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Abstract	

 

In	the	online	world,	especially	the	e-commerce	websites,	the	interactions	among	various	users	and	
products	 can	 be	 naturally	 modelled	 and	 studied	 as	 complex	 networks.	 The	 network-based	
similarities,	also	known	as	the	association	rules,	have	thus	found	wide	applications	in	examining	
the	co-accessing	patterns	among	products	and	providing	recommendations	for	users	accordingly.	
Focusing	 on	 two	 major	 forms	 of	 online	 recommendations,	 including	 personalised	
recommendations	which	are	made	 for	 specific	users,	 and	 recommendation	networks	which	are	
hyperlinks	connecting	similar	products	as	a	networked	system,	this	thesis	explores	the	application	
of	 network-based	 similarity	measures	 in	 recommendations,	 and	 examines	 the	 performances	 of	
them.		

For	the	personalised	recommendation,	the	recommendation	list	for	a	specific	user	is	shown	to	be	
changing	vastly	when	the	system	evolves,	due	to	the	unstable	quantification	of	object	similarities,	
which	 is	 defined	 as	 the	 recommendation	 stability	 problem.	 To	 improve	 the	 recommendation	
stability	is	thus	crucial	for	the	user	experience	enhancement	and	the	better	understanding	of	user	
interests.	By	ranking	the	similarities	in	terms	of	stability	and	considering	only	the	most	stable	ones,	
this	thesis	presents	a	top-n-stability	method	based	on	the	Heat	Conduction	algorithm	for	tackle	the	
stability	problem	as	well	as	guarantee	the	accuracy	and	diversity	of	recommendations.	Experiments	
on	 four	benchmark	datasets	 indicate	 that	 the	proposed	algorithm	can	 significantly	 improve	 the	
recommendation	stability	and	accuracy	simultaneously	and	still	retain	the	high-diversity	nature	of	
the	Heat	Conduction	algorithm.	Furthermore,	we	show	that	the	dilemma	among	stability,	accuracy	
and	 diversity	 is	 caused	 by	 the	 popularity	 bias	 of	 network-based	 similarity	 measures,	 that	 the	
popular	objects	tend	to	have	more	common	neighbours	with	others	and	thus	are	considered	more	
similar	 to	 others.	 Such	 popularity	 bias	 of	 similarity	 quantification	 will	 result	 in	 the	 biased	
recommendations,	with	 either	 poor	 accuracy	 or	 poor	 diversity.	 Based	 on	 the	 bipartite	 network	
modelling	of	the	user-object	interactions,	this	thesis	calculates	the	expected	number	of	common	
neighbours	 of	 two	 objects	 with	 given	 popularities	 in	 random	 networks.	 A	 Balanced	 Common	
Neighbour	similarity	measure	is	accordingly	developed	by	removing	the	random-driven	common	
neighbours	 from	 the	 total	 number.	Recommendation	experiments	 in	 three	data	 sets	 show	 that	
balancing	the	popularity	bias	in	a	certain	degree	can	significantly	improve	the	recommendations’	
accuracy	and	diversity	simultaneously.	

Objects	such	as	products,	news,	articles	 in	most	online	systems	are	connected	 to	similar	others	
through	hyperlinks	as	recommendations	for	users.	Recommendation	networks	of	objects	are	thus	
resulted	enabling	users	to	explore	the	massive	relevant	online	information	by	surfing	from	one	to	
another.	While	it	connects	overwhelming	online	objects	as	networks	and	seems	to	be	a	good	way	
for	users	to	navigate	the	haphazard	content-browsing	systems,	two	outstanding	questions	still	exist	
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that,	 1)	 can	 the	 users	 locate	 their	 interests	 by	 surfing	 on	 the	 network,	 and	 2)	 is	 every	 object	
accessible	 in	 the	 network?	 By	 mining	 the	 co-accessing	 pattern	 among	 objects,	 we	 construct	
recommendation	 networks	 according	 to	 the	 object	 similarity	 matrix,	 and	 thereby	 theoretically	
explore	 its	 topology	and	dynamics.	Modelling	the	users’	surfing	behaviour	as	random	walks,	we	
examine	how	many	history	 records	of	a	 target	user	can	be	 retrieved	during	such	process.	Most	
measures	are	shown	with	limited	accuracy	and	cannot	help	users	to	explore	niche	objects	which	
may	be	not	popular	but	fit	some	users’	interests.	In	order	to	achieve	a	good	accuracy	quickly	in	a	
short-term	 random	walk,	 we	 show	 that	 the	 recommendation	 list	 should	 be	 short,	 where	 each	
object	 is	 expected	 to	 have	 generally	 2~6	 recommended	 objects.	 In	 terms	 of	 accessibility,	 the	
recommendation	networks	are	shown	to	be	unnavigable	due	to	the	emergence	of	traps,	which	are	
dense	 communities	with	 few	 or	 even	 no	 links	 connecting	 outside.	 Such	 vicious	 cycles	 trapping	
surfing	users	constantly	make	a	handful	of	objects	dominating	most	of	the	web	traffic.	According	
to	the	local	structure	of	the	network,	a	simple	measure	entitled	the	local	return	rate	is	developed,	
which	 can	 be	 used	 to	 accurately	 and	 efficiently	 identify	 the	 significant	 traps	 in	 large-scale	
recommendation	networks.		

To	 summarise,	 this	 thesis	 uncovers	 some	 fundamental	 challenges	 with	 network-based	 online	
recommendations	 including	 the	 stability	 problem	 and	 popularity	 bias	 for	 personalised	
recommendation	and	the	information	monopoly	for	recommendation	networks.	In	addition	to	the	
proposed	algorithm,	measure	and	analytical	methods,	the	results	inform	the	needs	of	more	careful	
system	design	in	practice,	and	shed	lights	on	the	future	studies	on	such	challenges	to	develop	better	
network-based	similarity	measures.		
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Chapter	1.	Introduction	

1.1	Background	and	Motivation	

Thanks	to	the	rapid	development	of	the	Internet	technology,	our	society	has	witnessed	us	picking	

up	an	advanced	 lifestyle	 in	 the	 recent	decade.	We	communicate	online,	buy	goods	online,	 read	

news	online,	watch	movies	online……	Basically,	we	live	a	significant	part	of	our	lives	on	the	Internet.	

Especially	with	 the	 technology	of	Web	2.0,	we	are	not	only	 the	 receiver	but	also	 the	creator	of	

online	information.	While	there	should	be	more	than	enough	information	fulfilling	every	aspect	of	

our	daily	needs,	the	amount	of	online	information	is	significantly	more	than	any	individual	could	

ever	possibly	process	which	is	known	as	the	information	overload	problem	(Bawden	et	al.	1999;	

Hwang,	 &	 Lin	 1999;	 Eppler	 &	Mengis	 2004).	 In	 such	 overwhelming	 sea	 of	 information,	 though	

anything	could	be	just	a	few	clicks	away	(Albert	et	al.	1999),	users	are	still	struggling	to	find	the	

most	relevant	information.		

The	 explosion	 of	 online	 information	 makes	 the	 technique	 helping	 users	 to	 filter	 information	

urgently	needed.	The	search	engine	is	a	basic	and	well-established	such	technique,	and	significantly	

helps	users	in	filtering	the	irrelevant	information	by	searching	for	specific	keywords	(Hanani	et	al.	

2001).	However,	the	search	engine	still	does	not	fulfil	all	the	needs	of	online	users.	On	one	hand,	

search	engine	returns	the	same	results	for	different	users	searching	the	same	keywords,	even	if	

they	have	totally	different	interests	and	are	expecting	different	target	information.	One	the	other	

hand,	users	may	not	know	exactly	what	they	are	looking	for,	such	as	a	user	looking	for	an	interesting	

movie	just	to	kill	a	boring	night,	or	a	researcher	looking	for	some	related	papers.	Regarding	these	

limitations,	many	other	techniques	have	been	developed,	among	which,	the	recommender	system	

(Resnick	&	Varian	1997;	Ricci	et	al.	2011)	is	of	great	significance	serving	online	users.		

The	 recommender	 system	 analyses	 the	 patterns	 of	 users	 accessing	 online	 information	 and	

evaluates	the	correlation,	normally	referred	as	similarity,	among	these	information,	and	thereby	

predicts	 appropriate	 information	 that	 might	 be	 of	 a	 user’s	 interests	 automatically	 as	

recommendations.	Accordingly,	users	do	not	have	to	search	for	information	by	themselves	and	may	

be	able	to	explore	information	that	are	out	of	their	knowledge.	Generally,	there	are	two	widely-

implemented	forms	of	recommender	systems,	namely	the	personalised	recommendation	(Schafer	
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et	al.	2007;	Lv	et	al.	2012)	and	the	recommendation	network	(Oestreicher-Singer	&	Sundararajan	

2012a;	Lin	et	al.	2017).		

The	personalised	recommendation	deals	with	the	question	that	what	objects	would	a	target	user	

be	 interested	 in	 in	 the	 future.	Accordingly,	such	system	considers	not	only	 the	similarity	among	

objects,	but	also,	more	importantly,	the	target	user’s	historical	behaviours.	For	example,	when	a	

target	user	bought	a	book	on	network	 theory	 from	Amazon,	more	books	on	network	 theory	or	

graph	 theory	will	 be	 recommended	 to	 him/her	 by	 Amazon	 displaying	 on	 the	 homepage	 in	 the	

following	days.	Briefly	 speaking,	 such	system	recommends	either	objects	 that	are	similar	 to	 the	

target	user’s	historical	selections	(object-based	algorithm),	or	objects	that	have	been	selected	by	

users	 that	have	similar	history	 records	 to	 the	target	user	 (user-based	algorithm).	Therefore,	 the	

personalised	recommendations	are	make	for	a	specific	user,	hence	personalised,	and	are	generally	

different	for	different	users.		

The	 recommendation	 network,	 on	 the	 other	 hand,	 is	 emerged	 through	 similar	 objects.	 Such	

recommendations	are	made	 for	an	object.	All	 the	users	who	browse	a	particular	object	get	 the	

same	recommendations.	Generally,	for	a	specific	object,	such	system	recommends	several	other	

objects	 that	 are	 similar	 to	 this	 one	 on	 its	webpage,	 to	 inspire	 users	 to	 keep	 browsing	 relevant	

objects.	 Accordingly,	 every	 object	 in	 a	 website	 would	 have	 a	 list	 of	 recommended	 objects	

connecting	with	hyperlinks.	Such	system	thus	would	result	in	a	massive	network	of	objects,	and	this	

is	the	reason	that	it	is	normally	referred	as	recommendation	networks.		

In	 practical	 systems,	 both	 personalised	 recommendations	 and	 recommendation	 network	 are	

normally	available.	In	Amazon	for	example,	when	a	user	logged	in	to	the	system,	there	are	lists	of	

objects	displayed,	entitled	such	as	"Related	to	items	you've	viewed",	"Inspired	by	your	browsing	

history"	 and	 "Recommendations	 for	 you"	 etc.	 which	 can	 be	 regarded	 as	 personalised	

recommendations.	But	while	a	user	actually	browsing	an	object,	it	is	where	the	recommendation	

network	presented	entitled	"Customers	who	bought	this	item	also	bought".	In	terms	of	the	process	

of	 users	 accessing	 information,	 the	 personalised	 recommendations	 are	 to	 be	 taken	 before	

accessing,	while	the	recommendation	network	is	to	be	taken	while	accessing.	

Despite	the	differences	between	personalised	recommendation	and	recommendation	networks,	

they	share	the	same	key	technique,	namely,	how	to	quantify	the	similarity	among	objects.	One	of	

the	most	efficient	and	widely-applied	such	methods	is	the	collaborative-based	similarity	(Goldberg	

et	al.	1992),	also	known	as	the	association	rules	(Sandvig	et	al.	2007).	Normally,	two	objects	would	

be	considered	similar	 if	 they	share	common	neighbours,	 i.e.	 the	same	users	who	selected	both.	

Consequently,	 such	 similarity	 describes	 to	 what	 extend	 would	 two	 objects	 be	 interested	 in,	

appreciated	or	purchased	by	the	same	user.		

The	 study	 of	 complex	 networks	 (Albert	 &	 Barabási	 2002,	 Newman	 et	 al.	 2006)	 provides	 rich	

theoretical	foundation	for	the	collaborative	similarities.	The	networks	science	originates	from	the	

graph	theory	(Erdös	&	Rényi	1959;	1960),	and	got	significant	boost	in	late	1990s	(Watts	&	Strogatz	

1998;	Barabási	&	Albert	1999)	since	more	and	more	data	of	real-world	networks	became	available	

and	computable.	A	network	normally	consists	of	a	set	of	nodes	(any	kind	of	entities)	and	a	set	of	

links	 (any	 kind	 of	 interactions)	 connecting	 these	 nodes.	 Due	 to	 its	 elegant	modelling,	 complex	
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network	has	been	applied	to	study	a	wide	range	of	practical	systems,	from	the	biological	network	

(Cline	et	al.	2007),	to	the	Word-Wide	Web	(Albert	et	al.	1999),	from	the	transportation	network	

(Colizza	 et	 al.	 2006)	 to	 the	 global	 social	 network	 (Guimera	 et	 al.	 2003).	 While	 the	 online	

recommendations	deal	with	the	interactions	between	objects	and	users,	complex	networks	provide	

an	effective	model,	namely	the	user-object	bipartite	networks	(Zhou	et	al.	2007;	Daminelli	et	al.	

2015),	based	on	which	the	user	behaviour	and	object	(node)	similarities	can	be	explored.	

1.2.	Research	Questions	and	Objectives	

Given	the	significance	of	online	recommendations,	and	the	solid	foundation	that	network	science	

could	provide,	 the	present	PhD	thesis	aims	to	explore	node	similarity	quantifications	 in	complex	

networks,	and	examine	and	improve	online	recommendations	accordingly.		

To	achieve	such	objective,	the	research	follows	four	steps,	each	focusing	on	one	major	research	

question	described	as	follows:	

There	are	dozens	of	similarity	measures	proposed	for	quantifying	node	similarities	in	networks	and	

had	been	applied	in	making	recommendations.	However,	the	real	networks,	such	as	online	user-

product	interactions,	are	always	evolving	and	incomplete.	With	such	dynamic	changes	of	the	data,	

we	explore:	Research	Question	1	 (RQ1)	can	the	object	similarities	remain	stable	over	the	data	

change	and	how	can	we	ensure	the	recommendation	stability?	In	exploration	of	such	a	question,	

the	objectives	include	to	

– establish	a	framework	to	evaluate	the	stability	of	similarity	measures	in	bipartite	networks;	

– explore	the	influence	of	similarity	stability	on	the	recommendation	stability;	

– propose	an	algorithm	which	can	ensure	the	stability,	diversity	and	accuracy	simultaneously.	

Most	existing	network-based	 similarity	measures	have	apparent	degree	bias,	which	 is	 the	 close	

correlation	 (either	 positive	 or	 negative)	 between	 the	 node	 degree	 and	 the	 similarity.	 A	 severe	

problem	it	would	cause	is	that	popular	objects	always	tend	to	be	similar	(in	positive	correlation)	or	

dissimilar	 (in	 negative	 correlation)	 to	 others,	 leading	 the	 online	 recommendations	 to	 be	 either	

inaccurate	or	uniform.	Accordingly,	we	study	Research	Question	2	(RQ2)	how	can	we	develop	a	

balanced	 similarity	 measure	 by	 comparing	 the	 empirical	 network	 with	 random	 ones?	 The	

objectives	are	to	

– uncover	 the	 existence	 of	 degree	 bias	 of	 existing	 similarity	 measures	 and	 evaluate	 its	

severity;	

– conclude	the	numerical	correlation	between	the	expected	number	of	common	neighbours	

and	the	degrees	in	random	networks;	

– develop	a	new	similarity	measure	for	both	unipartite	and	bipartite	networks	by	removing	

the	random-based	common	neighbours.	

The	recommendation	networks	are,	in	nature,	information	networks.	However,	previous	research	

only	 explored	 their	 commercial	 value	 and	 their	 influences	 on	 product	 demand,	 leaving	 many	

fundamental	aspects	of	recommendation	networks	uncharted.	Accordingly,	this	PhD	thesis	focuses	



Chapter	1.	Introduction	

	 4	

on	 two	major	 questions	 regarding	 recommendation	 networks,	 i.e.	 the	 navigation	 accuracy	 and	

information	accessibility.	

While	the	major	function	of	recommendation	networks	is	to	aid	users	in	their	content	exploration	

in	the	system,	we	ask	Research	Question	3	(RQ3)	how	accurately	can	recommendation	networks	

navigate	users	to	find	what	they	interested	in?	The	objectives	include	to	

– theorise	the	construction	of	recommendation	networks	by	a	top-L	projection	method	on	

user-object	interactions;	

– report	a	general	picture	of	the	topological	structure	of	recommendation	networks;	

– develop	an	evaluation	method	for	the	accuracy	of	the	recommendation	networks;	

– conclude	the	optimised	recommendation	list	length	to	achieve	best	accuracy.	

Since	the	recommendation	networks	provide	an	easy	way	to	explore	various	objects	online,	 it	 is	

important	 to	 ensure	 that	 at	 least	 most	 objects	 are	 accessible.	 Therefore,	 we	 study	 Research	

Question	4	(RQ4)	are	the	objects	accessible	and	is	the	recommendation	network	navigable?	The	

objectives	are	to	

– conclude	the	theoretical	navigability	of	random	recommendation	networks;	

– quantify	 the	 accessibility	 and	 navigability	 of	 empirical	 recommendation	 networks	 for	

further	evaluation	of	the	existing	construction	methods;	

– discover	and	quantify	the	existence	of	traps	which	block	the	web	traffic;	

– develop	a	method	for	efficient	identification	of	traps	in	large-scale	networks.	

1.3.	Organisation	of	the	Thesis	

The	present	PhD	thesis	is	organised	as	shown	in	Figure	1.1,	where	the	main	research	is	divided	into	

two	themes	namely	the	personalised	recommendation	and	the	recommendation	networks.		

Chapter	 1	 is	 the	 introduction	 to	 this	 thesis	 which	 sets	 the	 context	 and	 defines	 the	 research	

questions	and	objective.	The	 research	design	and	methodologies	adopted	 in	 the	 thesis	are	also	

introduced	and	their	validity	is	justified	via	discussions.		

Chapter	2	reviews	the	literature	related	to	the	study	in	this	thesis,	which	is	composed	by	four	parts,	

including	 the	 complex	 networks	 and	 bipartite	 modelling,	 network-based	 similarity	 measures,	

personalised	recommendation	and	recommendation	networks.		

Chapter	 3	 introduces	 the	 datasets	 that	 will	 be	 applied	 in	 latter	 studies,	 including	 the	 book	

recommendation	 network	we	 collected	 from	Amazon	 and	 several	 open	 datasets	 of	 user-object	

interactions.	

The	original	research	of	this	PhD	thesis	will	be	majorly	reported	in	Chapter	4	to	Chapter	7,	consisting	

of	two	themes	of	online	recommendations,	namely	the	personalised	recommendation	(Chapter	4	

and	5),	and	recommendation	networks	(Chapter	6	and	7).		
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Figure	1.1	|	Organisation	of	the	present	PhD	Thesis.	

Chapter	 4	 studies	 the	 stability	 problem	 of	 similarity	 quantification	 and	 personalised	

recommendation,	 tackling	RQ1.	After	empirically	analysing	 the	similarity	 stability,	we	propose	a	

top-n-stability	 algorithm	 to	 secure	 the	 good	 performance	 of	 personalised	 recommendations	 in	

terms	of	 stability,	 accuracy	and	diversity.	 This	 chapter	 is	 largely	based	on	our	published	papers	

including		

- Hou,	L.,	Liu,	K.,	Liu,	J.,	&	Zhang,	R.	(2017).	Solving	the	stability–accuracy–diversity	dilemma	

of	recommender	systems.	Physica	A,	468,	415-424.		

- Liu,	J.,	Hou,	L.,	Pan,	X.,	Guo,	Q.,	&	Zhou,	T.	(2016).	Stability	of	similarity	measurements	for	

bipartite	networks.	Scientific	Reports,	6,	18653.	

Chapter	5	focuses	on	the	degree	(popularity)	bias	of	similarity	measures	in	networks,	tackling	RQ2.	

We	theoretically	study	both	unipartite	and	bipartite	random	networks,	to	calculate	the	expected	

common	 neighbours	 between	 nodes.	 Accordingly,	 a	 balanced	 common	 neighbour	 similarity	

measure	 is	 developed.	 Furthermore,	 we	 apply	 the	 new	 measure	 to	 make	 personalised	

recommendation,	and	the	performances	are	studied.	The	calculation	and	results	are	based	on	our	

published	papers	including	

- Hou,	 L.,	 Pan,	 X.,	&	 Liu,	 K.	 (2018).	 Balancing	 the	popularity	 bias	 of	 object	 similarities	 for	

personalised	recommendation.	European	Physical	Journal	B,	91,	47.	

- Hou,	L.,	&	Liu,	K.	(2017).	Common	neighbour	structure	and	similarity	intensity	in	complex	

networks.	Physics	Letters	A,	381(39),	3377-3383.	
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Chapter	 6	 theorises	 the	 construction	 of	 recommendation	 networks	 as	 a	 top-L	 projection,	 and	

explores	the	accuracy	of	such	system	helping	users	to	find	the	right	objects,	which	gives	answer	to	

RQ3.	This	chapter	is	based	on	a	working	paper,	and	a	published	conference	paper	which	are	

- Hou,	 L.,	 Pan,	 X.,	 Liu,	 K.,	 &	 Liu,	 J.	 Random	 walks	 on	 recommendation	 networks	 for	

information	retrieval.	(working	paper)	

- Hou,	 L.,	 Liu,	 K.,	&	 Liu,	 J.	 (2017,	November).	Navigated	Random	Walks	 on	Amazon	Book	

Recommendation	Network.	In:	The	6th	International	Conference	on	Complex	Networks	and	

Their	Applications.	pp.	935–945.	Lyon,	France.	

