and the closely attached 

rhizoplane and rhizosphere. The rhizosphere is densely populated with microbes due 

the presence of nutrient-rich exudates (Compant et al., 2010). A wide range of 

interactions occur between the plant and the associated microorganisms in the 

rhizosphere. These interactions can be detrimental to plant health like in the case of 

pathogens or beneficial to the plant as seen with plant growth- promoting bacteria 

(PGPB) (Raaijmakers et al., 2009; Mauchline et al., 2015).  

Due to the complex nature of the rhizosphere, it is predicted that a diverse combination 

of genes is associated with its colonization (Walsh et al., 2001). P fluorescens is a 

Gram negative bacterium that colonizes the rhizosphere of many plants and is widely 

investigated for its disease control abilities (Keel et al., 1992; Weller, 1988). To date 

various genes involved in nutrient acquisition, motility, chemotaxis, adhesion, 

secretion and stress responses are found to be associated with Pseudomonas 

rhizosphere colonization ability (Rainey, 1999; Walsh et al., 2001; Gal et al., 2003; 

Silby et al., 2009; Mauchline et al., 2015). These genes account for the ecological 

fitness of Pseudomonas spp. as a PGPB is defining their performance and adaptation 

to - various environmental conditions (Rainey, 1999). For instance, different genotypes 

of the phloroglucinol antibiotic, 2,4 Diacetylphloroglucinol (2,4–DAPG), producing 

fluorescent Pseudomonas have been shown to variably colonize the rhizosphere of 
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wheat, pea, and corn (Bergsma-Vlami et al., 2005). In addition, they differed in their 

utilization of carbon sources and ability to produce other antibiotics. 

The influence of the plant genotype on the selection of associated Pseudomonas spp. 

was highlighted by Mauchline et al. (2015) where the high Take-all inoculum builder 

wheat variety Hereward supported a population of Pseudomonas spp. with fungal 

antagonistic traits. However, the low Take-all inoculum builder wheat variety Cadenza 

supported Pseudomonas spp. that were better adapted to host communication and 

nutrient acquisition. 

 

Aims and objectives: 

To test the hypothesis that the wheat variety grown in the first year selects for the 

genotype of associated Pseudomonas spp., isolates from the same field experiment 

as Mauchline et al. (2015), were screened for rhi fitness genes. These loci were 

selected after identifying the rhizosphere fitness genes highlighted by Rainey (1999) 

as well as the most significant loci from Mauchline et al. (2015).Thus, genes involved 

in nutrient acquisition, host recognition, colonization, motility, and antagonism were 

selected as prime candidates for this investigation. Genes coding for these traits were 

searched for in the genome of P. fluorescens SBW25. The selected loci for this 

investigation were postulated to be involved in (i) host recognition like the lipopoly-

saccharide (LPS), (ii) motility and antimicrobial surfactant (viscosin), (iii) nutrient 

acquisition (iron), and (v) toxin involved in stress responses and biofilm formation. 

These loci were labelled as wsm, viscB, fecB, and tox respectively. 
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3.2 Methods 

3.2.1 Sample collection and bacterial isolation 

Bacterial samples were kindly provided by Dr Tim Mauchline, Rothamsted Research, 

and were derived from a two-year field trial that ran in year 2010-2012. In this 

experiment there were two treatments as summarized in Table 1. In the first year, a 

high Take-all inoculum building (H-TAB) variety Hereward was grown in parallel with 

a low Take- all inoculum building (L-TAB) variety Cadenza. Following the harvest of 

first year plants the same plots were over sown in the second year with different wheat 

varieties. In this study only plots that were over-sown with either Hereward (H-TAB) or 

Xi-19 (L-TAB), another Low TAB variety, in the second year were sampled. Four- 

hundred and eleven (411) Pseudomonas spp. were selectively isolated by (Mauchline 

et al., 2015). from the rhizosphere and endosphere of the second year sampled wheat. 

The field design consisted of four main blocks divided into two main plots (Fig. 3) of 

Hereward and Cadenza in the first year. In the second year, these two main plots were 

divided into 8 split plots (Fig. 4) which were over-sown with other wheat varieties.  
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Table 1: Great Harpenden 2 (GH2) treatment structure. 

GH 2 Year 1 Year 2 Sampled split plots in Year 2 

Treatment (a) Hereward (H-

TAB) 

Hereward  1, 32, 37, 44 

Hereward (H-

TAB) 

Xi-19 (L-TAB) 22, 28, 31, 34 

Treatment (b) Cadenza (L-TAB) Hereward  8, 46, 52, 58 

Cadenza (L-TAB) Xi-19 (L-TAB) 24, 25, 30, 35 

 

The methods used for field sampling, rhizosphere harvesting, and the selective 

isolation of P. fluorescens were previously described in Mauchline et al. (2015)
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Figure 3: Field layout of Great Harpenden 2 (GH2) Rothamsted in the first year. The colours show the four main blocks with two 

main plots of either Hereward or Cadenza represented by the numbers outside (Source: Dr. Vanessa McMillan, Rothamsted 

Research).  

2012/R/CS/719

Great Harpenden 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard 10.0 m

14.0 m

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Cadenza Cadenza Herew ard Herew ard Cadenza Cadenza Herew ard Herew ard

6.0 m sow n to Cadenza/Herew ard in year 1 3.0 m spray path in year 2 3.0 m plot in year 2

96.0 m

1 2 3 4 5 6 7 8
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Figure 4: Field layout of Great Harpenden 2 (GH2) Rothamsted in second year. The two main plots numbered outside, were 

divided into two split-plots represented by the numbers inside, over-sown with other wheat cultivars. Only split-plots with second year 

Hereward and Xi-19 were sampled (Source: Dr. Vanessa McMillan, Rothamsted Research).
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3.2.2 Bacterial growth and DNA extraction 

Methods for bacterial growth and DNA extraction using a GeneJet kit (Thermo 

Scientific) are described in detail in 2.3. The quantity and quality of eluted DNA was 

determined using NanoDrop® (ND-1000 UV-Vis Spectrophotometer) (LabTech). Also, 

the integrity of extracted DNA was checked on 1% Agarose (Bioline) gel in 0.5X TBE 

buffer (Appendix II9.1.2) stained with gel red (Cambridge Bioscience). The DNA of 

SBW25 was then used as the template for PCR amplification and later probe 

synthesis. 

 

3.2.3 Primer design and PCR 

The genome of SBW25 was used as the model for primer design. Primers were 

designed using NCBI primer design tool (Table 2). First the sequences of the target 

genes were identified based on the loci showing significance in Mauchline et al. 

(2015). In total 9 primer pairs (5 for the wsm LPS operon components, 2 for viscosin 

operon components, one for fecB and one for tox) were synthesized by Eurofins 

Genomics. Gradient PCR was performed to allocate the optimum annealing 

temperature for each primer set. For primers MZ-1, MZ-5, MZ-7, MZ-15, and MZ-17 

the optimum annealing temperature was 58.7 °C these were grouped as Set A, 

whereas primers MZ-3, MZ-9, and MZ-11 had an optimum temperature of 61.5 °C and 

were grouped as Set B. PCR with the primer pair MZ-13, which target the second 

component of the viscosin operon, resulted in multiple bands so was not analysed 

further.  

A 50 µl PCR reaction was used for amplification and sequencing. For each reaction, 

25 µl of 2X Taq mix (PCR Biosystems), 16 µl nH2O, 2 µl of F primer (10 µM), 2 µl of R 
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primer (10 µM), and 5µl of SBW25 DNA (26.5 ng µl-1) were used. The PCR 

amplification was performed using a Senso Quest gene flow thermal cycler and 

conditions were as follows: initial denaturation at 95 °C for 1 min, 30 cycles of 

denaturation at 95 °C for 30 seconds, annealing at 58.7 °C or 61.5 °C and extension 

at 72 °C for 1 min kb-1, and a final extension step at 72 °C for 7 min for set A and 10 

min for set B.  
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Table 2: Primers for Dot blot synthesis, the locus tags are from (Source: http://www.pseudomonas.com): 

No. Primer 
pair 

Operon Set Locus Tag Gene (product) F sequence R sequence Product 
size 
(bp) 

1 MZ-1 Wsm 
LPS 

A PFLU_0475 Putative 
Carbamoyltransferase  

TGACGATTCTTGGCCTGTCC  AGCCACTCGATCAGTTTGGG 793 

2 MZ-3 Wsm 
LPS 

B PFLU_0476 Conserved 
hypothetical protein 
(wsm)  

GGCAATGCCGAGATCATCCT  GGCGCTTTGCGTATTGAGAA  519 

3 MZ-5 Wsm 
LPS 

A PFLU_0477 Putative deacetylase  GTTGATCCTCGCGATTGTGC  CAGGGTCACGATCCAGCTTT  511 

4 MZ-7 Wsm 
LPS 

A PFLU_0478 Putative glycosyl 
transferase  

TTCGAGTTTCCCGAGAAGGC  TCAAGCAAGGAAGGCATGGT  668 

5 MZ-9 Wsm 
LPS 

B PFLU_0479 Putative glycosyl 
transferase 

TGATTTCCAGGTGCAGCAGA  ATCGCTGAACTTGGCGTAGG  523 

6 MZ-11 Viscosin B PFLU_2553 Putative non ribosomal 
peptide synthetase 
(viscB) 

ACCGTACCGTGGAAAACCTC  GAATGCGATTAACCGGCACC  1227 

7 MZ-13 Viscosin Didn’t 
work 

PFLU_2552 Putative non ribosomal 
peptide synthetase 
(viscC) 

GCGATGACGCCCAGGTATTA  ACCGATATACCGCTGCACTG  1052 

8 MZ-15 - A PFLU_4091 Iron dicitrate –binding 
periplasmic protein 
(fecB) 

TCCTGGCGTTCTCTTCAAGC  TCCAGCTGTCAACGATGCTC  717 

9 MZ-17 - A PFLU_3831 Conserved 
hypothetical protein 
Toxin HigB-2  (tox) 

GAACAGGCGGTTTACGCAAG  TGTTTGCCGTACAGGGTGAA  133 

 

 

http://www.pseudomonas.com/
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To visualize the PCR products a 1% agarose (Bioline) gel (w/v) with 3 µl Gel red 

(Cambridge Biosciences) was prepared using 0.5 X TBE buffer. The samples were 

run for 40 mins at 90 V. Once all PCR products were observed as single bands, these 

PCR products were cleaned up using QIAquick PCR purification kit following the 

manufacturer’s instructions (Qiagen). Thirty microliters (30 µl) of each product were 

sent for sequencing to Eurofin genomics (15 µl DNA+ 2 µl F primer (10 µM), and 15 µl 

+ 2 µl R primer (10 µM). The remaining 19 µl was stored at 4˚C for the following probe 

labelling reaction. Sequence alignment and comparison of sequences with genomic 

sequences was done using BLAST on NCBI. 

 

3.2.4 Probe labelling   

The DIG High Prime DNA labelling and detection starter kit II (Roche) was used for 

DNA labelling, hybridization and detection. The concentration of purified DNA was 

determined using NanoDrop® (ND-1000 UV-Vis Spectrophotometer) (LabTech) and 

400 ng of DNA was required for the labelling process. In a 1.5 ml Eppendorf tube the 

DNA was added to sterile water (nH2O) to make a final volume of 16 µl. The DNA was 

denatured by heating at 100 °C on a heating block for 10 mins, and then quickly chilled 

on ice. Then, 4 µl of well mixed DIG-high prime (Roche) were added to the denatured 

DNA. The mixture was centrifuged at 13,000 rpm for 10 s (Stuart microfuge I) before 

being incubated at 37 °C overnight. The labelling reaction was stopped by heating the 

tubes at 65 °C for 10 mins. Two (2 µl) of the labelled DNA was added to 50 µl sterile 

nH2O in a 1.5 ml Eppendorf tube. This mixture was denatured at 100 ˚C for 5 min then 

quickly chilled on ice. Finally, it was added to 5 ml DIG Easy Hyb buffer (Roche) pre-

warmed at 42 ˚C. 
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Although 8 probes were labelled, the final analysis was carried out using 4 DIG- 

labelled probes; MZ-3 for wsm, MZ-11 for viscB, MZ-15 for fecB, and MZ-17 for tox.  

 

3.2.5 Dot blot 

3.2.5.1 Bacterial DNA extraction and blot preparation 

Overnight bacterial cultures from the -80 °C frozen stocks were grown on KA at 27 ˚C 

to be used for the screening process. In a 96-well microtiter plate 200 µl of 0.4 M 

NaOH-10 mM EDTA were loaded. A 48 tip multi blot replicator (70% ethanol dipped 

and flame sterilized) was used to touch the cells grown overnight and subsequently to 

inoculate the 96-well plate. For the positive control, SBW25, a sterile tip was used to 

touch  a single bacterial colony to inoculate the plate. The negative control well had 

no bacterial inoculum. The plates were sealed with autoclave tape and incubated for 

10 mins at 60°C in a Hybaid mini oven. Once the incubation was completed the plates 

were chilled on ice for 5 mins. In a clean tray, sufficient amount of 2X Saline Sodium 

Citrate (2X SSC, Appendix  II 9.1.2) buffer was poured to wet the positively charged 

nylon membrane (Nylon membrane positively charged, Roche). Meanwhile, the sterile 

Bio-Rad blotter was un-screwed inside a -class 2 safety cabinet (Labogene). Using 

sterile forceps, the wetted membrane was transferred to the blotter and placed on to 

the rubber gasket. The upper part was placed back and the screws were alternatingly 

tightened. A vacuum was applied (by turning the tap on) and the screws were tightened 

further. The vacuum was then held and 180 µl of each sample were loaded using a 

multichannel pipette. The vacuum was then reapplied to draw the samples through. 

Once all the samples had passed through, the blotter was disassembled, and the nylon 

membrane was washed briefly in 2X SSC. The membrane was then left to air dry for 

30 mins. Once dry, the membrane was wrapped in Saran wrap.  Finally, to fix the DNA 
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to the membrane, the wrapped membrane was exposed to UV light (302 nm) for 2 

mins using a UV trans-illuminator with the DNA side facing the UV light source.   

 

3.2.5.2 Pre-hybridization and Hybridization reactions 

The blot with fixed DNA was placed into a 110 ml glass Hybaid oven tube and 10 ml 

of DIG Easy Hyb buffer was added to the tube. For the pre-hybridization reaction, the 

tubes were incubated at 42 °C for up to 3 h inside the Hybaid oven with slow rotation. 

After this incubation the pre-hybridization buffer was discarded and replaced with a 

pre-warmed mixture of labelled probe and 5 ml of DIG Easy Hyb buffer. This reaction 

was incubated overnight at 42 °C with rotation in the Hybaid oven. 

 

3.2.5.3 Stringency washes and Detection 

Once the hybridization was concluded, the blot was removed from the Hybaid tube 

and the buffer was stored at -20 ˚C, as it can be reused up to 3 times.  The blot was 

then subjected to a series of stringency washes. First it was placed in a tray with 150 

ml of (2X SSC + 0.1% SDS) buffer (low stringency buffer; LSB) for 5 mins. This buffer 

was discarded, and the wash was repeated with fresh 150 ml of LSB. During this wash, 

150 ml of (0.5X SSC+ 0.1%SDS) buffer (high stringency buffer; HSB) was pre-warmed 

at 65 °C in the oven. The blot was then transferred to a clean Hybaid glass tube where 

75 ml of pre-warmed (HSB) was added, and it was left rotating in the Hybaid oven for 

30 mins at 65 ˚C. This was repeated once more.  

Once the stringency washes were complete the blot was placed in a clean plastic tray 

where 150 ml of washing buffer (0.1 M maleic acid buffer + 0.3 % Tween 20) was 

added. The blot was gently shaken for 5 mins at room temperature on a rocker. The 
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washing buffer was discarded. In the same tray 170 ml of the blocking solution was 

added to the blot, and left shaking for 1.5 h. After this the solution was discarded. Then 

30 ml of antibody solution (750 U/ ml) was added to the blot, and left shaking for 30 

mins. The blot was then washed in 150 ml of washing buffer for 30 mins and this was 

repeated with fresh buffer. Finally, the blot was equilibrated for 10 mins in 30 ml of 

detection buffer (0.1 M Tris-HCl, 0.1 M NaCl pH 9.5). The blot was then placed in a 

hybridization bag and 1 ml of disodium 3-(4-methoxyspiro {1,2- dioxetane-3,2’-(5’-

chloro) tricycle [3.3.1.13,7] decan }-4-yl) phenyl phosphate (CSPD, Roche) was evenly 

pipetted on to the DNA side of the blot. The blot was left for 5 mins at room temperature 

and excess CSPD was drained off.  The bag was resealed and incubated at 37°C for 

10 mins to activate the CSPD. In a dark room, the blot was exposed to X-ray film in an 

X-ray cassette for 10 min with the DNA side facing the film. The film was then placed 

in a tray with developer (Carestream DENTAL). Once the dots appeared completely, 

the film was briefly washed in a second tray with water and then transferred to a third 

tray with the fixer (Carestream DENTAL). Once again, the film was briefly washed in 

fresh water and hung to air dry. Once dry the film was scanned using an Epson 

scanner connected to a computer (Epson Perfection V300 Photo) and the image was 

stored. Results were recorded using a scoring system based on spot intensity (Table 

3). Alternatively, the blot was also visualised directly using the gel documentation 

system G:BOX (Syngene) using the blot option and CSPD as the detection system. 

The images were saved as JPG files. List of chemicals is in provided in Appendix II 

9.1.2. 
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Table 3: The scoring system for Dot blot positive signals. 

Score Observation 

0 Negative control signal 

1 Faint signal 

2 Moderate signal 

3 Strong signal 

4 Positive control signal 

 

 

3.2.6 Dot blot confirmation via PCR 

3.2.6.1 Degenerate primers 

The nucleotide sequences of the four loci (wsm, viscB, fecB, and tox) from P. 

fluorescens SBW25 were aligned against the 20-sequenced library from the same pool 

of isolates (“Jake. Available:https//streptomyces.org.uk/customers/jake/. [Accessed: 9 

March 2019].”) (http://sterptomyces.org.uk/cgi-bin/customers/jake/) (Mauchline et al., 

2015) using Mega (MEGA 7). 

Two degenerate primers for wsm, and fecB were successfully designed (Table 4). The 

other two loci were highly variable, with a great mismatch. Thus, no further analysis 

was carried out. 

3.2.6.2 DNA template preparation 

For DNA template preparation, 1 ml of overnight culture on (KB) incubated in a shaker 

at 27 °C was transferred into an Eppendorf tube. These tubes were centrifuged at 

13,000 rpm for 3 mins (Microfuge, SCF2, Stuart). The supernatant was discarded and 

the pellets were re-suspended in 200 µl of TE buffer (1 M Tris HCl - 0.5 M EDTA pH 

8). After vortexing, the cell suspension was heated at 100 °C for 10 mins using a 

heating block (Heat block, VWR Scientific). The tubes were then chilled on ice for 10 

mins, followed by a second centrifugation (13,000 rpm for 3 mins). Carefully, the 

http://sterptomyces.org.uk/cgi-bin/customers/jake/
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supernatant was transferred to new clean tubes. This template DNA was either used 

immediately in a PCR reaction or stored at -20 °C for later use. Gradient PCR using 

SBW25 DNA was used to determine the optimum annealing temperatures for the 

degenerate primers. 

3.2.6.3 PCR amplification 

A 20 µl PCR reaction was carried out using 2 µl of the previous template DNA along 

with 10 µl 2X PCRBIO Taq Mix Red (PCR Biosystems), 6.4 µl nH2O, 0.8 µl of each F 

and R primers (10 µM). The conditions for the PCR, 95 °C for (3 mins for wsm, 5 mins 

for fecB), followed by 30 cycles of denaturation at 95 °C for 30 s, annealing (63°C for 

wsm and 70 °C for fecB) for 30 s, extension at 72 °C for 30 s, and final extension at 

72 °C for (7 mins wsm, 5 mins fecB). DNA template of SBW25 was used as the positive 

control, and nH2O as the negative control. 

The wsm PCRs were carried out using T100 thermal cycler (BioRad), while the fecB 

PCRs were carried out using Prime3 thermal cycler (Techne).
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Table 4: Degenerate primers for wsm and fecB. (* just a label to differentiate from a non-successful fecB primer pair). 

No. Loci F primer  R primer  Tm 
(°C)  

Product size 
(bp) 

1 wsm wsm F (GGCAAYGCCGARHTSATCC) wsm R 
(GCACCARCGSTCYTTRTAYTCRCGGTC) 

63 603 

2 fecB fecB F*  
(TGATCGTSGCCGACCTCAAYCG) 
 

fecB R* (CCACARCGGCTGCTTGCTCCAG)                            70 455 
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3.2.7 Data analysis 

Statistical analysis was done using the GenStat statistical package (2015, 18th edition, 

© VSN International, Hemel Hempstead, UK).   

 

3.3 Results 

3.3.1 Gene selection and probe synthesis 

Rhizosphere fitness relies on genes  involved in nutrient acquisition, host recognition, 

colonization, motility, and antagonism (Rainey, 1999). Mauchline et al. (2015), have 

found a strong positive correlation between the Streptomyces growth inhibiting 

phenotypes and genes involved in the biosynthesis of viscosin surfactant and wsm 

LPS operons. In addition, they focussed on genes for iron acquisition and toxin 

production. From their work it was hypothesised that a wider range of rhizosphere 

fitness loci will be present in the bacterial isolates taken from the plots. However, it is 

unknown which loci might be under selection for the different cultivar combinations. 

Therefore, the 411 isolates were screened for a range of different loci to determine if 

any correlations exist that might indicate specific loci under ecological selection. 

Genes coding for wsm LPS, viscosin, iron binding and toxin genes were searched for 

in the genome of P. fluorescens SBW25 (Fig. 5-8). The NCBI primer synthesis tool 

was used to synthesize the primers. Since the wsm LPS and viscosin operons had 

multiple genes (5 and 2 respectively), resulting in 9 primer pairs (one for each gene). 

In the process of identifying the optimum annealing temperature the viscC (MZ-13 

primer pair) gave multiple bands unlike the others so was excluded from further work 

(Fig.9). Once single band were obtained (Fig. 10 and 11), these PCR products were 

then sent for sequencing (Eurofin genomics). Sequence alignment and comparison of 

the data on NCBI showed 99-100% sequence identity.  
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In addition, the dot blot screening was narrowed down by using one probe for each 

locus MZ-3 for wsm, MZ-11 for viscB, MZ-15 for fecB and MZ-17 for tox (Appendix I 

9.1.1).  MZ-3 was chosen out of the five wsm LPS operon components because it was 

giving consistent results in comparison to the other genes when initially tested. While 

for viscosin operon viscB primer pair gave specific binding than viscC.
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Figure 5: The wsm LPS operon genes PFLU_0476 SBW25 hypothetical protein (wsm). Red: cytoplasmic; Orange: cytoplasmic 

membrane; Green: outermembrane; Gray: unknown(Source: (Winsor et al., 2016) http://www.pseudomonas.com). 

 

 

http://www.pseudomonas.com/
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Figure 6: The Viscosin operon PFLU_2553 SBW25 viscB putative non-ribosomal peptide synthetase. Orange: cytoplasmic; Gray: 

unknown (Source: (Winsor et al., 2016) http://www.pseudomonas.com). 

 

 

 

http://www.pseudomonas.com/
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Figure 7: The iron siderophore binding protein PFLU_4091 SBW25 fecB iron-dicitrate transporter substrate-binding subunit. 

Red: cytoplasmic; Orange: cytoplasmic membrane; Green: outermembrane;Yellow: periplasmic; Gray: unknown (Source: (Winsor 

et al., 2016) http://www.pseudomonas.com).

http://www.pseudomonas.com/
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Figure 8: The Toxin gene PFLU_3831 gene of SBW25 Toxin HigB-2. Red: cytoplasmic; Orange: cytoplasmic membrane; Green: 

outermembrane; Gray: unknown  (Source: (Winsor et al., 2016) http://www.pseudomonas.com). 

 

 

http://www.pseudomonas.com/
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Figure 9: Example of a gradient PCR for primer sets MZ-3, MZ-11 and MZ-15. 

Well: 1 and 17 is the ladder (Bioline Hyper Ladder 1Kb); wells 2-8 PCR products of 

primer MZ-3 (519 bp); wells 9-16 and 18 PCR products of primer MZ-11 (1227 bp); 

wells 19-26 are PCR products of primer MZ-13 (1052 bp) and wells 27-32 are PCR 

products of primer MZ-15 (717 bp) (the last two temperatures were not loaded for this 

amplification), at temperatures are 54.9°C, 56.3°C, 57.7˚C, 59.1˚C, 60.3˚C, 61.5˚C, 

62.4˚C, and 63.0˚C left to right; respectively. 

 

1    2    3     4     5       6      7      8     9    10  11   12  13  14 15  16 

17   18   19   20  21  22   23  24   25  26   27  28   29  30  31  32 

400bp 
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Figure 10: DNA amplicons (probes for Dot blots) derived from PCR products at 

58.7 °C. Well: 1, ladder (Bioline Hyper ladder 1Kb); 2, MZ-1 (wsm LPS) (793 bp); 3, 

MZ-5 (wsm LPS) (511 bp); 4, MZ-7 (wsm LPS) (668 bp); 5, MZ-9 (wsm LPS) (523 bp); 

6, MZ-15 (fecB) (717 bp); 7, MZ-17 (tox) (133 bp). 
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Figure 11: DNA amplicons (probes for Dot blots) derived from Set A and set B 

PCR products. Well: 1, ladder (Bioline Hyper ladder 1Kb); 2, MZ-1(wsm LPS) (793 

bp); 3 MZ- 5 (wsm LPS) (511 bp); 4 MZ- 7 (wsm LPS) (668 bp); 5 MZ-17 (tox) (133 

bp); 6 MZ-3 (wsm LPS) (519 bp); 7 MZ- 9 (wsm LPS) (523 bp); and 8 MZ- 11 (viscB) 

(1227 bp). 

 

 

With the selection of the genes to be searched for in the 411 strains and optimisation 

of the PCR and dot blot conditions, the next step was to screen all the Pseudomonas 

spp. isolates to determine whether there are any significant correlations between 

genotype and wheat cultivar (Fig. 12). In an excel sheet the scores 3 and 4 were 

counted as 1 (gene is present), while 0, 1 and 2 were counted as zero (gene not 

present) (Appendix 9.1.6). 
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Figure 12: Examples of Dot blot of 78 isolates from the 411 isolate collection. 

The isolates are from plots 30R, 31R, 31E, 34R, 34E, and 35E. R: Rhizosphere, E: 

Endosphere. 6A is the positive control (SBW25). 12H is the negative control (non-

bacterial).  Numbers 31 and 34 refers to (H, Xi-19) planting combination. Numbers 

30 and 35 refers to (C, Xi-19) planting combination.  The blot was probed with (wsm) 

gene MZ-3 probe.

 1        2       3        4         5        6          7      8         9        10     11     12 

A 

 B 

 C 

 D 

 E 

 F 

 G 

 H 

 



63 
 

3.3.2 Dot blot screening for rhizosphere fitness loci 

From Great Harpenden 2 field (GH2), four plots were sampled for each of the four 

main blocks, resulting in 16 sampled plots. These 16 plots covered the following 

planting schemes (H, H), (C, H), (H, Xi-19), (C, Xi-19). A total of 411 Pseudomonas 

isolates were selectively isolated from the rhizosphere (R) and endosphere (E) of year 

two wheat.  The distribution of the isolates from the different plots was as follows: 84 

from (H, H) plots, 102 from (C, H) plots, 108 from (H, Xi-19) plots, and 117 from (C, 

Xi-19) plots. 

A total of 251/411 were successfully screened for the presence or absence of the four 

genes; wsm, viscB, fecB, and tox via dot blot. Where 108 isolates were from the (H, 

Xi-19), 102 isolates were from (C, Xi-19) planting scheme, 26 isolates from (H, H) 

planting scheme, and 15 isolates were from (C, H) planting scheme.  

Since the 26 isolates of (H, H) and the 15 isolates of (C, H) were both obtained from 

single plots, they were not included in the analysis (Raw data in Appendix III 9.1.3).  

Within the (H, Xi-19) screened isolates, 74/108 harboured either one, two, or three out 

of the four tested loci; no strains gave a signal for all four loci. The abundance of the 

four genes among these positive isolates is shown in Fig.13. Screening the 102 (C, 

Xi-19) isolates revealed 80 positive isolates having one, two, or three of the tested 

gene loci. Only one isolate was observed to have a signal for all four genes (Fig.14).  
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Figure 13: The distribution of the four screened genes among the 74/108 positive isolates from (H, Xi-19) planting scheme. 

The numbers on the Y axis refers to number of Gene 1 to 4. The colours represent (green) wsm (PFLU_RS02355), (blue) viscB 

(PFLU_RS12480), (purple) fecB (PFLU_RS19995), and (red) tox (PFLU_RS18680). None of the isolates had the four genes. H: 

Hereward, and Xi-19. Appendix IV shows Isolate number key. 
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Figure 14: The distribution of the four screened genes among the 80/102 positive isolates from (C, Xi-19) planting 

scheme.The numbers on the Y axis refers to number of Gene 1 to 4. The colours represent (green) wsm (PFLU_RS02355), (blue) 

viscB (PFLU_RS12480), (purple) fecB (PFLU_RS19995), and (red) tox (PFLU_RS18680). Only one isolate, 25R/12,had all the four 

genes. C: Cadenza, and Xi-19. Appendix IV shows Isolate number key. 
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3.3.3 Statistical analysis of the rhizosphere fitness loci data 

First using the raw data of Dot blot outcomes, the proportions of success for the 

presence of gene signal were calculated. That is the outcomes from the plots of the 

same planting schemes were averaged (Appendix IV 9.1.4). Analysis of variance 

(ANOVA) was performed on proportion data of the gene presence within Hereward 

rhizosphere (HR), Hereward endosphere (HE), Cadenza rhizosphere (CR), and 

Cadenza endosphere (CE) for the 251 Pseudomonas isolates for the four tested loci. 

The fitted model Treatment*Niche with block as Block/plot/niche (Tables 5- 8). For the 

wsm locus there was a significant difference between the treatments Hereward and 

Cadenza and the niches Rhizosphere and Endosphere (p= 0.042, d.f =1). This locus 

was more abundant among the Hereward isolates. In terms of viscB locus there was 

no significant difference between the treatments and the niches (p= 0.37, d.f =1). The 

viscB locus is thought to aid in colonization. The difference between the treatments 

Hereward and Cadenza was approaching significance (p= 0.067, d.f =1) for the fecB 

locus. This locus is involved in iron acquisition through the ferric citrate system. In 

terms of the tox locus there was a significant difference between the treatments 

Hereward and Cadenza (p= 0.026, d.f =1) and the niches Rhizosphere and 

Endosphere (p= 0.034, d.f =1). 
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Table 5: ANOVA summary for wsm locus proportion data. Block: main block of year 1 
with Hereward or Cadenza; Plot: sampled plots of year 2 Hereward or Xi-19; Niche: 
endosphere or rhizosphere; Treatment: (year 1, year 2) planting combination; d.f: 
degrees of freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

block stratum 3   1.0074 0.3358 1.72   

block.plot stratum             

niche 1   0.0761 0.0761 0.39 0.596 

treatment 1   0.001 0.001 0 0.951 

Residual 2 -1 0.3902 0.1951 5.44   

block.plot.niche 
stratum             

niche 1   0.0355 0.0355 0.99 0.365 

niche.treatment 1   0.2633 0.2633 7.35 0.042 

Residual 5   0.1792 0.0358     

Total 14 -1 1.5614       

 

Table 6: ANOVA summary for viscB locus proportion data. Block: main block of year 
1 with Hereward or Cadenza; Plot: sampled plots of year 2 Hereward or Xi-19; Niche: 
endosphere or rhizosphere; Treatment: (year 1, year 2) planting combination; d.f: 
degrees of freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

block stratum 3   0.2067 0.0689 6.13   

block.plot stratum             

niche 1   0 0 0 0.99 

treatment 1   0.0011 0.0011 0.1 0.786 

Residual 2 -1 0.0225 0.0112 0.29   

block.plot.niche 
stratum             

niche 1   0.0207 0.0207 0.53 0.498 

niche.treatment 1   0.0376 0.0376 0.97 0.37 

Residual 5   0.1939 0.0388     

Total 14 -1 0.4605       
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Table 7: ANOVA summary for fecB locus proportion data. Block: main block of year 1 
with Hereward or Cadenza; Plot: sampled plots of year 2 Hereward or Xi-19; Niche: 
endosphere or rhizosphere; Treatment: (year 1, year 2) planting combination; d.f: 
degrees of freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

block stratum 3   0.1999 0.0666 4.57   

block.plot stratum             

treatment 1   0.1163 0.1163 7.98 0.067 

Residual 3   0.0438 0.0146 0.5   

block.plot.niche 
stratum             

niche 1   0.0077 0.0077 0.26 0.632 

niche.treatment 1   0.0135 0.0135 0.46 0.529 

Residual 5 -1 0.1472 0.0295     

Total 14 -1 0.4357       

 

Table 8: ANOVA summary for tox locus proportion data. Block: main block of year 1 
with Hereward or Cadenza; Plot: sampled plots of year 2 Hereward or Xi-19; Niche: 
endosphere or rhizosphere; Treatment: (year 1, year 2) planting combination; d.f: 
dgrees of freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

block stratum 3   0.2152 0.0717 11.54   

block.plot stratum             

treatment 1   0.1065 0.1065 17.13 0.026 

Residual 3   0.0187 0.0062 0.19   

block.plot.niche 
stratum             

niche 1   0.2742 0.2742 8.33 0.034 

niche.treatment 1   0.0093 0.0093 0.28 0.619 

Residual 5 -1 0.1647 0.0329     

Total 14 -1 0.7651       

 

 

Figure 15, compares the abundance of the screened loci between (H, Xi-19) and (C, 

Xi-19) planting schemes based on proportions of positive isolates from (H, Xi-19) and 

(C, Xi-19) rhizosphere and endosphere niches.    
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Figure 15: Proportion of positive isolates for the tested genes (wsm, viscB, fecB 
and tox) from the rhizosphere and endosphere Pseudomonas isolates of T. 
aestivum cvs (H, Xi-19) and (C, Xi-19) planting schemes. H: Hereward (Year1), C: 
Cadenza (Year1), R: Rhizosphere, E: Endosphere. The error bars are based on 
standard errors. For wsm (s.e.d= 0.2209) (d.f= 2), viscB (s.e.d= 0.053) (d.f= 2), fecB 
(s.e.d= 0.0989) (d.f= 7.94), and tox (s.e.d= 0.0989) (d.f= 6.67).  The proportion for 
each locus were calculated as the number of success out of the total number of 
isolates for a given niche (E or R). 

 

 

 

3.3.4 Dot blot vs. PCR 

Given the large number of isolates (411), the Dot blot method was initially chosen as 

a cheap and fast method to screen the isolates. However, in practice it is a very time 

consuming and needs lots of optimization. Dealing with environmental samples is yet 

another challenge for probe design and procedure trouble shooting. Moreover, the 

isolates were screened for all 5 loci of the wsm LPS operon before choosing probe 

MZ-3. This probe was chosen due to consistent performance. Also in the beginning 
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the traditional method involving X-ray film was used which is more tedious than 

developing the signal in the G:Box which was subsequently found to be a much better 

alternative. Another issue with Dot blot was the background, which involved the 

preparation of alternative homemade recipe of Denhardts blocking solution (Appendix 

II 9.1.2). In many cases the process was repeated more than once to finally get the 

251 isolates done.   As such, the PCR method was used alternatively, the first step 

was to design degenerate primers, which were made for wsm and fecB. Thus,  these 

two loci were the focuc of PCR screening. The second challenge was to get the 

template DNA for the 411 isolates. - Colony PCR didn’t work and thus was replaced 

by a quick DNA template   preparation method using TE buffer as described in section 

3.2.6.2 which is a cheaper method than kit DNA extraction and a cleaner version of 

colony PCR. Once the DNA templates were prepared and the amplification conditions 

were optimized, the PCR screening proved to be an efficient and fast screening assay 

for the number of isolates in hand. Thus all isolates were screened for the presence 

or absence of wsm and fecB loci via PCR. 

 

3.3.4.1 Comparing the outcomes of the Dot blot and PCR screens 

To compare the match between the dot blot and the PCR outcomes for wsm and fecB 

loci of 251 isolates. Using a Binomial test for wsm and fecB loci separately, the 

proportion of matches between PCR and dot blot methods over all the isolates was 

significantly different (p < 0.001, Binomial test, n=251) from 0.75, as a benchmark 

proportion chosen (Table 9), and therefore also from 0.95 as a statistical requirement 

for the two methods to be the same. The two methods gave statistically significantly 

(p < 0.001, Binomial test, n=251) different proportions of presence of wsm and fecB 

genes (Table 10).  
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Table 9: One-sample Binomial test summary for success in match between Dot blot 
and PCR screening methods. 

Sample 

size 

Gene Match 

success 

Proportion 

of match  

Bench 

mark 

proportion 

Probability 

251 wsm 108 0.430 0.75 <.001 

251 fecB 121 0.482 0.75 <.001 
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Table 10: Two-sample Binomial test summary for proportions of gene presence comparing Dot blot to PCR, n = 251.  

Gene Dot blot 

signal 

Dot blot 

proportion of 

gene 

presence 

PCR signal PCR 

proportion of 

gene presence 

Difference in 

proportions 

s.e.d Probability 

wsm 91 0.363 220 0.876 0.513 0.03 < 0.001 

fecB 45 0.179 159 0.633 0.454 0.03 < 0.001 
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When the outcomes of both methods matched, i.e. both methods identified the 

presence or absence of test loci for an isolate, there was no problem. However, the 

proportion of outcomes of presence was much greater with PCR than with Dot blot 

(Table 10). This is thought to be due to the higher sensitivity of PCR compared to dot 

blot. The outcomes of presence for PCR but absence for dot blot might be explained 

by the biased judgement of spot intensity, as spots scoring 1 and 2 were taken as 

zeros for the final scoring in dot blot. The outcomes of presence for blot and absence 

for PCR might be due to the presence of PCR inhibitors (soluble fractions of the cell), 

as the DNA template was prepared using TE buffer protocol.
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3.3.4.2 Statistical analysis of data to identify correlations in planting scheme, 

niche and bacterial genotypes. 

To test for the main effects and interactions between the factors of wheat cultivar 

grown in the first year (Hereward or Cadenza), wheat cultivar grown in the second 

year (Hereward or Xi-19), and niche (endosphere or rhizosphere), the analysis was 

carried out at two steps. Firstly, Analysis of Variance (ANOVA) was performed on the 

isolate counts, the fitted model was Year1*Year2*Niche and the blocking structure 

Block/Main/Split/SplitSplit. The main effect of varieties grown in the first year of the 

experiment was significant on the abundance of isolates (p = 0.046) with greater 

abundance seen for Cadenza (means: Cadenza 13.75, Hereward 12.00 isolates per 

plot; s.e.d = 0.530 on d.f. = 3) (Table 11-13).



75 
 

 

 

 

Table 11: ANOVA summary for PCR outcomes. Block: main block of year 1 with Hereward or Cadenza; Plot: sampled plots of year 
2 Hereward or Xi-19; Niche: endosphere or rhizosphere; Treatment: (year 1, year 2) planting combination; d.f: degrees of freedom; 
F pr.: F probability. 

Source of variation      d.f.        s.s.        m.s.     v.r.   F pr. 

Block stratum               3 81.25 27.08 12.04   

Block.Main stratum           

Year1                      1 24.5 24.5 10.89 0.046 

Residual                    3 6.75 2.25 0.19   

Block.Main.Split stratum           

Year2                      1 40.5 40.5 3.42 0.114 

Year1.Year2                 1 4.5 4.5 0.38 0.56 

Residual                6 71 11.83 0.58   

Block.Main.Split.SplitSplit stratum           

Niche                       1 6.12 6.12 0.3 0.594 

Year1.Niche               1 6.12 6.12 0.3 0.594 

Year2.Niche              1 6.12 6.12 0.3 0.594 

Year1.Year2.Niche          1 1.12 1.12 0.05 0.819 

Residual                12 245.5 20.46     

Total                   31 493.5       
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Table 12: ANOVA table of means. 

Year1         C         H 

              13.75 12 

Year2         H        Xi 

  11.75 14 

Niche         E         R 

  12.44 13.31 

 

Table 13: Standard error of differences, s.e.d in mean. 

Table                 Year1        Year2        Niche        Year1 

rep.                     16 16 16 8 

s.e.d.               0.53 1.216 1.599 1.327 

d.f.                    3 6 12 7.93 

 

Secondly, a generalized liner model (GLM) was fitted to PCR response data for each 

gene assuming a Binomial distribution for the proportion of gene presence and using 

a logit link function for the model. The fitted model was Block+ (Year1*Year2*Niche). 

There was no evidence of over-dispersion for the data given this model for either of 

the two genes. The outcomes of each locus were analysed separately.  

For wsm loci, the wheat grown in the first year had the same strong effect (p < 0.001, 

F-test) as was shown by Mauchline et al.  (2015) (Table 14). However, this effect was 

different for the two niches, there being a significant interaction between these two 

factors (p < 0.001, F-test). Presence of the wsm locus was associated more with 

Hereward than with Cadenza, but specifically more in the endosphere isolates for 

Hereward than for Cadenza (Table 15). Independently from this, there was a main 

effect of the wheat variety grown in the second year on presence of the gene (p = 

0.008, F-test), with Xi-19 slightly favouring greater presence than Hereward (means 

(se): Hereward 1.639 (0.2063), Xi-19: 2.281 (0.2241), d.f. = 400) (Table 16).
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Table 14: GLM table of accumulated deviance for wsm PCR outcome. Block: main block of year 1 with Hereward or Cadenza; Plot: 
sampled plots of year 2 Hereward or Xi-19; Niche: endosphere or rhizosphere; d.f: degrees of freedom; approx. F pr.: approximate F 
probability.  

Change d.f. deviance mean deviance deviance ratio approx. F pr. 

+ Block 3 23.414 7.8047 9.91 <.001 

+ Year1 1 22.85 22.8501 29.02 <.001 

+ Year2 1 5.9465 5.9465 7.55 0.006 

+ Niche 1 4.2758 4.2758 5.43 0.02 

+ Year1.Year2 1 2.4907 2.4907 3.16 0.076 

+ Year1.Niche 1 9.1102 9.1102 11.57 <.001 

+ Year2.Niche 1 1.4834 1.4834 1.88 0.171 

+ Year1.Year2.Niche 1 0.0002 0.0002 0 0.989 

Residual 400 314.93 0.7873     

Total 410 384.5 0.9378     

 

Table 15: Predicted mean proportions from GLM for wsm pesence using PCR screening method exploring the effect of Year 1 and 

Niche, n = 411. C = Cadenza, H = Hereward, E = endosphere, R = rhizosphere. 

Niche E Prediction s.e. R Prediction s.e. 

Year1         

C 0.764 0.2005 2.036 0.2816 

H 3.009 0.3941 2.29 0.3009 
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Table 16: Predicted mean proportion from GLM of wsm presence using PCR 

screening method exploring the effect of Year 2, n = 411. C = Cadenza, H = Hereward, 

E = endosphere, R = rhizosphere. 

Year2 Prediction s.e. 

H 1.639 0.2063 

Xi 2.281 0.2241 

 

 

Presence of the fecB locus was found to be more associated with Cadenza overall, 

but there was again an interaction effect between the wheat variety grown in the first 

year and niche (p< 0.001, F-test) (Table 17). Specifically, there was an increase in 

presence of the gene within the Cadenza rhizosphere, compared to the endosphere 

isolates, but a decrease within the Hereward rhizosphere isolates, compared to the 

endosphere isolates, for fecB locus (Table 18). 
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Table 17: GLM table of accumulated deviance for fecB PCR outcome. Block: main block of year 1 with Hereward or Cadenza; Plot: 
sampled plots of year 2 Hereward or Xi-19; Niche: endosphere or rhizosphere; d.f: degrees of freedom; approx. F pr.: approximate F 
probability.  

Change d.f. deviance mean deviance deviance ratio approx. F pr. 

+ Block 3 2.34 0.78 0.59 0.622 

+ Year1 1 7.312 7.312 5.53 0.019 

+ Year2 1 3.105 3.105 2.35 0.126 

+ Niche 1 0.537 0.537 0.41 0.524 

+ Year1.Year2 1 0.034 0.034 0.03 0.873 

+ Year1.Niche 1 14.589 14.589 11.04 <.001 

+ Year2.Niche 1 1.719 1.719 1.3 0.255 

+ Year1.Year2.Niche 1 4.714 4.714 3.57 0.06 

Residual 400 528.56 1.321     

Total 410 562.91 1.373     

 

Table 18: Predicted mean proportions from GLM for fecB presence using PCR screening method exploring the effects of Year 1 and 
niche, n = 411. C = Cadenza, H = Hereward, E = endosphere, R = rhizosphere. 

Niche E Prediction s.e. R Prediction s.e. 

Year1         

C 0.1107 0.192 1.0049 0.2173 

H 0.3308 0.2172 -0.408 0.2131 

 



80 
 

3.4 Discussion: 

Plants are known to influence the composition and dynamics in the rhizosphere 

(Germida & Siciliano, 2001).The ecological importance of fluorescent Pseudomonas 

spp. as plant growth promoting rhizo-bacteria (PGPR) has been at the centre of many 

studies; as their presence is often accompanied with pathogen exclusion and/or 

disease control (Haas & Keel 2003; Mauchline  et al., 2015; Rainey, 1999). They are 

highly adapted to the rhizosphere and effectively utilize root exudates such as sugars, 

amino acids, and carboxylic acids. Along with nutrient competition; niche exclusion is 

another trait responsible for their successful root colonization (Kwak & Weller, 2013). 

Root exudates are assumed to be responsible for the variability of bacterial 

communities carried on the roots of different plants. This is evident through total 

microbiome DNA analysis (Bakker et al., 2013). Also root biomass is considered to be 

an important factor in shaping the interaction between rhizosphere bacteria and the 

pathogen (Jousset et al., 2011). The correlation analysis of phenotypic loci by 

Mauchline et al. (2015) divided the studied Pseudomonas populations into two groups: 

group one were effective for actinomycete suppression, but produced few 

siderophores or plant-growth manipulation enzymes; this group had genes for 

viscosin, pili, wsm LPS etc, while group two had genes for hemophore, acetoin 

catabolism, and were able to produce and secrete siderophores and other small 

molecules, but had limited antibacterial capability. 

McMillan et al. (2011) highlighted the differential ability of the different wheat cultivars 

in supporting the Ggt inoculum; Take-all build up (TAB). Thus, cultivars were classified 

as either L-TAB or H-TAB. Cadenza and Xi-19 are both L-TAB varieties while 

Hereward is an H-TAB variety. Also, wheat cultivars differ in their supportiveness of 

fluorescent Pseudomonas spp. colonization and the subsequent 2,4-DAPG production 
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(Kwak & Weller, 2013). Mavrodi et al. (2012) found that under irrigation conditions the 

wheat selects for 2,4-DAPG producing Pseudomonas spp. to over-come Ggt attack. 

While under dry conditions, when Rhizoctonia solani is the threat, it selects for 

phenazine producers. In a split root experiment carried out by Jousset et al. (2011), 

they were able to demonstrate the ability of barley to up-regulate the phlA gene in 

Pseudomonas fluorescens CHA0 on one root, due to infection by Pythium ultimum on 

the other root. Thus, the plant genotype, its exudates, and the presence of the 

pathogen, along with many other factors shapes the host associated microbiome. 

Mazzola & Gu (2002), investigated Eltan, Hill-81, Lewjain, Madsen, winter wheat 

cultivars and Penawawa spring wheat cultivar for establishment of Rhizoctonia 

suppressive apple orchid soils. They highlighted that host genotype is an important 

factor in establishing disease suppressive soils through supporting specific population 

of Pseudomonas, withthe quality of root exudation rather than the quantity being a 

possible factor.  

In this study the effects of wheat (T. aestivum) varieties differing in their TAB traits on 

the associated fluorescent Pseudomonas spp. under Take-all disease conditions were 

investigated. Dot blot screening was comparing the outcomes of (H, Xi-19) and (C, Xi-

19) planting schemes. Mauchline et al. (2015), highlighted that both bio-surfactants 

and lipopolysaccharides are important for root colonization, attachment and 

recognition. Also secreted molecules such as siderophores or antagonistic toxins play 

a role in plant growth promotion and pathogen exclusion (Leong, 1986). These loci 

were thus chosen for analysis based on gene identification and characteriazation in 

previous studies and because they were identifiable in a P. fluorescens genome for 

primer design (Faraldo-Gómez & Sansom, 2003; Alsohim et al., 2014; Mauchline et 

al., 2015). 
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In terms of target gene distribution, more fecB and tox loci were associated with (C,Xi-

19). However, more wsm loci were associated with (H, Xi-19). The viscB loci had an 

equal abundance in both planting schemes. In the correlation analysis of phenotypic 

loci of Mauchline et al. (2015), they found that Pseudomonas isolates with genes for 

viscosin and wsm LPS produce few siderophores. They also highlighted that the wsm 

LPS biosynthesis operon and genes for toxin production were strongly correlated with 

first year Hereward. However, the tox gene screened here is different to that study, 

also the fecB locus is involved in iron acquisition but not siderophore production. 

Overall the results found here agree with the earlier findings of Mauchline et al. (2015) 

as more fecB indicates a role in nutrient acquisition. 

For tox loci when searching the locus tag PFLU3831 in NCBI the result came out as 

ParE toxin of type II TA system under P. fluorescens SBW25 whole genome, while in 

Psedumonas.com under P. fluorescens SBW25 the same locus tag comes out as toxin 

HigB-2. Pandey & Gerdes (2005), showed that phylogenetic analysis of RelE, ParE, 

and HigB toxin super families from enteric isolates revealed weak but significant 

sequence similarity by which it was possible to see a clear separation of RelE and 

ParE but not between RelE and HigB. Thus, sequence similarity might explain the 

NCBI and Pseudomonas.com outcomes. 

The PCR outcomes also showed that wsm loci were more highly associated with 

Hereward while fecB was associated with Cadenza. Also, as indicated by Mauchline 

et al. (2015) the first year wheat seems to be the driving factor in the selection of the 

associated Pseudomonas spp. gene loci.  

Although the dot blot method seems to be adequate for processing large numbers of 

samples, there were several challenges associated with in: (1) probe preparation and 
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labelling, (2) two-day process of pre- and post- hybridization process, (3) long 

detection process if using the old x-ray film method. Another disadvantage of dot blot 

is the inaccuracy during the spot scoring method, which is subjective as it depends on 

human based determination of spot intensity.  In comparison, designing degenerate 

primers for PCR to screen unknown isolates is also a tedious task. However, when 

appropriate sets of primers are successfully made, the PCR method offers a more 

consistent choice for screening the presence and absence of gene loci of interest. In 

general the results found in this chapter demonstrates the role of wheat cultivar in 

shaping the associated microbiome at least at the investigated Pseudomonas level.  
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CHAPTER 4- Great Harpenden 2 Ggt phenotypic screening 

Summary: 

Pseudomonas fluorescens are known to enhance plant growth through increasing 

nutrient availability and suppressing the growth of fungal pathogens (Alsohim et al., 

2014). Great Harpenden 2 (GH2) Pseudomonas isolates (411) from the previous 

chapter were challenged for their ability to suppress the growth of the Take-all fungus 

Gaemannomyces graminis var. tritici (Ggt), using an isolate from field Long Hoos 4 

(LH4). The in vitro inhibition assay revealed 6 highly antagonistic isolates which were 

further tested in planta in the next chapter. Analysis of variance (ANOVA) showed that 

there was a significant difference between isolates in their suppression of Ggt growth 

based on the in vitro inhibition zone data. This difference was mainly driven by the 

type of cultivar grown in year 1 (F statistics= 0.001). Although visually the isolates that 

had a large inhibition zone were from the Cadenza background, those from the 

Hereward background mainly isolates from the (H, H) planting combination had the 

smallest inhibition zones. These observations were statistically not significant 

however. The gyrB phylogeny of 25 GH2 isolates including the 6 antagonistic ones, 

showed evidence of clustering which separated the antagonistic isolates form non-

antagonistic ones. 

 

4.1 Introduction  

Pseudomonas spp. are bacteria that colonize the rhizosphere of many different plants. 

They enhance plant growth mainly by pathogen exclusion (Rainey, 1999). This 

exclusion is achieved through their ability to secrete molecules such as iron 

scavenging siderophores, cyclic lipopeptides to aid motility, phenazines and anti-
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fungal compounds pyoluteorin and pyrrolnitrin, along with hydrogen cyanide (HCN), 

which is a volatile metalloenzyme inhibitor (Rainey, 1999; Haas & Keel, 2003). The 

genus Pseudomonas consists of two main lineages P. aeruginosa and P. fluorescens. 

Within the later the P. fluorescens complex is further subdivided into nine subgroups 

of P. protegens, P. chlororaphis, P. corrugata, P. koreensis, P. jessenii, P. mandelii, 

P. fragi, P. gessardii and P. fluorescens (Vásquez-Ponce et al., 2018). 

Take-all disease, caused by Gaeumannomyces graminis var. tritici is the most 

important disease of wheat worldwide (Weller & Cook, 1983). Under continuous wheat 

monoculture the disease is most severe between the second to fourth year crops, then 

decreases. This later phenomenon is known as Take-all decline (TAD) (McMillan et 

al., 2011). Investigations in Washington state reported TAD is associated with a build-

up in populations of antibiotic-producing fluorescent Pseudomonas (McSpadden 

Gardener and Weller, 2001). 

