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Abstract 

 

Sweet corn cob (SCC) is an agricultural lignocellulosic waste generated from the corn 

processing industry and is available in large amounts. However, the production of high 

value-added products from SCC is limited, most of it is either discarded or used for the 

production of biomasses. Hence, research into the comprehensive utilization of SCC as a 

functional food is of great interest. As such, the aims of the current research were (i) to 

identify and characterise the functional compounds in SCC, (ii) to examine the 

effectiveness of enzymatic hydrolysis in the release of ferulic acid (FA) from SCC, (iii) 

to evaluate the effect of phenolic compounds from SCC on gut microbiota and (iv) to 

investigate the effect of the incorporation of SCC flour in the baking of rice flour muffin. 

Compositional analysis of SCC (Chapter 2) showed that SCC is comprised mainly of 

cellulose and hemicellulose. In addition, elemental analysis showed that phosphorus, 

potassium and magnesium are present in SCC at a higher concentration compared to the 

rest of the minerals being tested. Alkali hydrolysis of the free, esterified and insoluble-

bound fractions of SCC showed that the insoluble-bound fraction had the highest amount 

of total phenolic content, antioxidant capacity assays (TEAC, DPPH and FRAP) and 

contained the highest amount of FA and p-coumaric acid (pCA). More than 80% of the 

FA and pCA was present in SCC as insoluble-bound form. Supercritical fluid extraction 

of carotenoid compounds showed that SCC contained the highest amount of β-carotene, 

followed by zeaxanthin and lutein. Results showed that SCC could be a source of natural 

colorant, antioxidants and functional ingredients.   

Raising concerns over the environmental impact due to the usage of large amounts of 

chemical solvents has increased the interest of using enzymatic hydrolysis, a more green 

and sustainable approach in the extraction of bound phenolic compounds, as compared to 
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conventional solvent extraction. Response surface methodology (Chapter 3) showed that 

under optimized conditions, the combination of enzymes ferulic acid esterase (FAE) and 

xylanase (XY) released half the amount of FA, as compared to alkali hydrolysis. 

Therefore, novel technologies can be further explore to increase the efficiency of 

enzymatic extraction of FA from SCC. 

The therapeutic effect of phenolic compounds depends on their bioactivity, where it is 

modulated by the gut microbiota depending on their bioavailability. The effect of SCC 

(high in fibre and bound phenolic acid content) on the gut microbiota ecology, was used 

to compare against the SCC extract (contains free phenolic acids and xylooligosacchrides) 

using batch culture fermentation (Chapter 4). SCC extract showed a potential bifidogenic 

effect by showing a trend of an increase in Bifidobacterium and a decrease in pathogenic 

Clostridium perfringen, although the results were not significant.  Furthermore, the SCC 

which is high in fibre content, showed an increase in the production of beneficial short 

chain fatty acids (SCFA), a key source for the intestinal epithelium and liver.  

Incorporation of SCC flour in the baking of rice flour muffin showed improvements in 

the texture and total ferulic acid content of baked muffin, as compared to control muffin 

baked with 100% rice flour (Chapter 5). Muffin incorporated with ≤ 20% of SCC flour 

showed a softer crumb and improvements in terms of height, colour and nutritional value 

coupled with an increase in fibre and ferulic acid content. Overall, SCC can be a 

functional food as it can be a source of fibre, phosphorus, potassium, phenolic (ferulic 

and p-coumaric acid) and carotenoid compounds. Enzymatic hydrolysis can be used as 

an alternative method in the release of the ferulic acid from SCC. In addition, SCC 

significantly increased the production of beneficial SCFA during colonic fermentation. 

Furthermore, SCC can be used as an alternative flour in baking to improve the texture 

and quality of gluten-free rice muffin.  
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Chapter 1  

Literature Review 

 

1.1 Introduction  

According to the Food and Agriculture Organization Corporate Statistical 

Analsysis (FAOSTAT), the world production of corn reached 1060Mt in 2016. Most corn 

is used as livestock feed (60 to 70% of global production) and food for human 

consumption (30 to 40% of global production) (Gwirtz and Garcia-Casal, 2014). 

Corncobs are a costless agricultural waste that accounts for 27 to 30% of the corn milling 

industry (Van Doan et al., 2018), and are very rich in cellulose and hemicelluloses (Garg 

et al., 2008).  

Compositional analysis has shown that corn cob contains 41.4% of hemicellulose, 

40% of cellulose, 5.8% of lignin, 2.5% of crude protein, 2.1% of starch, 1.8% of ask, 1.1% 

of water soluble carbohydrate and 0.7% of crude fat (Kaliyan and Morey, 2010). In 

addition, inorganic elemental analysis has indicated that potassium (10.8 g kg-1), silicon 

(5.33g kg-1), phosphorus (1.11g kg-1), magnesium (0.55g kg-1), calcium (0.23g kg-1), 

aluminium (0.18g kg-1), inorganic sulphur (0.14g kg-1), barium (0.11g kg-1) as well as 

traces of titanium (0.003g kg-1) and strontium (0.002g kg-1) were found in corn cob 

(Mullen et al., 2010). Furthermore, studies on the phenolic content and antioxidant 

potential of corn cob have been carried out previously. Sultana et al. (2007) reported that 

corn cob is a potential source of natural antioxidants that might be useful in the prevention 

of oxidation of vegetable oils. They further reported that the free radical scavenging 

ability of corn cob extract was associated with their phenolic content. In addition, Topakas 

et al. (2007) reported the presence of ferulic and p-coumaric acid in corn cob. This showed 
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that corn cob has the potential to be a functional food and can be an excellent source of 

insoluble dietary fibre, as well as minerals and phenolic compounds.  

The growth in consumer health awareness has increased the demand for natural, 

safe and health promoting food ingredients. Functional food is defined as ‘foods that may 

provide health benefits beyond basic nutrition’ (Bech-Larsen and Grunert, 2003) and 

plays a role in improving general conditions of the body and risk reduction of some 

diseases. When the beneficial effect of functional food is due to a component or a series 

of ingredients present at a lower concentration, they are called functional ingredients 

(Plaza et al., 2008). Examples of functional ingredients are flavonoids, polyphenolic, 

carotenoids, probiotics, plant sterols and fatty acids. In recent years, there has been an 

increase in attention towards phytochemicals such as carotenoids and phenolics due to 

their anticarcinogenic, antioxidant, antimutagenic and other health benefits (Xia et al., 

2018). Therefore, this has led to an increased interest in the use of these natural 

antioxidants as food ingredients or as food supplements (Rietjens et al., 2002).  

Polyphenols are plant secondary metabolites involved in the inhibition of 

pathogenic activity and defence against ultraviolet (UV) radiation (Beckman, 2000). 

Some phenolic constituents have been shown to exhibit a strong antioxidant activity (Lu 

and Foo, 2000) such as ferulic acid (Rice-Evans et al., 1997) and p-coumaric acid (Rice-

Evans et al., 1996). Natural antioxidants can effectively absorb UV at 100 to 400nm, 

scavenge free radicals, and chelate transition metals. Thus, they can prevent progressive 

autoxidative damage and production of off-taste and off-odours (Brewer, 2011). 

Increasing safety concerns over synthetic antioxidants has led to the increasing demand 

for a natural antioxidant alternative. In addition, there has been increasing consumer 

preference for clean label, natural products and reduction in the usage of food additives 

in food products (Schieber et al., 2001). Therefore, the first working chapter in this thesis 
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focuses on the proximate analysis and identification of functional ingredients in sweet 

corn cob (polyphenols and carotenoids) to highlight the potential of sweet corn cob as a 

source of natural functional food.  

The shift towards greener chemistry has led to the increase in using enzymatic 

hydrolysis instead of chemical hydrolysis, because it has less impact on the environment, 

lower energy consumption and requires no chemical solvents (Alvira et al., 2010). Most 

phenolic acids are present in insoluble-bound form, esterified to non-starch 

polysaccharides such as arabinose and xylose units which can be released via acidic, 

alkaline, or enzymatic hydrolysis (Yu et al., 2001). Ferulic acid, a phenolic compound 

widely available in a variety of vegetables and plants (Liu et al., 2018), is often present 

as insoluble bound form in grains such as corn (Butts-Wilmsmeyer et al., 2018). Torre et 

al. (2008) reported the use of alkali hydrolysis to cleave the ester linkages in lignin-

polysaccharide complex, thus releasing the ferulic and p-coumaric acid in corn cob. A 

combination of enzyme ferulic acid esterase (FAE) and xylanase (XY) have been used to 

release the insoluble-bound ferulic acid. XY solubilises the cell wall structure by 

formation of low molecular weight ferulolyted compounds and then, FAE breaks the ester 

linkage between ferulic acid and the attached sugar (Yu et al., 2002). Therefore, Chapter 

3 involves optimization of the concentration, pH and temperature of combination FAE 

and XY using response surface methodology, to maximise the yield of ferulic acid from 

SCC. 

The gut microbiota plays an important role in the modulation of the bioavailability 

of dietary polyphenols. It has been reported that about 90 to 95% of total polyphenol 

intake may reach the intestinal lumen and be subjected to enzymatic activities of the 

colonic microbial (Anhê et al., 2013). The health benefits derived from the consumption 

of polyphenol rich foods might be due to the breakdown of original polyphenolic 
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structures into phenolic metabolites by the colonic microbiota and thus increase their 

availability for absorption. Recent studies have shown that a polyphenol-rich diet may 

modulate the gut microbiota by promoting the proliferation of beneficial bacteria and 

increasing the biodioversity of bacteria in the gut (Viveros et al., 2011, Zhang et al., 2016). 

Anson et al. (2009b) studied the bioaccessibility of ferulic acid reported that free ferulic 

acid has a higher bioaccessibility than insoluble-bound ferulic acid. However, there are 

limited studies on the effect of free and bound phenolic acids, including ferulic acid, on 

the gut microbiota ecology. Therefore, Chapter 4 focuses on the effect of SCC (comprised 

mainly of bound ferulic acid) and SCC extract (comprised mainly of free ferulic acid and 

xylooligosaccharides) on gut microbiota. 

The increasing demand for gluten-free products has favoured the design of various 

gluten-free bakery products that is comparable to the quality characteristic of wheat 

bakery products (Matos Segura and Rosell, 2011). Coeliac disease is a gluten-induced 

immunological disorder that affects 1 to 2% of the population in Western countries. At 

present, approximately 75 to 90% of affected individuals remain unrecognized (Fuchs et 

al., 2018). A strict lifelong avoidance of gluten ingestion is the only effective therapy for 

this disease (Shevkani and Singh, 2014). In some countries such as United States and 

Canada, a gluten free diet is completely devoid of gluten and is based on foods that are 

naturally gluten free such as corn and rice. However, in countries such as the United 

Kingdom and Scandinavia, the gluten free diet may include food that has been rendered 

gluten free (such as wheat starch) but nonetheless contain small amount of prolamin 

(Thompson, 2001), a compound that is known to be non-tolerated in celiac patients 

(Silano and De Vincenzi, 1999).  Rice flour is one of the most suitable cereals for the 

development of gluten-free products, however, they are often reported as having a lower 

volume, poor crumb colour, texture and structure (Matos et al., 2014). Additionally, 
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milled rice also contains a low level of fibre (Monks et al., 2013) and phenolic compounds 

including ferulic acid (Zhou et al., 2004). There have been conflicting reports on the effect 

of baking on free and bound phenolic acid. Holtekjølen et al. (2008) observed a reduction 

in free phenolic acid in bread containing barley flour after baking and on the other hand, 

Abdel-Aal and Rabalski (2013) reported an increase in free phenolic acid including 

ferulic acid in bread, muffin and cookies containing einkorn flour. The effect of baking 

on free or bound phenolic acid could be due to the baking method as well as the source 

and nature of the phenolic compounds (Abdel-Aal and Rabalski, 2013). The increase in 

free ferulic acid might be due to the release of bound ferulic acid during thermal treatment 

and this can then increase the bioavailability of ferulic acid. Hence, Chapter 5 focuses on 

exploring the potential of SCC flour as flour used for the baking of a rich in ferulic acid 

and gluten free rice flour muffin as well as investigating the effect of baking on ferulic 

acid fractions.  

This thesis consists of 6 chapters and the titles of each chapter are as follow: 

Chapter 1:  Introduction and literature review  

Chapter 2:  Valorisation of sweet corn (Zea mays) cob by extraction of 

valuable compounds. 

Chapter 3:  Optimization of enzyme assisted extraction of ferulic acid from 

sweet corn cob by response surface methodology 

Chapter 4:  Influence of sweet corn cob on gut microbiota ecology  

Chapter 5:  Physicochemical properties and ferulic acid content of muffin 

incorporated with sweet corn cob flour.   

Chapter 6: Concluding remark  
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1.2 Production, utilization and types of corn  

Zea mays (corn) is one of the most important cereal crops of the world, followed 

by rice and wheat. As reported by FAO (2013), the largest producer of corn is the United 

States, which accounts for up to 40% of the world’s harvest, followed by China and Brazil. 

In 2010, world production of corn reached over 840 million MT and the demand for corn 

as feed, fuel and food continues to increase (FAO, 2012). Rosegrant et al. (2008) reported 

that by 2050, the demand for corn will double in the developing world and corn will 

become the crop having the world’s greatest production. Different types of corn are grown 

throughout the world and they are varied in colours including white, yellow, red and black 

(Figure 1.1). Corn has been used mainly for animal feeding, human consumption and 

alcohol production (Ranum et al., 2014).  

 

Figure 1.1: Different colours of corn including black, red, yellow and white corn. 

Source from Narmer (2017) 

1.3 Utilization of corn waste  

Sweet corn residue, a by-product from the processing of sweet corn for human 

consumption, accounts for 60-70% of the harvest yield and consist of cobs, discarded 

kernels, husk leaves and some stalk (Fritz et al., 2001). Various studies on the utilization 

of corn cob as absorbent (El-Hendawy, 2003), production of bioethanol (Chen et al., 
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2007), bio-oil and bio-char (Mullen et al., 2010), as well as xylooligosaccharide (Aachary 

and Prapulla, 2009) have been carried out. However, research on SCC for its utilization 

in food is limited. Composition analysis of SCC have been carried out and they reported 

that SCC consists mainly of cellulose and hemicelluloses (Rivas et al., 2002, Miura et al., 

2004, Awosusi et al., 2017, Worasuwannarak et al., 2007). However, information on the 

bioactive compounds such as phenolic and carotenoid compounds in SCC is scarce.  

1.4 Phenolic compounds  

  Phenolic compounds are secondary metabolites derived from the shikimate, 

pentose phosphate and phenylpropanoid pathway in plants (Randhir et al., 2004). As one 

of the most widely occurring groups of phytochemicals, these phenolic compounds play 

an important role in the physiology and morphology of plants by providing protection 

against predators and pathogens, helping in growth and reproduction as well as 

contributing towards the sensory characteristic and colour of fruits and vegetables 

(Balasundram et al., 2006). Phenolic acids are divided into two subgroups, 

hydroxycinnamic and hydroxybenzoic acid (Figure 1.2). Protocathechuic, gallic, syringic, 

p-hydoxybenzoic, syringic and vanillic belongs to hydroxybenzoic acids group with their 

common C6 to C1 structure, while p-coumaric, caffeic, sinaptic and ferulic acid with three-

carbon side chain (C6-C3) are in the hydroxycinnamic group (Bravo, 1998).  

 Phenolic compounds have been associated with a wide range of physiological 

properties including anti-microbial, anti-oxidant, anti-artherogenic, anti-inflammatory, 

anti-allergenic, anti-thrombotic, vasodilatory and cardioprotective effects (Balasundram 

et al., 2006). In the recent years, great attention has been given to the beneficial effect of 

these phenolic compounds in the reduction of diseases such as cardiovascular diseases 

(Jiménez et al., 2008), cancer and diabetes (Kim and Dale, 2004). Parr and Bolwell (2000) 

reported that the health benefits of phenolic compounds have showed to be associated 
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with the consumption of fruits and vegetables, which are rich in phenolic compounds. It 

was reported that the beneficial effect could be due to the antioxidant effect of phenolic 

compounds. Therefore, there has been increasing research on fruits and vegetables 

containing high amounts of phenolic compounds as a natural source of antioxidants. 

 

 

Figure 1.2: Hydroxybenzoic and hydroxycinnamic group of phenolic compounds. 

Source from Martins et al. (2011) 

1.4.1 Ferulic acid  

Ferulic acid (4-hydroxy-3-methoxy cinnamic acid) (Figure 1.3) is a phenolic acid 

ubiquitous in the plant kingdom. Ferulic acid (FA) is commonly found in vegetables and 

fruits such as tomatoes, rice bran, as well as sweet corn (Sri Balasubashini et al., 2003) 
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and exhibits an extensive range of therapeutic effects against diseases such as diabetes, 

cancer, neurodegenerative and cardiovascular (Srinivasan et al., 2007). The three 

distinctive structural motifs that can contribute to the free radical scavenging ability of 

FA are (1) the presence of an electron donating group on the benzene ring for the 

termination of free radical chain reaction, (2) the carboxylic acid group with an 

unsaturated C=C double bond providing additional sites for free radicals and protection 

against lipid peroxidation, and (3) the presence of 3-methoxy and 4-hydroxy groups to 

stabilized the radical making it sufficiently stable to scavenge reactive oxygen species 

efficiently (Kanski et al., 2002). The antioxidant activity of FA is due to its ability to form 

a resonance stabilized phenoxy radical (Figure 1.4), due to the presence of its phenolic 

nucleus and unsaturated side chain (Srinivasan et al., 2007). 

 

 

           Figure 1.3: Structure of ferulic acid. 

Source from Srinivasan et al., (2007) 
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Figure 1.4: Resonance stabilization of ferulic acid radical. 

Source from Srinivasan et al. (2007) 

 

1.4.1.1 Application of ferulic acid in food 

FA is used in the production of vanillin, an important aromatic flavour compound 

used in the beverages, pharmaceuticals, food and perfume industry. Sakai et al. (1999) 

reported that the production of vanillin from vanillic acid can be achieved through 

biotransformation by enzymes secreted by microorganisms including bacteria, yeast and 

fungi. The possible pathways were (1) the decarboxylation of FA by decarboxylase 

producing 4-vinylguaiacol and then converting to vanillin; (2) reduction of FA to 

dihydroferulic acid forming vanillic acid and vanillin; (3) formation of coniferyl alcohol 

from FA forming vanillic and vanillin.  

Besides production of vanillin, the antioxidant and antimicrobial properties of FA 

also enable them to be used as food preservatives. In a study carried out by Heinonen et 

al. (1998) comparing the ability of various phenolic compounds to inhibit protein and 

lipid oxidation, ferulic acid was found to be most efficient as compared to other phenolic 

compounds such as catechin, epicatechin, propyl gallate, malvidin, caffeic acid, 

delphinidin, quercetin, and rutin. They further reported that ferulic acid is less affected 

by pH as compared to gallic, chlorogenic and caffeic acid and therefore was most efficient 

in the inhibition of lipid and protein oxidation. Ferulic acid has been used to cross-link 
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with polysaccharide to increase the viscosity and form gels of some polysaccharides such 

as arabinoxylan and pectin. This helps the low viscosity, low molecular weight and poor 

gel formation capacity of these polysaccharides to make new gels in food processing 

(Figueroa-Espinoza et al., 1999).  

1.4.1.2  Extraction of ferulic acid  

 Extraction of FA from food by-products such as brewer’s spent grain (Mussatto 

et al., 2007), sugar beet pulp (Oosterveld et al., 2000), flax shives, wheat and corn bran 

(Buranov and Mazza, 2009) have been carried out previously. FA can be absorbed and 

easily metabolized in the human body. However, FA seldom occurs in free form in plants 

and is often conjugated with mono and oligosaccharides, lipids, polyamines and 

polysaccharides. The bioaccessibility of FA is determined by the percentage of free FA 

(Anson et al., 2009b). They found that limited bioavailability of FA is attributed to the 

low bioaccessibility of FA bound to the indigestible polysaccharide of the cell wall. 

Ferulic acid residue can form an ester linkage between the carboxylic group of FA and 

the primary alcohol on the C5 carbon of the arabinose side chain of arabinoxylan (Hartley 

and Ford, 1989), as well as ether linkage to lignin monomers (Scalbert et al., 1985) 

(Figure 1.5).  

 

Figure 1.5: Structure of ferulic acid esterified to (A) arabinoxylan, (B) xylan backbone 

and (C) arabinose. 

Source from Buanafina (2009) 
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The bound ferulic acid can be released by acid hydrolysis or alkaline hydrolysis 

(Lam et al., 1994). Acid hydrolysis breaks the glycosidic bond and solubilizes sugars 

(Fazary and Ju, 2007) while alkaline hydrolysis breaks ester linkages between phenolics 

to the cell wall (Moussa-Ayoub et al., 2011). Bonoli et al. (2004) reported that alkali 

hydrolysis is more reliable in the extraction of hydroxycinnamic acid, as compared to acid 

hydrolysis. However, chemical hydrolysis offers several disadvantages including the 

usage of large amounts of solvent and subsequent solvent disposal problems (Alinia et al., 

2010), leading to an increase in environmental pollution. 

