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The climate of South and East Asia is affected by anthropogenic aerosols, but the 

magnitude of the aerosol imprint is not well known. As regional emissions are rapidly 

changing, potential related climate risks must be quantified.  

Anthropogenic aerosol emissions over Asia are changing rapidly, both in composition and 

spatial distribution1,2. The Shared Socioeconomic Pathways (SSPs), potential narratives of 

development used by the Intergovernmental Panel for Climate Change in future projections, 

span a range of influences of aerosols on climate over the next decades. Several of these 

narratives project the continuation of a trend manifested in observations since 2010, with a 

clear dipole between South and East Asia.  

The patterns of radiative forcing that result from these distributions of aerosols will differ 

from those of the late 20th century. They may instigate large-scale atmospheric responses that 

could have wide ranging impacts on climate and society well beyond the aerosol source 

regions. South and East Asia are particularly vulnerable to climate change because of strong 

seasonal variations in precipitation, high average temperature, and very high population 

density. Therefore, any aerosol impacts on the strength or seasonal variations in monsoon 

rainfall, freshwater availability, or climate extremes, will incur large societal costs. We urge 

the scientific community to make definite progress towards understanding and quantifying the 

impacts of Asian aerosols and to tackle the potentially large regional and hemispheric 

implications of these emerging trends.  

Aerosols affect Asian climate 

The scientific community has long focused on understanding the intricate dynamics of the 

climate of South and East Asia. With a population of billions, any change in climate may 

entail significant hazards and risks. Indeed, in its recent report on the impacts of 1.5 °C global 

warming, the Intergovernmental Panel on Climate Change (IPCC) highlighted South and East 

Asia as a region that faces high multi-hazard climate risk over the coming decades3. 

Extensive amounts of anthropogenic aerosol emissions are currently being emitted in South 

and East Asia. Long-term climate variations over South and East Asia since the mid-twentieth 

century have been substantially modulated by anthropogenic aerosols, of both local and 

remote origin. Their imprint could have been even larger than what can be ascribed to the 

globally rising concentrations of greenhouse gases4,5. Aerosol cooling in the region as a whole 

may have masked up to 1 °C of greenhouse-gas induced surface warming since the pre-

industrial era in this region. Likewise, the expected twentieth century increase in summer 

monsoon precipitation from greenhouse gases could have been into a local reduction, as a 

result of aerosol emissions6. Aerosols additionally modulate subseasonal monsoon variability, 

such as its onset and intraseasonal oscillations7; moreover, extreme precipitation rates have 

been found to be more sensitive to changes in aerosol emissions than to greenhouse gas 

forcing6,8. 



Emerging patterns 

South and East Asian aerosol emissions have been changing rapidly since about 2010, as a 

result of stringent air quality measures driven by concerns for public health. These measures 

have led to a rapid reduction in Chinese emissions of SO2 
1 and other pollutants9. This change 

is readily evident in observations (Figure 1a) as an emerging dipole pattern in total aerosol 

optical depth: a marked reduction over China, with concurrent increase over India.  

How this trend evolves will depend strongly on measures to improve regional air quality and 

to bring about a transition of the energy system10. Whereas an overall reduction in aerosol 

loading is anticipated, near-term trends in emissions of black carbon and sulfur dioxide (SO2) 

differ over China and India between the main scenarios. In the following we focus on these 

two key aerosol species, which have markedly different climate interactions, although 

simultaneous changes in other species such as ammonium-nitrate and organic carbon will also 

contribute to determining the total aerosol load. Projected emissions lead to further, strikingly 

different future patterns of aerosol optical depth changes, as seen in Figure 1b.  

Here, present-day emissions based on the Community Emission Data System (CEDS)11 and 

emissions under the Shared Socioeconomic Pathways  SSP1-1.9. SSP2-4.5 and SSP3-7.010 

were used as input to the atmospheric chemical transport model OsloCTM312. We ran a 

baseline simulation with Community Emission Data System (CEDS) emissions for the year 

2014, and another simulation for each SSP where black carbon and SO2 emissions are taken 

from year 2030 over South and East Asia but kept at 2014 levels for the rest of the world. The 

change from 2014 to 2030 change is shown in Figure 1b (Supplementary Figure S1 shows the 

difference between 2030 and 2050). 

For the coming decade, SSP1, which assumes strong air quality policy, projects a strong 

reduction over the two regions in the aerosol optical depth of both sulfate (SO4) and black 

carbon. SSP2, with medium-strength air quality policy, however, projects increases over India 

but decreases over China, reminiscent of the recent observed pattern shown in Figure 1a. In 

fact, more of this dipole may have been realized already than suggested by the model as the 

decline in Chinese SO2 emissions is weaker in the Community Emission Data System than 

other studies1,11, indicating an underestimate of the impact of China’s recent clean air actions. 