Studies on the biological control of Take-all using Pseudomonas spp. have implicated 

the role of iron chelating siderophores and antibiotics as mechanisms for disease 

suppression. Historically, mutants defective in antibiotic production have been used to 

study the role of antibiotics when the chemistry of the growth inhibition agent is 

unknown. Pseudomonas fluorescens strain 2-79, isolated from the rhizosphere of 

wheat, was found to supress Ggt. This strain produces the phenazine antibiotic; 

phenazine-1-carboxylate, which is active against Take-all fungi (Thomashow & Weller, 

1988). Other fluorescent Pseudomonas are known to synthesize phloroglucinols like 

2,4- diacetylphloroglucinol (2,4-DAPG) which is a broad spectrum antibiotic involved 

in Take-all suppression in addition to other fungal diseases  (McSpadden Gardener 

and Weller, 2001). Production of hydrogen cyanide, HCN, is also considered as a 

disease suppressive mechanism by Pseudomonas (Hamdan et al., 1991). Under iron 
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limiting conditions fluorescent Pseudomonas excrete iron scavenging molecules, 

siderophores, like the yellow green pyoverdine, pyochelin, pseudomonine, 

quinolobactin and the putative siderophore, pyridine-2,6-bis (thiocarboxylic acid) 

(Matthijs et al., 2004; Alsohim et al., 2014). 

Matthijs et al. (2007) investigated the in-vitro growth inhibition ability of P. fluorescence 

ATCC 17400 on damping-off fungus Pythium. Their results showed that in addition to 

the involvement of high affinity iron-chelating siderophore, pyoverdine, the second low 

affinity iron binding siderophore, thioquinolobactin, was mainly responsible for this 

growth inhibition. Since thioquinolobactin rapidly degraded to quinolobactin, it was 

initially thought that the latter corresponds to the second siderophore (Matthijs et al., 

2004). However, the presence of sulphur genes within the biosynthesis operon along 

with the inhibitory activity of purified thioquinolobactin on Pythium have identified it as 

the main product (Matthijs et al., 2007). Apart from iron level, factors like stress, 

quorum sensing and regulation of other secondary metabolites play roles in regulating 

siderophore production and uptake (Cornelis & Matthijs, 2002). Also, motility has been 

shown to be involved in competition, for instance wild type P. aeruginosa outcompetes 

its own non-motile variants for biofilm suitable sites (Hibbing et al., 2010). In bacteria 

motility include flagellum-dependent swimming and swarming, or flagellum 

independent mechanisms like twitching/gliding using type IV pili, non-social gliding and 

sliding employing the reduced surface tension (Alsohim et al., 2014). 

Root colonization and increased population size are important features in successful 

bio-control using Pseudomonas spp. (Bull et al., 1991). Studies on the Pseudomonas 

plant colonization mechanisms revealed a number of crucial interacting systems 

ranging from motility, secretion systems, and the production of extracellular 
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polysaccharides to specific nutrient uptake and metabolism (Rainey, 1999; Jackson et 

al., 2005; Silby et al., 2009; Alsohim et al., 2014). 

Given the importance of this group as potential biocontrol agents and the results from 

chapter 3 indicating that there was significant effect of cultivar on Pseudomonas 

genotype, the same Pseudomonas spp. isolates were investigated for Take-all fungus 

suppression in vitro. 

 

Aims and objectives: 

In chapter three a selection pressure of first year wheat on the associated 

Pseudomonas genotype was observed, where by more fecB locus was associated 

with isolates from first year Cadenza. Since this locus is related to iron-uptake it was 

hypothesized that these isolates might be antagonistic to Ggt through iron limitation or 

even by direct inhibition. Furthermore, Ggt antagonism was used as the phenotype to 

measure any kind of selection based on the cultivar type, planting combination, and 

niche.  

 

4.2 Methods 

4.2.1 In vitro inhibition of fungal pathogen: 

All the Pseudomonas spp. were grown on King’s B medium agar or broth (KA or KB) 

respectively as described in 2.2. Potato dextrose agar (PDA) was used to grow Ggt. 

The plate inhibition assay was performed on KA, where 5 µl of bacterial culture grown 

on KB overnight at 27 °C was spotted 1 cm from the edge of the plate. Three bacteria 

were used per plate and the fourth spot is non-inoculated KB used as a control. The 
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spots were allowed to soak into the agar before placing the fungal plug at the centre 

of the plate. A 0.5 cm plug from the leading edge of Ggt culture grown on PDA at 24 

°C for 7 days was used as the fungal inoculum. Three replicates were prepared for 

each combination (Yang et al., 2014). The plates were then incubated at 24°C and the 

distance between the edges of bacterial colonies and fungal mycelium were computed 

using imageJ software after 7 days (Fig. 16 A). 

Using the average inhibition zone (cm) of the three treatment replicates, the isolates 

were classified into 3 classes. Class 1 inhibition zone = 0- 0.5 cm, class 2 = 0.5- 1 cm 

inhibition zone, and class 3 = >1 cm inhibition zone. The class 3 isolates (n=53) were 

then challenged in 1:1 setup with the fungus to validate their Ggt growth inhibiting 

action. Again, 5 µl of bacterial culture was spotted 1 cm away from the edge of the 

plate with the fungal plug placed at the centre. A non-inoculated 5 µl of KB was spotted 

as a control, and each treatment was replicated three times. The plates were 

incubated at 24°C for 7 days and the inhibition zone was measured using imageJ 

software (Fig.16 B). 
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Figure 16: Ggt antagonism assay.The treatment was replicated three times and 
the fourth plate with the grid paper is used as a scale for ImageJ analysis. (A) Three 
isolate combination. (B) Ggt 1:1 screening for 53 class 3 isolates. 

 

 

4.2.2 Phylogeny of GH2 Pseudomonas isolates 

For the resulting six highly antagonistic Ggt isolates (Table 20), DNA template for gyrB 

(DNA gyrase B subunit) PCR was prepared using MicroLYSIS PLUS TM (Microzone) 

following the manufacturer instructions. This method worked for five of the antagonistic 

isolates while for isolate 24E/2 genomic DNA extraction using GeneJet Extraction kit 

was used for DNA template preparation. An additional 19 GH2 isolates belonging to 

the different inhibition zone classes, field planting combinations and niches, were also 

sequenced for comparison. These included the two least antagonistic isolates; 37R/15 

and 44R/4. For these, the DNA template was prepared using the TE buffer method 

described in 3.2.6.2 or with total DNA extraction as needed. Thus a total of 25 isolates 

were subjected to gyrB amplification and phylogenetic analysis. In addition, reference 

strains Pseudomonas fluorescens strains SBW25 and F113 from the lab were 

included for comparison and as a positive control for amplification. The DNA templates 

A B 
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for SBW25 and F113 were prepared using the TE buffer method.  Phylogenetic 

analysis was done using gyrB PCR with primers gyrB F and gyrB R listed in (Table 

19) (Yamamoto et al., 2000). A 50 µl PCR reaction was prepared for amplification and 

sequencing. For each reaction 25 µl of 2X PCRBIO Taq Mix Red (PCR Biosystems), 

16 µl nH2O, 2 µl of F primer (10 µM), 2 µl of R primer (10 µM), and 5 µl of template 

DNA were used. The PCR amplification was performed using Bio Rad T100 thermal 

cycler and conditions were as follows: initial denaturation 94°C for 5mins, 35 cycles of 

denaturation at 94 °C 1 min, annealing at 63 °C for 30 s, extension at 72 °C for 2 mins, 

and a final extension step at 72 °C for 7mins. The annealing temperature for isolate 

24E/2 was 58 °C. The expected amplified product size was 888-891 bp. 

 

Table 19: gyrB primers for phylogeny of Pseudomonas isolates. 

Name Sequence 

gyrB F CAGGAAACAGCTATGACCAYGSNGGNGGNAARTTYRA 

gyrB R TGTAAAACGACGGCCAGTGCNGGRTCYTTYTCYTGRCA 

gyrB SF CAGGAAACAGCTATGACC 

gyrB SR TGTAAAACGACGGCCAGT 

 

The amplified products were purified using PCR purification kit (Qiagen) and sent for 

sequencing (Eurofins Genomics) using the primers gyrB SF and gyrB SR (Table 19). 

The resulting sequences were aligned in BioEdit software and the consensus 

sequence was blasted in NCBI. The phylogenetic tree was constructed using Neighbor 

Joining method (NJ) after alignment with MUSCLE using Geneious Prime 2019.0.4 

(http://www.geneious.com). The node support was evaluated on 100 bootstrap 

http://www.geneious.com/
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replication. The gyrB sequence of Pseudomonas aeruginosa downloaded from 

GenBank NCBI was used as the out-group. Also gyrB sequences of other members 

of the P. fluorescens complex were downloaded from [GenBank] NCBI (Appendix 

9.2.3). 

 

4.2.3 Phenotypic assays for the six Ggt antagonistic isolates 

4.2.3.1 Motility assay  

Low (1/10) and Full strength LB agar plates were prepared as described in 2.7 for 

swimming and swarming motility assay; respectively. A single colony of an overnight 

culture on KA was used to stab the centre of the LB agar plate. The plates were 

monitored for colony growth and images were taken every 18, 24, and 42 h (Capdevila 

et al., 2004). The images were taken using Gel documentation system G:BOX 

(Syngene). In addition, ImageJ software was later used to measure the growth area. 

The experiment consisted of three replicates per isolate. The less antagonistic 

isolates; 37R/15 and 44R/4, were included as negative controls. 

 

4.2.3.2 Fluorescence under UV light 

Isolates were streaked on KA plates and incubated overnight at 27°C. Following the 

incubation the plates were visualized for fluorescence under bench top UV trans-

illuminator. Pseudomonas fluorescens strains SBW25 and ATCC17400 were included 

as reference controls for fluorescence. 
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4.2.4 Statistical Analysis  

The GENSTAT (17th edition, VSN International Ltd, Hemel Hempstead, UK) statistical 

package was used to analyse the inhibition zone, swimming and swarming motility 

data. For inhibition zone class 1-3 data a generalized linear model GLM was used, 

while for averaged inhibition zone data over plot analysis of variance ANOVA was 

used. Also ANOVA was used for motility assay data analysis. 

 

4.3 Results 

4.3.1 Ggt growth inhibition 

The 411 isolates from GH2 were in vitro screened in a plate assay described in section 

4.2.1 (Yang et al., 2014). The first analysis consisted of three spots of individual 

isolates. This combination was tested in replicates of three. The inhibition zone was 

measured using ImageJ software and the data were recorded in an excel sheet 

(Appendix I 9.2.1). The isolates were grouped into 3 classes based on the size of 

inhibition zone; class 1: 0 - 0.5 cm, class 2: 0.5 - 1, and class 3: >1 cm. There were 

172 class 1 isolates, 186 class 2 isolates and 53 class 3 isolates. The 53 class 3 

isolates were further challenged in 1:1 setup with Ggt to confirm their antagonistic 

ability (Appendix I 9.2.1). From the 1:1 assay only six isolates (11.3%) maintained their 

Ggt inhibition of > 1cm (Table 20). While 19/53 were in class 1 and 28/53 were in class 

2 after the 1:1 challenge. 

The six antagonistic isolates were from a diverse range of field plots and 50:50 split of 

endosphere/rhizosphere niche. Four of the six isolates were from the Cadenza, Xi-19 

planting combination with one isolate from each Hereward, Hereward and Hereward, 

Xi-19 planting combinations (Table 20). 
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Table 20: List of six most Ggt antagonistic isolates after 1:1 assay. Standard error 
s.e based on n= 3. 

No. Isolate1 Planting 

Combination 

Mean inhibition 

zone (cm) 

s.e 

1 24E-2 (C, Xi-19) 1.24 0.055 

2 24E-4 (C, Xi-19) 1.05 0.081 

3 25R-7 (C, Xi-19) 1.10 0.078 

4 28R-9 (H, Xi-19) 1.08 0.107 

5 30R-11 (C, Xi-19) 1.23 0.343 

6 44E-7 (H, H) 1.44 0.219 

1Number = field plot, E= Endosphere, R = Rhizosphere 

 

4.3.1.1 Statistical analysis of inhibition zone data 

The category (scores 1-3) (Appendix I 9.2.1) were analysed by fitting a generalized 

linear model (GLM) to account for the blocks in the experiment and test the main 

effects and interactions between the factors Year 1 (H or C cultivar), Year 2 (H or Xi-

19 cultivar), and Niche (E or R). A Poisson distribution was assumed, and a log link 

function was incorporated. The fitted model was Block+ (Year1*Year2*Niche). There 

was no evidence of over-dispersion for this model. Predicted means on the log scale 

were output to enable comparisons using the standard error of the difference (SED) 

between them on the residual degrees of freedom from the model with the least 

significant difference (LSD) at the 5% level of significance. This regression analysis 

has shown some evidence of a 2-way interaction between Year 1 and Year 2 factors 

(F= 4.86 on 1 and 410 d.f.; p=0.028) (Tables 21 & 22), but no effect of niche.
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Table 21: Accumulated analysis of deviance from GLM. Block: main block of year 1 Hereward or Cadenza; Year 2: Hereward or Xi-
19; Niche: endosphere or rhizosphere; F pr.: F probability; d.f.= degrees of freedom. 

Change d.f. deviance 
mean 
deviance 

deviance 
ratio 

approx. F pr. 

+ Block 3 3.3602 1.1201 5.05 0.002 

+ Year_1 1 5.7819 5.7819 26.08 <.001 

+ Year_2 1 2.8602 2.8602 12.9 <.001 

+ niche 1 0.0205 0.0205 0.09 0.761 

+ Year_1.Year_2 1 1.0784 1.0784 4.86 0.028 

+ Year_1.niche 1 0.6975 0.6975 3.15 0.077 

+ Year_2.niche 1 0.0409 0.0409 0.18 0.668 

+ Year_1.Year_2.niche 1 0.6643 0.6643 3 0.084 

Residual 400 88.672 0.2217     

Total 410 103.1759 0.2516     
 

Table 22: Table of predicted means from GLM analysis. C: Cadenza; H: Hereward; XI: Xi-19; E: endosphere; R: rhizosphere. 

Niche 
E 
Prediction s.e. R Prediction s.e. 

Year_1 Year_2         

C 

H 0.6799 0.04613 0.7571 0.0458 

XI 0.5223 0.04832 0.5272 0.047 

H 

H 0.5482 0.05643 0.36 0.0613 

XI 0.4261 0.05436 0.4184 0.0492 
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From Table 22 the greatest sized inhibition zone were more associated with (C, H) 

planting combinations in both endosphere (E) and rhizosphere (R ) (P< 0.05, LSD) in 

comparison with Year 2 Xi-19 planting combination but not from (H, H) endosphere 

(E) planting combination. The least sized inhibition zones were for (H, H) in the 

rhizosphere (R) niche. 

Secondly analysis of variance (ANOVA) was performed on the inhibition zone data 

which were averaged per plot over the isolates (Appendix II 9.2.2). Again, the main 

effect was being driven by Year 1 cultivar (F= 0.031, d.f=1) regardless of what is grown 

in Year 2 and the Niche (Table 23). Also, the most antagonistic isolates (with big 

inhibition zone values cm) are favouring Cadenza background in Year 1 compared 

with Hereward (Table 24). This analysis is far more conservative than the former GLM. 
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Table 23: ANOVA of averaged inhibition zone data per plot. Block: main block of year 

1 Hereward or Cadenza; Year 2: Hereward or Xi-19; Niche: endosphere or 

rhizosphere; F pr.: F probability; d.f.= degrees of freedom. 

Source of variation d.f. s.s. m.s. v.r. F probability 

Block stratum 3 0.14855 0.04952 1.50  

Block. MainPlot stratum 

Year1 1 0.49178 0.49178 14.93 0.031 

Residual 3 0.09884 0.03295 0.36  

Block. MainPlot. SplitPlot stratum 

Year2 1 0.04443 0.04443 0.48 0.513 

Year1. Year2 1 0.20042 0.20042 2.18 0.191 

Residual 6 0.55234 0.09206 1.85  

Block. MainPlot. SplitPlot. SplitSplit stratum 

Niche 1 0.00100 0.00100 0.02 0.889 

Year1. Niche 1 0.02277 0.02277 0.46 0.511 

Year2. Niche 1 0.00104 0.00104 0.02 0.887 

Year1. Year2. Niche 1 0.04121 0.04121 0.83 0.381 

Residual 12 0.59700 0.04975   

Total 31 2.19939    
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Table 24: Table of means from ANOVA. H: Hereward; Xi: Xi-19; E: endosphere; R: 
rhizosphere. 

 Year2 H  Xi  

Year1 Niche E R E R 

C  0.773 0.897 0.600 0.604 

H  0.491 0.366 0.492 0.533 

 

Also, comparing the two full means tables from the two analyses (Tables 22 and 24) 

it can be seen that the E and R values for Year 1 Cadenza are still giving the greatest 

values. 

However as mentioned earlier the GLM analysis took all the data from individual 

isolates as replicates per plot. This might be the reason that the 2-way interaction has 

been shown as significant. Thus, the findings can consider the findings visually rather 

than statistically. As isolates observed from the same plot may not be fully 

independent, this suggests that the average values per plot are more appropriate to 

analyse. 

 

4.3.2 gyrB Phylogeny 

Following gyrB amplification, the PCR products were purified and sent for sequencing 

to Eurofins genomics. The resulting forward and reverse sequences were aligned 

using Clustal W multiple alignment and the consensus sequence was built using 

(BioEdit). The consensus sequence was then blasted in NCBI. Blast results are 

summarized in Table 26. Phylogenetic analysis using gyrB gene was used to study 30 

isolates including the six Ggt antagonistic ones. P. aeruginosa was included as 

outgroup and P. fluorescens SBW25 and F113 in addition to other members of the P. 
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fluorescens complex were included for comparison (Appendix 9.2.3).  Following 

MUSCLE alignment a neighbour joining phylogenetic tree was constructed using 

Geneious Prime 2019.0.4 (http://www.geneious.com) (Fig.17). The node support was 

evaluated based on 100 bootstrap replications. The alignment is shown in Appendix 

9.2.4.
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Figure 17:gyrB phylogeny of 25 GH2 isolates in comparison to members of P. fluorescens complex.  Pseudomonas 
aeruginosa was used as outgroup. The tree was constructed using Neighbour Joining Method after alignment with MUSCLE using 
Geneious Prime. The numbers on the nodes indicate bootstrap probabilities. The bar is the nucleotide substitution per site.

Group A 

Group B 
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Table 25: Description of the GH2 isolates used for gyrB phylogeny. The identification 
was based on BLAST outcomes in NCBI. Isolates are in the same order as they appear 
in Fig. 17. Class: inhibition zone class; Y1: year 1; Y2: year 2. 

no Isolate Class Y1 Y2 wsm fecB Identified as 

1 25E/5 1 C Xi 0 1 Pseudomonas R-42020 

2 1E/11 2 H H 1 1 Pseudomonas fluorescens 

3 8R/2 1 C H 1 1 Pseudomonas orientalis 

4 44E/7 3 H H 1 1 Pseudomonas orientalis 

5 37R/15 1 H H 1 0 Pseudomonas sp. GH1-PS70 

6 34E/15 2 H Xi 1 1 Pseudomonas sp. RZ109 

7 44E/14 1 H H 1 0 Pseudomonas marginalis 

8 44R/4 1 H H 1 0 Pseudomonas sp. Ra3 

9 44E/9 3 H H 1 0 Pseudomonas marginalis 

10 37R/17 1 H H 1 0 Pseudomonas sp. RZ109 

11 58E/19 1 C H 0 0 Pseudomonas sp. GH1-PS43 

12 1R/5 1 H H 0 0 Pseudomonas sp. GH1-PS83 

13 24E/7 3 C Xi 1 1 Pseudomonas poae 

14 24E/8 1 C Xi 1 1 Pseudomonas poae 

15 28R/9 3 H Xi 1 1 Pseudomonas orientalis 

16 46R/5 3 C H 1 1 Pseudomonas orientalis  

17 58E/20 2 C H 1 1 Pseudomonas sp. GH1-PS43 

18 58R/1 1 C H 1 1 Pseudomonas sp. GH1-PS43 

19 24E/4 3 C Xi 1 1 Pseudomonas salmonii 

20 37R/16 2 H H 1 0 Pseudomonas fluorescens 

21 25R/7 3 C Xi 1 1 Pseudomonas sp. 

22 32E/10 3 H H 1 1 Pseudomonas poe 36C8 

23 24E/2 3 C Xi 1 1 Pseudomonas sp. R-41739 

24 30R/11 3 C Xi 0 0 Pseudomonas orientalis 

25 44E/13 2 H H 1 1 Pseudomonas fluorescens 
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Looking at the right side of the phylogenetic tree, two main clusters have been 

identified, with least antagonistic one group A separated from the antagonistic group 

B. In group A there are 12 isolates, 9 belong to year 1 Hereward and 3 belong to year 

1 Cadenza. While in group B there were 13 isolates, 9 belong to year 1 Cadenza and 

4 belong to year 1 Hereward (Table 25). These observations match the inhibition zone 

data.  

   

4.3.3 Motility assay 

Phenotypic analysis for the six antagonistic isolates along with two non-antagonists 

37R/15 and 44R/4 (Table 26), included motility assay and fluorescence as described 

in section 4.2.3 . Motility is an important trait for root colonization by Pseudomonas 

(Alsohim et al., 2014). P. fluorescens WCS365 mutants with modified LPS had lower 

growth rates on root exudates and impaired colonization ability compared to the wild 

type (Lugtenberg & Kamilova, 2009). Analysis of variance (ANOVA), on the growth 

area data (cm2) for each swimming and swarming motility (Fig 18 - 19) shows 

significant difference between the 8 isolates (F <0.001, d.f.= 14) (Table 27). Out of 

eight tested isolates, all were positive for wsm loci except for isolate 30R/11 and this 

might reflect its slow swimming and swarming behaviour in comparison to the other 

isolates (Fig. 20). Isolate 28R/9 is a fast swimmer and swarmer out of the 6 

antagonistic isolates. While in general isolate 37R/15 is the fastest swarmer when 

comparing the total eight (antagonists and non-antagonists) (Fig. 20).  
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Figure 18: Swimming motility on 1/10 strength LB of isolate 24E/2. (a) After 18 h, 
(b) after 24 h, and (c) after 42 h. 

 

 

Figure 19: Swarming motility on Full strength LB of isolate 24E/2. (a) After 18 h, 
(b) after 24 h, and (c) after 42 h. 

 

 

Table 26: Two of the least antagonistic isolates after 1:1 assay. Standard error s.e 
based on n= 3. 

Isolate1 Planting 

Combination 

Mean inhibition 

zone 

s.e 

44R-4 (H, H) 0.03 0.015 

37R-15 (H, H) 0.05 0.029 

1Number = field plot, R = Rhizosphere 

 

 

 

A B C 

A B C 
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Table 27: ANOVA of motility growth area data. Isolate_code: identifier (e.g.: 25R/7); 
Motility: swimming or swarming; Time: 18, 24 or 72 hr; F pr: F probability; d.f: 
degrees of freedom. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Isolate_code 7 28253.45 4036.21 217.16 <.001 

motility 1 1411.66 1411.66 75.95 <.001 

time 2 15507.05 7753.53 417.16 <.001 

Isolate_code.motility 7 4847.24 692.46 37.26 <.001 

Isolate_code.time 14 3269.77 233.56 12.57 <.001 

motility.time 2 665.39 332.7 17.9 <.001 

Isolate_code.motility.time 14 1581.95 113 6.08 <.001 

Residual 96 1784.31 18.59     

Total 143 57320.82       
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Figure 20: Comparison of growth area of the six antagonistic isolates and two least antagonistic isolates for the swimming 
and swarming motility based on ANOVA table of means. The bars are plotted form ANOVA table of means. Error bars are based 
on s.e (n=3). The six antagonistic isolates are in blue, the two least inhibitory are in yellow. 
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4.3.4 Fluorescence 

Production of fluorescent siderophores has been often associated with plant growth 

promoting Pseudomonas. These molecules are thought to function either directly by 

making iron available for the plant or indirectly by depriving the pathogen (Rainey, 

1999; Matthijs et al., 2007; Mavrodi et al., 2007). Out of the six antagonistic isolates, 

24E/2 and 30R/11, had low or no fluorescence under UV light in comparison to the 

two reference strains used, SBW25 and ATCC 17400. The remaining four antagonists 

along with the other two least antagonists showed fluorescence (Table 28). Based on 

PCR screening five out of the six antagonistic isolates were positive for fecB loci 

except for 30R/11. While the two least antagonistic one were negative for fecB. Thus 

indicating that fluorescence in not dependent on this loci. 

Table 28: Fluorescence data. 

Isolate Fluorescence 

P. fluorescens SBW25 High 

P. fluorescens ATCC17400 High 

24E/2 Low 

24E/4 High 

25R/7 High 

28R/9 High 

30R/11 Low 

44E/7 High 

37R/15 High 

44R/4 High 
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4.4 Discussion 

Pseudomonas fluorescens have been shown to supress many soil borne plant 

diseases, including Take-all disease of wheat. Pathogen suppression is achieved 

through various mechanisms such as production of antibiotics, volatile organic 

compounds (VOCs), lytic enzymes, siderophores and HCN. In addition, they must be 

able to move and colonize the rhizosphere (Weller & Cook, 1983; Compant et al., 

2010; Lagzian et al., 2013; Mendes et al., 2013; Mauchline et al., 2015). Here, out of 

the 411 Pseudomonas isolates, 6 Ggt growth inhibiting isolates in vitro were identified. 

Four out of the 6 strains were fluorescent under UV. The mode of action is still 

unknown. 

In terms of Take-all disease control some studies have focused on the importance of 

antibiotic production while others considered that the production of siderophores is the 

main factor contributing to disease suppression. This variation in factors have been 

shown in the suppression of Pythium spp, causing damping off in cotton, by P. 

fluorescens strains 3551 and HV37a. While siderophore production is the potent agent 

of 3551 suppression, HV37a suppression is mediated by the production of oomycin A 

antibiotic (Hamdan et al., 1991). 

Phenazine antibiotics are products of aromatic amino acid synthesis pathway with 

chorismate acting as the branch point intermediate (Thomashow & Weller, 1988; 

Hamdan et al., 1991). Also, Pseudomonas spp. are known to produce different types 

of phenazines under different growth conditions (Gurusiddaiah et al., 1986). 

Pseudomonas spp. such as P. aureofaciens and P. chlororaphis produce phenazine-

1-carboxylic acid (PCA) and its derivative such as 2-hydroxyphenazine-1-carboxylic 

acid and phenazine-1-carboxamide, respectively, because they have additional genes 

that modify PCA (Yang et al., 2011). In the Pacific Northwest 2, 4-
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diacetylphloroglucinol (2, 4-DAPG) producing P. fluorescens are responsible for 

natural Take-all disease suppression (Mavrodi et al., 2012b). Yet, iron limitation can 

be a possible mode of action. Siderophores, including pyoverdins, facilitate biocontrol 

through ferric iron acquisition, and iron limitation thus are implicated as a suppression 

mechanism (Hamdan et al., 1991). The role of pseudobactin, fluorescent siderophore 

of P. fluorescens strain B10, has been shown in Take-all disease suppression through 

limiting the iron to the pathogen (Leong, 1986). To test the hypothesis that Ggt 

antagonism of the isolates screened in this work is based on iron deprivation, the use 

of iron supplemented media provides a simple testing method. Where loss of 

antagonism in the presence of iron can be used as an indicator.  

Yang et al., (2011) compared a non-irrigated field to an irrigated one in China where 

wheat is rotated with corn and rice respectively. They postulated that these rotations 

prevent the development of TAD, but the Ggt antagonistic isolates from these fields 

did not produce any of the common known antibiotics: 2, 4-DAPG, pyrrolnitrin, or 

pyoluteorin.  Similarly, Mavrodi et al. (2012) looked at the effect of crop management 

on indigenous antibiotic producing Pseudomonas. They found that Take-all disease 

dominates in irrigated fields compared to dry land. Furthermore, wheat grown under 

dry land or irrigated conditions differentially support and enrich for 2, 4-DAPG- and 

PCA- producing Pseudomonas spp.  Yang et al. (2011), used a PCR method to screen 

the Ggt antagonistic isolates for antibiotic production. In chapter five the 6 antagonistic 

isolates were screened for growth Ggt inhibition in the presence of wheat plant and for 

antibiotic genes, PCA and 2,4-DAPG.  

Here in vitro Ggt growth inhibition assay was used as a first step to identify potential 

biocontrol agents form the pool of 411 Pseudomonas isolates. In this assay the 

bacterial suspension is confronted with the Ggt plug. Likewise others have employed 
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similar method (Thomashow & Weller, 1988; Yang et al., 2011; Lagzian et al., 2013).  

Clear inhibition zones and in some cases discoloration of the clearing zone was seen, 

indicating possible chemistries produced. In the first assay a random combination of 

three isolates were spotted individually at approximately 1 cm from the edge of the 

Petri dish and evenly from each other (Fig16 A). Following this initial screening and 

based on inhibition zone data, isolates were classified into 172; class I, 186; class II 

and 53; class III. The 53 class III isolates were further tested in 1:1 setup with Ggt and 

6 potential highly antagonistic isolates were identified. This suggests that the growth 

inhibiting ability of the other 47 isolates was influenced by interactions with the other 

Pseudomonas isolates in the first assay when combinations of isolates were tested 

together. Lagzian et al. (2013) screened 900 fluorescent Pseudomonas isolates for 

Ggt suppression in vitro and ended up with 27 isolates for greenhouse experiments. 

Interestingly when analysing the inhibition zone data it was found that the main effect 

was of cultivars grown in year 1 favouring Cadenza over Hereward but this was not 

statistically significant. Similarly, Yang et al. (2011) reported that no significant 

correlation were found between in vitro Ggt inhibition and the source of isolates (i) 

location wise, rain fed field in Jiangsu province vs. irrigated field in Hebei province 

China, (ii) from the plant part (leaf, stem and roots) (iii) niche, endosphere and 

rhizosphere prospective.Motility is an important trait for successful root colonization by 

Pseudomonas, where the presence of flagella and production of surfactants like, 

viscosin and viscosinamide were found to aid the process (Alsohim et al., 2014). In 

addition, CLP (cyclic lipo-peptides) produced by Pseudomonas were found to aid 

motility and virulence (De Bruijn et al., 2007). The polar flagellum in Pseudomonas 

aeruginosa is responsible for swimming motility in aqueous environments, flagella also 

mediate swarming motility (Deziel et al., 2001). While swimming is the act of individual 



109 
 

cells, swarming involves multicellular movement on soil media (Calvio et al., 2005). 

Colonization involves recognition, adherence, colonization, growth and different 

strategies for interaction (Berg, 2009). The process is initiated by exchanged signals 

between the plant roots and the soil microbes and thus motile bacteria are preferred 

(Berg, 2009; Lugtenberg & Kamilova, 2009). 365 P. fluorescens WCS mutants were 

investigated genetically and physiologically for tomato root tip colonization. It was 

shown that the major competitive traits required for colonization were motility, 

adhesion, enhanced growth rate on root exudates and the presence of O-antigenic 

side chain of lipopolysaccharide (Lugtenberg & Kamilova, 2009). Here, out of the six 

antagonistic isolates it was found that isolate 28R/9 to be a fast swimmer and swarmer. 

The other isolates were comparable to the least antagonistic control isolates. 

However, further investigation is needed to genetically and physiologically determine 

the best competitive root colonizers.  

In this work phylogenetic analysis was carried out for 25 random Pseudomonas 

isolates covering a range of planting combinations, niches and antagonistic abilities 

including the 6 potential highly Ggt antagonists using single gene sequencing. Initially 

the gyrB phylogeny alone was compared with a combined phylogeny of 8 single copy 

genes (Mauchline et al., 2015). Both methods agreed with each other, thus here the 

gyrB phylogenetic analysis was used. Also, compared with 16S rRNA this provides a 

better resolution (Yamamoto et al., 2000). Following PCR amplification the resulting 

sequences were aligned using MUSCLE and a neighbor joining method was used to 

construct a gyrB phylogenetic tree on Geneious Prime 2019.0.4. The phylogenetic tree 

showed that the isolates with largest inhibition zones grouped separately from the one 

with small inhibition zones. The grouping agreed with the inhibition zone data which 

showed that isolates from first year Cadenza had larger inhibition zones than those 
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from first year Hereward. In addition the (H, H) planting scheme was the one with 

smallest Ggt inhibition zone. This suggests that the Cadenza wheat cultivar may be 

able to somehow select for antagonistic Pseudomonas isolates which results in its Low 

Take-all inoculum building ability (L-TAB). Silby et al. (2009) carried out phylogenetic 

analysis of fourteen Pseudomonas genomes which were compared all against all 

using reciprocal FASTA, aligned with gene-wise MUSCLE and analysed using 

Maximum Likelihood in RAxML version 7.0.0 with the JTT+gamma model. Their 

analysis have shown that the P. fluorescens SBW25, Pf01 and Pf-5 clustered 

separately form the other Pseudomonas. Furthermore within the P. fluorescens, two 

main lineages were identified with SBW25 belonging to the P. fluorescens lineage 

while Pf01 and Pf-5 belong to the P. chlororaphis lineages. These findings were in 

agreement with the gyrB and rpoD phylogenetic analysis carried out by Yamamoto et 

al. (2000).  

Comparison of the isolates with other members of the P. fluorescens complex showed 

that they are distributed among the tested strains. In addition it is important to point 

out that the use of high fidelity Taq polymerase rather than the low fidelity Taq 

polymerase which was used here will provide more accurate results. Since the high 

fidelity Taq polymerase couples both low misincorporation rates with proofreading 

activity. However the use of reference strains of P. fluorescens SBW25 and F113 

provided a positive control for the amplification. 

Further work will be needed to identify the possible growth suppression agent which 

can be investigated through biochemical or genetic analysis. It is possible that different 

growth suppressing agents may be operating in the different isolates. Screening the 

isolates for production of HCN, VOCs, siderophores, antibiotics, proteases, chitinase 

and cellulase have been described by (Yang et al., 2011; Lagzian et al., 2013). In 
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addition, complete genome sequencing of the six antagonistic isolates is necessary to 

identify loci of plant growth promotion and or pathogen exclusion. 
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CHAPTER 5- Great Harpenden 2 In planta assay 

Summary: 

In the previous chapter six potential Ggt growth inhibitors were identified. These 

isolates were further tested here for their Ggt inhibition in the presence of the host 

plant (wheat) cultivars Cadenza and Hereward. The shoot height, root length and fresh 

weights were used as measures for plant biomass. The number of blackened roots in 

comparison to the healthy roots was used to determine percent infected roots as a 

measure of disease severity. The two least antagonistic isolates were included for 

comparison. The initial screening showed that there was no significant difference in 

the shoot height, root length, and fresh weight of Cadenza and Hereward when 

comparing the treatments in the presence and absence of Ggt. However, there was a 

significant difference in the percent infected roots (F= 0.024), where inoculation of 

isolate 25R/7 led to less disease in Cadenza, while use of isolate 30R/11 led to less 

disease in Hereward. These two isolates were further investigated at different 

concentrations to validate the inhibitory effect on Ggt in planta.  

 

5.1 Introduction 

The difficulty of controlling soil borne plant diseases arises from the complexity and 

the dynamic nature of the rhizosphere (Handelsman & Stabb, 1996; Raaijmakers et 

al., 2009). The rhizosphere is the narrow zone of soil surrounding the roots and 

influenced by its exudates (Rainey, 1999). Fungi and oomycetes are the most 

important soil-borne plant pathogens (Raaijmakers et al., 2009). Interest in 

environmentally friendly plant disease control approaches are expanding, usually due 

to a lack of resistant plant genotypes and due to the deleterious effect of chemical 
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pesticides (Mauchline & Malone, 2017). For biocontrol agents to be effective they have 

to be present in the right place and time and in sufficient amounts. The Gram- negative 

Pseudomonas are among the most promising biocontrol rhizobacteria (Walker et al., 

2004). The ability of Pseudomonas fluorescens to suppress pathogens is related to its 

population density on the host (Haas et al., 2000). In addition, certain traits like root 

colonization, production of antifungal compounds and induction of host resistance are 

crucial for the success of this class of rhizo-biocontrol bacteria (Haas et al., 2000; 

Compant et al., 2005). Nutrient competition is yet another important trait of 

Pseudomonas as an efficient rhizosphere colonizer and pathogen suppressor (Walsh 

et al., 2001). Under iron limiting conditions, the yellow-green pigments, pyoverdines, 

form tight iron (III) complexes which are actively transported to bacterial cells, thus is 

recognized as an essential siderophore of many fluorescent Pseudomonas species 

(Meyer, 2000). 

In many biocontrol studies, antibiotics have been identified as the agents of disease 

suppression (Handelsman & Stabb, 1996). For instance, control of Take-all disease 

caused by Gaeumannomyces graminis var. tritici was achieved by phenazine-1-

carboxylic acid (PCA) in Pseudomonas fluorescens 2-79 and with the production of 

2,4-diacetylphloroglucinol (Phl) by P. fluorescens CHAO (Raaijmakers et al., 1997). In 

addition to phenazines and  2,4-diacetylphloroglucinol, the antimicrobial compounds 

produced by fluorescent Pseudomonas include HCN, pyoluteorin and pyrrolnitrin 

(Haas et al., 2000; Liu et al., 2009). Also, siderophores like thioquinolobactin (Matthijs 

et al., 2007). Apart from disease resistance, the plant associated beneficial microbes 

aid plants health and growth through stress tolerance, enhanced nutrient uptake and 

availability (Berg, 2009). For instance ACC deaminase producing bacteria are able to 

degrade the ethylene precursor and thus enhance root elongation by lowering the 
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ethylene (Lugtenberg & Kamilova, 2009). In addition nitrogen fixation, phosphorus and 

iron solubilisation are well known examples of plant associated microbe nutrient supply 

(Berg, 2009; Vacheron et al., 2013; Haichar et al., 2014). 

To date Take-all disease of wheat still constrains wheat productivity in the UK and 

worldwide (McMillan et al., 2011; Yang et al., 2014). Although many biocontrol agents 

have been identified, inconsistent field performance is still a major drawback of field 

and commercial application. This is largely due to the complex three compartment 

interaction: the plant, the microbes and the soil (Mauchline and Malone, 2017; Rainey, 

1999). Therefore the quest to find and develop biocontrol agents continues for many 

soil-borne plant diseases such as Take-all disease of wheat. 

In this chapter, the ability of six isolates that inhibited Ggt in vitro in controlling the 

disease on the host plant was further investigated. Since four of the identified isolates 

were from the first year Cadenza background, it was interesting to see their 

performance on Hereward and vice versa. 

  

 Aims and objectives: 

1. To further investigate the six identified antagonistic isolates for their plant 

growth promotion and Ggt inhibition in the presence of the host plant. 

2.  To screen the isolates for antibiotic production using a PCR screening method. 
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5.2 Methods  

5.2.1 Seed sterilization 

Wheat (Triticum aestivum) seeds of cultivars Cadenza and Hereward were kindly 

provided by Vanessa McMillan (Rothamsted Research). The seeds were surface 

sterilized by immersion in a 2.5% (v/v with sterile Nano pure water nH2O) solution of 

house-hold bleach for 3 mins followed by 3 rinses in sterile nH2O. The seeds were 

then allowed to air dry for up to 3 h in class 2 safety cabinet (Labogene) (Weller & 

Cook, 1983). Methods for validation of seed sterilization were described in section 2.8. 

 

5.2.2 Inoculum preparation and plant growth promotion assay   

The six antagonistic isolates along with two poor Ggt inhibitors (negative control) (6 + 

2) were grown on KA plates from -80 °C frozen stocks. A single colony was used to 

inoculate 30 ml of KB incubated at 27 °C in orbital shaker (200 rpm) (Forma Scientific).  

1 ml of overnight culture was pelleted by centrifugation at 5000 rcf for 8 mins (bench 

top microfuge) (Micro Star 12, VWR). The pelleted cells were washed in 1ml PBS 

twice. 100 µl of washed cells were mixed with 900 µl of PBS and was used to measure 

the OD (OD600). A volume with a concentration equivalent to OD 1 was used to make 

a 10 ml washed cell stock in PBS to soak the above sterile seeds in a sterile 50 ml 

Falcon tube. For each isolate two tubes were prepared one for Cadenza seeds and 

one for Hereward seeds. Twelve seeds were placed in each tube, and the tubes with 

soaked seeds were placed in orbital shaker set at 27 °C for 1 h (Forma Scientific). 

After that the seeds were left to air dry in a class 2 safety cabinet (Labogene) for 2 h. 

First, to check the plant growth promoting effect of the isolates, in sterile 50 ml Falcon 

tube, 5 g of sterile fine vermiculite was placed. For each treatment, 3 replicates were 
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made, where one seed was placed 1 cm below the vermiculite surface. Each tube was 

watered with 25 ml sterile nH2O and covered with parafilm. The tubes were placed in 

a temperature-controlled room set at 21 °C with 16 h light-dark cycle and 70% 

humidity. 

Non-bacterial soaked sterile seeds in PBS were used as a control. The parafilm was 

removed after 5 days. The seedlings were watered with 5-10 ml sterile nH2O on day 6 

and day 13. The seedlings were ready for processing by day 21. 

To check for inoculum recovery, air dried treated seeds were placed on KA plate. The 

plates were incubated overnight at 27 °C. 

 

5.2.3 In-planta Ggt antagonistic assay 

The growth chamber assay was slightly modified from the methods described by 

(McSpadden Gardener & Weller, 2001). Briefly, sterile seeds of Cadenza and 

Hereward soaked in bacterial cell suspensions were prepared as described in the 

previous section. Five Ggt plugs (0.5cm) from a 7-day old culture growing on PDA at 

24 °C was placed 2 cm below the sown seed in sterile vermiculite. One seed was sown 

per 50 ml Falcon tube. The tubes were watered with 25 ml sterile nH2O and covered 

with parafilm. The tubes were placed in a temperature-controlled room set at 21°C 

with 16 h light-dark cycle and 70% humidity. Sterile seeds soaked in 10ml PBS grown 

in the presence of 5 Ggt plugs were used as a control. 

5.2.4 Plant biomass  

At day 21 the wheat seedlings were processed. First, the plants were gently pulled out 

of the tubes, excess vermiculite was shaken of, and the roots were dipped in 50 ml 

sterile nH2O placed in 100 ml sterile Duran to wash out any sticking vermiculite. The 
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roots were then blotted on lab roll. The shoot height and root lengths were measured 

with a ruler and recorded. Images of the three replicate plants per treatment were 

taken along with zoom-in images of the Take-all infected roots. The total number of 

roots and the infected roots was used to calculate percent infected roots for each 

seedling. The fresh weight of the seedlings was also recorded.  

 

5.2.5 Investigating potential biocontrol agents 

Following the initial plant assay, isolates 25R/7, 30R/11 and the mix of the 6 

antagonistic isolates were screened at different concentrations for Ggt growth 

inhibition. For each treatment, three 30ml overnight broths were prepared in 50ml 

Falcon tubes. Then three concentrations were prepared for the washed cells in PBS 

at OD 1, OD 0.5, and OD 0.1. The procedure for inoculum preparation and seed 

soaking was described in 5.2.3. Sterile seeds soaked in PBS grown in the presence 

and absence of Ggt were used as controls. For the mix of six, the desired 

concentration was prepared for each of the six isolates separately then an equivalent 

volume was taken to make the total of 10ml stock for the seed soak stock suspension. 

Ten replicates were prepared per treatment. The seeds were grown and harvested as 

described in section 5.2.3 and 5.2.4. After 21 days, the shoot height, root length, fresh 

weight and the number of infected roots to healthy roots were determined. 

 

5.2.6 Screening for antibiotic gene presence: 

The six antagonistic isolates along with isolate 37R/15, least effective were screened 

for the presence of phenazine-1-carboxylic acid (PCA), and 2, 4-diacetylphloroglunicol 

(Phl).  
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5.2.6.1 PCR screening for PCA and Phl genes 

Purified DNA templates for the six antagonistic isolates along with isolate 37R-15 were 

prepared using GeneJet genomic DNA purification kit (Thermo Scientific) following the 

manufacturer instructions. Primers used for PCA and Phl antibiotic screening along 

with the product size are listed in (Table 29). Pseudomonas protegens Pf-5 was 

included as a positive control for Phl antibiotic and negative for PCA. PCR 

amplification was carried out in a 20 µl reaction mixture, which contained 10 µl of 2X 

Taq mix red (PCR Biosystems), 0.8 µl of each primer at 10µM, 6.4 µl of nH2O, and 2 

µl of template DNA. The amplification cycle was performed using the BioRad T100 

thermal cycler (BioRad) and consisted of an initial denaturation at 94°C for 2 mins, 

followed by 30 cycles of 94 °C for 1 min, 67 °C for 45 s, and 72 °C for 1 min, then a 

final extension at  72 °C for 5 mins. The PCR products were separated on a 1% 

agarose gel in 0.5X TBE buffer stained with gel red at 90V for 40 mins, and were 

visualized using the G-Box gel documentation system.   
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Table 29: Primers used for Phl and PCA antibiotic screening. 

primer sequence GC% Tm position Reference Product size 

Phl2a  
 

GAGGACGTCGAAGACCACCA 60 73 1915 (Raaijmakers et al., 
1997) 

745bp (phlD) 

Phl2b  
 

ACCGCAGCATCGTGTATGAG  55 72 2660 (Raaijmakers et al., 
1997) 

PCA2a  
 

TTGCCAAGCCTCGCTCCAAC 60 79 3191 (Raaijmakers et al., 
1997) 

1150bp (phzC and 
phzD)  

PCA3b  CCGCGTTGTTCCTCGTTCAT 55 76 4341 (Raaijmakers et al., 
1997) 
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5.2.7 Statistical analysis 

The GENSTAT (17th edition, VSN International Ltd, Hemel Hempstead, UK) statistical 

package was used to analyse the data. For the initial plant biomass data analysis of 

variance, ANOVA, was used to analyse the data. While generalized linear model, 

GLM, was used to analyse the infected roots data. For the second plant assay mixed 

model using REML variance components was used to analyse the plant biomass data 

and GLM was used to analyse the infected roots data. 

 

5.3 Results 

In chapter four, out of the 411 Pseudomonas isolates tested, six maintained their Ggt 

inhibition when challenged in 1:1 in vitro setup. These six isolates are further 

investigated here for their plant growth promotion and Ggt control in presence of host 

plant. The wheat seeds of Cadenza and Hereward cultivars were surface sterilized 

and soaked in bacteria suspension. Methods for validation of seed sterilization were 

described in section 2.8 and no growth was recovered from the surface sterilized and 

air dried seeds on both KA and WA plates. The coated seeds were allowed to air dry 

in a class 2 safety cabinet prior to sowing. Bacterial suspensions consisted of 

individual isolates in addition to a mixture of the six antagonistic isolates. The two least 

effective isolates were included for comparison. Air dry coated seeds were grown in 

the presence and absence of five Ggt plugs. Initial analysis has showed that 5 plugs 

are sufficient to cause the disease while 3 plugs did not cause any disease (data not 

shown). In addition, as described in section 5.2.2 growth of fluorescent colony on the 

KA plate with bacterial coated and air dried seeds indicated the success of the 

treatment recovery. 
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5.3.1 Statistical analysis for plant growth promotion 

Shoot height, root length and fresh weight data collected as described in 5.2.4 were 

used to check for plant growth promotion. Raw data are plotted in Figs 21-23. Analysis 

of variance (ANOVA) was performed on the shoot, root and fresh weight data 

(Appendix I 9.3.1) using the model Cultivar*(coating/ (Isolate+Ggt)). Shoot height 

shows that there was a significant difference between the cultivars Cadenza and 

Hereward (F <0.001) (Fig.24). Also, the interaction between the coated seeds and the 

treatments where Ggt was present or absent was significant (F <0.001). However, 

overall the interaction was not significant (F=0.464) (Table 30).  

For root length there was a significant difference between the cultivars Cadenza and 

Hereward (F = 0.004) (Fig.25). While coating with bacteria had no significant effect on 

root length (F = 0.771). Overall there was no significant difference based on the three 

way interaction (F= 0.097) (Table 31). There was no significant difference between the 

cultivars in the fresh weight (F = 0.185) (Table 32). However, there was a significant 

difference between the sterile and coated seeds in interaction with the presence or 

absence of Ggt (F <0.001). Overall there was no significant difference when taking 

into account the addition of bacteria into the system (F = 0.312) (Fig.26).
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Figure 21: Mean shoot height for Cadenza and Hereward 21 day old seedlings. Error bars are based on s.e 
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22: Mean root length for Cadenza and Hereward 21 day old seedlings. Error bars are based on s.e. 
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Figure 23: Mean Fresh weight for Cadenza and Hereward 21 day old seedlings. Error bars are based on s.e. 
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Figure 24: ANOVA mean shoot height for Cadenza and Hereward 21 day old seedlings.The bars are plotted form ANOVA mean 
table for the interaction of cultivar*coating*Ggt, combining the 10 treatments in the presence or absence of Ggt . s.e.d=1.417 and 
d.f.= 82. Error bars are based on s.e. (s.e.d: standard error of differences, d.f.: degrees of freedom, s.e.: standard error). 
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Table 30: ANOVA table for shoot height data. Cultivar: Cadenza or Hereward; Coating: soaked in bacterial suspension or sterile; 
Ggt: present or absent; Isolate: 24E/2, 24E/4, 25R/7, 28R/9, 30R/11, 44E/7, Mixture of the previous, 37R/15 and 44R/4; d.f: 
degrees of freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

Cultivar 1   919.41 919.41 33.92 <.001 

Coating 1   5.69 5.69 0.21 0.648 

Cultivar.Coating 1   20.73 20.73 0.76 0.384 

Coating.Isolate 8   218.66 27.33 1.01 0.436 

Coating.Ggt 2   461.84 230.92 8.52 <.001 

Cultivar.Coating.Isolate 8   149.26 18.66 0.69 0.701 

Cultivar.Coating.Ggt 2   42.06 21.03 0.78 0.464 

Residual 82 -14 2222.45 27.1     

Total 105 -14 3950.98       
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Table 31: ANOVA table for root length data. Cultivar: Cadenza or Hereward; Coating: soaked in bacterial suspension or sterile; 
Ggt: present or absent; Isolate: 24E/2, 24E/4, 25R/7, 28R/9, 30R/11, 44E/7, Mixture of the previous, 37R/15 and 44R/4; d.f: 
degrees of freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

Cultivar 1   106.41 106.41 8.91 0.004 

Coating 1   1.02 1.02 0.09 0.771 

Cultivar.Coating 1   23.12 23.12 1.94 0.168 

Coating.Isolate 8   126.42 15.8 1.32 0.244 

Coating.Ggt 2   34.28 17.14 1.44 0.244 

Cultivar.Coating.Isolate 8   122.39 15.3 1.28 0.265 

Cultivar.Coating.Ggt 2   57.31 28.65 2.4 0.097 

Residual 82 -14 979.04 11.94     

Total 105 -14 1363.64       
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Figure 25: ANOVA mean root length for Cadenza and Hereward 21 day old seedlings.The bars are plotted form ANOVA mean 
table for the interaction of cultivar *coating*Ggt combining the 10 treatments in the presence or absence of Ggt. s.e.d=0.94 and d.f. 
= 82. Error bars are based on s.e. (s.e.d: standard error of differences, d.f.: degrees of freedom, s.e.: standard error). 
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Table 32: ANOVA of fresh weight data. Cultivar: Cadenza or Hereward; Coating: soaked in bacterial suspension or sterile; Ggt: 
present or absent; Isolate: 24E/2, 24E/4, 25R/7, 28R/9, 30R/11, 44E/7, Mixture of the previous, 37R/15 and 44R/4; d.f: degrees of 
freedom; F pr.: F probability. 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

Cultivar 1   0.014518 0.014518 1.78 0.185 

Coating 1   0.000059 0.000059 0.01 0.932 

Cultivar.Coating 1   0.004688 0.004688 0.58 0.45 

Coating.Isolate 8   0.061032 0.007629 0.94 0.49 

Coating.Ggt 2   0.209625 0.104813 12.89 <.001 

Cultivar.Coating.Isolate 8   0.027689 0.003461 0.43 0.903 

Cultivar.Coating.Ggt 2   0.019235 0.009617 1.18 0.312 

Residual 82 -14 0.667015 0.008134     

Total 105 -14 0.949346       
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Figure 26: ANOVA mean fresh weight for Cadenza and Hereward 21 day old seedlings.The bars are plotted form ANOVA mean 
table for the interaction of cultivar*coating*Ggt combining the 10 treatments in the presence or absence of Ggt . s.e.d=0.02455 and 
d.f.= 82. Error bars are based on s.e. (s.e.d: standard error of differences, d.f.: degrees of freedom, s.e.: standard error).
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5.3.2 Take-all disease control 

When Ggt was absent the roots were healthy and no blacking was observed as 

described in section 5.2.4. Thus, treatments in the presence of Ggt plugs were used 

to compare disease control excluding the non-Ggt inoculated treatments. Raw data 

are plotted in Fig. 27.   