Chapter	 7	 explores	 the	 navigability	 of	 recommendation	 networks	 corresponding	 to	 RQ4.	 We	

theoretically	 and	 empirically	 study	 the	 navigability	 of	 recommendation	 networks	 which	 is	 the	

portion	of	objects	that	can	be	visited	by	users,	and	uncover	the	common	existence	of	traps	in	such	

systems.	We	further	develop	a	simple	local	method,	which	is	efficient	to	identify	traps	in	large-scale	

recommendation	networks.	This	chapter	is	based	on	a	working	paper	

- Hou,	 L.,	 Pan,	 X.,	 Liu,	 K.,	 &	 Liu,	 J.	 Traps	 in	 recommendation	 networks	 break	 down	 the	

navigability.	(working	paper)	

Chapter	8	discusses	the	results	of	the	thesis	in	depth	and	their	validation	via	comparative	analysis.	

The	limitation	of	the	study	in	this	thesis	is	discussed	as	well.		

Chapter	9	summarises	the	major	findings	and	contributions,	and	discusses	the	future	work.		

1.4.	Research	Methodology	

The	 research	 in	 this	 thesis	 is,	 in	 nature,	 multi-disciplinary	 and	 being	 at	 the	 interface	 among	

management	science,	computer	science,	mathematics	and	statistical	physics.	As	a	consequence,	

our	methodology	is	a	combination	of	a	series	of	both	theoretical	and	empirical	approaches.		

In	 abstract,	 the	 studies	 in	 this	 thesis	 generally	 follow	 the	 following	 procedure:	 1)	 develop	

recommendation	 algorithm,	 2)	 implement	 the	 algorithm	 to	 empirical	 data,	 and	 3)	 evaluate	 the	

performance.	The	development	of	 recommendation	algorithms	 is	 a	 theoretical	 step,	where	we,	

according	 to	 literature	 and	 observations	 of	 user	 behaviour,	 propose	 theories	 and	 assumptions	

based	on	which	the	algorithm	is	generated.	The	implementation	of	algorithms	is	a	very	practical	

step,	where	we	make	the	algorithms	applicable	by	programming	them	as	a	system,	which	takes	

empirical	data	in	and	gives	recommendations	accordingly.	The	evaluation	largely	depends	on	the	

partition	of	empirical	data,	i.e.	we	divide	the	user-object	interactions	into	two	parts,	namely	the	

training	data	and	testing	data.	Training	data	will	be	fed	to	the	developed	recommendation	system,	

and	 the	 outputs	 of	 the	 algorithms	 will	 be	 compared	 to	 the	 testing	 data	 to	 assess	 their	

performances.	 Metrics	 will	 be	 adopted	 from	 literature,	 as	 well	 as	 developed	 by	 ourselves,	 to	

evaluate	a	recommendation	algorithm’s	performances	 in	different	dimensions	such	as	accuracy,	

diversity	and	stability.	A	key	step	to	conclude	that	our	proposed	algorithm	is	a	valid	contribution	is	

to	 compare	 the	performance	of	proposed	algorithm	to	benchmark	algorithms	which	have	been	

widely	recognised	and	applied	in	the	field.		
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The	following	is	the	detailed	methodologies	applied	in	this	thesis.		

The	 theoretical	 part	 of	 the	 research	 includes	 the	 development	 of	 algorithms	 for	 similarity	

measurement	and	 recommendation,	design	of	 the	evaluation	 framework	 for	 recommendations,	

and	 the	 analysis	 of	 the	 expected	 consequences	 of	 certain	 behavioural	 patterns.	 The	 adopted	

methodologies	 are	 literature	 analysis,	 mathematical	 modelling,	 complex	 network	 theory	 and	

mathematical	 analysis.	 Through	 the	 review	 of	 relevant	 literature	 and	 theories,	 we	 extract	 and	

conclude	 the	 ontology	 of	 consumer	 behaviour	 or	 the	 relations	 among	 objects.	 Then	 abstract	

mathematical	models	are	developed	to	describe	and	represent	the	complex	system	of	user-object	

interactions.	With	the	behaviours	being	regarded	as	dynamics	on	the	complex	networks,	we	apply	

mathematical	 analysis	 via	 probabilistic	 and	 statistical	 theory	 to	 theoretically	 calculate	 the	

consequence	of	certain	behavioural	patterns,	which	will	serve	as	part	of	the	evidence	to	inform	the	

results	and	conclusion,	or	as	the	comparison	for	empirical	studies.	

The	present	 thesis	 is	 also	extensively	data-driven,	 and	 thus	 adopts	 a	 large	amount	of	 empirical	

approaches.	 The	 adopted	 methodologies	 include	 web	 crawling,	 data	 analytics,	 Monte	 Carlo	

simulation,	 and	 algorithm	 implementation	 via	 programming	 etc.	 For	 the	 data	 collection,	 we	

retrieved	six	second-handed	data	sets	on	the	user-object	 interactions	from	published	papers,	as	

well	as	developed	a	web	crawler	based	on	Python	(with	selenium	package)	and	crawled	the	data	

from	 Amazon	 book	 recommendation.	 For	 all	 the	 analysis	 of	 these	 data	 sets,	 including	 their	

statistical	features	and	in-depth	patterns	such	as	similarities,	stabilities	etc.,	we	programmed	from	

scratch	 based	 on	 Python	 environment	 with	 no	 developed	 software	 or	 tools	 been	 applied.	 The	

proposed	personalised	recommendation	algorithms	as	well	as	 the	benchmark	algorithms	are	all	

implemented	 via	 C-programming	 and	 Python,	 and	 tested	 through	 the	 training	 and	 testing	 data	

partition	on	the	applied	data	sets.	The	Monte	Carlo	method	is	used	to	simulate	the	users	surfing	

behaviour	 in	Chapter	6	and	7,	where	 the	simulation	programme	 is	also	developed	by	ourselves	

based	on	C-programming.	To	more	clearly	present	the	analytical	results,	many	figures	of	plots	are	

presented	in	this	thesis,	which	are	produced	via	Matlab	and	Python	(with	matplotlib	package).		

1.5.	Novelty	of	the	Thesis	

This	thesis	explores	the	node	similarity	quantification	in	complex	networks	in	order	to	improve	the	

performances	 of	 recommender	 systems.	 As	 the	 major	 novelty	 of	 the	 thesis,	 we	 focus	 on	 the	

mismatch	between	the	practical	needs	of	recommender	system	and	the	current	similarity	measures.		

An	important	need	of	the	current	online	recommendation	systems	is	the	ability	to	uncover	niche	

objects,	which	is	the	major	focus	of	this	thesis.	The	‘niche	object’	is	a	term	for	the	differentiation	

from	 the	 concept	 of	 ‘popular	 object’.	 Unlike	 popular	 objects	 which	 are	 basically	 the	 common	

interests	of	mass	population	of	users,	the	niche	objects	are	normally	not	popular,	but	can	represent	

the	interests	of	small	groups	of	users.	Niche	objects	should	be	distinguished	from	the	unpopular	

objects.	The	latter	are	simply	unpopular,	while	the	niche	objects	still	fit	some	users’	interests.	For	

most	users,	their	interests	may	consist	of	both	common	interests	which	can	be	fitted	by	the	popular	

information,	and	personalised	interests	which	can	only	be	fitted	by	the	niche	information.	However,	
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numerous	valuable	niche	information	is	nowadays	hidden	in	the	dominance	of	popular	information.	

There	 are	 many	 channels	 that	 are	 continuously	 enhancing	 the	 dominance	 of	 the	 popular	

information.	With	 the	 development	 of	 the	mass	media,	 the	 popular	 information	 such	 as	Oscar	

movies,	best	seller	books	or	famous-branded	products	are	almost	impossible	to	be	avoided	by	most	

users.	 In	addition,	when	users	 initiatively	accessing	 information,	 the	 search	engines	are	already	

putting	 emphasises	 on	 the	 popular	 information,	 due	 to	 the	 bias	 of	 the	 indexing	 and	 ranking	

(Fortunato	 et	 al.	 2006b;	 De	 Corniere	 &	 Taylor	 2014).	 Therefore,	 what	 users	 expect	 from	 the	

recommender	 system	 are	 the	 alternatives	 that	 are	 out	 of	 their	 knowledge.	 For	 most	 users,	

recommending	popular	information	is	of	little	value,	as	they	may	have	already	well	aware	of	these	

information	(McNee	et	al.	2006;	Vargas	&	Castells	2011).	If	a	user	wants	these	popular	information,	

it’s	easy	for	him/her	to	access	through	search	engine	or	the	mass	media.	Instead,	if	this	user	is	still	

looking	 for	 information,	 niche	 information	would	 be	 normally	 expected.	 To	 summarise,	 though	

there	are	more	than	enough	information	online	to	fit	users’	interests,	to	find	niche	information	still	

takes	enormous	efforts,	and	remains	to	be	the	challenge	for	online	recommendations.	

The	widely	applied	collaborative-based	recommendations	fail	to	fulfil	such	need	of	finding	niche	

information,	due	to	the	popularity	bias	of	existing	network-based	similarity	measures.	Since	the	key	

technique	in	collaborative	filtering	is	the	quantification	of	object	similarities,	the	choice	of	similarity	

measure	basically	determines	the	performance	of	 the	resulted	recommendations.	However,	 the	

existing	 network-based	 similarity	measures	 are	 found	with	 serious	 popularity	 bias	 (Chapter	 5),	

which	is	the	correlation	between	measured	similarities	and	the	object	popularities.	Popular	objects	

tend	to	be	considered	by	these	measures	to	be	either	very	similar	(positive	correlation)	or	dissimilar	

(negative	correlation)	 to	others,	 rather	 in	a	balanced	manner.	As	a	consequence,	such	bias	may	

cause	is	that	the	recommendations	are	thus	also	biased.	The	recommendation	lists	for	users	are	

dominated	by	either	very	popular	objects,	or	very	unpopular	objects,	and	thus	the	goal	of	finding	

niche	objects	cannot	be	achieved.		

This	thesis	aims	to	quantify	and	try	to	overcome	such	popularity	bias	in	Chapter	4	and	Chapter	5,	

by	 looking	 at	 the	 stability	 of	 object	 similarities	 and	 developing	 a	 balanced	 similarity	 measure	

respectively.	 In	 addition,	 we	 also	 explore	 the	 other	 form	 of	 recommender	 system,	 i.e.	 the	

recommendation	network.	While	previous	related	research	only	focusses	on	its	marketing	value,	

this	thesis	for	the	first	time	develops	a	systematic	framework	for	the	evaluation	of	its	accuracy	of	

navigation	(Chapter	6)	and	accessibility	of	objects	(Chapter	7).		
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Chapter	2.	Literature	Review	

In	 this	 chapter,	 literature	 on	 some	 of	 the	 key	 aspects	 relating	 to	 this	 thesis	 is	 reviewed	

comprehensively.	As	suggested	by	the	major	objectives	of	this	thesis,	the	review	is	organised	as	

following:	section	2.1	 introduces	the	concepts	of	complex	networks	and	bipartite	networks,	and	

the	random	walks	in	networks;	section	2.2	reviews	the	network-based	similarity	measures	which	

are	 applicable	 to	 collaborative	 online	 recommendation;	 section	 2.3	 and	 2.4	 summarises	 the	

progresses	and	key	studies	on	the	two	major	techniques	of	online	recommendation,	namely	the	

personalised	recommendation	and	recommendation	networks	respectively.	

2.1.	Complex	Networks	and	Bipartite	Modelling	

The	term	‘network’	has	been	used	in	various	scenarios	and	disciplines.	In	this	thesis,	the	network	is	

a	general	 term	referring	 to	a	system	 in	which	a	number	of	actors	 interact	with	each	other.	The	

reason	we	use	the	term	‘complex	networks’	lies	in	the	fact	that	the	systems/networks	we	consider	

are	mostly	with	nontrivial	structures	which	make	them	distinguished	from	the	random	graphs.	In	

most	part	of	the	present	thesis,	we	study	the	complex	networks	of	user-object	interactions,	i.e.	the	

actors	are	users	and	objects	(such	as	products,	movies	etc.)	and	the	interaction	normally	represents	

the	purchase,	comment	behaviours	etc.		

Mathematically,	 a	 network	 is	 a	 collection	 of	 nodes	 ! = {$%, $',⋯ , $)} 	and	 links	 + =
{,%, ,',⋯ , ,-}.	The	connection	of	a	network	is	normally	represented	by	an	adjacency	matrix	. =
	{012})×)	where	012 = 1	if	node	5	is	connected	with	node	6,	and	012 = 0	otherwise.	For	example,	a	

social	network	is	generally	the	collection	of	individuals	as	nodes	and	relationships	as	links,	while	

the	World-Wide	Web	 is	 the	 collection	 of	webpages	 as	 nodes	 and	hyperlinks	 as	 links.	 The	 large	

amount	of	nodes	and	links	in	a	network	would	make	it	rather	‘complicated’	than	‘complex’.	What	

really	makes	a	network	‘complex’	is	the	fact	that	in	most	networked-systems	these	massive	amount	

of	nodes	are	 interacting	with	each	other	 through	 links,	 and	 there	are	 clear	patterns	with	 these	

interactions.		

The	field	of	complex	networks	is	rather	big	and	multidisciplinary.	In	terms	of	network	types,	there	

are	unipartite	networks,	bipartite	networks	(Newman	et	al.	2002),	temporal	networks	(Holme	&	
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Saramäki	2012),	 inter-dependent	networks	 (Buldyrev	et	al.	2010)	etc.	Many	aspects	of	 complex	

networks	 are	 also	 paid	 significant	 attentions,	 such	 as	 the	 modelling	 (Barabási	 &	 Albert	 1999;	

Papadopoulos	et	al.	2012),	robustness	and	resilience	(Albert	et	al.	2000;	Gao	et	al.	2016),	spreading	

dynamics	 (Pastor-Satorras	 &	 Vespignani	 2001;	 Moreno	 et	 al.	 2004),	 and	 the	 synchronisation	

(Arenas	et	al.	2008).	There	are	also	many	disciplines	being	interested	and	contributed	to	the	study	

of	 complex	 networks	 including	 Physics	 (Boccaletti	 et	 al.	 2006),	 Mathematics	 (Newman	 2003),	

Biology	(Thiery	&	Sleeman	2006),	Computer	Science	(Silva	&	Zhao	2016),	Social	Science	(Alvarez-

Galvez	2016),	Political	Science	 (Conover	et	al.	2011)	and	so	on.	 In	 terms	of	 the	applied	context,	

there	are	even	more	categories	since	basically	any	system	with	entities	interacting	with	each	other	

can	be	modelled	as	complex	networks.		

Consequently,	it	is	almost	impossible	to	make	a	complete	review	on	complex	networks	especially	

in	a	thesis.	This	section	thus	focuses	on	these	that	are	most	relevant	to	the	present	thesis.	For	more	

thorough	reviews,	there	are	quite	many	good	papers	available,	such	as	Newman	(2003),	Boccaletti	

et	al.	(2006)	and	Barabási	(2016)	etc.		

2.1.1.	Basic	structural	properties	

The	real-world	networks,	though	are	complex,	always	exhibit	regularities.	Especially,	many	totally	

different	networked	systems	have	been	found	with	very	similar	properties	such	as	small	average	

shortest	path,	high	clustering	feature,	power-law	degree	distribution	and	community	structures.	

Such	properties	attracted	significant	attentions	in	the	past	decades	and	made	complex	networks	

efficient	in	modelling	real	systems.		

	
Figure	2.1	|	A	toy	network	consisting	of	8	nodes	and	10	links.	

Shortest-path	length	

Normally,	networks	are	connected,	which	means	there	would	be	at	least	one	path	that	an	arbitrary	

node	can	reach	another	one.	The	length	of	the	paths	connecting	two	nodes	became	an	interest	of	

the	 field	 from	 very	 early	 stage	 of	 graph	 theory.	 As	 shown	 in	 Figure	 2.1,	 which	 is	 a	 connected	

network,	every	node	can	reach	every	other.	Between	node	1	and	node	4,	there	are	many	paths	

such	as	{1,2,3,4},	{1,2,5,4}	and	{1,2,3,5,4}.	The	length	of	a	path	is	the	number	of	links	involved	in	

the	path,	and	thus	the	aforementioned	paths	have	length	of	3,	3,	and	4	respectively.	Apparently,	

the	 length	 of	 the	 shortest	 path	 between	 node	 1	 and	 4	 is	8%,9 = 3.	 To	 characterise	 such	 basic	
property	of	a	network,	one	can	use	the	average	shortest-path	length	;,	which	is	the	mean	value	of	

the	shortest-path	length	between	every	pair	of	nodes	(Watts	&	Strogatz	1998),	i.e.		

1
2

3

4
5 6

7
8
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	 ; =
8121,2∈!;1>2

?(? − 1) ,	 	(2.1)	

where	!	is	the	set	of	nodes	in	the	network	and	?	is	the	size	of	the	network,	i.e.	total	number	of	

nodes.	An	alternative	method,	when	the	network	is	not	completely	connected	(not	every	pair	of	

nodes	has	a	path,	812 = ∞),	is	to	calculate	the	mean	of	the	reciprocal	of	the	shortest-path	length,	

which	is	defined	as	efficiency	D	(Latora	&	Marchiori	2003)	and	reads,	

	 D =
1/8121,2∈!;1>2

?(? − 1) .	 	(2.2)	

Such	quantity	has	great	implications	for	real-world	networks,	describing	how	well	the	network	is	

connected	and	how	efficient	the	network	accommodates	diffusion	dynamics.	In	the	1960s,	Thiery	

and	Milgram	carried	out	an	experiment	in	which	participants	were	required	to	send	a	parcel	to	a	

stranger.	The	only	approach	they	can	take	is	to	send	the	parcel	to	their	friends	and	let	their	friends	

to	further	pass	the	parcel	on.	A	shocking	finding	of	this	experiments	is	that	the	average	number	of	

intermediate	friends	lies	between	five	and	six,	which	means	for	two	random	people,	they	can	know	

each	other	through	generally	six	intermediate	friends.	Such	phenomena	have	been	known	as	the	

‘six	degrees	of	separation’	(Thiery	&	Milgram	1967).	In	recent	years,	evidences	have	shown	that	the	

average	shortest-path	length	of	social	networks	is	normally	4~5,	such	as	in	university	email	network	

(Kossinets	&	Watts	2006),	and	in	Facebook	(Wilson	et	al.	2009;	Backstrom	et	al.	2012).	The	World-

Wide	Web,	though	consists	of	numerous	webpages,	 is	also	found	with	a	short	average	shortest-

path	 length.	 Albert	et	 al.	 (1999)	 have	 investigated	 the	 complete	 network	within	 the	 domain	 of	

nd.edu,	 and	 found	 it	 with	 an	 average	 shortest-path	 length	 of	;GH.IHJ = 11.2.	 They	 conclude	 a	
correlation	between	the	Web	size	?	and	the	corresponding	;,	which	reads	(Albert	et	al.	1999)		

	 ; = 0.35 + 2.06log	(?).	 	(2.3)	

Accordingly,	 while	 the	 size	 of	 the	Web	 at	 that	 time	 was	 estimated	 to	 be	8×10S ,	 the	 average	
shortest	 path	 length	 is	 believed	 to	 be	;TIU = 18.59 ,	 which	 means	 one	 can	 surf	 to	 a	 random	

webpage	from	any	starting	page	by	18.59	click	on	average.		

Clustering	

For	several	decades,	networks	were	regarded	random,	until	it	was	found	that	real	networks	have	

strong	clustering	features	that	a	node’s	neighbours	tend	to	connect	to	each	other	(Watts	&	Strogatz	

1998).		To	quantify	such	feature,	the	clustering	coefficient	of	a	node	5	is	defined	as		

	 W(5) =
2X1

Y1(Y1 − 1)
,	 	(2.4)	

where	X1 	is	 the	number	of	 triangles	 involving	node	5,	and	Y1 	is	 the	node’s	degree,	 i.e.	how	many	

connections	it	possesses.	Taking	the	toy	network	shown	in	Figure	2.1	as	an	example,	the	node	7	has	

three	neighbours	 (YZ = 3),	and	there	 is	only	one	triangle	which	 is	 {7,6,8}	 involving	node	7.	As	a	
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result,	 the	 clustering	 coefficient	 of	 the	 node	 is	W(7) = 1/3 .	 In	 general,	 a	 node’s	 clustering	
coefficient	describes	the	closeness	of	its	neighbours.		

The	clustering	coefficient	of	a	network	can	thus	be	calculated	by	averaging	over	every	node,	i.e.	

W = W(5) ,	where	 . 	represents	the	mean	of	the	entity.	Accordingly,	the	clustering	coefficient	W	
has	 been	 used	 to	 characterise	 “the	 cliquishness	 of	 a	 typical	 neighbourhood”.	 Applying	 such	

quantity,	Watts	and	Strogatz	(1998)	reported	that	many	real-world	networks	have	high	clustering	

coefficients,	such	as	the	collaboration	network	of	film	actors	(W = 0.79)	and	the	neural	network	of	
the	worm	Caenorhabditis	elegans	(W =0.28),	together	with	small	shortest-path	length,	which	has	

been	widely	discussed	in	the	following	decades	as	the	‘small-world’	property.		