1.5 Carotenoid compounds 

Carotenoids, a class of flavonoids, are isoprenoids found ubiquitously in 

microorganism and plants. They are essential components of the photosystem and 

responsible for the yellow-to-red colouration of flower, vegetables and fruits (Tanaka et 

al., 2008). Carotenoids have a 40-carbon skeleton of isoprene units and more than 600 

different carotenoids have been identified (Liu, 2007). The long series of conjugated 

double bonds forming the central part of a carotenoid molecule (Figure 1.6) give them 

their chemical reactivity, shape and light-absorbing properties (Liu, 2007).  

Britton (1995) reported that carotenoids are essential for photosynthesis, 

production and reproduction in plants, as well as acting as antioxidants in lipid 

environments through their ability to react with free radicals, forming less reactive free 

radical products.  Lutein and zeaxanthin are the major carotenoids in the macular region 

of the retina in humans and they have been reported to protect the eye from free radicals 

and near-to-UV blue light (Wenzel et al., 2003), while α-carotene, β-carotene, and β-

cryptoxanthin have provitamin A activity. Dietary intakes of lutein and zeaxanthin have 

shown to reduce the risk of cataracts and age-related macular degeneration (Landrum and 

Bone, 2001). Studies on carotenoid content in corn kernels have been reported by Scott 
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and Eldridge (2005), Hu and Xu (2011), Xu et al. (2010) and Kopsell et al. (2009). α-

carotene, β-carotene, α-cryptoxanthin, β-cryptoxanthin, zeaxanthin and lutein have been 

reported to be present in corn kernels. 

 

 

Figure 1.6: Chemical structure of carotenoids (α-carotene, β-carotene, β-cryptoxanthin, 

lutein and zeaxanthin). 

Source from Liu (2007) 

1.5.1 Extraction of carotenoids 

Most carotenoids available on the market are derived from chemical synthesis and 

thus cannot meet the consumers’ need for natural carotenoids (Gu et al., 2008). Therefore, 

researchers shifted attention from chemical synthesis to extraction of carotenoids from 

biological sources such as Rhodobacter sphaeroides (Chen et al., 2006), carotenoid-rich 

food such as carrots (Sun and Temelli, 2006) or food by-products. Extraction of natural 
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carotenoids from food by-products have been carried out using tomato pomace (Vági et 

al., 2007), pomegranate waste (Goula et al., 2017), carrot pulp (Chen and Tang, 1998) 

and  shrimp waste (Sachindra and Mahendrakar, 2005).  

In the past, carotenoids have been mainly extracted using organic solvents such 

as acetone (Aravantinos-Zafiris et al., 1992), ethanol, ethyl acetate or hexane (Amaya 

Guerra et al., 1997). In addition, the recovery of carotenoids has been carried out using 

crude oil (Sachindra and Mahendrakar, 2005), bio-solvent such as d-limonene (Chemat-

Djenni et al., 2010), ultrasonic, grinding and HCl-assisted extraction (Gu et al., 2008). 

The increasing consumer demand for natural products combined with the development of 

supercritical fluid technology has led to the increase in using supercritical carbon dioxide 

for the recovery of natural bioactives (Sun and Temelli, 2006) such as carotenoids. The 

use of carbon dioxide is neither toxic nor flammable, as well as being available at low 

cost and high purity. In addition, due to its moderate critical temperature, carbon dioxide 

suits to be used to extract thermally labile and reactive compounds (Vági et al., 2007).   

1.5.2  Application of carotenoids in food  

 Carotenoids have been used in the food, feed and neutraceutical industries (Jaswir 

et al., 2011). Currently, carotenoids are used as natural nutrient supplements (Bone et al., 

2018), food colorants (Breithaupt, 2004), as well as nutraceutical for cosmetic 

(Sathasivam and Ki, 2018) and pharmaceutical (Okonogi and Riangjanapatee, 2015) 

purposes. Nevertheless, their major food use is as a food colouring agent. It is estimated 

that the global carotenoid market will reach US$1.2 billion by 2018 (Naziri et al., 2014). 

Food manufacturers uses natural and synthetic food colorants to gain consumer’s 

attention. The market demands over healthy products and functional food, have 

considered the use of chemical products as bad and the use of natural additives can 

provide the final product with a healthy value. Furthermore, consumers often raise 
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complaints against the use of food colorants due to the belief that they only have a 

cosmetic value and are associated with health damage (Mattea et al., 2009). Thus, there 

is a trend towards natural food colours since various studies have showed a possible 

correlation between the consumption of carotenoids with disease prevention (Olmedilla 

et al., 2001).  

1.6 Enzymatic hydrolysis of ferulic acid from sweet corn cob   

Enzymatic hydrolysis is a potential alternative to conventional solvent-based 

extraction methods (Puri et al., 2012) and is an effective and specific method for the 

release of bound phenolics (Acosta-Estrada et al., 2014). As the pressure on 

pharmaceutical and food industry to identify a more sustainable route for the extraction 

of new compounds increases, enzymatic hydrolysis has received increased attention as it 

is ‘greener’ or more eco-friendly (Meyer, 2010). Zheng et al. (2009) reported that the use 

of carbohydrate-hydrolyzing enzymes such as amylases, glucanases, cellulases, 

hemicellulases and pectinases is effective in the release of polyphenols (Figure 1.7). They 

reported that the ability of enzymes to disintegrate the plant cell walls matrix can facilitate 

the extraction of polyphenol. 

 

Figure 1.7: Chemical structure of xylan showing the xylan backbone, substituents and 

the corresponding sites for enzymatic hydrolysis. 

Source from Shallom and Shoham (2003) 
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1.6.1 Combination of ferulic acid esterase and xylanase for the release of ferulic acid  

 The combination of auxiliary enzymes such as ferulic acid esterase (FAE), 

cellulases, and hemicellulases is necessary to break the lignocellulosic composition 

structure of biomasses (Selig et al., 2008). FAE has been reported to show a synergistic 

effect with other hydrolytic cell wall degrading enzymes in the degradation of cell wall 

(Faulds and Williamson, 1999) for examples arabinose and arabinofuranosidases in sugar 

beet pulp (Kroon et al., 1996) as well as xylanases in oat hulls (Yu et al., 2002) and wheat 

(Bartolomé et al., 2002). FAE plays an important role in the degradation of the plant cell 

wall structure by hydrolyzing the ferulate ester groups involved in the cross linking 

between hemicelluloses (Faulds and Williamson, 1994) while xylanase depolymerize the 

plant cell wall component xylan, resulting in the conversion of the polymeric substance 

into xylose and xylooligosaccharides (Subramaniyan and Prema, 2002).  

 Faulds and Williamson (1995a) reported a maximum release of 95% of ferulic 

acid from wheat bran was achieved by the combined action of FAE from Aspergillus 

niger and xylanase from Trichoderma viride. In addition, Yu et al. (2002) reported that 

in the absence of Trichoderma xylanase, only little amounts of ferulic acid were released 

from oat hull. In the presence of Trichoderma xylanase, a significant release of ferulic 

acid by Aspergilllus FAE was observed. The release of ferulic acid from barley and wheat 

cell walls by FAE is effective only in the presence of xylanase (Bartolome and Gomez-

Cordoves, 1999). These studies clearly showed a synergistic interaction between FAE 

and xylanase. The efficiency of the release of free ferulic acid from complex cell wall 

involves a two-step process. First, a specific cell wall degrading enzyme such as xylanase 

is required to solubilise part of the cell wall structure forming low molecular weight 

ferulolyted compounds. Then, the ferulic acid esterase can act on these ferulolyted 

compounds, releasing the ferulic acid (Faulds and Williamson, 1995b). The initial 
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enzymatic hydrolysis alters the physical properties of the cell wall making it more 

accessible to further enzymatic attack (Yu et al., 2005). 

1.6.2 Optimization of enzymatic hydrolysis via response surface methodology  

Several factors including time, temperature, pH, and enzyme to substrate binding 

can influence enzymatic activity (Liaset et al., 2000) and thus optimization of these 

factors is important to maximise the yield and rate of hydrolysis. The conventional 

method for optimization involves changing one independent variable at one time while 

maintaining other variables at a fixed level. This method is extremely time consuming 

and expensive when a large number of variables are involved (Kunamneni and Singh, 

2005). In addition, this one-variable-at-a-time method does not take into account the 

interaction between variables (Bezerra et al., 2008). To overcome this, experimental 

factorial design and response methodology can be used to optimize enzymatic hydrolysis.   

Response surface methodology (RSM) is a statistical approach for the modelling 

and optimization of multiple variables. This method generates a mathematical model by 

combination of mathematics with statistics to describe the process, analyse the effect of 

independent variables and thus optimize the processing operation (Baş and Boyacı, 2007). 

Multivariate experiments are designed to lower the number of experiments needed for the 

optimization and to precisely collect these results as compared to a traditional full 

factorial designs (Tan et al., 2009). RSM has been used in the past few years to optimize 

the conditions for enzyme reaction (Lee et al., 2006b), composition of fermentation 

process (Ambati and Ayyanna, 2001), extraction of bioactive compounds (Yuan et al., 

2015) and food processing methods (Mendes et al., 2001). The optimization of enzymatic 

extraction of phenolic compounds via RSM has been reported previously by Chen et al. 

(2011), Sun et al. (2011) and Tchabo et al. (2015).  
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1.7 Effect of phenolic compounds on gut microbiota 

1.7.1 Gut microbiota and health  

It is estimated that 500 – 1000 different species of microbiota inhabit the 

gastrointestinal tract, which makes up to about 1011 or 1012 cells/g of faeces (Cardona et 

al., 2013). Bacteroides are the most common bacteria present in the gut microbiota, which 

constitute around 30% of all bacteria in the gut, followed by Clostridium, Provotella, 

Eubacterium, Ruminococcus, Fusobacterium, Peptococcus and Bifidobacterium. 

Lactobacillus and Escherichia are also present but at a lower amount (Beaugerie and Petit, 

2004). Clostridial cluster IV and XIVa of Firmicutes including species of Eubacterium, 

Roseburia, Faecalibacterium and Coprococcus are reported to inhibit the growth of 

pathogenic bacteria and increase the production of SCFA (Nicholson et al., 2012) while 

Clostridium perfringens is an important pathogen associated with the onset of 

inflammatory bowel disease and progression of colonic cancer (Guarner and Malagelada, 

2003). In addition, probiotic strains comprised of bifidobacter and lactobacilli often 

associated with clinical effects including immunomodulation, prevention of diarrhoea and 

modulation of intestinal microflora (Saarela et al., 2000). Gut microbiota helps in 

maximising the absorption of nutrients and energy, they are also essential in the 

maintenance of body health status (Power et al., 2013). Intestinal disorder such as 

inflammatory bowel disease are often associated with microbial infections and an 

imbalance in the composition of gut microbiota (De Cruz et al., 2012).  

1.7.2 Microbial production of short chain fatty acids (SCFA) 

The fermentation of non-digestible substrates and endogenous mucus by gut 

microbiota not only stimulate the bacterial growth, but will also produce SCFAs (acetate, 

butyrate and propionate) and gasses (Wong et al., 2006). They further reported that lactate, 

succinate, ethanol, valerate, formate, isobutyrate, isovalerate, 2-methyl-butyrate and 
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caproate are also the end products of bacteria fermentation. Acetate contributes to more 

than half of the total SCFA detected in the feces (Louis et al., 2007) and is a product of 

carbohydrate fermentation by gut bacteria.  

The metabolic pathway that contributes to the formation of acetate, butyrate and 

propionate in the human gut is shown in Figure 1.8. There are three different pathway 

used by the colonic bacteria for the formation of propionate: the propanediol, succinate 

and lactate pathway and normally involve the Firmicutes and Bacteroidetes. Additionally, 

in the production of butyrate, the butyryl-CoA:acetate CoA-transferase pathway is used 

by the majority of the gut butyrate-producers, including Eubacterium, Roseburia and 

Faecalibacterium (Louis et al., 2007). After the production, these SCFA will then be 

absorbed and used via different biosynthetic routes by the host (Den Besten et al., 2013). 

Acetate is the primary substrate for cholesterol synthesis, and butyrate is the preferential 

energy source use by epithelial cells. In vivo research on propionate supplementation 

showed that propionate was shown to reduce cholesterol level (Chen et al., 1984).  

 

Figure 1.8: Metabolic pathway of the production of acetate, propionate and butyrate in 

the human gut. 

Source from Ríos-Covián et al. (2016) 
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Acetate has been reported to be responsible for the ability of Bifidobacteria to 

inhibit enteropathogens (Fukuda et al., 2011). There has been increasing interest in the 

metabolism of butyrate and propionate due to their relationship with some diseases. For 

example, Arrieta et al. (2015) found reduced levels of propionate producers in children at 

risk of asthma and Machiels et al. (2014) reported a low level of butyrate producer in 

patients diagnosed with ulcerative colitis.  

1.7.3 The interaction of polyphenol and gut microbiota 

Recent evidence has showed that compositional change in gut microbiota, referred 

to as dysbiosis, is associated with diseases such as diabetes (Burcelin et al., 2011),  

cardiovascular diseases (Stock, 2013),  non-alcoholic fatty liver disease (Dumas et al., 

2006), obesity (Delzenne et al., 2011), and colorectal cancer (Wang et al., 2012).  

Therefore, the potential health benefits of polyphenols including anti-oxidant, anti-cancer, 

anti-inflammatory and anti-microbial properties have received great research interest. 

Most polyphenols passes through the small intestine without being absorbed, thus 

reaching the gut microbiota which colonises the colon (Scalbert and Williamson, 2000). 

The absorption of polyphenols in the small intestine depends on the polymerization and 

degree of structural complexity, where polyphenols with low molecular weight such as 

monomeric and dimeric structure can be absorbed into the small intestine (Appeldoorn et 

al., 2009), while oligomeric and polymeric polyphenols such as hydrolysable or 

condensed tannins with molecular weights close to 40,000Da will reach the colon 

(Manach et al., 2005). It has been estimated that the absorption of polyphenol in the small 

intestine is only 5 to 10% of the total polyphenol intake, and the remaining 90 to 95% of 

polyphenols may accumulate in the large intestinal lumen (Clifford, 2004). The gut 

microbiota will then breakdown the original polyphenolic structures into low-molecular-

weight phenolic metabolites to be absorbed, resulting in the potential health benefits 
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following the consumption of polyphenol-rich food (Cardona et al., 2013). Additionally, 

polyphenols can also modulate the composition of the gut microbiota through the 

stimulation of beneficial bacteria and inhibition of pathogenic bacteria (Ozdal et al., 2016).  

A human intervention study indicated that consumption of wild blueberry drink 

significantly increased the number of Bifidobacterium, suggesting the effect of 

polyphenol on the modulation of intestinal microbiota composition (Vendrame et al., 

2011). Furthermore, consumption of red wine polyphenol also showed a significant 

increase in the bacterial number of Prevotella, Enterococcus, Bacteroides, 

Bifidobacterium, Eggerthella lenta, Blautia cocoides-E. rectale and Bacteroides 

uniformis group, while the quantity of Lactobacillus spp was unaltered (Queipo-Ortuño 

et al., 2012). On the other hand, Lee et al. (2006a) found that the growth of pathogenic 

bacteria such as Clostridium difficile, Clostridium perfringens and Bacteroides spp. was 

significantly repressed by tea phenolics, while Bifidobacterium and Lactobacillus were 

affected less.  

1.7.4 Impact of ferulic acid on gut microbiota  

The free and some conjugated phenolic acids are reported to be readily absorbed 

in the human large and small intestine (Manach et al., 2005) while the insoluble matrix 

of bound phenolic acid hinders the access of necessary enzyme such as ferulic acid 

esterase and xylanase which limits its bioavailability (Zhao et al., 2005). During colonic 

fermentation, the degradation of cell wall polymers and the release of ferulic acid is due 

to the action of several hydrolytic enzymes. It has been reported that xylanase has the 

most important hydrolytic activity for the degradation of wheat bran fibre (Bartolome et 

al., 1995), and the release of ferulic acid through the cleaving of ferulic acid-sugar linkage 

is contributed by the action of ferulic acid esterase (Faulds and Williamson, 1995b). 
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The bioavailability of phenolic compounds such as ferulic acid is determined by 

its bioaccessibility (Anson et al., 2009a). Upon consumption of wheat bran, little or no 

feruloyl groups were solubilized by the enzymes and chemical secretion of the upper gut, 

and the release of ferulic acid happened in the presence of human intestinal microflora 

(Akin et al., 1993). Bioavailability is defined as the amount or proportion of antioxidant 

that is digested, absorbed and utilized in normal metabolism while bioaccessibility is 

defined as the amount of ingested nutrient that is available for the absorption in the gut 

(Hedrén et al., 2002).  Anson et al. (2009b) reported that the free FA have higher 

bioavailability as compared to FA embedded in the indigestible polysaccharide of plant 

cell wall. Extensive research on the beneficial effect of FA has been investigated in vitro 

and in rodents. For example, in a human trial (20 volunteers) carried out by Turner (2015),  

they reported that flatbread containing higher amounts of free FA (4.74mg/flatbread) can 

improve acute endothelium dependent vasodilation as compared to control flatbread 

(0.16mg free FA/flatbread). Sudheer et al. (2007) reported that 10 to 150 μM of FA is 

showed to contract nicotine induced glutathione depletion and lipid peroxidation in 

lymphocytes and FA at 250 to 500μM of FA is shown to reduce protein and lipid 

peroxidation in peripheral blood monocuclear cells and neuronal cells (Barone et al., 

2009). However, most of the studies use 100% free FA at a dosage that is over the 

estimated human intake. The human consumption of FA is estimated to be about 80-

165mg FA/meal which equates to approximately 1 to 2mg/kg of body weight (Barone et 

al., 2009). Moreover, the major source of FA in the human daily diet is through the 

consumption of whole grain products and the amount of free FA is limited to 1 to 4% of 

the total FA (Anson et al., 2009b). 
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1.8  Incorporation of bioactive ingredients from food by-products into food 

Food waste has long been considered as a matter of minimization, treatment and 

prevention due to the environmental impact caused by its disposal. The term ‘food by-

products’ is often used by scientists to introduce the potential of food waste to be used as 

a substrate for the recovery of functional compounds and to develop into new products 

with a market value. Valorisation of these by-products for edible purposes is a challenging 

field of research (Galanakis, 2012). Nevertheless, there have been increasing publications 

in the utilization of these by-products in edible food. For example, Oreopoulou and Tzia 

(2007) explored the use of phenols and carotenoids from fruit by-products as natural food 

or beverage preservatives due to their ability to extend the shelf-life of products by 

delaying the formation of off flavour and rancidity. In addition,  Madureira et al. (2010) 

reported that cheese processing whey is an abundant source of proteins and lactose, and  

can therefore be used for the delivery of oligopeptides and monosaccharides in soft drinks 

and nutritional supplements. Furthermore, protein hydrolyzates from fish by-products 

have also been proposed by Kristinsson and Rasco (2000) to use as seafood flavours for 

soups or surimi.  

In the bakery industry, there have been increasing publications in the 

incorporation of food by-products to increase the functional properties or nutritional 

values of the products. Majzoobi et al. (2011) reported the use of tomato pomace as a 

good and cheap source of hydrocolloids to improve the quality of flatbread. In addition, 

Mildner-Szkudlarz et al. (2013) incorporated white grape pomace into wheat biscuits to 

increase the total dietary fibre and total phenolic content. Furthermore, in the baking of 

gluten-free bakery products, carrot (Majzoobi et al., 2016) and orange (O’Shea et al., 

2015) pomace have been reported to improve the quality of gluten free cake and bread. 

Incorporation of carrot pomace reduced the cake density, cohesiveness and hardness, 
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while increasing the sensory scores. In addition, incorporation of orange pomace flour 

can help to improve the total dietary fibre intake of a coeliac patient. Furthermore, 

Phimolsiripol et al. (2012) improved the dietary fibre content of rice based gluten free 

bread using rice bran.  

1.8.1 Use of alternative flour in gluten-free bakery product 

Currently, many gluten-free products available on the market are of low quality, 

due to its lack in flavour and poor mouthfeel (Gallagher et al., 2003). Furthermore, gluten-

free products are frequently made up of refined flour or starch and are not 

enriched/fortified. Thus, the levels of nutrients might not be the same as the gluten-

containing counterparts that they are intended to replace. Therefore, ambiguity still 

remains whether or not the lifelong adherence to gluten-free diet ensures a nutritionally 

balanced diet in coeliac patients.  

Rice flour has received increasing attention as a substitution for wheat flour in the 

production of gluten free products due to its white colour, bland taste, hypoallergenic and 

digestibility properties (Rosell et al., 2007). Different types of hydrocolloids are added to 

most starch or rice based gluten free products. For example Arendt et al. (2002) reported 

that a combination of rice flour with high fat powder produces biscuit of comparable 

quality to wheat biscuits and Kang et al. (1997) showed that locust bean gum, 

hydroxypropylmethylcellulose (HPMC), guar gum, xanthan gum, agar and carrageenan 

have successfully formed rice bread. However, these gluten-free bakery products 

containing gums as gluten replacements are often lacking in fibres and nutrients. 