Assessment of the number of infected roots to the total number of roots was used as 

a measure for disease control. Generalized linear model (GLM) assuming a Binomial 

distribution on logit scale was used to analyse the number of infected roots (Appendix 

I, table e). The model fitted was Cultivar*Isolate with the total number of roots as the 

binomial total. There was a significant difference in the number of infected roots 

between the two cultivars in the presence of the isolates (F= 0.031) (Table 33). When 

looking at the prediction from the regression model, inoculation of Cadenza with isolate 

number 4, 25R/7, led to less infected roots (mean= 0.095, s.e.=0.63). While inoculation 

of Hereward with isolate number 6, 30R/11, led to less infected roots (mean= -1.872, 

s.e. =1.09) (Table 34) (Fig. 28).  
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Figure 27: Mean percent infected roots for Cadenza and Hereward 21 day old seedlings. Error bars are based on s.e.
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Table 33: Accumulated analysis of deviance from GLM on infected root data. 

Change d.f. deviance mean deviance deviance ratio Approx. F pr. 

+ cultivar 1 0.474 0.474 0.23 0.634 

+ Isolate 9 55.536 6.171 3 0.009 

+ 
cultivar.Isolate 

9 44.512 4.946 2.4 0.031 

Residual 35 72.025 2.058     

Total 54 172.547 3.195     
 

Table 34: Prediction from the regression model. 

Cultivar C_Predictions s.e. H_Predictions s.e. 

Isolate         

Sterile 11.754 93.6 11.762 75.57 

24E/2 11.879 73.87 1.466 0.92 

24E/4 1.179 0.82 2.708 1.48 

25R/7 0.095 0.63 11.721 76.34 

28R/9 11.921 73.65 2.833 1.48 

30R/11 1.504 1.12 -1.872 1.09 

37R/15 11.721 76.34 11.855 90.57 

44E/7 1.466 0.92 11.6 95.78 

44R/4 1.099 1.17 2.015 1.08 

Mix 2.944 1.47 0.693 0.79 
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Figure 28: Analysis of infected roots from Cadenza and Hereward 21 day old seedlings in the presence of Ggt. Treatments 
included Ggt with sterile seeds and in combination with the isolates 24E/2, 24E/4, 25R/7, 30R/11, 28R/9, 44E/7, mixture of the six 
along with two least effective antagonists’ 37R/15 and 44R/4. Bars are plotted form GLM prediction tables (Table 36). Error bars are 
based on s.e.
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5.3.3 Potential biocontrol agents 

Given strains 25R/7 and 30R/11 appeared the most promising biocontrol agents of 

Ggt (Fig. 28), these were selected for further analysis. The strains were analysed at 

different concentrations (100%, 50%, and 10% concentration of washed cells) 

equivalent to OD 1, OD 0.5, and OD 0.1 respectively. The mixture of the six strains 

was also tested at these concentrations. Seeds coated with sterile PBS growing in the 

presence and absence of Ggt were used as controls. Ten replicates were made for 

each treatment. The plants were harvested at day 21 and were analysed for shoot 

height, root length, fresh weight and the number of infected roots to the total number 

of roots as described in detail in section 5.2.5. 

 

5.3.3.3 Statistical analysis of plant biomass 

Plant biomass data were collected as described in section 5.2.4. Raw data for shoot 

height, root length and fresh weight are shown in Figs. 29-31. Since the number of 

treatments was unbalanced, linear mixed model (REML) analysis of variance was 

used to analyse the shoot height, root length and fresh weight. While GLM was used 

to analyse the infected roots data. 

Shoot height, root length and fresh weight were analysed using REML variance 

component and the model used was cultivar*(coating/ (isolate*conc+Ggt)). The non-

significant terms were then gradually dropped off from the model to finally get all 

significant terms (Tables 35-37). In both shoot height and root length data there was 

a significant difference between the sterile and treated seeds from both cultivars (F= 

0.019 and F=0.003, respectively).There was also a significant difference between the 
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sterile seed growing with/without Ggt and the treated seeds growing in the presence 

of Ggt (F= 0.038 and F= 0.032; respectively) (Figs. 32 and 33). 

For fresh weight data, the interaction was significant at its highest level, where there 

was a significant difference between the cultivars in the used treatments (i.e.: sterile 

vs. treated with different bacteria at different concentrations) (F= 0.005) (Fig.34). Raw 

data are in (Appendix II 9.3.2). 
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Figure 29: Mean shoot height of Cadenza and Hereward 21 day old seedlings. Using different concentrations of strains 25R/7, 
30R/11, and the mixture of six. Error bars are based on s.e. 
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Figure 29: Mean root length for Cadenza and Hereward 21 day old seedlings. Using different concentrations of strains 25R/7, 
30R/11, and the mixture of six. Error bars are based on s.e. 
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Figure 30: Mean fresh weight for Cadenza and Hereward 21 day old seedlings. Using different concentrations of strains 25R/7, 
30R/11, and the mixture of six. Error bars are based on s.e. 
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Table 35:  REML variance components for Shoot height data. Cultivar: Cadenza or 
Hereward; Coating: soaked in bacterial suspension or sterile; Ggt: present or absent. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Cultivar 63.61 1 63.61 190 <0.001 

Coating 1.03 1 1.03 190 0.311 

Cultivar.Coating 5.62 1 5.62 190 0.019 

Coating.Ggt 4.35 1 4.35 190 0.038 

 

Table 36: REML variance components for root length data. Cultivar: Cadenza or 
Hereward; Coating: soaked in bacterial suspension or sterile; Ggt: present or absent. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Cultivar 3.31 1 3.31 190 0.07 

Coating 0.15 1 0.15 190 0.697 

Cultivar.Coating 8.83 1 8.83 190 0.003 

Coating.Ggt 4.65 1 4.65 190 0.032 

 

 

Table 37: REML variance components for fresh weight data. Cultivar: Cadenza or 
Hereward; Coating: soaked in bacterial suspension or sterile; Conc: concentration at 
OD 1, OD 0.5 and OD 0.1. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Cultivar 0.04 1 0.04 175 0.838 

Coating 0.79 1 0.79 175 0.375 

Cultivar.Coating 9.42 1 9.42 175 0.002 

Coating.Isolate 1.27 2 0.63 175 0.532 

Coating.Conc 11.6 2 5.8 175 0.004 

Cultivar.Coating.Isolate 2.99 2 1.5 175 0.227 

Cultivar.Coating.Conc 5.39 2 2.7 175 0.07 

Coating.Isolate.Conc 8.64 4 2.16 175 0.076 

Cultivar.Coating.Isolate.Conc 15.41 4 3.85 175 0.005 
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Figure 31: ANOVA mean shoot height of Cadenza and Hereward 21 day old 

seedlings. Using different concentrations of strains 25R/7, 30R/11, and the mix of six 

and in the presence of Ggt. The concentrations were equivalent to OD 1, 0.5, and 0.1. 

The bars are plotted from ANOVA table of means for the fitted model. Error bars are 

based on s.e. 
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Figure 32: ANOVA mean root length of Cadenza and Hereward 21 day old 

seedlings. Using different concentrations of strains 25R/7, 30R/11, and the mix of six 

and in the presence of Ggt. The concentrations were equivalent to OD 1, 0.5, and 0.1. 

The bars are plotted from ANOVA table of means for the fitted model. Error bars are 

based on s.e. 
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Figure 33: ANOVA mean fresh weight of Cadenza and Hereward 21 day old 

seedlings. Using different concentrations of strains 25R/7, 30R/11, and the mix of six 

and in the presence of Ggt. The concentrations were equivalent to OD 1, 0.5, and 0.1. 

The bars are plotted from ANOVA table of means for the fitted model. Error bars are 

based on s.e. 

  

 

Raw data showing percent infected roots for all the treatments are shown in Fig. 35. 
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When looking at the predictions from the regression model in Table  39, for Cadenza 

at concentration equivalent to OD 1 the mixture of six had led to less infected roots 

(mean = -1.194, s.e.=0.746), followed by isolate 25R/7 (mean= 1.012, s.e.= 0.604). 

As the concentration decreased the effectiveness of the mixture of six decreased. This 

is shown by more infected roots at the concentration equivalent to OD 0.1 (mean 

=0.944, s.e. =0.651).  While isolate 25R/7 had the least infected roots at concentration 

equivalent to OD 0.1.  Overall, when ignoring the mixture of six, isolate 25R/7 had led 

to less infected roots than isolate 30R/11 in Cadenza except at concentration 

equivalent to OD 0.5. In Hereward when ignoring the mixture of six, isolate 30R/11 

had led to less infected roots than 25R/7, except at concentration equivalent to O D0.1. 

In addition, as the concentration decreased the number of infected roots increased. 

This concentration dependent effect was true for 25R/7 and 30R/11 but not for the mix 

of six. Where at concentration equivalent to OD 0.5 the mix of six had led to the least 

number of infected roots.



145 
 

 

Figure 34: Mean percent infected roots for Cadenza and Hereward 21 day old seedlings. Using different concentrations of 
strains 25R/7, 30R/11, and the mixture of six. Error bars are based on s.e. 
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Table 38: Accumulated analysis of deviance for GLM. Cultivar: Cadenza or Hereward; Coating: soaked in bacterial suspension or 
sterile; Conc: concentration at OD 1, OD 0.5 and OD 0.1; d.f: degrees of freedom; Approx. F pr.: Approximate F probability. 

Change d.f. deviance mean deviance deviance ratio Approx. F pr. 

+ Cultivar 1 5.655 5.655 1.32 0.252 

+ Isolate 2 17.568 8.784 2.05 0.132 

+ Conc 2 34.493 17.247 4.03 0.02 

+ Cultivar.Isolate 2 9.051 4.526 1.06 0.35 

+ Cultivar.Conc 2 1.993 0.997 0.23 0.792 

+ Isolate.Conc 4 12.033 3.008 0.7 0.591 

+ 
Cultivar.Isolate.Conc 

4 41.259 10.315 2.41 0.052 

Residual 139 594.202 4.275     

Total 156 716.255 4.591     
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Table 39:  Predictions from the regression model. C: Cadenza, H: Hereward. 

 
 Cultivar 

Conc. isolate C Prediction s.e. H Prediction s.e. 

OD 1 

25R/7 1.012 0.604 -0.274 0.629 

30R/11 1.24 0.708 -0.511 0.571 

Mix -1.194 0.746 0.693 0.702 

OD 0.5 

25R/7 1.186 0.712 0.613 0.712 

30R/11 0.869 0.683 0.568 0.628 

Mix 0.372 0.601 -0.234 0.635 

OD 0.1 

25R/7 0.938 0.813 0.847 0.824 

30R/11 1.764 0.914 8.621 14.418 

Mix 0.944 0.651 0.405 0.771 
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Figure 35: Analysis of infected roots from Cadenza and Hereward 21 day old seedlings in the presence of Ggt. Using 

different concentrations of strains 25R/7, 30R/11, and the mix of six and in the presence of Ggt. The concentrations were 

equivalent to OD 1, 0.5, and 0.1. The bars are plotted from GLM prediction (Table 41). Error bars based on s.e.
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5.3.4 Antibiotic gene presence 

In addition to the plant assay, the isolates tested here were screened for the presence 

of antibiotic biosynthesis genes as described in section 5.2.6. The two common 

antibiotics encountered in wheat rhizosphere being phenazine-1-carboxylic acid 

(PCA), and 2,4-diacetylphloroglunicol (Phl) (Mazzola et al., 1995; Raaijmakers et al., 

1997; McSpadden Gardener et al., 2001; Mavrodi et al., 2012b).    

PCR screening of the six antagonistic isolates along with isolate 37R/15 showed that 

none of the screened isolates produced a band for the Phl or PCA locus (Fig. 37 A & 

B).  P. protegens strain Pf-5 (Phl+) was included as a positive control for (2, 4-DAPG) 

antibiotic, the band is shown in well number 9 (Fig. 37 A). These findings suggest that 

the 2, 4-DAPG and the PCA antibiotics are not involved in the mechanism of Ggt 

growth inhibition by the six antagonistic isolates explored in this study.  
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Figure 36: Amplification products of Phl or PCA genes. A is the Phl PCR products, 
wells: 1 and 11 is the Ladder (Bioline Hyper Ladder 1Kb); wells 2- 8 are PCR products 
of isolates 24E/2, 24E/4, 25R/7, 28R/9, 30R/11, 37R/15 and 44E/7 respectively; well 
9 is the Phl+  Pf-5 (745 bp); well 10 negative control. B is the PCA PCR products, wells: 
1 is the Ladder; wells 2-10 are PCR products of isolates 24E/2, 24E/4, 25R/7, 28R/9, 
30R/11, 37R/15, 44E/7, Pf-5 and negative control. 
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5.4 Discussion 

In the field, Take-all disease is known to be patchy and often pathogens such 

Rhizoctonia solani and Phythium spp. co-occur on the same wheat roots as Ggt 

(Pierson & Weller, 1994). In addition, there is no effective chemical treatment nor are 

resistant wheat cultivars known for its control. Several factors had led to interest in the 

Pseudomonas group as a potential biocontrol target. For instance, a group of 

fluorescent Pseudomonas spp. are associated with the natural disease suppression, 

Take-all decline (TAD), seen  after continuous wheat monoculture (Weller & Cook, 

1983; Yang et al., 2011, 2014). Unfortunately inconsistent field performance have 

always reduced the number of available, approved and marketed agents. Thus the 

hunt continues for more biocontrol agents along with interest in manipulating the 

microbiome as an alternative to single organism introduction (Mauchline et al., 2015; 

Mauchline & Malone, 2017).  

The use of indigenous rhizosphere Pseudomonas fluorescens as seed treatments to 

suppress Take-all in both green house and field experiments have been shown 

previously (Vrany et al., 1981; Weller & Cook, 1983; Pierson & Weller, 1994). Also, 

mixtures have been found to be more effective in soil-borne disease control than the 

use of a single organism (Weller & Cook, 1983; Pierson & Weller, 1994; McSpadden 

Gardener & Weller, 2001).The Pseudomonas isolates tested in planta in this work 

were selected on the basis of in vitro Ggt inhibition. The initial screening had showed 

that there was a significant difference between the cultivars based on the treatment 

with different isolates. Isolate 25R/7 reduced the number of infected roots in Cadenza 

while isolate 30R/11 reduced the number of infected roots in Hereward more than the 

other isolates. Both isolates were originally isolated form the (C, Xi-19) planting 

combination and the rhizosphere niche. The mix of the six reduced more the number 
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of infected roots in Hereward in comparison to Cadenza (Table 36). These isolates 

were further investigated at different concentrations. However, in the first assay there 

was no significant effect on the plant biomass expressed as shoot height, root length 

and fresh weight. This suggested that the reduction in Take-all infected roots was not 

sufficient to alter overall plant health within the 3 week experimental conditions. 

Isolates 25R/7, 30R/11 and a mix of the six antagonistic isolates were further tested 

at concentrations equivalent to OD 1, OD 0.5, and OD 0.1. This revealed complex 

interactions between concentrations and Take-all inhibition in planta. There was a 

significant difference between the cultivars based on the treatments at different 

concentrations. In Cadenza as the concentration of the mix decreased the number of 

infected roots increased as would be expected. This concentration dependent effect 

was true for 25R/7 and 30R/11 in Hereward but not for the mix. This might be due to 

the fact that four out of the six isolates in the mix were originally from the (C, Xi-19) 

while the other two were from (H, Xi-19) and (H, H) planting combination and thus 

competition for colonization might have affected the concentration effect.  Bull et al. 

(1991) reported that variability in root colonization might affect Take-all disease control 

by the Pseudomonas spp. Furthermore for a given treatment there might be a 

threshold of effectiveness below or above which less or no disease suppression is 

obtained (Raaijmakers et al., 1995). 

In addition, when ignoring the mix of six, isolate 25R/7 reduced the number of infected 

roots in Cadenza at a given concentration more than 30R/11 except at the middle 

concentration equivalent to OD 0.5. Similarly, for a given concentration isolate 30R/11 

reduced the number of infected roots in Hereward more than 25R/7 except at the 

lowest concentration, equivalent to OD 0.1. Likewise, Liu et al. (2009), using soil 

drench showed that for Bacillus subtilis strain E1R-j high cell densities of up to 1012 
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CFU ml-1 had led to greater Take-all disease inhibition in comparison to low cell 

densities of 106 CFU ml-1.  Here, concentrations equivalent to 108 and 109 CFU ml-1 

have been used. Similarly, Yang et al. (2011) and Lagzian et al. (2013) 108 and 109 

CFU ml-1 for controlled room and greenhouse experiments; respectively. Raaijmakers 

et al. (1995) investigated dose relationship in the efficacy of Pseudomonas to control 

Fusarium wilt in radish. Their results demonstrated that a non-linear asymptomatic 

relationship between disease suppression and population densities of the used 

Pseudomonas spp. Also, the ability of Pseudomonas to reduce the disease was 

dependent on the initial cell densities and the level of disease incidence. Thus, 

indicating the importance of initial inoculum application in disease control. However, it 

is important to note that the high initial concentration of 108 and the very close range 

of 5 x 107 and 9 x 107; equivalent to OD 0.5 and 0.1 respectively, might have not been 

sufficient for showing any clear concentration based effect. Thus the use of a wider 

range might be more appropriate to further investigate the effects of the tested isolates 

on the seedlings. In addition, it is important to test pairwise combinations to determine 

the most effective combination in the mixture of six. As for now, it is not clear whether 

the effect of the mixture is based on individual antagonistic activity or that of two or 

more strains. 

For both cultivars, overall the mix of six reduced the number of infected roots more 

than the individual isolates. This might be due to a combined or synergetic effect 

achieved by the mixture. Weller and Cook (1983) found that the seed application of 

combination of two Ggt inhibitory stains, P. fluorescences 2-79 and 13-79, was more 

effective in terms in disease suppression and increased yields than the application of 

each strain individually. Likewise, Pierson et al. (1994), showed that certain 

combinations of fluorescent Pseudomonas were more effective in Take-all disease 
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suppression under green house and field conditions than the individual strains. Factors 

favouring efficient disease reduction by the combination might include enhanced root 

colonization, involvement of multiple disease suppression traits and the diverse 

phenotypes can cover broad host range (Weller & Cook, 1983; Pierson et al., 1994). 

Mehrabi et al. (2016) suggested that when using Pseudomonas mixtures of increased 

antagonism a reduction in Take-all inhibition was found under in vitro conditions and 

competition within the isolates was thought to cause this inverse relation. However, 

this was not the case in the in planta assay carried out here. Indicating that the 

behaviour of bacterial mixtures may vary in vitro and in planta when confronted with 

the pathogen. Under in vitro conditions there is a two way interaction: within the 

mixture and pathogen with the mixture, while in the case of in planta there is an 

additional influence of the host on deriving the complex interaction and the resulting 

behaviour. Interestingly isolates 24E/2, 24E/4, 25R/7 and 44E/7 gave positive signals 

for the PCR screening of wsm and fecB loci. While isolate 28R/9 and 30R/11 were 

positive for wsm and negative for fecB. Jousset et al. (2011) stated that genetically 

dissimilar microbial communities, better fight the invasion by efficient utilization of the 

resources and that increasing the genotypic richness in the form of toxin 

overproduction also affected the invasion success. Moreover, Hibbing et al. (2010) 

reported that the outcome of the antimicrobial production will depend on the context in 

which it is produced. This suggests that the mix might act as a group to fight the 

pathogen rather than competing with each other. 

Also, as seen by Weller & Cook (1983), the biocontrol activity was disease suppressive 

rather than growth promoting as the effect on the plant biomass was not significant. 

However, the results discussed here were only based on a 21 day old seedling which 

was sufficient to monitor the disease, while further studies involving green house and 
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field trials maybe required to further assess the performance of the isolates in both 

Ggt inhibition and plant growth promotion at a different stages of the plant.  Also the 

disease pressure was high in the tubes, which is not the case in the field where Ggt is 

very patchy. Also, Cadenza is inherently known to be taller than Hereward. Thus it is 

important not to confuse the inherent differences in the cultivars with effects due to 

growth promotion (Fig. 21). Lagzian et al. (2013) carried out a screening of 27 

fluorescent Pseudomonas isolates with sufficient in vitro Ggt inhibition and observed 

that good inhibition in a Petri plate might not be enough for successful inhibition under 

greenhouse conditions. This suggests that successful colonization is also important 

along with antagonistic traits for a biocontrol agent.  

The strong inhibition performance of isolate 25R/7 on Cadenza seedlings might reflect 

the fact that it was originally isolated from (C, Xi-19) and therefore is already better 

adapted to colonize it. However, the other isolates 24E/2, 24E/4 and 30R/11 although 

were originally isolated from the same planting combination did not have the expected 

inhibitory effect. Conversely, isolate 30R/11 which was originally isolated from (C, Xi-

19) background, had better inhibition in Hereward. Thus, this implicates a complex 

system involving host colonization and Take-all control. For instance, Yang et al. 

(2011) reported that no significant correlation were found between in vitro Ggt 

inhibition and the source of isolates. 

In many fluorescent Pseudomonas spp., the PCA and Phl antibiotics have been 

identified as the main determinants of biocontrol against soil borne plant pathogens. 

The Phl primer used here targets phlD while the PCA primers targets phzC and phzD 

(Raaijmakers et al., 1997). Interestingly none of the isolates tested gave rise to a PCR 

product suggesting they lack these antibiotics thus indicating that the mode of action 

against Ggt was not based on production of these antimicrobials. Likewise Yang et al. 
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(2011) reported that that 13 fluorescent Pseudomonas isolates controlled Ggt in vitro 

and under greenhouse conditions. However, none amplified phlD, prnC, and pltB , 

genes involved in antibiotic DAPG, pyrrolnitrin and pyoluteorin biosynthesis; 

respectively, in comparison to Pf-5 which produces the three antibiotics. However, 

three were found to amplify the phzF gene and apparently it is highly conserved among 

phenazine producers. Weller & Cook (1983), reported that not all effective strains 

against Ggt produced antibiotics or siderophores in vitro. Yang et al. (2014) showed 

that a viscosin like cyclic lipopeptide (CLP) of P. fluoresecens strain HC1-07 was 

involved in the growth inhibition of Ggt. Thus, further analysis to point out the mode of 

action of isolates in hand against Ggt will be needed. These include lytic enzymes, 

siderophore, VOCs, antibiotics as investigated by (Yang et al., 2011; Lagzian et al., 

2013). Monitoring of the populations of released biocontrol agents is also important 

and some PCR methods have been reported for this application (Martini et al., 2015). 

The findings in this chapter represent step two out the eight sequential steps needed 

for the development and improvement of Pseudomonas based plant protection 

product described by Walsh et al. (2001). These start with (1) Isolation of indigenous 

Pseudomonas spp., (2) Assessment for antifungal activity, (3) Molecular 

characterisation of the antifungal compounds and modifications for enhanced efficacy, 

(4) Testing biocontrol efficacy using large scale field trails, (5) Development of delivery 

inoculants and formulations, (6) Approval by EU directive 90/220/EEC for GMOs 

release into the environment, (7) Approval for marketing as plant protection products 

PPPs under EU directive 91/414/EEC, (8) Commercial use of Pseudomonas. Thus, 

further molecular work for the characterization of disease suppression mechanism and 

the large scale efficacy and stabilization test are needed. 
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CHAPTER 6- New Zealand and Long Hoos temporal field screening 

Summary 

The rhizosphere microbiome plays an important role in plant health. Plants can 

selectively harbour a pool of beneficial microbes to aid processes like nutrient uptake. 

Gaeumannomyces graminis var. tritici (Ggt) constrains wheat productivity in the UK 

and worldwide. Recently McMillan et al. (2011) identified differential Ggt inoculum 

supportiveness across varieties within the wheat genetic improvement network 

(WGN). This trait was called Take-all build-up (TAB). Furthermore it was found that 

growing low TAB wheat variety in the first year will result in less disease and higher 

yield in the second year (Mauchline et al., 2015; McMillan et al., 2018). Thus, 

manipulating the soil microbiome through the use of specific cultivars may offer great 

potential for natural disease control of Take-all. In addition, recent developments in 

metagenome studies provide insights into rhizosphere microbiome structure. In this 

work methods of next generation sequencing and real time qPCR were used to 

compare bacterial communities and Ggt inoculum storage associated with five wheat 

varieties (two L-TAB and three H-TAB) in addition to barley (Unknown TAB) from three 

fields at different time lines. PERMANOVA analysis of all 16S rRNA gene amplicon 

data shows that the main factor separating the bacterial communities was based on 

field type (p = 0.0001). In addition there was a clear niche separation of bulk soil 

bacterial communities from those of the rhizosphere. Changes in Ggt populations were 

only based on year-to-year variations rather than being influenced by the cultivars 

(p=0.001).  
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6.1 Introduction 

The rhizosphere is the area surrounding the roots where important functions for the 

plant occur (Berg & Smalla, 2009; Berendsen et al., 2012; Bakker et al., 2013)(Berg & 

Smalla, 2009; Berendsen et al., 2012). Microbial communities in the rhizosphere affect 

plant immunity, pathogen abundance, nutrient acquisition and stress tolerance (Coats 

& Rumpho, 2014; Haichar et al., 2014). Many biotic and abiotic factors aid in shaping 

the structural and functional diversity of the rhizosphere microbial communities (Berg 

and Smalla, 2009). To date various studies have shown the importance of the plant or 

the soil factors in structuring the rhizosphere microbiome (Haichar et al., 2008; 

Berendsen et al., 2012). 

For instance, the plants characteristics are known to influence the endophytic and 

rhizosphere microbial communities (Siciliano & Germida, 1999). Donn et al. (2015) 

found that the presence of wheat plant and its growth stage were the major factors 

influencing the rhizosphere microbial community when compared to bulk soil. The 

molecular basis of host specificity are mainly unknown (Berg and Smalla, 2009; 

Raaijmakers et al., 2009). Bergsma-Vlami et al. (2005) compared the effect of different 

host plants; wheat, sugar beet, lily and potato, on rhizosphere bacteria with an interest 

in fluorescent Pseudomonas spp. in two types of Take-all soils, conducive and 

suppressive, respectively. They found that wheat influenced an increase in 

populations of fluorescent Pseudomonas spp. from 2 x 105 to 6 x 106 CFU/g root in 

conducive soil and from 8 x 105 to 4 x 106 CFU/g root in suppressive soil. Similarly, the 

endophytic bacterial population was found to be determined by the host plant genotype 

(Robinson et al., 2015). Thus, plants play an important role in the selection of certain 

microbial populations and in the development of suppressiveness (Schreiner et al., 

2010).  
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Recently Mauchline et al. (2015) compared the rhizosphere bacterial communities of 

two wheat cultivars with different Take-all inoculum building properties; Hereward and 

Cadenza (H-TAB and L-TAB, respectively). Overall the 16S rRNA gene amplicon 

analysis showed a highly complex microbiome, where high genetic diversity was 

encountered within the P. fluorescens group. In addition, more Pseudomonas were 

associated with Hereward than Cadenza. It was concluded that the first year grown 

wheat variety had a selective pressure on Pseudomonas genomic diversity.  The 

concept of soil memory and immunity comes after extensive investigations of the 

microbial metagenome of plants (Lapsansky et al., 2016).  For instance, in suppressive 

soils, like Take-all decline (TAD) in which the disease decreases after several years 

of wheat monoculture due to build-up in populations of antagonistic, 2,4-DAPG 

producing fluorescent Pseudomonas spp. (Berendsen et al.,  2012). Manipulating the 

soil microbiome holds great promise in control of soil-borne plant diseases ( Mauchline 

et al., 2015). Thus, it is important to understand the wheat rhizosphere microbiome 

composition of different TAB wheat and how they affect the Ggt inoculum in the field.  

Apart from the plant, the effect of environmental factors on the selection of microbial 

communities have been highlighted. Mavrodi et al. (2012) found that soil moisture was 

the driving factor in the enrichment of antibiotic-producing Pseudomonads. They found 

the PCA (Phz+) producers were mainly associated with dryland wheat, in comparison 

to 2, 4-DAPG (Phl+) producers which dominated irrigated wheat. 

The results here indicate that a complex bacterial structure is associated with wheat 

cultivars used in this work. Even for a single variety like, barley, the associated 

bacterial communities were highly variable at different timelines between samples 

from the same field. Factors like soil, and year-to-year variation might have masked 

the expected crop selective effects. In addition, as known with Ggt, disease patchiness 
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was evident between the plots in the same field and might have also contributed to the 

masking effect. Overall, the levels of Ggt were based on year-to-year variations rather 

being influenced by the cultivar.  

 

Aims and objectives: 

To better understand how wheat varieties differing in their TAB trait shape their 

rhizosphere microbiomes under Ggt disease conditions a long term temporal field 

experiment drilled in 2014 to 2018 was investigated to compare microbial communities 

and to assess changes in Ggt populations and inoculum storage over-time. 

 

6.2 Methods 

6.2.1 Structure of microbial communities 

6.2.1.1 Experimental design and field layout 

This experiment is a 5 year long term experiment, located over three different fields at 

Rothamsted Research. It consists of 6 treatments (Tables 40 and 41) replicated 4 

times resulting in 24 plots (Figs. 38-40). The plots were created using GenStat 

Randomization. 

Table 40: The treatments in the 5 year experiment. 

Treatment Variety TAB trait 

1 Cadenza Low 

2 Xi19 Low 

3 Hereward High 

4 Duxford High 

5 Hereford High 

6 Barley - KWS Cassia Un-known 
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Table 41: Allocated fields for each sample collection. The mineral content (P, K, Mg) 

are in mg L-1, and the texture (Clay, Sand, Silt) are in percentages. P, phosphorus, K, 

potassium, Mg, magnesium. Data were generated by SoilQueist (Precision Agronomy 

services by AgriiTM) 2016 report. 

Field 
No. Field P  K Mg pH Clay Sand Silt Texture 

1 New Zealand 18 262 96 6.8 18.65 35.63 45.72 clay loam 

2 Long Hoos5 31 322 100 7 23.75 21.8 54.45 clay loam 

3 Long Hoos4  36 319 82 6.65 18.97 35.145 45.885 clay loam 

 

 

 

6.2.1.2 Rhizosphere soil sample collection 

The field layouts of Long Hoos 5, New Zealand, and Long Hoos 4 are shown in Figs 

30-32. From each plot, five samples of wheat plants at the late milk growth stage were 

sampled in a (W) formation across the plot to a depth of 30 cm approximately, with 

crown roots and a proportion of seminal roots attached (Table 42). The plants were 

placed into labelled plastic bags and transported back to the laboratory. 

The bags were placed in the cold room 4 °C while being processed. The vegetative 

part, the leaves and the grains was chopped off, leaving approximately 15 cm of stem 

attached to the roots. Using sterile gloves, the bulk soil was shaken from each plant 

and discarded, in a way that only the portion of soil strongly attached to the roots 

(rhizosphere soil) was left. This rhizosphere soil was separated from the roots by 

physical messaging. Thecollected soil was divided into two portions in5 ml labelled 

tubes stored at -20˚C for amplicon analysis and 50 ml tubes stored at 4˚C for bacterial 

isolation. 
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Table 42: Description of soil samples collected from the three fields.  

Fields New Zealand Long Hoos5 Long Hoos4 

Samples collected by Dr. Vanessa McMillan and Dr. Tim 

Mauchline 

Year 1 

(Rhizosphere)  

(2015) 

Year 0 (bulk soil) 

(2015) 

- 

Samples collected by Mahira Al Zadjali Year 2 

(Rhizosphere) 

(2016) 

Year 1 (Rhizosphere) 

(2016) 

Year 0 (bulk soil) 

(2016) 

Samples collected by Mahira Al Zadjali  Year 3 

(Rhizosphere) 

(2017) 

Year 2 (Rhizosphere) 

(2017) 

Year 1 

(Rhizosphere) 

(2017) 
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Figure 37: Field layout at Long Hoos 5 at Rothamsted. The four blocks are represented by different colours and the numbers 1- 

24 represent the plots. Source: Dr. Vanessa McMillan (Rothamsted Research). 
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Figure 38: Field layout at New Zealand at Rothamsted. The four blocks are represented by different colours and the numbers 1- 

24 represent the plots. Source: Dr. Vanessa McMillan (Rothamsted Research). 
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Figure 39: Field layout at Long Hoos 4 at Rothamsted. The four blocks are represented by different colours and the numbers 1- 

24 represent the plots. Source: Dr. Vanessa McMillan (Rothamsted Research).
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6.2.1.3 Selective isolation of Pseudomonas spp. 

1 g of bulk rhizosphere soil was weighed and placed in a 50 ml Falcon tube for each 

of the 24 plots, and 9ml of sterile distilled water was added. This mixture was 

vigorously shaken for 10 mins at 4°C. Next, four Eppendorf tubes were filled with 900 

µl of sterile distilled water and were labelled as -1, -2, -3, and -4. A series of serial 

dilutions was made by placing 100 µl of the homogenised soil mixture into the -1 (10-

1) labelled Eppendorf tube. From the 10-1 dilution 100 µl was placed in the –2 labelled 

tube to get 10-2 dilution and the 10-fold dilution repeated to 10-4. 100 µl of 10-3 and 10-

4 dilutions were plated onto Pseudomonas Selective Agar (PSA, Oxoid) supplemented 

with CFC (Cephalothin 25 mg, Fucidin 5 mg, and Cetrimide 5mg, Oxoid) as per 

manufacturer instructions.  A lawn was made using sterile glass spreaders. The PSA 

plates were incubated overnight at 25°C. For each plot, a total of 20 colonies were 

picked from 10-3 and 10-4. The colonies were stabbed into 96 well plates containing 

100 µl of King’s B broth. The plates were incubated at 25 °C and then glycerol stocks 

were prepared from these plates. 

 

6.2.1.4 Total soil DNA extraction  

Total DNA extraction was performed using DNeasy power soil kit (Qiagen) following 

the manufacturers protocol. Approximately 0.25 g of rhizosphere soil was weighed and 

placed in the provided Power Bead tubes. For bead beating, the tissue lyser was used 

at 4 m/s for 40 s twice (MP BIO Fast Prep-24). During the elution step, the tubes were 

allowed to stand for 10mins before the final spin. The concentration of eluted DNA was 

quantified as using NanoDrop® (ND-1000 UV-Vis Spectrophotometer) (LabTech). The 

extracted DNA was stored at -20°C for further use. 
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6.2.1.5 16S rRNA Microbial community analysis 

Next generation sequencing targeting the bacterial 16S rRNA gene was performed 

using the Illumina MiSeq platform at the Centre for the Analysis of Genome Evolution 

and Function (CAGEF, University of Toronto, Canada). Briefly, the V4 hypervariable 

region of the 16S rRNA gene was amplified using a universal forward sequencing 

primer and a uniquely barcoded reverse sequencing primer to allow for multiplexing 

(Caporaso et al., 2012). Amplification reactions were performed using 12.5 µl of 

KAPA2G Robust HotStart Ready Mix (KAPA Biosystems), 1.5 µl of 10 µM forward and 

reverse primers, 8.5 µl of sterile water and 1 µl of DNA. The V4 region was amplified 

by cycling the reaction at 95°C for 3 mins, 18 cycles of 95°C for 15 seconds, 50°C for 

15 s and 72°C for 15 s, followed by a 5 min 72°C extension. The amplified amplicon 

size was ~ 390 bp (“Earth microbiome project. 

Available:www.earthmicrobiome.org/protocols-and-standards/16s/. [Accessed: 28 

May 2019].”). All amplification reactions were done in triplicate, checked on a 1% 

agarose TBE gel, and then pooled to reduce amplification bias. Pooled triplicates were 

quantified using Quant-it PicoGreen dsDNA Assay (Thermo Fisher Scientific) and 

combined by even concentrations. The final library was purified using Ampure XP 

beads (Agencourt), selecting for the bacterial V4 amplified band. The purified library 

was quantified using Qubit dsDNA Assay (Thermo Fisher Scientific) and loaded on to 

the Illumina MiSeq for sequencing, according to manufacturer instructions (Illumina, 

San Diego, CA). Sequencing was performed using the V2 (150bp x 2) chemistry.  

 

6.2.1.5.1 Generation of OTU tables (Analysis of the bacterial microbiome) 

The OTU tables were generated by (CAGEF) (Appendix V will be provided on request 

due large size). Briefly, the UNOISE pipeline, available through USEARCH version 
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10.0.240, was used for sequence analysis (Edgar, 2013, 2010; Edgar, 2016). The last 

base, typically error-prone, was removed from all the sequences. Sequences were 

assembled, and quality trimmed using –fastq_mergepairs and –fastq_filter, with a –

fastq_maxee set at 1.0 and 0.5, respectively. Assembled sequences less than 233bp 

were removed. Following the UNOISE pipeline, unique sequences were identified from 

the merged pairs. Sequences were de-noised, and chimeras were removed using the 

unoise3 command in USEARCH. Assembled sequences were then mapped back to 

the chimera-free denoised sequences at 97% identity OTUs using the –otutab 

command. Taxonomy assignment was executed using SINTAX (Edgar, 2016), 

available through USEARCH, and the SINTAX compatible Ribosomal Database 

Project (RDP) database version 16, with the default minimum confidence cut-off of 0.8 

(Wang et al., 2007). OTU sequences were aligned using PyNast accessed through 

QIIME (Caporaso et al., 2010). Sequences that did not align were removed from the 

dataset and a phylogenetic tree of the filtered aligned sequence data was made using 

FastTree (Price et al., 2009). The average size of the OTU sequences were 253 bp. 

 

6.2.1.5.2 Structure of Bacterial communities 

Differences in bacterial community structure were investigated by Permutational 

Analysis of Variance (PERMANOVA)  (Anderson, 2001) in Paleontological Statistics 

Software Package for Education and Data Analysis (PAST) (Hammer et al., 2001). 

PCoA plots were obtained using the same software. This analysis was kindly 

performed by Dr. Vanessa Nessner- Kavamura-Noguchi at Rothamsted Research.  
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6.2.1.5.3 Analysis of differentially abundant taxa 

The online tool for comprehensive statistical, visual and meta-analysis of microbiome 

data called MicrobiomeAnalyst (Dhariwal et al., 2017) was used for detecting OTUs 

which were differentially abundant between samples. The OTU table was arranged as 

the required format and it was uploaded with the mapping and taxonomy files. Low 

abundance and low variance OTUs were removed using default values, where OTUs 

with less than 2 counts in less than 20% of the samples and 10% of the values below 

the determined inter-quantile range (IQR) were removed. The OTU table was 

normalised using the method of rarefying with replacement and relative log-expression 

(RLE) transformed. This analysis was kindly performed by Dr. Vanessa Nessner- 

Kavamura-Noguchi at Rothamsted Research due to software and server availability. 

 

6.2.2 Quantitative real time PCR (qPCR) 

6.2.2.1 Determination of total soil DNA concentration using Qubit 

The Qubit dsDNA BR assay kit (Invitrogen) was used to prepare the samples for 

quantification of DNA concentrations extracted in 6.2.1 following the manufacturers’ 

protocol. A Qubit fluorometer 2.0 (Invitrogen) was used to determine the DNA 

concentrations. The DNA was then diluted to 10 ng µl-1 with molecular grade double 

distilled water, d.d. H2O, before use as template for qPCR. 

 



170 
 

6.2.2.2 Ggt qPCR  

6.2.2.2.1 Preparation of Ggt standard DNA   

The fungal DNA of Ggt was extracted using a Master Pure Yeast DNA purification kit 

(Epicenter) following the manufacturer instructions. This used either scraped fresh 

fungal mycelium or freeze dried mycelium.  

 

6.2.2.2.2 Taq-man probe Ggt qPCR  

The method of Keenan et al. (2015) was used to measure the Ggt concentrations in 

the total soil DNA. This reaction targeted the translation elongation factor 1-alpha gene 

(EF1-α) to specifically detect G. graminis var. tritici resulting in a 106bp long product. 

The total reaction volume was 20 µl and consisted of: 10 µl of 2X KAPA Master Mix 

with ROX (BioRad Laboratories), 0.03 µl of EFPR1 probe at a final concentration of 

0.15 µM, 0.06 µl of each primer GgtEFF1 and GgtEFR1 (Table 43) at a final 

concentration of 0.3 µM. The template DNA was pre-diluted to 10ng µl-1 and 2 µl were 

used in each reaction. PCR amplifications were carried out in Mx3000 P qPCR 

machine (Agilent Technology) using the following thermal profile: initial denaturation 

at 95°C for 3 mins, followed by 40 cycles of amplification at 94°C for 15 s, 52°C for 20 

s, and 72°C for 20 s. The standard DNA (SJ Ggt 12NZ66) 49.3ng µl-1 was diluted to 

the concentration of 10ng µl-1 and used to prepare 10-fold serial dilutions of genomic 

DNA.  

The quantities of target DNA were estimated using a standard curve constructed by 

regressing Ct values onto log10 of the concentration of Ggt standards. The curve was 

automatically generated in the qPCR machine (Appendix I 9.4.1). 
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Each of the DNA samples and the standards were amplified in duplicate, and negative 

controls were included with each PCR assay. A test for PCR inhibitors was also 

performed by spiking some of the samples with known concentration of standard DNA. 

 

Table 43: Elongation factor α primers and probe giving a 106bp product (Keenan et 

al., 2015). 

Primers and probes 5’-- 3’ sequence 

GgtEFF1 CCCTGCAAGCTCTTCCTCTTAG 

GgtEFR1  GCATGCGAGGTCCCAAAA 

Taqman probe GgtEFPR1  6FAM-ACTGCACAGACCATC-MGB  

 

 

6.2.2.3 Quantification of fungal (ITS), bacterial (16S rRNA), and Pseudomonas 

(16S rRNA) 

6.2.2.3.1 Standard preparation 

A mixture of soil (25% arable soil, 25% grassland, and 50% wilderness soil) total DNA 

was extracted using DNeasy Power Soil Kit (Qiagen) following the manufacturer 

instructions. This reference DNA was then diluted to 5 ng µl-1. PCR amplification was 

performed using Quanti Fast SYBR Green PCR Kit (Qiagen). The primers used are 

listed in Table 44. The reaction mix consisted of 10 µl 2X Quanti Fast Master Mix, 2 µl 

of 10 µM Forward primer, 2 µl of 10 µM Reverse primer, 2 µl of water and 4 µl of 5ng 

µl-1 reference DNA. The  amplification program was carried  using CFX96 thermal 

cycler (BioRad) and consisted of  an initial  enzyme activation at 95 °C for 5 mins, 

followed by 40 cycles of denaturation at 95 °C for 10 s, a combined annealing and 

extension at 60 °C for 30 s.
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The PCR products were then visualized on 1% Agarose (Bioline) gel in TBE buffer 

(ran at 100V for 1h 20min).  The target bands were excised and gel extraction was 

performed using a QIAquick PCR Purification Kit (Qiagen) following the manufacturer 

guidelines. The DNA was eluted in (3-50 µl) of TE buffer. The Qubit dsDNA BR Assay 

kit (Qubit) was used to prepare the DNA for determination of the concentrations in (ng 

µl-1) on a Qubit fluorometer.  

 

6.2.2.3.2 Calculations to convert in copy number 

  
size of amplicon (bp)× molecular weight of a 1 bp (g.mol-1.bp-1)

Avogadro number (mol-1)
 = weight of the amplicon (g/copy)  

To convert the weight of the amplicon in ng (x 109) 

standard concentration (ng/µl)

weight of the amplicon (ng/copy)
 = concentration of the standard (copy/µl) 

 

6.2.2.3.3 Standard dilutions 

The stock obtained from gel extraction was diluted in TE buffer down to 109 copy µl-1 

(VF= 100 µl) (if needed, a first dilution to 1010 copy/µl is done). A dilution series was 

done in an 8-tube strip, from 108 to 101 copy/µl (10 µl of DNA + 90 µl TE Buffer). The 

standards were then distributed in 8 µl single use aliquots (6 µl are needed per qPCR, 

standard run in triplicate). The standards were then stored at -80 °C. 

 

6.2.2.3.4 qPCR 

A quantitative PCR reaction mix was prepared using Quanti Fast SYBR Green PCR 

Kit (Qiagen). The reaction mix consisted of 5 µl of 2X Quanti Fast master mix, 0.1µl of 

100 µM Forward primer, 0.1 µl of 100 µM Reverse primer, 2.8 µl of RNAse-free water 
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(Severn Biotech, Kidderminster, UK) and 2 µl of 5 ng µl-1 template DNA. The BioRad 

CFX384 Touch Real-Time PCR Detection System was used to run the program. The 

amplification program consisted of an initial enzyme activation step at 95°C for 5mins, 

followed by 40 cycles of denaturation at 95 °C for 10 s, a combined annealing and 

extension at 60 °C for 30 s. Finally, a melt curve (fluorescence read) was detected 

between 60 °C- 95 °C every 0.5 °C. The primer sequences are listed in (Table 44). 
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Table 44: Primers used in qPCR targeting bacteria, Pseudomonas and fungi. 

Gene Primer Sequence Reference amplicon size (bp) 

16S rRNA 
Pseudomonas 

16S 
rRNA_PseuF1 CTT CGG GCC TTG CGC TAT CA (Clark & Hirsch, 

2008) 
248  

16S 
rRNA_PseuR1 GCCCTTCCTCCCAACTTAA 

16S rRNA 
Bacteria 

16S 
rRNA_bact_341F CCTAYGGGRBGCASCAG (Glaring et al., 2015) 

465  
16S 

rRNA_bact_806R GGACTACNNGGGTATCTAAT (Glaring et al., 2015) 

ITS fungi 
ITS1f TCC GTA GGT GAA CCT GCG G  

(Gardes & Bruns, 
1993) 

~ 300  

5.8s CGC TGC GTT CTT CAT CG 
(Vilgalys & Hester, 

1990) 
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6.3 Take-all index and percent infected roots 

Disease severity from each plot was assessed by soil-core bioassay and plant root 

assessment performed by Dr. Vanessa McMillan, Rothamsted research. 

 

6.4 Statistical analysis 

Statistical analysis was performed using GenStat (18th edition, VSN International Ltd, 

Hemel Hempstead, UK). Transformations were used to stabilize the residuals and aid 

the analysis as needed. 

 

6.5 Results 

McMillan et al. (2011), showed the differential ability of wheat cultivars to support the 

Ggt inoculum. These cultivars were classified as L-TAB or H-TAB. To further 

investigate this, a 5 year field experiment was designed to analyse the microbial 

communities associated with two L-TAB cultivars, Cadenza and Xi-19, and three H-

TAB cultivars, Hereward, Hereford and Duxford, along with Barley of unknown-TAB. 

Thus adding a crop factor, wheat vs. barley, in addition to the cultivar factor.  In 

addition, the experiment involved 3 fields, New Zealand, Long Hoos 5 and Long Hoos 

4, to enable comparison between fields. Moreover, the start date for each field was a 

year ahead of the other, starting with New Zealand in 2014, followed by Long Hoos 5 

then Long Hoos 4 (Table 42). Apart from field New Zealand, soil samples prior to 

planting, bulk soil (Year 0), were collected from the fields. Total soil DNA was extracted 

from bulk soil and the rhizosphere samples collected from the three field for different 

timelines. Methods of next generation sequencing were used to investigate the 
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bacterial communities from these fields. While qPCR was used to quantify the amount 

of Ggt, bacteria, Pseudomonas, and fungi. 

Selective isolation of Pseudomonas spp. using methods described in section 6.2.1.3 

were performed for field 1 year 2 and 3 (F1Y2), field 2 year 2 (F2Y2) and field 3 year 

1 (F3Y1) resulting in 1868 isolates that can be investigated in future work.  

 

6.5.1 16S rRNA Amplicon data 

6.5.1.1 Difference in bacterial communities 

Total soil DNA was extracted from 192 soil samples, 0.25g each eluted to 100 µl.  

Quantification of  the extracted DNA was done using NanoDrop and Qubit methods, 

however since the Quibt was much more accurate the DNA concentration data were 

used. Following DNA template quantification and quality check with gel 

electrophoresis 30 µl were sent to CAGEF, University of Toronto, Canada for 16S 

rRNA amplicon sequencing using methods described in section 6.2.1.5. The CAGEF 

service included the generation of operational taxonomic units; OTU table as 

described in section 6.2.1.5.1. The OTU table was then analysed kindly by Dr. 

Vanessa Nessner- Kavamura-Noguchi (Rothamsted Research), first multivariate 

analyses were performed primarily on all 16S rRNA gene amplicon data. The first axis 

in Principal Coordinates Analysis plot (PCoA) (Fig. 41) corresponds to 33.3% of the 

variation and clearly separated samples from the first field (F1) from samples collected 

in fields 2 and 3. PERMANOVA analysis corroborates the observed differences and 

shows that field type is mainly responsible for the observed differences in bacterial 

community structure (PERMANOVA, F = 63.31, p = 0.0001). The second axis, 
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corresponding to 12.15% of the variation, separated samples from the second and 

third fields based on niche; i.e. bulk soil vs. rhizosphere.  
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Figure 40: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from both bulk soil (light colours) and rhizosphere (dark 

colours), obtained from different wheat cultivars and one barley cultivar (represented 

by different symbols), collected from different fields: field 1 (New Zealand) (red 

colours), field 2 (Long Hoos 5) (blue colours) and field 3 (Long Hoos 4) (green colours) 

and from different years. Graph generated by Dr. Vanessa Nessner- Kavamura-

Noguchi (Rothamsted Research). 
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Since the field type was identified as the main variation driving factor, further analysis 

was carried out for each field separately.  

 

6.5.1.1.1 Field 1 (New Zealand) Bacterial community structure 

In Fig. 42, it is not possible to see a clear separation of rhizosphere samples collected 

from different years, and there is a small overlap, especially of samples from years 1 

and 2. Also, there are no clear differences based on cultivar.   

Analysing each year individually, during the first year of sampling, differences of the 

rhizosphere bacterial communities were not observed, and they are corroborated by 

non-significant statistical differences (PERMANOVA, F = 0.9415, p = 0.7171) (Fig.43). 

For the second (Fig.44) and third (Fig.45) years, the same trend is observed, and it 

can concluded that different cultivars did not influence the structure of rhizosphere 

bacterial communities even after three years in the first field.   
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Figure 41: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from rhizosphere, obtained from different wheat 

cultivars and one barley cultivar (represented by different symbols), collected from field 

one (F1) across three years. (Grouped per year). Graph generated by Dr. Vanessa 

Nessner- Kavamura-Noguchi (Rothamsted Research). 
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Figure 42:  PCoA based on Bray-Curtis similarity distance matrix showing the 

structure of wheat bacterial communities from rhizosphere, obtained from different 

wheat cultivars and one barley cultivar (represented by different symbols), collected 

from field one (F1), year 1.  Graph generated by Dr. Vanessa Nessner- Kavamura-

Noguchi (Rothamsted Research). 
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Figure 43:  PCoA based on Bray-Curtis similarity distance matrix showing the 

structure of wheat bacterial communities from rhizosphere, obtained from different 

wheat cultivars and one barley cultivar (represented by different symbols), collected 

from field one (F1), year 2.  Graph generated by Dr. Vanessa Nessner- Kavamura-

Noguchi (Rothamsted Research). 
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Figure 44: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from rhizosphere, obtained from different wheat 

cultivars and one barley cultivar (represented by different symbols), collected from field 

one (F1), year 3.  Graph generated by Dr. Vanessa Nessner- Kavamura-Noguchi 

(Rothamsted Research). 

 

 

6.5.1.1.2 Field 2 (Long Hoos 5) Bacterial community structure  

In the second field, a different correlation was observed (Fig.46). The first axis, 

representing 27.10% of the variation, shows a clear niche separation of bacterial 

communities, with samples on the right representing bacterial communities from bulk 

soil (year 0) and samples to the left representing rhizosphere bacterial communities 
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collected across two years. There is also a clear distinction of rhizosphere bacterial 

communities after one year (separation in the second axis 10.51%). 

To check whether there were differences in bacterial communities from the 

rhizosphere, samples were analysed per year. In the first year, there is no clear 

separation based on cultivar (Fig. 47), however, barley communities tend to be slightly 

different from wheat communities (PERMANOVA, F = 1.324, p = 0.0033). This 

became particularly evident in the second year, with barley rhizosphere bacterial 

communities being completely different from wheat rhizosphere (PERMANOVA, F = 

1.245, p = 0.0106). Conversely when comparing the bacterial community structure of 

the wheat rhizosphere from both years, after one year, it appeared that wheat cultivars 

tended to have more similar bacterial communities, as they were more closely 

clustered (Fig.48).  
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Figure 45: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from bulk soil and rhizosphere, obtained from different 

wheat cultivars and one barley cultivar (represented by different symbols), collected 

from field two (F2), across different years. Graph generated by Dr. Vanessa Nessner- 

Kavamura-Noguchi (Rothamsted Research). 
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Figure 46: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from rhizosphere, obtained from different wheat 

cultivars and one barley cultivar (represented by different symbols), collected from field 

two (F2), year 1. Graph generated by Dr. Vanessa Nessner- Kavamura-Noguchi 

(Rothamsted Research). 
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Figure 47: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from rhizosphere, obtained from different wheat 

cultivars and one barley cultivar (represented by different symbols), collected from field 

two (F2), year 2. Graph generated by Dr. Vanessa Nessner- Kavamura-Noguchi 

(Rothamsted Research). 
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6.5.1.1.3 Field 3 (Long Hoos 3) Bacterial community structure 

In the third field, similarly to field 2, there is a clear separation of samples based on 

niche (bulk vs. rhizosphere), with the first axis corresponding to 37.52% of the variation 

(Fig. 49) (PERMANOVA, F = 25.63, p = 0.0001).  