Based	on	such	standard	clustering	coefficient,	other	definitions	have	also	been	developed.	Lind	et	

al.	(2005)	develop	a	clustering	coefficient	by	calculating	the	ratio	of	the	observed	squares,	rather	

than	triangles,	over	the	possible	squares.	While	the	standard	clustering	coefficient	can	be	regarded	

as	the	tendency	of	resulting	cycles	of	length	three,	thus	denoting	with	W\,	this	quantity	measures	

the	density	of	cycles	of	length	four	in	a	network,	hence	W9.	Accordingly,	they	further	define	higher	
order	 clustering	 coefficient	WG 	describing	 the	 occurrence	 of	 cycles	 of	 generic	 length	 (Lind	 &	
Herrmann	2007).	Considering	that	the	standard	clustering	coefficient	is	normally	correlated	with	

the	node’s	degree,	Soffer	and	Vazque	(2005)	propose	a	new	definition	which	removes	such	degree-

correlation	biases.		

Degree	distribution	

Normally,	the	degree	of	a	node	5,	Y1,	is	the	number	of	links	it	possesses.	For	example,	in	Figure	2.1,	

the	degrees	of	nodes	1,	 2,	 3	 are	Y% = 1;	Y' = 2	and	Y\ = 4	respectively.	 In	a	directed	network,	
where	the	links	are	directed,	every	node	possibly	has	both	in-coming	links	and	out-going	links.	Thus,	

the	degree	in	such	networks	can	be	distinguished	as	out-degree	and	in-degree.		

The	degree	is	the	most	fundamental	measure	of	a	node	in	networks.	The	degree	characterises,	for	

example,	in	a	social	network,	how	many	friends	a	person	has;	or	in	the	World-Wide	Web,	how	many	

hyperlinks	directing	to	a	webpage.	As	a	consequence,	degree	has	been	a	focal	point	in	the	study	of	

networks	 such	 as	 the	 spreading	 dynamics	 (Kitsak	 et	 al.	 2010;	 Brockmann	 &	 Helbing	 2013),	

controllability	(Liu	et	al.	2011)	and	so	on.	In	real	networked	systems,	the	degree	varies	largely,	that	

some	nodes	could	have	very	large	degrees	while	the	isolated	nodes	have	degrees	of	zero.	Such	fact	

makes	the	distribution	of	degrees	vital	for	understanding	a	network’s	structure	and	the	dynamics	

of/in	 it.	 The	degree	distribution	^(Y)	is	 the	probability	density	 function	of	degree,	which	 is	 the	
percentage	of	nodes	with	degree	of	Y.	Taking	the	toy	network	shown	in	Figure	2.1	as	an	example,	

the	 degree	 sequence	 is	 {1,3,4,2,3,2,3,2},	 and	 thus	 we	 have	^ 1 = 1,	^ 2 = 3,	^ 3 = 3 	and	
^ 4 = 1.		

One	of	 the	earliest	 significant	 studies	 that	boosted	 the	development	of	network	 science,	 is	 the	

discovery	of	the	power-law	degree	distribution	(Barabási	&	Albert	1999).	It	is	shown	that,	in	most	

real-world	networks,	 the	probability	 that	 a	node	has	 a	degree	Y,	 follows	^ Y ~Y`a 	for	 large	Y,	
which	is	a	power-law	distribution.	Such	distribution	exhibits	linear	pattern	in	a	log-log-scaled	plot,	

since	one	has	log ^ Y = −blog	(Y) + c,	where	b	characterises	the	decay	speed	of	the	degree	
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distribution.	The	power-law	distribution	is	a	very	heterogeneous	distribution	which	implies	that	the	

nodes	are	very	different	from	each	other	in	terms	of	degree.	Accordingly,	there	may	emerge	some	

nodes	with	extremely	high	degree,	which	are	normally	referred	as	hubs,	while	most	nodes	have	

only	a	few	connections.	One	can	imagine	the	example	of	a	social	network,	such	as	Twitter,	where	

celebrities	may	have	millions	of	followers	(in-degree),	while	most	users	have	only	tens	or	even	less	

followers.	 It	 turned	out	 surprisingly	 that	most	 other	 networks,	 ranging	 from	 social	 networks	 to	

biology	networks,	from	infrastructure	networks	to	information	networks,	follow	the	similar	power-

law	degree	distribution.	Barabási	&	Albert	(1999)	report	that	as	shown	in	Figure	2.2,	the	network	

of	film	actors,	the	network	of	World-Wide	Web	and	the	network	of	power	grid	follow	power-law	

degree	distributions	with	b = 2.3,	b = 2.1	and	b = 4.0	respectively.		

	
Figure	2.2	|	Degree	distributions	of	three	typical	real-world	complex	networks,	which	are	(A)	
actor	collaboration	network,	(B)	WWW	network	and	(C)	the	US	power	grid	network.	(From	
[Barabási,	A.	 L.	 and	Albert,	 R.	 (1999).	 Emergence	of	 scaling	 in	 random	networks.	Science	
286(5439),	509-512].	Reprinted	with	permission	from	AAAS.)	

Community	structure	

It	is	commonly	observed	that,	real-world	networks	generally	have	community	structure,	i.e.	groups	

of	nodes	that	have	dense	connections	within	the	group,	but	sparse	connections	between	groups	

(Girvan	 &	 Newman	 2002).	 Figure	 2.3	 shows	 a	 network	 we	 collected	 from	 Twitter.	 Businesses	

develop	official	accounts	in	twitter	to	connect	with	their	consumers,	and	normally	quite	a	number	

of	official	accounts	would	be	developed	if	the	business	is	large	enough,	with	each	account	being	

responsible	for	one	area	of	its	business.	For	example,	@GooglePlay	and	@YouTube	are	two	distinct	

accounts	 but	 both	 affiliated	 to	 the	 Google	 LTD.	 Following	 such	 way,	 the	 accounts	 of	 five	 IT	

companies,	namely	Google,	IBM,	Amazon,	Microsoft	and	Dell,	are	collected	along	with	the	following	

relations	 among	 them.	 It	 can	 be	 clearly	 observed	 that	 the	 accounts	 that	 belong	 to	 the	 same	

company	have	much	denser	connections	within	them	than	with	others.	Thus,	the	network	can	be	

regarded	as	with	five	communities.		

The	determination	of	whether	a	network	has	community	structure	or	not	is	rather	arbitrary.	Most	

commonly,	 the	 modularity	 can	 be	 applied	 to	 examine	 the	 goodness	 or	 the	 closeness	 of	 the	

community	 structure	 (Newman	 &	 Girvan	 2004).	 For	 a	 given	 division	 of	 a	 network	 into	 d	
communities,	 an	 d×d 	matrix	 can	 be	 defined	 as	 e 	with	 ,12 	as	 the	 ratio	 of	 links	 connecting	
community	5	and	6,	over	the	total	links	in	the	network.	One	can	further	calculate	the	row	sum	of	

the	matrix	as	01 = ,122 	which	is	the	fraction	of	the	links	that	connecting	to	community	5.	For	two	

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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arbitrary	communities	5	and	6,	the	expected	links	between	them	can	thus	be	expected	to	be	0102.	
Accordingly,	the	modularity	is	mathematically	defined	as		

	 f = (,12 − 0101)
1

.	 	(2.5)	

	
Figure	2.3	|	A	network	from	Twitter	to	show	the	community	structure.	In	this	network,	each	
node	is	an	official	account	of	an	IT	company,	and	the	directed	links	are	the	following	relations	
among	them.	The	network	is	colour-coded,	with	each	colour	represents	one	company.		

According	to	its	definition,	the	modularity	describes	how	many	of	the	links	are	connecting	the	nodes	

within	the	same	community	in	comparison	to	the	random	cases.	Basically,	large	value	of	modularity	

f	(approaching	1)	suggests	that	the	communities	are	well	partitioned,	while	f = 0	indicate	that	
the	ratio	of	inter-	and	intra-community	links	are	similar	to	the	random	networks.		

2.1.2.	Network	models	

Inspired	by	the	discovery	of	properties	emerged	from	the	empirical	networked	systems,	models	

that	generate	artificial	networks	have	been	widely	developed	so	that	the	networks	can	be	studied	

in	 a	 controlled	 fashion.	 There	 are	 quite	 a	 number	 of	models	 been	 developed,	 each	 specifically	

addressing	some	particular	mechanism	observed	in	empirical	studies.	Here	we	only	introduce	three	

widely-applied	network	models	with	very	general	mechanisms,	which	will	be	applied	in	the	present	

thesis.		

Erdös-Rényi	random	graph	

Before	the	boost	of	network	science	in	the	late	1990s,	networks	were	regarded	totally	random	and	

the	Erdös-Rényi	(ER)	networks	(Erdös	&	Rényi	1959;	1960)	was	the	most-investigated	model.		
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In	the	ER	model,	an	empty	network	with	?	nodes	is	considered	at	first.	For	each	pair	of	the	nodes,	
there	is	a	fixed	probability	g	for	a	link	to	be	established	to	connect	them.	With	?(? − 1)/2	pairs	
of	nodes,	the	total	number	of	links	is	expected	to	be	g?(? − 1)/2.	Accordingly,	the	average	degree	
of	the	nodes	is	expected	to	be	 Y = g(? − 1).	For	an	arbitrary	node,	the	probability	of	its	degree	
being	Y,	which	is	also	the	degree	distribution	function	of	the	ER	network,	is	thus	

	 ^ Y =
? − 1
Y gh(1 − g))`%`h,	 	(2.6)	

which	is	a	binomial	distribution,	where	 Ui = U!
i! U`i !

.	At	the	limit	of	large	population	? → ∞,	the	

exact	solution	of	the	degree	distribution	function	for	an	ER	network	is		

	 ^ Y =
(g?)h,`l)

Y! ,	 	(2.7)	

which	is	a	Poisson	distribution.	Consequently,	the	ER	network	is	also	normally	referred	as	Poisson	

random	graph	(Newman	2003).	

Imagine	a	node	in	an	ER	network,	with	degree	of	Y.	There	could	be	at	most	Y Y − 1 	links	among	

its	neighbours,	but	the	expected	links	are	gY Y − 1 .	Consequently,	the	clustering	coefficient	of	ER	

random	graphs	can	be	expected	to	be		

	 Wmn = g.	 	(2.8)	

Despite	that	 it	has	been	found	that	most	real-world	networks	do	not	 follow	the	Poisson	degree	

distribution	 and	 have	 generally	 denser	 clustering	 property,	 ER	model	 has	 been	widely	 used	 as	

benchmark	in	various	theoretical	network	studies,	such	as	the	cascading	failure	(Crucitti	et	al.	2004;	

Buldyrev	et	al.	2010),	spreading	dynamics	(Nekovee	et	al.	2007;	Manshour	&	Montakhab	2014)	and	

controllability	(Liu	et	al.	2011;	Liu	&	Barabási	2016)	in	networks.		

Barabási-Albert	network	

The	 discovery	 of	 the	 scale-free	 feature	 of	 networked	 systems	 (Barabási	 &	 Albert	 1999)	 largely	

boosted	the	study	of	complex	networks.	As	discussed	earlier,	the	real-world	networks	are	found	

mostly	with	power-law	degree	distributions,	rather	than	the	Poisson	distribution	predicted	by	the	

ER	network.		

To	tackle	the	inability	of	existing	network	models,	including	the	ER	random	graph	and	the	small-

world	network	(Watts	&	Strogatz	1998),	and	explain	the	origin	of	the	commonly	existed	power-law	

degree	distributions,	Barabási	and	Albert	 (1999)	argue	 two	generic	mechanisms.	First,	a	growth	

mechanism	should	be	incorporated	to	the	network	model,	instead	of	setting	a	fixed	population	of	

nodes	?.	Second,	the	preferential	attachment	mechanism	should	be	considered,	which	dominates	

the	 new	 nodes	 to	 have	 higher	 probability	 to	 connect	 to	 well-established	 (high-degree)	 nodes,	

rather	than	uniformed	attachment.	The	Barabási-Albert	(BA)	model	is	thus	developed	as	follows.	

Initially,	consider	a	fully-connected	network	with	a	small	number	op	of	nodes,	 i.e.	every	node	is	

connected	 to	 every	 other	 node.	 At	 each	 of	 the	 following	 step	 X = 1,2,3 … ,	 one	 new	 node	 is	
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introduced	along	with	o	links	 to	be	 connected	 to	existing	nodes.	 For	 each	new-coming	 link,	 its	

probability	to	be	connected	to	node	5	with	degree	Y1,	is	determined	by		

	 Π1 =
Y1

Y2
stuv`%
2w%

,	 	(2.9)	

i.e.,	 the	 probability	 is	 proportional	 to	 the	 node’s	 degree.	 Following	 such	model,	 after	 sufficient	

steps,	the	degree	distribution	is	

	 ^ Y = 2o'Y`\.	 	(2.10)	

Accordingly,	 the	 BA	 networks	 have	 power-law	 degree	 distributions	 in	 the	 form	x ∙ Y`a 	with	 an	
exponent	b = 3.		

Such	mechanisms	have	been	validated	in	empirical	networks	(Pastor-Satorras	et	al.	2001;	Jeong	et	

al.	2003),	and	the	BA	network	thus	has	been	the	most	fundamental	model	in	network	studies.		

Geometric	popularity-similarity	model	

	
Figure	 2.4	 |	 Geometric	 illustration	 for	 the	 popularity-similarity	 network	 model.	 (From	
[Papadopoulos,	F.,	Kitsak,	M.,	Serrano,	M.	Á.,	Boguná,	M.,	and	Krioukov,	D.	(2012).	Popularity	
versus	similarity	 in	growing	networks.	Nature	489(7417),	537].	Reprinted	with	permission	
from	Springer	Nature.)	

Despite	the	success	of	the	BA	model	in	describing	the	power-law	degree	distribution,	the	clustering	

feature	of	the	resulted	networks	is	trivial.	In	line	with	this,	Papadopoulos	et	al.	(2012)	argue	that	

the	popularity	(the	degree	of	nodes)	is	only	one	demission	for	the	preferential	attachment,	and	the	

trade-offs	between	popularity	and	similarity	should	be	considered.	In	practical	systems,	nodes	tend	
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to	connect	to	not	only	popular	others,	but	also	similar	others.	For	example,	in	Twitter,	a	new	user	

may	connect	to	celebrities	who	have	millions	of	followers,	and	at	the	same	time,	also	his/her	friends	

who	may	be	not	so	popular.		

Based	 on	 the	 geometric	 networks	 (Krioukov	 et	 al.	 2010;	 Boguná	 et	 al.	 2010),	 the	 popularity-

similarity	model	is	developed	incorporating	the	preference	of	new	links	for	both	popularity	(degree)	

and	similarity	(Papadopoulos	et	al.	2012).	In	the	model,	the	nodes	are	assumed	to	be	joining	the	

network	 one	 by	 one	 and	 thus	 each	 node	 can	 be	 assigned	 with	 a	 birth	 time	 X = 1, 2, 3, …	
Accordingly,	 the	 popularity	 is	 approximately	 regarded	 as	 the	 birth	 time,	 i.e.	 smaller	 index 	X	
represents	higher	popularity.	For	the	similarity,	a	circle	is	assumed	where	each	node	X	is	assigned	
to	a	random	position,	described	with	an	angular	value	zv.	By	doing	so,	the	similarity	between	two	

nodes	{ 	and	| 	can	 thus	 be	 represented	 as	 their	 angular	 distance	z}~ .	With	 the	 popularity	 and	

similarity	being	modelled,	the	network	can	be	generated	as	follows:		

1)	the	network	is	initially	empty.	

2)	at	each	step	X ≥ 1,	a	new	node	X	comes	into	the	network	at	a	random	angular	position	zv.	The	
index	(birth	time)	X	can	be	mapped	as	the	node’s	radial	coordinate	as	Äv = ln	(X).	Thus,	the	new	
coming	node	 locates	at	a	position	 in	a	hyperbolic	plane	which	can	be	 represented	by	 the	polar	

coordinates	(Äv, zv),	as	shown	in	Figure	2.4.		

3)	the	new	node	connects	to	o	existing	nodes	Ç < X	that	are	closest	to	X,	in	terms	of	the	hyperbolic	

distance	(Bonahon	2009).	The	hyperbolic	distance	between	two	nodes	{	at	(Ä}, z})	and	|	at	(Ä~, z~)	
is	given	by	8}~ = Ä} + Ä~ + ln z}~ 2 = ln {| z}~ 2 .	Accordingly,	the	o	new	coming	links	will	

connects	to	nodes	Ç	minimising	such	distance	8Ñv.		

Following	 such	procedure	 to	 reach	a	desired	population,	 gives	 the	network,	where	 the	average	

degree	is	approximately	 Y = 2o.	Though	totally	different	mechanisms	are	applied	in	comparison	

to	 the	 BA	 model,	 the	 popularity-similarity	 network	 can	 produce	 the	 similar	 power-law	 degree	

distribution	with	 the	exponent	b = 2.	Most	 importantly,	while	BA	networks	 fail	 to	describe	 the	

clustering	 feature	 of	 real	 networks,	 the	 popularity-similarity	 networks	 have	 strongest	 possible	

clustering	for	the	given	degree	distribution.	

In	the	presented	model,	the	degree	distribution	and	clustering	coefficient	seems	to	be	fixed	as	the	

popularity-similarity	 optimisation	 is	 exactly	 defined.	Modifications	 can	 be	made	 to	 the	 original	

model	to	achieve,	as	proved	by	Papadopoulos	et	al.	(2012),	power-law	distribution	with	arbitrary	

exponent,	and	arbitrary	clustering	coefficient,	such	as	adding	the	fading	effect	for	the	popularity,	

and	considering	the	connections	a	stochastic	process	involving	the	hyperbolic	distance.	

2.1.3.	Random	walks	on	networks	

It	has	been	discussed	that	the	complex	network	is	an	efficient	model	for	many	real-world	systems	

and	 studying	 the	 structure	 of	 the	 networks	 gives	 extensive	 implications	 for	 the	 understanding,	

design,	 prediction	 and	 control	 of	 such	 systems.	 When	 it	 comes	 to	 the	 dynamics	 of	 such	
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systems/networks,	the	random	walk	model	is	one	of	most	powerful	methods	to	be	applied	(Masuda	

et	al.	2017).		

A	random	walk	on	a	network	is	basically	to	assume	an	agent	who	starts	from	a	node	and	moves	to	

other	nodes	following	links	randomly.	Such	simple	process	showed	great	power	in	a	wide	range	of	

network	studies,	such	as	community	structure	detection	(Rosvall	&	Bergstrom	2008;	Fortunato	&	

Hric	2016),	node	importance	ranking	(Newman	2005;	Lv	et	al.	2016),	opinion/epidemic	spreading	

(Durrett	2010;	Cataldi	et	al.	2010;	Pastor-Satorras	et	al.	2015)	and	the	user	surfing	behaviour	on	

the	Internet	(Huberman	et	al.	1998;	Nguyen	et	al.	2015)	etc.		

In	 general,	 some	key	metrics	 are	of	 the	most	 interest	 for	 the	 study	 involving	 random	walks	 on	

networks,	including	the	Mean	First-Passage	Time,	Return	Time	and	Navigability	/	Cover	Time	and	

so	on.		

Consider	 a	 network	 with	 a	 population	 of	? 	nodes,	 and	 the	 links	 can	 be	 represented	 by	 the	

adjacency	matrix	. = 	 {012})×).	In	a	range	of	discrete	time,	a	single	walker	randomly	moves	one	

step	(from	current	node	to	one	of	its	neighbours)	at	each	time	step.	If	starting	at	X = 0	from	node	

5,	a	master	equation	can	be	laid	out	for	the	probability	of	the	random	walker	being	at	an	arbitrary	

node	6	at	a	given	time	X,	as	(Noh	&	Rieger	2004),	

	 1̂2 X + 1 =
0Ö2
YÖ 1̂Ö X

)

Öw%

,	 	(2.11)	

where	YÖ	is	the	degree	of	the	node	$.	The	first-passage	time	from	node	5	to	6,	denoting	with	Ü12,	
basically	answers	the	question	that	how	long	does	it	take	for	a	random	walker	reach	for	the	first	

time	the	target	node	6	from	the	source	5.	When	the	target	node	is	the	same	to	the	source	node,	i.e.	

5 = 6,	such	quantity	Ü11 	is	also	known	as	the	return	time,	which	represents	the	time	that	a	random	

walker	returns	to	the	node	he/she	started	for	the	first	time.	Similar	to	the	transition	probability	

shown	in	Eq.	(2.11),	the	first-passage	time	/	return	time	can	also	be	described	by	a	master	equation	

which	is	written	as	(Masuda	et	al.	2017),	

	 Ü12 = 1 +
1
Y1

01ÖoÖ2

)

Öw%

.	 	(2.12)	

Of	 course,	 the	 above	 Eq.	 (2.11)	 and	 Eq.	 (2.12)	may	 give	 different	 solutions	 for	 the	mean	 first-

passage	 time,	 depending	 on	 the	 detailed	 structure	 of	 the	 studied	 network.	 The	 mathematical	

analysis	and	computational	studies	on	the	mean	first-passage	time	in	different	types	of	network	

models	as	well	as	empirical	networks,	has	been	a	focus	in	the	filed	(Noh	&	Rieger	2004;	Condamin	

et	al.	2007;	Hwang	et	al.	2012;	Iacopini	et	al.	2018).	