SSP3, standing for weak air quality policy, projects an increase in black carbon aerosol 

optical depth over both China and India, but with a dipole pattern in sulfate aerosol optical 

depth change similar to SSP2.   

Uncertain implications 

The differences in aerosol loading patterns are clear, but their climate implications are not. 

The multi-faceted Asian climate, controlled by a variety of atmosphere-ocean-land processes 

coupled across a wide range of spatial and temporal scales, combined with the limitations of 

current climate models, make it challenging to predict the implications of such emerging 

patterns of climate forcing. The picture is further complicated by the complexity of aerosol 

climate interactions in general. Sulfate produced from industrial SO2 emissions generally 

cools the climate through scattering of incoming sunlight and by altering cloud properties, 

whereas black carbon from incomplete combustion processes generally warms through strong 

absorption of shortwave radiation. Regional feedback processes and mechanisms may further 

act to partially mask the aerosol signal through compensating changes in other variables13.  



After atmospheric transport, emission changes are often linked to climate impacts through a 

calculation of radiative forcing. However, imperfect knowledge of processes such as aerosol-

cloud interactions4, rapid adjustments14 and aerosol optical and microphysical properties15 

precludes precise quantification of Asian aerosol-induced radiative forcing. As an estimate, 

however, we show in Figure 1c a calculation of the seasonally-resolved radiative forcing for 

the two aerosol species and averaged over India and China, resulting from the emission 

changes in the Shared Socioeconomic Pathways. The estimates are derived by combining the 

simulations in Figure 1b with a radiative kernel16, with averaged forcing scaled to the multi-

model mean derived in the model intercomparison project AeroCom Phase II17. We scaled the 

black carbon forcing down by 10% to account for rapid adjustments, based on a multi-model 

study14, and the sulfate forcing up by 100% to account for aerosol-cloud interaction effects on 

cloud albedo and lifetime. The latter is based on estimates from the Fifth assessment report 

from the IPCC (AR5)18, and a separate, multi-model investigation2. Such scaling is an 

oversimplification and carries significant uncertainty, but is nevertheless representative of 

present knowledge.  

Figure 1c shows how a dipole pattern in emissions and aerosol loading may carry over to 

radiative forcing, albeit modulated by the generally opposing forcing from black carbon and 

SO4 when taken at top-of-atmosphere. For SSP1, we find a strongly seasonal pattern in 

radiative forcing for the period 2014 to 2030, over both regions, whereas for SSP2 and SSP3 

the radiative forcing is generally negative over India but positive over China. The radiative 

forcing between 2030 and 2050 (Figure S1) is weaker than for the first decade, but still ranges 

between ±1 Wm-2 averaged over the whole region.  

Note, however, that even a balance between SO4 and black carbon forcing at the top of the 

atmosphere may cause marked changes to regional climate, as they have physically distinct 

climate interactions. Notably, black carbon induces significant shortwave heating through the 

atmospheric column, hypothesized to have an impact on monsoon patterns, and shown to 

strongly suppress precipitation in climate models19. Black carbon also affects surface albedo 

through accumulation on snow20. 

Generally, the climate responses to aerosol loading and forcing patterns such those shown in 

Figure 1 are highly uncertain. They must be calculated through coupled climate models, but 

these models have known and persistent biases, for example, in their representation of clouds 

and wind patterns21. Their simulated response of the monsoons to aerosol perturbations is 

under debate22,23, as are their representation of precipitation and temperature extremes24,25.  

Risks and opportunities 

Behind these uncertainties lie potential impacts on a large number of people. Over the coming 

years and decades, the forcing resulting from rapid, inter-regional changes like those 

projected in the SSPs may induce very noticeable effects on regional Asian climate, and 

beyond. Potential impacts include changes to mean and extreme temperature and 

precipitation, the onset and strength of the monsoon systems, freshwater availability and 

changes to air quality. The high societal risks make a compelling case for the science 

community to step up synergistic efforts to tackle the challenges noted above.  

Figure 1d lists some key uncertainties that remain before we can rigorously link Asian aerosol 

emission changes to local or remote impacts on society. Several ongoing community efforts, 



such as PDRMIP19, DAMIP26, AerChemMIP27 and the harmonization of historical emission 

inventories with the SSP scenarios28, are already poised to tackle the issues raised by the 

coming changes. However, given the strong likelihood of nonlinear interactions between the 

responses to Indian and Chinese aerosol, our understanding of past change may not be enough 

to give us a good understanding of the future climate in this region.  We highlight three key 

challenges and opportunities that may be readily addressed by the community: 

Emission inventories: Existing time series must be continuously updated and harmonized with 

the best available observations and national statistics, including regional trends for black 

carbon, SO2 and other aerosol species and precursors separately. Further development of high 

spatial resolution emission inventories is also needed29. In parallel, we urge the community to 

utilize the full range of SSPs when studying climate impacts in South and East Asia, as a 

much broader range of global and regional developments is spanned than in scenarios of the 

previous generation. We recommend even to consider extending emission scenarios beyond 

the envelope of SSP projections.    