During the first year, bacterial communities from the rhizosphere of different cultivars 

do not differ (PERMANOVA, F = 1.117, p = 0.0914) (Fig. 50).  
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Figure 48: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from bulk soil (Year 0) and rhizosphere (Year 1), 

obtained from different wheat cultivars and one barley cultivar (represented by 

different symbols), collected from field three (F3). Graph generated by Dr. Vanessa 

Nessner- Kavamura-Noguchi (Rothamsted Research). 
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Figure 49: PCoA based on Bray-Curtis similarity distance matrix showing the structure 

of wheat bacterial communities from rhizosphere, obtained from different wheat 

cultivars and one barley cultivar (represented by different symbols), collected from field 

three (F3), year 1. Graph generated by Dr. Vanessa Nessner- Kavamura-Noguchi 

(Rothamsted Research).
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6.5.2 Differentially abundant taxa 

Secondly, Dr. Vanessa Nessner- Kavamura-Noguchi (Rothamsted Research) 

analysed the OTU table (Appendix V will be provided on request due large size) for 

differentially abundant taxa. Briefly, the online tool for comprehensive statistical, visual 

and meta-analysis of microbiome data called MicrobiomeAnalyst (Dhariwal et al., 

2017) was used for detecting OTUs that were differentially abundant between 

samples. The OTU table was arranged as the required format and it was uploaded 

with the mapping and taxonomy files. Low abundance OTUs with less than 2 counts 

in less than 10% of the samples were removed. The OTU table was normalised using 

the method of rarefying with replacement and relative log-expression (RLE) 

transformed. The DESeq2 algorithm was used to check whether there were specific 

taxa enriched in specific wheat cultivars, whether they were related to a specific crop 

(wheat x barley) or whether they were related to Take-all level of susceptibility. 

Analyses were performed for rhizosphere samples only, for each field and year, 

separately (Table 45). 
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Table 45: Enriched genera for each crop (wheat vs. barley). Table generated by Dr. 

Vanessa Nessner- Kavamura-Noguchi (Rothamsted Research). 

Genera F1Y1 F1Y2 F1Y3 F2Y1 F2Y2 F3Y1 

Aeromicrobium     barley  

Amycolatopsis   wheat    

Aquabacterium     barley  

Arthrobacter   wheat    

Asticcacaulis      barley 

Aureimonas   barley    

Brevundimonas   barley  barley barley 

Burkholderia   wheat  wheat  

Caulobacter     barley  

Cellvibrio      barley 

Chryseobacterium     barley  

Clavibacter    wheat   

Cytophaga barley    barley barley 

Dyadobacter     barley barley 

Dyella     wheat  

Emticicia     barley barley 

Flavitalea    barley   

Flavobacterium barley barley   barley barley 

Fluviicola      barley 

Gemmatimonas     wheat  

Haliangium   barley    

Herbaspirillum      barley 

Herminiimonas     barley  

Herpetosiphon    barley   

Hymenobacter    wheat wheat  

Kaistia    wheat   

Labilithrix   barley    

Lentzea     wheat  

Luteimonas     wheat  

Luteolibacter      barley 

Lysobacter     wheat  

Marmoricola    wheat   

Massilia   wheat    

Methylobacterium    wheat   

Methylotenera  barley   barley  

Novosphingobium   wheat  wheat  

Opitutus    wheat   

Peredibacter     barley  

Phycicoccus     wheat  

Promicromonospora   wheat  wheat  

Porphyrobacter   wheat  wheat  
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Prosthecobacter   barley barley barley barley 

Pseudomonas    barley   

Pseudorhodoferax      barley 

Pseudoxanthomonas     barley  

Rathayibacter   barley  barley  

Rhizobia    barley   

Rhizoharbdus barley barley barley  barley barley 

Rhodanobacter      wheat 

Rhodococcus barley  barley  barley barley 

Rubinisphaera     barley  

Rugamonas    barley barley  

Saccharothrix     wheat wheat 

Segetibacter     wheat wheat 

Serratia     barley  

Sphaerotilus   wheat    

Sphingobium    wheat  wheat 

Sphingomonas   wheat barley   

Sphingopyxis     barley  

Spirosoma    wheat   

Taibaiella     barley barley 

Terrabacter   wheat  wheat  

Vasilyevaea    wheat   

Verrucomicrobium      barley 

Virgisporangium    barley wheat  

 

 

6.5.2.1 Field 1 (New Zealand) rhizosphere samples 

When comparing barley vs. wheat of Year 1 rhizosphere, Rhodoccoccus, 

Rhizoharbdus, Cytophaga and Flavobacterium were enriched in the barley 

rhizosphere. When removing barley samples, no taxa were significantly differentially 

abundant between low and high disease susceptible wheat samples. In the Year 2 

rhizosphere, when comparing barley vs. wheat, Methylotenera, Rhizoharbdus and 

Flavobacterium were enriched in barley rhizosphere. The same pattern as the first 

year was observed when removing barley samples, with no differentially abundant 

taxa. Finally, in Year 3 rhizosphere, Rhodococcus, Prosthecobacter, Brevundimonas, 

Rhizoharbdus, Haliangium, Rathayibacter, Labilithrix and Aureimonas were enriched 
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in the barley rhizosphere, whereas Novosphingobium, Burkholderia, Porphyrobacter, 

Promicromonospora, Arthrobacter, Amycolatopsis, Dyella, Sphaerotilus, 

Sphingomonas, Terrabacter and Massilia were significantly enriched in the wheat 

rhizosphere. No taxa were significantly differentially abundant between low and high 

disease susceptible wheat samples.  

 

6.5.2.2 Field 2 (Long Hoss5) rhizosphere samples 

When comparing barley vs. wheat in the Year 1 rhizosphere of field 2, Sphingomonas, 

Pesudomonas, Virgisporangium, Herpetosiphon, Prosthecobacter, Rhizobia, 

Rugamonas and Flavitalea, were enriched in the barley rhizosphere. Conversely, 

Hymenobacter, Sphingobium, Opitutus, Marmoricola, Methylobacterium, Kaistia, 

Clavibacter, Spirosoma and Vasilyevaea were enriched in the wheat rhizosphere, 

regardless of disease incidence. When removing barley samples, one genus, 

Tahibacter,  was found to be enriched in the rhizosphere of L-TAB wheat.  

For the second year, the barley rhizosphere was enriched in the following genera: 

Rhodococcus, Prosthecobacter, Methylotenera, Cytophaga, Rhizoharbdus, 

Brevundimonas, Sphinopyxis, Chryseobacterium, Aquabacterium, Serratia, Emticicia, 

Aeromicrobium, Rugamonas, Taibaiella, Peredibacter, Dyadobacter, 

Pseudoxanthomonas, Flavobacterium, Herminiimonas, Rubinisphaera, Caulobacter 

and Rathayibacter. The wheat rhizosphere was enriched in the following genera: 

Hymenobacter, Promicromonospora, Saccharothrix, Lysobacter, Porphyrobacter, 

Novosphingobium, Segetibacter, Phycicoccus, Dyella, Gemmatimonas, Luteimonas, 

Virgisporangium, Lentzea, Terrabacter and Burkholderia. When removing barley 

samples, no taxa were significantly differentially abundant between low and high 

disease susceptible wheat samples.  
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6.5.2.3 Field 3 (Long Hoos 4) rhizosphere samples 

In the rhizosphere of field 3, sixteen genera were enriched in the barley rhizosphere 

and they include Rhizoharbdus, Cytophaga, Rhodococcus, Cellvibrio, Taibaiella, 

Dyadobacter, Asticcacaulis, Verrucomicrobium, Prosthecobacter, Emticicia, 

Herbaspirillum, Luteolibacter, Flavobacterium, Pseudorhodoferax, Brevundimonas 

and Fluviicola. The wheat rhizosphere was enriched in Saccharothrix, Segetibacter, 

Rhodanobacter and Sphingobium. When removing the barley samples, no taxa were 

significantly differentially abundant between low and high disease susceptible wheat 

samples.   

A summary with all the enriched genera per crop for each field with respective year 

are shown in Figs 51 and 52. 
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Figure 50: Enriched taxa in the Barley rhizosphere. 

 

Figure 51: Enriched taxa in the wheat rhizosphere. 
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6.5.3 Quantitative real time PCR 

The second aim of this field experiment was to monitor changes in Ggt soil DNA levels 

in comparison to bacteria, Pseudomonas and fungi. The fungi here, refers to total fungi 

excluding arbuscular mychorrhiza AMF, as the primers used didn’t cover the 

Glomeromycota group.  

For each of the 192 soil DNA, 30 µl were devoted towards Ggt, bacteria, 

Pseudomonas and fungi qPCR. Methods for Taqman and SYBR-Green qPCR were 

used as described in section 6.2.2. Both qPCRs were carried out at Rothamsted 

Research based on established assays.   

 

6.5.3.1 Statistical analysis of quantitative real time PCR (qPCR) data: 

Analysis of qPCR data was performed using GenStat (GenStat, v17 and v18). Since 

the sampling seasons was not consistent over the three different fields i.e: bulk soil 

data was not available for field 1, no year 3 data for field 2, and no year 2 or year 3 for 

field 3, it was not possible to analyse the data of all fields in comparison to each other. 

Thus, each field was analysed individually.  Furthermore, comparison might not be 

possible since the quantification of 16S rRNA bacterial, 16S rRNA Pseudomonas, and 

ITS were carried out using SYBR-Green, the standards used were obtained a mixture 

of soils (6.2.2.3.1) while Taqman qPCR was used for Ggt with standards from a pure 

Ggt culture (6.2.2.2.2). Thus, each set was analysed separately. The raw data are in 

Appendix II and III (9.4.2 and 9.4.3). 
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6.5.3.1.1 Analysis of 16S rRNA bacterial, 16S rRNA Pseudomonas, and ITS 

qPCR data: 

The outcomes of the two technical repeats were averaged and the data was reported 

as picograms per gram of dry soil (pg/ g of dry soil). Since samples were obtained 

from the same plots over time, ANOVA in Repeated Measurements menu was used 

for further analysis. First, both Generalized Linear Mixed Model (GLMM) and Analysis 

of Variance (ANOVA) in the repeated measurements menu were used on the data. 

Both gave similar outcomes (data not shown), however the ANOVA menu allowed 

incorporation of the time factor easily and therefore was used for further analysis. The 

term sampling season or sampling point was used to imply for the different time points 

where the soil samples were collected (Y0 bulk soil, Y1, Y2, Y3 rhizosphere soil). For 

each field the data were unstacked by the sampling season (years 0, 1, 2, 3) for the 

following data: averaged qPCR outcome (pg/g dry soil), crop, cultivar, block, and plot. 

The model to be fitted (crop / cultivar) using Block as the blocking term and for 

transformation of data square root or log base 10 were used as necessary. Data 

transformation was used to stabilize the residuals when needed.  

 

6.5.3.1.1.1 Field 1 (New Zealand): 

For bacterial 16S rRNA levels there were significant differences across the three 

sampling seasons and between barley and wheat crops over time (p <0.001, and p= 

0.049 respectively). No significant difference in total bacterial levels were observed 

within the different wheat cultivars over time (p=0.508). A close correlation was 

observed in the level of ITS for total fungi where there were significant differences 

across the three sampling seasons (p <0.001) and approximating significance 

between the barley and wheat crops over time (p=0.063). However, no significant 
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difference was observed in total fungal levels within the different wheat cultivars over 

time (p=0.298). The levels of Pseudomonas 16S rRNA were also significantly different 

across the growing seasons (p<0.001), but no differences were observed with the 

barley and wheat crops or with the wheat cultivars over time (p=0.151 and p=0.071, 

respectively) (Tables 46-48). These observations might imply that there are other 

factors that have not been taken into account while performing the analysis (like soil 

temperature, pH, conductivity, soil C and N content, plant variables).  

 

Table 46: Field 1 ANOVA on repeated measurements for averaged bacterial DNA pg/ 
g soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, 
Hereward, Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees 
of freedom; F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_1 stratum 3 696470 232157 5   

Block_1.Subject stratum           

Crop_1 1 4872 4872 0.1 0.75 

Crop_1.Cultivar_1 4 185689 46422 1 0.438 

Residual 15 696398 46427 2.12   
Block_1.Subject.Time 
stratum           

d.f. correction factor 0.8968           

Time 2 523412 261706 11.94 <.001 

Time.Crop_1 2 151186 75593 3.45 0.049 

Time.Crop_1.Cultivar_1 8 160849 20106 0.92 0.508 

Residual 36 789101 21919     

Total 71 3207977       
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Table 47: Field 1 ANOVA on repeated measurements for averaged Pseudomonas 
DNA pg/ g soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, 
Hereward, Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees 
of freedom; F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_11 stratum 3 18.883 6.294 0.75   

Block_11.Subject stratum           

Crop_11 1 13.727 13.727 1.63 0.221 

Crop_11.Cultivar_11 4 36.435 9.109 1.08 0.401 

Residual 15 126.361 8.424 2.03   
Block_11.Subject.Time 
stratum           

d.f. correction factor 0.9653            

Time 2 81.707 40.853 9.84 <.001 

Time.Crop_11 2 16.688 8.344 2.01 0.151 

Time.Crop_11.Cultivar_11 8 68.028 8.504 2.05 0.071 

Residual 36 149.406 4.15     

Total 71 511.236       

 

 

Table 48: Field 1 ANOVA on repeated measurements for averaged fungi DNA pg/ g 
soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, Hereward, 
Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees of freedom; 
F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_21 stratum 3 359768 119923 3.73   

Block_21.Subject stratum           

Crop_21 1 116928 116928 3.64 0.076 

Crop_21.Cultivar_21 4 182282 45571 1.42 0.276 

Residual 15 481904 32127 1.24   
Block_21.Subject.Time 
stratum           

d.f. correction factor 0.8039            

Time 2 1190430 595215 22.99 <.001 

Time.Crop_21 2 167791 83895 3.24 0.063 

Time.Crop_21.Cultivar_21 8 264034 33004 1.27 0.298 

Residual 36 931910 25886     

Total 71 3695047       
 

 



201 
 

6.5.3.1.1.2 Field 2 (Long Hoos 5) 

The data of Bacterial 16S rRNA levels was transformed by taking the square root. The 

levels of bacterial 16S rRNA were significantly different across the three sampling 

points year 0 (bulk soil), year1 and year2 rhizospheres; (p<0.001). No significant 

differences were observed between the barley and wheat crops (p=0.252) or within 

the wheat cultivars (p=0.644). The data for Pseudomonas 16S rRNA were log10 

transformed. There were no significant differences in Pseudomonas 16S rRNA levels 

between the three sampling points or between the barley and wheat crops or within 

the wheat cultivars (p=0.153, p=0.504, and p=0.255 respectively). The levels of ITS 

were significantly different across the three sampling points (p<0.001). However, no 

significant differences were observed in ITS levels between the barley and wheat 

crops or within the wheat cultivars over the three sampling points (p=0.279 and 

p=0.780, respectively) (Tables 49-51).  

 

Table 49: Field 2 ANOVA on repeated measurements for averaged bacterial DNA pg/ 
g soil. The data was square root transformed. Block: the four main blocks; Crop: wheat 
or barley; Cultivar: Cadenza, Hereward, Hereford, Xi-19, Duxford and Barley; Time: 
year 2015-2017; d.f: Degrees of freedom; F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_1 stratum 3 83.26 27.75 1.49   

Block_1.Subject stratum           

Crop_1 1 0 0 0 0.999 

Crop_1.Cultivar_1 4 8.78 2.19 0.12 0.974 

Residual 15 280.25 18.68 1.09   
Block_1.Subject.Time 
stratum           
d.f. correction factor 
0.7869           

Time 2 1263.4 631.71 36.74 <.001 

Time.Crop_1 2 49.35 24.68 1.44 0.252 

Time.Crop_1.Cultivar_1 8 98.9 12.36 0.72 0.644 

Residual 36 618.97 17.19     

Total 71 2402.9       
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Table 50: Field 2 ANOVA on repeated measurements for averaged Pseudomonas 
DNA pg/ g soil. The data were log transformed. Block: the four main blocks; Crop: 
wheat or barley; Cultivar: Cadenza, Hereward, Hereford, Xi-19, Duxford and Barley; 
Time: year 2015-2017; d.f: Degrees of freedom; F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_1 stratum 3 0.00964 0.00321 0.08   

Block_1.Subject stratum           

Crop_1 1 0.00919 0.00919 0.23 0.64 

Crop_1.Cultivar_1 4 0.12674 0.03169 0.79 0.551 

Residual 15 0.60407 0.04027 0.68   

Block_1.Subject.Time 
stratum           

d.f. correction factor 
0.9513           

Time 2 0.23631 0.11815 2 0.153 

Time.Crop_1 2 0.08089 0.04045 0.68 0.504 

Time.Crop_1.Cultivar_1 8 0.6381 0.07976 1.35 0.255 

Residual 36 2.12875 0.05913     

Total 71 3.83368       

 

Table 51: Field 2 ANOVA on repeated measurements for averaged fungi DNA pg/ g 
soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, Hereward, 
Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees of freedom; 
F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_11 stratum 3 195720 65240 2.14   

Block_11.Subject stratum           

Crop_11 1 43875 43875 1.44 0.249 

Crop_11.Cultivar_11 4 89425 22356 0.73 0.584 

Residual 15 457825 30522 1.33   
Block_11.Subject.Time 
stratum           
d.f. correction factor 
0.9107            

Time 2 2524513 1262256 54.82 <.001 

Time.Crop_11 2 60833 30417 1.32 0.279 

Time.Crop_11.Cultivar_11 8 105193 13149 0.57 0.78 

Residual 36 828867 23024     

Total 71 4306251       
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6.5.3.1.1.3 Field 3 (Long Hoos 4) 

In Long Hoos 4 (LH4) the levels of bacterial 16S rRNA were significantly different 

between the two sampling seasons both bulk and rhizosphere soil (p<0.001). 

However, no significant difference in the levels were observed between the barley and 

wheat crops or within the different wheat cultivars overtime (p= 0.219 and p=0.847, 

respectively). The same trend was observed for 16S rRNA Pseudomonas levels with 

significant differences between the bulk soil and rhizosphere soil (p<0.001) and no 

significant difference was observed between crops or within the wheat cultivars 

overtime (p= 0.219 and p=0.847, respectively). The levels of Pseudomonas 16S rRNA 

were significantly different (p<0.001) between years zero and one (bulk vs. 

rhizosphere). However, no significant differences in Pseudomonas 16S rRNA levels 

were observed between the barley and wheat crops or within the wheat cultivars 

overtime (p= 0.383 and p= 0.517, respectively).  Similarly, the levels of ITS were 

significantly different between the two sampling seasons (p<0.001). However, no 

significant differences were observed in ITS levels between the barley and wheat 

crops or within the wheat cultivars overtime (p=0.818 and p= 0.092, respectively) 

(Tables 52-54).  
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Table 52: Field 3 ANOVA on repeated measurements for averaged bacterial DNA pg/ 
g soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, 
Hereward, Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees 
of freedom; F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_1 stratum 3 33076 11025 0.21   
Block_1.Subject 
stratum           

Crop_1 1 41873 41873 0.78 0.391 

Crop_1.Cultivar_1 4 92807 23202 0.43 0.784 

Residual 15 805914 53728 1.25   
Block_1.Subject.Time 
stratum           
d.f. correction factor 
1.0000           

Time 1 1752298 1752298 40.63 <.001 

Time.Crop_1 1 69971 69971 1.62 0.219 

Time.Crop_1.Cultivar_1 4 58878 14719 0.34 0.847 

Residual 18 776335 43130     

Total 47 3631151       
 

Table 53: Field 3 ANOVA on repeated measurements for averaged Pseudomonas 
DNA pg/ g soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, 
Hereward, Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees 
of freedom; F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_11 stratum 3 5.365 1.788 0.47   

Block_11.Subject stratum           

Crop_11 1 9.883 9.883 2.62 0.126 

Crop_11.Cultivar_11 4 14.707 3.677 0.98 0.45 

Residual 15 56.544 3.77 0.95   
Block_11.Subject.Time 
stratum           
d.f. correction factor 
1.0000            

Time 1 156.973 156.973 39.66 <.001 

Time.Crop_11 1 3.165 3.165 0.8 0.383 

Time.Crop_11.Cultivar_11 4 13.312 3.328 0.84 0.517 

Residual 18 71.252 3.958     

Total 47 331.201       
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Table 54: Field 3 ANOVA on repeated measurements for averaged fungi DNA pg/ g 
soil. Block: the four main blocks; Crop: wheat or barley; Cultivar: Cadenza, Hereward, 
Hereford, Xi-19, Duxford and Barley; Time: year 2015-2017; d.f: Degrees of freedom; 
F pr.: F probability. 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Block_21 stratum 3 274987 91662 0.76   

Block_21.Subject stratum           

Crop_21 1 12981 12981 0.11 0.747 

Crop_21.Cultivar_21 4 1095848 273962 2.28 0.109 

Residual 15 1804579 120305 0.94   
Block_21.Subject.Time 
stratum           
d.f. correction factor 
1.0000            

Time 1 3869395 3869395 30.09 <.001 

Time.Crop_21 1 7034 7034 0.05 0.818 

Time.Crop_21.Cultivar_21 4 1215087 303772 2.36 0.092 

Residual 18 2314926 128607     

Total 47 10594836       
 

 

6.5.3.2 Analysis of Ggt qPCR data: 

The Ggt data were analysed at two levels. First to test the differential probability of Ggt 

presence within the six treatments (1 barley and 5 wheat cultivars), the data were 

converted to (0, 1) for presence and absence. The data were then analysed at the 

level of each field and each sampling point within a given field individually. These data 

were analysed under a regression menu Generalized Linear Mixed Model (GLMM) 

using a Binomial distribution on logit scale. However, this analysis failed when there 

was not much variation like in the case of New Zealand data and LH5 year 0 where all 

the values were zero. Thus, the analysis was replaced by a simple count (Appendix III 

9.4.3).  
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6.5.3.2.1 Field 1 New Zealand 

In year 1 Ggt was present in three plots (Duxford, Barley, and Cadenza) out of the 24 

plots. The amounts were too low to appear in the graph (Fig. 53). In year 2 Ggt was 

present in all plots except for one plot (Hereward). In year 3 it was present in all 24 

plots. For all the treatments the amount of Ggt DNA was increasing from year 1 to year 

2 and then was decreasing in year 3, except for Cadenza and Hereford, which 

exhibited an increase in Year 3. 

 

Figure 52: Concentration of Ggt DNA (pg/ g dry soil) from field 1 New Zealand Y 

1, Y 2 and Y 3. The bars are the averaged amount of DNA over the four replicates. 

Error bars are based on s.e. 
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the barley and wheat crops and within the wheat cultivars (p= 0.962 and p=1, 

respectively) (Table 56). There was an increase in the amount of Ggt DNA from year 

0 to year 1, with the highest levels recorded for year 2. 

 

 

Figure 53: Concentration of Ggt DNA (pg/ g dry soil) from field 2 Long Hoos 5 Y 

0, Y 1 and Y 2. The bars are the averaged amount of DNA over the four replicates. 

Error bars are based on s.e. 

 

Table 55: Test for fixed effects from GLMM for Long Hoos 5 year 1. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Crop 0.01 1 0.01 18 0.913 

Crop.Cultivar 3.26 4 0.81 18 0.532 

 

Table 56: Test for fixed effects from GLMM for Long Hoos 5 year 2. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Crop 0 1 0 18 0.962 

Crop.Cultivar 0.02 4 0.01 18 1 
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6.5.3.2.3 Field 3 Long Hoos 4 

In year 0 there was no significant differences in Ggt presence and absence between 

the barley and wheat crops or within the wheat cultivars (p= 0.646 and p= 0.915, 

respectively) (Table 57). In year 1, again there were no significant differences in Ggt 

presence and absence between the barley and wheat crops or within the wheat 

cultivars (p= 0.539 and p= 0.751, respectively) (Table 58). 

Table 57: Test for fixed effects from GLMM for Long Hoos 4 year 0. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Crop 0.22 1 0.22 18 0.646 

Crop.Cultivar 0.94 4 0.24 18 0.915 

 

Table 58: Test for fixed effects from GLMM for Long Hoos 4 year 1. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Crop 0.39 1 0.39 18 0.539 

Crop.Cultivar 1.92 4 0.48 18 0.751 

 

 

Again, in field Long Hoos 4 a similar pattern as Long Hoos 5 in the amount of Ggt 

DNA. An increase from year 0 to year 1, with Hereford harbouring the highest 

concentration of Ggt DNA (pg/g dry soil) (Fig. 55). 
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Figure 54: Concentration of Ggt DNA (pg/ g dry soil) from field 3 Long Hoos 4 Y 

0 and Y 1. The bars are the averaged amount of DNA over the four replicates. Error 

bars are based on s.e. 
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respectively), but no significant interaction between cultivars at different time points 

(p=0.233) (Table 60). In field 3 (Long Hoos 4), there was a significant difference in the 

abundance of Ggt between the sampling points (p<0.001) and within the cultivars 

(p=0.006) however, there was no significant interaction detected for the cultivars over 

time (p=0.556) (Table 61). 

Table 59: Test for fixed effects from REML variance components for Ggt presence 
data from New Zealand. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Cultivar 7.6 5 1.52 14.4 0.244 

Time 37.08 2 18.51 20.8 <0.001 

Cultivar.Time 16.12 7 2.3 19.1 0.07 

 

 

Table 60: Test for fixed effects from REML variance components for Ggt presence 
data from Long Hoos 5. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Cultivar 45.8 5 9.07 10.7 0.001 

Time 26.22 1 26.22 4.8 0.004 

Cultivar.Time 7.84 4 1.95 5.4 0.233 

 

Table 61: Test for fixed effects from REML variance components for Ggt presence 
data from Long Hoos 4. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr. 

Cultivar 206.16 5 41.22 3 0.006 

Time 183.86 1 183.86 3 <0.001 

Cultivar.Time 3.62 4 0.91 3 0.556 

 

The significant differences in Ggt by year were also evident in the soil core bioassay 

data targeting Take-all inoculum levels measured by McMillan et al. (2011). This might 

be due to year-by-year variations in environmental conditions such as rainfall and 

temperature, where warm and moist conditions favour the presence of Ggt. 
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6.5.4 The relationship between Take-all indexes (TAI), percent infected roots 

and the amount of Ggt DNA: 

For New Zealand and Long Hoos (LH 5 and LH 4) fields, Dr. Vanessa McMillan at 

Rothamsted Research has collected soil cores to determine soil inoculum infectivety 

(percent infected roots in seedling soil core bioassay) while adult plant roots were 

assessed for disease incidence and severity (Take-all index (TAI)) (Table 62). 

Methods for soil core bioassay and Take-all index were described by (McMillan et al., 

2011, 2014) and are listed in methods section 2.8.  The available data was used to 

look at correlations between the Ggt DNA concentrations, TAI and percent infected 

roots. The raw data are available in appendix IV 9.4.4. 

 

Table 62: Data available per field and per year for TAI and percent infected roots. 

Where F 1 is New Zealand, F 2 is LH 5, F 3 is LH 4, while Y 1,Y 2, Y 3 are year 1, 2 

and 3 respectively. 

Field/ 
Year 

Data available for % infected 
roots  

Data available for Take-all 
Index 

F1 Y1 YES YES 

F1 Y2 YES NO 

F1 Y3 NO YES 

F2 Y1 YES NO 

F2 Y2 NO  YES 

F3 Y1 NO YES 

 

 

6.5.4.1 Field 1 NZ: 

In Year 1 there was a weak negative correlation between the amount of Ggt DNA (pg/ 

g of dry soil) and the percent infected roots in the soil core bioassay (R2= 0.1904; 

Fig.56). In Year 2, there was a weak positive correlation between the amount of Ggt 
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DNA (pg/ g of dry soil) and the percent infected roots in the soil core bioassay (R2= 

0.1493; Fig.57). Both in Year 1 and 3 there was a moderate to weak positive 

correlation between the amount of Ggt DNA (pg/ g of dry soil) and the Take-all index 

(R2= 0.4842 and 0.1038, respectively; Figs 58 and 59). 

 

 

Figure 55: Correlation between amount of Ggt DNA (pg/g dry soil) and the percent 

infected roots from field 1(New Zealand) Year 1. 
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Figure 56: Correlation between amount of Ggt DNA (pg/g dry soil) and the percent 

infected roots from field 1 (New Zealand) Year 2. 

 

 

Figure 57: Correlation between amount of Ggt DNA (pg/g dry soil) and Take-all index 

(TAI) from field 1 (New Zealand) Year 1. 
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Figure 58: Correlation between amount of Ggt DNA (pg/g dry soil) and Take-all index 

from field 1 (New Zealand) Year 3. 
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Fig.60). Also, in Year  2 there was a strong positive correlation between the amount 

of Ggt DNA (pg/ g of dry soil) and Take-all index (R2= 0.9221; Fig.61). 
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Figure 59: Correlation between amount of Ggt DNA (pg/g dry soil) and percent 

infected roots from field 2 (Long Hoos 5) Year 1. 

 

 

Figure 60: Correlation between amount of Ggt DNA (pg/g dry soil) and Take-all index 

for samples from field 2 (Long Hoos 5) Year 2. 
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6.5.4.3 Field3 LH4: 

In Year 1 there was a moderate positive correlation between the amount of Ggt DNA 

(pg/ g of dry soil) and Take-all index of adult plant samples (R2= 0.62; Fig.62). 

 

Figure 61: Correlation between the amount of Ggt DNA (pg/g dry soil) and Take-all 

index for samples from field 3 (Long Hoos 4) Year 1. 
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The beneficial effects of rhizobacteria range from nitrogen fixation, phosphorous and 

iron solubilisation, pathogen exclusion to induced systemic resistance (Neal et al., 

2012). Well studied plant beneficial bacteria include Pseudomonas, Burkholderia, and 

Bacillus (Raaijmakers et al., 2009). The soil microbial communities are affected by 

both plant and soil factors (McSpadden Gardener & Weller, 2001). Take-all disease 

suppressive soils (TAD), were found to be associated with an increase in 2,4-DAPG 

producing Pseudomonas (Raaijmakers & Weller, 1998). In addition, Sanguin et al. 

(2009) through a combination of 16S rRNA microarray, cloning and sequencing 

showed a possible involvement of non Pseudomonas bacterial groups in TAD. These 

findings suggest a combined role of different bacteria rather than the involvement of 

single group. 

Community based approaches are important in identifying potential microbial 

populations involved in disease suppression. For instance, repeated wheat cropping 

can lead to specific taxa enrichment, while a disease out-break can provide a more 

nutrient rich environment. Two important factors influence TAD: (1) monoculture of a 

susceptible host; (2) the presence of a virulent pathogen (Schreiner et al., 2010). 

In general, the rhizosphere microbiome of agricultural systems is less diverse than a 

natural ecosystem (Andreote & Pereira e Silva, 2017). Lloyd-Jones et al. (2005), found 

that the amount of Pseudomonas populations were significantly more abundant in 

forest soil than cropping soil. Driven by high nutrient availability from root exudates; 

the rhizosphere also contains far more large and complex microbial populations than 

the surrounding bulk soil (Bakker et al., 2013; Berg and Smalla, 2009). Similarly, in 

this study it was found that the bacterial communities of the bulk soil were different 

from that of the rhizosphere soil (Fig. 33). Also Berg and Smalla (2009) stated that the 

rhizosphere of old wheat cultivars were found to be colonized by a more complex 
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population of microbes in comparison to the rhizosphere of modern wheat which is 

mainly colonized by Proteobacteria. This was not evident in this study where the older 

varities Cadenza and Hereward (1980s/1990s) were not significantly different from Xi-

19 (2000s) of Duxford and Hereford (2010s). 

Lebeis et al. (2015) investigated the rhizosphere microbiome of Arabidopsis thaliana, 

comparing both wild type and a range of mutants deficient in plant defence phyto-

hormones, salicylic acid (SA), jasmonic acid (JA) and ethylene. Their results 

demonstrated a role of SA in modulating root associated bacteria. Whether the SA 

effect is direct at the level of microbe interaction or by altering the root physiology, is 

still unclear. The role of root exudates in recruiting beneficial plant microbes have been 

widely demonstrated (Bakker et al., 2013). For instance, using green fluorescent 

reporter protein (GFP) technology, Neal et al. (2012) was able to show that 

benzoxazinoids, such as DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-

3(4H)-one), is involved in attracting Pseudomonas putida KT2440 in the maize 

rhizosphere. Also legumes, under nitrogen limiting conditions, attract rhizobia via 

release of certain flavonoids. While Arabidopsis uses malic acid to recruit microbes 

from the soil to activate host defences in response to Pseudomonas syringe pv. tomato 

foliar attack (Chaparro et al., 2013). 

In this study it was found that the field was the major factor separating the bacterial 

communities from each other. These differences might be due to the soil type, with 

soil type from the first field F1 being different from the soil type from F 2 and F 3 The 

major difference between the three field soils was in the percentage of phosphorous 

(P) as shown in the chemical and physical analysis (Table 43). For plants, 

phosphorous is a key element for energy, photosynthesis and sugar transformation. 

In addition, most soils have naturally low phosphorous content or components that 
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bind elemental phosphorous making it less available for the plants (Gumiere et al., 

2019). Soil bacterial species play key roles in P mobilization into plant available forms 

and arbuscular mycorrhizea fungi (AMF) enhance plants P uptake (Mander et al., 

2012; Gumiere et al., 2019). 

Liu et al. (2013) investigated the effect of N and P additions on the microbial structure 

of old-growth tropical forest in southern China. Their phosopholipid fatty acid analysis 

(PFLA) demonstrated that addition of P increased the relative abundance of AMF 

PFLAs and soil microbial biomass. While, Gumiere et al. (2019) showed that there was 

a high correlation between phosphate sources and the structure of bacterial and fungal 

communities. However, the effects of P source on soil bacterial diversity are likely to 

be variable and site dependent (Silva et al.,2017). Mander et al. (2012) reported that 

in New Zealand pasture soils with low P levels had the highest numbers of P 

solubilizing bacteria like, Proteobacteria, Actinobacteria, Firmicutes, and 

Bacteroidetes. However, in this study the previous trend was not evident. 

The influence of soil type on shaping the microbiome is already known (Bakker et al., 

2013; Haichar et al., 2014). Also Clark & Hirsch (2008) found that the bacterial 

diversity, abundance and survival in archived soils was influenced by the soil organic 

matter and clay content. In this study it was also found that there was no significant 

difference in the overall bacterial communities between the treatments (i.e: cultivars). 

Schreiner et al. (2010) likewise found no significant differences between the 

rhizobacterial communities between inoculated microcosms and non-inoculated 

microcosms with Ggt. They also reported that the presence of naturally occurring Ggt 

in the non-inoculated microcosms was not sufficient to establish disease or Take-all 

decline (TAD). Here, for enriched taxa, the Pseudomonas group was of interest 

however there was no evidence of their enrichment among the wheat cultivars. 
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Similarly, Mehrabi et al. (2016) based on 16S rRNA reads found no significant 

difference in the diversity and richness of Pseudomonas communities from low and 

high Take-all plots.  Mahoney et al. (2017) reported that the wheat cultivars tested by 

them didn’t show any selection for Pseudomonas spp. unlike Mazzola & Gu, (2002) 

who found that same wheat cultivars under greenhouse conditions selectively 

supported populations of Pseudomonas that were antagonistic to Rhizoctonita solani 

AG-5 and AG-8 when grown in apple orchid soils. Thus suggesting that the differences 

in experimental design, sampling and analysis plays an important role in determining 

the results. In addition, when comparing the enriched taxa between barley and wheat, 

38 bacterial taxa were enriched within the barley rhizosphere and 29 bacterial taxa 

were enriched within the wheat rhizosphere. Interestingly, only two taxa were common 

in both barley and wheat rhizospheres, Sphingomonas and Virgisporangium. Other 

studies have assigned Sphingobacteriaceae group as a dominant taxon in the wheat 

rhizosphere (Donn et al., 2015; Mahoney et al., 2017). When barley was removed from 

the analysis to remove any masking effect, the genus Tahibacter was found to be 

enriched in the rhizosphere of L-TAB wheat. The relevance of this finding is still 

unknown. Tahibacter falls into the family Xanthomonadaceae, along with Lysobacter. 

Recently Gadhave et al. (2018) investigated the endophytic microbial communities of 

sprouting broccoli roots following external application of individual and mix Bacillus 

using 16S rRNA 454 pyrosequencing. Their results have shown that external 

application of B. amyloliquefaciens was associated with a large decrease in the 

relative abundance of the most common endophyte, Pseudomonas along with loss of 

Rhizobium, and these changes were accompanied by an increase in the relative 

abundance of a wide range of genera, particularly Dyadobacter, Variovorax, 

Tahibacter, and Sphingomonas. Suggesting that these genera fail to establish when 



221 
 

Pseudomonas and Rhizobium are present due to antagonistic interactions. In this 

study Pseudomonas and Rhizobia were enriched within the barley rhizosphere while 

Burkholderia, Lysobacter and Sphingobium were enriched in wheat rhizosphere. Thus 

from Gadhave et al. (2018), it can be suggested that there was an unknown factor in 

wheat rhizosphere which counteracted against Pseudomonas establishment in 

greater abundance.  

Also, it was shown that either soil type, plant species or a combination of both were 

identified as major factors driving the rhizosphere microbial communities (Berg and 

Smalla, 2009; Raaijmakers et al., 2009). The clear niche effect of bulk soil versus the 

rhizosphere was very clear in the results here and the same trend was reported 

previously by others e.g.  Donn et al. (2015). Apparently, the plants, through their root 

exudates, are able to select for specific microbial groups present in the bulk soil to 

colonize their rhizosphere. Thus, the microbial communities in the rhizosphere are less 

diverse than those found in bulk soil (Berendsen et al., 2012). When investigating the 

rhizosphere bacteria of the graminoid Avena fatua it was found that the relative 

abundances of 147 of the 1,917 of the detected bacterial taxa were significantly 

different from those of the bulk soil, with most of the rhizosphere species belonging to 

the phyla Firmicutes or Actinobacteria or to the class Alphaproteobacteria (Philippot 

et al., 2013). Other studies have indicated Proteobacteria (Pseudomonadaceae or 

Burkholderiaceae family) as dominant members of rhizosphere microbiome. Bulgarelli 

et al. (2012) investigated the microbiome of A. thaliana grown under controlled 

conditions and in different types of soil. They found that roots were favourably 

colonized by specific members of Proteobacteria, Bacteroidetes and Actinobacteria. 

Mahoney et al. (2017) found that the most abundant OTUs within the wheat 

rhizosphere were Acidobacteria (Gp1), Actinobacteria, Bacteriodetes (Flavobacteria 
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and Sphingobacteria), Verrucomicrobia (Opitutae), Proteobacteria 

(Alpha/beta/gamma/proteobacteria), and Gemmatimonadetes. These OTUs were also 

identified in this study. Overall the OTUs found in this study were in agreement with 

previously identified rhizosphere OTUs (Bulgarelli et al., 2012; Philippot et al., 2013; 

Donn et al., 2015; Mahoney et al., 2017). 

Lundberg et al. (2012) used 454 pyrosequencing of 16S rRNA to analyse the 

rhizosphere and endosphere of eight inbred A. thaliana accessions grown in two 

different soil types under controlled conditions. They found that the soil was the main 

factor deriving the rhizosphere microbiome composition of Arabidopsis thaliana. Also 

the niche, bulk soil, was separated from the endosphere. The growth stage at 

harvesting and the host genotype didn’t have a quantifiable enrichment on one 

bacterial group over the other. Similarly, Bulgarelli et al. (2012) stated that the soil type 

defined the composition of root-inhabiting bacterial communities while the host 

genotype had little effect in determining individual profiles. Likewise, here  no clear 

cultivar based enrichment was observed, but there was however a crop (wheat vs. 

barley) related enrichment of certain taxa. In addition it was found that the rhizosphere 

of modern wheat is colonized by fast growing Proteobacteria unlike the old wheat 

cultivars which were colonized by phylogenetically diverse groups of bacteria (Berg & 

Smalla, 2009). However this difference was not statistically significant and the 

explanation for these differences might be due to changes in root morphology or 

chemical exudation between old and modern wheat (Germida & Siciliano, 2001). 

For the amount of Ggt DNA, the results of this study show an uneven distribution of 

Ggt inoculum even between plots from the same field. This patchiness of Take-all even 

within the same field was reported previously by Bithell et al. 2012 and McMillan et al. 

2011 and is believed to constrain field trials targeting the study of this fungus. Adding 
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to this was the annual variation in the inoculum level within the same field. The 

significant differences in Ggt  levels by year were also evident in soil core bioassay 

data targeting Take-all inoculum levels by McMillan et al. (2011). These annual 

differences can be explained by year-to-year variations in environmental conditions 

such as rainfall and temperature; where warm and moist conditions favours the 

presence of Ggt. Furthermore, the approaching significance figures might be due to 

the small number of observations (24 sampled plots per year per field), which might 

have reduced the statistical power necessary to achieve significance. In addition, lack 

of the same number of sampling years made it very difficult to compare the OTU of 

the fields with each other in the same analysis. Other factors might have an influence 

on the analysis, but rather were missing from the analysis. These include the plant 

variables such as height, grain size, chlorophyll content, and root exudates (Haichar 

et al., 2008, 2014; Bakker et al., 2013). Overall it is usually difficult to compare the 

wheat rhizosphere representative OTUs from this study with published data due to the 

differences in sequenced regions, platforms, and the analysis techniques used 

(Mahoney et al., 2017). For instance Mahoney et al. (2017) used amplicon sequencing 

using V1- V3 region of 16S rDNA along with Network correlation analysis and 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) to assign potential OTU functions associated with nine winter wheat 

cultivars.  

In addition, in this study, the beta diversity analysis using ordination has been used 

which enables the description of microbial community patterns over fields and by host 

genotype. However, newer methods such as co-occurrence networking provide 

insights of the positive or negative species co-occurrence and their functional roles in 

a given habitat (Mahoney et al., 2017). This suggests that the depth of the analysis 
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method might influence the data outcomes. Although metagenome studies can cover 

for the missed information from culture based techniques, gene expression and 

transcriptomic studies offer insights into microbial activities (Haichar et al., 2008; 

Bakker et al., 2013). An important challenge associated with next generation 

sequencing is applying the appropriate statistical analyses to answer the question in 

hand (Coats & Rumpho, 2014). In addition fortifying sequencing data with selective 

isolation and culturing of potential biocontrol agents offer more useful approaches for 

bio-control of plant diseases (Mauchline et al., 2015). Studying changes at the single 

taxon level can aid better understanding of underlying plant-microbe interactions 

(Mauchline & Malone, 2017). For instance, barley monoculture was found to have an 

effect on population gene expression and/or enrichment within the community rather 

than the between the populations (Schreiner et al., 2010).  

In addition to 16S rRNA amplicon analysis, the amount of bacterial, Pseudomonas, 

fungi and Ggt DNA was quatified from the extracted total soil DNA. The qPCR 

protocols adopted here were based on established by Rothamsted Research for their 

routine research analysis. A SYBR Green qPCR approach was used for determining 

bacterial, Pseudomonas, fungi soil DNA concentrations while a Taq-man probe qPCR 

approach was used for determining soil Ggt concentrations. The initial aim was to 

compare the data with each other, however due to the difference in the standards 

used, pure culture for Ggt while soil mixture DNA for the others, the quantification was 

at different scale. Martini et al. (2015), stated that for qPCR it is important to establish 

the standard curve with samples of known target DNA quantities resembling as much 

as possible to natural samples. For instance, when aiming to determine endophytic 

concentrations of applied rhizobacteria biocontrol agents, a solution of total genomic 

DNA extracted from roots of untreated plants is recommended. Therefore, analysis of 
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bacterial, Pseudomonas, fungi soil DNA was carried out separately from those of Ggt 

soil DNA concentrations. In addition this analysis was carried out for each field 

separately again due to time line inconsistency. That is no bulk soil sample was 

available from field 1, no year 3 soil sample for field 2, and no year 2 and 3 soil samples 

for field 3. For the concentration of bacterial Pseudomonas, fungi soil DNA 

concentrations from the three fields the main difference was based on year to year 

variations. Exceptions included the bacterial DNA concentration in field 1 that showed 

a significant difference between the crops (wheat vs. barley), and in field 2, soil DNA 

concentrations of Pseudomonas showed no significant difference for any factor 

including the year-to year variation. 

For bacteria the DNA encoding 16S ribosomal RNA gene is a common target in qPCR 

amplification. While for Pseudomonas spp. in addition to 16S rRNA, phlD (a key gene 

in the biosynthesis of 2,4-DAPG) and hcnBC (hydrogen cyanide synthesis gene), and 

gacA (response regulator gene) have been also used for specific quantification of 

fluorescent Pseudomonas spp. Also, the use of housekeeping genes such as gyrB, 

rpoD and rpoB are evolving based on their success in the phylogenetic analysis of 

Pseudomonas spp (Martini et al., 2015). Therefore, here the choice of using 16S rRNA 

for determining the Pseudomonas soil DNA concentration might not have been the 

best one. However, Lloyd-Jones et al. (2005) used 16S rRNA Taq-man PCR to 

quantify Pseudomonas spp. from six New Zealand soils in comparison to selective 

cultivation methods. Their results show that cultivated Pseudomonas represent <1% 

of the total quantifiable Pseudomonas population and this total Pseudomonas 

population is in turn <1% of the total bacterial population in the tested soils. This 

suggests that the cultivated Pseudomonas isolates from soil are not numerically the 

dominant ones. Thus our knowledge is still restricted and relies on advances in 
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establishing more sensitive detection and quantification approaches. Again the large 

number of samples, 192, which required duplication per run and the amplification of 

four targets was both an expensive and tricky task. Overall, the quantity and the 

structure of bacterial community were not influenced by the cultivar. Also it is important 

to keep in mind that the qPCR accounts for culturable, unculturable and dead cells, 

plus any free target DNA, without any possible discrimination (Lloyd-Jones et al., 

2005). 

In this work the amount of Ggt DNA showed high variation even within plots of the 

same cultivar. However, this is not surprising for a patchy disease like Take-all (Bithell 

et al., 2012; McMillan et al., 2014). No Ggt was found in bulk soil form field 2, while in 

field 3 bulk soil Ggt was present in 7 plots out of the 24. Again, as seen with bacterial, 

Pseudomonas, fungi soil DNA, the significant difference in the amount of Ggt DNA 

was mainly based on year to year variation rather than being influenced by the cultivar. 

Fluctuations in annual temperature and rainfall are known to influence field 

experiments. There is a complex relationship between Take-all fungus and 

environmental conditions. Conditions that favour Take-all are moderate temperatures 

and high precipitation, while high temperatures and dry conditions limit inoculum build-

up (McMillan et al., 2011). Also, cold weather restricts mycelial growth and increases 

the rate of inoculum decay. The main period of inoculum build-up in first wheat is from 

May to harvest. When environmental conditions favour Take-all inoculum build-up, 

high amounts can be found even with the low TAB wheat variety, thus, masking the 

cultivar effect to some extent. Moreover, Take-all risk prediction is influenced by 

differences in the growing season and number of years planted to wheat. The use of 

break crops prior to first year wheat sowing explains the low Take-all inoculum in first 

year, as the break crops minimizes Take-all inoculum carry over (Bithell et al., 2012). 
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Also, the presence of other parasitic root colonizing fungi, Phialophora graminicola 

and Phialophora sp. can mask cultivar effects by preventing Take-all inoculum build-

up (McMillan et al., 2011). The greatest potential to estimate Take-all severity is in 

second year wheat (Bithell et al., 2012) and this might explain the results of (Mauchline 

et al., 2015) where cultivar selection was evident. Also, high Ggt concentrations in 

second and third year wheat with low Take-all index (TAI) can be explained by the 

development of Take-all suppression (Bithell et al., 2012).Take-all decline interferes 

with Take-all disease severity predictions.  

It is important to point out that the ITS primers I used in qPCR to determine the fungal 

soil DNA concentrations did not cover the arbuscular mycorrhiza fungi, AMF. However, 

our aim was to compare the amount of Ggt DNA with those of fungi in general rather 

than investigating the structure of the fungal community in the wheat rhizosphere.   

Mycorrhiza and rhizobia assist the plants with uptake of phosphorus and nitrogen 

(Berendsen et al., 2012). They also help the plants by carrying molecular messages 

from stressed to neighbouring plants as an alert system to activate defence 

mechanisms (Lapsansky et al., 2016). Fungi can influence the bacterial communities 

through modifying the amount and the composition of the root exudate. The fungi can 

also affect the growth and the chemotaxis of bacteria in the soil (Barret et al., 2009). 

Plant beneficial fungi include Trichoderma, Gliocladium (Raaijmakers et al., 2009).  

Here, - investigating the wheat associated fungal community was not possible due to 

limited funding. Thus, further investigation is needed to better explore this important 

component of the microbial system. 

The results in hand along with future root exudate analysis and gene expression can 

aid in better understanding of wheat rhizosphere and Ggt interactions. 
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CHAPTER 7- General Discussion 

Summary: 

The rhizosphere microbiome is crucial for plant health and environmental functioning. 

Among the rhizosphere inhabitants Pseudomonas spp. are well recognized for their 

plant growth promoting and disease control. Many biotic and abiotic factors aid in 

shaping the structure and composition of the rhizosphere microbiome. Take-all 

disease of wheat to date is a major challenge for wheat growers. This disease also 

serves as an excellent model to study plant root diseases. Research done by McMillan 

et al. (2011) has shown that wheat cultivars differ in their supportiveness to Take-all 

inoculum. Therefore these wheat varieties were classified as low Take-all builders or 

high Take-all builders (L-TAB, H-TAB; respectively). In this work Take-all disease of 

wheat both at individual isolate and population level was investigated. Methods of 

simple culture, dot blot and PCR were employed along with more sophisticated next 

generation sequencing and qPCR techniques. 

 

7.1 Characterization of Pseudomonas isolates 

The rhizosphere is one of the most complex ecosystems on earth. It is the narrow 

zone surrounding the roots and is under the influence of root exudates (Mendes et al., 

2013). The microbial communities associated with roots are concentrated in the 

rhizosphere and rhizoplane. It is generally assumed that rhizosphere communities are 

recruited from the surrounding pool of bulk soil (Sasse et al., 2018). For instance 

Pseudomonas putida strain KT2440 is chemotactically attracted and recruited by 

DIMBOA in the maize rhizosphere (Neal et al., 2012). Legumes use flavonoids to 

attract rhizobia, L-malic acid was also found to recruit Bacillus subtilis strain FB17 
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(Badri et al., 2009). In addition the root structure, shape, exudation, border cells and 

mucilage play an important role in the rhizosphere recruitment process (Haichar et al., 

2014; Sasse et al., 2018). Siciliano et al. (1998) found that there was a cultivar effect 

on the microbial composition associated with canola but not in wheat, probably 

because wheat has a dense fibrous root system compared the coarse roots of canola. 

Thus the competition for microsites is greater on wheat than on canola.  

Durán et al. (2017) stated that the rhizosphere community was highly related to the 

soil chemical and physical properties. The beneficial activity on plant health  of 

rhizosphere residents is well recognized for bacteria like Pseudomonas and 

Burkholderia and fungi like Trichoderma and Gliocladium (Badri et al., 2009). The 

rhizosphere shows greater microbial clustering than the bulk soil (Kirk et al., 2004).  

Certain stains of fluorescent Pseudomonas spp. are known to colonize the plant 

rhizosphere and promote plant health (Thomashow & Weller, 1988). Plant growth 

promotion can be achieved by enhanced nutrient uptake, stress tolerance, and 

pathogen inhibition (Walsh et al., 2001). The use of a promotor trapping strategy led 

to the identification of six classes of rhizosphere induced loci (rhi). These included 

important functions such as nutrient acquisition, stress response, attachment and 

surface colonization, antibiotic production, secretion, as well as unknown genes 

(Rainey, 1999; Jackson et al., 2005). Several studies have shown rhizosphere induced 

genes that account for Pseudomonas successful colonization and pathogen exclusion 

in plant rhizosphere (Rainey, 1999; Gal et al., 2003; Jackson et al., 2005; Silby et al., 

2009).  

Production of iron-scavenging siderophores and antibiotics are possible mechanisms 

of pathogen suppression. Phenazine-1-carboxylate produced by Pseudomonas 
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fluorescens 2-79 isolated from wheat rhizosphere was found to inhibit the growth of 

Ggt  (Thomashow & Weller, 1988) while, Raaijmakers et al. (1997), found a high 

proportion of 2,4-DAPG producing Pseudomonas to be associated with natural Take-

all disease suppressive soils. Moreover, Mavrodi et al. (2012) has demonstrated the 

impact of irrigation on the distribution of  Phenazine-1-carboxylate (Phz+) and 2,4-

DAPG (Phl+) producing Pseudomonas in the wheat rhizosphere. Phl+ strains were 

enriched in irrigated fields under conditions that favour the presence of Ggt while Phz+ 

isolates were dominant in non-irrigated where the main pathogen is Rhizoctonia. Thus, 

there has been an increasing interest in biological control of Take-all using P. 

fluorescens (Mauchline et al., 2015). 

In this study, the effect of wheat cultivars differing in their Take-all building trait (TAB) 

on the selection of specific Pseudomonas genotypes was investigated. The selectively 

isolated Pseudomonas spp. from the rhizosphere and endosphere of the following 

wheat planting combinations (C,H), (C,Xi-19), (H,H), and (H,Xi-19) were analysed. 