Random	walks	on	networks	can	also	help	to	reveal	another	crucial	quantify	for	the	understanding	

of	 the	 networked	 systems,	 namely	 the	 navigability	 –	 to	 what	 extend	 is	 the	 network	 navigable	

(Boguná	et	al.	2009;	De	Domenico	et	al.	2014).	In	brief,	the	navigability	of	a	network	is	defined	as	

the	fraction	of	distinct	nodes	that	can	be	visited	by	the	random	walk	in	a	finite	X	steps.	Normally,	

networks	 are	 with	 complex	 structures	 such	 as	 dense	 communities	 and	 highly	 clustered	
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neighbourhood.	As	a	result,	a	random	walker	will	not	necessarily	find	a	new	node	in	every	step	of	

his/her	walk.	Theoretically,	a	X-step	random	walk	will	at	most	visit	d X = X	distinct	nodes,	and	such	
maximum	value	 is	only	 likely	to	appear	 in	tree-like	networks.	 If	 for	a	 large	step	X,	only	a	 limited	

number	 of	 distinct	 node	d(X)	could	 be	 visited,	 the	 network	 can	 then	 be	 regarded	 unnavigable.	
Accordingly,	the	quantity	d(X)/?	can	be	used	to	describe	the	navigability	of	the	network.	The	time	

that	yields	d X = ?,	 i.e.	every	of	the	possible	nodes	is	visited	for	at	least	once,	is	known	as	the	
cover	time	(Chupeau	et	al.	2015;	Maier	&	Brockmann	2017).	For	a	connected	network,	where	there	

is	at	least	a	path	connecting	every	pair	of	nodes,	the	cover	time	will	be	a	finite	value,	but	normally	

a	relatively	large	one.		

To	fit	the	purpose	of	investigating	different	networks	in	different	scenarios,	there	are	many	variant	

random	 walk	 models	 (Lin	 and	 Zhang	 2014;	 Bonaventura	 et	 al.	 2014;	 Mondragon	 2017).	 For	

example,	 a	 rather	 popular	 such	model	 is	 the	 biased	 random	walks	 (Fronczak	&	 Fronczak	 2009;	

Sinatra	et	al.	2011),	 in	which	 the	probability	 for	a	walker	 to	move	 from	current	node	 to	next	 is	

weighted	by,	for	example,	the	degree	of	the	target	node.	In	other	words,	the	walker	is	more	likely	

to	 follow	 the	 link	 which	 connects	 to	 high-degree	 node.	 Another	 interesting	 model	 is	 the	 self-

avoiding	random	walk	(Herrero	2005;	Kim	et	al.	2016),	in	which	the	random	walker	does	not	revisit	

any	node,	i.e.	only	keep	visiting	new	nodes.		

2.1.4.	Bipartite	modelling	

Above	we	have	briefly	introduced	the	complex	networks	consisting	of	only	one	kind	of	nodes,	i.e.	

all	the	nodes	are	of	the	same	kind.	For	example,	in	a	typical	social	network,	there	are	only	human	

beings	as	nodes.	Such	kind	of	networks	can	be	referred	as	unipartite	networks.		

	
Figure	2.5	|	A	toy	bipartite	network	with	two	kinds	of	nodes,	namely	the	solid	nodes	and	the	
empty	nodes.	The	networks	on	the	left	and	right	are	the	projections	of	the	bipartite	network	
by	connecting	every	pair	of	nodes	sharing	common	neighbours.	

However,	there	are,	in	the	real	world,	sometimes	that	we	need	to	model	systems	with	two	kinds	of	

nodes.	 Accordingly,	 the	 bipartite	 network	 model	 can	 be	 applied	 (Newman	 et	 al.	 2002),	 which	

conceptually	 appears	 as	 shown	 in	 Figure	 2.5.	 Theoretically,	 links	 only	 exist	 between	 nodes	 of	

different	kinds.	Mathematically,	a	bipartite	network	is	thus	normally	described	as	two	sets	of	nodes	

á = {$%, $',⋯ , $)}	and	á′ = {$′%, $′', ⋯ , $′â}	and	the	links	are	thus	represented	by	the	adjacency	
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matrix	. = 	 {012})×â ,	 where	 012 = 1 	indicates	 a	 link	 between	 nodes	 $1 	and	 $′2 	and	 012 = 0	
otherwise.		

The	 bipartite	 network	 model	 has	 found	 wide	 applications.	 For	 example,	 the	 collaborations	 of	

organisation	on	projects	can	be	modelled	as	such	network	(Barber	et	al.	2006;	Roediger-Schluga	&	

Barber	2008).	Organisations	then	compose	one	kind	of	nodes	and	the	projects	are	the	other	kind.	

While	 one	 projects	 may	 have	 multiple	 participated	 organisations,	 every	 organisation	 would	

participate	 in	 multiple	 projects	 as	 well.	 Such	 participations	 can	 thus	 be	modelled	 as	 the	 links.	

Another	 example	 is	 the	 scientific	 publication	network	 (Guimera	et	al.	 2005;	 Luong	et	al.	 2015),	

where	the	authors	and	the	publications	are	two	sets	of	nodes	respectively.		

In	 particular,	 bipartite	 networks	 offer	 great	 potential	 in	 analysing	 user	 behaviour	 where	 users	

interact	with	entities	such	as	music	(Lambiotte	&	Ausloos	2005;	Pongnumkul	&	Motohashi	2018),	

movies	(Xu	et	al.	2016)	etc.	For	generalisation,	such	networks	are	normally	referred	as	the	user-

object	bipartite	networks,	or	user-item	bipartite	networks.	In	the	present	thesis,	the	term	‘object’	

will	be	majorly	used	to	represent	all	kinds	of	entities	ranging	from	products,	books,	music,	movie	

and	so	on.	Since	the	online	recommendations	majorly	deal	with	the	interaction	between	users	and	

objects,	 the	 user-object	 bipartite	 network	 model	 naturally	 provides	 an	 efficient	 theoretical	

representation	for	such	systems.	The	user-object	bipartite	networks	also	exhibit	strong	structural	

regularities,	similar	to	the	unipartite	networks.	In	such	network,	a	user’s	degree	YJ	is	the	number	

of	 objects	 that	 s/he	 accessed	 (purchased,	 commented,	 browsed	 etc.),	 and	 thus	 can	 represents	

his/her	activeness.	On	the	other	hand,	an	object’s	degree	Yä	is	the	number	of	users	that	accessed	

it,	representing	its	popularity.	Both	the	users’	and	objects’	degree	are	found	normally	following	the	

power-law	distribution	(Shang	et	al.	2010).	Such	distribution	has	huge	implication	for	the	study	of	

the	user-object	systems.	 It	 is	 implied	that	most	users	are	 inactive,	with	only	 few	 interactions	 to	

objects,	and	as	well,	most	objects	are	not	popular	at	all.	On	the	other	hand,	there	always	exist	few	

hubs,	i.e.	users	that	are	enormously	active,	and	objects	that	are	blockbusters.	The	heterogeneity	in	

the	system	posts	challenging	problems	especially	for	the	recommender	system.	According	to	the	

square-based	clustering	coefficient	(Lind	&	Herrmann	2007),	the	user-object	bipartite	networks	are	

shown	 with	 strong	 clustering	 feature	 which	 can	 be	 used	 to	 describe	 individual	 user’s	 interest	

diversity	(Liu	et	al.	2013a).	

Efforts	have	also	been	devoted	to	developing	artificial	bipartite	networks	reproduce	the	commonly-

existed	regularities,	such	as	the	catalogue	model	(Beguerisse	Díaz	et	al.	2010)	and	the	global-local	

preferential	model	(Pan	et	al.	2017).		

There	is	a	technique	that	can	transfer	bipartite	networks	to	unipartite	networks,	which	is	known	as	

the	bipartite	projection	(Zhou	et	al.	2007;	Zweig	&	Kaufmann	2011).	Such	technique	is	necessary	

due	to	the	common	needs	of	many	systems.	For	example,	while	authors	collaborating	in	articles	

can	 be	 represented	 by	 author-article	 bipartite	 networks,	 one	 may	 still	 be	 interested	 in	 the	

collaboration	networks	among	authors	(Newman	2001a;	Abbasi	et	al.	2012).	One	simple	method	

for	the	conversion	is	to	establish	links	between	nodes	that	share	at	least	one	common	neighbour	

(Zhou	et	al.	2007).	Normally,	 in	networks,	 these	nodes	that	connected	with	the	target	node	are	

considered	as	 its	neighbours.	The	common	neighbour	of	two	nodes	are	thus	the	nodes	that	are	
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connected	to	both	of	them.	As	shown	in	Figure	2.5,	the	bipartite	network	can	be	projected	on	basis	

of	 either	 kind	 of	 nodes.	 Taking	 the	 solid	 node	 {1,2,3,4}	 as	 an	 example,	 the	 node	 1	 shares	 one	

common	neighbour	with	node	2,	i.e.	the	empty	node	C,	and	thus	a	link	should	connect	1	and	2	in	

the	projected	network.	On	the	other	hand,	node	1	does	not	have	any	common	neighbour	with	the	

nodes	3	and	4,	and	thus	no	links	existed	between	node	1	and	nodes	3	and	4.	Following	such	method,	

the	projected	unipartite	network	would	result,	in	which	the	structure	and	interaction	of	one	kind	

of	 nodes	 can	 be	 analysed.	 The	 bipartite	 projection	 has	 been	widely	 applied	 (Buldú	et	 al.	 2007;	

Ribeiro	et	al.	2013;	Del	Vicario	et	al.	2017).	With	different	considerations,	there	exist	a	number	of	

other	projection	methods	(Zweig	&	Kaufmann	2011;	Wu	et	al.	2014;	Banerjee	et	al.	2017)	such	as	

considering	the	temporal	pattern	and	assign	weights	according	to	the	co-occurrence	of	nodes.			

2.2.	Network-Based	Similarity	Measures	

In	networks,	the	most	fundamental	element	is	the	links	which	describe	the	relation	among	nodes.	

However,	networks	are	mostly	sparse,	that	most	pairs	of	nodes	do	not	have	actual	connections.	

Two	nodes	having	no	direct	connection	does	not	necessarily	mean	that	they	have	no	relation.	For	

example,	two	persons	that	don't	know	each	other	may	still	have	common	friends	which	can	act	as	

an	indicator	for	their	potential	relation.	Such	relation	can	be	generally	described	as	‘similarity’.	The	

similarity	between	anything	of	course	can	be	considered	relating	to	their	internal	feature,	such	as	

for	two	persons,	their	social	status,	background	or	education	level	etc.	In	terms	of	the	networks,	

the	similarity	between	two	nodes	can	be	measured	by	their	common	neighbours,	which	is	normally	

referred	 as	 structural	 similarity.	 The	 underlying	 philosophy	 is	 basically	 the	 same	 to	 the	widely-

known	association	rules	(Mobasher	et	al.	2001;	Sandvig	et	al.	2007).		

Therefore,	the	study	of	node	similarity	in	networks	tries	to	answer	a	simple	question	that,	given	the	

structure	of	a	network,	how	to	quantify	the	similarity	between	any	pair	of	nodes.	The	most	direct	

and	widely-used	such	method	is	known	as	the	Common	Neighbour	(CN)	measure	which	regards	the	

number	of	common	neighbours	as	the	similarity	between	two	nodes.	For	the	nodes	{	and	|,	the	
CN	similarity	is	mathematically	defined	as		

	 Ç}~ã) = Γ} ∩ Γ~ ,	 	(2.13)	

where	Γ1 	is	 the	 set	 of	 the	 neighbours	 of	 node	5 ,	 and	 . 	gives	 the	 number	 of	 element	 of	 a	 set.	

Accordingly,	 the	 raw	 number	 of	 common	 neighbours	 is	 the	 similarity	 between	 two	 nodes.	 For	

example,	in	a	social	network,	two	people	sharing	10	common	friends	would	have	a	similarity	of	10,	

and	can	be	considered	similar	with	large	likelihood	to	establish	connections	in	the	future.	However,	

imagine	that	these	two	people	both	have	a	very	large	number	of	friends,	i.e.	very	large	degrees,	

then	the	similarity	of	10	seems	to	become	less	significant.	 In	comparison,	 if	another	pair	of	two	

persons	both	have	only	10	friends	and	all	of	these	are	their	common	friends,	their	similarity	actually	

should	be	much	higher	despite	the	fact	that	CN	still	considers	it	to	be	10.	In	brief,	the	CN	similarity	

tend	 to	 overestimate	 the	 similarity	 between	 large-degree	 nodes,	 because	 they	 generally	 share	

more	common	neighbours	with	others	even	by	chance.	As	a	result,	it	has	been	argued	that	the	CN	
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measure	can	only	well	describe	those	strongly	assortative	networks	where	high-degree	nodes	tends	

to	connect	with	high-degree	nodes	(Newman	2001b;	Clauset	et	al.	2008).	

Inspired	by	the	CN	measure,	and	 its	correlation	with	the	degrees	of	 the	measured	nodes,	some	

variant	measures	have	been	trying	to	normalise	the	number	of	common	neighbours.	Three	famous	

and	fundamental	normalisers	are	considered	by	the	Salton	(SAL)	measure,	Jaccard	(JAC)	measure	

and	 the	 Sorensen	 (SOR)	 measure,	 which	 are	 Y}Y~ 	,	 (Y} + Y~ − Ç}~ã)) 	and	 (Y} + Y~)/2	
respectively.	A	Hub-Promoted	(HP)	measure	(Ravasz	et	al.	2002)	was	developed	by	normalising	the	

raw	number	of	common	neighbours	by	the	smaller	degree	between	the	measured	nodes,	i.e.	the	

normaliser	min(Y}, Y~).	Similarly,	the	Hub-Depressed	(HD)	measure	uses	the	larger	value	for	the	

normalisation	 i.e.	max(Y}, Y~).	 The	mathematical	 definitions	 of	 these	measures	 can	 be	 simply	

achieved	by	dividing	the	CN	similarity	with	the	normaliser	respectively,	which	read	

	 Ç}~íìî =
Γ} ∩ Γ~
Y}Y~

,	 	(2.14)	

	
Ç}~íïn =

2 Γ} ∩ Γ~
Y} + Y~

,	
	(2.15)	

	
Ç}~
ñìã =

Γ} ∩ Γ~
Y} + Y~ − Γ} ∩ Γ~

,	
	(2.16)	

	
Ç}~óò =

Γ} ∩ Γ~
min(Y}, Y~)

,	
	(2.17)	

	
Ç}~óô =

Γ} ∩ Γ~
max(Y}, Y~)

,	
	(2.18)	

respectively.	

By	considering	the	number	of	paths	connecting	two	measured	nodes,	Leicht	et	al.	(2006)	developed	

a	global-based	LHN	measure	which	defines	the	similarity	as	

	 Ç}~
îó)`öõäUiõ =

2oú
Y}Y~

ù −
û
ú .

`%

}~
,	 	(2.19)	

where	o	is	the	number	of	links	in	the	network,	ú	is	the	largest	eigenvalue	of	the	adjacency	matrix	

. ,	 and	û < 1 	is	 a	 free	 parameter.	 This	 similarity	 measure	 considers	 not	 only	 the	 very	 local	

structure,	 i.e.	 the	direct	 neighbours,	 but	 also	 the	higher-order	 neighbours.	 There	 is	 also	 a	 local	

version	of	 this	measure	which	considers	only	 the	paths	with	 length	2,	which	reads	 (Leicht	et	al.	

2006)	

	 Ç}~îó) =
Γ} ∩ Γ~
Y}Y~

.	 	(2.20)	

Besides	the	degree	of	 the	measured	nodes,	 the	degree	of	 the	 intermediate	nodes,	 i.e.	common	

neighbours,	is	also	affecting	the	similarity	between	two	nodes.	Imagine	that	two	users	commonly	

favouring	the	same	popular	music	should	be	less	similar	than	the	case	that	two	users	commonly	
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favouring	the	same	niche	music.	Taking	the	degree	of	the	intermediate	nodes	as	weights	to	the	CN	

measure,	the	Adamic-Adar	(AA)	measures	(Adamic	&	Adar	2003)	defines	the	similarity	as	

	 Ç}~ìì =
1

ln	(YÖ)Ö∈ü†∩ü°

.	 	(2.21)	

Assuming	that	these	intermediate	nodes	act	as	the	transmitter	that	spreads	the	resources	taking	

from	node	{ 	evenly	 to	 its	 neighbours,	 the	Resource	Allocation	 (RA)	measure	 (Zhou	et	 al.	 2009)	

regards	the	amount	of	resources	that	node	|	receives	as	the	similarity,	which	writes	as	

	 Ç}~nì =
1
YÖÖ∈ü†∩ü°

.	 	(2.22)	

So	far,	all	of	the	above	similarity	measures	were	proposed	for	the	unipartite	networks.	However,	

according	to	the	definition	of	these	measures,	they	can	be	naturally	applied	to	bipartite	networks	

without	future	modification.		

	
Figure	2.6	|	 Illustration	for	the	Mass	Diffusion	(upper	path)	process	and	Heat	Conduction	
(bottom	path)	process.	

Particularly	based	on	the	bipartite	network,	two	widely-discussed	similarity	measures,	namely	the	

Mass	Diffusion	(MD)	measure	(Zhou	et	al.	2007)	and	Heat	Conduction	(HC)	measure	(Zhang	et	al.	

2007),	 have	 been	 developed	 considering	 the	 spreading	 process	 in	 the	 bipartite	 network.	 Both	

measures	assume	that	a	source	node	has	a	unit	(1)	of	resource,	and	all	the	other	nodes	have	nothing	

(0)	initially	as	shown	in	Figure	2.6.	They	believe	that	the	similarity	between	two	nodes	of	the	same	

kind	(at	the	same	side	of	the	bipartite	network)	can	be	measured	by	the	amount	of	resource	spreads	

from	the	source	node	to	the	target	node.	The	mechanisms	of	such	spreading	process	are	different	

for	the	two	measures,	leading	to	total	different	definition	and	resulted	similarities.		

The	MD	measure	assumes	 that	 the	 resource	 should	 spread	 similarly	 to	 the	diffusion	process	of	

mass,	where	each	node	evenly	distributes	its	resource	to	its	neighbours.	In	the	example	shown	in	
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Figure	2.6,	node	1	has	a	unit	of	resource	initially.	The	first	step	of	the	spreading	is	from	the	circle	

nodes	to	square	nodes,	where	each	of	node	1’s	neighbours	receives	1/3	resources.	In	the	second	

step,	the	resource	spreads	from	square	nodes	back	to	circle	nodes,	where	each	of	the	nodes	A,	B	

and	C,	distributes	the	resource	evenly	back	to	circle	nodes	according	to	their	degree.	For	example,	

node	A	gives	node	1	and	node	4	each	with	1/6	resource;	node	B	gives	node	1,	2,	3,	and	4	each	with	

1/12	resource.	As	a	result,	node	4	then	has	resource	1/6	+	1/12	=	1/4.	Accordingly,	MD	measure	

considers	 the	similarity	 from	node	1	 (source	node)	 to	node	4	 (target	node)	as	1/4.	 In	a	general	

process,	 the	MD	similarity	between	a	source	node	{	and	a	target	node	|	can	be	mathematically	

defined	as		

	 Ç}~âô =
1
Y}

1
YÖÖ∈ü†∩ü°

.	 	(2.23)	

On	the	other	hand,	HC	measure	considers	such	process	as	the	conduction	of	heat,	where	each	node	

receives	heat	that	should	be	the	average	of	its	neighbours’.	For	example,	in	Figure	2.6,	node	A	has	

two	neighbours	namely	node	1,	2	with	heat	of	1	and	0	respectively.	Thus,	in	the	first	step,	node	A’s	

heat	is	the	average	of	node	1	and	2,	resulting	1/2.	Similarly,	node	B	has	the	average	heat	among	

node	1,	2,	3,	4,	which	is	1/4.	In	the	second	step,	where	the	heat	conducts	back	to	circle	nodes,	the	

same	mechanism	applies.	The	node	4	gets	the	average	heat	between	its	neighbours,	node	A	and	B,	

which	is	(1/2 + 1/4)/2 = 3/8.	Mathematically,	the	HC	similarity	between	a	source	node	{	and	a	
target	node	|	writes	

	 Ç}~óã =
1
Y~

1
YÖÖ∈ü†∩ü°

.	 	(2.24)	

According	to	the	mathematical	definition	shown	in	Eq.	(2.23)	and	(2.24),	one	may	find	MD	and	HC	

very	similar	to	each	other.		Despite	the	spreading	process,	both	MD	and	HC	measure	takes	the	form	

of	the	RA	similarity,	which	is	the	weighted	summation	over	common	neighbours,	but	dividing	with	

different	degrees.	MD	divides	RA	with	the	degree	of	the	source	node,	while	HC	divides	RA	with	the	

degree	 of	 the	 target	 node.	 As	 a	 result,	 one	 has	 the	 relation	Ç}~âô = Ç~}óã .	 However,	 due	 to	 the	
different	 dividers,	 the	 MD	 and	 HC	 measures	 have	 vastly	 different	 performances	 in	 the	 link	

prediction	 and	 personalised	 recommendations.	 Additionally,	 while	 all	 the	 other	 measures	 are	

mathematically	 symmetrical,	 i.e.	 one	 has	 Ç}~ = Ç~} ,	 the	 HC	 and	 MD	 similarities	 are	 not	

symmetrical,	Ç}~âô ≠ Ç~}âô	and	Ç}~óã ≠ Ç~}óã .		