Therefore, there has been an increase in the research exploring the potential of alternative 

gluten free flour. Schober et al. (2003) reported that the combination of brown rice and 

soya flour along with corn and potato starch produces gluten-free biscuits comparable to 

wheat biscuit, and gives the best overall acceptability in sensory testing. In addition, the 
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use of pseudocereals, a minor cereal that is less common and grown in small regions of 

the world (Saturni et al., 2010), such as quinoa white flour (Elgeti et al., 2014), amaranth, 

buckwheat flour (Alvarez-Jubete et al., 2009), as well as chickpea, carob germ and soya 

(Miñarro et al., 2012) flour in the formulation of gluten-free baking have been reported 

previously. Furthermore, it has been reported that cereals and pseudocereals can be a 

potential food source of polyphenols (Saturni et al., 2010). For example, buckwheat is 

one of the best grain sources of polyphenol compounds (Gallardo et al., 2006) such as 

gallic, p-hydroxybenzoic, ferulic and p-coumaric acid (Hung and Morita, 2008) and their 

use in gluten-free crackers has showed to increase the total phenolic content and 

antioxidant activity as compared to wheat crackers (Sedej et al., 2011).  

The predominant phenolic acids present in rice are ferulic and p-coumaric acid 

(Kuroda et al., 1995). Gorinstein et al. (2007) compared the polyphenol contents of some 

cereals and pseudocereals reported that rice (95µg g-1 DW) showed lowest total phenolic 

content when compared to rice bran (293µg g-1 DW), buckwheat (290µg g-1 DW), quinoa, 

(250µg g-1 DW), A. cruentus (160µg g-1 DW), A. hypochrondriacus (154µg g-1 DW), A. 

hybridus (150µg g-1 DW) and soybean (120µg g-1 DW). They also reported that rice 

contained the lowest antioxidant capacity as compared to the rest of the cereal and 

pseudocereal tested. Zhou et al. (2004) reported that milled rice contains low levels of 

ferulic acid (61 – 84mg kg-1) as compared to brown rice (255 – 362mg kg-1). These 

phenolic compounds are concentrated in the bran layers and are lost with the separation 

of rice bran during the processing of milled rice (Tian et al., 2004). They further reported 

that the soluble and insoluble-bound ferulic acid in white rice (0.07 and 5.26 mg/100g of 

flour, respectively) is lower as compared to brown rice (0.32 and 15.19mg/100g flour, 

respectively). 
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1.8.2  Effect of baking on free and bound phenolic acids  

It has been reported by Duodu (2011) that the processing of pulses or cereal may 

give positive or negative effects on the content of phenolic compounds, which can then 

affect their bioactive properties and potential health benefits. Furthermore, Anson et al. 

(2009b) investigated the bioaccesibility of ferulic acid using an in vitro system simulating 

the upper gastrointestinal transit and digestion reported that the bioaccesibility of ferulic 

acid is dependent on the percentage of free ferulic acid available. The structure of 

phenolic acid, whether in free or bound form, would affect their behaviour during 

processing and hence affect their bioavailability for absorption (Abdel-Aal and Rabalski, 

2013). They reported an increase of free phenolic acid and reduction in bound ferulic acid 

in flat bread, cookies and muffins baked with einkorn wholegrain flour. However, 

conflicting results have been reported by Holtekjølen et al. (2008) where the amount of 

free phenolics decreased and an increase in bound phenolics was observed during the 

baking of bread containing barley flour. The effect of baking on free and bound phenolic 

compounds might be due to the baking method as well as the source and nature of the 

phenolic compounds (Abdel-Aal and Rabalski, 2013). 

Changes in phenolic acid during thermal processing such as baking could be due 

to polymerization and oxidation of phenolics, depolymerisation of high molecular weight 

phenolics, thermal degradation, production of Maillard reaction products and release of 

bound phenolics from the food matrix (Duodu, 2011). Cheng et al. (2006) reported that 

heat stress can cause an increase in the free phenolics in wheat as a result from the 

degradation of conjugated polyphenolic compounds. These changes are subjected to 

many factors including structure of food matrix, source and nature of bioactive 

compounds, as well as types of thermal processing.  
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1.8.3 Impact of incorporation of food by-products on the physical properties of baked 

products 

Incorporation of food by-products into the formulation caused changes in the 

physical properties of the baked products. Addition of apple pomace into gluten free bread 

has been reported to give crumbs with a less cohesive and resilient texture, as well as 

specific volumes (Rocha Parra et al., 2015). In addition, Majzoobi et al. (2016) reported 

that the addition of carrot pomace powder improves the cake density, cohesiveness and 

hardness of gluten-free sponge cake. However, Šarić et al. (2016) reported that gluten 

free cookies added with raspberry and blueberry pomace increased the hardness of 

cookies, due to the increase of dietary fibre content from the added pomaces.  Singh et al. 

(2016) reported that gluten-free rice muffin added with black carrot dietary fibre shows 

decreases in specific volume and firmness. The change in the physical properties seems 

to be dependent on the types of bakery product, nature and the level of incorporation of 

the by-product.  
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1.9 Hypothesis and Objectives  

The hypothesis of this research is sweet corn cob contains valuable 

phytochemicals and nutrients that are extractable, which can be further processed into 

food product for human consumption, rather than remaining as lignocellulosic waste.  

Four objectives have been set to test this hypothesis: 

(i) to investigate the proximate, minerals and phytochemical composition of 

SCC. 

Chapter 2:  Valorisation of sweet corn (Zea mays) cob by extraction of valuable 

compounds. 

(ii) to investigate the effect of extraction parameters (enzyme concentration, pH, 

and temperature) on the yield of ferulic acid from SCC. 

Chapter 3: Optimization of enzyme assisted extraction of ferulic acid from sweet corn cob 

by response surface methodology 

iii) to evaluate the possible prebiotic effect of SCC (containing fibres and 

insoluble phenolic compounds) and SCC extract (containing free phenolic compounds) 

on the human gut microbiota by batch culture fermentation. 

Chapter 4: Influence of sweet corn cob on gut microbiota ecology  

(iv) to produce ferulic acid-rich GF rice muffin incorporated with varying level of 

SCC flour and to evaluate the physicochemical properties of these muffins 

Chapter 5: Physicochemical properties and ferulic acid content of muffin incorporated 

with sweet corn cob flour.   
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Abstract 

The main objective of this study was to investigate the proximate, mineral and 

phytochemical compositions of sweet corn cob (SCC), which is often neglected and regarded 

as agricultural waste. Compositional analysis showed that more than 60% of SCC was 

composed of insoluble dietary fibre, with cellulose being the major constituent. Results also 

showed that SCC can be a good source of non-essential protein and minerals (phosphorus, 

potassium and manganese). SCC had a total phenolic content of 6.74 g GAE kg-1 DW, of which 

bound phenolics were predominant. The bound phenolics fraction showed the highest 

antioxidant capacity in all three antioxidant capacity assays (TEAC, FRAP and DPPH) and 

contained the highest amount of ferulic and p-coumaric acid. The main carotenoids present in 

SCC were β-carotene, zeaxanthin and lutein. This investigation shows that SCC can be a 

promising source of natural colorant (carotenoids), antioxidants (phenolics) and nutritional 

supplements (proteins and phytochemicals).  

 

Keywords: sweet corn cob; composition analysis; minerals; carotenoid; phenolic; supercritical 

fluid extraction; antioxidant activity; ferulic acid. 
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2.1 Introduction 

Corn is one of the most important cereal crops globally (Shiferaw et al., 2011). Kim 

and Dale (2004) reported that the world annual production is about 520 x 109 kg and North 

America (42%), Asia (26%), Europe (12%) and South America (9%) are the main producers. 

Most sweet corns are processed into frozen corn kernels, canned corn kernels or corn cobettes, 

resulting in the production of large amounts of by products, which includes the corn silks, husks 

and cobs. For every 100kg of corn grain obtained, approximately 18kg of corncobs are 

produced, most of which is used as animal feed, or remain unused as lignocellulosic waste 

(Torre et al., 2008). Previous studies on corncobs have focused on the production of bioethanol 

(Chen et al., 2007), bio-oil and bio-char (Mullen et al., 2010), solid biofuel (Ioannidou et al., 

2009) and xylooligosacharides (Yang et al., 2005) 

As the world population increases, it is essential that alternative sources of nutrients 

and proteins are explored to overcome the world food shortage. Plant waste contains 

compounds that have the potential to be used as food ingredients or as nutritional supplements, 

examples of which are pectin from apple pomace or citrus peel, phenolic compounds from 

potato peels, as well as lycopene from tomatoes and other red fruits (Mirabella et al., 2014). 

Proximate and nutritional analysis of fruits and vegetables play an important role in assessing 

their nutritional significance. Mineral components such as potassium, calcium, sodium, 

magnesium, phosphorus, iodine and iron are crucial for human nutrition (Erkan and Özden, 

2007). In recent years, there has been continuous research in the functional properties of plant 

phytochemicals. Amongst them, extensive research has focused on ferulic and p-coumaric acid 

as they are widely distributed in the plant kingdom and have been used as feedstocks for the 

production of vanillin, or as antioxidants in food preservation (Kumar and Pruthi, 2014). 

Various studies have found that SCC may also be a good source of phenolic compounds and 

different extraction approaches have been tested including alkaline hydrolysis (Ares et al., 2016, 
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Torre et al., 2008), ultrasonic extraction (Lai et al., 2012), surfactant-based cloud-point 

extraction (Dhamole et al., 2014) as well as enzymatic hydrolysis (Pérez-Rodríguez et al., 2017) 

showing the presence of  ferulic and p-coumaric acid as well as carotenoids.  

The main objective of this study was to investigate the proximate, minerals and 

phytochemical composition of SCC. In addition, the potential of supercritical fluid extraction 

to extract carotenoids from of SCC was also assessed.  

2.2  Materials and methods 

2.2.1 Chemicals and reagents 

Ferulic acid (>99%), p-coumaric acid (>99%), gallic acid (97.5%) and ascorbic acid 

were purchased from Sigma Aldrich. β-carotene (>98%), lutein (>95%) and zeaxanthin (>98%) 

were obtained from Extrasynthese Company, Genay, France. All other reagents and chemicals 

used in this experiment were of analytical grade.  

2.2.2 Sample Preparation 

The preliminary studies on the extraction of free phenolics (Section 2.2.4) were carried 

out using sweet corn purchased from Sainsbury Supermarket (Reading, UK) in January 2015. 

The SCC used for the rest of the experiments was harvested in Senegal in December 2015 and 

was provided by Barfoots of Botley Company Ltd (UK). Corn kernels were removed manually 

from the cobs and discarded. The SCC were then chopped into 5cm pieces in length, placed in 

the blast freezer (-18°C, 1 hour) and then freeze dried (Christ Gamma 2-16) until constant 

weight was achieved. The dried samples were finely ground in a mill (Apex Comminuting 

Mill), sieved through a 150 mesh screen (<0.1mm particle size), thoroughly mixed and stored 

in the freezer (-80°C) until further analysis. 
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2.2.3 Proximate composition and minerals analysis of SCC  

 Moisture content was determined by using the Mettler Toledo halogen moisture 

analyser (Model: HE73). Ground SCC was analysed for proximate composition by AOAC 

method for protein (979.09), lipid (963.15) and ash (923.03) (AOAC, 2005). Structural 

carbohydrates and lignin (Klason and acid-soluble) were determined by the NREL procedure 

(Sluiter et al., 2008). Starch content was determined by amyloglucosidase method using 

Megazyme total starch assay kit (Li et al., 2001). Analysis of free amino acids content was 

carried out in accordance to Elmore et al. (2005). Minerals including calcium, magnesium, iron, 

zinc, copper, manganese, sodium and potassium were extracted from the samples by dry ashing 

method and determined by atomic absorption spectrophotometer (novAA® 350) as described 

in AOAC 985.35 (AOAC, 2005). Phosphorus was determined spectrophotometrically as 

described in AOAC 995.11 (AOAC, 2005). 

2.2.4 Optimisation of extraction time and solvent of free phenolic compounds in SCC 

 SCC powder (5g) was extracted with 50mL of solvent using a platform shaker 

(Heldolph Multi Reax) at 1200rpm at room temperature. The extracts were centrifuged at 

5000rpm for 15 minutes (Sigma 3K10) and filtered prior to the total phenolic (Section 2.2.6) 

and antioxidant capacity (Section 2.2.8) assay.  

Firstly, SCC powder was extracted using 80% methanol for 1, 2 or 3 hours. Secondly, 

two different solvent systems, namely ethanol and methanol were selected for the extraction of 

free phenolics from SCC using a series of extraction solvents of 10, 20, 50, 80 and 100% (%v/v; 

water/ethanol or methanol), with the optimized extraction time in the previous step.  
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2.2.5 Extraction of free, esterified and insoluble-bound phenolic compounds in SCC 

 The extraction of free, esterified and insoluble-bound phenolic compounds in SCC was 

carried out according to the method described by Sosulski et al. (1982). The free phenolic 

fraction was extracted based on the optimized conditions in Section 2.2.4.  

2.2.6 Determination of total phenolic content 

The phenolic content was determined using the Folin-Ciocalteu method as described 

by Singleton and Rossi (1965). The absorbance was measured at 760nm with a 

spectrophotometer (CE1021, Cecil), and the phenolic content was expressed as g gallic acid 

equivalents per kg of dry weight (g GAE/kg DW). The calibration curve was established using 

gallic acid (50-1000mg/L) as the standard sample (R2= 0.9993). 

2.2.7 HPLC analysis of phenolic compounds of SCC 

The analysis of phenolic compounds was carried out using HP Agilent 1050 liquid 

chromatography, equipped with a DAD detector. The separation of the phenolic compounds 

was performed using a Zorbax SB-C18 column (2.1 x 15mm, 1.8 micron). The mobile phase 

was (A) formic acid/HPLC water (0.1:100 v/v) and (B) formic acid/acetonitrile (0.1/100 v/v). 

Solvent B was increased to 25% (0- 25 min), followed by 90% B for 30 minutes and then a 

final wash of 100% B for 10 minutes. The injection volume was 5µL with a flow rate of 

0.2mL/min. Identification was carried out by comparing the retention time to the corresponding 

standards at 280nm and the amount of individual phenolic compounds (ferulic acid and p-

coumaric acid) was calculated  using an external calibration curve (R2 = 0.9998 for both ferulic 

and p-coumaric acid).  

2.2.8 Determination of antioxidant activities 

The trolox equivalent antioxidant capacity (TEAC) assay and  2,2- diphenyl-1-

picryhydrazyl (DPPH) radical assay were conducted as described by Li et al. (2008) and Zhao 
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et al. (2014), respectively. The standard curve for TEAC (R2 = 0.987) and DPPH (R2 = 0.989) 

assay were constructed using Trolox at different concentrations (50 – 1000µmol for TEAC and 

1 – 170µmol for DPPH). The results were expressed as mmol trolox equivalent (TE)/kg sample. 

The reducing ability of the extracts was determined using the FRAP assay according to 

Benzie and Strain (1996) with slight modifications. A total of 10µL of standard, blank (water) 

or sample was added to each well in a 96-well microtiter plate (Cellstar®). Then, 300µL of 

FRAP reagent was added and the absorbance of the reaction mixture was read at 595nm using 

a GENio Pro™ microplate reader with Magellan software. The standard curve (R2= 0.9997) 

was constructed using ascorbic acid solution (50-1000µmol). Results were expressed as mmol 

ascorbic acid (AA)/kg DW.  

2.2.9 Extraction and identification of carotenoid compounds  

2.2.9.1 Conventional extraction 

This extraction was based on the method described by Gorocica-Buenfil et al. (2007). 

The extracts were re-dissolved in ethanol and were stored at -18ºC until HPLC analysis. 

2.2.9.2 Supercritical fluid extraction (SFE) 

Supercritical fluid extraction was carried out in a SFE unit (SciMed, UK), according to 

Goto et al. (2015) with slight modification. SCC powder (5g) was loaded into the extraction 

vessel. The extraction pressure (350 bars) was controlled and the temperature was maintained 

at 60°C throughout the extraction. Carbon dioxide was fed into the extraction vessel at 15g/min.  

During the extraction (1 hour), a flow of 15% ethanol was pumped into the system to act as a 

co-solvent.  

2.2.9.3 HPLC analysis of carotenoid compounds in SCC 

The analysis of carotenoids present in SCC was performed using a YMC-C30 silica-

based reversed-phase column (250 x 4.6 mm) coupled with a 1260 DAD detector (Agilent 
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Technologies, UK). The mobile phases were (A) methanol/MTBE/water (82:16:2 v/v/v) and 

(B) methanol/MTBE/water (23:75:2 v/v/v). The analysis followed a gradient program for the 

mobile phases of 0 min 0% B, 45 min 50% B, 55 min 100% B, 60 min 100% B. Identification 

was carried out at 450nm by comparing the retention time to the corresponding standards and 

external standard method was used to quantify the amount of individual carotenoids (lutein, 

zeaxanthin and β-carotene).  

2.2.10 Statistical Analysis 

 Analyses were carried out in triplicate unless otherwise stated. Values shown in tables 

and graphs are presented as means ± standard deviation. The data was analysed by using 

Minitab statistical software (version 16.1.0). Differences among treatments were determined 

using a one way ANOVA and Fisher test. Differences were considered as significant, when p 

≤ 0.05. 

2.3 Results and discussion 

2.3.1 Proximate composition of SCC 

 Results of the proximate composition of SCC are presented in Table 2.1. Miura et al. 

(2004) reported a lower value of protein (5%), lipid (1%) and ash (2%) content of SCC 

harvested from Northeastern China. The variation might be due to differences in the source of 

corn cob as the chemical composition of crops has been seen to vary with climatic conditions, 

crop cultivar as well as with the soil of the area (Iqbal et al., 2006). More than 60% of the SCC 

was composed of insoluble dietary fibre, with cellulose being the major constituent, followed 

by hemicellulose, as previously reported by Miura et al. (2004), Awosusi et al. (2017) and 

Worasuwannarak et al. (2007).  These results suggest that SCC can be a good source of 

insoluble dietary fibre.  
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To date, SCC has mainly been used as a carbohydrate source but it may also be a good 

source of protein and minerals. There is an increasing demand for more insight on the potential 

of plant-based protein (Iqbal et al., 2006). A total of 18 free amino acids were identified in SCC 

(Table 2.1) with serine and glutamine as the predominant ones followed by alanine, proline, 

aspartic and glutamic acid. Overall, the free amino acid content accounted for 0.7% of the 

composition in SCC, although free arginine was not measured. SCC that is high in non-

essential amino acids can be used to compliment other plant protein sources to increase the 

overall protein quality of the mixture. Young and Pellett (1994) reported an improvement on 

the protein quality of corn and soy flour, when used in combination.  

The total mineral content measured in this study was 2.18%, which correlated well with 

the ash content value (3.01%) in SCC. Phosphorus (10.12±0.06mg g-1 DW) was the most 

abundant mineral, followed by potassium (9.62±0.21mg g-1 DW) and magnesium 

(1.67±0.10mg g-1 DW). Calcium, lead, zinc, manganese, copper and iron were also present in 

SCC but in lower amounts. The quantity of all minerals were higher in the SCC analysed in the 

present study compared to those reported previously by Abubakar et al. (2016),  Anukam et al. 

(2017) and Awosusi et al. (2017). The minerals and trace elements content may vary in plants 

due to the influence of environmental conditions such as presence of light, water availability 

elevated CO2, elevated ozone levels and agricultural technologies (Nour et al., 2014). 
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Table 2.1: Composition, minerals and amino acid content analysis of sweet corn cob.  

 

Component (%w/w based on dry matter)ab 

Protein 6.70 ± 0.06 

Lipid 7.18 ± 0.08 

Ash 3.04 ± 0.05 

Lignin  

   Klason Lignin 

   Acid Soluble lignin 

 

1.03 ± 0.00 

3.08 ± 0.00 

Cellulose 40.40 ± 1.73 

Hemicellulose  

    Galactose + Xylose + Mannosec 

    Arabinosec 

 

19.12 ± 0.80 

4.45 ± 0.06 

Starch 3.21 ± 0.08 

Minerals content (mg g-1 DW)ab 

Iron 0.01±0.00d 

Copper 0.01±0.00d 

Zinc 0.04±0.00d 

Lead 0.07±0.00d 

Calcium 0.21±0.06d 

Magnesium 1.67±0.10c 

Potassium 9.62±0.21b 

Phosphorus 10.12±0.06a 

Manganase  0.08±0.12d 



Chapter 2 
 

39 

 

Amino acid composition (mg g-1 DW)ab 

Non-essential amino acids : 

Serine 1.36 ± 0.13a 

Glutamine 1.16 ± 0.24a 

Glutamic  1.09 ± 0.08b 

Alanine 0.90 ± 0.06c 

Aspartic 0.86 ± 0.09c 

Proline 0.69 ± 0.06d 

Asparagine 0.35 ± 0.07e 

Tyrosine 0.08 ± 0.04fg 

Glycine 0.04 ± 0.01fg 

Ornitine  0.04 ± 0.00fg 

Essential amino acids : 

Lysine 0.15 ± 0.02f 

Tryptophan  0.13 ± 0.01fg 

Histidine 0.12 ± 0.00fg 

Threonine 0.09 ± 0.02fg 

Leucine 0.07 ± 0.01fg 

Phenylalanine 0.05 ± 0.01fg 

Valine 0.05 ± 0.01fg 

Isoleucine 0.02 ± 0.01g 

a All content based on the freeze-dried sweet corn cob  

b Values presented as mean ± standard deviation 

c Presented as polymers, contributing to hemicellulose content  
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2.3.2 Phenolic composition and antioxidant activity of SCC 

2.3.2.1 Optimisation of extraction of free phenolic compounds in SCC 

 Hydroalcoholic solutions have been widely used in the extraction of phenolic 

compounds. In this research, extraction of free phenolics from SCC using methanol and ethanol 

as extraction solvents were compared. Extraction time (one to three hours) had no significant 

effect (p>0.05) on the total phenolic content and FRAP of SCC extract (data not shown). By 

taking into consideration the economic and practical aspects as well as optimising the recovery 

of phenolic compounds and antioxidant capacity, one hour extraction time was chosen as the 

best extraction time for free phenolic and antioxidant compounds from SCC. 