Screening these isolates for rhizosphere fitness genes involved in host recognition 

(wsm) and nutrient acquisition (fecB), showed a strong selection exerted by the wheat 

variety grown in the first year (i.e: Cadenza or Hereward). With higher scores for wsm 

locus presence was observed with Hereward isolates in comparison to Cadenza. On 

the other hand the fecB locus was more abundant with Cadenza isolates than in those 

of Hereward. These findings are in agreement with Mauchline et al., (2015), who 

highlighted a selective pressure expressed by the wheat cultivars on the genotypes of 

associated Pseudomonas.  

Furthermore, the ability of these isolates to antagonize Ggt was screened to test the 

hypothesis that iron deprivation was the possible mode of action against the pathogen. 

The in vitro inhibition assay which showed that isolates from first year Cadenza 
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background were more antagonistic to Ggt in vitro, in comparison to isolates from first 

year Herewerd background. Again supporting that the main effect on the selection of 

Pseudomonas spp. was based on wheat varieties grown in the first year (Mauchline 

et al., 2015; Mauchline & Malone, 2017). The finding that isolates associated with 

Cadenza had more fecB loci and were more antagonistic to Ggt might imply that iron 

limitation can be a possible antagonistic strategy used by the tested Pseudomonas 

isolates for inhibiting the growth of Ggt. From the in vitro inhibition assay six isolates 

maintained their high Ggt inhibition and these were further tested for their growth 

promotion and Ggt inhibition in vivo in the presence of the plant under controlled 

conditions. 

From the in planta assay, overall the mixture of six isolates (rather than individual 

isolates) was more effective in reducing the number of infected roots in both cultivars. 

Although Mehrabi et al. (2016), reported that competition with in a given mixture of 

biocontrol agents might reduce their efficiency. The situation was different in the 

mixture tested here where the synergistic effect was leading to better disease control.  

Moreover, screening of these six Ggt antagonistic isolates for presence of Phl and 

PCA antibiotic genes showed that none harboured the tested antibiotic loci. This 

suggests that the mode of action against Ggt does not involve antibiosis at least by 

the tested antibiotics. In conclusion, the recruitment of Ggt antagonistic Pseudomonas 

isolates by Cadenza might explain the L-TAB trait. Although the basis of this selection 

are still not clear. 
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7.2 Temporal and Spatial analysis of wheat microbiome 

To date, most of the studies on the rhizosphere focused on ‘who is there and what are 

they doing?’ (Mendes et al., 2013). For diversity studies typically the 16S rRNA, 18S 

rRNA, ITS are targeted as these regions are not affected by horizontal gene transfer 

and the their sequence data are available (Kirk et al., 2004). Sequencing of the 16S 

rRNA gene hyper variable regions allows taxonomic identification to species and strain 

levels for prokaryotes. However, such level of discrimination is not provided by 

sequencing the 18S RNA for eukaryotes like fungi, and thus is replaced by the 

internally transcribed spacer ITS (Turner et al., 2013b). In a metagenomics study total 

DNA from the rhizosphere is extracted and sequenced leading to taxonomic 

assignments, while in meta-transcriptomics, where total RNA from the environment is 

sequenced, active community members and metabolic pathways are revealed. 

Furthermore, the use of mRNA in functional transcriptomics will enable determination 

of the various biochemical activities carried out in the rhizosphere (Turner et al., 

2013b). It is now possible to classify the soil microbiome to operational taxonomic units 

OTU or even to species using the high throughput NGS, microbial specific databases 

and efficient clustering algorithms (Mahoney et al., 2017). Pseudomonas are a diverse 

group that occupy a wide range of niches. It is thought that this ability is due to their 

diverse genomes and the subsequent metabolic versatility (Silby et al., 2011). 

Yamamoto et al. (2000), used a combined rpoD and gyrB analysis to phylogenetically 

analyse members of the genus Pseudomonas. Since, Mauchline et al. (2015) 

demonstrated that a phylogenetic analysis using 8 single copy housekeeping genes 

(aroE, atpD, dnaE, guaA, gyrB, mutL, pyrC and recA) agreed with the extensive gyrB 

phylogeny of Pseudomonas isolates, thus, here the gyrB phylogeny was used to 

classify the isolates in hand.  
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Take-all decline (TAD) is a natural disease suppression that occurs after many years 

of wheat monoculture (Chng et al., 2015). This decline in the Take-all disease can be 

general or specific, with the former being attributed to total soil components which 

disfavours the growth of the fungi while the specific suppression is caused by one or 

a group of antagonistic organisms (Cook, 2003; Chng et al., 2015). 

Here, the long term effect of five wheat varieties (two L-TAB, and three H-TAB) and 

one Barley (Unknown-TAB) on the bacterial community structure and Ggt inoculum 

storage under field conditions was studied. Three fields from Rothamsted Research 

were investigated. Each field trial was drilled at a different year, starting with New 

Zealand followed by Long Hoos 5 and finally Long Hoos 4. Each field had four main 

blocks. These blocks were further divided into 24 plots made of the 6 treatments (five 

wheat + one barley) replicated four times. After harvest each plot was over-sown with 

the same cultivar. The field trial was initiated in autumn 2014 till 2018. Methods of next 

generation 16S rRNA gene amplicon sequencing were used to investigate the 

bacterial community structure and qPCR to quantify Ggt soil DNA concentration along 

with total soil DNA concentrations of total bacteria, Pseudomonas, and fungi 

(excluding AMF). No significant differences in the diversity and abundance of microbial 

communities were observed between the wheat cultivars overtime. Changes in Ggt 

populations were only based on year-to-year variations rather than being influenced 

by the cultivars. Difficulties arose from the inherent patchiness of Take-all within 

replicated plots of the same wheat cultivar. In addition it is known that Take-all build-

up trait cannot be simulated in pot or laboratory trials (McMillan et al., 2014). These 

findings in general agree to some extent with earlier published data (Bulgarelli et al., 

2012; Philippot et al., 2013; Donn et al., 2015; Mahoney et al., 2017). In addition, it is 

important to point out that the outcomes of field based trials are different for pot trials 
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using field soil (Gu & Mazzola, 2003; Mahoney et al., 2017). To our knowledge this is 

a first long term field based trial, sampling more than two years, in the context of 

assessing wheat cultivars under Take-all disease conditions at least at UK level. 

Although external factors might have masked the influence of cultivars on the overall 

microbial community, a deeper investigation using newer network approaches and 

functional analysis can further shed some light on the situation. 

 

7.3 Take-all fungi & determining soil DNA concentrations 

Gaeumannomyces graminis var. tritici (Ggt) is a soil borne fungus that causes Take-

all of wheat. It survives saprophytically in the soil on plant debris in the absence of its 

host. Techniques to estimate the amount of Ggt in soil are important to predict disease 

severity and subsequent crop yields (Herdina & Roget, 2000; Herdina et al., 2004). 

Seasonal influences in disease severity in Take-all was reported by (Hardwick et al., 

2001). Ggt requires high soil water potential for growth and the amount of rainfall 

directly affects inoculum carry over to the following season. The winter and spring 

rainfall predicts disease severity while summer rainfall outcomes predicts inoculum 

survival saprophytically. Ggt can survive prolonged dry conditions however it has poor 

ability to compete with other microbes after rainfall in the absence of its host (Roget, 

2001). In terms of Take-all control, no resistant wheat cultivars are available and no 

fully effective fungicide treatment is known (Bithell et al., 2012; Cook, 2003; McMillan 

et al., 2011). Pre-sowing knowledge of Take-all risk is important for predicting disease 

severity and crop loses (Bithell et al., 2012). In addition, the distribution, amount, 

viability and the metabolic status of the mycelium, along with the virulence of the strain 

are important factors in determining the relationship between the amount of Ggt in soil 

and disease severity (Herdina et al., 2004). Traditionally, the soil core bioassay, where 
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wheat seedlings are grown in soil samples, was used to predict Take-all inoculum in 

the field after harvest of 1st wheat crops and the potential risk of severe disease 

developing on a following second wheat (McMillan et al., 2011; Bithell et al., 2012). 

Overall, it was found that when postharvest soil core bioassay shows 20% infected 

roots, then the disease severity is likely to be high in the subsequent wheat. This 

finding was based on long term data from the United Kingdom (Bithell et al., 2012). In 

a system where wheat is grown continuously, high Ggt concentrations in second and 

third wheat with yet low Take-all index (TAI) can be explained by the development of 

Take-all suppression (Bithell et al., 2012; Chng et al., 2015).Take-all suppression 

interferes with Take-all disease severity predictions. 

In Australia a molecular based method to quantify Ggt DNA directly from field samples 

have been developed, however this method is currently not available in the UK for 

farmers (McMillan et al., 2011). Furthermore, based on this method four risk categories 

have been identified in Australia for risk of Take-all (1) below detection limit (BDL)(<5), 

(2) low(5 to <130), (3) medium (130 to <325), and (4) high (>325) where the numbers 

refer to picograms of Ggt DNA per gram of soil (pg Ggt DNA/ g soil) (Bithell et al., 

2012).  

When using DNA based techniques to quantify the Ggt fungi in soil, careful measures 

must be taken so that DNA from dead fungi do not overestimate the quantification. 

However it was found that the DNA degrades very quickly in the environment 

eliminating the overestimation due to dead material (Herdina et al., 2004). Bithell et al. 

(2012) stated that the Australian risk categories didn’t fully apply to Take-all conditions 

in New Zealand fields. In general Take-all epidemics are affected by climatic 

conditions with soil moisture being more important factor than temperature (Bithell et 
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al., 2012). This annual difference were evident in this work and were the main 

contributors to the variation found in the soil DNA concentrations of Ggt. 

Moreover, the stages of disease cycle are the essence of plant disease severity 

prediction models (De Wolf & Isard, 2007). Plant disease prediction models are less 

common for plant soil borne disease than for plant leaf disease (Roget, 2001). The 

greatest potential to estimate Take-all severity is in second year wheat (Bithell et al., 

2012) and this might explain the results of (Mauchline et al., 2015) where the wheat 

variety selection pressure was evident. Given the above, in this work it was found that 

Ggt was very patchy with concentrations varing even between the plots of the same 

field. Ggt was either absent or had the lowest concentrations in the first year. Also the 

main effect on the levels of Ggt soil DNA concentrations were based on year-to-year 

variations and the number of years that wheat had been grown. These findings agree 

with previous work on patchiness of Take-all and the effect of annual variations in 

temperatures and rainfall in determing Take-all severity and persistence (Bithell et al., 

2012; McMillan et al., 2014; Keenan et al., 2015). 

 

7.4 Conclusions and future work 

Plant diseases account for 10% of crop loses globally (De Wolf & Isard, 2007). Take-

all disease of wheat, although extensively studied, is still regarded as an important soil 

borne disease (Pierson & Weller, 1994). Apart from Take-all, other important wheat 

head, stem and foliar diseases include Fusarium, Eyespot, Yellow dwarf virus, yellow 

rust, brown rust and Septoria tritici in winter wheat which cause substantial yield loses 

(“AHDB Cereals &amp; Oilseeds : Wheat disease management. 

Available:https://cereals.ahdb.org.uk/crop-managment/wheat-disease-
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management.aspx. [Accessed: 9 March 2019]”). Take-all risk prediction is influenced 

by differences in the growing season and number of years planted to wheat (Bithell et 

al., 2012).The use of break crops prior to first year wheat sowing explains the low 

Take-all inoculum in first year as the break crops minimizes Take-all inoculum carry 

over (Bithell et al., 2012). Knowledge of the effects of different soil types on Take-all 

and data from long term weather forecasts are crucial for disease severity predictions 

(Bithell et al., 2012). The complexity of the interacting biological, chemical and physical 

factors in the plant-microbe-soil interaction are yet to be completely resolved (Kirk et 

al., 2004). The role of any specific plant signalling molecule in recruiting a particular 

group of microbes is still poorly understood (Badri et al., 2009). 

Here potential Ggt antagonistic Pseudomonas that can be further explored for their 

disease control mechanism and possible use as Take-all biocontrol agents have been 

identified. The expected wheat cultivar selection on the microbiome from the long term 

field trials was not evident at the amplicon sequencing level tested here. The main 

differences were based on field and year-to-year variations based on the number of 

years wheat had been planted. However, it can anticipated that the presence of an 

unknown factor that might have masked the cultivar driven effect.  

Further investigations will be needed to test and apply the biocontrol isolates. In 

addition examination of root exudates from the different wheat cultivars might shed 

some light on potential signalling compounds. In addition the plants produce their 

exudates during the growth stage, thus sampling the rhizosphere at different stages 

of plant growth might provide better information about the on-going interaction. The 

more sophisticated functional anlysis can also support our knowelege. Also, the recent 

trends in ecological moduling, cross link and network studies might be useful if applied 

properly to fit the system under study. 
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Finally by recalling a quote by Leonardo da Vinci that ‘We know better the mechanics 

of celestial bodies than the functioning of the soil below our feet’ (Badri et al., 2009), 

something like this shows not only how complex the problem is to study, but for how 

long this issue has been recognized. This work provides a foundation for unravelling 

this complexity. 
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CHAPTER 9- ANNEX 

9.1 Chapter 3 Appendix 

9.1.1 Appendix I 

PFLU_0476 (wsm) 

The complete gene is >NC_012660.1: 538831-539727 

The amplified fragment: 

>539101 MZ-3F 

GGCAATGCCGAGATCATCCTCCGGCCGATCGCCGCCGATGCGCAGTTGCCGGTGCGCCATCGTGGGCGCTACTTGTCAGCGCTGAACGA

GGGCCGCATCAGCACCCTCAAGCCGCAGGCCGAGCAGTTGGCCATGGCGCGCACCCCCGAAGACCTGTCGAAGAAATTTCGCTACAACC

AGCGCCGCGAATTGCGTCTGCTGGAAGAGGCGGGTGGCGTGGTGCGGGCGGTGAATGAGTTTTCCAGTACGGAACTGGCGGCCATCTAC

TGCGATCTGTTCCAGCGCCGCTGGGGTTTCCCCGCCACCGGCGCCGAGCGCCTGGCTGAGGTGCTGGCGTTGCTCAAGGATTTCCTGAT

GGGCTCGGTGCTGTTTCTCAACGATGCGCCGA <539485 MZ-3R 

Red: Forward               Green: Reverse 
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PFLU_2553 (viscB) 

The complete gene is >NC_012660.1: 2806627-2817948 

The amplified fragment: 

>2815085 MZ-11F 

ACCGTACCGTGGAAAACCTCGTGAATTGGCACTGCGAAGCCTTTGGCCTGGGTGCCACGGGCCACACCAGCAGCGTCGCCG

GGTTCGGTTTTGATGCGATGGCCTGGGAGGTGTGGCCGGCACTGTGCGTGGGGGCCACCTTGCACCTGCCGCCGGCCAACG

TCGGCAATGAAAACATCGATGAGCTGCTGGCCTGGTGGCTGGCGCAGCCGCTGGACGTCAGCTTCCTGCCGACGCCGGTGG

CCGAATACGCCTTCAGCCAGCAGCTGCAACACCCTACGTTGCGCATCCTGCTGATCGGTGGCGATCGCCTGCGTCAGTTCAC

TCACGAGCGGCGCTTTGCGGTGATCAACAACTACGGTCCCACCGAGGCCACCGTGGTTGCCACCTCCGGCCGCGTGCGCGC

CGGGCAGGTGTTGCATATCGGTCGGCCGATCGCCAATGCCAGCGTCTACTTGCTGGACGCGCAATTGCGCCCGGTGCCGGT

GGGGGTGACGGGCGAGCTGTATGTGGGCGGCAGCGGTGTGGCGCGGGGTTACCTGAACCGGCCGGACCTGACTGCCGAGC

GCTTCCTGCAAGACCCGTTCAACGCCGGGCGCATGTACCGTACCGGCGACCTGGCGCGCTGGCTGCCCGATGGCAACATCG

AGTACCTGGGGCGTAACGATGACCAGGTCAAACTGCGCGGCGTACGAGTGGAACTGGGGGAAATCGAAAGCCGCCTGGCCG

CCCTGGACGGCGTCGGCGAAGCGGTGGTACTGGTGCGCGAAGGTCGCTTGATTGCCTGGTTCACCGCACAGCAACCGCTGG

ACATCGACACCCTGCGCACGCAGCTGCAAGCCCAATTGCCCGATGCCCTGGTCCCGGTCGCCTATGTGAAGCTGCACGCATT

ACCGCTGACCGCCAACGGCAAGCTCGACCGCAAGGCGCTGCCGGAACCCGATCACGCCGCGCTGCTGACCCGTGTATACGA

AGCGCCCCAAGGCGAAGTTGAAACCACCTTGGCGCGCATCTGGGCCGAGGTCTTGCACGTCGAACAGGTCGGGCGCCATGA

CCACTTCTTCGAGCTGGGCGGCCATTCGTTGCTGGCCGTCAGCCTGATCGAACGCATGCGCCAGGTCGGCCTGAGTGCCGAT

GTGCGCGTGCTGTTCAGCCAGCCGACCCTGGCCGCACTGGCCGCCGCCGTCGGCAGTGGCCGCGAAGTGCAGGTGCCGGT

TAATCGCATTC <2814772 MZ-11R 

 

Red: Forward               Green: Reverse 
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PFLU_4091 (fecB) 

The complete gene >NC_012660.1: 4526090-4525170  

The amplified fragment:  

>4526130 MZ-15F 

TCCTGGCGTTCTCTTCAAGCCTGCTGAGCGCCGCCCCCATCGACCTCAACGACGGCCAGCACGCCGTGCATCTGCCGGACG

CACCCAAGCGCGTGGTGGTGTTGGAGTTCTCGTTTCTCGACAGCCTCGCCGCGGTTGACGTGACCCCCGTCGGCGCCGCCG

ACGATGGCGACGCCAACCGTGTGTTGCCCCGTGTGCGCCAGGCCATCGGCCAGTGGACGTCCGTGGGCCTGCGCTCGCAGC

CGAGCATCGAGGAAATCGCGCGTCTCAAGCCGGACCTGATCGTCGCCGACCTCAACCGCCATCAGGCGCTGTACAACGACCT

GTCGAGCATTGCACCGACCCTGTTGCTGCCGTCGCGTGGCGAGGATTATGAAGGCAGCCTCAAGTCCGCCGAGCTGATCGG

CAAGGCCCTGGGCAAAAGCCCGCAGATGACCGCGCGCATCGCGCAAAACCGTGAAAACCTGAAAAACATCGCCCAACAGATC

CCCGCCGGCGCCAGCGTGCTGTTCGGTGTGGCGCGGGAAGACAGCTTCTCCGTACACGGCCCGGACTCCTACGCCGGCAG

CGTGCTGCAAGCCATTGGCCTGAAAGTCCCGTCGGTACGTGCCAACGCCGCGCCCACCGAGTTCGTCAGCCTGGAGCAACT

GCTTGCCCTCGACCCGGGCTGGTTGCTGGTCGGCCATTACCGTCGCCCGAGCATCGTTGACAGCTGGA <4525006 MZ-15R 

 

Red: Forward               Green: Reverse 

 

 

 

PFLU_3831 (tox) 

The complete gene >NC_012660.1:4228933-4229283  

The amplified fragment: 

>4229060 MZ-17F 

GAACAGGCGGTTTACGCAAGGTTCGCTTTGTCGACGAACGACGCAACAAAGGCAAGCGCGGTGGCCTGCGGGTCATTGACTA

CTGGTGGTCGGGCGGCACGCAATTCTGGTTATTCACCCTGTACGGCAAACA <4229192 MZ-17R 

 

Red: Forward               Green: Reverse 
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9.1.2 Appendix II 

List of Chemicals: 

Electrophoresis 5X TBE buffer 

54 g Tris-base + 27.5 g Boric acid + 20 ml 0.5 M EDTA (pH 8) make up volume to 
1 L n H2O 

0.5 X TBE buffer 

100 ml of 5X TBE buffer in 900 ml n H2O  

 

Stock solutions 

20X SSC: 
176 g NaCl + 88 g Sodium citrate make up volume to 1 L n H2O (adjust the pH 7 
with 1M HCl). Autoclave. 

10X (1M) Maleic acid solution: 
116 g Maleic acid + 88 g NaCl make up volume to 1 L n H2O (adjust the pH 7.5 
with solid NaOH). Autoclave.  

100X Denhardts solution: 
1 g Ficoll 400 + 1 g Bovine serum albumin +1 g Polyvinyl pyrrolidone make up 
volume to 50 ml n H2O 

 

Working solutions 

2X SSC  
80 ml of 20 X SSC + 720ml nH2O, autoclave. 

2X SSC (low stringency buffer) 
80 ml of 20 X SSC + 720 ml nH2O, autoclave then replace 8 ml with 10%SDS to 
get a 0.1%SDS final concentration. 

0.5X SSC (high stringency buffer) 
20 ml 20X SSC +780 ml nH2O, autoclave then replace 8 ml with 10%SDS to get a 
0.1%SDS final concentration.  

0.1M Maleic acid solution 
80 ml of 10X Maleic acid solution + 720 ml nH2O, autoclave. 

Washing buffer 
80 ml of 10X Maleic acid solution + 720 ml nH2O, autoclave then replace 24 ml 
with 10% Tween 20 to get a 0.3% Tween 20 final concentration. 

Blocking solution (200ml) 
20 ml of 10X Blocking solution (Roche)+ 180 ml of sterile 0.1 M Maleic acid 
solution. (Prepare fresh). Use 30 ml of this for Anti-DIG antibody preparation. Store 
at 4°C till time to use.  
 

Anti-DIG antibody solution 
30 ml of fresh prepared Blocking solution + 3 µl of anti-DIG AP (Roche). Store at 
4°C till time to use. Note: centrifuge Anti-DIG AP for 5 min at 13,000 rpm before 
taking the 3 µl. 
 

Detection buffer 
0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5. 
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Homemade blocking solution 
5 ml of 100X Denhardts solution + 5 ml 10% SDS + 20 ml 20XSSC + 200 µl 
Salmon testis DNA (2mg/ ml) make up volume to 100 ml n H2O. 
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9.1.3 Appendix III: Dot blot screening outcomes 

 

No. Isolate Year1 Year2 Niche Block MZ-3 MZ-11 MZ-15 MZ-17 

1 1R-5 H H R 1 0 0 0 0 

2 1R-7 H H R 1 0 0 0 0 

3 1R-4 H H R 1 0 0 0 0 

4 1R-19 H H R 1 0 0 0 0 

5 1R-10 H H R 1 0 0 0 0 

6 1R-12 H H R 1 0 0 0 0 

7 1R-16 H H R 1 1 0 0 1 

8 1R-13 H H R 1 1 0 0 1 

9 1R-9 H H R 1 1 0 1 0 

10 1R-11 H H R 1 1 1 0 1 

11 1R-1 H H R 1 1 0 0 0 

12 1R-17 H H R 1 0 0 0 0 

13 1R-18 H H R 1 0 0 0 0 

14 1E - 5 H H E 1 1 1 0 0 

15 1E -10 H H E 1 0 1 0 0 

16 1E -11 H H E 1 1 0 0 0 

17 1E -1 H H E 1 0 0 0 0 

18 1E -15 H H E 1 0 0 0 0 

19 1E -14 H H E 1 1 0 0 0 

20 1E -17 H H E 1 1 0 0 0 

21 1E -19 H H E 1 0 0 0 0 

22 1E -13 H H E 1 0 0 0 0 

23 1E -6 H H E 1 0 0 0 0 

24 1E -7 H H E 1 1 0 0 1 

25 1E -8 H H E 1 0 0 0 0 

26 1E -4 H H E 1 0 0 0 0 
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27 8R -7a C H R 2 0 1 0 1 

28 8R -11 C H R 2 0 1 0 0 

29 8R -13 C H R 2 0 1 0 0 

30 8R -14 C H R 2 0 1 0 1 

31 8R -15 C H R 2 0 0 0 0 

32 8R -2 C H R 2 1 0 0 1 

33 8R -5 C H R 2 1 0 0 0 

34 8R -6 C H R 2 0 0 0 0 

35 8R -7b C H R 2 0 1 1 0 

36 8R -9 C H R 2 0 1 0 0 

37 8R -12 C H R 2 0 1 0 1 

38 8R -17 C H R 2 0 1 0 1 

39 8R -18 C H R 2 0 1 0 1 

40 8R -20 C H R 2 0 0 1 1 

41 8R -8 C H R 2 0 1 0 0 

42 22R - 19 H Xi R 2 0 1 0 1 

43 22R -14 H Xi R 2 0 1 0 1 

44 22R -16 H Xi R 2 0 1 0 1 

45 22R -13 H Xi R 2 0 1 0 1 

46 22R -15 H Xi R 2 1 1 0 1 

47 22R -18a H Xi R 2 1 0 0 0 

48 22R -3 H Xi R 2 1 1 0 0 

49 22R -4 H Xi R 2 1 0 0 0 

50 22R - 9 H Xi R 2 0 1 0 0 

51 22R -11 H Xi R 2 0 1 0 1 

52 22R -10 H Xi R 2 0 1 0 0 

53 22R -12 H Xi R 2 0 0 0 1 

54 22R -17 H Xi R 2 1 0 0 1 

55 22R -18b H Xi R 2 1 0 0 0 
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56 22R -20 H Xi R 2 1 0 0 0 

57 22E -5 H Xi E 2 0 0 0 0 

58 22E -6 H Xi E 2 0 1 0 1 

59 22E -7 H Xi E 2 0 1 0 0 

60 22E -8 H Xi E 2 0 0 0 0 

61 22E -1 H Xi E 2 1 1 0 1 

62 22E -3 H Xi E 2 0 0 0 0 

63 22E -9 H Xi E 2 1 0 0 1 

64 22E -10 H Xi E 2 0 0 0 0 

65 22E -11 H Xi E 2 1 0 0 0 

66 22E -12 H Xi E 2 0 1 0 0 

67 22E -18 H Xi E 2 1 1 0 0 

68 22E -19 H Xi E 2 1 0 0 0 

69 22E -20 H Xi E 2 1 0 0 0 

70 22E -13a H Xi E 2 1 0 0 1 

71 22E -13b H Xi E 2 1 0 0 1 

72 25R -14 C Xi R 3 0 1 0 0 

73 25R -13 C Xi R 3 0 1 0 0 

74 25R -5 C Xi R 3 1 0 0 0 

75 25R -7 C Xi R 3 1 0 0 0 

76 25R -20 C Xi R 3 1 0 0 0 

77 25R -16 C Xi R 3 1 0 0 0 

78 25R -6 C Xi R 3 1 0 0 1 

79 25R -8 C Xi R 3 1 1 0 0 

80 25R -4 C Xi R 3 0 0 0 0 

81 25R -10 C Xi R 3 1 0 0 0 

82 25R -11 C Xi R 3 1 0 1 1 

83 25R -17 C Xi R 3 1 0 1 1 

84 25R -9 C Xi R 3 1 0 1 0 
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85 25R -12 C Xi R 3 1 1 1 1 

86 25R -18 C Xi R 3 1 0 0 1 

87 25E -14 C Xi E 3 0 0 0 0 

88 25E -15 C Xi E 3 0 0 0 0 

89 25E -10 C Xi E 3 0 0 0 0 

90 25E -5 C Xi E 3 0 0 0 0 

91 25E -7 C Xi E 3 0 0 0 0 

92 25E -8 C Xi E 3 0 1 0 1 

93 25E -1 C Xi E 3 0 0 0 1 

94 25E -3 C Xi E 3 0 0 0 0 

95 25E -4 C Xi E 3 0 1 0 1 

96 25E -17 C Xi E 3 0 1 0 1 

97 25E -18 C Xi E 3 0 1 0 1 

98 25E -19 C Xi E 3 0 1 0 1 

99 25E -20 C Xi E 3 0 1 0 1 

100 25E -56 C Xi E 3 0 1 0 1 

101 24E -1 C Xi E 2 0 0 0 1 

102 24E -2 C Xi E 2 0 1 0 1 

103 24E -3 C Xi E 2 0 1 0 1 

104 24E -4 C Xi E 2 0 1 0 1 

105 24E -5 C Xi E 2 0 1 1 1 

106 24E -6 C Xi E 2 0 1 1 1 

107 24E -7  C Xi E 2 0 1 0 0 

108  24E -8 C Xi E 2 0 0 0 0 

109 24E -9 C Xi E 2 0 0 0 0 

110 24E -11 C Xi E 2 0 0 0 1 

111 24E -15 C Xi E 2 0 0 1 1 

112 24E -16 C Xi E 2 0 0 0 1 

113 24E -14 C Xi E 2 0 0 1 1 
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114 24E -13 C Xi E 2 0 1 1 1 

115 24E -18 C Xi E 2 0 0 0 0 

116 24R -13 C Xi R 2 0 0 0 0 

117 24R -6 C Xi R 2 0 0 0 0 

118 24R- 2 C Xi R 2 0 0 0 0 

119 24R -3 C Xi R 2 0 0 0 0 

120 24R -4a C Xi R 2 0 1 1 0 

121 24R -17 C Xi R 2 0 0 1 0 

122 24R -18 C Xi R 2 0 0 0 0 

123 24R -19 C Xi R 2 0 0 0 0 

124 24R -20 C Xi R 2 0 1 0 1 

125 24R -15 C Xi R 2 0 0 0 1 

126 24R -11 C Xi R 2 0 0 0 1 

127 24R -8 C Xi R 2 0 0 0 1 

128 24R -12 C Xi R 2 0 1 0 1 

129 24R -4b C Xi R 2 0 1 0 1 

130 24R -16 C Xi R 2 0 0 0 1 

131 28E -18 H Xi E 3 0 1 0 1 

132 28E -19 H Xi E 3 0 1 1 1 

133 28E -20 H Xi E 3 0 1 1 1 

134 28E -2 H Xi E 3 0 0 0 1 

135 28E -3 H Xi E 3 1 1 0 1 

136 28E -15 H Xi E 3 0 1 1 1 

137 28E -14 H Xi E 3 0 0 1 1 

138 28E -9 H Xi E 3 0 1 0 1 

139 28E -10 H Xi E 3 0 1 0 0 

140 28E -11 H Xi E 3 0 1 0 0 

141 28E -12 H Xi E 3 0 0 0 0 

142 28E -5 H Xi E 3 0 0 0 0 
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143 28E -8 H Xi E 3 0 0 0 0 

144 28E -1 H Xi E 3 0 0 0 0 

145 28R -8 H Xi R 3 0 0 0 0 

146 28R -12 H Xi R 3 0 1 0 0 

147 28R -9 H Xi R 3 0 1 0 0 

148 28R -17 H Xi R 3 0 0 0 0 

149 28R -18 H Xi R 3 0 0 0 0 

150 28R -19 H Xi R 3 0 0 0 0 

151 28R -20 H Xi R 3 0 0 0 0 

152 28R -14 H Xi R 3 0 0 0 0 

153 28R -16 H Xi R 3 0 0 0 0 

154 28R -1 H Xi R 3 0 0 0 0 

155 28R -6 H Xi R 3 0 0 0 0 

156 28R -5 H Xi R 3 0 0 0 0 

157 28R -7 H Xi R 3 0 0 0 0 

158 28R -13 H Xi R 3 0 0 0 0 

159 28R -3 H Xi R 3 0 0 0 0 

160 30E -17 C Xi E 4 0 1 0 0 

161 30E -18 C Xi E 4 0 0 0 0 

162 30E -20 C Xi E 4 1 0 0 0 

163 30E -13 C Xi E 4 0 1 0 1 

164 30E -14 C Xi E 4 0 0 0 1 

165 30E -15 C Xi E 4 0 0 1 1 

166 30E -16 C Xi E 4 0 0 0 0 

167 30E -9 C Xi E 4 1 0 0 0 

168 30E -11 C Xi E 4 0 1 0 0 

169 30E -12  C Xi E 4 0 1 0 0 

170 30E -5 C Xi E 4 1 0 1 1 

171 30E -7 C Xi E 4 0 0 1 1 
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172 30E -8 C Xi E 4 0 1 1 1 

173 30E -4 C Xi E 4 0 0 1 1 

174 30R-15 C Xi R 4 1 0 0 0 

175 30R-11 C Xi R 4 1 0 0 0 

176 30R-5 C Xi R 4 0 0 0 0 

177 30R-17 C Xi R 4 0 0 1 0 

178 30R-18 C Xi R 4 1 1 1 0 

179 30R/19a C Xi R 4 1 0 1 0 

180 30R/1 C Xi R 4 1 1 1 0 

181 30R/4a C Xi R 4 1 0 1 0 

182 30R/9 C Xi R 4 0 0 0 1 

183 30R/10 C Xi R 4 1 1 0 0 

184 30R/6a C Xi R 4 1 0 0 0 

185 30R/6b C Xi R 4 1 0 0 0 

186 30R/12 C Xi R 4 0 0 0 0 

187 30R/4b C Xi R 4 1 0 0 0 

188 30R/19b C Xi R 4 0 0 0 0 

189 31R/11 H Xi R 4 0 0 0 1 

190 31R/12 H Xi R 4 0 0 0 0 

191 31R/13 H Xi R 4 0 0 0 0 

192 31R/18 H Xi R 4 0 0 0 0 

193 31R/14 H Xi R 4 0 0 0 0 

194 31R/15 H Xi R 4 0 1 0 0 

195 31R/16 H Xi R 4 0 0 0 0 

196 31R/5 H Xi R 4 0 1 1 0 

197 31R/6 H Xi R 4 0 0 0 0 

198 31R/7 H Xi R 4 1 1 1 0 

199 31R/8 H Xi R 4 1 0 0 0 

200 31R/1 H Xi R 4 1 0 1 0 
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201 31R/2 H Xi R 4 0 0 0 0 

202 31R/4 H Xi R 4 0 1 0 0 

203 31R/17 H Xi R 4 0 1 0 0 

204 31E/1 H Xi E 4 0 0 0 0 

205 31E/2 H Xi E 4 1 0 0 1 

206 31E/3 H Xi E 4 1 0 0 1 

207 31E/4 H Xi E 4 1 0 0 1 

208 31E/5 H Xi E 4 1 0 0 0 

209 31E/6 H Xi E 4 0 0 0 0 

210 31E/7 H Xi E 4 0 0 0 0 

211 31E/8 H Xi E 4 0 0 0 0 

212 34R/11a H Xi R 1 1 0 0 0 

213 34R/10 H Xi R 1 0 0 0 0 

214 34R/11b H Xi R 1 1 0 0 0 

215 34R/9b H Xi R 1 1 0 0 0 

216 34R/9a  H Xi R 1 1 0 0 0 

217 34R/12 H Xi R 1 1 0 0 0 

218 34R/5 H Xi R 1 1 0 0 0 

219 34R/6 H Xi R 1 0 0 1 0 

220 34R/8 H Xi R 1 1 0 1 0 

221 34R/15 H Xi R 1 1 0 0 0 

222 34R/16 H Xi R 1 1 1 0 0 

223 34R/20 H Xi R 1 1 0 0 0 

224 34R/2 H Xi R 1 1 0 0 0 

225 34R/3 H Xi R 1 1 0 0 0 

226 34R/4 H Xi R 1 0 0 0 0 

227 34E/19 H Xi E 1 1 0 1 1 

228 34E/20 H Xi E 1 1 0 0 0 

229 34E/9 H Xi E 1 1 0 0 0 
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230 34E/10 H Xi E 1 1 0 1 0 

231 34E/11 H Xi E 1 1 0 1 0 

232 34E/7 H Xi E 1 1 0 1 0 

233 34E/13 H Xi E 1 1 1 1 0 

234 34E/14 H Xi E 1 1 1 0 0 

235 34E/15 H Xi E 1 0 0 0 1 

236 34E/2 H Xi E 1 1 0 0 0 

237 34E/4 H Xi E 1 1 0 0 0 

238 35E/1 C Xi E 1 1 0 0 0 

239 35E/3 C Xi E 1 1 0 1 0 

240 35E/4 C Xi E 1 1 0 1 0 

241 35E/5 C Xi E 1 1 0 1 0 

242 35E/7 C Xi E 1 1 0 1 0 

243 35E/8 C Xi E 1 1 0 1 1 

244 35E/9 C Xi E 1 1 1 1 0 

245 35E/11 C Xi E 1 0 0 0 0 

246 35E/12 C Xi E 1 0 0 0 1 

247 35E/13 C Xi E 1 0 0 0 1 

248 35E/14 C Xi E 1 1 0 0 1 

249 35E/16 C Xi E 1 1 0 0 1 

250 35E/17 C Xi E 1 0 0 0 1 

251 35E/19 C Xi E 1 0 1 1 1 
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9.1.4 Appendix IV: Proportion data for dot blot. (* no isolates are available for this plot) 

treatment wheat R or E niche block proportion plot Locus 

1 H R 1 2 0.466667 22 wsm 

1 H E 2 2 0.533333 22 wsm 

1 H E 2 3 0.071429 28 wsm 

1 H R 1 3 0 28 wsm 

1 H R 1 4 0.2 31 wsm 

1 H E 2 4 0.5 31 wsm 

1 H R 1 1 0.8 34 wsm 

1 H E 2 1 0.909091 34 wsm 

2 C R 1 3 0.8 25 wsm 

2 C E 2 3 0 25 wsm 

2 C E 2 2 0 24 wsm 

2 C R 1 2 0 24 wsm 

2 C E 2 1 0.642857 35 wsm 

2 C R 1 1 * 35 wsm 

2 C E 2 4 0.214286 30 wsm 

2 C R 1 4 0.666667 30 wsm 

1 H R 1 2 0.6 22 visB 

1 H E 2 2 0.3333 22 visB 

1 H E 2 3 0.5714 28 visB 

1 H R 1 3 0.1333 28 visB 

1 H R 1 4 0.333 31 visB 

1 H E 2 4 0 31 visB 

1 H R 1 1 0.07 34 visB 
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1 H E 2 1 0.18 34 visB 

2 C R 1 3 0.27 25 visB 

2 C E 2 3 0.5 25 visB 

2 C E 2 2 0.47 24 visB 

2 C R 1 2 0.27 24 visB 

2 C E 2 1 0.14 35 visB 

2 C R 1 1 * 35 visB 

2 C E 2 4 0.36 30 visB 

2 C R 1 4 0.2 30 visB 

1 H R 1 2 0 22 fecB 

1 H E 2 2 0 22 fecB 

1 H E 2 3 0.285714 28 fecB 

1 H R 1 3 0 28 fecB 

1 H R 1 4 0.2 31 fecB 

1 H E 2 4 0 31 fecB 

1 H R 1 1 0.133333 34 fecB 

1 H E 2 1 0.454545 34 fecB 

2 C R 1 3 0.266667 25 fecB 

2 C E 2 3 0 25 fecB 

2 C E 2 2 0.333333 24 fecB 

2 C R 1 2 0.133333 24 fecB 

2 C E 2 1 0.5 35 fecB 

2 C R 1 1 * 35 fecB 

2 C E 2 4 0.357143 30 fecB 

2 C R 1 4 0.333333 30 fecB 

1 H R 1 2 0.53 22 tox 

1 H E 2 2 0.33 22 tox 

1 H E 2 3 0.57 28 tox 

1 H R 1 3 0 28 tox 
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1 H R 1 4 0.07 31 tox 

1 H E 2 4 0.375 31 tox 

1 H R 1 1 0 34 tox 

1 H E 2 1 0.18 34 tox 

2 C R 1 3 0.33 25 tox 

2 C E 2 3 0.57 25 tox 

2 C E 2 2 0.73 24 tox 

2 C R 1 2 0.47 24 tox 

2 C E 2 1 0.5 35 tox 

2 C R 1 1 * 35 tox 

2 C E 2 4 0.5 30 tox 

2 C R 1 4 0.07 30 tox 

 

 

9.1.5 Appendix V: PCR outcomes of GH2 isolate screening for wsm and fecB loci. 

No. Isolate Regime Niche wsm_PCR fecB_PCR 

1 1E/1 h,h E 1 1 

2 1E/10 h,h E 1 0 

3 1E/11 h,h E 1 1 

4 1E/13 h,h E 1 1 

5 1E/14 h,h E 1 0 

6 1E/15 h,h E 1 0 

7 1E/17 h,h E 1 1 

8 1E/19 h,h E 1 1 

9 1E/4 h,h E 1 1 

10 1E/5 h,h E 1 1 
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11 1E/6 h,h E 1 1 

12 1E/7 h,h E 1 1 

13 1E/8 h,h E 1 1 

14 1R/1 h,h R 1 1 

15 1R/10 h,h R 1 0 

16 1R/11 h,h R 0 0 

17 1R/12 h,h R 1 1 

18 1R/13 h,h R 1 1 

19 1R/16 h,h R 1 1 

20 1R/17 h,h R 1 0 

21 1R/18 h,h R 1 1 

22 1R/19 h,h R 1 1 

23 1R/4 h,h R 0 0 

24 1R/5 h,h R 0 0 

25 1R/7 h,h R 0 0 

26 1R/9 h,h R 1 0 

27 22E/1 h,xi E 1 0 

28 22E/10 h,xi E 1 0 

29 22E/11 h,xi E 1 1 

30 22E/12 h,xi E 1 1 

31 22E/13a h,xi E 1 0 

32 22E/13b h,xi E 1 0 

33 22E/18 h,xi E 1 0 

34 22E/19 h,xi E 1 1 

35 22E/20 h,xi E 1 1 

36 22E/3 h,xi E 0 0 

37 22E/5 h,xi E 1 1 

38 22E/6 h,xi E 1 1 

39 22E/7 h,xi E 1 0 
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40 22E/8 h,xi E 1 0 

41 22E/9 h,xi E 1 0 

42 22R/10 h,xi R 1 1 

43 22R/11 h,xi R 1 1 

44 22R/12 h,xi R 1 1 

45 22R/13 h,xi R 1 0 

46 22R/14 h,xi R 1 1 

47 22R/15 h,xi R 1 0 

48 22R/16 h,xi R 1 0 

49 22R/17 h,xi R 1 0 

50 22R/18a h,xi R 1 0 

51 22R/18b h,xi R 1 1 

52 22R/19 h,xi R 1 0 

53 22R/20 h,xi R 1 1 

54 22R/3 h,xi R 1 1 

55 22R/4 h,xi R 1 1 

56 22R/9 h,xi R 1 1 

57 24E/1 c,xi E 1 1 

58 24E/11 c,xi E 1 0 

59 24E/13 c,xi E 1 0 

60 24E/16 c,xi E 1 1 

61 24E/18 c,xi E 0 1 

62 24E/2 c,xi E 1 1 

63 24E/3 c,xi E 1 1 

64 24E/4 c,xi E 1 1 

65 24E/5 c,xi E 1 0 

66 24E/6 c,xi E 0 1 

67 24E/7 c,xi E 1 1 

68 24E/8 c,xi E 1 1 
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69 24E/9 c,xi E 1 1 

70 24R/11 c,xi R 1 1 

71 24R/12 c,xi R 1 1 

72 24R/13 c,xi R 1 0 

73 24R/15 c,xi R 1 1 

74 24R/16 c,xi R 1 0 

75 24R/17 c,xi R 1 1 

76 24R/18 c,xi R 1 1 

77 24R/19 c,xi R 1 1 

78 24R/2 c,xi R 1 1 

79 24R/20 c,xi R 1 1 

80 24R/3 c,xi R 1 1 

81 24R/4a c,xi R 1 1 

82 24R/4b c,xi R 1 1 

83 24R/6 c,xi R 1 1 

84 24R/8 c,xi R 1 1 

85 25E/1 c,xi E 1 1 

86 25E/10 c,xi E 1 1 

87 25E/14 c,xi E 0 1 

88 25E/14 c,xi E 0 0 

89 25E/15 c,xi E 0 0 

90 25E/15 c,xi E 1 0 

91 25E/17 c,xi E 1 0 

92 25E/18 c,xi E 0 1 

93 25E/19 c,xi E 0 1 

94 25E/20 c,xi E 0 0 

95 25E/3 c,xi E 1 1 

96 25E/4 c,xi E 1 0 

97 25E/5 c,xi E 0 1 
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98 25E/56 c,xi E 0 1 

99 25E/7 c,xi E 0 0 

100 25E/8 c,xi E 1 1 

101 25R/10 c,xi R 1 1 

102 25R/11 c,xi R 1 1 

103 25R/12 c,xi R 1 1 

104 25R/13 c,xi R 1 1 

105 25R/14 c,xi R 1 0 

106 25R/16 c,xi R 1 1 

107 25R/17 c,xi R 1 1 

108 25R/18 c,xi R 1 1 

109 25R/20 c,xi R 1 1 

110 25R/4 c,xi R 1 1 

111 25R/5 c,xi R 1 1 

112 25R/6 c,xi R 1 1 

113 25R/7 c,xi R 1 1 

114 25R/8 c,xi R 1 1 

115 25R/9 c,xi R 1 1 

116 28E/1 h,xi E 0 1 

117 28E/10 h,xi E 1 1 

118 28E/11 h,xi E 1 1 

119 28E/12 h,xi E 1 1 

120 28E/14 h,xi E 1 1 

121 28E/15 h,xi E 1 1 

122 28E/18 h,xi E 1 0 

123 28E/19 h,xi E 1 1 

124 28E/2 h,xi E 1 1 

125 28E/20 h,xi E 1 1 

126 28E/3 h,xi E 1 1 
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127 28E/5 h,xi E 1 0 

128 28E/8 h,xi E 1 1 

129 28E/9 h,xi E 1 0 

130 28R/1 h,xi R 1 1 

131 28R/12 h,xi R 1 0 

132 28R/13 h,xi R 0 0 

133 28R/14 h,xi R 1 0 

134 28R/16 h,xi R 1 1 

135 28R/17 h,xi R 1 1 

136 28R/18 h,xi R 1 1 

137 28R/19 h,xi R 1 1 

138 28R/20 h,xi R 0 0 

139 28R/3 h,xi R 0 0 

140 28R/5 h,xi R 1 0 

141 28R/6 h,xi R 1 1 

142 28R/7 h,xi R 1 0 

143 28R/8 h,xi R 1 0 

144 28R/9 h,xi R 1 1 

145 30E/11 c,xi E 1 0 

146 30E/12 c,xi E 1 1 

147 30E/13 c,xi E 0 0 

148 30E/14 c,xi E 1 1 

149 30E/15 c,xi E 1 1 

150 30E/16 c,xi E 0 0 

151 30E/17 c,xi E 0 0 

152 30E/18 c,xi E 1 1 

153 30E/20 c,xi E 0 0 

154 30E/4 c,xi E 1 1 

155 30E/5 c,xi E 0 1 
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156 30E/7 c,xi E 1 1 

157 30E/8 c,xi E 1 0 

158 30E/9 c,xi E 1 1 

159 30R/1 c,xi R 1 1 

160 30R/10 c,xi R 1 1 

161 30R/11 c,xi R 0 0 

162 30R/12 c,xi R 1 1 

163 30R/15 c,xi R 1 1 

164 30R/17 c,xi R 1 0 

165 30R/18 c,xi R 1 1 

166 30R/19a c,xi R 1 1 

167 30R/19b c,xi R 1 1 

168 30R/4a c,xi R 1 1 

169 30R/4b c,xi R 1 1 

170 30R/5 c,xi R 1 1 

171 30R/6a c,xi R 1 1 

172 30R/6b c,xi R 1 0 

173 30R/9 c,xi R 1 1 

174 31E/1 h,xi E 1 1 

175 31E/2 h,xi E 1 0 

176 31E/3 h,xi E 1 0 

177 31E/4 h,xi E 0 0 

178 31E/5 h,xi E 1 0 

179 31E/6 h,xi E 1 0 

180 31E/7 h,xi E 1 0 

181 31E/8 h,xi E 1 0 

182 31R/1 h,xi R 1 1 

183 31R/11 h,xi R 1 1 

184 31R/12 h,xi R 1 1 
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185 31R/13 h,xi R 0 0 

186 31R/14 h,xi R 1 1 

187 31R/15 h,xi R 1 1 

188 31R/16 h,xi R 1 1 

189 31R/17 h,xi R 1 0 

190 31R/18 h,xi R 1 1 

191 31R/2 h,xi R 1 1 

192 31R/4 h,xi R 1 0 

193 31R/5 h,xi R 1 1 

194 31R/6 h,xi R 1 1 

195 31R/7 h,xi R 1 1 

196 31R/8 h,xi R 1 1 

197 32E/1 h,h E 1 1 

198 32E/10 h,h E 1 1 

199 32E/12 h,h E 1 1 

200 32E/13 h,h E 1 1 

201 32E/14 h,h E 1 1 

202 32E/16 h,h E 0 1 

203 32E/2 h,h E 1 0 

204 32E/20 h,h E 0 0 

205 32E/3 h,h E 0 1 

206 32E/4 h,h E 1 1 

207 32E/5 h,h E 1 1 

208 32E/6 h,h E 1 1 

209 32E/7 h,h E 1 1 

210 32E/8 h,h E 1 1 

211 32E/9 h,h E 1 1 

212 34E/10 h,xi E 1 1 

213 34E/11 h,xi E 1 1 
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214 34E/13 h,xi E 1 0 

215 34E/14 h,xi E 1 1 

216 34E/15 h,xi E 1 1 

217 34E/19 h,xi E 1 1 

218 34E/2 h,xi E 1 1 

219 34E/20 h,xi E 1 1 

220 34E/4 h,xi E 1 0 

221 34E/7 h,xi E 1 1 

222 34E/9 h,xi E 1 0 

223 34R/10 h,xi R 0 0 

224 34R/11a h,xi R 1 0 

225 34R/11b h,xi R 1 0 

226 34R/12 h,xi R 1 0 

227 34R/15 h,xi R 1 0 

228 34R/16 h,xi R 0 0 

229 34R/2 h,xi R 1 1 

230 34R/20 h,xi R 1 0 

231 34R/3 h,xi R 1 1 

232 34R/4 h,xi R 1 0 

233 34R/5 h,xi R 1 0 

234 34R/6 h,xi R 1 1 

235 34R/8 h,xi R 1 1 

236 34R/9a h,xi R 1 0 

237 34R/9b h,xi R 1 0 

238 35E/1 c,xi E 1 0 

239 35E/11 c,xi E 1 1 

240 35E/12 c,xi E 1 1 

241 35E/13 c,xi E 1 0 

242 35E/14 c,xi E 1 0 



289 
 

243 35E/16 c,xi E 1 0 

244 35E/17 c,xi E 1 0 

245 35E/19 c,xi E 1 0 

246 35E/3 c,xi E 1 1 

247 35E/4 c,xi E 0 1 

248 35E/5 c,xi E 1 1 

249 35E/7 c,xi E 1 0 

250 35E/8 c,xi E 1 1 

251 35E/9 c,xi E 1 0 

252 35R/1 c,xi R 1 1 

253 35R/10 c,xi R 1 1 

254 35R/11 c,xi R 0 0 

255 35R/12 c,xi R 1 1 

256 35R/13 c,xi R 1 0 

257 35R/14 c,xi R 0 0 

258 35R/18 c,xi R 0 0 

259 35R/19 c,xi R 0 0 

260 35R/2 c,xi R 1 0 

261 35R/20 c,xi R 1 0 

262 35R/5 c,xi R 1 0 

263 35R/6 c,xi R 1 1 

264 35R/7 c,xi R 1 1 

265 35R/9 c,xi R 1 0 

266 37R/1 h,h R 1 0 

267 37R/10 h,h R 1 1 

268 37R/11 h,h R 1 0 

269 37R/12 h,h R 1 0 

270 37R/13 h,h R 1 0 

271 37R/14 h,h R 1 0 



290 
 

272 37R/15 h,h R 1 0 

273 37R/16 h,h R 1 0 

274 37R/17 h,h R 1 0 

275 37R/18 h,h R 1 0 

276 37R/2 h,h R 1 0 

277 37R/3 h,h R 1 0 

278 37R/6 h,h R 1 1 

279 37R/7 h,h R 1 0 

280 37R/9 h,h R 1 0 

281 44E/1 h,h E 1 0 

282 44E/10 h,h E 1 0 

283 44E/13 h,h E 1 1 

284 44E/14 h,h E 1 0 

285 44E/15 h,h E 1 0 

286 44E/16 h,h E 1 0 

287 44E/17 h,h E 1 0 

288 44E/2 h,h E 1 0 

289 44E/20 h,h E 1 1 

290 44E/3 h,h E 1 0 

291 44E/5 h,h E 1 0 

292 44E/7 h,h E 1 1 

293 44E/9 h,h E 1 0 

294 44R/1 h,h R 1 0 

295 44R/10 h,h R 1 1 

296 44R/11 h,h R 1 0 

297 44R/12 h,h R 1 0 

298 44R/13 h,h R 1 0 

299 44R/14 h,h R 0 0 

300 44R/15 h,h R 1 0 
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301 44R/16 h,h R 1 1 

302 44R/18 h,h R 1 0 

303 44R/19 h,h R 1 1 

304 44R/2 h,h R 1 0 

305 44R/3 h,h R 1 0 

306 44R/4 h,h R 1 0 

307 44R/5 h,h R 1 0 

308 44R/6 h,h R 1 0 

309 46E/1 c,h E 0 0 

310 46E/2 c,h E 0 0 

311 46E/3 c,h E 0 0 

312 46E/4 c,h E 0 0 

313 46E/5 c,h E 0 0 

314 46E/6 c,h E 0 0 

315 46E/7 c,h E 0 0 

316 46E/8 c,h E 0 0 

317 46R/1 c,h R 1 1 

318 46R/2 c,h R 0 0 

319 46R/3 c,h R 0 0 

320 46R/5 c,h R 1 1 

321 46R/6 c,h R 1 1 

322 46R/7 c,h R 1 1 

323 46R/8 c,h R 1 1 

324 52E/1 c,h E 0 0 

325 52E/11 c,h E 0 1 

326 52E/12 c,h E 0 1 

327 52E/15 c,h E 0 1 

328 52E/16 c,h E 1 0 

329 52E/17 c,h E 1 1 
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330 52E/19 c,h E 0 1 

331 52E/2 c,h E 0 0 

332 52E/20 c,h E 1 0 

333 52E/3 c,h E 0 1 

334 52E/5 c,h E 1 0 

335 52E/6 c,h E 0 1 

336 52E/7 c,h E 0 1 

337 52E/8 c,h E 0 1 

338 52E/9 c,h E 0 1 

339 52R/10 c,h R 0 0 

340 52R/12 c,h R 0 1 

341 52R/13 c,h R 1 1 

342 52R/14 c,h R 1 1 

343 52R/15 c,h R 1 1 

344 52R/17 c,h R 1 1 

345 52R/2 c,h R 0 1 

346 52R/20 c,h R 0 1 

347 52R/4 c,h R 1 0 

348 52R/5 c,h R 1 1 

349 52R/7 c,h R 1 0 

350 52R/8 c,h R 0 0 

351 52R/9 c,h R 0 0 

352 58E/1 c,h E 1 1 

353 58E/10 c,h E 1 1 

354 58E/11 c,h E 1 1 

355 58E/12 c,h E 1 1 

356 58E/13 c,h E 1 1 

357 58E/15 c,h E 1 1 

358 58E/16 c,h E 1 1 
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359 58E/19 c,h E 0 0 

360 58E/2 c,h E 1 1 

361 58E/20 c,h E 1 1 

362 58E/3 c,h E 1 1 

363 58E/4 c,h E 1 1 

364 58E/5 c,h E 1 1 

365 58E/6 c,h E 1 1 

366 58E/9 c,h E 1 1 

367 58R/1 c,h R 1 1 

368 58R/10 c,h R 1 1 

369 58R/11 c,h R 1 1 

370 58R/12 c,h R 1 1 

371 58R/2 c,h R 0 0 

372 58R/3a c,h R 1 1 

373 58R/3b c,h R 0 0 

374 58R/4 c,h R 1 1 

375 58R/5a c,h R 0 0 

376 58R/5b c,h R 1 1 

377 58R/7 c,h R 1 0 

378 58R/8a c,h R 1 0 

379 58R/8b c,h R 0 0 

380 58R/9a c,h R 1 1 

381 58R/9b c,h R 1 1 

382 8E/1 c,h E 0 0 

383 8E/10 c,h E 1 0 

384 8E/11 c,h E 1 1 

385 8E/13 c,h E 1 0 

386 8E/14 c,h E 1 0 

387 8E/16 c,h E 0 0 



294 
 

388 8E/18 c,h E 1 0 

389 8E/19 c,h E 1 0 

390 8E/2 c,h E 1 0 

391 8E/20 c,h E 1 0 

392 8E/3 c,h E 1 0 

393 8E/4 c,h E 1 0 

394 8E/5 c,h E 1 0 

395 8E/6 c,h E 1 0 

396 8E/7 c,h E 1 0 

397 8R/11 c,h R 1 0 

398 8R/12 c,h R 1 1 

399 8R/13 c,h R 1 1 

400 8R/14 c,h R 1 1 

401 8R/15 c,h R 1 1 

402 8R/17 c,h R 1 1 

403 8R/18 c,h R 1 1 

404 8R/2 c,h R 1 1 

405 8R/20 c,h R 1 1 

406 8R/5 c,h R 1 1 

407 8R/6 c,h R 1 1 

408 8R/7a c,h R 1 1 

409 8R/7b c,h R 1 1 

410 8R/8 c,h R 1 1 

411 8R/9 c,h R 1 0 
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9.1.6 Appendix VI: Dot blots 

A. Film developed and G:BOX developed blots. 

 

1. Film developed Plate 1 probe 3 (MZ3), Left to right 1-12, Top to bottom A-H, 2F positive 

control P. fluorescens SBW25, 4H negative control non inoculated. 