2.3.	Personalised	Recommendation	

2.3.1.	Recommendation	techniques	

Given	 the	 history	 records	 of	 a	 group	 of	 users	 interacting	 with	 objects,	 such	 as	 books,	movies,	

products,	what	should	be	recommended	to	a	target	user	which	have	the	highest	possibility	fitting	

his/her	interests?	This	is	the	basic	task	that	personalised	recommendation	aims	to	accomplish	(Park	

et	al.	2012;	Lu	et	al.	2015).	To	this	end,	many	techniques	have	been	developed.	Given	the	advances	

in	 the	 artificial	 intelligence,	 the	 neural	 networks	 have	 been	 applied	 to	 develop	 recommender	
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systems	(Christakou	et	al.	2007;	Covington	et	al.	2016;	Katzman	et	al.	2018).	The	genetic	algorithms	

have	also	found	applications	in	making	recommendations	(Bobadilla	et	al.	2011;	Hassan	&	Hamada	

et	al.	2017).	Embedding	the	social	network	analytics,	recommendations	can	be	made	according	to	

the	trust	of	users	(Massa	&	Avesani	2009;	Wang	et	al.	2015),	or	social	tags	(Konstas	et	al.	2009;	

Zhang	 et	 al.	 2011).	 Taking	 advantages	 of	 different	 techniques,	 hybrid	methods	 have	 also	 been	

developed	 (Zhou	 et	 al.	 2010;	 Tarus	 et	 al.	 2017).	 Besides,	 the	matrix	 factorisation	 is	 also	 found	

capable	to	generate	accurate	recommendations	(Koren	et	al.	2009;	Hernando	et	al.	2016;	Xu	2018).		

Among	 various	 techniques,	 two	major	 methods,	 namely	 the	 content-based	 technique	 and	 the	

collaborative	filtering,	are	most	widely-applied.	

Content-based	technique	

Among	the	techniques,	the	content-based	method	(Pazzani	&	Billsus	2007;	Aggarwal	2016)	is	the	

most	straightforward	one.	Basically,	such	system	defines	objects	in	terms	of	attributes	which	can	

be	 possibly	 attracted	 from	 the	 object	 description,	 category	 or	 user-generated	 tags	 etc.	 The	

attributes	of	objects	are	vastly	different	 for	different	 types	of	systems.	For	example,	 in	a	movie	

recommender,	 the	attributes	could	be	movie	 type,	director,	production	company	or	actors.	The	

system	 analyses	 the	 common	 attributes	 of	 a	 target	 user’s	 historical	 selections,	 and	 accordingly	

recommends	objects	that	have	the	same	attributes	to	this	user.	If	a	user	has	watched	several	Sci-Fi	

movies,	 then	more	Sci-Fi	movies	would	be	 recommended;	 if	 a	user	bought	a	book	written	by	a	

particular	author,	more	books	by	this	author	would	be	recommended.	Such	philosophy	is	simple,	

but	the	determination	of	the	attributes	is	rather	complicated.	First	of	all,	attributes	are	not	always	

available,	or	 there	may	be	not	enough	dimensions	of	attribute	 to	accurately	define	 the	objects.	

Secondly,	every	system	would	largely	depend	on	in-depth	investigation	to	determine	appropriate	

combinations	of	attributes	due	to	the	lack	of	interoperability	among	different	systems.	Thirdly,	such	

mechanism	may	produce	redundant	recommendations,	such	as	a	user	bought	a	computer	would	

not	need	another	computer	anymore.		

Collaborative	filtering	

The	 collaborative	 filtering	 (Goldberg	 et	 al.	 1992;	 Resnick	 et	 al.	 1994;	 Nilashi	 et	 al.	 2014)	 is	 a	

technique	that	makes	recommendations	based	on	the	wisdom	of	the	collective,	which	is	also	known	

as	 neighbourhood	method	 or	memory-based	method	 (Breese	 et	 al.	 1998;	 Ning	 et	 al.	 2015).	 It	

examines	the	co-accessing	patterns	between	objects	and	users,	and	defines	the	similarity	according	

to	how	frequently	two	objects,	or	two	users,	have	the	same	connections.	The	similarity	measures	

introduced	earlier	in	section	2.2	are	basically	the	collaborative-based	similarities,	all	of	which	can	

be	applied	in	such	recommender	systems.		

The	collaborative	filtering	can	be	further	categorised	as	user-based	system	(Zhao	&	Shang	2010)	

and	object-based	system	(Sarwar	et	al.	2001).	The	user-based	system	firstly	evaluates	the	similarity	

among	users,	and	recommend	a	target	user	what	his/her	friends	(similar	users)	likes.	On	the	other	

hand,	 an	object-based	 recommender	 system	evaluates	 the	object	 similarity	 and	 recommends	 a	

target	user	with	objects	that	are	similar	to	his/her	historical	selections.	In	practice,	the	object-based	

collaborative	filtering	has	the	widest	applications,	such	as	the	Amazon	(Schafer	et	al.	2001;	Linden	
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et	al.	2003)	and	YouTube	(Davidson	et	al.	2010).	Accordingly,	the	present	thesis	will	majorly	focus	

on	the	object-based	systems.	Actually,	the	algorithms	are	basically	applicable	directly	to	the	user-

based	systems	with	simple	change	of	position	for	object	nodes	and	user	nodes.		

The	object-based	collaborative	filtering	normally	targets	at	an	individual	user,	say	£,	to	recommend	

objects	according	to	his/her	historical	records.	With	the	similarity	among	objects	being	calculated	

according	to	an	arbitrary	measure	introduced	in	section	2.2,	the	system	calculates	a	score	for	every	

object	û	for	the	target	user	£,	as		

	 §J• = Çä•
ä∈ü¶

,	 	(2.25)	

where	ΓJ	is	the	set	of	objects	that	user	£	has	historically	selected	and	Çä• 	is	the	similarity	between	

the	object	ß	and	û.	Such	score	§J• 	describes	the	likelihood	that	the	object	û	being	selected	by	user	
£	in	the	future.	Normally,	a	length	of	recommendation	list	should	be	determined	as	;,	which	largely	
varies	for	different	systems.	Thus,	for	the	target	user	£,	;	objects	that	have	the	highest	score	would	
be	recommended.	

The	recommendation	technique	of	the	collaborative	filtering	is	easy,	but	the	performance	of	the	

recommendations	largely	relies	on	the	measure	of	quantifying	the	similarity.	There	are	apparent	

advantages	with	this	technique.	Firstly,	it	needs	only	the	structure	of	the	user-object	interactions	

as	 input.	As	a	 result,	 it	 does	not	have	 to	handle	 the	 complexity	 caused	by	 the	 consideration	of	

internal	attributes	of	objects	and	user	profiles.	Secondly,	such	method	is	applicable	directly	to	a	

wide	 range	 of	 systems	 with	 different	 types	 of	 objects,	 because	 it	 does	 not	 require	 a	 unified	

attributes	definition.	Thirdly,	due	to	the	application	of	association	rules	(structure	similarities),	it	is	

possible	 to	 uncover	 the	 hidden	 patterns	 of	 consumer	 behaviour,	 and	 thus	 make	 diverse	 and	

accurate	recommendations.		

2.3.2.	Evaluation	metrics	

In	 order	 to	 test	 the	 recommendation	 algorithms,	 normally	 one	 may	 divide	 the	 user-object	

interaction	data	into	two	sets,	i.e.	a	training	set	and	a	testing	set	according	to	a	certain	ratio.	In	the	

experiments,	one	uses	the	training	set	as	the	historical	data	to	generate	recommendation	list	with	

length	;	for	each	user	and	then	evaluate	the	performance	by	comparing	the	recommended	list	and	

the	 actual	 selections	 in	 the	 testing	 set.	 There	 are	 many	 aspects	 of	 the	 recommendation	

performances	 have	 been	 addressed,	 among	 which	 the	 accuracy	 and	 diversity	 got	 the	 most	

attentions.	

Accuracy	metrics	

For	a	 target	user	£,	 in	 the	 testing	set,	 there	are	a	 list	of	objects	 that	 the	user	actually	 selected,	
denoting	with	ΓJvIÑv .	 These	 objects	 in	ΓJvIÑv 	are	 regarded	 as	 the	 user’s	 future	 selections.	On	 the	
other	hand,	the	recommender	system	will	calculate	the	score	of	each	object	for	the	target	user	and	

rank	all	the	objects	accordingly.	The	accuracy	metrics	are	basically	to	examine	whether	the	objects	

in	ΓJvIÑv	are	ranked	at	the	top	of	the	list.		



Chapter	2.	Literature	Review	

	 27	

Since	the	objects	ranked	at	the	top-;	positions	will	be	recommended	to	the	target	user,	displaying	

on	the	webpage,	it	is	apparent	that	the	most	fundamental	metrics	should	check	the	match	between	

these	;	objects	 and	 the	ΓJvIÑv .	 If	 an	 object	 that	 recommended	 to	 the	 user	 (ranked	 in	 the	 top-;	
position)	also	appears	in	the	testing	set	ΓJ,	this	object	can	be	called	a	hit.	The	number	of	hits	for	

the	target	user	£,	denoting	with	ℎJ(;),	can	thus	represent	the	accuracy	of	the	recommendations	

to	the	user.	Depending	on	the	ways	to	normalise	the	number	of	hits,	two	metrics	namely	Precision	

and	Recall	are	normally	used,	which	are	defined	as	gJ ; = ℎJ(;)/;	and	ÄJ ; = ℎJ(;)/|ΓJvIÑv|	
respectively.	One	may	notice	that,	the	precision	describes	how	many	of	the	;	recommendations	

are	accurate,	while	the	recall	is	the	ratio	of	objects	in	ΓJvIÑv	being	retrieved.	Averaging	over	all	the	
users,	the	precision	and	recall	can	be	used	to	describe	the	accuracy	of	the	recommender	system,	

which	write		

	 ^(;) =
1
™

ℎJ(;)
;

J

,	 	(2.26)	

and	

	 ´(;) =
1
™

ℎJ(;)
|ΓJvIÑv|J

,	 	(2.27)	

respectively,	where	™	is	the	total	number	of	users.	The	values	of	precision	and	recall	locates	in	the	

range	 [0,	1],	with	 lower-limit	0	 representing	 totally	 inaccurate	 (no	hits	at	all),	and	upper-limit	1	

representing	completely	accurate.		

According	to	the	definition,	one	can	find	that	the	precision	and	recall	both	rely	on	the	pre-defined	

length	 of	 the	 recommendation	 list,	; .	 The	 ranking	 score	´¨ 	is	 another	widely-applied	 accuracy	
metric	which	is	independent	from	the	recommendation	list	length.	The	principle	of	ranking	score	is	

that	the	higher	ranking	for	the	objects	in	testing	set	represents	better	accuracy.	If	we	denote	the	

rank	of	an	object	ß	in	user	£'s	list	with	ÄJä,	the	ranking	score	´¨	reads,	

	 ´¨ =
1

|ΓvIÑv|
ÄJä

? − |ΓJv≠i1G|ä∈ü¶ÆØ∞ÆJ

,	 	(2.28)	

where	ΓvIÑv 	is	 the	 full	 testing	 set,	 and	|ΓvIÑv| 	is	 thus	 the	 number	 of	 records	 in	 the	 testing	 set	

regardless	of	the	user,	ΓJv≠i1G	is	the	user	£’s	selections	in	the	training	set,	and	?	is	the	total	number	

of	objects.	Consequently,	the	accuracy	RS	ranges	in	(0,1)	and	the	larger	value	of	RS	represents	less	

accurate	recommendation	and	the	smaller	value	of	RS	stands	for	more	accurate	recommendation.	

Diversity	metrics	

In	practice,	to	ensure	the	accuracy	of	the	recommendation,	a	system	can	simply	recommend	the	

most	popular	objects	to	every	user.	It	has	been	shown	that	recommending	according	to	the	global	

ranking	of	the	object	popularity	may	lead	to	reasonable	accuracy	(Zhou	et	al.	2010),	because	after	

all,	popular	objects	fit	most	users’	interests.	However,	recommending	only	popular	objects	is	of	less	

meaning,	since	these	popular	objects	such	as	Oscar	movies	or	famous-branded	products	are	well	

known	 by	 the	 users	 already.	 The	 users	 thus	may	 expect	more	 personalized	 recommendations.	

Accordingly,	many	 studies	have	been	arguing	 that	 the	 recommendations	 should	be	diverse	and	

novel	(McNee	et	al.	2006;	Vargas	&	Castells	2011).		
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To	 address	 the	 ability	 of	 a	 recommender	 to	 recommend	unpopular	objects,	 the	metric	Novelty	

?ß$(;)	is	widely	used,	which	 is	defined	as	the	average	popularity	 (degree)	of	all	 recommended	

objects,	i.e.	(Lv	et	al.	2012),	

	 ?ß$(;) =
1

™ ∙ ; Yä
ä∈±¶J

,	 	(2.29)	

where	ΩJ	is	the	set	of	;	objects	being	recommended	to	user	£,	and	Yä	is	the	popularity	of	an	object	
ß,	i.e.	how	many	users	have	selected	this	object	in	the	training	set.	Accordingly,	the	smaller	value	

of	novelty	would	suggest	better	ability	of	the	algorithm	in	recommending	unpopular	objects.	

The	recommender	is	also	expected	to	be	able	to	generate	personalised	recommendations,	which	

requires	 the	 recommendation	 lists	of	different	users	 to	be	as	different	as	possible.	For	any	 two	

users	5	and	6,	assuming	 there	are	f12(;)	same	objects	 in	 their	 recommendation	 lists	of	 length	;,	
one	 can	 use	 the	Hamming	 distance	 to	 calculate	 the	 degree	 to	which	 two	 lists	 are	 different,	 as	

≥12 ; = 1 − f12(;)/;.	Averaging	over	all	pairs	of	users,	the	metric	Personalisation	¨(;)	is	defined	
as		

	 ¨ ; = ≥12 ; =
1

™ ∙ (™ − 1) (1 −
f12 ;
; )

1,2∈¥,1>2

,	 	(2.30)	

where	¥	is	 the	 full	 set	 of	 users.	 Hence,	 the	 upper	 limit	¨ ; = 1	represents	 the	 totally	 diverse	
condition,	under	which	every	user's	 list	 is	completely	different	from	others’,	and	the	 lower-limit	

¨ ; = 0	means	all	the	recommendation	lists	are	identical.	

2.4.	Recommendation	Networks	

In	many	online	systems,	recommendations	are	not	only	made	for	target	users,	but	also	for	objects.	

It	is	a	common	scenario	that	on	the	webpage	of	an	object,	there	would	be	a	list	of	recommendations	

consisting	of	other	objects	with	hyperlinks	that	the	system	considers	’similar’	to	the	current	one.	

Such	similar	object	recommendations	can	be	widely	found	in	online	systems,	ranging	from	retail	

website	Amazon’s	“Customers	who	bought	this	item	also	bought”	list,	to	scientific	article	database	

ScienceDirect	as	shown	in	Figure	2.7.	While	the	objects	in	online	systems	are	displayed	in	dedicated	

webpages,	there	are	hyperlinks	connecting	the	source	object	to	the	recommended	objects	in	the	

similar-object	 list.	 Accordingly,	 one	 can	 imagine	 the	 massive	 volume	 of	 objects	 in	 a	 content-

browsing	 system	 connected	 to	 each	 other	 via	 such	 recommendation	 hyperlinks,	 as	 a	 directed	

network	as	shown	in	Figure	2.8,	which	is	normally	refereed	as	the	recommendation	network,	or	

product	 network.	 In	 such	 network,	 the	 node	 is	 the	 webpage	 of	 an	 object,	 and	 the	 link	 is	 the	

hyperlink	representing	the	recommendation	determined	by	the	similarity	between	two	objects.	In	

particular,	given	the	mechanism	of	constructing	such	network,	the	out-degree	of	each	node	is	fixed,	

which	is	the	length	of	the	recommendation	list.		
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Figure	 2.7	 |	 Screenshots	 from	 amzon.com,	 yelp.com,	 bbc.co.uk/news,	 youtube.com	 and	
sciencedirect.com	 respectively	 to	 illustrate	 the	 common	 existence	 of	 similar-object	
recommendation	in	real	online	systems.	

	
Figure	2.8	|	An	example	of	recommendation	networks	from	amazon.	Every	book,	as	a	node,	
is	 the	 webpage	 of	 the	 corresponding	 book,	 and	 the	 directed	 links	 are	 recommendation	
hyperlinks.	

The	 recommendation	 networks	 are	 in	 nature	 different	 from	 the	 personalised	 recommendation	

which	is	introduced	in	section	2.3.	Theorising	the	problem	as	link	prediction	in	user-object	bipartite	

networks,	the	personalised	recommendation	considers	the	historical	behaviour	of	a	target	user	and	

recommends	objects	 specifically	 for	 this	 user.	 The	 recommendations	 are	 thus	 personalised,	 i.e.	

different	 for	 different	 users.	 In	 contrast,	 a	 recommendation	 network	 is	 emerged	 through	
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recommendations	for	objects,	i.e.	similar	objects.	Accordingly,	the	recommendations	for	an	object,	

are	 not	made	 for	 any	 particular	 user,	 but	 for	 all	 the	 users	 browsing	 this	 object.	 Both	 kinds	 of	

recommendations	 may	 share	 the	 same	 technique	 of	 quantifying	 similarities.	 Though	 the	

personalised	 recommendations	 can	 be	 user-based,	 most	 such	 systems	 are	 based	 on	 object	

similarities.	As	a	consequence,	the	first,	also	the	most	important	step	for	both	recommendations	is	

to	 evaluate	 the	 object	 similarity	 µ = {Ç12})×) .	 For	 similar	 object	 recommendation,	 i.e.	 the	

recommendation	networks,	the	system	directly	connects	the	most	similar	objects	with	hyperlinks,	

and	thus	networks	can	be	achieved.	On	the	other	hand,	for	personalised	recommendations,	the	

system	still	needs	to	consider	a	target	user	£’s	historical	records	ΓJ,	which	is	a	set	of	objects	that	
historically	 been	 selected	 by	 the	 user.	 Accordingly,	 the	 system	 calculates	 the	 recommendation	

score	of	each	object	for	the	target	user	according	to	Eq.	(2.25)	and	the	objects	with	highest	scores	

get	recommended.	In	practical	systems,	both	personalised	recommendations	and	recommendation	

network	are	normally	available.	The	personalised	recommendation	can	be	regarded	as	a	mean	of	

starting	to	access	information,	being	an	alternative	to	the	search	engine.	While	a	user	is	accessing	

the	objects,	regardless	of	whether	he/she	started	from	clicking	on	recommendation	or	searching	

keywords,	the	recommendation	network	can	be	a	good	way	to	correct	the	initial	bias,	and	leads	

the	user	to	relevant	objects.		

In	comparison	to	the	personalised	recommendation,	the	study	on	recommendation	networks	has	

a	 relatively	 short	history.	To	 the	best	of	our	knowledge,	 the	earliest	 such	study	 is	on	 the	music	

recommendation	networks.	Cano	et	al.	 (2006)	 collect	 the	 recommendation	networks	 from	 four	

popular	music	websites,	and	analysed	the	basic	structural	topology	of	these	networks.	It	is	shown	

that,	recommendation	networks	are	similar	to	most	other	empirical	networks,	with	short	average	

shortest-path	 length	 and	 high	 clustering	 coefficient.	 Among	 the	 four	 music	 recommendation	

networks,	there	are	two	constructed	by	the	collaborative	efforts	of	users,	i.e.	according	to	the	co-

accessing	pattern,	and	the	other	two	are	constructed	by	experts.	They	find	that	the	collaborative-

based	 recommendation	 networks	 have	 power-law	 in-degree	 distribution,	 while	 the	 expert-

generated	networks	have	exponential	 in-degree	distribution.	 In	 addition	 to	 the	empirical	music	

recommendation	networks,	Buldú	et	al.	(2007)	project	the	playlists	(can	be	regarded	as	bipartite	

networks	between	playlists	and	individual	music)	as	a	network	of	music,	and	explored	the	growing	

dynamic	of	 the	network.	Besides,	 it	 is	 found	 that	 the	music	 recommendation	network	 is	biased	

towards	the	popular	artists	(Celma	&	Cano	2008).		

Besides	the	topology	of	the	recommendation	networks,	significant	amount	of	attentions	have	been	

paid	to	the	interplay	between	recommendation	networks	and	product	performances,	such	as	the	

demand	 and	 sales.	 Oestreicher-Singer	 and	 Sundararajan	 (2012a,	 2012b)	 analyse	 the	 book	

recommendation	network	collected	from	Amazon,	and	find	that	the	PageRank	centrality,	which	is	

a	measure	for	a	node’s	position	in	a	network,	and	some	other	quantities	such	as	the	in-degree,	are	

closely	associated	with	 the	books’	demand	measured	by	 the	 sales	 rank	of	 the	book	 in	Amazon.	

Leem	and	Chun	(2014)	further	examine	the	other	centrality	measures,	including	degree	centrality,	

closeness	centrality,	betweenness	centrality,	eigenvector	centrality,	and	confirmed	the	argument	

of	Oestreicher-Singer	 and	 Sundararajan	 (2012a,	 2012b)	 that	 the	 demand	 of	 the	 books	 is	 vastly	

influenced	by	the	position	of	the	books	in	the	recommendation	networks.	Lin	et	al.	(2017)	report	

that	the	network	diversity	and	network	stability	have	also	significant	 influence	over	the	product	
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demands.	Assuming	the	revenue	of	a	product	as	the	summation	of	its	intrinsic	value	and	incoming	

value,	Oestreicher-Singer	et	al.	(2013)	develop	a	metric	to	estimate	the	network	value	of	products,	

which	 consists	 the	 value	 generated	 by	 itself,	 and	 the	 value	 it	 contributes	 to	 other	 products.	