Ethanol extracts showed the highest total phenolic content and FRAP (Figure 2.1A and 

B) compared to methanol extracts. The total phenolic content and FRAP content increased 

when the concentration of ethanol increased from 0% to 50%, and decreased from 80% to 

100%. Methanol extracts of SCC showed the same pattern in both total phenolic content and 

FRAP assay to the ethanol extracts. The mixture of water and ethanol are commonly used for 

the extraction of plant phenolic due to the wider range of phenolic constituents that can dissolve 

in the aqueous ethanol mixtures as compared to mono component solvent system (Alothman 

et al., 2009). Considering the yield, safety, economic and practical advantages in using ethanol 

as an extraction solvent, concentration of 50% ethanol for 1 hour were chosen as the best 

solvent and time conditions for the extraction of free phenolics from SCC.   
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Figure 2.1: Effect of different concentration of ethanol and methanol on (A) total phenolic 

content and (B) ferric reducing antioxidant power (FRAP) of sweet corn cob.  

Values are presented in means ± standard deviation of duplicate samples; concentration of 

same solvent with different letters are significant different (p<0.05).  
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2.3.2.2 Total Phenolic content and antioxidant activity of SCC  

 Phenolic compounds in SCC were present in free, esterified and insoluble-bound forms 

(Figure 2.2A). The highest level of phenolic compounds were present in the insoluble-bound 

form (5.41 ± 0.27 g GAE kg-1 of sample) followed by the free phenolic (0.9g ± 0.08 GAE kg-

1) and esterified phenolic (0.43g ± 0.05 GAE kg-1) fractions. Table 2.2 showed that in all 

antioxidant assays, the highest activity was found in the insoluble bound fraction. The overall 

relationship between antioxidant activity and total phenolic content of SCC (Table 2.3) was a 

positive and highly significant correlation (p≤0.01), suggesting that the phenolic compounds 

are the most important contributors towards the antioxidant activity of SCC.  

 

Table 2.2: Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging capacity, 

ferric reducing antioxidant potential (FRAP) of free, esterified and insoluble bound fractions 

of sweet corn cob 

 

 Fractions 

TEAC 

(mmol TE kg-1) 

DPPH  

(mmol TE kg-1) 

FRAP 

(mmol AA kg-1) 

Free phenolics 9.54 ± 1.03b 1.74 ± 0.13b 1.83 ± 0.21b 

Esterified phenolics 4.69 ± 0.59b 0.43 ± 0.18c 1.07 ± 0.11b 

Insoluble-bound phenolics  131.23 ± 23.87a 3.68 ± 0.30a 10.86 ± 0.56a 

*Values are presented in means ± standard deviation of triplicate samples; mean values 

within the same column with different letters are significantly different (p<0.05). 
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Table 2.3: Pearson’s correlation coefficient between total phenolic content (TPC), trolox 

equivalent antioxidant capacity (TEAC), DPPH radical scavenging capacity, ferric reducing 

antioxidant potential (FRAP), ferulic acid and p-coumaric acid content of sweet corn coba. 

 TPC TEAC DPPH FRAP 

ABTS  0.981    

DPPH 0.936 0.885   

FRAP 0.993 0.981 0.932  

Ferulic acid content 0.995 0.984 0.900 0.990 

p-coumaric acid content 0.996 0.984 0.902 0.990 

a 95% confidence level  

*All correlations are significant at p ≤ 0.01 level 

 

2.3.2.3 Quantification of ferulic and p-coumaric acid in SCC 

The total amount of ferulic and p-coumaric acid present in all three fractions of SCC 

(Figure 2.2B) was 3.06 ± 0.19 and 4.23 ± 0.25g kg-1 DW, respectively.  Ferulic and p-coumaric 

acid in the insoluble-bound phenolic fraction of SCC was highest, with 2.96 and 4.08 g kg-1, 

respectively. Free and esterified phenolic fractions had significantly lower (p<0.05) ferulic and 

p-coumaric acid content as compared to the insoluble-bound fraction. Strong correlation was 

found between ferulic and p-coumaric acid content of SCC for all three antioxidant assays 

(Table 2.3) carried out in this study. This showed that both ferulic and p-coumaric acid content 

contributed towards the antioxidant activity of SCC. Dewanto et al. (2002) reported that the 

presence of ferulic acid in sweet corn kernels was highest in the insoluble-bound fraction (4.2g 

100g-1), followed by soluble conjugated fraction (0.096g 100g-1) and free fraction (0.0105g 

100g-1).  Furthermore, previous investigations have shown that the ferulic acid and p-coumaric 

acid content in yellow corn grain ranged from 0.006 to 1.80g kg-1 and 0.00012 to 0.00050 g kg-
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1, respectively (Assabgui et al., 1993, Hu and Xu, 2011). This research showed that all three 

phenolic fractions contain a higher amount of ferulic acid as compared to sweet corn kernels 

suggesting that SCC can be a good source ferulic acid and p-coumaric acid.  

 

Figure 2.2: Total phenolic content (A) and amount of ferulic and p-coumaric acid (B) in free, 

esterified and insoluble-bound fractions of sweet corn cob.  

Values are presented in means ± standard deviation of triplicate samples; fractions with 

different letters within the same phenolic compound are significantly different (p<0.05).
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2.3.3 Extraction and characterization of carotenoid compounds 

In this study, lutein, zeaxanthin and β-carotene were the three carotenoids identified 

and quantified in SCC (Table 2.4). β-carotene was the main carotenoid in SCC followed by 

zeaxanthin and lutein. Supercritical fluid extraction (SFE) was able to extract high amounts of 

carotenoids, as compared to conventional extraction. No correlation was found between 

carotenoid content and antioxidant activity in all three assays (data not shown) thus the 

contribution of carotenoid content in SCC towards antioxidant activity was assumed negligible. 

Similarly, Gil et al. (2002) found no correlation between carotenoid and antioxidant activity of 

nectarines, peaches and plum. 

Previous studies carried out by Kurilich and Juvik (1999) reported that the carotenoids 

present in sweet corn kernels included zeaxanthin (2.16 mg kg-1), lutein (5.95 mg kg-1), and β-

carotene (0.68mg kg-1). Our results showed that there were higher levels of zeaxanthin and β-

carotene content in SCC, compared to those reported for sweet corn kernels. Therefore, SCC 

could potentially be a relatively good source of carotenoid compounds as compared to sweet 

corn.  

In this study, two different extraction methods were compared (Table 2.4), the SFE and 

conventional method. SFE resulted in significantly higher levels of carotenoids than 

conventional extraction. This confirms the effectiveness of the SFE techniques in the extraction 

of carotenoid compounds in SCC. It is well-known that carotenoids are highly sensitive to light, 

air, heat and pH (Panfili et al., 2004). SFE allowed the extraction of carotenoid compounds 

without exposure to lights and air, as the extraction is carried out in an air-tight and closed 

chamber. The content of lutein and zeaxanthin in SCC was twice as high in SFE extraction, as 

compared to conventional extraction. Furthermore, the content of β-carotene was three times 

higher in SFE extraction. This could be due to the higher sensitivity of β-carotene towards 

oxidation (Vanhasselt, 1972), as compared to lutein and zeaxanthin. In addition, the 
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combination of low viscosity and high diffusivity of supercritical fluid can enhance the 

penetration into porous solid material and consequently, result in faster and more effective 

extraction (Lang and Wai, 2001).  

 

Table 2.4: Concentration of individual carotenoid compound present in sweet corn cob 

extracted by conventional extraction and supercritical fluid extraction (mg kg-1 DW). 

Extraction Method Lutein  Zeaxanthin  β-carotene  

Conventional  1.67 ± 0.11b 3.98 ± 0.43b 49.35 ± 3.60b 

Supercritical fluid 3.81 ± 0.02a 8.47 ± 0.09a 177.29 ± 4.35a 

*Values are presented in means ± standard deviation of duplicate samples; mean values within 

the same carotenoid compound with different letters are significantly different (p<0.05). 

 

In conclusion, this research has shown that SCC appears to be a promising source of 

natural colorant (carotenoids), antioxidants (phenolics) and nutritional supplements (proteins 

and phytochemicals). The knowledge generated from this study may be useful to explore the 

use of agricultural waste as a source of functional food or value added products. 
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Abstract 

Sweet corn cob (SCC), an agricultural by-product of the corn processing industry, 

contains more than 80% of insoluble-bound ferulic acid (FA). Extraction of these bound 

phenolics can be achieved through chemical or enzymatic hydrolysis. The shift towards greener 

chemistry has raised awareness towards the use of enzymatic hydrolysis, which offers several 

advantages on the environmental impact such as low energy and solvent consumption. The 

ability of ferulic acid esterase (FAE) and xylanase (XY) to catalyse the hydrolysis of FA from 

SCC was investigated in this study. Response surface methodology (RSM) based on a five-

level, four-factor central composite rotatable design (CCRD) was used to establish the optimum 

conditions for enzymatic hydrolysis of FA from SCC. SCC was treated with the combination 

of FAE and XY at various concentrations (FAE: 0.00 to 0.04 U/g; XY: 0.00 to 18093.5 U/g), 

temperatures (45 to 65°C) and pH (pH 4.5 to 6.5). The optimum extraction conditions were: 

FAE concentration of 0.02U/g, XY concentration of 3475.3 U/g, extraction pH of 4.5 and 

extraction temperature of 45°C. Under these conditions, the experimental yield of FA was 

1.69 ± 0.02mg/g of SCC, which is in agreement with the value predicted by the model. 

Keywords 

Sweet corn cob, response surface methodology, ferulic acid, ferulic acid esterase, xylanase 

Highlight 

 RSM was used to optimise the extraction of FA from SCC. 

 Optimum extraction conditions were FAE concentration at 0.02U/g, XY concentration 

at 3475.4 U/g, pH 4.5 and 45°C. 

 The yield of FA was 1.69 ± 0.02mg/g of SCC at optimum extraction condition. 
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3.1 Introduction 

The annual world production of corn is about 520 Tg with most of the corn being used 

for animal feed or human consumption (64 and 19% of global production, respectively) (Kim 

and Dale, 2004). Sweet corn cobs (SCC) are an agricultural by-product of the corn-processing 

industry. Zheng et al. (2014) reported that the average yield of corn cob is about 14% of grain 

yield, which accounts for up to 16% of the total corn stover in a field. Utilization of corncob 

as animal beddings (Leys et al., 2012), biological substrate for the production of furfural 

(Sánchez et al., 2013), carbon adsorbents (Tsai et al., 2001) and forage protein (Perotti and 

Molina, 1988) have been widely studied. In addition,  research on corn cob as a source of ferulic 

acid (FA) has notably increased in recent years (Kumar and Pruthi, 2014). Based on our 

previous findings using alkaline hydrolysis, 97% of FA was present as insoluble bound 

(Chapter 2). The insoluble bound FA is covalently bound to the polysaccharide components of 

plants through ester linkages and these crosslinks significantly limit the degradation of the cell 

wall by rumen microorganism, thus limiting the digestibility by ruminants (Yu et al., 2002). 

Extraction of FA has been carried out via alkaline (Buranov and Mazza, 2009), acidic 

(Xu et al., 2005), pressurised solvents (Li et al., 2006), ultrasonic (Sun and Wang, 2008), 

supercritical CO2 (Sun et al., 2006), microwave-assisted (Liu et al., 2006) and enzymatic 

(Mussatto et al., 2007) extraction. Commonly, the release of FA from SCC has been carried 

out using alkali hydrolysis (Torre et al., 2008, Ares et al., 2016), however, this conventional 

method of hydrolysis has several disadvantages including the usage of large amount of solvent 

and subsequent solvent disposal problems (Alinia et al., 2010), leading to an increase in 

environmental pollution. In this context, enzymatic hydrolysis has drawn great interest due to 

its lower environmental impact as the use of chemicals is negligible and requires low energy 

(Alvira et al., 2010). In Chapter 2, alkali hydrolysis of SCC showed that SCC contains 3.06mg 

g-1 of total FA. Recently, Pérez-Rodríguez et al. (2017) investigated the utilization of high 
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hydrostatic pressure along with feruloly esterase on the release of FA from corn cob.  Ferulic 

acid esterase (FAE) was reported to break the ester linkage between FA and the attached sugar, 

thus releasing the FA from the complex cell wall (Yu et al., 2002). However, a specific cell 

wall degrading enzyme such as xylanase could be used to further improve the extraction by 

solubilizing part of the cell wall structure forming low molecular weight ferulolyted 

compounds, to allow FAE to act on these low relative molecular weight ferulolyted compounds 

releasing the FA (Faulds and Williamson, 1995b).  

However, the main drawback of using enzymatic hydrolysis is the low hydrolysis rate 

compare to chemical hydrolysis. To overcome this, several physicochemical factors such as 

incubation temperature, incubation time, enzyme concentration and pH need to be considered 

prior to enzymatic hydrolysis (Yin et al., 2011). The conventional optimisation involves 

changing one independent variable at a time while keeping the rest of the factors constant. 

However, this conventional experimental design does not include interaction among the 

variables and therefore is often incapable of detecting the optimum conditions (Tanyildizi et 

al., 2005). In order to overcome this problem, response surface methodology (RSM) can be 

used to carry out optimization studies (Bezerra et al., 2008). RSM generates a mathematical 

model based on the linear, quadratic and interaction effect of variables, and it is then use to 

calculate the optimal response. RSM is less laborious and time-consuming than conventional 

optimisation method as it reduces the number of experimental trials needed to evaluate the 

effect of multiple parameters and their interaction (Yin et al., 2011).  

This research aimed to investigate the effect of extraction parameters (enzyme 

concentration of FAE and XY, pH, and temperature) on the yield of FA from sweet corn cob. 

RSM optimisation by central composite rotatable design (CCRD) was used for model fitting 

and to predict the optimum value.  
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3.2 Materials and method 

3.2.1 Materials 

Sweet corn cob (SCC) used in this study was harvested in Senegal in December 2015 and was 

kindly provided by Barfoots of Botley Company Ltd (West Sussex, United Kingdom).  Ferulic 

acid esterase (FAE) by Clostridium thermocellum and endo-1,4-β-xylanase (XY) by 

Trichoderma viride were purchased from Prozomix Limited (Northumberland, United 

Kingdom) and Megazyme International Ireland Limited (Bray, Ireland). All other chemicals 

used in this experiment were of analytical grade. 

3.2.2 Sample preparation 

The corn kernels were removed manually from the cob and discarded. The sweet corn cobs 

were then chopped into 5cm pieces in length, frozen in the blast freezer (-18°C) for an hour 

and then freeze dried (Christ Gamma 2-16) until constant weight was achieved. The dried 

samples were finely ground in a mill (Apex Comminuting Mill), sieved through a 150 mesh 

screen (particle size <0.1mm), thoroughly mixed and stored in the freezer (-80°C) until further 

analysis. 

3.2.3 Enzyme activity test 

Enzyme activity assays were performed at 45⁰C in sodium phosphate buffer at pH 4.5. One 

unit of enzyme was defined as the amount of enzyme used to release 1μmol of product per 

minute. Ferulic acid esterase was assayed with methyl ferulate as the substrate as previously 

described in Kroon et al. (2000). The amount of FA that was released was analysed by using 

HPLC as describe in Section 2.2.7. The activity of Trichorderma viride xylanase was assayed 

using beech wood arabinoxylan (1mg/mL) as the substrate. Xylanase activity was determined 

by measuring the release of reducing sugar by 3, 5-Dinitrosalicylic acid (DNS) reagent (Saqib 

and Whitney, 2011), and was expressed as xylose equivalent. Briefly, DNS reagent was 
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prepared using dinitrosalicylic acid (DNS), sodium potassium tartrate and sodium hydroxide. 

4mL of DNS reagent was added to 1mL of test sample and placed in boiling water for 5 

minutes, before measuring the absorbance at 540nm. 

3.2.4 Preliminary work: determination of independent variables and their levels 

Preliminary experiments were conducted to select a suitable range of temperature, pH 

and time of FAE and XY for the design of the experimental RSM run. First, the concentration 

of FAE was determined by hydrolysing the freeze dried SCC (5%) using various concentrations 

of FAE (0.02, 0.05, 0.19U/g of SCC) for 4 hours at 37°C and pH 6.5 (optimum temperature 

and pH from manufacturer). FAE concentration at 0.02U/g of SCC showed the highest amount 

of FA being released (Appendix I, Figure A1). The concentration of enzyme used in this 

research is lower than the amount reported by Pérez-Rodríguez et al. (2017) (0.044U of FAE 

per gram of dry milled corn cob). Then, hydrolysis of ferulic acid from freeze dried SCC (0.1g) 

using FAE (0.02U/g) was carried out at different pH (pH 4, 5, 6, 7) and temperature (20, 35, 

40, 50, 60⁰C) for an hour to obtain the optimum pH and temperature of FAE. FA content was 

then quantified using HPLC (section 2.2.7). Similarly, the end product of XY hydrolysis (878.9 

U/g of SCC) at different pH and temperature, xylose, was analysed using the DNS method as 

describe in Section 3.2.3.  

Adopting the best working temperature (55⁰C) and pH (5.5) for both FAE and XY, the 

combination of FAE:XY at different ratios (1:0, 1:1, 1:10, 1:100, 1:1000, 1:10000, 2:0, 2:1, 

2:10, 2:100, 2:1000 and 2:10000 U/U) was used to determine the best concentration for the 

maximum release of FA from SCC. The combination of FAE:XY at 1:10000 was found to 

release the  maximum amount of FA (Appendix I, Figure A2). Finally, FAE at 0.02U/g with 

XY at (9048.5U/g) was used to hydrolyse 0.1g of SCC at 55°C and pH 5.5 at various extraction 

time (1 to 24  hours) to determine the best extraction time for the release of FA from SCC. 
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Based on the results, the three levels (lower, middle, upper) of each variable were determined 

and selected for RSM. 

3.2.5 Enzymatic hydrolysis 

Five grams of freeze dried SCC powder were defatted in a Soxhlet apparatus with hexane for 

six hours before the hydrolysis. For each experiment, a mixture of defatted SCC (0.1g) with 

varying amounts of phosphate citrate buffer, FAE (0.00 to 0.04U/g) and XY enzymes (0.00 to 

18093.50 U/g) was used as shown in Table 3.1. The mixtures were stirred in a shaking water 

bath at different reaction temperatures (45 to 65°C), for three hours. The pH of the mixtures 

was varied from pH 4.5 to 6.5.  The range of enzymes, pH and incubation temperature were 

determined based on the preliminary experiments. After the reaction was completed, the 

enzyme was inactivated by placing the mixture in a water bath at 90⁰C for five minutes. The 

suspension was centrifuged at 12,500 rpm for ten minutes and the supernatant was collected. 

FA in the supernatant was extracted 6 times using diethyl ether at a supernatant-to-solvent ratio 

of 1:1 and was evaporated to dryness. The extract containing the FA was then re-dissolved in 

methanol prior to HPLC analysis.   

3.2.6 HPLC analysis of FA  

The quantification of FA was carried out according to the method as described in Chapter 2 

(Section 2.2.7). Detection at 280nm was used for the quantification of FA using an external 

calibration curve (concentration from 0.01 to 0.2 mg/g FA; R2
 = 0.9998). 

3.2.7 Experimental design 

RSM was used to determine the optimum conditions for the enzymatic hydrolysis of FA from 

SCC powder. After determining the preliminary range of the extraction variables, a five-level-

four-factor central composite rotatable design (CCRD) with 31 experiments was employed in 

this study (Table 3.2). The experimental design and statistical analysis were performed using 
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Minitab® software 17.1.0. The variables optimised were concentration of ferulic acid esterase 

(X1), concentration of xylanase (X2), pH (X3) and temperature (X4). The design consisted of 

sixteen factorial points, eight axial points and seven replicates of the centre point. The 31 

experiments were randomised and the response (yield of FA) was recorded in Table 3.2. Data 

from the CCRD was analysed by multiple regression to fit the quadratic polynomial model. 

The analysis of variance and the effect and regression coefficients of individual linear, 

quadratic and interaction terms were determined. p-values of less than 0.05 were considered to 

be statistically significant. 

Verification and validation of the model were conducted by running three additional 

confirmation experiments using the optimum conditions generated by the RSM. The 

experimental and predicted values were compared and tested for statistical differences. 