Observable evolution: The contrasting emission changes that will likely play out over the 

coming decades offer unique opportunities for improved process understanding - if 

accompanied by a ramp-up in observations, analogous to the use of field measurements from 

volcanic eruptions to constrain the aerosol-cloud response30. Coordinated and continuous 

measurements of a broad range of variables, in open and accessible databases, may provide a 

key to further unravel the mysteries of the aerosol-climate interaction.   

Integrated approaches: Delineating the dynamical responses to inter-regional patterns of 

cooling and warming (including heating from black carbon aloft), with particular focus on 

aerosol-cloud interactions, monsoons, and changes to extreme precipitation, drought, and 

internal variability, requires combining state-of-the-art models, improved physical 

understanding, and observations. With the driving mechanisms spanning and interacting 

across a wide range of spatiotemporal scales, a hierarchy of modeling tools is needed. This 

calls for a closer integration, and continuation, of ongoing efforts within the climate dynamics 

and aerosol modeling communities.  

India and China have both been noted as countries facing high levels of climate-related multi-

hazards, regardless of the level of future air quality measures3. Even if the probability of 

strong aerosol effects is low, the impacts could be significant when co-evolving with 

greenhouse gas concentrations and global warming. It will therefore be prudent to put every 

effort into unraveling the complex physical interactions between aerosols and Asian climate. 

  



Figure 

 

Figure 1: Recent and expected emissions changes lead to striking patterns of change in 

aerosol loading and radiative forcing over South and East Asia, as already seen by MODIS 

Terra since 2010 (a). The Shared Socioeconomic Pathways project continued changes (b), 

here for black carbon and sulfate (SO4), depending on the assumptions made about regional 

air quality policy. SSP1 (left) assumes strong policies, SSP2 medium and SSP3 (right) weak 

policies. These changes will lead to a net regional aerosol radiative forcing (c; blue circles) 

that is seasonally dependent, and balance between reduced warming from absorbing black 

carbon (red) and reduced cooling from SO4 (blue) from direct scattering and modification of 

clouds. Aerosol emissions are integrally linked to society through transport, industry, health 

and other factors, and changes to the circle of causes and effects may alter the risks of a range 

of climate related impacts (d).  

 

  



References 

1 Li, C. et al. India Is Overtaking China as the World's Largest Emitter of 

Anthropogenic Sulfur Dioxide. Sci Rep 7, 14304, doi:10.1038/s41598-017-14639-8 

(2017). 

2 Myhre, G. et al. Multi-model simulations of aerosol and ozone radiative forcing due to 

anthropogenic emission changes during the period 1990&amp;ndash;2015. 

Atmospheric Chemistry and Physics 17, 2709-2720, doi:10.5194/acp-17-2709-2017 

(2017). 

3 O. Hoegh-Guldberg et al. Impacts of 1.5ºC global warming on natural and human 

systems. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of 

global warming of 1.5°C above pre-industrial levels and related global greenhouse gas 

emission pathways, in the context of strengthening the global response to the threat of 

climate change, sustainable development, and efforts to eradicate poverty [V. Masson-

Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. 

Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. 

Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. In 

Press.  (2018). 

4 Li, Z. et al. Aerosol and monsoon climate interactions over Asia. Reviews of 

Geophysics 54, 866-929, doi:10.1002/2015rg000500 (2016). 

5 Lau, W. K. M. The aerosol-monsoon climate system of Asia: A new paradigm. 

Journal of Meteorological Research 30, 1-11, doi:10.1007/s13351-015-5999-1 (2016). 

6 Samset, B. H. et al. Climate Impacts From a Removal of Anthropogenic Aerosol 

Emissions. Geophysical Research Letters 45, 1020-1029, doi:10.1002/2017gl076079 

(2018). 

7 Kitoh, A. The Asian Monsoon and its Future Change in Climate Models: A Review. 

Journal of the Meteorological Society of Japan. Ser. II 95, 7-33, 

doi:10.2151/jmsj.2017-002 (2017). 

8 Wang, Z. et al. Scenario dependence of future changes in climate extremes under 1.5 

degrees C and 2 degrees C global warming. Sci Rep 7, 46432, doi:10.1038/srep46432 

(2017). 

9 Zheng, B. et al. Trends in China's anthropogenic emissions since 2010 as the 

consequence of clean air actions. Atmospheric Chemistry and Physics 18, 14095-

14111, doi:10.5194/acp-18-14095-2018 (2018). 

10 Rao, S. et al. Future air pollution in the Shared Socio-economic Pathways. Global 

Environmental Change 42, 346-358, doi:10.1016/j.gloenvcha.2016.05.012 (2017). 