Together	with	the	social	network	among	users,	product	recommendation	network	composes	the	

dual-network	structure	in	content-browsing	systems.	Goldenberg	et	al.	(2012)	argue	that	such	dual-

network	structure	in	the	Youtube	system	largely	facilitates	the	exploration	for	the	contents.	

The	recommendation	networks	are	also	found	able	to	spread	the	demand,	and	the	word-of-mouth.	

While	 the	 external	 events,	 such	 as	 a	 book	 review	 in	 a	 TV	 show,	 may	 boost	 the	 sales	 of	 the	

corresponding	 product,	 Carmi	 et	 al.	 (2009,	 2017)	 argue	 that	 such	 boosts	may	 spread	 over	 the	

recommendation	network.	For	a	focal	product	that	stimulated	by	an	external	event,	its	sales	would	

increase	significantly	in	the	following	days.	Such	growth	of	sales	can	also	be	observed	in	the	focal	

product’s,	not	only	the	direct,	but	up	to	4th	order	neighbours.	In	other	words,	a	product’s	sudden	

sale	growth	can	spread	as	far	as	four	clicks	away	on	the	recommendation	networks.	In	addition,	Lin	

and	Wang	 (2018)	show	that	products	 that	are	connected	to	each	other	 in	 the	recommendation	

networks	tend	to	have	similar	ratings	and	product	sales.		

From	 the	 review	of	 the	 related	 literature,	one	may	notice	 that,	 the	previous	 studies	have	been	

majorly	 focusing	 on	 the	 influence	 of	 the	 presence	 of	 recommendation	 networks	 on	 product	

performances.	However,	these	studies	are	all	based	on	the	collected	empirical	networks	which	are	

constructed	 by	 the	 website	 according	 to	 unknown	 mechanisms.	 In	 other	 words,	 with	 the	

construction	 method	 uncontrolled,	 their	 findings	 may	 only	 limit	 to	 the	 particular	 system.	

Furthermore,	all	these	studies	only	focused	on	products,	leaving	the	influence	on	users	accessing	

information	still	unknown.	These	limitations	are	in	the	major	objectives	of	this	thesis,	which	will	be	

further	discussed	in	the	Chapter	6	and	7.	

2.5.	Summary	

The	 present	 thesis	 aims	 to	 explore	 the	 recommender	 system	 including	 personalised	

recommendation	and	recommendation	networks	via	studying	the	object	similarity	measures.		

For	the	personalised	recommendation	study	(Chapter	4	and	5),	we	adopt	the	Collaborative	Filtering	

method	as	the	foundation.	Base	on	such	system,	we	develop	recommendation	algorithms	such	as	

the	Top-N-Stability	algorithm	(Chapter	4)	and	the	Balanced	Common	Neighbour	measure	(Chapter	

5).	When	evaluating	 the	performance	of	 the	 recommendation	algorithms,	we	not	only	propose	

specific	new	metric,	such	as	recommendation	stability,	but	also	adopt	the	standard	metrics	such	as	

the	precision,	 recall,	diversity	and	novelty	etc.	As	 the	validation	 for	 the	proposed	algorithm,	we	

carry	 out	 comparative	 analysis	 to	 check	 whether	 the	 proposed	 algorithm	 can	 outperform	

benchmark	algorithms,	including	these	methods	introduced	in	this	Chapter	such	as	CN,	AA,	RA	etc.		

For	 the	 recommendation	 network	 study	 (Chapter	 6	 and	 7),	 we	 firstly	 theorise	 its	 construction	

according	to	the	bipartite	projection	which	is	introduced	in	this	Chapter.	The	similarity	measures	

including	the	CN,	SAL,	SOR,	HPI,	LHN,	AA,	RA	and	HC,	are	then	applied	to	construct	recommendation	
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networks	based	on	empirical	user-object	interactions.	We	further	adopt	the	random	walk	model	to	

describe	 the	 users’	 surfing	 behaviour	 on	 these	 networks	 so	 that	 the	 systems’	 accuracy	 and	

accessibility	can	be	evaluated.		
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Chapter	3.	Data	Collection	and	Scenarios	

The	present	thesis	 is	 largely	data-driven.	Though	there	are	theoretical	studies	consisting	of	only	

mathematical	analysis	based	on	random	network	models,	most	of	these	studies	will	come	down	to	

applications	in	empirical	data.		

As	 the	 thesis	 title	 suggested,	 the	 crucial	 data	 will	 be	 the	 networks	 relating	 to	 online	

recommendations,	which	are	user-object	bipartite	networks.	Accordingly,	the	nodes	in	typical	such	

data	 are	 users	 and	 objects,	 which	 can	 be	 basically	 anything	 ranging	 from	 books,	 products,	

restaurants	to	movies	etc.	The	meaning	of	links	subjects	to	the	detailed	scenarios	from	which	the	

data	was	collected.	For	example,	 in	Amazon,	where	the	objects	are	products,	 the	 links	between	

users	and	objects	then	represent	the	purchase	behaviour,	i.e.	a	user	bought	a	product.	For	systems	

such	as	Yelp,	which	is	a	review	sharing	website,	the	links	will	be	commenting	behaviour,	such	as	a	

user	 commented	 a	 restaurant.	 In	 addition	 to	 the	 user-object	 interactions,	 empirical	

recommendation	 networks	 will	 also	 be	 collected	 and	 applied	 in	 the	 thesis	 in	 order	 to	 get	

fundamental	understanding	of	the	structure	of	such	systems.		

In	this	chapter,	we	introduce	the	data	sets	which	will	be	used	in	the	thesis.	We	develop	a	Python-

based	web	crawler	 to	 collect	 the	book	 recommendation	networks	 from	Amazon	according	 to	a	

width-first	search,	and	the	associated	user-book	interactions,	which	will	be	introduced	in	section	

3.1.	 From	open	 sources,	we	 also	 collected	 several	 user-object	 bipartite	 networks	which	will	 be	

introduced	in	section	3.2.		

3.1.	Collection	of	Amazon	Recommendation	Network	

To	study	 the	 recommendation	networks,	we	collect	data	 from	the	“Customers	who	bought	 this	

item	also	bought”	list	in	the	Amazon,	which	is	a	retail	website	where	users	can	buy	products	and	

leave	 comments.	 In	 the	 system,	 each	 product	 has	 a	 dedicated	 webpage	 displaying	 its	 basic	

information,	 user	 comments,	 and	 most	 importantly	 a	 list	 of	 similar	 other	 products	 as	

recommendations.	 In	 such	 recommendation	 lists,	 there	 are	 normally	 100	 similar	 products	

recommended,	but	displayed	in	pages.	Hyperlinks	are	available	for	users	to	click	on	and	surf	to	the	
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corresponding	 recommended	 products.	 To	 collect	 the	 recommendation	 network	 is	 basically	 to	

collect	such	hyperlinks.		

The	empirical	 recommendation	networks	of	Amazon	have	already	been	widely	used	 in	previous	

studies.	However,	most	of	these	studies	applied	a	depth-first	searching	strategy	(Oestreicher-Singer	

&	Sundararajan	2012a,	2012b;	Carmi	et	al.	2017).	Therefore,	the	collected	network	does	not	have	

a	 unified	 out-degree,	 i.e.	 products	 have	 different	 number	 of	 recommended	 others.	 In	 Amazon	

system,	and	also	most	other	similar	systems,	an	apparent	feature	of	recommendation	networks	is	

that	the	recommendation	list	length	is	fixed.	Accordingly,	previous	strategies	did	not	capture	such	

feature.	 In	 the	present	 thesis,	we	therefore	adopt	a	width-first	 searching	strategy	 to	collect	 the	

hyperlinks	so	that	every	product	would	have	the	same	number	of	recommendations.		

The	Amazon	data	was	collected	in	two	steps,	namely	the	recommendation	network	collection	and	

the	user-object	bipartite	network	collection	respectively,	over	the	January	of	2016.		

Recommendation	network	collection		

In	the	Amazon	system,	each	book	has	a	unique	ID,	and	the	webpage	of	the	book	is	composed	as	

http://www.amazon.com/dp/ID,	where	the	‘ID’	should	be	replaced	by	a	real	ID.	Consequently,	to	

collect	 the	 book	 network	 is	 actually	 to	 collect	 the	 corresponding	 webpages	 and	 the	

recommendation	hyperlinks	connecting	them.		

	
Figure	3.1	|	Illustration	for	the	collection	of	Amazon	book	recommendation	network.		

We	 firstly	 selected	 5	 books	 as	 the	 seeds	 of	 the	 crawling	 from	 the	 Amazon's	 bestseller	 list	

(www.amazon.com/gp/bestsellers/books).	Note	that,	the	list	may	change	from	time	to	time	and	in	

our	collection,	the	seeds	were	collected	on	1st	January	2016.	For	each	of	the	seed	books,	we	collect	

books	from	its	recommendation	list	known	as	 'Customers	who	bought	this	item	also	bought'	 list.	

The	books	in	the	seeds'	recommendation	list	are	regarded	as	the	1st-order	books	(out-going	nodes	

of	the	seeds)	as	shown	in	Figure	2.1a.	While	normally	100	similar	objects	are	offered	in	each	object’s	

full	recommendation	list,	there	are	generally	5	to	10	recommendations	in	the	first	page	depending	

on	the	window	size	of	the	web	browser.	Assuming	the	recommendations	displayed	in	the	first	page	

would	get	most	attentions,	we	collected	10	books	ranking	at	the	top	of	the	list	as	the	current	one’s	

out-going	nodes.	As	the	crawling	goes	on	and	on,	we	then	have	the	2nd-order	books,	3rd-order	

books	and	so	on.	The	crawling	continued	for	8	steps.	And	for	the	8th-order	books,	we	collect	the	
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first	10	recommendations	that	have	already	been	included	in	previous	steps	out	from	the	list	as	

their	out-going	books,	so	that	there	will	be	no	9th-order	books.	Figure	2.1b	reports	the	number	of	

books	that	are	newly	crawled	at	each	order	and	in	total	of	157,856	books	was	collected.	All	of	the	

collected	books	are	reachable	for	the	seeds	within	8	steps.	According	to	the	crawling	strategy,	the	

out-degree	 of	 every	 node	 should	 be	 10.	 However,	 some	 of	 the	 books	 may	 appear	 in	 others'	

recommendation	list	but	somehow	have	no	or	just	a	few	out-going	books	in	the	Amazon	system.	

Additionally,	those	8th-order	books	may	have	less	than	10	out-going	books	that	have	been	collected	

in	the	early	steps.	In	summary,	as	shown	in	Figure	2.1c,	84.62%	of	all	the	crawled	books	have	exactly	

10	out-going	books.	

In	this	book	recommendation	network,	the	nodes	are	the	Amazon	webpages	of	the	books,	and	the	

links	are	actual	recommendation	hyperlinks	established	by	Amazon.		

User-book	bipartite	network	collection	

In	addition	to	the	book	recommendation	network,	we	also	collect	all	the	reviews	for	each	of	the	

collected	157,856	books.	Note	that,	in	Amazon	system,	different	versions	of	a	same	book	such	as	

Kindle	 edition,	 hardcover	 edition	 and	 paperback	 edition	 etc.,	 share	 the	 same	 review	webpage.	

Considering	that	version	selection	is	also	a	reflection	of	the	users’	interest	and	the	different	versions	

of	the	same	book	have	different	recommendation	lists,	we	only	collected	the	comments	devoted	

to	the	very	specific	version	of	the	crawled	book.	In	total	of	4,520,102	reviews	are	collected	(after	

cleaning	the	reviews	to	the	other	versions)	which	are	posted	by	2,540,369	users.	Furthermore,	the	

Amazon	system	marks	the	comments	that	posted	by	users	who	actually	have	bought	this	book	as	

‘verified	purchase’.	Accordingly,	every	 review	between	a	user	and	a	book	 represent	a	purchase	

behaviour,	and	our	data	is	basically	a	sample	of	the	full	sale	record	of	these	books.		

In	 this	 user-book	 bipartite	 network,	 the	 nodes	 are	 Amazon	 users	 and	 books,	 and	 the	 links	 are	

purchase	relation	between	the	corresponding	users	and	books.		

3.2.	Open	User-Object	Interaction	Datasets	

Thanks	to	the	recent	studies	on	network	science	and	ecommerce,	many	datasets	of	user-object	

interactions	have	been	published,	we	retrieve	five	of	the	widely-investigated	user-object	bipartite	

networks,	from	online	systems	Yelp,	Epinions,	MovieLens,	Netflix	and	Last.FM	respectively.		

The	Yelp	 is	 a	 business	 review	website	where	users	 can	write	 comments	 on	 various	 businesses,	

mostly	restaurants,	but	also	including	hotels,	bars	etc.	Normally,	users	write	comments	to	share	

their	experience	about	the	corresponding	business.	Being	enthusiastic	on	scientific	research,	Yelp	

has	published	their	data	and	been	holding	challenges	for	many	years.	The	dataset	used	in	this	thesis	

was	 downloaded	 from	 Yelp	 challenge	 website	 www.yelp.co.uk/datase_challenge.	 While	 they	

constantly	update	 the	published	dataset,	 the	data	we	use	was	accessed	 in	 January	2016,	which	

consists	of	1,569,264	comments	on	61,184	businesses	posted	by	366,715	users.	On	each	business’s	
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webpage,	there	are	basic	information	about	the	business,	user	comments,	and	most	importantly	a	

recommendation	list	entitled	“People	also	viewed”,	consisting	; = 3	similar	businesses.	

	
Figure	 3.2	 |	 User	 degree	 distributions	 (upper	 section)	 and	 object	 degree	 distributions	
(bottom	 section)	 of	 the	 applied	 six	 user-object	 bipartite	 networks.	 The	 distributions	 are	
plotted	in	log-log	scales	and	a	linear	pattern	indicts	power-law	distribution.	The	dashed	red	
lines	mark	the	linear	pattern	of	the	distributions	with	slope	(power-law)	exponent	as	shown	
in	the	plots.	

The	 Epinions	 is	 a	 product	 review	 website,	 which	 is	 actually	 similar	 to	 Yelp.	 In	 Epinions,	 users	

normally	write	reviews	on	products	such	as	cars,	books,	movies	or	electronics.	Currently,	we	do	not	

find	 the	 presence	 of	 recommendation	 network	 system	 in	 Epinions.	 When	 a	 user	 browsing	 a	

product’s	reviews,	the	system	does	recommend	other	products,	but	the	hyperlinks	direct	the	user	

to	other	retail	website	where	he/she	can	purchase	the	product,	 rather	 than	the	 internal	 review	

webpage.	Accordingly,	such	kind	of	recommendation	does	not	connect	the	(webpages	of)	products	

in	Epinions	system	as	a	network.	An	interesting	point	about	the	Epinions	system	is	that	users	can	

decide	 to	 trust	 others,	 and	 accordingly	 it	 has	 been	 widely	 used	 to	 study	 the	 trust-based	

recommendations.	The	dataset	applied	in	this	thesis	was	collected	by	Massa	and	Avesani	(2007),	

consisting	of	664,824	reviews	on	139,738	different	products	made	by	40,163	users.		

The	MovieLens	is	a	movie	recommendation	website	running	by	a	research	lab	entitled	GroupLens.	

In	the	system,	users	can	assign	ratings	and	tags	to	various	movies,	and	the	system	tries	to	predict	

users’	 interests	 and	 recommend	 more	 movies.	 The	 MovieLens	 dataset	 used	 in	 this	 thesis	 is	
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published	by	the	GroupLens	at	https://grouplens.org/datasets/movielens/.	After	cleaning,	the	data	

contains	698,054	ratings	on	5,850	movies	posted	by	5,547	users.		

The	Netflix	is	an	online	system	where	users	can	watch	TV	shows	and	movies.	In	2009,	Netflix	held	

a	recommendation	competition	with	a	prize	of	1,000,000	dollars	(https://www.netflixprize.com).	

The	dataset	in	this	thesis	is	a	part	of	the	competition	dataset,	consisting	of	419,247	ratings	on	5,081	

movies	posted	by	8,608	users.		

The	Last.FM	is	a	website	that	allow	users	to	listen	to	songs	and	explore	artists.	The	data	applied	in	

this	thesis	 is	entitled	‘hetrec2011-lastfm-2k’,	which	is	released	in	Cantador	et	al.	 (2011).	The	full	

dataset	contains	social	network	among	nearly	2000	users,	the	tags	assigned	to	songs	and	artists	

and	music	artists	listening	information.	In	this	thesis,	we	only	focus	on	the	82,155	records	of	1,885	

users	listening	to	6,953	artists.		

In	summary,	in	total	of	six	empirical	user-object	bipartite	networks	(including	the	Amazon	data)	are	

collected	 for	 the	 study	 in	 this	 thesis.	To	gain	basic	 structural	understanding	on	 these	networks,	

Figure	3.2	reports	the	degree	distributions	for	both	users	and	objects	respectively.	Though	it	has	

been	 found	that	most	networks	have	power-law	degree	distributions,	 the	distributions	of	 these	

bipartite	network	data	may	 largely	depend	on	the	collection	and	sampling	strategies.	The	result	

shows	that	the	user	degree	in	the	Amazon,	Yelp	and	Epinions,	and	the	object	degree	in	Amazon,	

Yelp,	Epinions,	Netflix	and	Last.FM	follow	the	power-law	degree	with	different	exponents,	ranging	

from	1.2	to	2.7.	In	addition,	we	summarise	the	statistics	of	all	these	bipartite	networks	in	Table	3.1.		
	

Table	3.1	|	Statistics	of	six	user-object	bipartite	network	datasets.	In	the	table,	M,	N	and	T	
represent	 the	 number	 of	 users,	 objects	 and	 total	 links	 (data	 records)	 respectively.	 The	
sparsity	is	calculated	as	∂/(™ ∙ ?).	While	degree	distributions	of	some	of	these	datasets	are	

in	 power-law	 form,	 i.e.	^ YJ ~YJ
`∑∏ 	for	 users	 or	^ Yä ~YJ

`∑π for	 objects,	 we	 report	 the	
exponents	b£	and	bß	for	user	distribution	and	object	distribution	respectively,	as	shown	in	
Figure	3.2.		

	 objects	type	 M	 N	 T	 Sparsity	 	∑∏	 	∑π	
Amazon	 book	 2,540,369	 157,856	 4,520,102	 1.13×10`∫	 2.6	 2.7	

Yelp	 Business	 366,715	 61,184	 1,569,264	 6.99×10`∫	 2.2	 2.5	

Epinions	 Review	 40,163	 139,738	 664,824	 1.18×10`9	 2.5	 2.2	

MovieLens	 Movie	 5,547	 5,850	 698,054	 2.15×10`'	 None	 None	

Netflix		 Movie	 8,608	 5,081	 419,247	 9.59×10`\	 None	 1.2	

Last.FM	 Artist	 1,885	 6,953	 82,155	 6.26×10`\	 None	 1.9	
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Chapter	4.	Recommendation	Stability	and	A	

Top-n-Stability	Algorithm	

Networks,	as	well	as	user-object	interaction	data,	are	always	evolving.	Besides,	the	networks	being	

investigated	may	also	be	mapped	incompletely,	and	contain	false	positives	and	negatives	(Ghoshal	

&	Barabási	2011).	Accordingly,	can	the	similarities	in	networks	be	measured	stably	over	the	change	

of	data,	becomes	a	crucial	question	(RQ1	of	the	thesis),	since	the	similarity	measures	have	been	

widely	applied	in	machine	learning	(Frey	&	Dueck	2007;	Armano	&	Javarone	2013),	socio-economic	

dynamics	(Mäenpää	&	Jalovaara	2014),	and	other	studies	in	network	science	(Clauset	et	al.	2008;	

Daminelli	et	al.	2015).		

In	addition,	the	recommendation	list	for	a	specific	user	has	been	found	changing	vastly	when	the	

system	evolves,	due	to	the	unstable	quantification	of	object	similarities,	which	can	be	defined	as	

the	 recommendation	 stability	problem.	To	 improve	 the	 similarity	 stability	and	 recommendation	

stability	is	thus	crucial	for	the	user	experience	enhancement	and	the	better	understanding	of	user	

interests.	While	 the	 stability	 as	well	 as	 accuracy	of	 the	 recommendation	 can	be	 guaranteed	by	

recommending	only	popular	objects,	studies	have	been	addressing	the	necessity	of	diversity	which	

requires	the	system	to	recommend	unpopular	objects	(McNee	et	al.	2006;	Vargas	&	Castells	2011).	

As	a	result,	it	becomes	a	difficulty	to	make	recommendations	which	are	stable,	accurate	and	diverse	

at	 the	 same	 time.	 Section	4.2	presents	 a	 top-n-stability	method	based	on	 the	Heat	Conduction	

algorithm	(denoting	with	TNS-HC	henceforth)	for	solving	the	stability–accuracy–diversity	dilemma.	