 

 

2. Film developed Plate 1 probe 11 (MZ11), Left to right 1-12, Top to bottom A-H, 2F 

positive control P. fluorescens SBW25, 4H negative control non inoculated. 

 

3. Film developed Plate 1 probe 15 (MZ15), Left to right 1-12, Top to bottom A-H, 2F 

positive control P. fluorescens SBW25, 4H negative control non inoculated. 
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4. Film developed Plate 1 probe 17 (MZ17), Left to right 1-12, Top to bottom A-H, 2F 

positive control P. fluorescens SBW25, 4H negative control non inoculated. 

   

5. Film developed Plate 2 probe 15 (MZ15), Left to right 1-12, Top to bottom A-H, 2G 

positive control P. fluorescens SBW25, 2H negative control non inoculated. 

   

6. Film developed Plate 2 probe 17 (MZ17), Left to right 1-12, Top to bottom A-H, 2G 

positive control P. fluorescens SBW25, 2H negative control non inoculated. 
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7. Film developed Plate 3 probe 3 (MZ3), Left to right 1-12, Top to bottom A-H, 6A positive 

control P. fluorescens SBW25, 12H negative control non inoculated. 

 

8. Film developed Plate 3 probe 3 (MZ3) Repeated, Left to right 1-12, Top to bottom A-H, 

6A positive control P. fluorescens SBW25, 12H negative control non inoculated. 

   

9. Film developed Plate 3 probe 11 (MZ11), Left to right 1-12, Top to bottom A-H, 6A 

positive control P. fluorescens SBW25, 12H negative control non inoculated. 
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10. Film developed Plate 3 probe 11 (MZ11) Repeated, Left to right 1-12, Top to bottom A-

H, 6A positive control P. fluorescens SBW25, 12H negative control non inoculated. 

   

11. Film developed Plate 3 probe 15 (MZ15), Left to right 1-12, Top to bottom A-H, 6A 

positive control P. fluorescens SBW25, 12H negative control non inoculated. 

 

 

12. Film developed Plate 3 probe 15 (MZ15) Repeated, Left to right 1-12, Top to bottom A-

H, 6A positive control P. fluorescens SBW25, 12H negative control non inoculated. 



299 
 

 

13. Film developed Plate 3 probe 17 (MZ17), Left to right 1-12, Top to bottom A-H, 6A 

positive control P. fluorescens SBW25, 12H negative control non inoculated. 

 

 

14. Film developed Plate 3 probe 1 (MZ1), Left to right 1-12, Top to bottom A-H, 6A positive 

control P. fluorescens SBW25, 12H negative control non inoculated. 

 

15. Film developed Plate 3 probe 5 (MZ5), Left to right 1-12, Top to bottom A-H, 6A positive 

control P. fluorescens SBW25, 12H negative control non inoculated. 
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16. Film developed Plate 3 probe 5 (MZ5) Repeated, Left to right 1-12, Top to bottom A-H, 

6A positive control P. fluorescens SBW25, 12H negative control non inoculated. 

 

17. Film developed Plate 3 probe 5 (MZ5) Repeated, Left to right 1-12, Top to bottom A-H, 

6A positive control P. fluorescens SBW25, 12H negative control non inoculated. 

  

18. Film developed Plate 3 probe 7 (MZ7), Left to right 1-12, Top to bottom A-H, 6A 

positive control P. fluorescens SBW25, 12H negative control non inoculated. 
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19. Film developed Plate 3 probe 7 (MZ7) Repeated, Left to right 1-12, Top to bottom A-

H, 6A positive control P. fluorescens SBW25, 12H negative control non inoculated. 

 

20. Film developed Plate 3 probe 9 (MZ9), Left to right 1-12, Top to bottom A-H, 6A 

positive control P. fluorescens SBW25, 12H negative control non inoculated. 

  

21. Film developed Plate 3 probe 9 (MZ9), Left to right 1-12, Top to bottom A-H, 6A 

positive control P. fluorescens SBW25, 12H negative control non inoculated. 
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22. G:Box developed Plate 2 probe 11 (MZ11), Left to right 1-12, Top to bottom A-H, 2G 

positive control P. fluorescens SBW25, 2H negative control non inoculated. 

 

23. G:Box developed Plate 1 probe 9 (MZ9), Left to right 1-12, Top to bottom A-H, 2F 

positive control P. fluorescens SBW25, 4H negative control non inoculated. 

   

24. G:Box developed Plate 1 probe 11 (MZ11), Left to right 1-12, Top to bottom A-H, 2F 

positive control P. fluorescens SBW25, 4H negative control non inoculated. 
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25. G:Box developed Plate 2 probe 3 (MZ3), Left to right 1-12, Top to bottom A-H, 2G 

positive control P. fluorescens SBW25, 2H negative control non inoculated. 

   

26. G:Box developed Plate 2 probe 3 (MZ3) Repeated, Left to right 1-12, Top to bottom 

A-H, 2G positive control P. fluorescens SBW25, 2H negative control non inoculated. 
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B. 96 well format description of the dot blots. *Plot numbers indication planting combination (1: (H,H), 8: (C,H), 22, 28, 

31, 34: (H,Xi-19), 24, 25, 30, 35: (C,Xi-19); R: rhizosphere, E: endosphere; Green boxes: empty wells. 
 Plate No.1 

Isolates 
from* 1 R 1 R 1 E 1 E 8 R 8 R 22 R 22 R 22 E 22 E 25 R 25 R 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 5 9 5 13 7a 7b 19 9 5 11 14 4 

B 7 11 10 6 11 9 14 11 6 12 13 10 

C 4 1 11 7 13 12 16 10 7 18 5 11 

D 19 17 1 8 14 17 13 12 8 19 7 17 

E 10 18 15 4 15 18 15 17 1 20 20 9 

F 12   14   2 20 18a 18b 3 13a 16 12 

G 16   17   5 8 3 20 9 13b 6 18 

H 13   19   6   4   10   8   

             

             

Plate No. 2            

Isolates 
from 25 E 25 E 24 E 24 E 24 R 24 R 28 E 28 E 28 R 28 R 30 E 30 E 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 14 4 1 9 13 20 18 10 8 16 17 11 

B 15 17 2 11 6 15 19 11 12 1 18 12 

C 10 18 3 15 2 11 20 12 9 6 20 5 

D 5 19 4 16 3 8 2 5 17 5 13 7 

E 7 20 5 14 4a 12 3 8 18 7 14 8 

F 8 56 6 13 17 4b 15 1 19 13 15 4 

G 1   7 18 18 16 14   20 3 16   

H 3   8   19   9   14   9   
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Plate No. 3            

Isolates 
from 30 R 30 R 31 R 31 R 31 E 31 E 34 R 34 R 34 E 34 E 35 E 35 E 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 15 9 11 6 1   11a 8 19 15 1 12 

B 11 10 12 7 2   10 15 20 2 3 13 

C 5 6a 13 8 3   11b 16 9 4 4 14 

D 17 6b 18 1 4   9b 20 10   5 16 

E 18 12 14 2 5   9a 2 11   7 17 

F 19a 4b 15 4 6   12 3 7   8 19 

G 1 19b 16 17 7   5 4 13   9   

H 4a   5   8   6   14   11   
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9.2 Chapter 4 Appendix 

9.2.1 Appendix I: Inhibition zone class data for the 411 isolates. 

no. Isolate Year 1 Year 2 Block Main plot no. niche Average Inhibition zone class 

1 1E/1 H H 1 1 E 0.693667 2 

2 1E/10 H H 1 1 E 0.987667 2 

3 1E/11 H H 1 1 E 1.022 2 

4 1E/13 H H 1 1 E 0.740667 2 

5 1E/14 H H 1 1 E 1.019667 2 

6 1E/15 H H 1 1 E 0.823333 2 

7 1E/17 H H 1 1 E 0.760333 2 

8 1E/19 H H 1 1 E 0.179667 1 

9 1E/4 H H 1 1 E 0.816333 2 

10 1E/5 H H 1 1 E 0.760333 2 

11 1E/6 H H 1 1 E 0.715667 2 

12 1E/7 H H 1 1 E 0.673 2 

13 1E/8 H H 1 1 E 0.406333 1 

14 1R/1 H H 1 1 R 0.699667 2 

15 1R/10 H H 1 1 R 0.659 2 

16 1R/11 H H 1 1 R 0.159 1 

17 1R/12 H H 1 1 R 0.76 2 

18 1R/13 H H 1 1 R 0.779 2 

19 1R/16 H H 1 1 R 0.572333 2 

20 1R/17 H H 1 1 R 0.928333 2 

21 1R/18 H H 1 1 R 0.485667 1 

22 1R/19 H H 1 1 R 0.923333 2 

23 1R/4 H H 1 1 R 0.594333 2 

24 1R/5 H H 1 1 R 0.361 1 
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25 1R/7 H H 1 1 R 0.643333 2 

26 1R/9 H H 1 1 R 0.823333 2 

27 22E/1 H XI 2 3 E 0.185 1 

28 22E/10 H XI 2 3 E 0.212 1 

29 22E/11 H XI 2 3 E 0.453 1 

30 22E/12 H XI 2 3 E 1.185667 3 

31 22E/13a H XI 2 3 E 0.563 2 

32 22E/13b H XI 2 3 E 0.383 1 

33 22E/18 H XI 2 3 E 0.163 1 

34 22E/19 H XI 2 3 E 0.616333 2 

35 22E/20 H XI 2 3 E 0.527667 2 

36 22E/3 H XI 2 3 E 0.688 2 

37 22E/5 H XI 2 3 E 0.644667 2 

38 22E/6 H XI 2 3 E 0.805333 2 

39 22E/7 H XI 2 3 E 0.653333 2 

40 22E/8 H XI 2 3 E 0.814333 2 

41 22E/9 H XI 2 3 E 0.815667 2 

42 22R/10 H XI 2 3 R 0.494333 1 

43 22R/11 H XI 2 3 R 0.805667 2 

44 22R/12 H XI 2 3 R 0.404667 1 

45 22R/13 H XI 2 3 R 0.305 1 

46 22R/14 H XI 2 3 R 0.228 1 

47 22R/15 H XI 2 3 R 0.106333 1 

48 22R/16 H XI 2 3 R 0.289 1 

49 22R/17 H XI 2 3 R 0.6 2 

50 22R/18a H XI 2 3 R 0.865333 2 

51 22R/18b H XI 2 3 R 0.850333 2 

52 22R/19 H XI 2 3 R 0.604 2 

53 22R/20 H XI 2 3 R 0.803333 2 
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54 22R/3 H XI 2 3 R 0.767667 2 

55 22R/4 H XI 2 3 R 0.879 2 

56 22R/9 H XI 2 3 R 0.764 2 

57 24E/1 C XI 2 4 E 0.760333 2 

58 24E/11 C XI 2 4 E 0.653 2 

59 24E/13 C XI 2 4 E 0.159333 1 

60 24E/14 C XI 2 4 E 0.650333 2 

61 24E/15 C XI 2 4 E 0.745333 2 

62 24E/16 C XI 2 4 E 0.732333 2 

63 24E/18 C XI 2 4 E 0.712667 2 

64 24E/2 C XI 2 4 E 1.104667 3 

65 24E/3 C XI 2 4 E 0.530333 2 

66 24E/4 C XI 2 4 E 1.197667 3 

67 24E/5 C XI 2 4 E 0.580667 2 

68 24E/6 C XI 2 4 E 0.901667 2 

69 24E/7 C XI 2 4 E 1.347 3 

70 24E/8 C XI 2 4 E 0.395667 1 

71 24E/9 C XI 2 4 E 0.867333 2 

72 24R/11 C XI 2 4 R 0.504333 2 

73 24R/12 C XI 2 4 R 0.622333 2 

74 24R/13 C XI 2 4 R 0.132333 1 

75 24R/15 C XI 2 4 R 0.633667 2 

76 24R/16 C XI 2 4 R 0.339333 1 

77 24R/17 C XI 2 4 R 0.503 1 

78 24R/18 C XI 2 4 R 0.52 1 

79 24R/19 C XI 2 4 R 0.892667 2 

80 24R/2 C XI 2 4 R 0.599333 2 

81 24R/20 C XI 2 4 R 0.163333 1 

82 24R/3  C XI 2 4 R 0.489333 2 
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83 24R/4a C XI 2 4 R 0.617 2 

84 24R/4b C XI 2 4 R 0.680333 2 

85 24R/6 C XI 2 4 R 0.664 2 

86 24R/8 C XI 2 4 R 0.664667 2 

87 25E/1 C XI 3 3 E 1.286 3 

88 25E/10 C XI 3 3 E 0.186667 1 

89 25E/14 C XI 3 3 E 0.636 2 

90 25E/15 C XI 3 3 E 1.473667 3 

91 25E/17 C XI 3 3 E 1.246 3 

92 25E/18 C XI 3 3 E 0.702 2 

93 25E/19 C XI 3 3 E 0.384333 1 

94 25E/20 C XI 3 3 E 0.959 2 

95 25E/3 C XI 3 3 E 0.688667 2 

96 25E/4 C XI 3 3 E 0.385 1 

97 25E/5 C XI 3 3 E 0.429333 1 

98 25E/56 C XI 3 3 E 0.818333 2 

99 25E/7 C XI 3 3 E 1.001667 2 

100 25E/8 C XI 3 3 E 0.602667 2 

101 25R/10 C XI 3 3 R 0.812667 2 

102 25R/11 C XI 3 3 R 0.743333 2 

103 25R/12 C XI 3 3 R 0.941667 2 

104 25R/13 C XI 3 3 R 0.931 2 

105 25R/14 C XI 3 3 R 0.488 1 

106 25R/16 C XI 3 3 R 1.01 2 

107 25R/17 C XI 3 3 R 0.712333 2 

108 25R/18 C XI 3 3 R 0.994 2 

109 25R/20 C XI 3 3 R 1.126667 3 

110 25R/4 C XI 3 3 R 0.918 2 

111 25R/5 C XI 3 3 R 0.917 2 
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112 25R/6 C XI 3 3 R 0.810333 2 

113 25R/7 C XI 3 3 R 1.155667 3 

114 25R/8 C XI 3 3 R 0.771333 2 

115 25R/9 C XI 3 3 R 0.635333 2 

116 28E/1 H XI 3 4 E 0.356333 1 

117 28E/10 H XI 3 4 E 1.094667 3 

118 28E/11 H XI 3 4 E 0.408667 1 

119 28E/12 H XI 3 4 E 0.294 1 

120 28E/14 H XI 3 4 E 0.588 2 

121 28E/15 H XI 3 4 E 0.615 2 

122 28E/18 H XI 3 4 E 0.429667 1 

123 28E/19 H XI 3 4 E 0.646667 2 

124 28E/2 H XI 3 4 E 0.525333 1 

125 28E/20 H XI 3 4 E 0.732 2 

126 28E/3 H XI 3 4 E 0.172 1 

127 28E/4 H XI 3 4 E 0.161333 2 

128 28E/5 H XI 3 4 E 0.980333 1 

129 28E/8 H XI 3 4 E 0.282333 2 

130 28E/9 H XI 3 4 E 0.402333 1 

131 28R/1 H XI 3 4 R 0.234333 1 

132 28R/12 H XI 3 4 R 0.547333 1 

133 28R/13 H XI 3 4 R 0.517333 2 

134 28R/14 H XI 3 4 R 0.304333 2 

135 28R/16 H XI 3 4 R 0.388667 1 

136 28R/17 H XI 3 4 R 0.450333 1 

137 28R/18 H XI 3 4 R 0.502667 1 

138 28R/19 H XI 3 4 R 0.608333 1 

139 28R/20 H XI 3 4 R 0.611 2 

140 28R/3 H XI 3 4 R 0.758333 2 
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141 28R/5 H XI 3 4 R 0.92 2 

142 28R/6 H XI 3 4 R 0.238333 2 

143 28R/7 H XI 3 4 R 0.255333 1 

144 28R/8 H XI 3 4 R 1.082667 1 

145 28R/9 H XI 3 4 R 0.254667 3 

146 30E/11 C XI 4 3 E 0.707 1 

147 30E/12 C XI 4 3 E 0.737667 2 

148 30E/13 C XI 4 3 E 0.413333 2 

149 30E/14 C XI 4 3 E 0.934667 1 

150 30E/15 C XI 4 3 E 0.693333 2 

151 30E/16 C XI 4 3 E 0.141333 2 

152 30E/17 C XI 4 3 E 0.691333 1 

153 30E/18 C XI 4 3 E 0.662333 2 

154 30E/20 C XI 4 3 E 0.929 2 

155 30E/5 C XI 4 3 E 0.904333 2 

156 30E/7 C XI 4 3 E 0.91 2 

157 30E/8 C XI 4 3 E 0.432667 1 

158 30E/9 C XI 4 3 E 0.368667 1 

159 30R/1 C XI 4 3 R 0.245667 1 

160 30R/10 C XI 4 3 R 0.507333 2 

161 30R/11 C XI 4 3 R 1.112333 3 

162 30R/12 C XI 4 3 R 0.164 1 

163 30R/15 C XI 4 3 R 0.669667 2 

164 30R/17 C XI 4 3 R 0.804 2 

165 30R/18 C XI 4 3 R 0.282667 1 

166 30R/19a C XI 4 3 R 0.669333 2 

167 30R/19b C XI 4 3 R 0.715333 2 

168 30R/4a C XI 4 3 R 0.883 2 

169 30R/4b C XI 4 3 R 0.718333 2 
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170 30R/5 C XI 4 3 R 0.648 2 

171 30R/6a C XI 4 3 R 0.394 1 

172 30R/6b C XI 4 3 R 0.762333 2 

173 30R/9 C XI 4 3 R 0.226667 1 

174 31E/1 H XI 4 2 E 0.444667 1 

175 31E/2 H XI 4 2 E 0.881667 2 

176 31E/3 H XI 4 2 E 0.857333 2 

177 31E/4 H XI 4 2 E 0.149667 1 

178 31E/5 H XI 4 2 E 0.783667 2 

179 31E/6 H XI 4 2 E 0.456333 1 

180 31E/7 H XI 4 2 E 0.854 2 

181 31E/8 H XI 4 2 E 0.555667 2 

182 31R/1 H XI 4 2 R 0.576333 2 

183 31R/11 H XI 4 2 R 0.681333 2 

184 31R/12 H XI 4 2 R 0.112333 1 

185 31R/13 H XI 4 2 R 0.883667 2 

186 31R/14 H XI 4 2 R 0.988333 2 

187 31R/15 H XI 4 2 R 0.888333 2 

188 31R/16 H XI 4 2 R 0.121333 1 

189 31R/17 H XI 4 2 R 0.905667 2 

190 31R/18 H XI 4 2 R 0.652 2 

191 31R/2 H XI 4 2 R 0.905333 2 

192 31R/4 H XI 4 2 R 0.129333 1 

193 31R/5 H XI 4 2 R 0.896667 2 

194 31R/6 H XI 4 2 R 0.814667 2 

195 31R/7 H XI 4 2 R 0.951333 2 

196 31R/8 H XI 4 2 R 1.126 3 

197 32E/1 H H 4 4 E 0.728333 2 

198 32E/10 H H 4 4 E 1.093667 3 
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199 32E/12 H H 4 4 E 0.708 2 

200 32E/13 H H 4 4 E 0.972333 2 

201 32E/14 H H 4 4 E 0.839 2 

202 32E/16 H H 4 4 E 0.713 2 

203 32E/2 H H 4 4 E 0.786667 2 

204 32E/20 H H 4 4 E 0.904 2 

205 32E/3 H H 4 4 E 0.842333 2 

206 32E/4 H H 4 4 E 0.968333 2 

207 32E/5 H H 4 4 E 0.828667 2 

208 32E/6 H H 4 4 E 0.898667 2 

209 32E/7 H H 4 4 E 0.924667 2 

210 32E/8 H H 4 4 E 0.766667 2 

211 32E/9 H H 4 4 E 1.066333 3 

212 34E/10 H XI 1 5 E 0.275667 1 

213 34E/11 H XI 1 5 E 0.095333 1 

214 34E/13 H XI 1 5 E 0.266 1 

215 34E/14 H XI 1 5 E 0.112 1 

216 34E/15 H Xi 1 5 E   2 

217 34E/19 H XI 1 5 E 0.250333 1 

218 34E/2 H XI 1 5 E 0.139667 1 

219 34E/20 H XI 1 5 E 0.139667 1 

220 34E/4 H XI 1 5 E 0.514333 1 

221 34E/7 H XI 1 5 E 0.095667 1 

222 34E/9 H XI 1 5 E 0.551 2 

223 34R/10 H XI 1 5 R 0.524 1 

224 34R/11a H XI 1 5 R 0.143667 1 

225 34R/11b H XI 1 5 R 0.504667 1 

226 34R/12 H XI 1 5 R 0.005667 1 

227 34R/15 H XI 1 5 R 0.128667 1 
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228 34R/16 H XI 1 5 R 0.510667 1 

229 34R/2 H XI 1 5 R 0.632333 2 

230 34R/20 H XI 1 5 R 0.437 1 

231 34R/3 H XI 1 5 R 0.206333 1 

232 34R/4 H XI 1 5 R 0.550333 2 

233 34R/5 H XI 1 5 R 0.213 1 

234 34R/6 H XI 1 5 R 0.337 1 

235 34R/8 H XI 1 5 R 0.139 1 

236 34R/9a H XI 1 5 R 0.196667 1 

237 34R/9b H XI 1 5 R 0.232 1 

238 35E/1 C XI 1 6 E 0.159333 1 

239 35E/11 C XI 1 6 E 0.095667 1 

240 35E/12 C XI 1 6 E 0.286 1 

241 35E/13 C XI 1 6 E 0.186333 1 

242 35E/14 C XI 1 6 E 0.125 1 

243 35E/16 C XI 1 6 E 0.101667 1 

244 35E/17 C XI 1 6 E 0.140667 1 

245 35E/19 C XI 1 6 E 0.294 1 

246 35E/3 C XI 1 6 E 0.591333 2 

247 35E/4 C XI 1 6 E 0.690667 2 

248 35E/5 C XI 1 6 E 0.191 1 

249 35E/7 C XI 1 6 E 0.135 1 

250 35E/8 C XI 1 6 E 0.275333 1 

251 35E/9 C XI 1 6 E 0.169333 1 

252 35R/1 C XI 1 6 R 0.755667 2 

253 35R/10 C XI 1 6 R 0.185333 1 

254 35R/11 C XI 1 6 R 0.583667 2 

255 35R/12 C XI 1 6 R 0.371 1 

256 35R/13 C XI 1 6 R 0.492333 1 
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257 35R/14 C XI 1 6 R 0.667667 2 

258 35R/18 C XI 1 6 R 0.586333 2 

259 35R/19 C XI 1 6 R 0.629667 2 

260 35R/2 C XI 1 6 R 0.112333 1 

261 35R/20 C XI 1 6 R 0.270667 1 

262 35R/5 C XI 1 6 R 0.387333 1 

263 35R/6 C XI 1 6 R 0.408 1 

264 35R/7 C XI 1 6 R 0.366 1 

265 35R/9 C XI 1 6 R 0.213667 1 

266 37R/1 H H 2 5 R 0.861333 2 

267 37R/10 H H 2 5 R 0.459333 1 

268 37R/11 H H 2 5 R 0.567333 2 

269 37R/12 H H 2 5 R 0.418667 1 

270 37R/13 H H 2 5 R 0.138667 1 

271 37R/14 H H 2 5 R 0.511667 1 

272 37R/15 H H 2 5 R 0.049667 1 

273 37R/16 H H 2 5 R 0.914333 2 

274 37R/17 H H 2 5 R 0.421 1 

275 37R/18 H H 2 5 R 0.140667 1 

276 37R/2 H H 2 5 R 0.870667 2 

277 37R/3 H H 2 5 R 0.439 1 

278 37R/6 H H 2 5 R 0.541667 1 

279 37R/7 H H 2 5 R 0.511 1 

280 37R/9 H H 2 5 R 0.225 1 

281 44E/1 H H 3 6 E 0.137667 1 

282 44E/10 H H 3 6 E 0.474333 1 

283 44E/13 H H 3 6 E 0.826667 2 

284 44E/14 H H 3 6 E 0.446333 1 

285 44E/15 H H 3 6 E 0.094333 1 
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286 44E/16 H H 3 6 E 0.028333 1 

287 44E/17 H H 3 6 E 0.245667 1 

288 44E/2 H H 3 6 E 0.352 1 

289 44E/20 H H 3 6 E 0.557 2 

290 44E/3 H H 3 6 E 0.165667 1 

291 44E/5 H H 3 6 E 0.098667 1 

292 44E/7 H H 3 6 E 1.071333 3 

293 44E/9 H H 3 6 E 0.225333 1 

294 44R/1 H H 3 6 R 0.560333 2 

295 44R/10 H H 3 6 R 0.621 2 

296 44R/11 H H 3 6 R 0.678 2 

297 44R/12 H H 3 6 R 0.468333 1 

298 44R/13 H H 3 6 R 0.052333 1 

299 44R/14 H H 3 6 R 0.176333 1 

300 44R/15 H H 3 6 R 0.36 1 

301 44R/16 H H 3 6 R 0.301333 1 

302 44R/18 H H 3 6 R 0.313333 1 

303 44R/19 H H 3 6 R 0.439667 1 

304 44R/2 H H 3 6 R 0.244333 1 

305 44R/3 H H 3 6 R 0.335667 1 

306 44R/4 H H 3 6 R 0.029667 1 

307 44R/5 H H 3 6 R 0.322667 1 

308 44R/6 H H 3 6 R 0.313 1 

309 46E/1 C H 4 5 E 0.795 2 

310 46E/2 C H 4 5 E 0.702 2 

311 46E/3 C H 4 5 E 0.818667 2 

312 46E/4 C H 4 5 E 0.869667 2 

313 46E/5 C H 4 5 E 0.820667 2 

314 46E/6 C H 4 5 E 1.051667 3 
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315 46E/7 C H 4 5 E 1.102667 3 

316 46E/8 C H 4 5 E 0.729 2 

317 46R/1 C H 4 5 R 1.062 3 

318 46R/2 C H 4 5 R 1.399 3 

319 46R/3 C H 4 5 R 1.373 3 

320 46R/5 C H 4 5 R 1.084333 3 

321 46R/6 C H 4 5 R 1.001667 2 

322 46R/7 C H 4 5 R 1.007333 2 

323 46R/8 C H 4 5 R 1.007 2 

324 52E/1 C H 1 8 E 1.608333 3 

325 52E/11 C H 1 8 E 1.127333 3 

326 52E/12 C H 1 8 E 0.666 2 

327 52E/15 C H 1 8 E 1.009 2 

328 52E/16 C H 1 8 E 0.632 2 

329 52E/17 C H 1 8 E 0.685333 2 

330 52E/19 C H 1 8 E 0.763333 2 

331 52E/2 C H 1 8 E 1.525 3 

332 52E/20 C H 1 8 E 0.600333 2 

333 52E/3 C H 1 8 E 0.888 2 

334 52E/5 C H 1 8 E 0.355 1 

335 52E/6 C H 1 8 E 0.559 2 

336 52E/7 C H 1 8 E 0.790333 2 

337 52E/8 C H 1 8 E 1.293667 3 

338 52E/9 C H 1 8 E 0.688 2 

339 52R/10 C H 1 8 R 0.210333 1 

340 52R/12 C H 1 8 R 0.713333 2 

341 52R/13 C H 1 8 R 0.79 2 

342 52R/14 C H 1 8 R 1.167333 3 

343 52R/15 C H 1 8 R 1.585667 3 
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344 52R/17 C H 1 8 R 1.634667 3 

345 52R/2 C H 1 8 R 1.257667 3 

346 52R/20 C H 1 8 R 1.23 3 

347 52R/4 C H 1 8 R 0.233667 1 

348 52R/5 C H 1 8 R 0.813333 2 

349 52R/7 C H 1 8 R 0.234 1 

350 52R/8 C H 1 8 R 0.669 2 

351 52R/9 C H 1 8 R 0.210333 1 

352 58E/1 C H 3 7 E 0.039667 1 

353 58E/10 C H 3 7 E 0.434667 1 

354 58E/11 C H 3 7 E 0.881 2 

355 58E/12 C H 3 7 E 1.064 3 

356 58E/13 C H 3 7 E 1.179 3 

357 58E/15 C H 3 7 E 1.662667 3 

358 58E/16 C H 3 7 E 1.583667 3 

359 58E/19 C H 3 7 E 0 1 

360 58E/2 C H 3 7 E 0.775333 2 

361 58E/20 C H 3 7 E 0.743 2 

362 58E/3 C H 3 7 E 0.643 2 

363 58E/4 C H 3 7 E 1.054333 2 

364 58E/5 C H 3 7 E 1.409333 3 

365 58E/6 C H 3 7 E 1.299333 3 

366 58E/9 C H 3 7 E 1.48 3 

367 58R/1 C H 3 7 R 0.423 1 

368 58R/10 C H 3 7 R 1.302667 3 

369 58R/11 C H 3 7 R 0.127 1 

370 58R/12 C H 3 7 R 1.5 3 

371 58R/2 C H 3 7 R 0.813333 2 

372 58R/3a C H 3 7 R 0.005667 1 
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373 58R/3b C H 3 7 R 0.896667 2 

374 58R/4 C H 3 7 R 1.027 2 

375 58R/5a C H 3 7 R 0.582 2 

376 58R/5b C H 3 7 R 1.159667 3 

377 58R/7 C H 3 7 R 0.39 1 

378 58R/8a C H 3 7 R 1.15 3 

379 58R/8b C H 3 7 R 1.304333 3 

380 58R/9a C H 3 7 R 1.248667 3 

381 58R/9b C H 3 7 R 0.646667 2 

382 8E/1 C H 2 2 E 0.179667 1 

383 8E/10 C H 2 2 E 0.391 1 

384 8E/11 C H 2 2 E 0.427333 1 

385 8E/13 C H 2 2 E 0.510333 1 

386 8E/14 C H 2 2 E 0.051333 1 

387 8E/16 C H 2 2 E 1.581667 3 

388 8E/18 C H 2 2 E 0.197 1 

389 8E/19 C H 2 2 E 0.061667 1 

390 8E/2 C H 2 2 E 1.040333 2 

391 8E/20 C H 2 2 E 0.278 1 

392 8E/3 C H 2 2 E 0.108333 1 

393 8E/4 C H 2 2 E 0.097 1 

394 8E/5 C H 2 2 E 0.069667 1 

395 8E/6 C H 2 2 E 0.408333 1 

396 8E/7 C H 2 2 E 0.591667 2 

397 8R/11 C H 2 2 R 0.696333 2 

398 8R/12 C H 2 2 R 0.999 2 

399 8R/13 C H 2 2 R 0.64 2 

400 8R/14 C H 2 2 R 0.757667 2 

401 8R/15 C H 2 2 R 0.818333 2 
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402 8R/17 C H 2 2 R 1.554667 3 

403 8R/18 C H 2 2 R 0.457 1 

404 8R/2 C H 2 2 R 0.366667 1 

405 8R/20 C H 2 2 R 0.661 2 

406 8R/5 C H 2 2 R 0.976 2 

407 8R/6 C H 2 2 R 0.032333 1 

408 8R/7a C H 2 2 R 0.953667 2 

409 8R/7b C H 2 2 R 0.707 2 

410 8R/8 C H 2 2 R 1.294 3 

411 8R/9 C H 2 2 R 0.95 2 

 

 

9.2.2 Appendix II: Averaged inhibition zone data by block. (* No samples are available for this planting combination). 

block no. Plot no. Year1 Year2 niche average 

1 1 H H E 0.738359 

1 1 H H R 0.645256 

1 2 H Xi E 0.243967 

1 2 H Xi R 0.3174 

1 3 C Xi E 0.24581 

1 3 C Xi R 0.43069 

1 4 C H E 0.879378 

1 4 C H R 0.826872 

2 1 C H E 0.399556 

2 1 C H R 0.790911 

2 2 H Xi E 0.580667 
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2 2 H Xi R 0.584444 

2 3 C Xi E 0.755889 

2 3 C Xi R 0.535044 

2 4 H H E * 

2 4 H H R 0.471333 

3 1 C Xi E 0.771381 

3 1 C Xi R 0.864489 

3 2 H Xi E 0.520452 

3 2 H Xi R 0.521422 

3 3 H H E 0.363333 

3 3 H H R 0.347733 

3 4 C H E 0.949933 

3 4 C H R 0.838444 

4 1 C Xi E 0.627167 

4 1 C Xi R 0.586844 

4 2 H Xi E 0.622875 

4 2 H Xi R 0.708844 

4 3 H H E 0.863978 

4 3 H H R * 

4 4 C H E 0.861167 

4 4 C H R 1.133476 
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9.2.3: Pseudomonas fluorescens complex GenBank IDs. 

no GenBank ID Strain 

1 KX696671.1 Pseudomonas chlororaphis strain 48G9 DNA gyrase subunit B (gyrB) 

2 KY307842.1 Pseudomonas corrugata strain RS-C DNA gyrase subunit B (gyrB)  

3 DQ882266.1 Pseudomonas fragi strain ATCC 27363 DNA gyrase subunit B (gyrB) 

4 KJ475047.1 Pseudomonas gessardii strain IARI-CL14 DNA gyrase subunit B (gyrB) 

5 KJ475044.1 Pseudomonas jessenii strain IARI-BR2 DNA gyrase subunit B (gyrB) 

6 AM293563..1 Pseudomonas koreensis partial gyrB gene for DNA gyrase subunit B 

7 FN554200.1 Pseudomonas mandelii partial gyrB gene for DNA gyrase subunit B 

8 KU0525859.1 Pseudomonas protegens strain Pf5 DNA gyrase subunit B (gyrB)  
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9.2.4: Alignment of 25 GH2 isolates with members of Pseudomonas fluorescens complex. P. aeuroginosa was the outgroup. The 

alignment was made with MUSCLE in Geneious Prime. 
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9.3 Chapter 5 Appendix 

9.3.1 Appendix I: 

Table a: Shoot height data. (*) data not available, refer to table d for isolate code. Coating: 1; coated, 2; sterile. Cultivar: H; Hereward, 

C; Cadenza. Rep: 3 replicates per treatment. Trt: 40 identified treatments. 

No !Isolate !Coating !Ggt !Trt !Cultivar !rep shoot_length 

1 1 2 2 1 H 1 25 

2 1 2 2 1 H 2 24 

3 1 2 2 1 H 3 23 

4 2 1 2 2 H 1 24 

5 2 1 2 2 H 2 14.5 

6 2 1 2 2 H 3 21 

7 3 1 2 3 H 1 24.5 

8 3 1 2 3 H 2 23 

9 3 1 2 3 H 3 23 

10 4 1 2 4 H 1 * 

11 4 1 2 4 H 2 19 

12 4 1 2 4 H 3 22.5 

13 5 1 2 5 H 1 * 

14 5 1 2 5 H 2 * 

15 5 1 2 5 H 3 21 

16 6 1 2 6 H 1 23 

17 6 1 2 6 H 2 22 

18 6 1 2 6 H 3 18 

19 7 1 2 7 H 1 22 

20 7 1 2 7 H 2 21 

21 7 1 2 7 H 3 13 
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22 8 1 2 8 H 1 * 

23 8 1 2 8 H 2 * 

24 8 1 2 8 H 3 21 

25 9 1 2 9 H 1 * 

26 9 1 2 9 H 2 * 

27 9 1 2 9 H 3 21.5 

28 10 1 2 10 H 1 1 

29 10 1 2 10 H 2 15 

30 10 1 2 10 H 3 22 

31 1 2 1 11 H 1 13.5 

32 1 2 1 11 H 2 17 

33 1 2 1 11 H 3 23 

34 2 1 1 12 H 1 17.5 

35 2 1 1 12 H 2 17 

36 2 1 1 12 H 3 11.5 

37 3 1 1 13 H 1 20.5 

38 3 1 1 13 H 2 19 

39 3 1 1 13 H 3 19 

40 4 1 1 14 H 1 19 

41 4 1 1 14 H 2 21.5 

42 4 1 1 14 H 3 22 

43 5 1 1 15 H 1 16 

44 5 1 1 15 H 2 16.5 

45 5 1 1 15 H 3 16 

46 6 1 1 16 H 1 0.5 

47 6 1 1 16 H 2 11.5 

48 6 1 1 16 H 3 20.5 

49 7 1 1 17 H 1 * 

50 7 1 1 17 H 2 21.5 
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51 7 1 1 17 H 3 22 

52 8 1 1 18 H 1 * 

53 8 1 1 18 H 2 21.5 

54 8 1 1 18 H 3 17 

55 9 1 1 19 H 1 16 

56 9 1 1 19 H 2 21.5 

57 9 1 1 19 H 3 20 

58 10 1 1 20 H 1 20.5 

59 10 1 1 20 H 2 16.5 

60 10 1 1 20 H 3 15.5 

61 1 2 2 21 C 1 30 

62 1 2 2 21 C 2 32 

63 1 2 2 21 C 3 30 

64 2 1 2 22 C 1 27.5 

65 2 1 2 22 C 2 26 

66 2 1 2 22 C 3 36 

67 3 1 2 23 C 1 12.5 

68 3 1 2 23 C 2 27.5 

69 3 1 2 23 C 3 30 

70 4 1 2 24 C 1 19 

71 4 1 2 24 C 2 25 

72 4 1 2 24 C 3 31.5 

73 5 1 2 25 C 1 29 

74 5 1 2 25 C 2 17.5 

75 5 1 2 25 C 3 32 

76 6 1 2 26 C 1 16.5 

77 6 1 2 26 C 2 36 

78 6 1 2 26 C 3 27 

79 7 1 2 27 C 1 17 
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80 7 1 2 27 C 2 30 

81 7 1 2 27 C 3 * 

82 8 1 2 28 C 1 29 

83 8 1 2 28 C 2 24 

84 8 1 2 28 C 3 30 

85 9 1 2 29 C 1 27 

86 9 1 2 29 C 2 28 

87 9 1 2 29 C 3 23.5 

88 10 1 2 30 C 1 * 

89 10 1 2 30 C 2 27 

90 10 1 2 30 C 3 24 

91 1 2 1 31 C 1 * 

92 1 2 1 31 C 2 16.5 

93 1 2 1 31 C 3 18 

94 2 1 1 32 C 1 24 

95 2 1 1 32 C 2 23 

96 2 1 1 32 C 3 21.5 

97 3 1 1 33 C 1 18.5 

98 3 1 1 33 C 2 24.5 

99 3 1 1 33 C 3 22 

100 4 1 1 34 C 1 30 

101 4 1 1 34 C 2 22 

102 4 1 1 34 C 3 33 

103 5 1 1 35 C 1 28 

104 5 1 1 35 C 2 19 

105 5 1 1 35 C 3 18 

106 6 1 1 36 C 1 * 

107 6 1 1 36 C 2 18 

108 6 1 1 36 C 3 29 
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109 7 1 1 37 C 1 26 

110 7 1 1 37 C 2 28 

111 7 1 1 37 C 3 25.5 

112 8 1 1 38 C 1 19 

113 8 1 1 38 C 2 27.5 

114 8 1 1 38 C 3 21.5 

115 9 1 1 39 C 1 * 

116 9 1 1 39 C 2 15 

117 9 1 1 39 C 3 28 

118 10 1 1 40 C 1 21 

119 10 1 1 40 C 2 26 

120 10 1 1 40 C 3 12 

 

 

Table b: Root length data. (*) data not available, refer to table d for isolate code. Coating: 1; coated, 2; sterile. Cultivar: H; Hereward, 

C; Cadenza. Rep: 3 replicates per treatment. Trt: 40 identified treatments. 

No Isolate Coating Ggt Trt Cultivar rep root_length 

1 1 2 2 1 H 1 17 

2 1 2 2 1 H 2 19 

3 1 2 2 1 H 3 18 

4 2 1 2 2 H 1 19 

5 2 1 2 2 H 2 16 

6 2 1 2 2 H 3 18 

7 3 1 2 3 H 1 22 

8 3 1 2 3 H 2 19 

9 3 1 2 3 H 3 18 
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10 4 1 2 4 H 1 * 

11 4 1 2 4 H 2 18 

12 4 1 2 4 H 3 18 

13 5 1 2 5 H 1 * 

14 5 1 2 5 H 2 * 

15 5 1 2 5 H 3 19 

16 6 1 2 6 H 1 30 

17 6 1 2 6 H 2 22 

18 6 1 2 6 H 3 17 

19 7 1 2 7 H 1 21 

20 7 1 2 7 H 2 19 

21 7 1 2 7 H 3 18 

22 8 1 2 8 H 1 * 

23 8 1 2 8 H 2 * 

24 8 1 2 8 H 3 19 

25 9 1 2 9 H 1 * 

26 9 1 2 9 H 2 * 

27 9 1 2 9 H 3 19 

28 10 1 2 10 H 1 17 

29 10 1 2 10 H 2 13 

30 10 1 2 10 H 3 19 

31 1 2 1 11 H 1 9.5 

32 1 2 1 11 H 2 18 

33 1 2 1 11 H 3 29 

34 2 1 1 12 H 1 13 

35 2 1 1 12 H 2 19 

36 2 1 1 12 H 3 25 

37 3 1 1 13 H 1 15 

38 3 1 1 13 H 2 16 
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39 3 1 1 13 H 3 18 

40 4 1 1 14 H 1 19 

41 4 1 1 14 H 2 24.5 

42 4 1 1 14 H 3 19 

43 5 1 1 15 H 1 17.5 

44 5 1 1 15 H 2 24 

45 5 1 1 15 H 3 20 

46 6 1 1 16 H 1 15 

47 6 1 1 16 H 2 21 

48 6 1 1 16 H 3 19 

49 7 1 1 17 H 1 * 

50 7 1 1 17 H 2 21 

51 7 1 1 17 H 3 19 

52 8 1 1 18 H 1 * 

53 8 1 1 18 H 2 25 

54 8 1 1 18 H 3 23.5 

55 9 1 1 19 H 1 19 

56 9 1 1 19 H 2 25 

57 9 1 1 19 H 3 18.5 

58 10 1 1 20 H 1 20.5 

59 10 1 1 20 H 2 17.5 

60 10 1 1 20 H 3 15 

61 1 2 2 21 C 1 20.5 

62 1 2 2 21 C 2 21 

63 1 2 2 21 C 3 27 

64 2 1 2 22 C 1 18.5 

65 2 1 2 22 C 2 16.5 

66 2 1 2 22 C 3 24 

67 3 1 2 23 C 1 16 
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68 3 1 2 23 C 2 13 

69 3 1 2 23 C 3 14 

70 4 1 2 24 C 1 16 

71 4 1 2 24 C 2 19 

72 4 1 2 24 C 3 18 

73 5 1 2 25 C 1 16 

74 5 1 2 25 C 2 15 

75 5 1 2 25 C 3 20 

76 6 1 2 26 C 1 15 

77 6 1 2 26 C 2 16 

78 6 1 2 26 C 3 16.5 

79 7 1 2 27 C 1 11.5 

80 7 1 2 27 C 2 21 

81 7 1 2 27 C 3 * 

82 8 1 2 28 C 1 20.5 

83 8 1 2 28 C 2 14 

84 8 1 2 28 C 3 21 

85 9 1 2 29 C 1 19 

86 9 1 2 29 C 2 23 

87 9 1 2 29 C 3 23 

88 10 1 2 30 C 1 * 

89 10 1 2 30 C 2 18 

90 10 1 2 30 C 3 20 

91 1 2 1 31 C 1 * 

92 1 2 1 31 C 2 19 

93 1 2 1 31 C 3 12 

94 2 1 1 32 C 1 15 

95 2 1 1 32 C 2 20 

96 2 1 1 32 C 3 19 
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97 3 1 1 33 C 1 18 

98 3 1 1 33 C 2 21 

99 3 1 1 33 C 3 17 

100 4 1 1 34 C 1 14 

101 4 1 1 34 C 2 13 

102 4 1 1 34 C 3 15 

103 5 1 1 35 C 1 14 

104 5 1 1 35 C 2 19 

105 5 1 1 35 C 3 14.5 

106 6 1 1 36 C 1 * 

107 6 1 1 36 C 2 13 

108 6 1 1 36 C 3 14.5 

109 7 1 1 37 C 1 16.5 

110 7 1 1 37 C 2 21 

111 7 1 1 37 C 3 18 

112 8 1 1 38 C 1 18.5 

113 8 1 1 38 C 2 20.5 

114 8 1 1 38 C 3 17 

115 9 1 1 39 C 1 * 

116 9 1 1 39 C 2 16 

117 9 1 1 39 C 3 19 

118 10 1 1 40 C 1 13 

119 10 1 1 40 C 2 23 

120 10 1 1 40 C 3 15 
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Table c: Fresh weight data. (*) data not available, refer to table d for isolate code. Coating: 1; coated, 2; sterile. Cultivar: H; Hereward, 

C; Cadenza. Rep: 3 replicates per treatment. Trt: 40 identified treatments. 