 

Table 3.1: Variables and their levels for central composite rotatable design 

 

Variables 

Levels 

-α -1 0 +1 +α 

Ferulic acid esterase concentration/X1 

(U/g) 

0.00 0.01 0.02 0.03 0.04 

Xylanase concentration/ X2 (U/g) 0.00 4526.00 9048.20 13571.00 18093.50 

pH/ X3 4.5 5.0 5.5 6.0 6.5 

Temperature/ X4 (⁰C) 45 50 55 60 65 
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Table 3.2: Central composite rotatable design and response values for the yield of ferulic acid (mg/g)  

Standard 

Order 

Concentration of 

Ferulic acid esterase/X1 

 (U/g) 

Concentration of 

Xylanase/X2 

(U/g) 

Extraction 

pH/X3 

 

Extraction 

Temperature/X4 

(⁰C) 

Ferulic acid yield (mg/g) 

Experimental Predicted 

1 0.01 4526.00 5.00 50.00 1.20 1.14 

2 0.03 4526.00 5.00 50.00 1.45 1.42 

3 0.01 13571.00 5.00 50.00 0.85 0.78 

4 0.03 13571.00 5.00 50.00 0.84 0.92 

5 0.01 4526.00 6.00 50.00 1.02 0.94 

6 0.03 4526.00 6.00 50.00 1.23 1.28 

7 0.01 13571.00 6.00 50.00 0.85 0.83 

8 0.03 13571.00 6.00 50.00 0.98 1.02 

9 0.01 4526.00 5.00 60.00 0.91 0.83 

10 0.03 4526.00 5.00 60.00 1.11 1.15 

11 0.01 13571.00 5.00 60.00 0.73 0.73 

12 0.03 13571.00 5.00 60.00 0.81 0.90 

13 0.01 4526.00 6.00 60.00 0.62 0.57 

14 0.03 4526.00 6.00 60.00 0.93 0.95 

15 0.01 13571.00 6.00 60.00 0.79 0.73 

16 0.03 13571.00 6.00 60.00 0.91 0.95 
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17 0.00 9048.50 5.50 55.00 0.00 0.46 

18 0.04 9048.50 5.50 55.00 1.00 0.97 

19 0.02 0.00 5.50 55.00 0.61 0.83 

20 0.02 18093.50 5.50 55.00 0.52 0.48 

21 0.02 9048.50 4.50 55.00 1.17 1.25 

22 0.02 9048.50 6.50 55.00 1.03 1.10 

23 0.02 9048.50 5.50 45.00 1.37 1.43 

24 0.02 9048.50 5.50 65.00 1.03 1.05 

25 0.02 9048.50 5.50 55.00 1.28 1.24 

26 0.02 9048.50 5.50 55.00 1.19 1.24 

27 0.02 9048.50 5.50 55.00 1.20 1.24 

28 0.02 9048.50 5.50 55.00 1.27 1.24 

29 0.02 9048.50 5.50 55.00 1.14 1.24 

30 0.02 9048.50 5.50 55.00 1.28 1.24 

31 0.02 9048.50 5.50 55.00 1.30 1.24 
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3.3 Results and Discussion 

3.3.1 Preliminary determination of range of temperature, pH, FAE and XY in RSM  

The efficiency of FAE and XY is indicated by the increasing yield of FA and xylose, 

respectively. For FAE, the extraction yield of FA increased with the increase of pH value (pH 

4 to pH 6.5) and reached the maximum value (0.28 ± 0.00mg FA/g) at pH 6 (Figure 3.1A). 

Furthermore, the amount of FA released by FAE increased when the extraction temperature 

increased from 20 to 50⁰C (Figure 3.1B), reaching the maximum yield (0.20 ± 0.03 mg FA/g) 

at 50⁰C. Topakas et al. (2007) reported that microbial FAEs have a wide range of temperature 

and pH dependences, with optimal activities occurring between 30 to 60°C and pH 4-8 . 

Therefore, the FAE used in this experiment was working within its best temperature and pH 

range. 

The yield of xylose by XY increased as pH increased from pH 3 to pH 5, and decreased 

as pH increased further to pH 7.5 (Figure 3.1A). In addition, the yield of xylose increased as 

temperature increased from 20⁰C to 60⁰C, with maximum yield of 13.61 ± 0.13mg XE/g 

(Figure 3.1B). The yield of xylose decreased rapidly as temperature increased to 70⁰C. Results 

from this research are in agreement with Polizeli et al. (2005), where they reported that the 

peak activity of endoxylanases generally falls between 40 and 80°C and between pH 4.0 and 

6.5. Iyer and Ananthanarayan (2008) reported that several phenomenons are known to promote 

changes of the activity and spatial configuration of an enzyme such as pH, ionic strength, 

temperature, autolysis or chemical agents. They further reported that these physical denaturants 

can disrupt the hydrogen bond in the enzyme and results in aggregation or formation of highly 

disordered structure. Therefore, it was crucial to determine the best working pH and 

temperature for both FAE and XY used in the experiment.   
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Figure 3.1C shows that the yield of FA was markedly affected during the first 6 hours 

of hydrolysis. An increase in the incubation time for up to 24 hours did not increase the yield 

of FA. No significant differences were found between 3 hours (1.05 ± 0.00mg FA/g) and 6 

hours (1.02 ± 0.03mg FA/g) of extraction, which might be due to the accumulation of products 

inhibiting the enzyme activity or the depletion of the substrates. In a study conducted by 

Frieden and Walter (1963) on product inhibition of enzyme, they reported that the products of 

almost all enzyme-catalysed reactions may act as suppressants when present in high enough 

concentrations relative to the enzyme and substrate. Consequently, a period of 3 hours was 

chosen and used throughout the experiments. 

Therefore, when taking into consideration the best working temperature and pH 

conditions for both FAE and XY, 55⁰C and pH 5.5 were chosen as the middle point for RSM, 

along with 50⁰C and pH 5 for lower point, and 60⁰C and pH 5 for high point (Table 3.1).  
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Figure 3.1: Effect of pH, temperature and time on enzymatic hydrolysis of ferulic acid from 

sweet corn cob using ferulic acid esterase (FAE) and xylanase (XY). 

Different letters showed significant difference (p<0.05) between treatments. 
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3.3.2 Statistical Analysis and the model fitting 

In this study, there were a total of 31 runs for optimizing the four individual parameters 

in the CCRD. The yield of FA along with the experimental conditions are shown in Table 3.2. 

Results showed that the yield of FA ranged from 0.00 to 1.45mg/g FA. The maximum amount 

of FA (1.45mg/g) was found in conditions of X1=0.0285 U/g, X2=4526U/g, X3=5, X4 = 50⁰C. 

The results were fitted with a second order polynomial equation: 

mg FA = 3.53 + 65.1 X1 - 0.0002 X2 + 0.32 X3 - 0.082 X4 - 1838 X1
2 – 0.00X2

2 - 0.0625 X3
2 

+ 0.000351 X4
2 - 0.001 X1X2 + 3.34 X1X3 + 0.173 X1X4 + 0.000032 X2X3 + 0.000003 X2X4 – 

0.001 X3X4 

The statistical significance of the regression model was evaluated by p-value and F-

test, and the analysis of variance (ANOVA) for the response surface quadratic model is shown 

in Table 3.3. The determination coefficient (R2=0.893) indicates that the model was adequate 

for prediction within the range of experimental variables. Table 3 showed that the linear 

coefficient (X1) and the quadratic coefficient (X1
2 and X2

2) were found significant at p<0.001. 

Linear coefficient (X2 and X4) and interaction coefficient (X2X3) was found significant at p<0.01 

and p<0.05. The other term coefficients (X3, X3
2, X4

2, X1X3, X1X4, X2X4 and X3X4) were found 

not significant (p>0.05). Three-dimensional and contour plots were used to predict the 

relationships between the dependent and independent variables (Figure 3.2 and 3.3).  
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Table 3.3: Estimated regression model of relationship between response variables (yield of 

ferulic acid) and independent variables ferulic acid esterase (X1), Xylanase (X2), pH (X3), and 

temperature (X4).  

 

Factor SS df MS F p 

X1 0.45 1 0.45 25.36 * 

X1
2 0.79 1 0.79 44.17 * 

X2 0.15 1 0.15 8.37 ** 

X2
2 0.64 1 0.64 35.83 * 

X3 0.03 1 0.03 1.57 NS 

X3
2 0.01 1 0.01 0.39 NS 

X4 0.22 1 0.22 12.50 ** 

X4
2 0.00 1 0.00 0.12 NS 

X1X2 0.03 1 0.03 1.53 NS 

X1X3 0.00 1 0.00 0.23 NS 

X1X4 0.00 1 0.00 0.06 NS 

X2X3 0.08 1 0.08 4.65 *** 

X2X4 0.07 1 0.07 3.80 NS 

X3X4 0.00 1 0.00 0.01 NS 

*Significance at p≤0.001 

**Significance at p≤0.01 

***Significance at p≤0.05 

NS = not significant 
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3.3.3 Effect of ferulic acid esterase (X1), xylanase (X2), pH (X3) and temperature (X4) on the 

yield of FA 

  The effect of ferulic acid esterase (X1) concentration, xylanase (X2) concentration, pH 

(X3), temperature (X4) and their interactions on the extraction efficiency of FA from SCC are 

reported in Table 3.3. The yield of FA was positively correlated to the linear effect of FAE 

concentration (p≤0.001), XY concentration (p≤0.01) and temperature (p≤0.01). Concentration 

of FAE was highly significant (p<0.001) in the release of FA from SCC. Similarly, 

concentration of xylanase (X2) was found to be significant in this study. The presence of 

xylanase was reported to contribute towards the degradation of arabinoxylan, and thus enhance 

the release of FA.  These endoxylanases attack the arabinoxylan backbone in an irregular 

manner, causing a decrease in the degree of polymerisation of the substrate and thus liberating 

the xylose, xylobiose and oligomers while  retaining their configuration (Courtin and Delcour, 

2002). This is in agreement with Yu et al. (2002) who also reported the release of FA from oat 

hulls using combinations of FAE and XY. 

Response surface was plotted by using Minitab 17.0.1 to study the effects of parameters 

of interest and their interactions on the yield of FA. To visualise the effect of independent 

parameters and their interaction, three dimensional (Figure 3.2) and contour plot (Figure 3.3) 

were plotted to show the effects of two factors on the response at a time while keeping the other 

two factors at level zero. The three dimensional and contour plots in Figure 3.2 and 3.3a, which 

gives the yield of FA as a function of FAE and XY concentration at a fixed extraction pH (pH 

5.5) and temperature (50⁰C), indicated that the extraction yield of FA increased as the 

concentration of FAE increased from 0.00 to 0.03U/g, followed by a decrease in the extraction 

yield of FA at FAE concentrations higher than 0.03U/g.  Similarly, the yield of FA increased 

as the concentration of XY increased to 11,000U/g, and decreased as concentration of XY 

increased. 
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Figure 3.2: Response surface (3-D) showing the effect of FAE (X1), XY concentration (X2), pH (X3) and temperature (X4) on yield of ferulic 

acid. 
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Figure 3.3: Contour plots showing the effect of FAE (X1), XY concentration (X2), pH (X3) and temperature (X4) on yield of ferulic acid
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Figure 3.2 and 3.3b showed the three dimensional response and the contour plots at 

varying FAE concentration over a range of pH at a fixed XY concentration and temperature. It 

can be observed that the yield of FA increased as FAE increased to 0.08U/g, however, as pH 

increased from pH 6.0 to 6.5, the yield of FA decreased. In Figure 3.2 and 3.3c, the three 

dimensional response surface and the contour plots were developed for the extraction yield of 

FA with varying pH and XY concentration at a fixed FAE concentration and temperature. The 

plots indicated that the maximum extraction yield of FA can be achieved when concentration 

of XY increases to 10,000U, and decreases further at higher concentration of XY. It also 

showed that yield of ferulic acid decreases as pH increases from pH 6.0 to 6.5.  

Figure 3.2 and 3.3d showed the three dimensional response surface plot and contour 

plot at varying temperature and FAE concentration at fixed extraction conditions of pH 5.5 and 

xylanase concentration. It can be seen that increasing FAE concentration increases the yield of 

FA, however, as temperature increases, the yield of FA decreases. It can be observed that the 

yield of FA by xylanase decreases as temperature increases above 45⁰C (Figure 3.2 and 3.3e).  

However, no interactions were found between temperature and pH at a fixed amount of FAE 

and XY concentration (Figure 3.2 and 3.3f) 

3.3.4 Verification of predictive model 

The accuracy of the model equation for predicting the optimum response value was 

carried out under the condition: FAE concentration (0.02U/g), XY concentration (3472 U/g), 

pH (4.5) and temperature (45⁰C). This set of optimum conditions was determined by the RSM 

optimization (Table 3.4) and was used to validate the experimental and predicted yields of the 

responses using the model equation. A mean value of 1.69 ± 0.02mg/g (n=3) was obtained 

from the experiment. This further validates the RSM model, showing that the model was 

adequate for the optimization of FA extraction from SCC.  
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Table 3.4: Predicted and experimental values of the responses at optimum condition 

 FAE 

Concentration 

(U/g) 

XY 

Concentration 

(U/g) 

 

pH 

Temperature 

(⁰C) 

Yield of 

ferulic acid 

(mg/g) 

Predicted  0.02 3475.32 4.50 45.00 1.70 

Experimental 0.02 3475.32 4.50 45.00 1.69 ± 0.02 

 

 Pérez-Rodríguez et al. (2017) reported that the enzymatic hydrolysis of corn cob using 

Ultraflo®, in combination with thermal pre-treatment released a higher amount of FA 

(226mg/L) than the raw sample (177 mg/L). In this study, when comparing the FA content 

obtained by alkali hydrolysis (3.06mg/g of SCC, Chapter 2), enzymatic hydrolysis only 

extracted about half of the amount (55%) of FA in SCC (1.69mg/g of SCC). This result was 

lower than oat hull (69%) (Yu et al., 2002) and wheat bran (95%) (Faulds and Williamson, 

1995b) but higher than that from maize bran (0.6%) (Faulds et al., 1995) and barley spent grain 

(30%) (Bartolome and Gomez-Cordoves, 1999). The discrepancy in the release of FA might 

be due to the complexity of  the cell wall material (lignification), and also the physical and 

steric factors caused by branching of the arabinoxylan backbone (Yu et al., 2002). Faulds et al. 

(1995) reported that the highly branched xylose in the side chain of heteroxylan backbone of 

maize bran may hinder the action of endoxylanases, thus FAE can only act on those easily 

accessible regions. Therefore, less-substituted xylan substrate such as barley spent grain and 

wheat bran are better substrates for the release of FA by FAE, as compared to more substituted 

substrates such as maize bran (Bartolome and Gomez-Cordoves, 1999). Furthermore, wheat 

bran containing nonlignified cell walls is more susceptible to enzymatic degradation Yu et al. 

(2002) as compared to the highly ligninfied corn cob (Pastell et al., 2009) that is less susceptible 

to the esterase.  
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RSM is a useful tool in the optimization of the enzymatic hydrolysis of FA from sweet 

corn cob. The concentration of FAE, XY and temperature markedly affects the extraction 

efficiency of FA from sweet corn cob and thus, optimisation of these parameters is crucial to 

obtain the maximum yield of ferulic acid. Under the optimum condition, the yield of FA (1.69 

± 0.02mg/g) agreed closely with the predicted yield obtained from the model. However, 

enzymatic hydrolysis of SCC with the combination of FAE and XY does not release a high 

amount of FA as compared to alkali hydrolysis. Therefore, the combination of novel 

technologies with enzymatic hydrolysis may be explored to increase the yield of extraction for 

FA in SCC. 
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Abstract 

The beneficial effects on the overall gut health following the consumption of phenolic-rich 

foods are potentially due to their modulation of gut microbiota. Hence, the effect of sweet corn 

cob (SCC) and sweet corn cob extract (SCCE) on several bacterial groups including 

Lactobacillus, Bifidobacterium, Eubacterium and Clostridium spp. were evaluated. The free 

and bound phenolic composition was determined by high performance liquid chromatography 

(HPLC) and results showed that SCC comprised mainly of insoluble bound phenolic acids 

(Chapter 2, ferulic and p-coumaric acid) while SCCE comprised mainly of free ferulic and p-

coumaric acid, along with xylooligosaccharide (xylobiose and xylotriose). The SCCE showed 

a trend of an increase in the beneficial bifidobacteria, and a decrease in the pathogenic 

Clostridium spp., although the results were not significant. On the other hand, SCC showed a 

significant increase in the production of short chain fatty acids (acetate, propionate and 

butyrate).  This chapter provides information on the effect of free and bound ferulic acid on the 

population of gut microbiota and the potential health benefits of SCC and SCCE associated 

with improvement in gut health. 
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4.1 Introduction  

Gut microbiota, a complex ecological community composed of trillions of microbes in 

the human intestine, plays an important role in health and physiology of the host. Malnutrition 

(Kau et al., 2011), obesity (Ley et al., 2006), inflammatory bowel diseases (IBD) (Frank et al., 

2007) and cancer (Lupton, 2004) have been associated with an imbalance between gut 

microbiota and the host. The composition of the gut microbiota is greatly influenced by 

different factors including lifestyle, diet and use of antibiotics (Nicholson et al., 2012). Among 

all these factors, dietary habit is one of the main factors contributing to the diversity of the gut 

microbiota that can affect the functional relationship with the host (Laparra and Sanz, 2010).  

There is an increasing interest in the health promoting effects of functional food 

components. Diplock et al. (1999) defined functional food as food components that are beyond 

adequate nutritional effect and showed beneficial effects towards one or more target functions 

in the body. Gibson et al. (2007) reported that some functional food components can influence 

the growth, composition, and function of gut microbiota. The functional food concept has 

moved towards the development of dietary supplementation that may affect the composition 

and activities of the gut microbiota (Ziemer and Gibson, 1998). Additionally, there has been 

increased interest in developing dietary supplements containing polyphenols or polyphenol-

rich food products due to their potential to prevent or mitigate the occurrence of chronic 

diseases (Martin and Appel, 2010). Several studies have reported that polyphenols can also 

inhibit the growth of pathogenic bacteria and stimulate the growth of beneficial and commensal 

microbiota. For example, Lee et al. (2006a) reported that tea phenolics and their derivatives 

were able to suppress the growth of potentially pathogenic bacteria such as Clostridium 

difficile, C. perfringens and Bacteroides spp. while probiotics such as Lactobacillus spp. and 

commensal anaerobes including Bifidobacterium spp. were less affected.   
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Sweet corn cob (SCC), a by-product of corn processing industry, is comprised mainly 

of hemicellulose and cellulose (Chapter 2). Our findings have also showed that SCC contains 

considerable amount of phytochemicals including ferulic and p-coumaric acid. These 

phytochemicals are present mainly as insoluble-bound form and are covalently bound to cell 

wall structural components such as hemicellose, cellulose, pectins and lignins (Wong, 2006). 

Our study showed that more than 80% of ferulic and p-coumaric acid in SCC was present as 

insoluble bound (Chapter 2). It has been shown that the health benefits of insoluble bound 

phenolic compounds are more effective in the colon while the free and conjugated phenolics 

are more readily absorbed and distributed throughout the body for health benefits such as 

inhibition activities against oxidation of liposomes and LDL cholesterol (Acosta-Estrada et al., 

2014).  This is due to the low bioavailability of bound phenolic acids that can only be absorbed 

after being released by digestive enzymes in the intestinal lumen (Anson et al., 2009a), as 

compared to the free and conjugated phenolic acids, which are more readily available to be 

absorbed in the human small and large intestine (Zhao et al., 2004). The bran matrix of these 

bound phenolics hinders their access to enzymes such as ferulate esterases and xylanase, thus 

limiting its release in the human gastrointestinal tract (Zhao et al., 2005).  

Although there are many studies on the effect of dietary polyphenols on the gut 

microbiota, limited studies have been carried out to compare the effect of free and bound 

phenolics, particularly ferulic acid, on gut health. Gálvez Ranilla et al. (2017) reported that the 

free and bound phenolic compounds of Peruvian purple corn did not inhibit the growth of 

beneficial probiotic such as L. helveticus and B. longum and the pathogenic Helicobacter 

pylori. Batch culture fermentation is designed to simulate the environmental conditions in 

different parts of the colon (Macfarlane and Macfarlane, 2007). Batch cultures have been used 

to assess the effect of polyphenols on the gut microbiota and also the effect of the gut 

microbiota on polyphenol stability (Dueñas et al., 2015). Furthermore, batch cultures have 
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aided evaluation of environmental conditions that favour or limits polyphenolic bioconversion 

(Dueñas et al., 2015). The present study was aimed at evaluating the possible prebiotic effect 

of SCC (containing fibres and insoluble phenolic compounds) and SCC extract (SCCE; 

containing free phenolic compounds and xylooligosaccharides) on the human gut microbiota 

by in vitro faecal batch culture fermentation.  

4.2 Material and methods 

4.2.1 Quantification of ferulic acid in SCC and SCCE 

The SCC used in this research was harvested in Senegal in December 2015 and was 

provided by Barfoots of Botley Company Ltd. The preparation of SCC was described in 

Chapter 2 (Section 2.2.4). The SCCE was simulated using standards (ferulic acid, p-coumaric 

acid, xylobiose and xylotriose) and the concentration was estimated according to the SCC 

extract obtained by enzymatic hydrolysis using ferulic acid esterase and xylanase (Chapter 3). 

The concentration of ferulic acid, p-coumaric acid, xylobiose and xylotriose of the SCC and 

SCC extract were determined by HPLC (Chapter 2, Section 2.2.7) and recorded in Table 4.1.  