In	section	4.3,	we	show	that	the	TNS-HC	algorithm	can	significantly	improve	the	recommendation	

stability	 and	 accuracy	 simultaneously	 and	 still	 retain	 the	 high-diversity	 nature	 of	 the	 Heat	

Conduction	algorithm.	Furthermore,	we	compare	the	performance	of	the	TNS-HC	algorithm	with	a	

number	of	benchmark	recommendation	algorithms.	The	result	suggests	that	the	TNS-HC	algorithm	

is	more	efficient	in	solving	the	stability–accuracy–diversity	triple	dilemma	of	recommender	systems.		

Through	 the	 study	 in	 this	 Chapter,	 we	 confirm	 that	 the	 object	 similarities	 as	 well	 as	 the	

recommendations	 are	 not	 stable	 over	 the	 data	 change.	 The	 TNS-HC	 algorithm	 is	 developed	 by	

removing	the	unstable	similarities,	the	stability	of	recommendations	can	be	largely	removed	and	at	

the	meantime,	better	accuracy	can	be	achieved.	More	importantly,	besides	the	proposed	algorithm,	

the	 unstable	 similarities	 are	 proved	 to	 be	 false	 information,	 which	 disturbs	 the	 recommender	

system.		
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4.1.	Similarity	Stability	in	Bipartite	Networks	

The	study	on	the	evaluation	of	similarity	stability	was	carried	out	from	the	late	stage	of	the	author’s	

master	programme	in	collaboration	with	Prof.	Jianguo	Liu,	to	the	early	stage	of	this	PhD	programme.	

Considering	the	similarity	stability	study	has	been	partially	reported	in	the	author’s	master	thesis,	

here	 in	 this	 section,	we	 only	 briefly	 introduce	 the	main	 findings.	 For	 detailed	 experiments	 and	

results,	please	refer	to	the	published	article	 [Liu,	 J.,	Hou,	L.,	Pan,	X.,	Guo,	Q.,	&	Zhou,	T.	 (2016).	

Stability	of	similarity	measurements	for	bipartite	networks.	Scientific	Reports,	6,	18653].	

The	similarity	stability	of	fifteen	similarity	measures	were	investigated	in	six	empirical	user-object	

bipartite	networks.	Though	the	exact	object	similarities	are	unknown	to	be	taken	as	benchmark	to	

test	the	accuracy	of	the	measures,	we	evenly	and	randomly	divided	each	bipartite	network	into	two	

sub-networks	and	compare	the	two	similarity	matrixes	calculated	according	to	these	sub-networks.	

Three	 metrics	 were	 developed,	 namely	 the	 average	 bias,	 standard	 deviation	 of	 bias,	 and	 the	

Pearson	coefficient,	to	measure	the	stability	of	a	similarity	measure.		

The	experiments	suggested	that,	most	existing	similarity	measures	are	unstable	describing	object	

similarities	over	data	change.	The	relatively	stable	measures	include	the	Common	Neighbour	(CN),	

Adamic-Adar	(AA)	and	Resource	Allocation	(RA).	In	particular,	these	fifteen	measures	were	found	

well	clustered.		

In	order	to	show	that	the	stability	pattern	of	similarity	measures	is	not	caused	by	particular	data	

set	 context,	 here	 we	 create	 an	 artificial	 network	 where	 the	 structure	 is	 randomly	 generated	

according	 to	 the	preferential	 attachment,	 and	examine	 the	 stability	 of	 similarity	measures.	 The	

artificial	network	is	generated	according	to	the	following	steps:	

1) Initially	we	assume	an	empty	bipartite	network	(no	links)	with	™	users	and	?	objects.	
2) A	link	is	added	at	each	step	to	connect	a	user	and	an	object,	which	are	selected	according	

to	the	probability		

	 g(£) =
(YJ

a + 1)
(Y1

a + 1)1∈¥
,	 	(4.1)	

and		

	 g(ß) =
(Yä

a + 1)
(Y1

a + 1)1∈ª
,	 	(4.2)	

respectively,	 where	¥ 	and	ª 	are	 the	 sets	 of	 users	 and	 objects	 respectively,	 and	b 	is	 a	
tuneable	parameter	which	controls	the	intensity	of	the	preferential	attachment.		

3) Repeat	the	step	2)	for	a	given	∂	steps.		

In	such	way,	a	user-object	bipartite	network	can	be	generated	with	power-law	degree	distributions	

on	both	user	side	and	object	side.	Setting	 the	parameters	as	? = ™ = 5,000,	∂ = 100,000	and	
b = 1.4,	we	divide	the	generated	bipartite	networks	randomly	and	equally	into	two	subnetworks.	

According	to	each	of	the	subnetworks,	a	similarity	matrix	can	be	calculated	by	applying	an	arbitrary	

similarity	measure.	We	use	the	average	difference	between	such	two	matrixes,	denoting	with	º,	
and	the	deviation	Ω/º	of	the	differences	as	two	dimensions	of	the	evaluation.	As	shown	in	Figure	

4.1,	three	clusters	can	be	observed.		
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The	 first	 cluster,	 which	 is	 the	 relatively	 stable	 cluster,	 majorly	 consists	 of	 the	 CN,	 AA	 and	 RA	

measures.	 A	 common	 feature	 of	 these	 three	measures	 is	 the	 fact	 that	 they	 only	 consider	 the	

information	of	common	neighbours	(users).	While	the	CN	measure	directly	counts	the	number	of	

common	neighbours,	the	AA	and	RA	measures	weight	the	common	neighbours	by	1/ln(YJ)	and	
1/YJ	respectively.	The	second	cluster	majorly	contains	the	SAL,	JAC,	SOR,	HP	and	HD	measures.	

According	 to	 the	mathematical	definitions,	as	 introduced	 in	 section	2.2,	 these	measures	can	be	

regarded	 as	 the	 variations	 of	 the	 CN	 measure.	 They	 divide	 the	 CN	 similarity	 with	 the	 degree	

information	of	the	two	measured	objects,	such	as	 Y•Yæ 	for	the	SAL	measure,	Y• + Yæ 	for	the	SOR	
measure,	max(Y•, Yæ)	for	the	HD	measure	and	so	on.	The	third	cluster	consists	of	the	MD	and	HC	

measures	which	 consider	 the	degree	 information	of	 both	 the	 target	 objects	 and	 their	 common	

neighbours.	Another	common	feature	is	that,	both	the	MD	and	HC	measures	are	designed	based	

on	the	spreading	process	on	bipartite	networks.	Although	the	basic	considerations	are	different,	

mathematical	definitions	of	 the	MD	and	HC	measures	are	 very	 similar	 to	each	other	 leading	 to	

Ç}~âô = Ç~}óã .	Accordingly,	the	stabilities	of	the	MD	and	HC	measures	are	identical.		

	
Figure	4.1	|	Stability	 location	map	for	fifteen	similarity	measures	 in	the	artificial	bipartite	
network.	Generally,	the	left-bottom	represents	more	stable	situation	and	right-top	means	
unstable	situation.	

4.2.	A	Top-n-Stability	Algorithm	Based	on	Heat	Conduction	Measure	

It	has	been	suggested	that	most	of	the	measures	may	generate	totally	different	evaluations	of	the	

similarity	when	using	different	samples	even	from	the	same	period	of	data.	Therefore,	a	serious	

question	rises	that,	if	the	similarity	measures	are	unstable	evaluating	the	object	similarities,	how	

could	one	be	sure	of	that	the	measured	similarity	is	the	reflection	of	real	similarity.	Furthermore,	

given	the	recommender	systems	highly	depending	on	the	similarity	quantifications,	the	unstable	

similarity	 measures	 offering	 inappropriate	 quantifications	 puts	 the	 system	 at	 risk,	 i.e.	 the	

recommendations	will	also	be	unstable.		
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Recommendations	becoming	unstable	may	cause	risks	such	as	1)	users	finding	recommendations	

unreasonable	 which	 leads	 to	 bad	 experiences,	 and	 2)	 the	 uncontrollable	 performance	 of	 the	

recommendation	algorithms	in	practical	applications.	The	recommendation	stability	problem	is	of	

both	theoretical	and	practical	concerns.	From	the	theoretical	perspective,	if	the	extracted	similarity	

is	unstable,	it	would	be	hard	to	evaluate	whether	a	user	is	interested	in	an	object	or	not.	From	the	

practical	perspective,	the	stability	problem	would	be	a	gap	between	laboratory	investigation	and	

real-time	application	because	practical	systems	are	always	vastly	evolving.	

Note	that,	there	are	some	related	researches	on	the	stability	problem	of	recommender	systems,	

such	as	Adomavicius	and	Zhang	(2012,	2015).	They	define	the	stability	as	the	consistency	between	

the	original	recommendations	and	the	recommendations	using	the	combination	of	the	historical	

data	and	some	of	the	original	recommendations	(assuming	some	of	the	original	recommendations	

have	been	adopted	by	the	users).	The	stability	we	address	here	 is	defined	differently	from	their	

study.	While	Adomavicius	and	Zhang	(2012,	2015)	used	the	output	(recommendations)	of	the	first	

recommendation	 experiment	 as	 the	 input	 (historical	 records)	 for	 the	 second	 recommendation	

experiment	 to	 examine	 the	 consistency	 of	 the	 prediction,	 which	 can	 be	 regarded	 as	 the	

recommendation	algorithm’s	self-consistency,	we	explore	the	influence	of	the	users’	real	behaviour	

growth	 on	 the	 similarity	 quantification	 and	 recommendation	 change.	 Other	 studies	 also	 have	

discussed	the	systems’	ability	to	remain	stable	under	malicious	attached	such	as	records	faked	for	

specific	purpose	(O'Mahony	et	al.	2004;	Burke	et	al.	2015),	which	has	also	been	referred	as	the	

robustness	of	the	recommender	systems.		

Besides	the	stability	problem	of	the	recommendation,	there	is	also	the	accuracy-diversity	problem.	

If	a	recommender	system	wants	to	be	accurate,	the	safest	way	to	achieve	this	 is	to	recommend	

users	the	most	popular	objects,	because	those	popular	objects	will	be	interested	by	most	of	the	

users	 (otherwise,	 it	 won’t	 be	 popular).	 However,	 users	 will	 hardly	 regard	 it	 as	 useful	

recommendations	–	they	can	find	popular	information	by	themselves	easily.	What	the	users	looking	

for	 from	 the	 recommender	 system	 is	 more	 personalised	 recommendations	 according	 to	 their	

specific,	unique	interests.	Therefore,	being	accurate	is	far	not	enough	for	a	recommender	system	

(McNee	et	al.	2006).	However,	most	of	the	existing	similarity	measures	are	based	on	the	Common	

Neighbour,	which	makes	the	similarity	between	two	popular	objects	generally	high	such	as	the	RA,	

and	MD	measure.	Consequently,	this	kind	of	‘popular	is	similar’	mechanism	(the	popularity	bias)	

further	makes	the	similarity-based	recommender	system	tending	to	recommend	popular	objects	

rather	than	unpopular	objects.	Gradually,	the	importance	of	recommendations	being	diverse	has	

got	more	and	more	attention.	While	some	studies	try	to	enhance	the	diversity	by	directly	making	

inventions	to	the	recommendation	list	(Ziegler	et	al.	2005;	Hurley	&	Zhang	2011),	most	others	tried	

to	avoid	the	popular-preference	from	the	definition	of	object	similarity.	

Similar	to	the	accuracy	problem,	by	only	recommending	popular	objects,	the	system	could	have	

very	 high	 stability.	 However,	 the	 recommender	 system	 then	 falls	 again	 into	 the	 dilemma	 that	

whether	should	the	recommender	system	recommend	popular	objects	to	achieve	high	stability	and	

accuracy	or	recommends	unpopular	objects	to	achieve	high	diversity.	Accordingly,	there	rises	the	

triple	dilemma	of	stability–accuracy–diversity.		
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Here	in	this	section,	we	develop	an	algorithm	based	on	the	Heat	Conduction	measure	(Zhang	et	al.	

2007)	to	tackle	such	dilemma.		

4.2.1.	The	algorithm	

The	HC	measure	 is	 initially	 proposed	 based	 on	 the	 heat	 conduction	 process	 to	 generate	 highly	

diverse	recommendations.	However,	the	HC	measure	focusing	too	much	on	the	unpopular	objects	

recommendations,	makes	its	accuracy	relatively	low.	In	order	to	solve	the	dilemma,	some	efforts	

have	been	devoted	to	further	refine	the	HC	measure	(Liu	et	al.	2011),	or	to	combine	the	HC	method	

with	others	(Zhou	et	al.	2010).		

Consider	a	user-object	bipartite	network,	with	a	set	of	users	¥ = £%, £', … £â 	and	a	set	of	object	

ª = {ß%, ß', … ß)}.	 The	 links	 can	 be	 represented	 by	 an	 adjacency	matrix	. = {0Jä}â×) ,	where	
0Jä = 1	if	there	is	a	link	between	user	£	and	object	ß,	and	0Jä = 0	otherwise.		

As	has	been	introduced	in	section	2.2,	the	HC	measure	calculates	the	similarity	between	two	objects	

ß1 	and	ß2 	as	

	 Çäøä¿ =
1
Yä¿

0Jäø0Jä¿
YJJ∈¥

,	 	(4.3)	

where	Yä¿ 	and	YJ	are	the	degree	of	the	object	ß2 	and	user	£	respectively.	For	a	target	user	£,	the	
scores	of	every	unselected	object	ß2 	can	thus	be	calculated	as		

	 §Jä¿ = Çäøä¿
äø∈ü¶

,	 	(4.4)	

where	ΓJ	is	the	set	of	objects	that	has	selected	by	user	£	historicaly.		

Considering	its	advantage	of	uncovering	diverse	objects,	here	we	adapt	the	HC	algorithm	to	explore	

the	question	that	how	can	we	maintain	the	stability	of	recommendations.	Based	on	this	standard	

HC	algorithm,	we	further	consider	the	similarity	stability,	and	only	keep	the	most	stable	similarities.	

To	measure	the	stability	of	similarity,	we	firstly	divide	the	data	(bipartite	network)	randomly	into	

two	subsets,	i.e.	each	link	of	user-object	has	a	probability	of	50%	to	be	assigned	to	one	subset,	or	

to	the	other	subset	otherwise.	Hence,	we	can	calculate	the	similarities	for	two	subsets	respectively	

according	to	the	HC	measure	shown	as	Eq.	4.3.	We	denote	the	similarities	between	two	objects	ß1 	
and	ß2 	in	two	subsets	of	data	as	Çäøä¿

¡ 	and	Çäøä¿
¡¡ 	respectively.	A	proper	measure	should	result	in	the	

same	similarity	for	two	subsets,	i.e.		Çäøä¿
¡ = Çäøä¿

¡¡ .	Therefore,	the	more	difference	between	the	two	

similarities	|Çäøä¿
¡ − Çäøä¿

¡¡ |,	the	more	unstable	the	similarity	is.	Considering	the	similarities	may	be	

of	 totally	 different	 scales,	we	 further	 normalise	 the	 difference,	 leading	 to	 the	 definition	 of	 the	

stability	of	similarity	from	ß1 	to	ß2 	as,	

	 ¬äøä¿ =
|Çäøä¿
¡ − Çäøä¿

¡¡ |
Çäøä¿
¡ + Çäøä¿

¡¡ .	 	(4.5)	

Consequently,	the	stability	of	similarity	between	any	pair	of	objects	would	be	in	the	range	[0,	1],	

and	the	larger	the	value	of	¬äøä¿ 	is,	the	more	unstable	the	similarity	should	be	considered.		
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We	apply	four	empirical	user-object	bipartite	networks,	namely	the	MovieLens,	Netflix,	Last.fm	and	

Epinions.	The	stability	of	the	similarity	between	every	pair	of	objects	is	calculated.	According	to	the	

HC	measure	and	Eq.	4.5.	The	similarity	stability	of	HC	measure	is	found	with	a	strong	correlation	

with	the	object	popularity	(degree	of	the	objects),	as	shown	in	Figure	4.2.	The	results	suggest	that,	

the	HC	similarities	directing	to	the	unpopular	objects	ß2 	are	generally	less	stable,	i.e.	larger	¬∙ä¿.	

	
Figure	 4.2	 |	 Stability	 of	HC	 similarity	measure	 versus	 target	 object	 popularity.	While	 the	
popularity	of	objects	can	be	measured	by	its	degree,	we	consider	an	object’s	degrees	in	both	
subsets	of	the	data,	i.e.	Yä¿

¡ + Yä¿
¡¡ 	as	the	horizontal	axis.	For	every	target	object	ß2,	there	are	

generally	? − 1	similarities	directing	to	it.	We	accordingly	use	the	average	stability	over	all	
the	objects	pairs,	i.e.	 δ∙ƒ≈ = δƒ∆ƒ≈ƒ∆∈« /N,	as	the	vertical	axis.	

Some	 of	 the	 similarities	 are	 unstable	 when	 the	 network	 structure	 changes,	 and	 thus,	 such	

quantification	cannot	accurately	reflect	the	real	similarity	at	least	in	one	of	the	subsets.	Considering	

such	situation,	we	only	keep	the	most	stable	similarities	when	making	recommendations.	 In	the	

standard	recommendation	procedure,	if	an	object	ß1 	has	been	selected	by	the	target	user	£	in	the	
training	set,	 its	similarity	to	any	other	object,	Çäøä¿ 	will	be	contributed	to	the	score	of	the	object	
§Jä¿ 	as	 shown	 in	 Eq.	 4.4.	 The	 new	 algorithm	 assumes	 that	 the	 object	ß1 	only	 contributes	 to	d	

objects	to	which	ß1 	has	the	most	stable	similarities,	and	hence	can	be	referred	as	Top-n-Stability	

algorithm	based	on	Heat	Conduction	measure,	denoting	with	TNS-HC	henceforce.	Consequently,	

one	 can	 firstly	 rank	 the	 possible	 similarities	 starting	 from	 an	 object	ß1 	in	 terms	 of	 stability,	 i.e.	

{¬äø%, ¬äø', … ¬äø)}	from	low	to	high	values.	The	d	most	stable	ones	of	these	similarities	can	then	

be	considered	while	others	can	be	 ignored	 in	 the	recommendation	process.	 In	other	words,	we	

update	the	similarities	as,	

object	popularity,	!"#$(&'() + &'() )
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	 Çäøä¿ =
Çäøä¿				5…	´0dY ¬äøä¿ ≤ d

0											5…	´0dY ¬äøä¿ > d
.	 	(4.6)	

Thus,	we	can	use	the	updated	similarity	matrix	to	make	recommendations	according	to	Eq.	4.4.	In	

the	recommendation	experiments,	d	is	a	tuneable	parameter	which	can	be	gradually	changed	to	

explore	the	extent	to	which	the	unstable	similarities	should	be	removed.		

4.2.2.	Evaluation	metric	for	recommendation	stability	

The	evaluation	of	recommendation	performances	requires	a	training	set	and	a	testing	set,	as	has	

been	 introduced	 in	 Section	 2.3.2.	 In	 the	 development	 of	 the	 TNS-HC	 algorithm,	 the	 dataset	 is	

divided	equally	into	two	subsets	so	that	the	similarity	stability	can	be	calculated.	For	the	purpose	

of	evaluating	recommendation	performances,	we	use	these	two	subsets	of	data	as	the	training	set	

and	testing	set	by	turns.	Accordingly,	we	actually	have	two	recommendation	experiments	for	every	

data	partition.		

Since	 the	 proposed	 TNS-HC	 algorithm	 is	 to	 tackle	 the	 stability-accuracy-diversity	 dilemma,	 the	

recommendation	performance	is	measured	in	three	aspects.	We	take	the	Ranking	Score	´¨	as	the	
metric	for	accuracy,	and	the	personalisation	¨	as	the	diversity	metric.	Please	refer	to	the	Section	

2.3.2	for	the	definition	of	´¨	and	¨,	in	Eq.	(2.28)	and	Eq.	(2.30)	respectively.	As	the	stability	problem	

is	a	newly-defined	aspect	for	personalised	recommendation,	here	we	define	the	stability	metric	as	

follows.	

As	the	two	subsets	are	to	be	taken	as	the	training	set	and	the	testing	set	by	turns,	there	will	be	two	

recommendation	lists	for	every	user.	For	a	specific	target	user	£,	if	an	object	ß2 	ranked	at	the	top	;	
in	one	of	the	lists,	 it	means	the	system	predicts	the	object	ß2 	to	be	potentially	 interested	by	the	
user	£	according	 to	 that	 subset.	 Therefore,	we	 regard	 the	object	ß2 's	 rank	 in	 another	 list	 as	 the	
recommendation	stability	of	object	ß2 	for	user	£	denoted	with	ΔJä¿,	which	can	be	described	as	

	 ΔJä¿ =
ÄJä¿
¡ /(? − YJ¡¡)				5…	ÄJä¿

¡¡ ≤ ;
ÄJä¿
¡¡ /(? − YJ¡ )				5…	ÄJä¿

¡ ≤ ;,	 	(4.7)	

where	ÄJä¿
¡ 	and	ÄJä¿

¡¡ 	are	is	the	ranks	of	object	ß2 	in	user	£′s	two	recommendation	lists	respectively,	

?	is	 the	 total	 number	 of	 objects,	 and	 the	YJ¡ 	and	YJ¡¡ 	are	 the	degree	of	 the	user	 in	 two	 subsets	
respectively,	i.e.	how	many	objects	has	the	user	selected	in	the	corresponding	set.	Accordingly,	a	

small	value	of	ΔJä¿ 	suggests	that	the	object	ß2 	being	recommended	in	one	subset,	is	also	ranked	at	

a	top	position	in	another	subset,	and	hence	stable.		