No !Isolate !Coating !Ggt !Trt !Cultivar !rep plant_weight 

1 1 2 2 1 H 1 0.275 

2 1 2 2 1 H 2 0.369 

3 1 2 2 1 H 3 0.38 

4 2 1 2 2 H 1 0.298 

5 2 1 2 2 H 2 0.159 

6 2 1 2 2 H 3 0.291 

7 3 1 2 3 H 1 0.283 

8 3 1 2 3 H 2 0.296 

9 3 1 2 3 H 3 0.298 

10 4 1 2 4 H 1 * 

11 4 1 2 4 H 2 0.165 

12 4 1 2 4 H 3 0.237 

13 5 1 2 5 H 1 * 

14 5 1 2 5 H 2 * 

15 5 1 2 5 H 3 0.42 

16 6 1 2 6 H 1 0.416 

17 6 1 2 6 H 2 0.408 

18 6 1 2 6 H 3 0.234 

19 7 1 2 7 H 1 0.416 

20 7 1 2 7 H 2 0.246 

21 7 1 2 7 H 3 0.215 

22 8 1 2 8 H 1 * 

23 8 1 2 8 H 2 * 
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24 8 1 2 8 H 3 0.355 

25 9 1 2 9 H 1 * 

26 9 1 2 9 H 2 * 

27 9 1 2 9 H 3 0.382 

28 10 1 2 10 H 1 0.121 

29 10 1 2 10 H 2 0.365 

30 10 1 2 10 H 3 0.359 

31 1 2 1 11 H 1 0.102 

32 1 2 1 11 H 2 0.137 

33 1 2 1 11 H 3 0.33 

34 2 1 1 12 H 1 0.156 

35 2 1 1 12 H 2 0.203 

36 2 1 1 12 H 3 0.376 

37 3 1 1 13 H 1 0.194 

38 3 1 1 13 H 2 0.236 

39 3 1 1 13 H 3 0.244 

40 4 1 1 14 H 1 0.407 

41 4 1 1 14 H 2 0.424 

42 4 1 1 14 H 3 0.242 

43 5 1 1 15 H 1 0.225 

44 5 1 1 15 H 2 0.224 

45 5 1 1 15 H 3 0.269 

46 6 1 1 16 H 1 0.17 

47 6 1 1 16 H 2 0.372 

48 6 1 1 16 H 3 0.236 

49 7 1 1 17 H 1 * 

50 7 1 1 17 H 2 0.237 

51 7 1 1 17 H 3 0.339 

52 8 1 1 18 H 1 * 
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53 8 1 1 18 H 2 0.191 

54 8 1 1 18 H 3 0.431 

55 9 1 1 19 H 1 0.178 

56 9 1 1 19 H 2 0.35 

57 9 1 1 19 H 3 0.325 

58 10 1 1 20 H 1 0.293 

59 10 1 1 20 H 2 0.181 

60 10 1 1 20 H 3 0.235 

61 1 2 2 21 C 1 0.385 

62 1 2 2 21 C 2 0.4 

63 1 2 2 21 C 3 0.496 

64 2 1 2 22 C 1 0.197 

65 2 1 2 22 C 2 0.497 

66 2 1 2 22 C 3 0.353 

67 3 1 2 23 C 1 0.273 

68 3 1 2 23 C 2 0.144 

69 3 1 2 23 C 3 0.308 

70 4 1 2 24 C 1 0.253 

71 4 1 2 24 C 2 0.161 

72 4 1 2 24 C 3 0.333 

73 5 1 2 25 C 1 0.307 

74 5 1 2 25 C 2 0.301 

75 5 1 2 25 C 3 0.258 

76 6 1 2 26 C 1 0.301 

77 6 1 2 26 C 2 0.291 

78 6 1 2 26 C 3 0.291 

79 7 1 2 27 C 1 0.408 

80 7 1 2 27 C 2 0.191 

81 7 1 2 27 C 3 * 
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82 8 1 2 28 C 1 0.337 

83 8 1 2 28 C 2 0.361 

84 8 1 2 28 C 3 0.199 

85 9 1 2 29 C 1 0.299 

86 9 1 2 29 C 2 0.314 

87 9 1 2 29 C 3 0.313 

88 10 1 2 30 C 1 * 

89 10 1 2 30 C 2 0.314 

90 10 1 2 30 C 3 0.282 

91 1 2 1 31 C 1 * 

92 1 2 1 31 C 2 0.165 

93 1 2 1 31 C 3 0.105 

94 2 1 1 32 C 1 0.141 

95 2 1 1 32 C 2 0.197 

96 2 1 1 32 C 3 0.121 

97 3 1 1 33 C 1 0.205 

98 3 1 1 33 C 2 0.25 

99 3 1 1 33 C 3 0.214 

100 4 1 1 34 C 1 0.311 

101 4 1 1 34 C 2 0.153 

102 4 1 1 34 C 3 0.389 

103 5 1 1 35 C 1 0.134 

104 5 1 1 35 C 2 0.147 

105 5 1 1 35 C 3 0.295 

106 6 1 1 36 C 1 * 

107 6 1 1 36 C 2 0.126 

108 6 1 1 36 C 3 0.429 

109 7 1 1 37 C 1 0.282 

110 7 1 1 37 C 2 0.457 
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111 7 1 1 37 C 3 0.3 

112 8 1 1 38 C 1 0.243 

113 8 1 1 38 C 2 0.298 

114 8 1 1 38 C 3 0.174 

115 9 1 1 39 C 1 * 

116 9 1 1 39 C 2 0.15 

117 9 1 1 39 C 3 0.257 

118 10 1 1 40 C 1 0.155 

119 10 1 1 40 C 2 0.112 

120 10 1 1 40 C 3 0.246 

 

 

Table d: Isolate Key. 

isolate CODE 

sterile 1 

24E/2 2 

24E/4 3 

25R/7 4 

28R/9 5 

30R/11 6 

37R/15 7 

44E/7 8 

44R/4 9 

MIX of 
six 10 
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Table e: Infected roots to the total number of roots. (*) data not available refer to table d for isolate code. Trt: 20 identified. Rep: 3 

replicates per treatment. Cultivar: H; Hereward, C; Cadenza treatments. Ggt: 1;present. 

no !Trt !rep !Isolate !cultivar !Ggt total_roots no_infected infected_present !inf_p 

1 1 1 1 H 1 4 4 1 1 

2 1 2 1 H 1 6 6 1 1 

3 1 3 1 H 1 7 7 1 1 

4 2 1 2 H 1 7 7 1 1 

5 2 2 2 H 1 5 5 1 1 

6 2 3 2 H 1 4 1 1 1 

7 3 1 3 H 1 6 6 1 1 

8 3 2 3 H 1 5 5 1 1 

9 3 3 3 H 1 5 4 1 1 

10 4 1 4 H 1 4 4 1 1 

11 4 2 4 H 1 5 5 1 1 

12 4 3 4 H 1 7 7 1 1 

13 5 1 5 H 1 8 7 1 1 

14 5 2 5 H 1 5 5 1 1 

15 5 3 5 H 1 5 5 1 1 

16 6 1 6 H 1 3 1 1 1 

17 6 2 6 H 1 7 0 0 0 

18 6 3 6 H 1 5 1 1 1 

19 7 1 7 H 1 * * * * 

20 7 2 7 H 1 5 5 1 1 

21 7 3 7 H 1 8 8 1 1 

22 8 1 8 H 1 * * * * 
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23 8 2 8 H 1 6 6 1 1 

24 8 3 8 H 1 3 3 1 1 

25 9 1 9 H 1 5 5 1 1 

26 9 2 9 H 1 7 5 1 1 

27 9 3 9 H 1 5 5 1 1 

28 10 1 10 H 1 5 5 1 1 

29 10 2 10 H 1 5 5 1 1 

30 10 3 10 H 1 5 0 0 0 

31 11 1 1 C 1 * * * * 

32 11 2 1 C 1 5 5 1 1 

33 11 3 1 C 1 6 6 1 1 

34 12 1 2 C 1 8 8 1 1 

35 12 2 2 C 1 7 7 1 1 

36 12 3 2 C 1 5 5 1 1 

37 13 1 3 C 1 5 1 1 1 

38 13 2 3 C 1 5 5 1 1 

39 13 3 3 C 1 7 7 1 1 

40 14 1 4 C 1 7 3 1 1 

41 14 2 4 C 1 8 6 1 1 

42 14 3 4 C 1 6 2 1 1 

43 15 1 5 C 1 7 7 1 1 

44 15 2 5 C 1 6 6 1 1 

45 15 3 5 C 1 8 8 1 1 

46 16 1 6 C 1 * * * * 

47 16 2 6 C 1 6 6 1 1 

48 16 3 6 C 1 5 3 1 1 

49 17 1 7 C 1 4 4 1 1 

50 17 2 7 C 1 7 7 1 1 

51 17 3 7 C 1 5 5 1 1 
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52 18 1 8 C 1 4 4 1 1 

53 18 2 8 C 1 5 2 1 1 

54 18 3 8 C 1 7 7 1 1 

55 19 1 9 C 1 * * * * 

56 19 2 9 C 1 3 2 1 1 

57 19 3 9 C 1 5 4 1 1 

58 20 1 10 C 1 7 7 1 1 

59 20 2 10 C 1 8 7 1 1 

60 20 3 10 C 1 5 5 1 1 

 

 

9.3.2 Appendix II: 

Table a: shoot raw data. Isolate 1 is 25R/7, isolate 2 is 30R/11, isolate 3 is the mix of 6 antagonistic isolates, isolate 4 sterile; coating 

1 is seeds coated, coating 2 non-bacterial coated seeds; conc.1 is OD1, conc.2 is OD0.5, conc. 3 is OD 0.1; Ggt 1: present, 2: absent; 

and rep are the 10 replicates per treatment. (*) refers to missing values (no data). 

No. Cultivar Isolate Coating Conc Rep Ggt average shoot (cm) 

1 C 1 1 1 1 1 23.5 

2 C 1 1 1 2 1 18.75 

3 C 1 1 1 3 1 19.75 

4 C 1 1 1 4 1 26.65 

5 C 1 1 1 5 1 20.5 

6 C 1 1 1 6 1 14.83333333 

7 C 1 1 1 7 1 24.25 

8 C 1 1 1 8 1 27.75 

9 C 1 1 1 9 1 25 

10 C 1 1 1 10 1 21.45 
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11 C 1 1 2 1 1 17.66666667 

12 C 1 1 2 2 1 19.33333333 

13 C 1 1 2 3 1 15.15 

14 C 1 1 2 4 1 17 

15 C 1 1 2 5 1 16.9 

16 C 1 1 2 6 1 20.5 

17 C 1 1 2 7 1 16.75 

18 C 1 1 2 8 1 17.9 

19 C 1 1 2 9 1 7.625 

20 C 1 1 2 10 1 * 

21 C 1 1 3 1 1 20.75 

22 C 1 1 3 2 1 24.5 

23 C 1 1 3 3 1 24 

24 C 1 1 3 4 1 21.75 

25 C 1 1 3 5 1 21.25 

26 C 1 1 3 6 1 11 

27 C 1 1 3 7 1 22 

28 C 1 1 3 8 1 10.775 

29 C 1 1 3 9 1 * 

30 C 1 1 3 10 1 * 

31 C 2 1 1 1 1 26.45 

32 C 2 1 1 2 1 24.25 

33 C 2 1 1 3 1 24.25 

34 C 2 1 1 4 1 19.75 

35 C 2 1 1 5 1 25 

36 C 2 1 1 6 1 7 

37 C 2 1 1 7 1 21.5 

38 C 2 1 1 8 1 20.25 

39 C 2 1 1 9 1 23.25 
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40 C 2 1 1 10 1 26 

41 C 2 1 2 1 1 27.25 

42 C 2 1 2 2 1 20.75 

43 C 2 1 2 3 1 3.5 

44 C 2 1 2 4 1 17 

45 C 2 1 2 5 1 8.666666667 

46 C 2 1 2 6 1 9.666666667 

47 C 2 1 2 7 1 23.33333333 

48 C 2 1 2 8 1 28.5 

49 C 2 1 2 9 1 22.5 

50 C 2 1 2 10 1 * 

51 C 2 1 3 1 1 25.4 

52 C 2 1 3 2 1 18.4 

53 C 2 1 3 3 1 26 

54 C 2 1 3 4 1 18.25 

55 C 2 1 3 5 1 17.6 

56 C 2 1 3 6 1 17.5 

57 C 2 1 3 7 1 21.75 

58 C 2 1 3 8 1 18.75 

59 C 2 1 3 9 1 * 

60 C 2 1 3 10 1 * 

61 C 3 1 1 1 1 0.5 

62 C 3 1 1 2 1 23.75 

63 C 3 1 1 3 1 23 

64 C 3 1 1 4 1 15.83333333 

65 C 3 1 1 5 1 20.5 

66 C 3 1 1 6 1 28 

67 C 3 1 1 7 1 8.75 

68 C 3 1 1 8 1 26 
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69 C 3 1 1 9 1 23.16666667 

70 C 3 1 1 10 1 26.5 

71 C 3 1 2 1 1 24.75 

72 C 3 1 2 2 1 25.75 

73 C 3 1 2 3 1 15.25 

74 C 3 1 2 4 1 15 

75 C 3 1 2 5 1 21 

76 C 3 1 2 6 1 14.5 

77 C 3 1 2 7 1 25.65 

78 C 3 1 2 8 1 19.5 

79 C 3 1 2 9 1 20.83333333 

80 C 3 1 2 10 1 29 

81 C 3 1 3 1 1 5.5 

82 C 3 1 3 2 1 25.8 

83 C 3 1 3 3 1 22.25 

84 C 3 1 3 4 1 12.5 

85 C 3 1 3 5 1 13.75 

86 C 3 1 3 6 1 21.85 

87 C 3 1 3 7 1 23.85 

88 C 3 1 3 8 1 18.76666667 

89 C 3 1 3 9 1 25.75 

90 C 3 1 3 10 1 21 

91 C 4 2 4 1 1 16.5 

92 C 4 2 4 2 1 3.666666667 

93 C 4 2 4 3 1 12 

94 C 4 2 4 4 1 21 

95 C 4 2 4 5 1 17.25 

96 C 4 2 4 6 1 14.66666667 

97 C 4 2 4 7 1 14.5 
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98 C 4 2 4 8 1 12.75 

99 C 4 2 4 9 1 14.2 

100 C 4 2 4 10 1 * 

101 C 4 2 4 1 2 24 

102 C 4 2 4 2 2 1.5 

103 C 4 2 4 3 2 11.16666667 

104 C 4 2 4 4 2 23.16666667 

105 C 4 2 4 5 2 23.25 

106 C 4 2 4 6 2 24.75 

107 C 4 2 4 7 2 23.25 

108 C 4 2 4 8 2 23.5 

109 C 4 2 4 9 2 20 

110 C 4 2 4 10 2 17.5 

111 H 1 1 1 1 1 5.5 

112 H 1 1 1 2 1 9.25 

113 H 1 1 1 3 1 13 

114 H 1 1 1 4 1 12.16666667 

115 H 1 1 1 5 1 14.66666667 

116 H 1 1 1 6 1 16 

117 H 1 1 1 7 1 6.833333333 

118 H 1 1 1 8 1 17.25 

119 H 1 1 1 9 1 * 

120 H 1 1 1 10 1 * 

121 H 1 1 2 1 1 13.5 

122 H 1 1 2 2 1 13 

123 H 1 1 2 3 1 18.33333333 

124 H 1 1 2 4 1 13.25 

125 H 1 1 2 5 1 12.5 

126 H 1 1 2 6 1 14.25 



351 
 

127 H 1 1 2 7 1 * 

128 H 1 1 2 8 1 * 

129 H 1 1 2 9 1 * 

130 H 1 1 2 10 1 * 

131 H 1 1 3 1 1 10.25 

132 H 1 1 3 2 1 4.5 

133 H 1 1 3 3 1 13.66666667 

134 H 1 1 3 4 1 10.66666667 

135 H 1 1 3 5 1 15.16666667 

136 H 1 1 3 6 1 16 

137 H 1 1 3 7 1 * 

138 H 1 1 3 8 1 * 

139 H 1 1 3 9 1 * 

140 H 1 1 3 10 1 * 

141 H 2 1 1 1 1 16.75 

142 H 2 1 1 2 1 11 

143 H 2 1 1 3 1 14 

144 H 2 1 1 4 1 11.66666667 

145 H 2 1 1 5 1 12.66666667 

146 H 2 1 1 6 1 17.75 

147 H 2 1 1 7 1 15.43333333 

148 H 2 1 1 8 1 8.433333333 

149 H 2 1 1 9 1 14.75 

150 H 2 1 1 10 1 * 

151 H 2 1 2 1 1 10.16666667 

152 H 2 1 2 2 1 14.73333333 

153 H 2 1 2 3 1 13 

154 H 2 1 2 4 1 16.66666667 

155 H 2 1 2 5 1 19 
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156 H 2 1 2 6 1 16.75 

157 H 2 1 2 7 1 15.5 

158 H 2 1 2 8 1 15.03333333 

159 H 2 1 2 9 1 1 

160 H 2 1 2 10 1 * 

161 H 2 1 3 1 1 13 

162 H 2 1 3 2 1 8.833333333 

163 H 2 1 3 3 1 13.66666667 

164 H 2 1 3 4 1 16.25 

165 H 2 1 3 5 1 13.25 

166 H 2 1 3 6 1 9 

167 H 2 1 3 7 1 13.5 

168 H 2 1 3 8 1 14.5 

169 H 2 1 3 9 1 13.25 

170 H 2 1 3 10 1 * 

171 H 3 1 1 1 1 13 

172 H 3 1 1 2 1 10.5 

173 H 3 1 1 3 1 13.4 

174 H 3 1 1 4 1 7.325 

175 H 3 1 1 5 1 18.1 

176 H 3 1 1 6 1 15.25 

177 H 3 1 1 7 1 12.75 

178 H 3 1 1 8 1 13.15 

179 H 3 1 1 9 1 16.75 

180 H 3 1 1 10 1 17.25 

181 H 3 1 2 1 1 14.5 

182 H 3 1 2 2 1 12.75 

183 H 3 1 2 3 1 17.25 

184 H 3 1 2 4 1 7.45 
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185 H 3 1 2 5 1 14.5 

186 H 3 1 2 6 1 14.5 

187 H 3 1 2 7 1 13 

188 H 3 1 2 8 1 15.75 

189 H 3 1 2 9 1 * 

190 H 3 1 2 10 1 * 

191 H 3 1 3 1 1 0.5 

192 H 3 1 3 2 1 15.5 

193 H 3 1 3 3 1 14 

194 H 3 1 3 4 1 17.5 

195 H 3 1 3 5 1 10.75 

196 H 3 1 3 6 1 17.25 

197 H 3 1 3 7 1 14 

198 H 3 1 3 8 1 17.5 

199 H 3 1 3 9 1 * 

200 H 3 1 3 10 1 * 

201 H 4 2 4 1 1 12.25 

202 H 4 2 4 2 1 11.33333333 

203 H 4 2 4 3 1 14.5 

204 H 4 2 4 4 1 6.75 

205 H 4 2 4 5 1 14.66666667 

206 H 4 2 4 6 1 12.63333333 

207 H 4 2 4 7 1 17.9 

208 H 4 2 4 8 1 14.45 

209 H 4 2 4 9 1 17.5 

210 H 4 2 4 10 1 * 

211 H 4 2 4 1 2 20 

212 H 4 2 4 2 2 16.33333333 

213 H 4 2 4 3 2 15.75 
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214 H 4 2 4 4 2 20 

215 H 4 2 4 5 2 15.75 

216 H 4 2 4 6 2 12.75 

217 H 4 2 4 7 2 14.56666667 

218 H 4 2 4 8 2 12.83333333 

219 H 4 2 4 9 2 15.25 

220 H 4 2 4 10 2 9.833333333 

 

 

 

 

Table b: root length raw data. Isolate 1 is 25R/7, isolate 2 is 30R/11, isolate 3 is the mix of 6 antagonistic isolates, isolate 4 sterile; 

coating 1 is seeds coated, coating 2 non-bacterial coated seeds; conc.1 is OD1, conc.2 is OD0.5, conc. 3 is OD 0.1; Ggt 1: present, 

2: absent; and rep are the 10 replicates per treatment. * refers to missing values (no data). 

No. Cultivar Isolate Coating Conc Rep Ggt root (cm) 

1 C 1 1 1 1 1 22 

2 C 1 1 1 2 1 21.5 

3 C 1 1 1 3 1 18 

4 C 1 1 1 4 1 24 

5 C 1 1 1 5 1 23 

6 C 1 1 1 6 1 16 

7 C 1 1 1 7 1 17 

8 C 1 1 1 8 1 21.5 

9 C 1 1 1 9 1 20 

10 C 1 1 1 10 1 18 
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11 C 1 1 2 1 1 30 

12 C 1 1 2 2 1 18 

13 C 1 1 2 3 1 19 

14 C 1 1 2 4 1 17.5 

15 C 1 1 2 5 1 19 

16 C 1 1 2 6 1 20 

17 C 1 1 2 7 1 16 

18 C 1 1 2 8 1 15 

19 C 1 1 2 9 1 18 

20 C 1 1 2 10 1 * 

21 C 1 1 3 1 1 22 

22 C 1 1 3 2 1 18 

23 C 1 1 3 3 1 20 

24 C 1 1 3 4 1 20 

25 C 1 1 3 5 1 27 

26 C 1 1 3 6 1 18 

27 C 1 1 3 7 1 17.5 

28 C 1 1 3 8 1 27 

29 C 1 1 3 9 1 * 

30 C 1 1 3 10 1 * 

31 C 2 1 1 1 1 25 

32 C 2 1 1 2 1 16 

33 C 2 1 1 3 1 24 

34 C 2 1 1 4 1 19 

35 C 2 1 1 5 1 26.5 

36 C 2 1 1 6 1 17 

37 C 2 1 1 7 1 22 

38 C 2 1 1 8 1 20 

39 C 2 1 1 9 1 24 
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40 C 2 1 1 10 1 18 

41 C 2 1 2 1 1 22.5 

42 C 2 1 2 2 1 21 

43 C 2 1 2 3 1 7 

44 C 2 1 2 4 1 17 

45 C 2 1 2 5 1 18 

46 C 2 1 2 6 1 13.5 

47 C 2 1 2 7 1 21 

48 C 2 1 2 8 1 23 

49 C 2 1 2 9 1 19 

50 C 2 1 2 10 1 * 

51 C 2 1 3 1 1 17 

52 C 2 1 3 2 1 16 

53 C 2 1 3 3 1 37 

54 C 2 1 3 4 1 16 

55 C 2 1 3 5 1 15 

56 C 2 1 3 6 1 25 

57 C 2 1 3 7 1 22 

58 C 2 1 3 8 1 16.5 

59 C 2 1 3 9 1 * 

60 C 2 1 3 10 1 * 

61 C 3 1 1 1 1 0.5 

62 C 3 1 1 2 1 25 

63 C 3 1 1 3 1 26 

64 C 3 1 1 4 1 24 

65 C 3 1 1 5 1 19 

66 C 3 1 1 6 1 27 

67 C 3 1 1 7 1 14.5 

68 C 3 1 1 8 1 18 
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69 C 3 1 1 9 1 25 

70 C 3 1 1 10 1 21 

71 C 3 1 2 1 1 32 

72 C 3 1 2 2 1 28 

73 C 3 1 2 3 1 30 

74 C 3 1 2 4 1 18 

75 C 3 1 2 5 1 21.5 

76 C 3 1 2 6 1 15 

77 C 3 1 2 7 1 23 

78 C 3 1 2 8 1 17 

79 C 3 1 2 9 1 24 

80 C 3 1 2 10 1 23.5 

81 C 3 1 3 1 1 7 

82 C 3 1 3 2 1 29 

83 C 3 1 3 3 1 29 

84 C 3 1 3 4 1 11.5 

85 C 3 1 3 5 1 21 

86 C 3 1 3 6 1 16 

87 C 3 1 3 7 1 12 

88 C 3 1 3 8 1 16 

89 C 3 1 3 9 1 22 

90 C 3 1 3 10 1 31 

91 C 4 2 4 1 1 13 

92 C 4 2 4 2 1 12 

93 C 4 2 4 3 1 13 

94 C 4 2 4 4 1 13 

95 C 4 2 4 5 1 19 

96 C 4 2 4 6 1 18 

97 C 4 2 4 7 1 16 
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98 C 4 2 4 8 1 6 

99 C 4 2 4 9 1 12 

100 C 4 2 4 10 1 * 

101 C 4 2 4 1 2 30 

102 C 4 2 4 2 2 8 

103 C 4 2 4 3 2 13 

104 C 4 2 4 4 2 17 

105 C 4 2 4 5 2 24 

106 C 4 2 4 6 2 25 

107 C 4 2 4 7 2 18 

108 C 4 2 4 8 2 23.5 

109 C 4 2 4 9 2 24 

110 C 4 2 4 10 2 17 

111 H 1 1 1 1 1 25 

112 H 1 1 1 2 1 15 

113 H 1 1 1 3 1 20 

114 H 1 1 1 4 1 19 

115 H 1 1 1 5 1 21.5 

116 H 1 1 1 6 1 14 

117 H 1 1 1 7 1 19.5 

118 H 1 1 1 8 1 21.5 

119 H 1 1 1 9 1 * 

120 H 1 1 1 10 1 * 

121 H 1 1 2 1 1 24 

122 H 1 1 2 2 1 16 

123 H 1 1 2 3 1 30 

124 H 1 1 2 4 1 15 

125 H 1 1 2 5 1 21 

126 H 1 1 2 6 1 18 
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127 H 1 1 2 7 1 * 

128 H 1 1 2 8 1 * 

129 H 1 1 2 9 1 * 

130 H 1 1 2 10 1 * 

131 H 1 1 3 1 1 12 

132 H 1 1 3 2 1 6 

133 H 1 1 3 3 1 11.5 

134 H 1 1 3 4 1 12 

135 H 1 1 3 5 1 17 

136 H 1 1 3 6 1 12 

137 H 1 1 3 7 1 * 

138 H 1 1 3 8 1 * 

139 H 1 1 3 9 1 * 

140 H 1 1 3 10 1 * 

141 H 2 1 1 1 1 24 

142 H 2 1 1 2 1 19 

143 H 2 1 1 3 1 23 

144 H 2 1 1 4 1 20 

145 H 2 1 1 5 1 30.2 

146 H 2 1 1 6 1 31 

147 H 2 1 1 7 1 25 

148 H 2 1 1 8 1 14.5 

149 H 2 1 1 9 1 15 

150 H 2 1 1 10 1 * 

151 H 2 1 2 1 1 18.5 

152 H 2 1 2 2 1 15 

153 H 2 1 2 3 1 15 

154 H 2 1 2 4 1 16 

155 H 2 1 2 5 1 22.5 
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156 H 2 1 2 6 1 16.5 

157 H 2 1 2 7 1 21 

158 H 2 1 2 8 1 20.5 

159 H 2 1 2 9 1 16 

160 H 2 1 2 10 1 * 

161 H 2 1 3 1 1 17.5 

162 H 2 1 3 2 1 26 

163 H 2 1 3 3 1 20 

164 H 2 1 3 4 1 23 

165 H 2 1 3 5 1 24 

166 H 2 1 3 6 1 30 

167 H 2 1 3 7 1 23 

168 H 2 1 3 8 1 23 

169 H 2 1 3 9 1 17.5 

170 H 2 1 3 10 1 * 

171 H 3 1 1 1 1 21 

172 H 3 1 1 2 1 26 

173 H 3 1 1 3 1 12 

174 H 3 1 1 4 1 15 

175 H 3 1 1 5 1 26 

176 H 3 1 1 6 1 21.4 

177 H 3 1 1 7 1 23 

178 H 3 1 1 8 1 28 

179 H 3 1 1 9 1 25 

180 H 3 1 1 10 1 23 

181 H 3 1 2 1 1 24 

182 H 3 1 2 2 1 30 

183 H 3 1 2 3 1 28 

184 H 3 1 2 4 1 15.5 
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185 H 3 1 2 5 1 31 

186 H 3 1 2 6 1 25 

187 H 3 1 2 7 1 30 

188 H 3 1 2 8 1 16 

189 H 3 1 2 9 1 * 

190 H 3 1 2 10 1 * 

191 H 3 1 3 1 1 1.5 

192 H 3 1 3 2 1 22 

193 H 3 1 3 3 1 30 

194 H 3 1 3 4 1 23 

195 H 3 1 3 5 1 23 

196 H 3 1 3 6 1 31.5 

197 H 3 1 3 7 1 21 

198 H 3 1 3 8 1 17 

199 H 3 1 3 9 1 * 

200 H 3 1 3 10 1 * 

201 H 4 2 4 1 1 22.5 

202 H 4 2 4 2 1 24 

203 H 4 2 4 3 1 15.5 

204 H 4 2 4 4 1 15 

205 H 4 2 4 5 1 24 

206 H 4 2 4 6 1 30 

207 H 4 2 4 7 1 21.5 

208 H 4 2 4 8 1 27 

209 H 4 2 4 9 1 23 

210 H 4 2 4 10 1 * 

211 H 4 2 4 1 2 21 

212 H 4 2 4 2 2 23.5 

213 H 4 2 4 3 2 24 
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214 H 4 2 4 4 2 27 

215 H 4 2 4 5 2 24 

216 H 4 2 4 6 2 24 

217 H 4 2 4 7 2 22 

218 H 4 2 4 8 2 25 

219 H 4 2 4 9 2 25 

220 H 4 2 4 10 2 25 

 

 

 

 

Table c: fresh weight raw data. Isolate 1 is 25R/7, isolate 2 is 30R/11, isolate 3 is the mix of 6 antagonistic isolates, isolate 4 sterile; 

coating 1 is seeds coated, coating 2 non-bacterial coated seeds; conc.1 is OD1, conc.2 is OD0.5, conc. 3 is OD 0.1; Ggt 1:present, 

2: absent; and rep are the 10 replicates per treatment. * refers to missing values (no data).  

No. Cultivar Isolate Coating Conc Rep Ggt Fresh weight (g) 

1 C 1 1 1 1 1 0.3063 

2 C 1 1 1 2 1 0.4205 

3 C 1 1 1 3 1 0.3393 

4 C 1 1 1 4 1 0.2672 

5 C 1 1 1 5 1 0.438 

6 C 1 1 1 6 1 0.397 

7 C 1 1 1 7 1 0.3105 

8 C 1 1 1 8 1 0.1718 

9 C 1 1 1 9 1 0.4085 

10 C 1 1 1 10 1 0.4073 
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11 C 1 1 2 1 1 0.2243 

12 C 1 1 2 2 1 0.371 

13 C 1 1 2 3 1 0.5545 

14 C 1 1 2 4 1 0.2752 

15 C 1 1 2 5 1 0.4626 

16 C 1 1 2 6 1 0.4554 

17 C 1 1 2 7 1 0.2808 

18 C 1 1 2 8 1 0.448 

19 C 1 1 2 9 1 0.3888 

20 C 1 1 2 10 1 * 

21 C 1 1 3 1 1 0.1541 

22 C 1 1 3 2 1 0.1918 

23 C 1 1 3 3 1 0.2351 

24 C 1 1 3 4 1 0.3754 

25 C 1 1 3 5 1 0.3398 

26 C 1 1 3 6 1 0.348 

27 C 1 1 3 7 1 0.1914 

28 C 1 1 3 8 1 0.107 

29 C 1 1 3 9 1 * 

30 C 1 1 3 10 1 * 

31 C 2 1 1 1 1 0.3606 

32 C 2 1 1 2 1 0.3346 

33 C 2 1 1 3 1 0.3866 

34 C 2 1 1 4 1 0.2797 

35 C 2 1 1 5 1 0.251 

36 C 2 1 1 6 1 0.1846 

37 C 2 1 1 7 1 0.1381 

38 C 2 1 1 8 1 0.3149 

39 C 2 1 1 9 1 0.2644 
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40 C 2 1 1 10 1 0.263 

41 C 2 1 2 1 1 0.1532 

42 C 2 1 2 2 1 0.4557 

43 C 2 1 2 3 1 0.0914 

44 C 2 1 2 4 1 0.288 

45 C 2 1 2 5 1 0.2503 

46 C 2 1 2 6 1 0.1908 

47 C 2 1 2 7 1 0.5353 

48 C 2 1 2 8 1 0.6175 

49 C 2 1 2 9 1 0.5538 

50 C 2 1 2 10 1 * 

51 C 2 1 3 1 1 0.1424 

52 C 2 1 3 2 1 0.1756 

53 C 2 1 3 3 1 0.328 

54 C 2 1 3 4 1 0.152 

55 C 2 1 3 5 1 0.2775 

56 C 2 1 3 6 1 0.2174 

57 C 2 1 3 7 1 0.1886 

58 C 2 1 3 8 1 0.4015 

59 C 2 1 3 9 1 * 

60 C 2 1 3 10 1 * 

61 C 3 1 1 1 1 0.1146 

62 C 3 1 1 2 1 0.4293 

63 C 3 1 1 3 1 0.4591 

64 C 3 1 1 4 1 0.4863 

65 C 3 1 1 5 1 0.2421 

66 C 3 1 1 6 1 0.537 

67 C 3 1 1 7 1 0.4112 

68 C 3 1 1 8 1 0.6492 
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69 C 3 1 1 9 1 0.6649 

70 C 3 1 1 10 1 0.6423 

71 C 3 1 2 1 1 0.4968 

72 C 3 1 2 2 1 0.3248 

73 C 3 1 2 3 1 0.2948 

74 C 3 1 2 4 1 0.1698 

75 C 3 1 2 5 1 0.1554 

76 C 3 1 2 6 1 0.3155 

77 C 3 1 2 7 1 0.4445 

78 C 3 1 2 8 1 0.1901 

79 C 3 1 2 9 1 0.2969 

80 C 3 1 2 10 1 0.2051 

81 C 3 1 3 1 1 0.3724 

82 C 3 1 3 2 1 0.5204 

83 C 3 1 3 3 1 0.1531 

84 C 3 1 3 4 1 0.4189 

85 C 3 1 3 5 1 0.2183 

86 C 3 1 3 6 1 0.1599 

87 C 3 1 3 7 1 0.1617 

88 C 3 1 3 8 1 0.0832 

89 C 3 1 3 9 1 0.0854 

90 C 3 1 3 10 1 0.1793 

91 C 4 2 4 1 1 0.1464 

92 C 4 2 4 2 1 0.1835 

93 C 4 2 4 3 1 0.1416 

94 C 4 2 4 4 1 0.0647 

95 C 4 2 4 5 1 0.165 

96 C 4 2 4 6 1 0.1809 

97 C 4 2 4 7 1 0.2489 
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98 C 4 2 4 8 1 0.3174 

99 C 4 2 4 9 1 0.2265 

100 C 4 2 4 10 1 * 

101 C 4 2 4 1 2 0.2676 

102 C 4 2 4 2 2 0.088 

103 C 4 2 4 3 2 0.2316 

104 C 4 2 4 4 2 0.2593 

105 C 4 2 4 5 2 0.2748 

106 C 4 2 4 6 2 0.2255 

107 C 4 2 4 7 2 0.2388 

108 C 4 2 4 8 2 0.3132 

109 C 4 2 4 9 2 0.4161 

110 C 4 2 4 10 2 0.3847 

111 H 1 1 1 1 1 0.2163 

112 H 1 1 1 2 1 0.3055 

113 H 1 1 1 3 1 0.1503 

114 H 1 1 1 4 1 0.154 

115 H 1 1 1 5 1 0.2006 

116 H 1 1 1 6 1 0.3307 

117 H 1 1 1 7 1 0.4788 

118 H 1 1 1 8 1 0.3873 

119 H 1 1 1 9 1 * 

120 H 1 1 1 10 1 * 

121 H 1 1 2 1 1 0.1327 

122 H 1 1 2 2 1 0.3974 

123 H 1 1 2 3 1 0.2243 

124 H 1 1 2 4 1 0.3257 

125 H 1 1 2 5 1 0.7162 

126 H 1 1 2 6 1 0.247 
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127 H 1 1 2 7 1 * 

128 H 1 1 2 8 1 * 

129 H 1 1 2 9 1 * 

130 H 1 1 2 10 1 * 

131 H 1 1 3 1 1 0.1242 

132 H 1 1 3 2 1 0.075 

133 H 1 1 3 3 1 0.1455 

134 H 1 1 3 4 1 0.2249 

135 H 1 1 3 5 1 0.2762 

136 H 1 1 3 6 1 0.1145 

137 H 1 1 3 7 1 * 

138 H 1 1 3 8 1 * 

139 H 1 1 3 9 1 * 

140 H 1 1 3 10 1 * 

141 H 2 1 1 1 1 0.1277 

142 H 2 1 1 2 1 0.5251 

143 H 2 1 1 3 1 0.1785 

144 H 2 1 1 4 1 0.42 

145 H 2 1 1 5 1 0.4403 

146 H 2 1 1 6 1 0.2914 

147 H 2 1 1 7 1 0.4172 

148 H 2 1 1 8 1 0.4087 

149 H 2 1 1 9 1 0.3244 

150 H 2 1 1 10 1 * 

151 H 2 1 2 1 1 0.3518 

152 H 2 1 2 2 1 0.1989 

153 H 2 1 2 3 1 0.1663 

154 H 2 1 2 4 1 0.1906 

155 H 2 1 2 5 1 0.3658 
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156 H 2 1 2 6 1 0.2481 

157 H 2 1 2 7 1 0.2995 

158 H 2 1 2 8 1 0.2312 

159 H 2 1 2 9 1 0.0457 

160 H 2 1 2 10 1 * 

161 H 2 1 3 1 1 0.4162 

162 H 2 1 3 2 1 0.25 

163 H 2 1 3 3 1 0.5149 

164 H 2 1 3 4 1 0.1584 

165 H 2 1 3 5 1 0.2104 

166 H 2 1 3 6 1 0.4718 

167 H 2 1 3 7 1 0.2272 

168 H 2 1 3 8 1 0.2872 

169 H 2 1 3 9 1 0.3982 

170 H 2 1 3 10 1 * 

171 H 3 1 1 1 1 0.2331 

172 H 3 1 1 2 1 0.2005 

173 H 3 1 1 3 1 0.225 

174 H 3 1 1 4 1 0.2245 

175 H 3 1 1 5 1 0.3627 

176 H 3 1 1 6 1 0.2217 

177 H 3 1 1 7 1 0.3812 

178 H 3 1 1 8 1 0.3886 

179 H 3 1 1 9 1 0.2503 

180 H 3 1 1 10 1 0.4241 

181 H 3 1 2 1 1 0.1688 

182 H 3 1 2 2 1 0.2308 

183 H 3 1 2 3 1 0.1464 

184 H 3 1 2 4 1 0.3306 
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185 H 3 1 2 5 1 0.4216 

186 H 3 1 2 6 1 0.5585 

187 H 3 1 2 7 1 0.2473 

188 H 3 1 2 8 1 0.4472 

189 H 3 1 2 9 1 * 

190 H 3 1 2 10 1 * 

191 H 3 1 3 1 1 0.4211 

192 H 3 1 3 2 1 0.438 

193 H 3 1 3 3 1 0.2375 

194 H 3 1 3 4 1 0.3671 

195 H 3 1 3 5 1 0.318 

196 H 3 1 3 6 1 0.3243 

197 H 3 1 3 7 1 0.3183 

198 H 3 1 3 8 1 0.1627 

199 H 3 1 3 9 1 * 

200 H 3 1 3 10 1 * 

201 H 4 2 4 1 1 0.1161 

202 H 4 2 4 2 1 0.2399 

203 H 4 2 4 3 1 0.3139 

204 H 4 2 4 4 1 0.2312 

205 H 4 2 4 5 1 0.4065 

206 H 4 2 4 6 1 0.2443 

207 H 4 2 4 7 1 0.259 

208 H 4 2 4 8 1 0.5288 

209 H 4 2 4 9 1 0.4558 

210 H 4 2 4 10 1 * 

211 H 4 2 4 1 2 0.3041 

212 H 4 2 4 2 2 0.4613 

213 H 4 2 4 3 2 0.5143 
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214 H 4 2 4 4 2 0.2885 

215 H 4 2 4 5 2 0.4528 

216 H 4 2 4 6 2 0.2955 

217 H 4 2 4 7 2 0.3257 

218 H 4 2 4 8 2 0.4256 

219 H 4 2 4 9 2 0.2842 

220 H 4 2 4 10 2 0.3581 
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9.3.3 Appendix III: Infected roots data. Isolate 1 is 25R/7, isolate 2 is 30R/11, isolate 3 is the mix of 6 antagonistic isolates, isolate 

4 sterile; conc.1 is OD1, conc.2 is OD0.5, conc. 3 is OD 0.1; Ggt 1:present, Ggt 2: absent; Trt 22 identified treatments; and rep are 

the 10 replicates per treatment. * refers to missing values (no data).  

No. !Cultivar !isolate !conc !Rep !Ggt !Trt %infected_roots infected_present !inf_p 
Total no. of 
roots 

infected 
roots 

1 C 1 1 1 1 1 50 1 1 6 3 

2 C 1 1 2 1 1 60 1 1 5 3 

3 C 1 1 3 1 1 100 1 1 6 6 

4 C 1 1 4 1 1 100 1 1 6 6 

5 C 1 1 5 1 1 100 1 1 5 5 

6 C 1 1 6 1 1 33.33333333 1 1 9 3 

7 C 1 1 7 1 1 100 1 1 6 6 

8 C 1 1 8 1 1 33.33333333 1 1 6 2 

9 C 1 1 9 1 1 100 1 1 7 7 

10 C 1 1 10 1 1 75 1 1 4 3 

11 C 1 2 1 1 2 100 1 1 3 3 

12 C 1 2 2 1 2 100 1 1 7 7 

13 C 1 2 3 1 2 100 1 1 4 4 

14 C 1 2 4 1 2 100 1 1 7 7 

15 C 1 2 5 1 2 66.66666667 1 1 3 2 

16 C 1 2 6 1 2 100 1 1 7 7 

17 C 1 2 7 1 2 14.28571429 1 1 7 1 

18 C 1 2 8 1 2 100 1 1 5 5 

19 C 1 2 9 1 2 0 0 0 4 0 

20 C 1 2 10 1 2 * * * * * 

21 C 1 3 1 1 3 100 1 1 5 5 
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22 C 1 3 2 1 3 100 1 1 6 6 

23 C 1 3 3 1 3 100 1 1 5 5 

24 C 1 3 4 1 3 0 0 0 5 0 

25 C 1 3 5 1 3 100 1 1 1 1 

26 C 1 3 6 1 3 100 1 1 3 3 

27 C 1 3 7 1 3 100 1 1 3 3 

28 C 1 3 8 1 3 0 0 0 4 0 

29 C 1 3 9 1 3 * * * * * 

30 C 1 3 10 1 3 * * * * * 

31 C 2 1 1 1 4 100 1 1 5 5 

32 C 2 1 2 1 4 100 1 1 5 5 

33 C 2 1 3 1 4 50 1 1 6 3 

34 C 2 1 4 1 4 60 1 1 5 3 

35 C 2 1 5 1 4 33.33333333 1 1 6 2 

36 C 2 1 6 1 4 80 1 1 5 4 

37 C 2 1 7 1 4 100 1 1 4 4 

38 C 2 1 8 1 4 100 1 1 3 3 

39 C 2 1 9 1 4 100 1 1 5 5 

40 C 2 1 10 1 4 80 1 1 5 4 

41 C 2 2 1 1 5 40 1 1 5 2 

42 C 2 2 2 1 5 100 1 1 8 8 

43 C 2 2 3 1 5 66.66666667 1 1 3 2 

44 C 2 2 4 1 5 40 1 1 5 2 

45 C 2 2 5 1 5 100 1 1 4 4 

46 C 2 2 6 1 5 100 1 1 3 3 

47 C 2 2 7 1 5 42.85714286 1 1 7 3 

48 C 2 2 8 1 5 66.66666667 1 1 6 4 

49 C 2 2 9 1 5 100 1 1 3 3 

50 C 2 2 10 1 5 * * * * * 
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51 C 2 3 1 1 6 100 1 1 5 5 

52 C 2 3 2 1 6 100 1 1 5 5 

53 C 2 3 3 1 6 100 1 1 5 5 

54 C 2 3 4 1 6 100 1 1 5 5 

55 C 2 3 5 1 6 100 1 1 5 5 

56 C 2 3 6 1 6 0 0 0 6 0 

57 C 2 3 7 1 6 100 1 1 5 5 

58 C 2 3 8 1 6 100 1 1 5 5 

59 C 2 3 9 1 6 * * * * * 

60 C 2 3 10 1 6 * * * * * 

61 C 3 1 1 1 7 0 0 0 2 0 

62 C 3 1 2 1 7 25 1 1 4 1 

63 C 3 1 3 1 7 0 0 0 6 0 

64 C 3 1 4 1 7 50 1 1 4 2 

65 C 3 1 5 1 7 0 0 0 6 0 

66 C 3 1 6 1 7 60 1 1 5 3 

67 C 3 1 7 1 7 0 0 0 2 0 

68 C 3 1 8 1 7 0 0 0 5 0 

69 C 3 1 9 1 7 40 1 1 5 2 

70 C 3 1 10 1 7 50 1 1 4 2 

71 C 3 2 1 1 8 60 1 1 5 3 

72 C 3 2 2 1 8 100 1 1 5 5 

73 C 3 2 3 1 8 0 0 0 3 0 

74 C 3 2 4 1 8 100 1 1 5 5 

75 C 3 2 5 1 8 100 1 1 5 5 

76 C 3 2 6 1 8 0 0 0 5 0 

77 C 3 2 7 1 8 0 0 0 4 0 

78 C 3 2 8 1 8 100 1 1 5 5 

79 C 3 2 9 1 8 71.42857143 1 1 7 5 
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80 C 3 2 10 1 8 20 1 1 5 1 

81 C 3 3 1 1 9 0 0 0 3 0 

82 C 3 3 2 1 9 100 1 1 4 4 

83 C 3 3 3 1 9 100 1 1 4 4 

84 C 3 3 4 1 9 100 1 1 5 5 

85 C 3 3 5 1 9 75 1 1 4 3 

86 C 3 3 6 1 9 100 1 1 5 5 

87 C 3 3 7 1 9 100 1 1 7 7 

88 C 3 3 8 1 9 33.33333333 1 1 6 2 

89 C 3 3 9 1 9 50 1 1 6 3 

90 C 3 3 10 1 9 50 1 1 6 3 

91 C 4 1 1 1 10 100 1 1 5 5 

92 C 4 1 2 1 10 100 1 1 4 4 

93 C 4 1 3 1 10 100 1 1 5 5 

94 C 4 1 4 1 10 100 1 1 6 6 

95 C 4 1 5 1 10 100 1 1 5 5 

96 C 4 1 6 1 10 100 1 1 6 6 

97 C 4 1 7 1 10 100 1 1 5 5 

98 C 4 1 8 1 10 100 1 1 5 5 

99 C 4 1 9 1 10 100 1 1 4 4 

100 C 4 1 10 1 10 * * * * * 

101 C 4 1 1 2 11 0 0 0 5 0 

102 C 4 1 2 2 11 0 0 0 4 0 

103 C 4 1 3 2 11 0 0 0 3 0 

104 C 4 1 4 2 11 0 0 0 6 0 

105 C 4 1 5 2 11 0 0 0 3 0 

106 C 4 1 6 2 11 0 0 0 4 0 

107 C 4 1 7 2 11 0 0 0 6 0 

108 C 4 1 8 2 11 0 0 0 5 0 
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109 C 4 1 9 2 11 0 0 0 5 0 

110 C 4 1 10 2 11 0 0 0 4 0 

111 H 1 1 1 1 12 0 0 0 6 0 

112 H 1 1 2 1 12 0 0 0 3 0 

113 H 1 1 3 1 12 100 1 1 5 5 

114 H 1 1 4 1 12 0 0 0 9 0 

115 H 1 1 5 1 12 20 1 1 5 1 

116 H 1 1 6 1 12 100 1 1 7 7 

117 H 1 1 7 1 12 0 0 0 3 0 

118 H 1 1 8 1 12 100 1 1 6 6 

119 H 1 1 9 1 12 * * * * * 

120 H 1 1 10 1 12 * * * * * 

121 H 1 2 1 1 13 100 1 1 6 6 

122 H 1 2 2 1 13 0 0 0 4 0 

123 H 1 2 3 1 13 62.5 1 1 8 5 

124 H 1 2 4 1 13 100 1 1 6 6 

125 H 1 2 5 1 13 14.28571429 1 1 7 1 

126 H 1 2 6 1 13 100 1 1 6 6 

127 H 1 2 7 1 13 * * * * * 

128 H 1 2 8 1 13 * * * * * 

129 H 1 2 9 1 13 * * * * * 

130 H 1 2 10 1 13 * * * * * 

131 H 1 3 1 1 14 80 1 1 5 4 

132 H 1 3 2 1 14 0 0 0 2 0 

133 H 1 3 3 1 14 0 0 0 6 0 

134 H 1 3 4 1 14 100 1 1 6 6 

135 H 1 3 5 1 14 100 1 1 7 7 

136 H 1 3 6 1 14 100 1 1 4 4 

137 H 1 3 7 1 14 * * * * * 
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138 H 1 3 8 1 14 * * * * * 

139 H 1 3 9 1 14 * * * * * 

140 H 1 3 10 1 14 * * * * * 

141 H 2 1 1 1 15 50 1 1 6 3 

142 H 2 1 2 1 15 0 0 0 9 0 

143 H 2 1 3 1 15 0 0 0 6 0 

144 H 2 1 4 1 15 77.77777778 1 1 9 7 

145 H 2 1 5 1 15 20 1 1 5 1 

146 H 2 1 6 1 15 33.33333333 1 1 6 2 

147 H 2 1 7 1 15 0 0 0 5 0 

148 H 2 1 8 1 15 50 1 1 4 2 

149 H 2 1 9 1 15 100 1 1 6 6 

150 H 2 1 10 1 15 * * * * * 

151 H 2 2 1 1 16 0 0 0 6 0 

152 H 2 2 2 1 16 28.57142857 1 1 7 2 

153 H 2 2 3 1 16 100 1 1 7 7 

154 H 2 2 4 1 16 0 0 0 5 0 

155 H 2 2 5 1 16 100 1 1 5 5 

156 H 2 2 6 1 16 100 1 1 5 5 

157 H 2 2 7 1 16 100 1 1 6 6 

158 H 2 2 8 1 16 100 1 1 5 5 

159 H 2 2 9 1 16 0 0 0 1 0 

160 H 2 2 10 1 16 * * * * * 

161 H 2 3 1 1 17 100 1 1 6 6 

162 H 2 3 2 1 17 100 1 1 4 4 

163 H 2 3 3 1 17 100 1 1 3 3 

164 H 2 3 4 1 17 100 1 1 5 5 

165 H 2 3 5 1 17 100 1 1 5 5 

166 H 2 3 6 1 17 100 1 1 2 2 
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167 H 2 3 7 1 17 100 1 1 7 7 

168 H 2 3 8 1 17 100 1 1 4 4 

169 H 2 3 9 1 17 100 1 1 6 6 

170 H 2 3 10 1 17 * * * * * 

171 H 3 1 1 1 18 0 0 0 4 0 

172 H 3 1 2 1 18 100 1 1 3 3 

173 H 3 1 3 1 18 100 1 1 3 3 

174 H 3 1 4 1 18 75 1 1 4 3 

175 H 3 1 5 1 18 0 0 0 4 0 

176 H 3 1 6 1 18 100 1 1 5 5 

177 H 3 1 7 1 18 100 1 1 2 2 

178 H 3 1 8 1 18 75 1 1 4 3 

179 H 3 1 9 1 18 100 1 1 6 6 

180 H 3 1 10 1 18 25 1 1 4 1 

181 H 3 2 1 1 19 100 1 1 3 3 

182 H 3 2 2 1 19 0 0 0 4 0 

183 H 3 2 3 1 19 40 1 1 5 2 

184 H 3 2 4 1 19 16.66666667 1 1 6 1 

185 H 3 2 5 1 19 0 0 0 5 0 

186 H 3 2 6 1 19 0 0 0 6 0 

187 H 3 2 7 1 19 100 1 1 7 7 

188 H 3 2 8 1 19 85.71428571 1 1 7 6 

189 H 3 2 9 1 19 * * * * * 

190 H 3 2 10 1 19 * * * * * 

191 H 3 3 1 1 20 0 0 0 1 0 

192 H 3 3 2 1 20 100 1 1 5 5 

193 H 3 3 3 1 20 100 1 1 4 4 

194 H 3 3 4 1 20 60 1 1 5 3 

195 H 3 3 5 1 20 33.33333333 1 1 3 1 
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196 H 3 3 6 1 20 0 0 0 2 0 

197 H 3 3 7 1 20 0 0 0 5 0 

198 H 3 3 8 1 20 100 1 1 5 5 

199 H 3 3 9 1 20 * * * * * 

200 H 3 3 10 1 20 * * * * * 

201 H 4 1 1 1 21 100 1 1 3 3 

202 H 4 1 2 1 21 100 1 1 5 5 

203 H 4 1 3 1 21 100 1 1 5 5 

204 H 4 1 4 1 21 100 1 1 1 1 

205 H 4 1 5 1 21 66.66666667 1 1 3 2 

206 H 4 1 6 1 21 100 1 1 5 5 

207 H 4 1 7 1 21 100 1 1 5 5 

208 H 4 1 8 1 21 0 0 0 5 0 

209 H 4 1 9 1 21 60 1 1 5 3 

210 H 4 1 10 1 21 * * * * * 

211 H 4 1 1 2 22 0 0 0 5 0 

212 H 4 1 2 2 22 0 0 0 4 0 

213 H 4 1 3 2 22 0 0 0 5 0 

214 H 4 1 4 2 22 0 0 0 5 0 

215 H 4 1 5 2 22 0 0 0 5 0 

216 H 4 1 6 2 22 0 0 0 3 0 

217 H 4 1 7 2 22 0 0 0 1 0 

218 H 4 1 8 2 22 0 0 0 3 0 

219 H 4 1 9 2 22 0 0 0 4 0 

220 H 4 1 10 2 22 0 0 0 3 0 
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9.4 Chapter 6 Appendix 

9.4.1 Appendix I: Standard curve for the quantitative detection of Gaemanonnomyces graminis var. tritici DNA using 

primers GgtEFF1 and GgtEFR1 in conjugation with Taqman probe GgtEFPR1. Square dots are the standards and the 

triangles are the samples with R2= 0.999. Results of qPCR are given as Cycle threshold (Ct). 
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9.4.2 Appendix II: 16S rRNA bacteria, 16S rRNA Pseudomonas and ITS fungi qPCR metadata. The values are the average of 

the two technical replicates and the units are in pg/ g dry soil. 