Table 4.1: Concentration of ferulic acid, p-coumaric acid, xylobiose and xylotriose in sweet 

corn cob (SCC) and extract (SCCE). 

Compounds SCC (mg/g) SCC extract (mg/L) 

Total ferulic acid  3.06 168.87 ± 2.04 

Total p-coumaric acid  4.22 44.59 ± 0.14 

Glucose - 2174.25 ± 58.87 

Xylose - 73.52 ± 9.11 

Xylobiose - 20.38 ± 2.44 

Xylotriose - 70.95 ± 0.93 
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4.2.2 Substrate dose determination and pre-digestion 

Six different substrates including SCC, SCCE, ferulic acid, p-coumaric acid, 

xylooligosacharride (XOS) and fructooligosaccharide (FOS) were used in the batch culture 

fermentation. The substrate dose was determined in accordance with the research of Tzounis 

et al. (2011). The concentration of ferulic acid was selected to reflect the approximate 

gastrointestinal concentrations of ferulic acid achieved from the daily dietary intake of 150 mg 

ferulic acid/d (Zhao and Moghadasian, 2008). With the assumption of a stomach volume of 1–

1.5 L, this equated to 0.1–0.15 mg total ferulic acid/mL reaching the gastrointestinal tract. The 

concentration of substrate used in this research was listed is Table 4.2. 

 

Table 4.2: Substrate dosage used for batch culture fermentation. 

Vessel SCCa (mg) FAb (mg) pCA c(mg) XOS d*(mg) FOSe (mg) 

NC - - - - - 

SCC 1000 - - - - 

SCCE - 3 0.78 1.62 - 

FA - 3 - - - 

pCA - - 0.78 - - 

XOS - - - 1.62  

FOS  - - - - 1.62 

*xylooligosaccharide combination of xylobiose and xylotriose 

a: sweet corn cob powder, b: Ferulic acid; c: p-coumaric acid; d: xylooligosaccharide; e: 

Fructooligosaccharide 
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4.2.3 Faecal sample preparation 

Batch culture fermentations were carried out using fresh faecal samples provided by 

three healthy volunteers (one male, two females; age 28-33 years, omnivores). Donors were 

free of known metabolic and gastrointestinal diseases and they did not receive antibiotic or 

probiotic treatment for at least 6 months prior to the experimentation. Faecal samples were 

collected in sterile plastic containers which were stored in anaerobic jars containing AnaeroGen 

sachets (Oxoid, Basingstoke, UK). Stool samples were used within 2 hours of collection. Faecal 

samples were diluted 1/10 (w/w) in sterile phosphate-buffered saline (PBS) and homogenised 

in filter bags using a stomacher (Stomacher 400, Seward) for 4 min (460 paddle/min) to create 

a homogenous faecal slurry. Resulting faecal slurries were used to inoculate the batch-culture 

systems. A different faecal sample was used for each of the triplicate experiments. 

4.2.4  In vitro batch cultures fermentation 

Sterile mini batch fermentation vessels (20 mL working volume) were aseptically filled 

with 19 mL of sterile basal nutrient medium and sparged with O2 - free N2  (15 mL min-1) 

overnight to establish anaerobic conditions. The basal medium (per litre) consisted of: 2g 

peptone water, 2g yeast extract, 0.1g NaCl, 0.04g K2HPO4, 0.04g KH2PO4, 0.01g 

MgSO4.7H2O, 0.01g CaCl.6H2O, 2g NaHCO3, 2mL Tween 80, 0.05g hemin, 0.01mL vitamin 

K1, 0.5g L-cysteine-HCl, 0.5g bile salt and 4mL resazurin solution (0.25g/L).  The substrates 

were added (1% w/v, Table 4.2) to the respective fermentation vessels just before the addition 

of the faecal slurry. Vessels were kept at 37° C using a circulating water bath and the pH was 

controlled between 6.7 and 6.9 with the aid of 0.5M HCl or NaOH, using an automated pH 

controller (Fermac 260, Electrolab.). Each vessel was inoculated with 1 ml of fresh faecal slurry 

(1:10 w/w). For each donor, 7 vessels were prepared for 7 treatments: SCC, SCC extract, ferulic 

acid, p-coumaric acid, xylobiose + xylotriose, FOS, and negative control. Batch cultures were 
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conducted for 24 hours, and samples of 3.7mL were collected from each vessel at 0, 6, 12 and 

24 hours for counting of bacterial populations and short chain fatty acid (SCFA) analysis. 

4.2.5 Short chain fatty acid (SCFA) analysis by gas chromatography  

Samples (1 mL) from each fermentation time point were centrifuged at 13,000xg for 10 

minutes. Supernatants were filtered through a 0.22µm Millipore syringe filter. The extraction 

of SCFA was done according to Richardson et al. (1989) with slight modification. Briefly, 

600µL of sample was transferred to a labelled glass tube with 30µL of 2-ethylbutyrc acid 

(0.1M, internal standard). 300µL of concentrated hydrochloric acid and 1.8mL of diethyl ether 

were added to each glass tube and vortexed for 1 minute. Samples were then centrifuged at 

2000xg for 10 minutes. 400µL of ether extract (upper layer) were added to a tube containing 

50µL of N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). The tube was 

capped and the mixture was left at room temperature for 72 hours to allow complete 

derivatisation of lactic acid. 

An Agilent/HP 6890 Gas Chromatograph (Hewlett Packard, UK) using an HP-5MS 

30m×0.25mm column with a 0.25μm coating (Crosslinked (5%-Phenyl)-methylpolysiloxane, 

Hewlett Packard, UK) was used for the analysis of SCFA. Temperatures of injector and 

detector were 275°C, with the column programmed from 63°C for 0 minutes to 190°C at 15°C 

min-1 and held at 190°C for 3 minutes. Helium was the carrier gas (flow rate 1.7 ml min-1, head 

pressure 133 KPa). A split ratio of 100:1 was used. Quantification of the samples was obtained 

through external calibration curves of acetic (R2=0.999), propionic (R2=0.9998), and butyric 

(R2=0.9998) acid in concentrations between 12.5 and 100 mM. The mean metabolite 

concentrations were expressed as mM. 
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4.2.6 Enumeration of faecal microbial populations by flow cytometry-fluorescence in situ 

hybridisation (FISH) 

Collected samples (750 µl) were centrifuged at 13,000xg for 5 min at room temperature. 

Pellets were fixed for further fluorescence in situ hybridisation and kept at -20°C. Briefly, after 

centrifugation pellets were resuspended in 375µl of phosphate buffer saline (PBS; 0.1M) and 

1,125.5 µl of cold 4 % paraformaldehyde. Suspension was mixed and stored at 4 ºC for 4–6 h. 

After incubation time, samples were washed twice with 1 mL of PBS. Finally, samples were 

centrifuged at 13,000xg for 5 minutes, supernatant was discarded and the pellet was 

resuspended in 300 µl of PBS and 300 µl of ethanol. Samples were vortexed and stored at –20 

ºC for further analysis. For Flow-FISH cytometry, the 16S ribosomal RNA molecule labelled 

with the fluorescent was used for the enumeration of bacterial groups (Table 4.3). 

75 µl of the fixed samples were collected from the fix cell solution stored at -20C. The 

fixed cells were washed twice with PBS and pre-treated for 10 min with lysozyme at 1mg/ml. 

Cells were resuspended in 1 mL of hybridisation buffer (HB; Table 4.4). All hybridisations 

were performed in the dark at 35° C overnight in the hybridisation solution containing the 

appropriate labelled probe (Table 4.3). One hundred and fifty microliter of HB (without probe) 

was added to stop the reaction. Cells were centrifuged at 13,000xg for 3 minutes, resuspended 

in pre-warmed washing buffer (Table 4.4) and incubated at 37 °C for 20 min to remove non-

specific binding of the probe. Finally, cells were centrifuged at 10,000xg for 3 min and 

resuspended in PBS for flow cytometry analysis. Quantification of bacterial populations was 

performed on an Accuri C6 flow cytometer and Cflow software (BD Biosciences, USA). 
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Table 4.3: Name, sequence, and target group of oligonucleotide probes used for fluorescence in situ hybridization analysis for bacterial 

enumeration. 

Name of Probe Sequence (5’ to 3’) Targeted group References 

Non Eub ACTCCTACGGGAGGCAGC  Control probe  Wallner et al. (1993) 

Eub338 GCTGCCTCCCGTAGGAGT  Total bacteria Amann et al. (1990) 

Eub338II GCAGCCACCCGTAGGTGT  Total bacteria Daims et al. (1999) 

Eub338III GCTGCCACCCGTAGGTGT  Total bacteria Daims et al. (1999)  

Bif164 CATCCGGCATTACCACCC  Bifidobacterium spp.  Langendijk et al. (1995) 

Bac303 CCAATGTGGGGGACCTT  Most Bacteroidaceae and Prevotellaceae, some 

Porphyromonadaceae  

Manz et al. (1996) 

Erec482 GCTTCTTAGTCARGTACCG  Eubacterium rectale/Clostridium cocoides (Clostridium 

cluster XIVa and XIVb) 

Franks et al. (1998) 

Rrec584 TCAGACTTGCCGYACCGC  Roseburia spp. Walker et al. (2005) 

Fprau655 CGCCTACCTCTGCACTAC  Faecalibacterium prausnitzii Suau et al. (2001) 

Chis150 TTATGCGGTATTAATCTYCCTTT  Clostridium histolyticum (Clostridium cluster I and II) Franks et al. (1998) 



Chapter 4 

 

78 

 

Table 4.4: Components of hydridization and washing buffer used. 

Components Hybridization Buffer 

(μL) 

Washing 

Buffer(μL) 

Sodium chloride (5M) 180 12.8 

Trizma base/Hydrochloric acid (1M) 20 20 

Formamide 300 10 

Distilled water 499 956.2 

10% Sodium dodecyl sulphate 1 1 

 

4.2.7 Statistical analysis 

Statistical analyses were performed using Minitab version 17.1.0. Analysis of variance 

(ANOVA) and Fisher test were used to determine significant changes in the microbiota 

populations and concentration of SCFA at inoculation and sampling points. The effect of 

different substrates at the same time point were compared and differences were considered to 

be significant when p<0.05. 
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4.3 Results and discussion 

4.3.1 Effect of phenolic acids on human faecal bacteria 

To assess the impact of free and bound phenolic acids on the intestinal microbiota 

composition, pH-controlled, anaerobic, faecal batch cultures were conducted and bacteria were 

enumerated by FISH. Samples were taken after 6, 12 and 24 hours of fermentation. The 

changes in bacterial groups for each fermentation experiment are presented in Figure 4.1. All 

vessels showed a decrease in total bacteria from 0 to 24 hours of fermentation (Appendix II, 

Figure A3), although this decrease was not significant. Among the bacterial groups studied 

(Bifidobacterium spp., Lactobacillus/Enterococcus spp., Bacteroides spp., Eubacterium 

rectale - Clostridium coccoides, Roseburia and Clostridium histolyticum group), addition of 

SCCE containing free phenolic compounds and XOS to the faecal fermentation mixtures 

promoted the growth of Bifidobacterium at 6 and 12 hours (Figure 4.1A), although it was not 

statistically significant. At the end of the fermentation, all vessels showed higher amounts of 

Bifidobacterium as compared to the negative control, except vessels containing SCC. This 

might be due to the compounds in SCC not being readily available for the bacterial uptake, due 

to the complex structure of SCC composed mainly of insoluble fibers (Chapter 2). Davin et al. 

(2009) reported that under anaerobic conditions, it is considered unlikely for the degradation 

of these highly polymerized lignins, which are composed mainly of phenolic compounds. This 

showed that the gut microbiota was unable to release the bound phenolic acids from SCC and 

thus, showed no increase in the growth of bifidobacterium. Bacteroides/Provotella spp. showed 

an increase across all vessels from 6 to 12 hours, with the highest increase being observed in 

vessels containing SCC followed by SCCE. A decrease in Eubacterium/Clostridium spp. was 

observed in all vessels and significantly lower amounts were found in vessels containing SCC 

as compared to FOS (Figure 4.1B). Overall, no significant differences were observed between 

the negative control and all the substrates being studied over the 24 hours period and this might 
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be due to the inter-individual variation in faecal bacteria. Microbial diversity among individuals 

might be due to the presence of different bacterial populations present in the faecal microbial 

community with different enzymatic capacities (Zoetendal et al., 2008). In addition, the results 

further suggested that it is possible that a daily intake of 150mg FA (Zhao and Moghadasian, 

2008) might be insufficient to significantly promote the growth of gut microbiota .  

Lactobacillus and Bifidobacterium have been widely studied due to health promoting 

effects including stimulation of the immune system (Gill et al., 2007) , inhibition of the growth 

of harmful bacteria (Gagnon et al., 2004), increase in synthesis of vitamin B (LeBlanc et al., 

2011) as well as absorption of certain ions (López-Molina et al., 2005). Results obtained in this 

study showed a possible bifidogenic activity of SCCE containing free phenolic acid and XOS. 

The combination of free phenolics with XOS were more readily available for the uptake by the 

bacteria and thus promoted growth. Previously, the bifidogenic effect of phenolic compounds 

has been well proven by several authors. Yuan et al. (2005) reported that feruloyl 

oligosaccharide released from wheat bran promoted the growth of Bifidobacterium bifidum. In 

addition, feruloylated arabino-oligosaccharide extracted from sugar beet pectin was reported 

to selectively stimulate the growth of bifidobacteria (Holck et al., 2011).  

Vessels containing SCC showed no increase in Lactobacillus (Appendix II, Figure 

A4). Similarly, Gálvez Ranilla et al. (2017) reported that the bound phenolic fraction rich in 

hydroxycinnamic acid derivatives (ferulic acid at 0.016mg/mL) of purple Peruvian corn did 

not affect the growth of probiotic lactic acid bacteria. Furthermore, in an research carried out 

by Puupponen-Pimiä et al. (2001) using agar diffusion technique, they reported that pure 

phenolic acids such as p-coumaric acid, transcinnamic, chlorogenic, cafffeic and ferulic acid 

did not affect the growth of L. rhamnosus, L. reuteri, L. paracasei, L johnsonii, L.crispatus and 

L,plantarum at a dosage of 0.05 to 0.5mg/well. This showed that ferulic acid might not have 

any impact on the growth of Lactobacillus. 
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The fermentation of SCC also showed an increase in the populations of Bacteroides 

spp. (Figure 4.1C). The increase might be due to the presence of polysaccharides in SCC 

(Chapter 2). Bacteroides are reported to be able to utilise many types of plant polysaccharides 

as substrates (Salyers et al., 1981). Although the increase of this group may exert a detrimental 

effect on the health of the colon due to the metabolites, these groups also contain saccharolytic 

species which may result in the production of beneficial SCFAs (Guergoletto et al., 2016). 

Similarly, Hughes et al. (2007) observed an increase in bacteroides following fermentation of 

arabinoxylan fractions of wheat.  SCC showed a trend of decrease in Clostridium Cluster I and 

II (Figure 4.1D) and Eubacterium rectale (Figure 4.1B) at the end of the fermentation, as 

compared to the negative control. The growth of these pathogenic Clostridium group can 

potentially be associated with diseases. For example, the growth of the proteolytic bacteria 

from C. histolyticum group can potentially be related to negative effects such as the progression 

towards inflammatory bowel disease and colorectal cancer (Gibson, 2008). In addition, C. 

perfringens has been reported to potentially associate with gangrene and gastrointestinal 

diseases (Petit et al., 1999).  This study showed that SCC may have the ability to inhibit the 

colonisation of potential pathogenic Clostridium spp. in the colon.
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Figure 4.1: Bacterial populations (Bifidobacterium, Eubacterium/Clostridium, Bacteroids/Prevotella, Clostridium histolyticum, 

Faecalibacterium prausnitzii and Roseburia spp.) analysed by Flow-FISH in pH controlled batch cultures containing different substrates. 

 (NC= negative control; SCC= Sweet corn cob; SCCE: Sweet corn cob extract; FA: ferulic acid, pCA: p-coumaric acid; XOS: Xylooligosaccharide 

and FOS: Fructooligosaccharides). Error bars indicate SD (n = 3).  Significant differences between substrates at the same time point are indicated 

with letters (P < 0.05). * indicates significantly different compared to 0 h within the same substrate (P < 0.05). 
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4.3.2 Effect of polyphenol on bacterial production of the major SCFAs 

SCC incubation significantly increased (p<0.05) the production of all major SCFAs 

including acetate, butyrate and propionate, in relation to the control (Figure 4.2). All substrates 

showed an increase in the production of SCFA throughout the duration of fermentation from 0 

to 6 hours. Significantly higher (p<0.05) concentrations of acetate (Figure 4.2A) was detected 

at 6 hours collection time in the vessel containing SCC (16.21±2.85mM) as compared to the 

negative control (11.09±1.47mM). Furthermore, the production of both propionate (Figure 

4.2B) and butyrate (Figure 4.2C) showed significantly higher amounts at 6 and 12 hours in 

vessels containing SCC. This is in agreement with Salvador et al. (2007) where increases in 

butyric acid were observed from xylose rich substrates. In addition, Adam et al. (2001) also 

reported an increase in butyric acid in arabinoxylan-rich wheat flour as the substrate. All the 

other substrates showed no significant difference as compared to the negative control. 

The saccharolytic metabolism of gut microbiota in the large intestine results in the 

production of SCFA (Gibson, 2004). The significant increase in the production of SCFA in the 

vessel containing SCC might be due to the presence of fibers. McIntyre et al. (1993) reported 

that the fermentation of fiber by anaerobic bacteria produces hydrogen, methane, carbon 

dioxide and SCFA, predominantly propionate, acetate and butyrate. In addition, they reported 

that the fermentation of wheat bran (consisting of cellulose, hemicellulose and lignin) resulted 

in an increase in butyrate production, as compared to oat bran (rich in beta-glucan) and guar 

gum (pure galactomannan). The production of SCFA by gut microbiota in the colon has an 

important impact on human health especially butyrate, and is often associated as the major 

energy source for colonocytes (Donohoe et al., 2011). In addition, acetate enters the systemic 

circulation and is used in lipogenesis, while propionate is transported to the liver for its role in 

gluconeogenesis (Scott et al., 2013). The presence of butyrate in the colon is reported to be 

important for reducing risk factors associated with ulcerative colitis (Simpson et al., 2000) or 
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colon cancer (Weaver et al., 1988). Previous research by Louis and Flint (2009) has reported 

that the two most important groups of butyrate-producing bacteria in the human intestine 

appear to be Faecalibacterium prausnitzii and Eubacterium rectale/Roseburia spp.. This is in 

agreement with the results of FISH hydridisation, where an increase in Faecalibacterium 

prausnitzii (Figure 4.1E) and Roseburia spp. (Figure 4.1F) were observed at 12 hours in the 

vessel containing SCC, as compared to the control vessel.  

In conclusion, SCCE showed a trend of enhancing the growth of Bifidobacterium and 

inhibiting the growth of pathogenic Clostridium histolyticum while SCC showed significant 

production of short chain fatty acids in batch culture fermentation with human faecal 

microbiota. The effect of SCCE on the growth of bifidobacteria might be due to the readily 

available free phenolic compounds and XOS for bacterial uptake and utilisation for growth as 

compared to the bound phenolic compounds in SCC. However, the fermentation of fiber 

present predominantly in SCC lead to the increase in beneficial SCFA including acetate, 

propionate, and butyrate. Therefore, fermentation of SCC led to a positive impact on the 

production of SCFA, which could have a systemic effect on the host. The result also suggests 

that a daily intake of 150mg of FA per day might not be sufficient for the growth of gut 

microbiota. This research presented a solution to the effective utilisation of agricultural waste, 

SCC, whether as a powder with considerable amount of fibre or extract with free phenolic 

compounds and xylooligosaccharides, where both can exert beneficial effect towards human 

health.  
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Figure 4.2: Acetate, propionate and butyrate concentrations (mM) obtained in pH controlled 

batch cultures at 0, 6, 12 and 24 h of fermentation from different substrates. 

 (NC= negative control; SCC= Sweet corn cob; SCCE: Sweet corn cob extract; FA: ferulic 

acid, pCA: p-coumaric acid; XOS: Xylooligosaccharide and FOS: Fructooligosaccharides). 

Error bars indicate SD (n = 3). Significant differences between substrates at the same time 

point are indicated with letters. * indicates significantly different compared to 0 h within the 

same substrate (P < 0.05).
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Abstract 

Sweet corn cob (SCC), a rich source of ferulic acid, is a by-product of sweet corn processing. 

The effect of baking on ferulic acid content, colour, texture and physical characteristics on 

muffin incorporated with SCC flour as a value added food ingredient was investigated using a 

model system. The freeze-dried SCC flour containing 6.02mg g-1 of ferulic acid was used to 

replace the rice flour at varying level of 10, 20, and 30%. The increase in the amount of SCC 

flour to 20% showed an increase in terms of the height of the muffin and number of bubbles, 

and decreases in the specific volume, as well as hardness of muffins. These effects were not 

observed in other flour combinations. The yellowness of the muffin crumb increases as SCC 

flour increases due to the presence of carotenoid compounds in SCC flour. In general, baking 

can increase the free ferulic acid content compounds. Incorporating SCC flour up to 20% into 

the formulation can improve the quality of gluten-free rice flour muffin.   
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5.1 Introduction 

Recently, there has been an increase in consumer demand towards value-added food 

incorporated with functional ingredients such as fibre and natural antioxidants. Incorporating 

by-products as a food ingredient does not just provide health benefits, but also offers alternative 

solutions for environmental concerns associated with disposal (Rupasinghe et al., 2009). Sweet 

corn cob (SCC), an under-utilised agricultural by-product of the corn processing industry, is 

high in dietary fibre, minerals and phytochemicals including ferulic acid (refer to Chapter 2). 