11 Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases 

and aerosols from the Community Emissions Data System (CEDS). Geoscientific 

Model Development 11, 369-408, doi:10.5194/gmd-11-369-2018 (2018). 

12 Lund, M. T. et al. Concentrations and radiative forcing of anthropogenic aerosols from 

1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory. 

Geoscientific Model Development 11, 4909-4931, doi:10.5194/gmd-11-4909-2018 

(2018). 

13 Storelvmo, T. et al. Lethargic Response to Aerosol Emissions in Current Climate 

Models. Geophysical Research Letters 45, 9814-9823, doi:10.1029/2018gl078298 

(2018). 

14 Stjern, C. W. et al. Rapid Adjustments Cause Weak Surface Temperature Response to 

Increased Black Carbon Concentrations. Journal of Geophysical Research: 

Atmospheres 122, 11,462-411,481, doi:10.1002/2017jd027326 (2017). 



15 Peng, J. et al. Markedly enhanced absorption and direct radiative forcing of black 

carbon under polluted urban environments. Proceedings of the National Academy of 

Sciences 113, 4266-4271, doi:10.1073/pnas.1602310113 (2016). 

16 Samset, B. H. & Myhre, G. Vertical dependence of black carbon, sulphate and 

biomass burning aerosol radiative forcing. Geophysical Research Letters 38, n/a-n/a, 

doi:10.1029/2011gl049697 (2011). 

17 Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II 

simulations. Atmospheric Chemistry and Physics 13, 1853-1877, doi:DOI 

10.5194/acp-13-1853-2013 (2013). 

18 Boucher, O. et al. Clouds and Aerosols. In: Climate Change 2013: The Physical 

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. 

Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

(2013). 

19 Samset, B. H. et al. Fast and slow precipitation responses to individual climate forcers: 

A PDRMIP multimodel study. Geophysical Research Letters 43, 2782-2791, 

doi:10.1002/2016GL068064 (2016). 

20 Yasunari, T. J., Koster, R. D., Lau, W. K. M. & Kim, K.-M. Impact of snow darkening 

via dust, black carbon, and organic carbon on boreal spring climate in the Earth 

system. Journal of Geophysical Research: Atmospheres 120, 5485-5503, 

doi:10.1002/2014jd022977 (2015). 

21 Wilcox, L. J., Dong, B., Sutton, R. T. & Highwood, E. J. The 2014 Hot, Dry Summer 

in Northeast Asia. Bulletin of the American Meteorological Society 96, S105-S110, 

doi:10.1175/bams-d-15-00123.1 (2015). 

22 Bartlett, R. E. et al. Do differences in future sulfate emission pathways matter for 

near-term climate? A case study for the Asian monsoon. Climate Dynamics, 

doi:10.1007/s00382-017-3726-6 (2017). 

23 Krishnan, R. et al. Deciphering the desiccation trend of the South Asian monsoon 

hydroclimate in a warming world. Climate Dynamics 47, 1007-1027, 

doi:10.1007/s00382-015-2886-5 (2015). 

24 Zhao, A. D., Stevenson, D. S. & Bollasina, M. A. The role of anthropogenic aerosols 

in future precipitation extremes over the Asian Monsoon Region. Climate Dynamics, 

doi:10.1007/s00382-018-4514-7 (2018). 

25 Lin, L. et al. Changes in Extreme Rainfall Over India and China Attributed to 

Regional Aerosol-Cloud Interaction During the Late 20th Century Rapid 

Industrialization. Geophysical Research Letters 45, 7857-7865, 

doi:10.1029/2018gl078308 (2018). 

26 Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project 

(DAMIP v1.0) 

contribution to CMIP6. Geoscientific Model Development 9, 3685-3697, doi:10.5194/gmd-9-

3685-2016 (2016). 

27 Collins, W. J. et al. AerChemMIP: quantifying the effects of chemistry and aerosols in 

CMIP6. Geoscientific Model Development 10, 585-607, doi:10.5194/gmd-10-585-

2017 (2017). 

28 Gidden, M. J. et al. Global emissions pathways under different socioeconomic 

scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the 

end of the century. Geoscientific Model Development 12, 1443-1475, 

doi:10.5194/gmd-12-1443-2019 (2019). 



29 Wang, R. et al. Estimation of global black carbon direct radiative forcing and its 

uncertainty constrained by observations. Journal of Geophysical Research: 

Atmospheres 121, 5948-5971, doi:10.1002/2015JD024326 (2016). 

30 Malavelle, F. F. et al. Strong constraints on aerosol-cloud interactions from volcanic 

eruptions. Nature 546, 485-491, doi:10.1038/nature22974 (2017). 

 

  



Supplementary Material 

 

Figure S1: As Figure 1, for 2030-2050. 

 