Sample Field Year Block Plot Replicate Cultivar Crop Qubit 
Average.Bact.16S 
rRNA 

Average.Pseudo.16S 
rRNA Average.Fungi.ITS 

1 NZ 2015 1 1 1 Hereford wheat 8.06 132.188047 1.618742821 214.1446112 

2 NZ 2015 1 2 1 Duxford wheat 11.3 281.0613882 1.613051017 262.0904618 

3 NZ 2015 1 3 1 Barley Barley 12.1 316.5392684 3.943751205 704.7093261 

4 NZ 2015 1 4 1 Xi19 wheat 12.5 301.697385 1.362053488 306.1469033 

5 NZ 2015 1 5 1 Hereward wheat 15.9 536.1395185 3.707825792 436.0346207 

6 NZ 2015 1 6 1 Cadenza wheat 16.8 580.136551 2.997712439 496.9396757 

7 NZ 2015 2 7 2 Xi19 wheat 7.96 319.9224508 1.824589537 246.7655427 

8 NZ 2015 2 8 2 Duxford wheat 6.69 204.6679971 2.037940006 154.4169271 

9 NZ 2015 2 9 2 Barley Barley 11.7 260.1073792 3.119935193 430.324396 

10 NZ 2015 2 10 2 Hereward wheat 10.4 373.7966666 1.447211706 247.7437816 

11 NZ 2015 2 11 2 Cadenza wheat 15.3 465.8463622 1.241744086 268.253805 

12 NZ 2015 2 12 2 Hereford wheat 9.18 255.4816795 5.721509549 233.6182212 

13 NZ 2015 3 13 3 Hereford wheat 11 212.4355355 4.894657647 286.7177808 

14 NZ 2015 3 14 3 Barley Barley 14.8 363.1652327 6.956021247 571.546217 

15 NZ 2015 3 15 3 Cadenza wheat 11.5 230.0322856 2.637331486 232.8462 

16 NZ 2015 3 16 3 Xi19 wheat 12.5 350.2768803 2.223075911 271.9219696 

17 NZ 2015 3 17 3 Hereward wheat 9.75 195.9700154 3.554313316 202.0891299 

18 NZ 2015 3 18 3 Duxford wheat 16.2 613.4533302 5.26113112 526.8840706 

19 NZ 2015 4 19 4 Hereford wheat 11.9 296.2008297 2.995464687 190.5435162 

20 NZ 2015 4 20 4 Cadenza wheat 13.4 363.8609462 4.151136946 336.9508956 

21 NZ 2015 4 21 4 Duxford wheat 14.3 481.141639 2.094363822 269.4296726 
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22 NZ 2015 4 22 4 Xi19 wheat 11.1 384.9094477 2.489693219 184.9018332 

23 NZ 2015 4 23 4 Barley Barley 14.8 613.2220752 7.458125012 484.4738326 

24 NZ 2015 4 24 4 Hereward wheat 10.2 386.6726888 1.813629318 208.7304145 

25 NZ 2016 1 1 1 Hereford wheat 7.45 135.4720628 1.354004101 244.7492461 

26 NZ 2016 1 2 1 Duxford wheat 22.1 520.9570355 10.12397309 616.5661803 

27 NZ 2016 1 3 1 Barley Barley 13.5 346.8791589 4.547214132 456.965843 

28 NZ 2016 1 4 1 Xi19 wheat 14.2 528.0882432 5.843503717 948.5177172 

29 NZ 2016 1 5 1 Hereward wheat 15.3 620.6414431 2.918644741 385.0500948 

30 NZ 2016 1 6 1 Cadenza wheat 15.5 510.1313739 2.669309978 580.9582232 

31 NZ 2016 2 7 2 Xi19 wheat 19.2 457.2252686 8.683755452 584.3975301 

32 NZ 2016 2 8 2 Duxford wheat 20.7 691.2837741 10.71950613 622.8239963 

33 NZ 2016 2 9 2 Barley Barley 11 112.6665295 3.280561058 215.0430941 

34 NZ 2016 2 10 2 Hereward wheat 17.2 667.2895353 5.014608397 490.9268379 

35 NZ 2016 2 11 2 Cadenza wheat 19 761.4004347 7.306855422 675.432198 

36 NZ 2016 2 12 2 Hereford wheat 16.7 631.32406 1.936133577 398.0731673 

37 NZ 2016 3 13 3 Hereford wheat 17.1 256.8606822 3.737839051 428.6584776 

38 NZ 2016 3 14 3 Barley Barley 16.8 334.4706436 8.992517904 596.8295821 

39 NZ 2016 3 15 3 Cadenza wheat 16.3 527.0642583 5.271105851 1083.297501 

40 NZ 2016 3 16 3 Xi19 wheat 17.9 440.9685405 3.867231037 451.2392783 

41 NZ 2016 3 17 3 Hereward wheat 6.86 119.194467 1.726078918 314.4102154 

42 NZ 2016 3 18 3 Duxford wheat 16.9 780.3399968 6.097509794 531.0038419 

43 NZ 2016 4 19 4 Hereford wheat 21.1 794.8341341 5.789966384 782.6014992 

44 NZ 2016 4 20 4 Cadenza wheat 23.1 1025.127421 10.10894982 900.4382635 

45 NZ 2016 4 21 4 Duxford wheat 19.8 673.2364687 6.454393322 564.5790376 

46 NZ 2016 4 22 4 Xi19 wheat 16.3 503.0872379 2.980948092 911.9177074 

47 NZ 2016 4 23 4 Barley Barley 18 768.5464586 10.31487772 999.203666 

48 NZ 2016 4 24 4 Hereward wheat 23 1043.736978 3.725635069 790.5409145 

49 NZ 2017 1 1 1 Hereford wheat 11.4 154.1457852 6.198797294 192.6674752 

50 NZ 2017 1 2 1 Duxford wheat 10.7 192.55211 3.909298485 231.3817312 
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51 NZ 2017 1 3 1 Barley Barley 13.2 222.1332451 5.011819539 223.8269079 

52 NZ 2017 1 4 1 Xi19 wheat 15 373.4209719 10.53719271 425.0035449 

53 NZ 2017 1 5 1 Hereward wheat 15.4 414.7017818 5.115993846 304.9102179 

54 NZ 2017 1 6 1 Cadenza wheat 10.7 301.8822106 2.773840425 199.2482518 

55 NZ 2017 2 7 2 Xi19 wheat 16.4 531.7121876 3.553813633 371.9010949 

56 NZ 2017 2 8 2 Duxford wheat 16.6 510.2569251 9.617418961 407.3653912 

57 NZ 2017 2 9 2 Barley Barley 13.1 312.1457502 3.751597122 223.4917383 

58 NZ 2017 2 10 2 Hereward wheat 10.9 297.357926 4.526409907 336.8378474 

59 NZ 2017 2 11 2 Cadenza wheat 11.1 336.0983048 1.756664038 212.4436321 

60 NZ 2017 2 12 2 Hereford wheat 15.4 251.4541373 4.971590539 297.5571465 

61 NZ 2017 3 13 3 Hereford wheat 17.4 379.3288396 6.041340593 381.7675868 

62 NZ 2017 3 14 3 Barley Barley 14.4 331.8215615 5.219977702 339.4232812 

63 NZ 2017 3 15 3 Cadenza wheat 15.1 397.3145985 3.042030092 323.3997647 

64 NZ 2017 3 16 3 Xi19 wheat 9.92 248.1275308 2.891109829 199.6094542 

65 NZ 2017 3 17 3 Hereward wheat 10.7 319.3402685 3.116931565 215.1929026 

66 NZ 2017 3 18 3 Duxford wheat 12.5 416.1522672 7.010460559 266.4213569 

67 NZ 2017 4 19 4 Hereford wheat 15.5 492.1194501 8.424596968 521.9948351 

68 NZ 2017 4 20 4 Cadenza wheat 13.6 404.283942 10.84775203 369.0837725 

69 NZ 2017 4 21 4 Duxford wheat 10.2 277.44475 3.645973104 330.2667619 

70 NZ 2017 4 22 4 Xi19 wheat 19.1 763.1519795 8.955503057 736.5841739 

71 NZ 2017 4 23 4 Barley Barley 20.9 1001.407553 5.736130686 946.3485941 

72 NZ 2017 4 24 4 Hereward wheat 13.8 524.8490637 2.411011204 265.9460571 

73 LH5 2015 1 1 1 Barley Barley 6.62 168.8561731 5.551433432 106.2256834 

74 LH5 2015 1 2 1 Cadenza wheat 3.8 101.6890999 4.365091111 95.97168851 

75 LH5 2015 1 3 1 Hereford wheat 6.5 174.5725817 8.653267758 218.0143123 

76 LH5 2015 2 4 1 Xi19 wheat 2.3 79.75568908 2.965791189 78.9145396 

77 LH5 2015 2 5 1 Hereward wheat 4.9 253.0587843 4.27263108 117.9062642 

78 LH5 2015 2 6 1 Duxford wheat 4.09 162.7054573 4.632388193 193.687847 

79 LH5 2015 3 7 2 Cadenza wheat 3.9 167.1198067 3.61123775 69.79286151 
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80 LH5 2015 3 8 2 Hereford wheat 4.6 222.8733072 6.570751051 115.2562538 

81 LH5 2015 3 9 2 Xi19 wheat 10.6 448.7375892 8.591993983 165.0650067 

82 LH5 2015 4 10 2 Hereward wheat 12.1 489.6862092 7.913846401 226.9541933 

83 LH5 2015 4 11 2 Duxford wheat 6.54 215.3301116 5.649746315 108.7374249 

84 LH5 2015 4 12 2 Barley Barley 6.04 249.8170781 6.347469274 137.8210601 

85 LH5 2015 1 13 3 Xi19 wheat 4.05 95.42737815 4.978135569 132.3954925 

86 LH5 2015 1 14 3 Hereward wheat 4.99 147.7163935 9.427334679 100.5180426 

87 LH5 2015 1 15 3 Duxford wheat 5.42 210.6038418 6.33595613 139.6024246 

88 LH5 2015 2 16 3 Barley Barley 6.3 249.4589412 4.226351538 204.1653623 

89 LH5 2015 2 17 3 Cadenza wheat 6.73 324.8353265 4.060975621 222.7383542 

90 LH5 2015 2 18 3 Hereford wheat 6.5 278.8452078 8.49601972 146.4782278 

91 LH5 2015 3 19 4 Duxford wheat 7.75 579.156704 17.02562098 153.7515687 

92 LH5 2015 3 20 4 Barley Barley 5.1 330.6151818 6.540648803 269.5800251 

93 LH5 2015 3 21 4 Hereward wheat 3.37 118.1530921 10.22568964 74.82333003 

94 LH5 2015 4 22 4 Hereford wheat 2.14 58.00243212 1.784482733 37.27715345 

95 LH5 2015 4 23 4 Xi19 wheat 6.67 619.3661109 8.70760665 204.2304795 

96 LH5 2015 4 24 4 Cadenza wheat 5.19 190.4719381 8.793252585 138.5491618 

97 LH5 2016 1 1 1 Barley Barley 8.04 267.0199151 6.158505018 535.90489 

98 LH5 2016 1 2 1 Cadenza wheat 10.7 410.3433581 9.528794486 518.4686801 

99 LH5 2016 1 3 1 Hereford wheat 10.7 380.9174459 9.239742319 608.3956459 

100 LH5 2016 2 4 1 Xi19 wheat 7.4 305.6145746 8.601447878 382.6180558 

101 LH5 2016 2 5 1 Hereward wheat 10.7 655.4852345 5.863788778 381.6742775 

102 LH5 2016 2 6 1 Duxford wheat 10.3 468.8027877 8.121676251 579.812087 

103 LH5 2016 3 7 2 Cadenza wheat 11.7 510.626601 7.219396942 502.7497514 

104 LH5 2016 3 8 2 Hereford wheat 12.5 553.4315857 8.39785919 484.1738514 

105 LH5 2016 3 9 2 Xi19 wheat 4.64 207.1123533 3.696415628 127.7858929 

106 LH5 2016 4 10 2 Hereward wheat 5.05 185.2034761 2.847429565 139.3105846 

107 LH5 2016 4 11 2 Duxford wheat 10.8 503.839243 65.69725997 388.4389646 

108 LH5 2016 4 12 2 Barley Barley 11.8 553.1084884 7.781838322 828.5048123 
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109 LH5 2016 1 13 3 Xi19 wheat 13.3 698.8183913 10.19590356 589.710582 

110 LH5 2016 1 14 3 Hereward wheat 9.78 433.6645508 4.859835904 322.2200324 

111 LH5 2016 1 15 3 Duxford wheat 13.9 639.3265303 9.869660765 499.6319818 

112 LH5 2016 2 16 3 Barley Barley 11.2 534.3163399 11.08728964 884.4459543 

113 LH5 2016 2 17 3 Cadenza wheat 10.9 568.2148627 8.830219307 536.4855239 

114 LH5 2016 2 18 3 Hereford wheat 9.69 629.9946235 8.189805266 405.7816994 

115 LH5 2016 3 19 4 Duxford wheat 7.54 394.3681414 6.858129845 282.7537642 

116 LH5 2016 3 20 4 Barley Barley 3.93 155.6712685 5.967625864 126.429062 

117 LH5 2016 3 21 4 Hereward wheat 12 552.9553964 7.535513368 491.211746 

118 LH5 2016 4 22 4 Hereford wheat 9.89 432.3988941 5.220403857 232.2780412 

119 LH5 2016 4 23 4 Xi19 wheat 12.2 597.2085132 7.265153622 490.879063 

120 LH5 2016 4 24 4 Cadenza wheat 14.9 697.5316232 11.6011231 483.6452468 

121 LH5 2017 1 1 1 Barley Barley 16.7 722.2829134 12.92118315 460.2553312 

122 LH5 2017 1 2 1 Cadenza wheat 10.2 353.0754167 10.13784277 458.9874948 

123 LH5 2017 1 3 1 Hereford wheat 12.7 540.0763153 6.682896864 581.1635474 

124 LH5 2017 2 4 1 Xi19 wheat 14.1 586.5876471 15.11018278 631.2369615 

125 LH5 2017 2 5 1 Hereward wheat 14.9 704.1524534 13.92994279 839.5558072 

126 LH5 2017 2 6 1 Duxford wheat 14 600.7521242 13.73270375 776.0809087 

127 LH5 2017 3 7 2 Cadenza wheat 14.5 746.5464788 8.896009492 928.8392135 

128 LH5 2017 3 8 2 Hereford wheat 16 1307.66 11.61364186 534.5393181 

129 LH5 2017 3 9 2 Xi19 wheat 12.7 594.6126511 10.66474664 534.4130481 

130 LH5 2017 4 10 2 Hereward wheat 16.1 781.7652271 18.38540433 701.7225359 

131 LH5 2017 4 11 2 Duxford wheat 10.5 431.4717647 6.975082877 249.6594533 

132 LH5 2017 4 12 2 Barley Barley 13.5 649.2840537 9.288424764 560.2445771 

133 LH5 2017 1 13 3 Xi19 wheat 15.7 593.2786291 6.158721939 753.3571944 

134 LH5 2017 1 14 3 Hereward wheat 9.38 376.4109236 6.698560646 288.7368025 

135 LH5 2017 1 15 3 Duxford wheat 14.4 550.0628235 3.739084802 384.8384749 

136 LH5 2017 2 16 3 Barley Barley 14.9 837.1259506 19.83609781 799.9681195 

137 LH5 2017 2 17 3 Cadenza wheat 14 596.9386111 3.818052158 1067.230338 
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138 LH5 2017 2 18 3 Hereford wheat 13.2 834.4122255 2.594535421 489.1743064 

139 LH5 2017 3 19 4 Duxford wheat 14.6 738.6279559 3.855195653 622.6942588 

140 LH5 2017 3 20 4 Barley Barley 14 743.2022336 5.620532353 500.1630501 

141 LH5 2017 3 21 4 Hereward wheat 13.8 653.095598 9.975436103 499.8922036 

142 LH5 2017 4 22 4 Hereford wheat 14.7 565.750491 6.045497287 497.212555 

143 LH5 2017 4 23 4 Xi19 wheat 12.6 480.789468 5.25242159 605.4612256 

144 LH5 2017 4 24 4 Cadenza wheat 11.4 596.9730026 5.902601112 460.7702086 

145 LH4 2016 1 1 1 Xi19 wheat 8.92 383.5312661 1.722628905 181.6229022 

146 LH4 2016 1 2 1 Cadenza wheat 7.64 368.464645 1.475845053 144.4818537 

147 LH4 2016 1 3 1 Hereward wheat 12.2 510.8396613 2.361974861 218.1003901 

148 LH4 2016 2 4 1 Hereward wheat 7.17 328.2530163 2.676909841 113.7666613 

149 LH4 2016 2 5 1 Barley Barley 9.82 380.9484474 2.45240682 155.7586762 

150 LH4 2016 2 6 1 Duxford wheat 11.6 529.7623604 3.728854734 322.7281367 

151 LH4 2016 3 7 2 Duxford wheat 8.11 317.0303499 3.525850417 114.3488718 

152 LH4 2016 3 8 2 Hereward wheat 11.2 476.5377255 2.93418656 192.6061255 

153 LH4 2016 3 9 2 Barley Barley 8.98 384.2594824 3.286283877 152.7165562 

154 LH4 2016 4 10 2 Duxford wheat 9.75 409.2062255 2.270219661 157.3622447 

155 LH4 2016 4 11 2 Barley Barley 9.59 384.7335183 1.657572607 93.56386978 

156 LH4 2016 4 12 2 Hereford wheat 8.67 460.2728143 2.172255022 124.0516008 

157 LH4 2016 1 13 3 Hereford wheat 10.2 415.5562857 2.132771892 138.4535093 

158 LH4 2016 1 14 3 Barley Barley 10.6 443.8520878 4.479854279 271.6713036 

159 LH4 2016 1 15 3 Duxford wheat 8.14 508.2232181 1.984494908 172.0423176 

160 LH4 2016 2 16 3 Xi19 wheat 7.13 329.2821071 1.405139538 129.5394498 

161 LH4 2016 2 17 3 Cadenza wheat 7.54 358.6729423 1.508878244 136.790877 

162 LH4 2016 2 18 3 Hereford wheat 10.4 477.9026256 2.254323415 162.0064569 

163 LH4 2016 3 19 4 Cadenza wheat 10.4 507.2091653 2.538173009 229.9994185 

164 LH4 2016 3 20 4 Xi19 wheat 11.8 506.2814294 6.896472035 564.9976472 

165 LH4 2016 3 21 4 Hereford wheat 6.18 278.8124599 1.441431788 164.1079783 

166 LH4 2016 4 22 4 Hereward wheat 10 395.4409897 1.111206902 103.1172262 
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167 LH4 2016 4 23 4 Cadenza wheat 11.4 513.9455294 2.917759196 145.5479782 

168 LH4 2016 4 24 4 Xi19 wheat 9.43 357.650844 1.749962427 85.74758875 

169 LH4 2017 1 1 1 Xi19 wheat 12.1 692.9901066 4.289395153 564.6130103 

170 LH4 2017 1 2 1 Cadenza wheat 11 502.9370673 1.835553712 352.7480264 

171 LH4 2017 1 3 1 Hereward wheat 11.6 589.2476624 4.156438454 569.8460837 

172 LH4 2017 2 4 1 Hereward wheat 12 542.0584143 4.870589157 506.4539558 

173 LH4 2017 2 5 1 Barley Barley 16.3 1692.632437 8.016724199 841.3151073 

174 LH4 2017 2 6 1 Duxford wheat 15.5 775.5701833 5.279926857 732.6043109 

175 LH4 2017 3 7 2 Duxford wheat 17.8 829.8103546 7.380025329 533.6126225 

176 LH4 2017 3 8 2 Hereward wheat 14.7 618.0604348 5.175998563 652.5513265 

177 LH4 2017 3 9 2 Barley Barley 17.9 767.1258779 10.88181415 527.3535663 

178 LH4 2017 4 10 2 Duxford wheat 17.3 828.7392308 9.861652123 1537.626996 

179 LH4 2017 4 11 2 Barley Barley 12.3 527.7008048 4.775280855 450.472208 

180 LH4 2017 4 12 2 Hereford wheat 17.3 735.0695989 8.449182403 505.2845658 

181 LH4 2017 1 13 3 Hereford wheat 14.6 826.6795865 9.728273995 601.2183415 

182 LH4 2017 1 14 3 Barley Barley 15.9 817.8483624 7.262768635 909.4063752 

183 LH4 2017 1 15 3 Duxford wheat 16.2 802.1401412 7.923182164 722.2636187 

184 LH4 2017 2 16 3 Xi19 wheat 12.7 564.7360049 6.50737205 374.9659462 

185 LH4 2017 2 17 3 Cadenza wheat 15.6 643.6927059 6.943737374 2743.530746 

186 LH4 2017 2 18 3 Hereford wheat 13.3 577.2544453 2.089706753 650.8857953 

187 LH4 2017 3 19 4 Cadenza wheat 20.5 1406.388599 7.077651145 804.1082879 

188 LH4 2017 3 20 4 Xi19 wheat 28.3 656.9451944 2.617954606 228.7555963 

189 LH4 2017 3 21 4 Hereford wheat 21.7 970.1626781 4.440151592 410.7372294 

190 LH4 2017 4 22 4 Hereward wheat 24.3 916.3680882 4.134877882 474.0514898 

191 LH4 2017 4 23 4 Cadenza wheat 26.9 1061.896878 8.480923814 1574.096986 

192 LH4 2017 4 24 4 Xi19 wheat 20.1 851.7807673 5.309078427 634.941649 
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9.4.3 Appendix III: Ggt qPCR metadata. Where F: field, Y:year, SS: sampling season, T: time; B: block, P: plot, R:replicate, Q:qubit, 

Pre: present. 

no. F Y SS T B P R Cultivar Crop TAB Q soil.dry.weight DNA.g.dry.soil Ggt DNA.pg.g.soil Pre_Absent logten_Ggt 

1 NZ 2015 1 1 1 1 1 Hereford wheat Low 8.06 0.2223 3625.8716 0 0 * 

2 NZ 2015 1 1 1 2 1 Duxford wheat High 11.3 0.2215 5100.8056 56.2966 1 1.7505 

3 NZ 2015 1 1 1 3 1 Barley Barley Unknown 12.1 0.2214 5464.2996 51.0136 1 1.7077 

4 NZ 2015 1 1 1 4 1 Xi19 wheat Low 12.5 0.2333 5357.2736 0 0 * 

5 NZ 2015 1 1 1 5 1 Hereward wheat High 15.9 0.2170 7328.3130 0 0 * 

6 NZ 2015 1 1 1 6 1 Cadenza wheat Low 16.8 0.2275 7383.0547 0 0 * 

7 NZ 2015 1 1 2 7 2 Xi19 wheat Low 7.96 0.2222 3582.9036 0 0 * 

8 NZ 2015 1 1 2 8 2 Duxford wheat High 6.69 0.2147 3115.3260 0 0 * 

9 NZ 2015 1 1 2 9 2 Barley Barley Unknown 11.7 0.2157 5424.2571 0 0 * 

10 NZ 2015 1 1 2 10 2 Hereward wheat High 10.4 0.2134 4873.4624 0 0 * 

11 NZ 2015 1 1 2 11 2 Cadenza wheat Low 15.3 0.2164 7069.8029 0 0 * 

12 NZ 2015 1 1 2 12 2 Hereford wheat Low 9.18 0.2200 4172.4037 0 0 * 

13 NZ 2015 1 1 3 13 3 Hereford wheat Low 11 0.2211 4974.4087 0 0 * 

14 NZ 2015 1 1 3 14 3 Barley Barley Unknown 14.8 0.2162 6846.1360 0 0 * 

15 NZ 2015 1 1 3 15 3 Cadenza wheat Low 11.5 0.2190 5251.7682 0 0 * 

16 NZ 2015 1 1 3 16 3 Xi19 wheat Low 12.5 0.2169 5763.7092 0 0 * 

17 NZ 2015 1 1 3 17 3 Hereward wheat High 9.75 0.2148 4538.3246 0 0 * 

18 NZ 2015 1 1 3 18 3 Duxford wheat High 16.2 0.2024 8004.2448 0 0 * 

19 NZ 2015 1 1 4 19 4 Hereford wheat Low 11.9 0.2155 5521.0311 0 0 * 

20 NZ 2015 1 1 4 20 4 Cadenza wheat Low 13.4 0.2181 6145.1966 95.274 1 1.9790 

21 NZ 2015 1 1 4 21 4 Duxford wheat High 14.3 0.2181 6556.0229 0 0 * 
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22 NZ 2015 1 1 4 22 4 Xi19 wheat Low 11.1 0.2396 4631.7690 0 0 * 

23 NZ 2015 1 1 4 23 4 Barley Barley Unknown 14.8 0.2131 6946.2474 0 0 * 

24 NZ 2015 1 1 4 24 4 Hereward wheat High 10.2 0.2153 4736.7067 0 0 * 

25 NZ 2016 2 2 1 1 1 Hereford wheat Low 7.45 0.2211 3369.8614 176.565 1 2.2469 

26 NZ 2016 2 2 1 2 1 Duxford wheat High 22.1 0.2169 10187.5868 5381.35 1 3.7309 

27 NZ 2016 2 2 1 3 1 Barley Barley Unknown 13.5 0.1987 6795.8145 2452.545 1 3.3896 

28 NZ 2016 2 2 1 4 1 Xi19 wheat Low 14.2 0.1519 9350.5367 18593.48 1 4.2694 

29 NZ 2016 2 2 1 5 1 Hereward wheat High 15.3 0.1958 7812.4351 4438.53 1 3.6472 

30 NZ 2016 2 2 1 6 1 Cadenza wheat Low 15.5 0.2292 6764.0164 195.548 1 2.2913 

31 NZ 2016 2 2 2 7 2 Xi19 wheat Low 19.2 0.2345 8189.3739 4318.08 1 3.6353 

32 NZ 2016 2 2 2 8 2 Duxford wheat High 20.7 0.2119 9769.7882 1629.297 1 3.2120 

33 NZ 2016 2 2 2 9 2 Barley Barley Unknown 11 0.2018 5449.7707 618.64 1 2.7914 

34 NZ 2016 2 2 2 10 2 Hereward wheat High 17.2 0.2158 7968.7015 2495.376 1 3.3971 

35 NZ 2016 2 2 2 11 2 Cadenza wheat Low 19 0.2117 8976.0743 3837.62 1 3.5841 

36 NZ 2016 2 2 2 12 2 Hereford wheat Low 16.7 0.2161 7727.2353 629.089 1 2.7987 

37 NZ 2016 2 2 3 13 3 Hereford wheat Low 17.1 0.2057 8313.7671 660.402 1 2.8198 

38 NZ 2016 2 2 3 14 3 Barley Barley Unknown 16.8 0.2411 6968.8529 3300.36 1 3.5186 

39 NZ 2016 2 2 3 15 3 Cadenza wheat Low 16.3 0.2151 7578.9479 355.992 1 2.5514 

40 NZ 2016 2 2 3 16 3 Xi19 wheat Low 17.9 0.2156 8300.8723 1610.821 1 3.2070 

41 NZ 2016 2 2 3 17 3 Hereward wheat High 6.86 0.2499 2744.6864 0 0 * 

42 NZ 2016 2 2 3 18 3 Duxford wheat High 16.9 0.2154 7846.8979 14763.84 1 4.1692 

43 NZ 2016 2 2 4 19 4 Hereford wheat Low 21.1 0.2021 10441.4318 1243.212 1 3.0945 

44 NZ 2016 2 2 4 20 4 Cadenza wheat Low 23.1 0.2157 10711.7185 2453.451 1 3.3898 

45 NZ 2016 2 2 4 21 4 Duxford wheat High 19.8 0.2072 9554.8560 3001.878 1 3.4774 

46 NZ 2016 2 2 4 22 4 Xi19 wheat Low 16.3 0.2092 7792.6195 1277.594 1 3.1064 

47 NZ 2016 2 2 4 23 4 Barley Barley Unknown 18 0.2014 8935.9959 383.652 1 2.5839 

48 NZ 2016 2 2 4 24 4 Hereward wheat High 23 0.2126 10815.9756 7017.3 1 3.8462 

49 NZ 2017 3 3 1 1 1 Hereford wheat Low 11.4 0.2320 4914.0999 4774.32 1 3.6789 

50 NZ 2017 3 3 1 2 1 Duxford wheat High 10.7 0.2336 4579.7953 9892.15 1 3.9953 
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51 NZ 2017 3 3 1 3 1 Barley Barley Unknown 13.2 0.2362 5588.3894 297.6864 1 2.4738 

52 NZ 2017 3 3 1 4 1 Xi19 wheat Low 15 0.2313 6484.0953 3670.2 1 3.5647 

53 NZ 2017 3 3 1 5 1 Hereward wheat High 15.4 0.2255 6828.6888 1493.184 1 3.1741 

54 NZ 2017 3 3 1 6 1 Cadenza wheat Low 10.7 0.2279 4695.4740 750.177 1 2.8752 

55 NZ 2017 3 3 2 7 2 Xi19 wheat Low 16.4 0.2270 7225.4318 1837.128 1 3.2641 

56 NZ 2017 3 3 2 8 2 Duxford wheat High 16.6 0.2227 7453.1270 3214.424 1 3.5071 

57 NZ 2017 3 3 2 9 2 Barley Barley Unknown 13.1 0.2263 5789.0695 522.035 1 2.7177 

58 NZ 2017 3 3 2 10 2 Hereward wheat High 10.9 0.2247 4850.1041 717.438 1 2.8558 

59 NZ 2017 3 3 2 11 2 Cadenza wheat Low 11.1 0.2235 4965.3787 2278.941 1 3.3577 

60 NZ 2017 3 3 2 12 2 Hereford wheat Low 15.4 0.2214 6955.2459 4840.22 1 3.6849 

61 NZ 2017 3 3 3 13 3 Hereford wheat Low 17.4 0.2185 7964.1025 942.384 1 2.9742 

62 NZ 2017 3 3 3 14 3 Barley Barley Unknown 14.4 0.2176 6616.8882 1293.552 1 3.1118 

63 NZ 2017 3 3 3 15 3 Cadenza wheat Low 15.1 0.2294 6583.5909 351.5129 1 2.5459 

64 NZ 2017 3 3 3 16 3 Xi19 wheat Low 9.92 0.2284 4343.1785 959.1648 1 2.9819 

65 NZ 2017 3 3 3 17 3 Hereward wheat High 10.7 0.2337 4579.1766 481.5 1 2.6826 

66 NZ 2017 3 3 3 18 3 Duxford wheat High 12.5 0.2387 5236.9729 769.5 1 2.8862 

67 NZ 2017 3 3 4 19 4 Hereford wheat Low 15.5 0.2327 6661.3742 514.2435 1 2.7112 

68 NZ 2017 3 3 4 20 4 Cadenza wheat Low 13.6 0.2328 5842.3875 18256.64 1 4.2614 

69 NZ 2017 3 3 4 21 4 Duxford wheat High 10.2 0.2374 4295.9364 740.316 1 2.8694 

70 NZ 2017 3 3 4 22 4 Xi19 wheat Low 19.1 0.2347 8138.8774 1242.646 1 3.0943 

71 NZ 2017 3 3 4 23 4 Barley Barley Unknown 20.9 0.2302 9079.9631 128.7022 1 2.1096 

72 NZ 2017 3 3 4 24 4 Hereward wheat High 13.8 0.2416 5711.8309 933.57 1 2.9701 

73 LH5 2015 0 0 1 1 1 Barley Barley Unknown 6.62 0.2120 3122.0159 0 0 * 

74 LH5 2015 0 0 1 2 1 Cadenza wheat Low 3.8 0.2100 1809.8931 0 0 * 

75 LH5 2015 0 0 1 3 1 Hereford wheat Low 6.5 0.2125 3059.3507 0 0 * 

76 LH5 2015 0 0 2 4 1 Xi19 wheat Low 2.3 0.2090 1100.2703 0 0 * 

77 LH5 2015 0 0 2 5 1 Hereward wheat High 4.9 0.2107 2325.3318 0 0 * 

78 LH5 2015 0 0 2 6 1 Duxford wheat High 4.09 0.1788 2287.1021 0 0 * 

79 LH5 2015 0 0 3 7 2 Cadenza wheat Low 3.9 0.2124 1836.4342 0 0 * 
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80 LH5 2015 0 0 3 8 2 Hereford wheat Low 4.6 0.2061 2232.3111 0 0 * 

81 LH5 2015 0 0 3 9 2 Xi19 wheat Low 10.6 0.2140 4952.7565 0 0 * 

82 LH5 2015 0 0 4 10 2 Hereward wheat High 12.1 0.2132 5674.4047 0 0 * 

83 LH5 2015 0 0 4 11 2 Duxford wheat High 6.54 0.2146 3047.9759 0 0 * 

84 LH5 2015 0 0 4 12 2 Barley Barley Unknown 6.04 0.2159 2797.2414 0 0 * 

85 LH5 2015 0 0 1 13 3 Xi19 wheat Low 4.05 0.2077 1950.2997 0 0 * 

86 LH5 2015 0 0 1 14 3 Hereward wheat High 4.99 0.2140 2331.6914 0 0 * 

87 LH5 2015 0 0 1 15 3 Duxford wheat High 5.42 0.2073 2614.8375 0 0 * 

88 LH5 2015 0 0 2 16 3 Barley Barley Unknown 6.3 0.2097 3004.6154 0 0 * 

89 LH5 2015 0 0 2 17 3 Cadenza wheat Low 6.73 0.1951 3450.2496 0 0 * 

90 LH5 2015 0 0 2 18 3 Hereford wheat Low 6.5 0.2481 2619.9440 0 0 * 

91 LH5 2015 0 0 3 19 4 Duxford wheat High 7.75 0.2058 3766.5959 0 0 * 

92 LH5 2015 0 0 3 20 4 Barley Barley Unknown 5.1 0.2154 2367.9776 0 0 * 

93 LH5 2015 0 0 3 21 4 Hereward wheat High 3.37 0.1995 1688.8074 0 0 * 

94 LH5 2015 0 0 4 22 4 Hereford wheat Low 2.14 0.2129 1005.1715 0 0 * 

95 LH5 2015 0 0 4 23 4 Xi19 wheat Low 6.67 0.2089 3192.8899 0 0 * 

96 LH5 2015 0 0 4 24 4 Cadenza wheat Low 5.19 0.2318 2238.9259 0 0 * 

97 LH5 2016 1 1 1 1 1 Barley Barley Unknown 8.04 0.2260 3557.8061 0 0 * 

98 LH5 2016 1 1 1 2 1 Cadenza wheat Low 10.7 0.2303 4645.6234 0 0 * 

99 LH5 2016 1 1 1 3 1 Hereford wheat Low 10.7 0.2305 4641.5979 0 0 * 

100 LH5 2016 1 1 2 4 1 Xi19 wheat Low 7.4 0.2292 3229.1348 0 0 * 

101 LH5 2016 1 1 2 5 1 Hereward wheat High 10.7 0.2443 4379.9383 0 0 * 

102 LH5 2016 1 1 2 6 1 Duxford wheat High 10.3 0.2287 4502.7510 141.9031 1 2.1520 

103 LH5 2016 1 1 3 7 2 Cadenza wheat Low 11.7 0.2268 5158.8687 0 0 * 

104 LH5 2016 1 1 3 8 2 Hereford wheat Low 12.5 0.2304 5425.9186 87.4375 1 1.9417 

105 LH5 2016 1 1 3 9 2 Xi19 wheat Low 4.64 0.2271 2043.0222 73.81312 1 1.8681 

106 LH5 2016 1 1 4 10 2 Hereward wheat High 5.05 0.2282 2212.7085 177.3055 1 2.2487 

107 LH5 2016 1 1 4 11 2 Duxford wheat High 10.8 0.2298 4699.1889 0 0 * 

108 LH5 2016 1 1 4 12 2 Barley Barley Unknown 11.8 0.2172 5432.0246 0 0 * 
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109 LH5 2016 1 1 1 13 3 Xi19 wheat Low 13.3 0.2220 5990.4453 0 0 * 

110 LH5 2016 1 1 1 14 3 Hereward wheat High 9.78 0.2201 4443.5828 88.66548 1 1.9478 

111 LH5 2016 1 1 1 15 3 Duxford wheat High 13.9 0.2277 6103.9646 58.4495 1 1.7668 

112 LH5 2016 1 1 2 16 3 Barley Barley Unknown 11.2 0.2085 5372.3306 0 0 * 

113 LH5 2016 1 1 2 17 3 Cadenza wheat Low 10.9 0.1865 5843.8592 44.363 1 1.6470 

114 LH5 2016 1 1 2 18 3 Hereford wheat Low 9.69 0.1718 5640.7914 0 0 * 

115 LH5 2016 1 1 3 19 4 Duxford wheat High 7.54 0.2241 3364.9905 30.6878 1 1.4870 

116 LH5 2016 1 1 3 20 4 Barley Barley Unknown 3.93 0.1988 1976.5614 0 0 * 

117 LH5 2016 1 1 3 21 4 Hereward wheat High 12 0.2318 5176.0879 625.44 1 2.7962 

118 LH5 2016 1 1 4 22 4 Hereford wheat Low 9.89 0.2322 4258.7265 0 0 * 

119 LH5 2016 1 1 4 23 4 Xi19 wheat Low 12.2 0.2283 5344.1977 0 0 * 

120 LH5 2016 1 1 4 24 4 Cadenza wheat Low 14.9 0.2265 6578.5596 509.9674 1 2.7075 

121 LH5 2017 2 2 1 1 1 Barley Barley Unknown 16.7 0.2374 7034.2915 0 0 * 

122 LH5 2017 2 2 1 2 1 Cadenza wheat Low 10.2 0.2419 4217.2303 90.7596 1 1.9579 

123 LH5 2017 2 2 1 3 1 Hereford wheat Low 12.7 0.2451 5180.6235 55.245 1 1.7423 

124 LH5 2017 2 2 2 4 1 Xi19 wheat Low 14.1 0.2428 5807.7897 4079.13 1 3.6106 

125 LH5 2017 2 2 2 5 1 Hereward wheat High 14.9 0.2392 6229.7978 10376.36 1 4.0160 

126 LH5 2017 2 2 2 6 1 Duxford wheat High 14 0.2422 5779.9873 950.32 1 2.9779 

127 LH5 2017 2 2 3 7 2 Cadenza wheat Low 14.5 0.2401 6038.9851 234.5375 1 2.3702 

128 LH5 2017 2 2 3 8 2 Hereford wheat Low 16 0.2388 6700.3264 121.488 1 2.0845 

129 LH5 2017 2 2 3 9 2 Xi19 wheat Low 12.7 0.2400 5290.6092 248.158 1 2.3947 

130 LH5 2017 2 2 4 10 2 Hereward wheat High 16.1 0.2404 6695.8010 2255.127 1 3.3532 

131 LH5 2017 2 2 4 11 2 Duxford wheat High 10.5 0.2418 4342.6354 667.8 1 2.8246 

132 LH5 2017 2 2 4 12 2 Barley Barley Unknown 13.5 0.2348 5749.8126 0 0 * 

133 LH5 2017 2 2 1 13 3 Xi19 wheat Low 15.7 0.2373 6616.4950 2983.942 1 3.4748 

134 LH5 2017 2 2 1 14 3 Hereward wheat High 9.38 0.2329 4026.6534 3985.562 1 3.6005 

135 LH5 2017 2 2 1 15 3 Duxford wheat High 14.4 0.2353 6118.8997 638.64 1 2.8053 

136 LH5 2017 2 2 2 16 3 Barley Barley Unknown 14.9 0.2321 6419.4013 0 0 * 

137 LH5 2017 2 2 2 17 3 Cadenza wheat Low 14 0.2398 5837.7329 132.552 1 2.1224 
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138 LH5 2017 2 2 2 18 3 Hereford wheat Low 13.2 0.2384 5536.1219 131.7228 1 2.1197 

139 LH5 2017 2 2 3 19 4 Duxford wheat High 14.6 0.2384 6123.6359 225.789 1 2.3537 

140 LH5 2017 2 2 3 20 4 Barley Barley Unknown 14 0.2348 5961.6806 0 0 0.0000 

141 LH5 2017 2 2 3 21 4 Hereward wheat High 13.8 0.2355 5859.5090 2096.772 1 3.3216 

142 LH5 2017 2 2 4 22 4 Hereford wheat Low 14.7 0.2318 6341.1191 1000.923 1 3.0004 

143 LH5 2017 2 2 4 23 4 Xi19 wheat Low 12.6 0.2324 5421.8997 173.628 1 2.2396 

144 LH5 2017 2 2 4 24 4 Cadenza wheat Low 11.4 0.2285 4989.5580 0 0 * 

145 LH4 2016 0 0 1 1 1 Xi19 wheat Low 8.92 0.2067 4314.4506 0 0 * 

146 LH4 2016 0 0 1 2 1 Cadenza wheat Low 7.64 0.2116 3610.3146 0 0 * 

147 LH4 2016 0 0 1 3 1 Hereward wheat High 12.2 0.2203 5538.5805 0 0 * 

148 LH4 2016 0 0 2 4 1 Hereward wheat High 7.17 0.2191 3272.0451 0 0 * 

149 LH4 2016 0 0 2 5 1 Barley Barley Unknown 9.82 0.2376 4132.8152 0 0 * 

150 LH4 2016 0 0 2 6 1 Duxford wheat High 11.6 0.2094 5539.0151 0 0 * 

151 LH4 2016 0 0 3 7 2 Duxford wheat High 8.11 0.2107 3849.2010 15.056215 1 1.1777 

152 LH4 2016 0 0 3 8 2 Hereward wheat High 11.2 0.2081 5382.4632 0 0 * 

153 LH4 2016 0 0 3 9 2 Barley Barley Unknown 8.98 0.2095 4286.8738 62.12364 1 1.7933 

154 LH4 2016 0 0 4 10 2 Duxford wheat High 9.75 0.2090 4664.6877 14.937 1 1.1743 

155 LH4 2016 0 0 4 11 2 Barley Barley Unknown 9.59 0.2103 4560.6851 0 0 * 

156 LH4 2016 0 0 4 12 2 Hereford wheat Low 8.67 0.2067 4193.9529 0 0 * 

157 LH4 2016 0 0 1 13 3 Hereford wheat Low 10.2 0.2136 4775.8068 218.688 1 2.3398 

158 LH4 2016 0 0 1 14 3 Barley Barley Unknown 10.6 0.2079 5098.0050 0 0 * 

159 LH4 2016 0 0 1 15 3 Duxford wheat High 8.14 0.2083 3908.3829 0 0 * 

160 LH4 2016 0 0 2 16 3 Xi19 wheat Low 7.13 0.2080 3427.0926 277.9274 1 2.4439 

161 LH4 2016 0 0 2 17 3 Cadenza wheat Low 7.54 0.2089 3609.4979 0 0 * 

162 LH4 2016 0 0 2 18 3 Hereford wheat Low 10.4 0.2083 4993.2702 0 0 * 

163 LH4 2016 0 0 3 19 4 Cadenza wheat Low 10.4 0.2072 5018.9862 0 0 * 

164 LH4 2016 0 0 3 20 4 Xi19 wheat Low 11.8 0.2046 5767.3921 0 0 * 

165 LH4 2016 0 0 3 21 4 Hereford wheat Low 6.18 0.2069 2987.2023 470.1126 1 2.6722 

166 LH4 2016 0 0 4 22 4 Hereward wheat High 10 0.2058 4858.2244 76.93 1 1.8861 
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167 LH4 2016 0 0 4 23 4 Cadenza wheat Low 11.4 0.2057 5541.6573 0 0 * 

168 LH4 2016 0 0 4 24 4 Xi19 wheat Low 9.43 0.2065 4565.7250 0 0 * 

169 LH4 2017 1 1 1 1 1 Xi19 wheat Low 12.1 0.2320 5216.1514 0 0 * 

170 LH4 2017 1 1 1 2 1 Cadenza wheat Low 11 0.2332 4717.7529 0 0 * 

171 LH4 2017 1 1 1 3 1 Hereward wheat High 11.6 0.2344 4948.9284 0 0 * 

172 LH4 2017 1 1 2 4 1 Hereward wheat High 12 0.2285 5251.0221 0 0 * 

173 LH4 2017 1 1 2 5 1 Barley Barley Unknown 16.3 0.2268 7186.2637 0 0 * 

174 LH4 2017 1 1 2 6 1 Duxford wheat High 15.5 0.2286 6780.5140 0 0 * 

175 LH4 2017 1 1 3 7 2 Duxford wheat High 17.8 0.2290 7771.9350 312.568 1 2.4949 

176 LH4 2017 1 1 3 8 2 Hereward wheat High 14.7 0.2254 6522.9218 1022.973 1 3.0099 

177 LH4 2017 1 1 3 9 2 Barley Barley Unknown 17.9 0.2196 8152.1425 0 0 * 

178 LH4 2017 1 1 4 10 2 Duxford wheat High 17.3 0.2236 7738.6009 193.6389 1 2.2870 

179 LH4 2017 1 1 4 11 2 Barley Barley Unknown 12.3 0.2190 5617.5663 0 0 * 

180 LH4 2017 1 1 4 12 2 Hereford wheat Low 17.3 0.2216 7807.0108 0 0 * 

181 LH4 2017 1 1 1 13 3 Hereford wheat Low 14.6 0.2249 6490.7505 3209.08 1 3.5064 

182 LH4 2017 1 1 1 14 3 Barley Barley Unknown 15.9 0.2481 6409.6501 101.2194 1 2.0053 

183 LH4 2017 1 1 1 15 3 Duxford wheat High 16.2 0.2451 6610.2292 0 0 * 

184 LH4 2017 1 1 2 16 3 Xi19 wheat Low 12.7 0.2446 5191.7340 5027.93 1 3.7014 

185 LH4 2017 1 1 2 17 3 Cadenza wheat Low 15.6 0.2450 6367.9917 96.2676 1 1.9835 

186 LH4 2017 1 1 2 18 3 Hereford wheat Low 13.3 0.2449 5429.7920 82.6063 1 1.9170 

187 LH4 2017 1 1 3 19 4 Cadenza wheat Low 20.5 0.2417 8482.0336 0 0 * 

188 LH4 2017 1 1 3 20 4 Xi19 wheat Low 28.3 0.2427 11662.7281 0 0 * 

189 LH4 2017 1 1 3 21 4 Hereford wheat Low 21.7 0.2402 9032.4818 15947.33 1 4.2027 

190 LH4 2017 1 1 4 22 4 Hereward wheat High 24.3 0.2402 10118.3903 1736.235 1 3.2396 

191 LH4 2017 1 1 4 23 4 Cadenza wheat Low 26.9 0.2344 11474.1770 0 0 * 

192 LH4 2017 1 1 4 24 4 Xi19 wheat Low 20.1 0.2332 8619.1174 0 0 * 
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9.4.4 Appendix IV: Percent infected roots and take-all index data for fields New Zealand, Long Hoos 5 and Long Hoos 4. The (*) 

data not available. 

Tube No Field Year Plot Cultivar % roots infected post-harvest soil core bioassay Plant Samples  Take-all Index 

1 NZ 1 1 Hereford 24.08 0.67 

2 NZ 1 2 Duxford 59.91 0.67 

3 NZ 1 3 Barley 3.54 1.05 

4 NZ 1 4 Xi19 40.89 0.00 

5 NZ 1 5 Hereward 39.91 4.44 

6 NZ 1 6 Cadenza 15.35 3.03 

7 NZ 1 7 Xi19 34.71 0.00 

8 NZ 1 8 Duxford 55.11 1.21 

9 NZ 1 9 Barley 7.62 0.00 

10 NZ 1 10 Hereward 49.77 1.08 

11 NZ 1 11 Cadenza 9.84 8.57 

12 NZ 1 12 Hereford 36.82 0.00 

13 NZ 1 13 Hereford 22.40 0.00 

14 NZ 1 14 Barley 22.46 0.00 

15 NZ 1 15 Cadenza 16.00 0.00 

16 NZ 1 16 Xi19 33.91 0.00 

17 NZ 1 17 Hereward 30.96 1.00 

18 NZ 1 18 Duxford 46.22 1.62 

19 NZ 1 19 Hereford 36.36 0.00 

20 NZ 1 20 Cadenza 32.77 0.69 

21 NZ 1 21 Duxford 39.62 4.62 

22 NZ 1 22 Xi19 45.02 1.60 
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23 NZ 1 23 Barley 8.81 0.00 

24 NZ 1 24 Hereward 51.21 0.71 

25 NZ 2 1 Hereford 60.58 * 

26 NZ 2 2 Duxford 67.13 * 

27 NZ 2 3 Barley 38.14 * 

28 NZ 2 4 Xi19 45.61 * 

29 NZ 2 5 Hereward 42.86 * 

30 NZ 2 6 Cadenza 57.97 * 

31 NZ 2 7 Xi19 71.09 * 

32 NZ 2 8 Duxford 70.37 * 

33 NZ 2 9 Barley 52.01 * 

34 NZ 2 10 Hereward 48.93 * 

35 NZ 2 11 Cadenza 59.87 * 

36 NZ 2 12 Hereford 63.84 * 

37 NZ 2 13 Hereford 76.83 * 

38 NZ 2 14 Barley 35.02 * 

39 NZ 2 15 Cadenza 28.11 * 

40 NZ 2 16 Xi19 75.80 * 

41 NZ 2 17 Hereward 73.38 * 

42 NZ 2 18 Duxford 50.00 * 

43 NZ 2 19 Hereford 38.16 * 

44 NZ 2 20 Cadenza 75.00 * 

45 NZ 2 21 Duxford 72.31 * 

46 NZ 2 22 Xi19 34.98 * 

47 NZ 2 23 Barley 38.06 * 

48 NZ 2 24 Hereward 38.71 * 

49 NZ 3 1 Hereford * 62.86 
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50 NZ 3 2 Duxford * 61.25 

51 NZ 3 3 Barley * 28.00 

52 NZ 3 4 Xi19 * 80.00 

53 NZ 3 5 Hereward * 66.96 

54 NZ 3 6 Cadenza * 60.71 

55 NZ 3 7 Xi19 * 80.00 

56 NZ 3 8 Duxford * 98.75 

57 NZ 3 9 Barley * 34.29 

58 NZ 3 10 Hereward * 89.03 

59 NZ 3 11 Cadenza * 67.14 

60 NZ 3 12 Hereford * 59.41 

61 NZ 3 13 Hereford * 68.89 

62 NZ 3 14 Barley * 21.33 

63 NZ 3 15 Cadenza * 60.00 

64 NZ 3 16 Xi19 * 90.77 

65 NZ 3 17 Hereward * 78.06 

66 NZ 3 18 Duxford * 78.71 

67 NZ 3 19 Hereford * 27.50 

68 NZ 3 20 Cadenza * 73.33 

69 NZ 3 21 Duxford * 70.00 

70 NZ 3 22 Xi19 * 45.56 

71 NZ 3 23 Barley * 14.29 

72 NZ 3 24 Hereward * 57.50 

73 LH5 0 1 Barley * * 

74 LH5 0 2 Cadenza * * 

75 LH5 0 3 Hereford * * 

76 LH5 0 4 Xi19 * * 
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77 LH5 0 5 Hereward * * 

78 LH5 0 6 Duxford * * 

79 LH5 0 7 Cadenza * * 

80 LH5 0 8 Hereford * * 

81 LH5 0 9 Xi19 * * 

82 LH5 0 10 Hereward * * 

83 LH5 0 11 Duxford * * 

84 LH5 0 12 Barley * * 

85 LH5 0 13 Xi19 * * 

86 LH5 0 14 Hereward * * 

87 LH5 0 15 Duxford * * 

88 LH5 0 16 Barley * * 

89 LH5 0 17 Cadenza * * 

90 LH5 0 18 Hereford * * 

91 LH5 0 19 Duxford * * 

92 LH5 0 20 Barley * * 

93 LH5 0 21 Hereward * * 

94 LH5 0 22 Hereford * * 

95 LH5 0 23 Xi19 * * 

96 LH5 0 24 Cadenza * * 

97 LH5 1 1 Barley 23.21 * 

98 LH5 1 2 Cadenza 29.35 * 

99 LH5 1 3 Hereford 20.06 * 

100 LH5 1 4 Xi19 39.16 * 

101 LH5 1 5 Hereward 42.37 * 

102 LH5 1 6 Duxford 13.83 * 

103 LH5 1 7 Cadenza 21.32 * 
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104 LH5 1 8 Hereford 22.11 * 

105 LH5 1 9 Xi19 26.49 * 

106 LH5 1 10 Hereward 34.69 * 

107 LH5 1 11 Duxford 25.57 * 

108 LH5 1 12 Barley 16.71 * 

109 LH5 1 13 Xi19 25.43 * 

110 LH5 1 14 Hereward 15.64 * 

111 LH5 1 15 Duxford 19.08 * 

112 LH5 1 16 Barley 32.12 * 

113 LH5 1 17 Cadenza 46.01 * 

114 LH5 1 18 Hereford 11.65 * 

115 LH5 1 19 Duxford 11.97 * 

116 LH5 1 20 Barley 18.27 * 

117 LH5 1 21 Hereward 50.58 * 

118 LH5 1 22 Hereford 1.70 * 

119 LH5 1 23 Xi19 6.23 * 

120 LH5 1 24 Cadenza 8.49 * 

121 LH5 2 1 Barley * 18.89 

122 LH5 2 2 Cadenza * 20.83 

123 LH5 2 3 Hereford * 44.21 

124 LH5 2 4 Xi19 * 52.26 

125 LH5 2 5 Hereward * 99.33 

126 LH5 2 6 Duxford * 44.62 

127 LH5 2 7 Cadenza * 16.84 

128 LH5 2 8 Hereford * 8.00 

129 LH5 2 9 Xi19 * 22.61 

130 LH5 2 10 Hereward * 53.33 
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131 LH5 2 11 Duxford * 46.67 

132 LH5 2 12 Barley * 3.75 

133 LH5 2 13 Xi19 * 47.00 

134 LH5 2 14 Hereward * 84.80 

135 LH5 2 15 Duxford * 42.86 

136 LH5 2 16 Barley * 7.10 

137 LH5 2 17 Cadenza * 16.84 

138 LH5 2 18 Hereford * 20.00 

139 LH5 2 19 Duxford * 8.89 

140 LH5 2 20 Barley * 0.54 

141 LH5 2 21 Hereward * 40.83 

142 LH5 2 22 Hereford * 41.90 

143 LH5 2 23 Xi19 * 30.30 

144 LH5 2 24 Cadenza * 2.50 

145 LH4 0 1 Xi19 * * 

146 LH4 0 2 Cadenza * * 

147 LH4 0 3 Hereward * * 

148 LH4 0 4 Hereward * * 

149 LH4 0 5 Barley * * 

150 LH4 0 6 Duxford * * 

151 LH4 0 7 Duxford * * 

152 LH4 0 8 Hereward * * 

153 LH4 0 9 Barley * * 

154 LH4 0 10 Duxford * * 

155 LH4 0 11 Barley * * 

156 LH4 0 12 Hereford * * 

157 LH4 0 13 Hereford * * 
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158 LH4 0 14 Barley * * 

159 LH4 0 15 Duxford * * 

160 LH4 0 16 Xi19 * * 

161 LH4 0 17 Cadenza * * 

162 LH4 0 18 Hereford * * 

163 LH4 0 19 Cadenza * * 

164 LH4 0 20 Xi19 * * 

165 LH4 0 21 Hereford * * 

166 LH4 0 22 Hereward * * 

167 LH4 0 23 Cadenza * * 

168 LH4 0 24 Xi19 * * 

169 LH4 1 1 Xi19 * 0.85 

170 LH4 1 2 Cadenza * 5.68 

171 LH4 1 3 Hereward * 2.67 

172 LH4 1 4 Hereward * 8.11 

173 LH4 1 5 Barley * 0.65 

174 LH4 1 6 Duxford * 0.80 

175 LH4 1 7 Duxford * 14.65 

176 LH4 1 8 Hereward * 16.34 

177 LH4 1 9 Barley * 0.65 

178 LH4 1 10 Duxford * 9.57 

179 LH4 1 11 Barley * 11.04 

180 LH4 1 12 Hereford * 7.33 

181 LH4 1 13 Hereford * 13.45 

182 LH4 1 14 Barley * 0.23 

183 LH4 1 15 Duxford * 16.99 

184 LH4 1 16 Xi19 * 20.11 
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185 LH4 1 17 Cadenza * 4.64 

186 LH4 1 18 Hereford * 6.67 

187 LH4 1 19 Cadenza * 6.98 

188 LH4 1 20 Xi19 * 15.67 

189 LH4 1 21 Hereford * 35.88 

190 LH4 1 22 Hereward * 19.10 

191 LH4 1 23 Cadenza * 5.92 

192 LH4 1 24 Xi19 * 0.00 

 

 

. 

 

 

 

 

 

 



402 
 

9.4.5 Appendix V: The OTU data file is very large, will be provided on request. 
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