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phenolic compound present in many 

foods and offers beneficial effects against cardiovascular diseases, hypertension, inflammatory 

diseases, cancer, Alzheimer and diabetes (Zhao and Moghadasian, 2008). These health benefits 

can be achieved by consumption of either free or bound phenolics. Consumption of bound 

phenolics will contribute towards the chemopreventive activity against colon cancer (Acosta-

Estrada et al., 2014). In addition, free and soluble conjugated form are more rapidly absorbed 

in the small intestine and stomach, therefore it can be distributed throughout the body offering 

health benefits such as inhibition against oxidation of liposomes and LDL cholesterol .  

Muffins are very popular among the consumer as snack food due to their good taste and 

soft and spongy texture (Matos et al., 2014). Traditionally, wheat flour, oil, sugar, milk and 

egg are used in the recipe for muffin baking. However, those suffering from coeliac disease are 

unable to consume this type of product as they contain wheat flour. As a result, demand over 

gluten-free (GF) products has increased for people suffering from gluten intolerance and 

sensitivity, as well as for the consumer demands for wheat free products (Nachay, 2010). 

Generally, GF products are made from starches or flour with low dietary fibre content (Singh 

et al., 2016) and they are often of poor colour, crumbling crumb, low quality and exhibiting 

low volume (Matos Segura and Rosell, 2011). Rice is one of the most suitable cereals for the 

preparation of GF products due to its hypoallergenicity, low fat and sodium, high digestibility, 
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white colour and bland taste (Marcoa and Rosell, 2008). However, the use of rice flour in the 

preparation of muffin causes issues such as lower volume, poor texture, colour and crumb 

structure (Matos et al., 2014). Therefore, previous authors have tried to improve the quality of 

GF muffins by incorporating protein isolates (Shevkani et al., 2015), flour replacement 

(Herranz et al., 2016), xanthan gum and fibre (Singh et al., 2016). 

Rice contains very low level of ferulic acid and it ranged from 0.18 ± 0.05 to 5.26 ± 

0.14mg/100g (Hager et al., 2012, Zhou et al., 2004, Tian et al., 2004). In contrast, our previous 

study showed that SCC contained 306mg/100g of ferulic acid (Chapter 2), and thus, the 

incorporation of SCC flour into the formulations can be used to improve the ferulic acid content 

in rice flour muffin. However, there have been limited studies reporting the use of SCC flour 

in bakery products. Therefore, the present study was undertaken to produce ferulic acid-rich 

GF rice muffin incorporated with varying levels of SCC flour and to evaluate the 

physicochemical properties of these muffins. 

5.2 Materials and Method 

5.2.1 Materials  

The sweet corn used in the experiments was harvested in Senegal in December 2017 

and was provided by Barfoots of Botley Company Ltd (UK). The corn kernels were removed 

manually from the cobs and discarded. The SCC flour was prepared as described in Chapter 2 

(Section 2.2.2). 

5.2.2 Extraction and quantification of ferulic acid content in rice and SCC flour  

The extraction and quantification of free, esterified and insoluble-bound phenolic 

compound in rice and SCC flour was carried out according to Chapter 2 (Section 2.2.4, 2.2.5 

and 2.2.7). 
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5.2.3 Water holding capacity (WHC) and oil holding capacity (OHC) of rice and SCC flour  

The WHC and OHC of rice flour and SCC flour were determined using the method as 

described by Mateos-Aparicio et al. (2010). Briefly, 0.5g of sample was hydrated in 30mL of 

water (for WHC) or oil (for OHC) at room temperature for 18 hours. The samples were then 

centrifuged and the supernatants were decanted. The weight of the residue was recorded and 

the WHC and OHC were calculated as the amount of water or oil retained by the pellet (g of 

water or oil/ g of sample dry weight).    

5.2.4 Batter and muffin preparation 

The muffins were prepared according to the recipe by Shevkani et al. (2015) with slight 

modification. The control muffin was 100% rice flour and the new formulations contained 10, 

20, and 30% of SCC flour. 150g of flour, 90g of white granulated sugar, 5g of baking powder, 

75g of egg, 75g of whole milk and 75g of sunflower oil were mixed for 5 minutes in an electric 

mixer (Model A901, Kenwood Chef). 65g of batter was then dispensed into 7 muffin paper 

cups (65mm diameter). The muffins were arranged in a muffin baking tray and baked for 23 

minutes at 180°C in a rotary electric oven that had been preheated for 10 minutes. After baking, 

the muffins were left to cool to room temperature for an hour before packing them into 

polypropylene bags and stored at 20°C for 1 day, after which analysis were conducted. The 

muffins from each formulation were prepared in three replicates, and baked on three separate 

days. 

5.2.5 Ferulic acid content in batter and muffin 

The batter and muffin were frozen at -18°C and then freeze dried (Christ Gamma 2-16) until 

constant weight was achieved. The freeze dried samples were ground by pestle and mortar at 

room temperature for 10 minutes and stored in the freezer (-18°C) until analysis. The samples 
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were defatted by hexane and subjected to alkali hydrolysis (as described in Chapter 2, Sections 

2.2.4, 2.2.5 and 2.2.7) in order to determine the amount of ferulic acid.  

5.2.6 Physical characteristic of baked muffin  

5.2.6.1 Weight loss, height and volume of muffin 

The weight loss, height and volume of  muffin were measured according to the method 

as described by Matos et al. (2014). The weight loss upon baking was calculated by the 

difference of the weight of muffin before and after baking. Height was measured using a digital 

calliper from the highest point of the muffin to the bottom of the paper cup. The volume of 

muffin was determined by rapeseed displacement. The specific volume of the individual muffin 

was calculated by dividing the volume by weight.  

5.2.6.2 Air bubbles quantification 

The muffins were cut horizontally at the height of the muffin paper cup and a flatbed 

scanner (HP Scanjet G2710, Hewlette-Packard) was used to capture the images of the muffins. 

For the image analysis, the number and average bubble size were analysed using Image J 

software (Rodríguez-García et al., 2014). The images were cropped to 5cm x 5cm section 

(Figure 5.1) and the image was split into colour channels. Then, the contrast was enhanced 

and binarised after grayscale threshold. Bubble count and average bubble size within the crumb 

were calculated. The values were the mean of three replicates for each formulation.  

5.2.6.3 Colour measurements 

A colorimeter (Chroma meter CR400, Konica Minolta) was used to measure the crumb and 

crust colour parameters (L*, a*, b*) of the muffin. The muffins were cut horizontally at the 

height of the cup and colour of the crumb was measured. The crumb and crust colour was 

measured at several points (Figure 5.2) on the surface of the muffin.  Hue angle and chroma 
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values were calculated according to Ahn and Lee (2008) and recorded in Table 5.3.  Data from 

three muffins per formulations were averaged. 

5.2.6.4 Textural characteristic of the muffins 

The instrumental texture measurement of the muffins were carried out according to Matos et 

al. (2014). Texture profile analysis (TPA) was performed on crumb cubes (12.5 mm3) using a 

texture analyzer (TAXT2, Stable Micro System) equipped with a 5 kg load cell. A double 

compression test was performed with a 75 mm diameter flat-ended cylindrical probe (P/75) 

and compressed to 50% of the initial height at a speed of 1 mm/s with 5 seconds waiting time 

between the two cycles. The results of firmness, springiness, cohesiveness, chewiness and 

resilience were obtained. The mean of at least three replicates for each formulation baked on 

different days was recorded. 
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Figure 5.1: Photographs (A), scan images of transversal section (B), and image of bubble size distribution (C) of muffin baked with different 

levels of sweet corn cob flour. 
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5.2.7 Statistical analysis 

For each parameter measured, one way analysis of variance (ANOVA) was carried out 

using Minitab statistical software (State College, USA). Fisher test was used to assess the 

significant differences (p<0.05) among samples. 

 

Figure 5.2: Points at which colours of crust and crumb were taken. 

 

5.3 Results and Discussion 

5.3.1 Ferulic acid content of rice and SCC Flour 

The ferulic acid content in rice and SCC flour is presented in Table 5.1. The total 

amount of ferulic acid was higher in SCC flour (6.03 mg/g) as compared to rice flour (0.02 

mg/g). The ferulic acid content in the SCC flour used in this chapter are of different batch 

(harvested in different year) and showed higher content of ferulic acid compared to the SCC 

flour used in the previous chapters (Chapter 2,3, and 4). It has been reported previously that 

the phytochemicals in rice are more abundant in the bran layer and only a small amount is 

present in the milled rice (Shen et al., 2009). In this research, ferulic acid was present in rice 
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flour as insoluble-bound form only. Similarly, Qiu et al. (2010) reported that insoluble ferulic 

acid is the most abundant phenolic acid present in rice. SCC flour contains significantly higher 

insoluble bound ferulic acid (5.82 ± 0.41mg/g DW) than rice flour (0.02mg/g). In addition, 

SCC flour also contains free and esterified ferulic acid.   

5.3.2 WHC and OHC of rice and SCC Flour 

WHC and OHC measures the interaction of water or oil with proteins and this is 

important for the flavour and texture in food (Yu et al., 2007). SCC flour had significantly 

higher values of WHC and OHC (7.73g of water and 4.51g of oil/g sample, respectively) than 

rice flour (1.19g of water and 0.81g of oil/g of sample, respectively) (Table 5.1). The WHC 

and OHC of rice flour reported in this study was slightly lower than the value reported by Joshi 

et al. (2015) (1.54g water/g of sample and 1.10g oil/g of defatted rice flour). The WHC and 

OHC of SCC was higher as compared to other gluten free flour such as sorghum (1.31g water/g 

flour; 0.90g oil/g flour) (Elkhalifa and Bernhardt, 2010), chickpea (2.54g water/g flour; 1.19g 

oil/g flour), soybean (3.53g of water/g flour; 1.61g oil/g flour), and almond (2.20g water/g 

sample; 2.32g oil/g flour) flour (Joshi et al., 2015).  

The higher WHC and OHC of SCC might be due to higher content of dietary fibre in 

SCC as compared to rice flour. Our studies showed that more than 60% of SCC was composed 

of insoluble dietary fibre (Chapter 2). On the other hand, Fernando et al. (2012) reported that 

polished white rice flour contained 1.27% and 0.58% of insoluble and soluble dietary fiber. 

Dietary fibre can affect some functional properties of food including increase in OHC, WHC, 

formation of gel and emulsification (Elleuch et al., 2011). Sudha et al. (2007) reported higher 

WHC in apple pomace (8.39g water/g solid) as compared to wheat flour (1.01g water/g solid) 

due to the presence of fibre. In addition, Esposito et al. (2005) reported that WHC increases 

with the increasing amount of fibre in durum wheat debranned by-products. The high WHC 

and OHC of SCC flour suggests that it can help to avoid syneresis of the formulated product 
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and can be used to stabilise foods with a high percentage of emulsion and fat (Elleuch et al., 

2011). SCC flour with high WHC could have possible application in products such as baked 

goods that require viscosity development, hydration and conservation of freshness (Alfredo et 

al., 2009). Furthermore, the high OHC of SCC flour can have potential to improve the 

palatability and flavour retention of a food product (El Nasri and El Tinay, 2007), and can be 

incorporated in many food applications including ground meat formulation, bakery products 

and meat substitutes (Zielińska et al., 2018). 
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Table 5.1: Ferulic acid content, water holding capacity (WHC) and oil holding capacity (OHC) of rice and sweet corn cob (SCC) flour. 

 

Sample 

Ferulic acid fraction WHC 

(g of water/g DW) 

OHC 

(g of oil/g DW)  Free 

(mg/g) 

Esterified 

(mg/g) 

Insoluble-bound 

(mg/g) 

Rice Flour ND ND 0.02 ± 0.01b 1.19 ± 0.07b 0.81 ± 0.02b 

SCC Flour  0.01 ± 0.00a 0.20 ± 0.01a 5.82 ± 0.41a 7.73 ± 0.19a 4.51 ± 0.04a 

Means ± standard deviation (n=3) with different letters within a column indicate significant differences at p<0.05. 

 

Table 5.2: Physical characteristics of muffin prepared with different level of sweet corn cob flour. 

SCC Flour 

 (% by weight) 

Height 

(mm) 

Weight loss 

(g) 

Moisture 

Content (%) 

Specific volume 

(mL/g) 

Bubble count Average bubble 

size 

(cm2) 

0 37.11 ± 0.74c 4.9 ± 1.12a 20.40 ± 0.89a 2.49 ± 0.04b 464 ± 34d 0.007a 

10 43.07 ± 1.12b 5.7 ± 0.01a 22.03 ± 2.48a 1.44 ± 0.01c 738 ± 55a 0.006a 

20 43.44 ± 0.79b 4.9 ± 0.20a 21.87 ± 0.88a 1.49 ± 0.05c 656 ± 45b 0.006a 

30  45.66 ± 0.86a 5.1 ± 0.01a 21.85 ± 1.45a 2.70 ± 0.06a 513 ± 35c 0.003b 

Means ± standard deviation (n=3). Different letters within a column indicate significant differences at p<0.05.
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5.3.3 Physical characteristic of muffins  

5.3.3.1 Weight loss, height and volume of muffin 

There was no significant difference between any of the samples in terms of their weight 

loss and moisture content after baking. In general, a similar behaviour was found between both 

samples incorporated with 10 and 20% of SCC flour (Table 5.2). The muffin with 30% SCC 

flour showed the highest specific volume (2.70±0.06mL/g) while a significant reduction 

(p<0.05) in the specific volume in muffin incorporated with 10%  (1.44 ± 0.01mL/g) and 20% 

(1.49±0.05mL/g) of SCC flour as compared to rice flour muffin (2.49±0.04mL/g) was observed. 

The low specific volume of rice flour, 10% SCC flour muffin and 20% SCC flour muffin could 

be due to the lower fiber content, preventing the holding of water and entrapment of air bubbles 

and thus resulting in insufficient specific volume (Demirkesen et al., 2010). Sabanis et al. (2009) 

reported that the incorporation of maize fibre into gluten free breads significantly increased the  

loaf volume as compared to non-fibre gluten free bread due to the increase in the dough 

viscosity associated with fibre contents.  

Muffin height was significantly (p<0.05) affected by the level of SCC flour 

incorporated. The largest effect on height was found with muffin incorporated with 30% of 

SCC flour. The increase of height as amount of SCC flour increases might be due to the increase 

of fibre present in the muffin, contributed by the SCC flour. Fibre has a great capacity to form 

gels, increase viscosity and act as emulsifiers (Elleuch et al., 2011). This can then strengthen 

the network of muffin during baking, preventing them from collapse. Gularte et al. (2012) 

reported that during thermal treatment, oat fibres were able to give some strength to the network 

to counteract the collapse of cake. Another possible reason is that the components in SCC flour 

(e.g. fibre, protein and minerals) may increase the gelatinisation temperature of starch by 

reduction of the water available for starch gelatinization (Majzoobi et al., 2016) and thus 

promote expansion of muffin. The same author reported that gluten free cake baked with rice 



Chapter 5 

 

99 

 

and corn flour have the lowest consistency and viscosity in the batter, causing the collapse of 

the cake due to the escape of air bubble.  

5.3.3.2 Muffin air bubbles 

 The spongy texture of muffin is characterised by its high volume and porous structure 

contributed by tiny air bubbles (Martínez-Cervera et al., 2012). Table 5.2 shows the bubble 

count and average bubble size measured using Image J analysis from the binarized images of 

the different muffin crumb. Our results showed that muffins with 10% SCC flour incorporated 

showed the highest number of air bubbles, followed by muffin with 20%, 30% and 0% of SCC 

flour incorporation. Muffin with 30% SCC flour incorporation showed significantly smallest 

bubble size as compared to the rest of the muffin.  

The inclusion of baking powder in the recipe generates carbon dioxide and leads to the 

growth of air bubbles and thus helps in leavening of the muffin during baking. When batter 

consistency and viscosity are too low, the air bubbles will rise to the surface due to buoyancy 

and are lost during baking. However, when the batter has a very high consistency and viscosity, 

this can restrict the expansion of bubbles during baking (Gomez et al., 2010). The increase in 

fibre content as SCC flour increases can increase the batter consistency and viscosity, and thus 

retain the bubbles during baking. However, the further increase in consistency and viscosity of 

the batter incorporated with 30% SCC flour restricts the expansion of bubbles, thus resulting 

in smaller bubble size. 

5.3.3.3 Muffin colour 

Incorporation of SCC flour in the development of high ferulic acid content muffin also 

had an impact on the colour of the crust and crumb of the baked muffins. Table 5.3 shows the 

colour value (L, a, b), hue angle (h°) and chroma (C) of the crust colour of muffins. For all the 

muffins, the crust colour was found to be darker (lower L value) than the crumb colour due to 



Chapter 5 

 

100 

 

the occurrence of Maillard reaction during baking. Similar effects were observed by Martínez-

Cervera et al. (2012) when baking muffins made of wheat flour. During baking, reactions 

between proteins and reducing sugars as a result of the Maillard reaction are important for the 

development of the brown colour as well as flavour and texture (Michalska et al., 2008). The 

increase in temperature during baking causes the water content of the crust layer to reduce 

rapidly, causing the degradation of sugar and thus favouring the occurrence of Maillard 

reaction. However, water losses in the interior of the muffin (crumb) are lower causing slower 

progress of Maillard reaction, therefore, crumb is only slightly coloured (González-Mateo et 

al., 2009). 

5.3.3.3.1 Crust colour 

 Muffin incorporated with 20% and 30% SCC flour showed significantly lower redness 

(a value) on the crust colour as compared to rice flour and 10% SCC flour muffin. Lightness 

and yellowness (L and b values) of the crust colour increased with the increase of SCC flour in 

the formulation. The increase in b values of muffin prepared with the increased amount of SCC 

flour may be attributed to the natural yellowish colour of SCC flour due to its carotenoid 

content. In relation to hue angle (h°) and chroma (C), slight variation was found between 

samples. The yellow-orange hue of these muffins were further confirmed by having positive h° 

values (71.08 - 81.63°) in all muffins, with an increase in h° values as SCC flour increases. Our 

previous findings (Chapter 2) showed that SCC flour contains β-carotene (177.29µg/g), lutein 

(3.81µg/g) and zeaxanthin (8.47µg/g). This is in agreement with Nasar-Abbas and Jayasena 

(2012) when baking muffin incorporated with lupin flour which contained natural yellow 

pigment. They observed a decrease in a value and an increase in b value as percentage of lupin 

flour increased in the muffin formulation. The increase in lightness (L) might be due to the 

decrease in protein content as the SCC flour increases. The protein content in rice and SCC 

flour is 8.75 (Ju et al., 2001)  and 6.7% (Chapter 2), respectively. The decrease in protein 
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content as the amount of SCC flour increases reduced the browning reaction in the muffins by 

Maillard reaction. Hence, the muffin became lighter in colour and showed high L values. In 

addition, increases in chroma as the amount of SCC flour increased revealed the higher 

intensity of the yellow component contributed by the carotenoid content in SCC flour.  

5.3.3.3.2 Crumb colour 

Results from the crumb colour parameters are presented in Table 5.3. A slight decrease 

in the lightness was observed in the muffins with SCC flour (significant decrease only in muffin 

with 10% SCC flour) probably due to the reduction in the proportion of rice flour in the 

formulation, resulting in a loss of the characteristic white colour of rice flour. As the percentage 

of SCC flour increased, greenness (-a) and yellowness (b) increased. The crumb colour of 

muffins showed positive h° values of 91.73 to 99.00° further confirm their yellow-orange hue. 

Similar to crust colour, this could be due to the fact that SCC flour, which contains naturally 

occurring yellow pigments due to its carotenoid content (Chapter 2), impart yellowness to the 

product when mixed with rice flour. Similarly, the increase in chroma was observed with the 

increase of SCC flour in the formulation due to the increase in the intensity of yellow colour 

(b value), contributed by the pigmented carotenoid compounds in SCC flour. 
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Table 5.3: Crust and crumb colour parameters of muffin incorporated with sweet corn cob flour. 

Crust Colour 

SCC Flour (% by weight) L a b C* h (°) 

0 53.44 ± 4.82b 12.60 ± 2.10a 36.96 ± 3.53b 39.10 ± 3.43cb 71.08 ± 3.30ab 

10 53.35 ± 1.75b 12.36 ± 1.86a 39.42 ± 3.93ab 41.37 ± 3.69ab 72.42 ± 3.21b 

20 63.04 ± 1.93a 6.73 ± 1.56c 40.68 ± 1.69ab 41.26 ± 1.79ab 80.63 ± 2.05a 

30 61.77 ± 2.58a 9.22 ± 1.95b 42.73 ± 1.56a 43.74 ± 1.74a 77.85 ± 2.34a 

Crumb Colour 

0 73.52 ± 3.55a -2.92 ± 0.71b 18.35 ± 1.85c 18.58 ± 1.90c 99.00 ± 1.69a 

10 69.77 ± 2.94b -2.35 ± 0.37b 28.09 ± 0.79b 28.19 ± 0.81b 94.78 ± 0.67b 

20 72.43 ± 1.45ab -1.88 ± 0.42ab 31.16 ± 1.91b 31.21 ± 1.92b 93.45 ±0.67bc 

30 72.65 ± 1.67ab -1.10 ± 0.77a 36.01 ±1.93a 36.03 ± 1.94a 91.73 ± 1.18c 

Means ± standard deviation (n=3). Different letters within a column indicate significant differences at p<0.05. Also, L value is a measure of the lightness 

(0=black; 100= white). a measures redness (positive value) or greenness (negative value) while b measures yellowness (positive value) or blueness (negative 

value) 
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5.3.3.4 Muffin texture 

The effect of incorporation of SCC flour on the texture of the muffins is shown in Table 

5.4. The muffins incorporated with 10 and 20% of SCC flour showed significantly lower crumb 

hardness as compared to control muffin with 100% rice flour. Products made of rice flour are 

known to become hard and decline in taste and texture over time (Wu et al., 2010). This is due 

to the starch retrogradation in rice flour, where the re-association of gelatinized starch forming 

crystallites upon cooling.  Kadan et al. (2001) also reported that rice bread was more prone to 

retrogradation and have harder texture than whole wheat bread. 

 Muffin prepared with 10% SCC flour showed the lowest crumb hardness of 237.04g, 

which increased to a value of 325.00g and 424.05g, respectively with the incorporation of 20 

and 30% of SCC flour. One possible explanation could be that the high water binding capacity 

of SCC flour can avoid water loss and possibly delay the starch retrogradation by forming 

hydrogen bonds between fibre and starch (Elleuch et al., 2011). These authors reported a softer 

crumb when fibre was added to bread when compared to the control bread. In this study, the 

extent of the effect depended on the level of inclusions of SCC flour. Further incorporation of 

30% of SCC flour into the muffin formulation significantly increased the hardness. The 

increase in hardness might be due to the large amount of insoluble dietary fibre in the muffins 

contributed by SCC flour which increased the force needed for compression. Nasar-Abbas and 

Jayasena (2012) reported that incorporation of lupin flour causes hardness, due to the higher 

dietary fibre content of lupin flour. Similarly, Martínez-Cervera et al. (2011) reported a 

decrease in hardness (N) in wheat flour muffin incorporated with increasing cocoa fibre (11.5 

and 23.0g/100g flour) as compared to control muffin. However, a further increase of cocoa 

fiber (34.5g/100g flour) increases the hardness of the muffins. In addition, Gómez et al. (2010) 

reported the hardness of wheat based cakes increases when incorporated with high levels of 

insoluble fibers (20%). 
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Table 5.4: Texture parameters of muffin incorporated with different level of sweet corn cob flour. 

SCC Flour (% by weight) Hardness (g) Springiness Cohesiveness Chewiness (g) Resilience 

0 376.00 ± 64.11b 0.73 ± 0.05a 0.30 ± 0.03a 82.47 ± 22.76ab 0.13 ± 0.02ab 

10 237.04 ± 48.95d 0.76 ± 0.05a 0.37 ± 0.03a 66.54 ± 12.37b 0.15 ± 0.01a 

20 325.00 ± 36.37c 0.68 ± 0.03b 0.34 ± 0.04a 75.57 ± 13.51ab 0.13 ± 0.02ab 

 30 424.05 ± 53.06a 0.63 ± 0.06c 0.34 ± 0.06a 93.93 ± 28.73a 0.12 ± 0.02b 

Means ± standard deviation (n=3). Different letters within a column indicate significant differences at p<0.05. 
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 Regarding the springiness and resilience, both parameters decreased as the level of 

SCC flour incorporation was increased. The decrease in resilience value showed that the muffin 

is denser with lower numbers of bubbles as SCC flour increases (Martínez-Cervera et al., 2012), 

thus a longer time is needed for the structure of the muffins to recover after compression. This 

is in line with the results reported in Section 5.3.3.2 where muffin with 30% SCC flour showed 

lowest number of bubbles, as compared to muffin with 10 and 20% SCC flour. Similarly, 

Gómez et al. (2010) reported reduction in resilience as fiber increases in gluten-free cakes. 

Muffins incorporated with 10% SCC flour showed an increase in springiness and cohesiveness 

(0.76 and 0.37, respectively), as compared to muffin prepared with rice flour only (0.73 and 

0.30, respectively). With the percentage of SCC flour increase from 10 to 30%, the chewiness 

increased from 66.54 to 93.93g. Similarly, Grigelmo-Miguel et al. (2001) reported low level 

(2%) of peach dietary fibre showed similar textural characteristics to the control and a further 

increase of peach dietary fiber (>3%) increase the chewiness of muffins. In addition, Gómez et 

al. (2010) reported that an increase in fibre causes an increase in chewiness, springiness and 

cohesiveness in fiber-enriched layer cakes.  

The results indicated that less crumbly and spongier GF muffins could be prepared by 

incorporating SCC flour at level of ≤ 20%. As most of the GF baked products in the market 

have a crumbling texture (Shevkani et al., 2015), our results showed that the textural profile of 

GF rice muffin can be improved by incorporating SCC flour.  

5.3.4 Effect of baking on ferulic acid content in the muffin 

The effect of baking on free, esterified and bound ferulic acid in muffin incorporated 

with different levels of SCC flour is presented in Figure 5.3. Baking significantly increased 

(p<0.05) the level of free ferulic acid in all muffin recipes except for the control muffin baked 

with rice flour. After baking, 0.29, 0.32 and 0.40mg/muffin of free ferulic acid was detected in 

muffins incorporated with 10, 20 and 30% of SCC flour. The significant increase in free ferulic 
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acid could be due to the release of bound ferulic acid, which may be responsible for the 

reduction in bound ferulic acid. This effect was similar to that observed by Abdel-Aal and 

Rabalski (2013), where free ferulic acid increased (70.5%) in wholegrain muffin baked with a 

mixture of einkorn and corn flour. Previously, Cheng et al. (2006) had reported that the 

degradation of conjugated polyphenolic compounds due to heat stress caused an increase in 

free phenolic acids in wheat. 

A decrease of esterified ferulic acid was found in all muffins with the highest decrease 

in the muffin incorporated with 10% SCC flour (-37%), followed by muffin with 20% SCC 

flour (-29%), muffin with 30% SCC flour (-25%) and control muffin (-6%). Bound ferulic acid 

showed a different pattern depending on the muffin formulation. Significant increase in bound 

ferulic acid was found in control muffin. On the other hand, muffin incorporated with 30% 

SCC flour showed a significant decrease in esterified (from 2.20 to 1.64mg/muffin) and bound 

(from 35.68 to 21.53mg/muffin) ferulic acid before and after baking were observed. This 

suggest that the discrepancy might be due to the difference in the nature and source of flour 

used. Holtekjølen et al. (2008) reported an increased in bound phenolic acids in bread 

containing barley flour after baking. This might be due to the release of bound phenolics from 

the matrix during baking or thermal processing (Duodu, 2011).  In contrast, Abdel-Aal and 

Rabalski (2013) reported that baking resulted in a slight decrease in bound phenolic acids in 

wheat muffins. Phenolics are very reactive and unstable (Cheynier, 2005), and degradation of 

phenolics will occur due to oxidation and heat treatment during the baking process. Cinnamic 

acids such as ferulic acid can decarboxylate under heat treatment to form ring-substituted 

styrenes (Maga and Katz, 1978). During baking, various mechanism such as thermal 

degradation, polymerization and oxidation of phenolics, depolymerisation of high molecular 

weight phenolics such as condensed tannins, products of Maillard reaction and release of bound 

phenolics from food matrix can influence the change in the phenolic acid profile (Duodu, 2011) 
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of a given food.  In this study, the bound ferulic acid in SCC flour might be more sensitive to 

heat treatment as compared to the ferulic acid in rice flour leading to a decrease in bound 

phenolics after baking. In this study, the highest amount of total ferulic acid was observed in 

muffin incorporated with 30% (23.58mg/muffin) and 20% of SCC flour (20.15mg/muffin), 

followed by muffin with 10% SCC flour (10.08mg/muffin) and control muffin with 0% SCC 

flour (1.76mg/muffin). A significant decrease in total ferulic acid was found in muffins 

incorporated with 30% SCC flour before and after baking. The decrease in total ferulic acid 

content is due to the significant decrease in bound phenolics after baking. Although muffin 

incorporated with 20% and 30% of SCC flour showed a decrease in the total ferulic acid content 

after baking, the level of ferulic acid still remained high (20.15 and 23.58mg FA/muffin, 

respectively) as compared to control muffin (1.76mg FA/muffin).  

The increasing replacement of rice flour with SCC flour in the making of muffin 

increased the total ferulic acid content and impacted the texture profile of the muffin. Results 

showed that substituting rice flour with SCC flour at a level of 10 to 20% produced muffins 

with better textural properties than control muffin with 100% rice flour. Moreover, the 

nutritional value of the GF rice muffin was improved since the enrichment with SCC flour 

results in a progressively higher fibre and ferulic acid content. This study showed that GF rice 

muffins with SCC flour up to 20% can improve height, colour and texture as well as increasing 

the amount of total ferulic acid in the muffin. The use of SCC, a by-product from the corn 

processing industry can offer alternative solutions towards environmental concerns regarding 

disposal. The results indicate that SCC could be considered as an alternative GF flour or value-

added food ingredient for bakery products, or functional foods and nutraceuticals.
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Figure 5.3: Changes in ferulic acid content (free, esterified, bound and total) in batter and muffin incorporated with different levels of sweet 

corn cob flour (10, 20, and 30%). 

Results are expressed as mg/muffin (n=3). Different letters within the same fraction of batter and muffin indicate significant difference at p<0.05. 

* showed significant difference in total ferulic acid content in muffin prepared with different formulations.
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Chapter 6  

Concluding remark and future work 

6.1 General Discussion 

 

Sweet corn cob (SCC) generated from the corn milling industry has limited use in the 

food industry.  Therefore, the main goals of the present study were to investigate the bioactive 

compounds present in sweet corn cob and secondly, to explore its potential in the food industry 

by using it as a flour for baking.  

Compositional analysis of SCC showed that cellulose was present at the highest amount 

(40.40%) followed by hemicellulose (19.12%), lipid (7.18%), protein (6.70%), starch (3.21%) 

and ash (3.04%). In addition, phosphorus (10.12mg g-1), potassium (9.62mg g-1) and 

magnesium (1.67mg g-1) also present in SCC, followed by manganese (0.08 mg g-1), lead 

(0.07mg g-1), zinc (0.04mg g-1), iron (0.01mg g-1) and copper (0.01mg g-1). Non-essential 

amino acids are present at a higher amount, with the highest in serine (1.36mg g-1) and 

glutamine (1.16mg g-1), as compared to the essential amino acids. This showed that SCC has 

the potential to be a source of insoluble dietary fibre, minerals and non-essential amino acids. 

Then, phenolic compounds in SCC were fractionated via alkali hydrolysis into free, esterified 

and insoluble-bound fractions. The insoluble bound fraction showed the highest in total 

phenolic content and antioxidant assays (TEAC, DPPPH and FRAP). The HPLC analysis 

showed that the insoluble-bound fraction contained the highest amount of ferulic and p-

coumaric acid, as compared to free and esterified phenolics. Pearson correlation analysis found 

a high correlation between total phenolic content and antioxidant assay, indicating that phenolic 

content is responsible for the antioxidative effect of SCC. Furthermore, ferulic and p-coumaric 

acid showed a highly positive correlation with the antioxidant assays and total phenolic content, 

which further confirmed its antioxidant effect. The carotenoid content in SCC was extracted 
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via SFE and compared against conventional solvent extraction. Results showed that SFE was 

more effective in the extraction of carotenoid, and β-carotene (177.29 mg kg-1) was found at 

the highest level, followed by zeaxanthin (8.47mg kg-1) and lutein (3.81mg kg-1). For centuries, 

carotenoids have been used as natural food colorants and can be extracted from rich natural 

sources such as saffron, annatto, tomato and marigold (Rodriguez-Amaya, 2018). The results 

showed that SCC can be a potential source of ferulic and p-coumaric acid, as well as carotenoid 

(β-carotene, zeaxanthin and lutein).  

Over the years, there has been an increase attention towards the use of a greener and 

more sustainable approach in the release of the bound phenolics due to the environmental 

impact of using large amount of solvents.  In Chapter 2, alkali hydrolysis was used to hydrolyse 

SCC, liberating its bound phenolic content. The amount of alkali-hydrolysed phenolic 

compounds obtained was used to compare the effectiveness of enzyme hydrolysis of SCC 

(Chapter 3). In this research, ferulic acid esterase (FAE) was used to break the linkage between 

ferulic acid and the arabinoxylan backbone, releasing the bound ferulic acid. However, the 

complex nature of the arabinoxylan structure of SCC hindered the action of FAE and hence, 

endoxylanase was used in combination with FAE to release the ferulic acid. Xylanase (XY) 

breaks the glycosidic linkages of the arabinoxylan to ease the action of FAE. Optimisation of 

pH, temperature, enzyme concentration is crucial to maximise the yield of ferulic acid. 

Response surface methodology was used to optimize these parameters and to study the 

interactions between the parameters. Under optimised conditions, only half the amount of 

ferulic acid (1.62mg g-1) was released, as compared to alkali hydrolysis (3.06mg g-1). 

Enzymatic hydrolysis of SCC using the combination of FAE and XY successfully released the 

bound ferulic acid in SCC, however, it is not as effective as alkali hydrolysis. 

The biological activity of dietary polyphenol depends on their bioavailability, where it 

is modulated by gut microbiota. Most of the dietary phenolics were poorly absorbed in the 
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small intestine, and when they reached the large intestine, they were metabolized extensively 

by the gut microbiota. SCC and SCC extract (extracted enzymatically) were subjected to batch 

culture fermentation to examine their effect on the ecology of the gut microbiota and 

production of beneficial short chain fatty acids. The composition of SCC was reported 

previously and is comprised mainly of insoluble dietary fibre and bound phenolic compounds. 

On the other hand, SCC extract contains free phenolic compounds (including ferulic and p-

coumaric acid) and xylooligosaccharide (xylobiose and xylotriose). The bacterial populations 

were enumerated by fluorescence in-situ hydridization (FISH). All results in batch culture 

fermentation were shown to be not statistically significant. However, a trend in increasing 

bifidobacteria and a decrease in pathogenic Clostridium spp. was found in vessels containing 

SCC extract. This showed the possible bifidigenic effect of SCC extract. On the other hand, 

gas chromatography analysis of short chain fatty acid in SCC showed a significant increase in 

production of acetate, propionate and butyrate, possibly due to the content of dietary fibre.  

Research on the application of SCC in the food industry is limited. SCC flour was 

incorporated into the formulation of rice flour muffin to examine its effect on the quality and 

texture of muffins. The incorporation of SCC flour (≤20%) produces muffin with increased 

height and number of bubbles, and a decrease in specific volume and hardness as compared to 

the controlled muffin baked with 100% rice flour. The higher water and oil holding capacity 

of SCC due to the higher content of dietary fibre as compared to rice flour increases the 

viscosity of the batter and thus, increased the number of bubbles and decreased the firmness of 

the muffins. In addition, the carotenoid content of SCC flour gives the characteristic yellowness 

in the muffin crust and crumb. Baking results in an increase in the amount of free ferulic acid 

in the baked muffin. The effect of baking on bound ferulic depends on the nature of the flour, 

where increased bound ferulic acid was observed in the control muffin baked with rice flour. 

On the other hand, muffin incorporated with 30% of SCC flour showed a decreased amount of 



Chapter 6 

 

112 

 

bound ferulic acid after baking. This might be due to the different heat sensitivity of the ferulic 

acid in rice and SCC flour. Although decreases in bound ferulic acid were observed in muffin 

incorporated with SCC flour, the muffins (20 and 30% of SCC flour) still contained a higher 

amount of total ferulic acid after baking, as compared to the control muffin.  

Based on the results of this research, SCC contained considerable amounts of bioactive 

compounds such as carotenoid and phenolic compounds. These compounds can be extracted 

for further application as natural antioxidants or colorants. Furthermore, SCC can also be used 

as a source of insoluble dietary fibre and minerals including potassium, phosphorus and 

magnesium. The extraction of carotenoids via supercritical fluid extraction and bound 

phenolics via enzymatic hydrolysis provides an alternative towards green extraction 

technology. Besides extraction of the bioactive compounds, the SCC can also be incorporated 

into the baking of muffin to improve the texture, quality and nutrition of rice flour muffin. This 

research provides an insight on the valorisation of SCC into functional food and thus, reducing 

the environmental impact associated with the disposal of this lignocellulosic waste.  

6.2 Contribution to knowledge 

Whilst there is abundant literature regarding the use of SCC as biomasses, there have been 

limited studies exploring the application of SCC as a functional food.  The results from this 

research provide useful information to the community, food scientists and agricultural waste 

valorisation industries, which can be used to further develop SCC as a functional food. The 

contribution to the scientific knowledge are summarised as follows:  

(i) The compositional analysis of SCC including phenolic and carotenoid content was 

carried out. 

(ii) The extraction efficiency of bound ferulic acid from SCC using the enzymes ferulic 

esterase and xylanase was investigated and compared with alkali hydrolysis. 
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(iii) The effect of free and bound ferulic acid, as well as fibre of SCC on the ecology of 

gut microbiota was carried out. 

(iv) The effect on texture, quality and ferulic acid content of gluten-free rice flour 

muffin incorporated with SCC flour was studied and compared with those made 

with rice flour. 

6.3 Limitation and future work  

During this research, there were several limitations needed to be addressed. Although there 

were several interesting findings being discovered, however not all were fully explored due to 

the limited time frame and scope of the study. Further investigations can be explored to fill the 

gap of knowledge and provide extra information regarding the valorisation of SCC.   

 Due to the large amount of SCC being used in this study, the SCC used in 

Chapter 4 was obtained from a different batch of SCC as compared to the rest 

of the chapters. Although both batches were harvested in the same country, 

Senegal, the second batch (harvested in December 2017) showed double the 

amount of total ferulic acid as compared to the first batch (harvested in 

December 2015). The phenolic composition has been reported to depend on 

different factors such as climatic conditions, variety, fruit ripeness, and storage 

conditions (Škevin et al., 2003). Therefore, further investigation is needed to 

fully understand the effect of these conditions on the accumulation of ferulic 

acid in SCC.   

 The combination of enzyme ferulic acid esterase and xylanase extracted only 

half the amount of ferulic acid as compared to alkali hydrolysis. This might be 

due to the complex structure of SCC hindering the action of these enzymes to 

release the bound ferulic acid. Novel technology such as pulsed electric field or 
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ultrasonic can be used prior/in conjunction with enzymatic hydrolysis to 

increase the enzyme accessibility and thus increase the yield of ferulic acid. 

 Large variation between the gut microbiota ecology among the donors caused 

no significant differences among the results. Therefore, an increase in the 

number of replicates might help to improve the results. Furthermore, the amount 

of ferulic acid used in Chapter 4 for batch culture fermentation was based on 

the daily intake of ferulic acid (150mg), however, there was no significant 

difference among the substrates being investigated. Hence, the minimum 

amount of ferulic acid required to increase the amount of beneficial gut 

microbiota can be further investigated.  

 Due to time constraints, the antioxidant activity of muffins with SCC flour was 

not evaluated. Therefore, it would be of interest to investigate the effect of heat 

treatment on antioxidant activity of muffin incorporated with SCC flour. The 

shelf life study of these muffin incorporated with SCC flour can be further 

investigated to evaluate the effectiveness of the antioxidative effect of SCC 

flour in shelf life extension. Further consumer research studies would be of great 

importance in order to truly understand the consumer perceptions and to 

evaluate the consumer’s acceptability of SCC flour in gluten free rice muffin.  
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Appendix I 

 

 

Figure A1: Yield of ferulic acid (mg/g) after enzymatic hydrolysis of sweet corn cob by 

ferulic acid esterase at different concentration (U/mL). 

Significant differences between substrates at the same time point are indicated with letters (p 

< 0.05). 

 

Figure A2: Yield of ferulic acid (mg/g) after enzymatic hydrolysis of sweet corn cob by 

combination of ferulic acid esterase and xylanase at different concentration (U/mL). 

Significant differences between substrates at the same time point are indicated with letters (P 

< 0.05). 
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Appendix II 

 

 

Figure A3: Total bacteria population analysed by Flow-FISH in pH controlled batch cultures 

containing different substrates. 

 

Figure A4: Lactobacillus/Enterococcus population analysed by Flow-FISH in pH controlled 

batch cultures containing different substrates. 

(NC= negative control; SCC= Sweet corn cob; SCCE: Sweet corn cob extract; FA: ferulic acid, 

pCA: p-coumaric acid; XOS: Xylooligosaccharide and FOS: Fructooligosaccharides). Error 

bars indicate SD (n = 3).  Significant differences between substrates at the same time point are 

indicated with letters (P < 0.05). * indicates significantly different compared to 0 h within the 

same substrate (P < 0.05). 