Following	 the	 results	 of	 the	 similarity	 stability	 versus	 object	 degree,	 we	 show	 the	 correlation	

between	the	recommendation	stability	of	a	recommended	object	Δä¿and	its	popularity	Yä¿
¡ + Yä¿

¡¡ 	

in	Figure	4.3.	Similar	to	the	similarity	stability,	the	recommendation	stability	of	the	objects	also	has	

strong	 correlation	 with	 object	 popularity.	 Although	 the	 recommendation	 stabilities	 empirically	

distribute	in	a	wide	range	(sometimes	almost	from	0	to	1)	for	each	popularity	level,	the	unpopular	

objects	with	lower	degree	are	shown	generally	less	stable	to	be	recommended.	
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To	further	quantify	the	stability	of	each	recommendation	experiment,	we	use	the	average	value	of	

all	the	recommended	objects’	stability	to	describe	the	algorithm’s	performance,	which	reads,		

	 Δ =
1
|¥|

ΔJä
|Õ∏|ä∈Õ∏J∈¥

,	 	(4.8)	

where	¥	is	the	set	of	all	the	users,	Õ∏	is	the	set	of	objects	that	being	recommended	(rank	at	the	

top	;	in	the	 list)	 to	user	£	according	to	either	subset	but	have	not	been	collected	by	the	user	 in	
another	subset.	Note	that,	if	an	object	ß	has	been	selected	by	a	user	in	one	of	the	subsets,	it	will	be	
ranked	at	the	bottom	of	the	list.	If	in	another	list,	the	object	ß	is	in	the	top	;	positions	(which	is	an	
accurate	prediction),	the	stability	would	be	approximately	equals	to	1	but	cannot	be	regarded	as	

unstable.	Therefore,	we	don't	include	these	objects	that	have	already	been	historically	selected	by	

the	user	£	in	either	subset	to	the	set	Õ∏.		

	
Figure	4.3	|	Recommendation	stability	versus	object	popularity	according	to	standard	HC	
algorithm.	The	vertical	axis	is	the	average	stability	of	an	object	ß2 	over	all	the	times	of	it	being	
recommended	to	a	user.	

According	to	this	definition,	a	low	value	of	recommendation	stability	 Δ 	means	the	system	gives	

similar	evaluation	of	the	potentials	of	objects	being	selected	using	two	subsets	of	data.	On	the	other	

hand,	a	 large	value	of	 recommendation	stability	 Δ 	would	 indicate	 that,	 for	a	general	user,	 the	

potential	of	a	particular	object	would	be	evaluated	to	be	high	in	one	subset	but	 low	in	another.	

Accordingly,	the	lower	value	of	stability	 Δ 	means	the	recommendation	is	more	stable.	

4.2.3.	Validation	for	TNS-HC	algorithm	in	personalised	recommendation	

By	considering	only	the	most	stable	similarities,	we	perform	the	top-n-stability	algorithm	based	on	

the	HC	similarity	measure	(TNS-HC)	in	four	empirical	user-object	bipartite	networks.	We	gradually	

change	the	number	of	stable	similarities	to	be	considered	in	the	recommendation	to	explore	that,	
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to	what	extent	should	the	unstable	similarities	be	removed	to	gain	high	recommendation	stability	

Δ ,	 accuracy	´¨ 	and	 diversity	¨ 	simultaneously.	 The	 recommendation	 performances	 on	 four	

datasets,	namely	the	MovieLens,	Netflix,	Last.fm	and	Epinions,	are	reported	in	Figure	4.4.		

As	the	total	number	of	objects	?	varies	for	each	dataset,	we	take	the	normalised	top-n,	i.e.	d/?	to	
illustrate	the	horizontal	axis.	d/? = 1	means	all	 the	similarities	are	considered	and	thus	reveals	

the	original	HC	recommendation	algorithm.	Given	the	definitions	of	the	three	metrics,	lower	values	

of	the	stability	 Δ 	and	the	accuracy	´¨	represent	better	performances,	while	higher	values	of	the	

diversity	¨	indicate	better	performances.	While	each	of	the	metrics	has	the	optimised	value	of	d/?,	
we	take	the	d/?	minimising	the	accuracy	´¨	as	the	optimised	value	for	the	overall	performance,	

as	identified	by	the	blue	dashed	lines	in	the	figure.	In	practical	cases,	one	can	take	value	optimising	

any	function	of	the	three	metrics	as	such	optimised	top-d.		

	
Figure	 4.4	 |	 Recommendation	 performances,	 namely	 the	 accuracy	´¨ ,	 stability	 Δ 	and	
diversity	¨	of	the	TNS-HC	algorithm.	The	ranking	score	´¨	is	a	metric	independent	from	the	
recommendation	 list	 length.	For	stability	and	diversity,	we	show	the	results	based	on	 list	
lengths	; = 10, 20 	and	 50,	 as	 represented	 by	 the	 black	 circles,	 red	 squares	 and	 green	
triangles	respectively.	All	the	results	are	averaged	over	20	independent	experiments	with	
different	data	partitions	and	recommendations.	

While	 the	 standard	 HC	 (d/?	 = 	1 )	 is	 able	 to	 generate	 highly	 diverse	 recommendations	 with	

diversity	¨	generally	larger	than	0.9,	the	recommendation	lists	are	quite	unstable	(low	stability	 Δ ).	

In	 the	MovieLens	 and	Netflix	 datasets,	 the	 stability	 Δ 	even	 goes	 beyond	 the	 value	 of	 random	

scenario.	If	recommending	objects	uniformly	at	random	which	means	all	the	objects	are	randomly	

ranked	into	a	list,	the	objects	that	recommended	by	one	list	would	randomly	distribute	in	another	

list,	which	 leads	to	the	random	stability	 Δ = 0.5.	According	to	the	definition,	the	HC	algorithm	

experts	 in	 recommending	unpopular	objects.	However,	 the	unpopular	objects	are	generally	 less	
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stable	in	the	system	as	illustrated	in	Figure	4.3.	Hence,	the	standard	HC	algorithm	recommending	

unpopular	objects	has	poor	recommendation	stability	 Δ .	

When	removing	the	unstable	similarities	(see	the	curves	from	right	to	left	in	Figure	4.4),	a	surprising	

finding	is	that	the	accuracy,	i.e.	ranking	score	´¨,	is	getting	better.	The	reason	lies	in	the	fact	that,	
unstable	similarities	can	be	regarded	as	false	positives	in	the	evaluation,	which	cannot	represent	

the	real	similarities	among	objects.	Considering	such	false	positives	in	the	recommendation	would	

confuse	 the	 algorithm	 resulting	 false	 recommendations.	 As	 a	 consequence,	 when	 the	 system	

removes	 these	 unstable	 similarities,	 the	 accuracy	 of	 recommendation	 can	 be	 largely	 improved.	

However,	to	make	accurate	recommendations,	the	system	still	need	sufficient	amount	of	data.	The	

recommendation	accuracy	can	 thus	be	optimised	with	a	 certain	amount	of	unstable	 similarities	

being	removed.	Empirically	in	the	four	datasets	applied	here,	the	optimised	data	volumes	(d/?)ä	
are	55%,	30%,	6%	and	10%	for	MovieLens,	Netflix,	Last.fm	and	Epinions	respectively.	The	optimised	

data	volume	for	the	Last.fm	and	Epinions	datasets	are	surprisingly	 low,	 indicating	that	there	are	

indeed	large	amounts	of	false	evaluation	of	similarities	in	these	systems.		

The	TNS-HC	algorithm	can	also	largely	improve	the	recommendation	stability	 Δ 	by	removing	the	

unstable	similarities	with	the	optimised	value	of	(d/?)ä.	Taking	; = 20	as	an	example,	with	only	

the	stable	information,	the	stability	 Δ 	can	be	improved	by	87%,	73%,	50%	and	45%	for	MovieLens,	

Netflix,	 Last.fm	 and	 Epinions	 respectively,	 as	 shown	 in	 Table	 4.1.	On	 the	 other	 hand,	 the	 high-

diversity	 nature	 of	 the	 HC	 algorithm	 is	 retained	 by	 the	 TNS-HC	 algorithm.	 For	 the	 MovieLens	

dataset,	the	diversity	is	also	improved	by	9.9%	to	a	quite	diverse	level	¨(20) = 0.96.	As	to	the	other	
three	datasets,	 the	diversity	of	the	standard	HC	algorithm	has	already	reached	a	very	high	 level	

(¨ > 0.9)	due	to	the	sparsity	of	the	datasets	(Table	3.1).	Hence,	the	TNS-HC	does	not	improve	the	

diversity	in	these	three	datasets	further.		
	

Table	4.1	|	Numerical	results	of	standard	HC	and	the	optimised	TNS-HC	algorithm.	 In	the	
table,	(d/?)ß	represents	the	optimised	value	of	d/?	minimising	the	accuracy	´¨.	For	the	
ratios,	the	numerical	value	is	calculated	as	 oóã − oŒ)í`óã /oóã 	for	every	metric	o.	And	
if	for	a	metric,	the	performance	of	the	TNS-HC	algorithm	is	better	than	the	HC	algorithm,	the	
value	would	be	marked	as	positive	(+),	and	(-)	otherwise.	

	

Table	4.1	summarises	the	numerical	results	of	the	standard	HC	algorithm	and	the	TNS	-HC	algorithm	

in	the	optimised	situation,	and	compares	the	two	algorithms.	The	TNS-HC	algorithm	simultaneously	

gaining	high	stability,	high	accuracy	as	well	as	high	diversity,	is	an	efficient	method	to	overcome	the	

stability-accuracy-diversity	 triple	 dilemma.	 Additionally,	 the	 stability	 Δ 	and	 the	 diversity	¨ 	for	
recommendation	with	different	recommendation	list	length	;	have	very	similar	behaviour	against	

Table 1: Numerical results of standard HC and the optimised TNS-HC algorithm. In the table, (n/N)o represents the optimised value of n/N
minimising the accuracy RS . For the ratios, the numerical value is calculated as |mHC � mT NS�HC |/mHC for every metric m. And if for a metric,
the performance of the TNS-HC algorithm is better than the one of HC algorithm, the value would be marked as positive (+), and vice versa.

MovieLens Netflix Last.fm Epinions
L 10 20 50 10 20 50 10 20 50 10 20 50

HC
RS 0.162 0.16 0.131 0.211
h�i 0.697 0.651 0.552 0.643 0.637 0.625 0.347 0.356 0.366 0.453 0.451 0.446
S 0.882 0.871 0.874 0.948 0.935 0.909 0.986 0.979 0.963 0.997 0.997 0.994

TNS-HC

(n/N)o 0.55 0.3 0.06 0.1
RS 0.125 0.078 0.107 0.161
h�i 0.092 0.083 0.077 0.208 0.17 0.134 0.184 0.179 0.173 0.256 0.249 0.238
S 0.971 0.957 0.923 0.955 0.93 0.885 0.979 0.968 0.94 0.996 0.994 0.985

Ratio %
RS +22.83 +51.25 +18.32 +23.7
h�i +86.8 +87.3 +86.1 +67.1 +73.3 +78.6 +46.9 +49.7 +52.7 +43.5 +44.8 +46.6
S +10.1 +9.9 +5.6 +0.73 -0.53 -2.64 -0.7 -1.12 -2.38 -0.1 -0.3 -0.9

Table 2: Comparisons of recommendation performances among di↵erent algorithms. The results of TNS-HC, TNP-HC, HC+MD and Biased-
HC are based on the optimised parameter respectively. The recommendations are all based on the list length L = 20. Note that, the Last.fm data
set has no rating information for the bipartite network, and consequently the rating-based COS and PC algorithms have no results for the data set.
The random recommendation is to ranking the items randomly for each user as their recommendation list. All the results are averaged over 20
independent experiments.

MovieLens Netflix Last.fm Epinions
h�i RS S h�i RS S h�i RS S h�i RS S

HC-based

TNS-HC 0.083 0.124 0.956 0.17 0.078 0.93 0.179 0.107 0.968 0.249 0.16 0.993
HC 0.65 0.162 0.871 0.636 0.16 0.934 0.356 0.167 0.979 0.451 0.211 0.997
IHC 0.622 0.216 0.848 0.584 0.227 0.93 0.419 0.171 0.955 0.43 0.226 0.997

TNP-HC 0.616 0.141 0.961 0.637 0.093 0.936 0.508 0.157 0.973 0.474 0.207 0.996
HC+MD 0.251 0.125 0.899 0.071 0.08 0.754 0.14 0.104 0.912 0.376 0.181 0.997
Bised-HC 0.235 0.129 0.885 0.048 0.085 0.712 0.034 0.111 0.785 0.36 0.183 0.996

CN-based

CN 0.002 0.152 0.435 0.006 0.09 0.422 0.012 0.116 0.64 0.207 0.203 0.956
SAL 0.102 0.15 0.76 0.174 0.096 0.8 0.249 0.107 0.902 0.398 0.225 0.982
JAC 0.026 0.145 0.824 0.039 0.091 0.83 0.131 0.106 0.91 0.369 0.212 0.991
MD 0.003 0.139 0.512 0.012 0.082 0.569 0.03 0.108 0.763 0.308 0.182 0.993

Rating-based COS 0.026 0.146 0.753 0.056 0.094 0.797 * * * 0.404 0.214 0.994
PC 0.398 0.21 0.953 0.196 0.13 0.964 * * * 0.294 0.263 0.984

LCP 0.002 0.153 0.39 0.006 0.091 0.422 0.009 0.114 0.672 0.211 0.201 0.951
Random recommendation 0.499 0.519 0.996 0.5 0.508 0.996 0.503 0.503 0.997 0.5 0.504 0.999

2
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the	 change	 of	 the	 parameter	d .	 In	 other	 words,	 the	 length	 of	 recommendation	 list	 does	 not	

significantly	influence	the	top-n-stability	method	on	the	HC	algorithm.	

We	also	report	the	accuracy	of	the	recommendations	in	terms	of	the	precision	and	recall	in	Figure	

4.5,	which	has	been	introduced	and	defined	in	Section	2.3.2.	Since	they	are	all	accuracy	metrics,	

the	precision	and	 recall	 behave	very	 similar	 to	 the	 ranking	 score.	However,	 they	have	different	

optimised	 value	 for	 the	 data	 volume.	 To	 achieve	 highest	 value	 for	 precision	 and	 recall,	 the	

similarities	to	be	considered	should	be	generally	less	than	that	for	the	ranking	score.		

	
Figure	4.5	|	Precision	^ ; 	and	Recall	´(;)	of	the	TNS-HC	algorithm	with	different	lengths	
of	 recommendation	 lists.	 The	 dashed	 line	 in	 each	 column	 is	 the	 optimised	 value	 of	d/?	
minimising	 the	 ranking	 score	´¨	which	has	been	 reported	 in	 Figure	4.4.	As	 the	 length	of	
recommendation	list	;	does	not	influence	the	value	of	ranking	score	´¨,	these	results	with	
different	 lengths	have	 the	 same	optimised	value	of	d/?.	Note	 that,	 the	higher	 values	of	
precision	and	recall	represent	more	accurate	performances.	

4.3.	Comparison	to	benchmark	algorithms	

The	TNS-HC	algorithm	gives	a	solution	to	the	triple	dilemma,	which	could	generate	accurate,	diverse	

and	most	 importantly,	stable	recommendations.	To	examine	whether	the	TNS-HC	algorithm	can	

out-perform	other	algorithms	in	terms	of	the	triple	dilemma,	we	carry	out	comparative	analysis	to	

further	compare	its	performances	with	some	of	the	benchmark	recommendation	algorithms.	Since	

the	TNS-HC	algorithm	is	based	on	the	HC	algorithm	we	firstly	compare	the	proposed	method	with	

some	of	the	other	hybrid	of	the	HC	measure.	We	also	compare	with	other	single	algorithms	based	

on	other	similarity	measures.		

4.3.1.	Hybrid	algorithms	based	on	HC	

As	 the	proposed	TNS-HC	algorithm	 is	 to	 rank	 the	stability	of	 similarities	 to	keep	only	 the	stable	

similarities,	 it	 is	necessary	to	consider	another	method	of	ranking,	which	 is	 the	top-n-popularity	

algorithm	(TNP-HC).	 In	addition,	 there	are	also	many	studies	which	 integrate	HC	algorithm	with	
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other	mechanisms	leading	to	new	hybrid	methods,	such	as	the	Biased	Heat	Conduction	(Biased-HC)	

(Liu	et	al.	2010),	and	Heat	Conduction	–	Mass	Diffusion	(HC+MD)	(Zhou	et	al.	2010)	algorithms.		

Similar	to	the	proposed	TNS-HC	algorithm,	all	these	hybrid	algorithms	evolve	a	free	parameter	to	

be	 optimised	 through	 experiments.	 Here	 these	 algorithms	 will	 be	 introduced	 in	 turn	 and	 the	

optimisation	will	be	presented.		

	

	
Figure	4.6	|	Recommendation	results	of	TNP-HC	and	TNS-HC	on	four	datasets.	The	results	
are	based	on	the	recommendation	list	length	of	; = 20.	The	dashed	line	in	each	column	is	
the	optimised	value	of	d/?	minimising	the	ranking	score	´¨	for	the	TNP-HC	algorithm.	

Top-N-Popularity	algorithm	based	on	Heat	Conduction	(TNP-HC)	

While	the	Top-N-Stability	(TNS)	method	is	to	only	consider	these	similarities	with	highest	stabilities,	

the	 Top-N-Popularity	 (TNP)	 ranks	 the	objects	 in	 terms	of	 popularity	 (degree)	 and	only	 consider	

these	similarities	to	the	most	popular	objects.	Following	the	equation	of	TNS,	i.e.	Eq.	(4.6),	the	TNP	

is	to	update	the	similarity	matrix	as,	

	 Çäøä¿ =
Çäøä¿				5…	´0dY Yä¿ ≤ d

0											5…	´0dY Yä¿ > d
,	 	(4.9)	

where	the	´0dY Yä¿ 	is	the	global	ranking	position	of	ß2 	in	terms	of	popularity.	Figure	4.6	reports	

the	results	of	TNP-HC	in	comparison	with	TNS-HC.	Note	that,	in	both	methods,	d/? = 1	reveals	the	
standard	HC	algorithm,	and	thus,	TNP-HC	and	TNS-HC	have	exactly	the	same	results	for	d/? = 1.	
While	 the	 TNP-HC	 has	 similar	 diversity	 comparing	 with	 the	 TNS-HC,	 it	 cannot	 improve	 the	
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recommendations'	 accuracy	 and	 stability	 as	 significantly	 as	 TNS-HC.	 As	 the	 accuracy	 has	 been	

improved,	though	not	significant,	the	optimised	value,	(d/?)ä	is	obtained	to	be	0.65,	0.4,	0.4	and	
0.7	for	MovieLens,	Netflix,	Last.fm	and	Epinions	respectively.		

	

Biased	Heat-Conduction	algorithm	(Biased-HC)	

As	has	been	introduced	in	Section	2.2,	the	HC	algorithm	considers	the	process	of	heat	conduction	

in	the	bipartite	network	where	a	node	receives	the	average	heat	of	 its	neighbouring	nodes.	The	

Biased-HC	 (Liu	et	al.	 2010)	 assumes	 that	 the	heat	 is	 unevenly	 conducted.	By	 introducing	 a	 free	

parameter	œ,	the	Biased-HC	defines	the	similarity	between	two	objects	ß1 	and	ß2 	as,	

	 Çäøä¿
–1iÑIH`óã =

1
Yä¿
—

1
YÖÖ∈ü“ø∩ü“¿
.	 	(4.10)	

As	a	consequence,	œ = 1	reveals	the	standard	HC	algorithm	while	œ = 0	reveals	the	standard	RA	
algorithm.	The	recommendation	performances	of	the	Biased-HC	algorithm	are	reported	in	Figure	

4.7.	While	 the	 accuracy	 and	 stability	 can	 be	 largely	 improved	 by	 the	 Biased-HC	 algorithm,	 the	

diversity	 in	 Netflix	 and	 Last.fm	 dataset,	 is	 largely	 sacrificed	 for	 the	 such	 improvements.	 The	

optimisation	 of	 the	 parameter	œ 	is	 0.85,	 0.5,	 0.4	 and	 0.35	 for	 MovieLens,	 Netflix,	 Last.fm	 and	

Epinions	dataset	respectively.	

	
Figure	4.7	|	Recommendation	results	of	Biased-HC	on	four	datasets.	The	red	dashed	line	in	
each	column	marks	the	optimised	parameter	œ	for	each	dataset	to	minimise	the	accuracy	
´¨.	When	calculating	the	stability	 Δ 	and	diversity	¨,	the	recommendation	list	length	is	set	
as	L	=	20.		
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Heat	Conduction	–	Mass	Diffusion	(HC+MD)	

Given	the	fact	that	the	HC	algorithm	can	generate	diverse	recommendations	and	the	MD	(Zhou	et	

al.	2010)	algorithm	(introduced	in	section	2.2)	can	generate	accurate	recommendations,	a	hybrid	

method	is	proposed	combining	such	two	algorithms	to	achieve	simultaneously	accurate	and	diverse	

recommendations.	Both	 the	HC	and	MD	algorithm	define	 the	object	 similarity	 according	 to	 the	

weighted	common	neighbours	(
%
h”Ö∈ü“ø∩ü“¿
),	but	HC	divides	it	by	the	target	object’s	degree	Yä¿ 	

while	MD	divides	it	by	the	source	object’s	degree	Yäø.	By	introducing	a	parameter	œ,	the	HC+MD	

algorithm	explores	the	trade-off	between	such	two	algorithms,	and	defines	the	object	similarity	as	

	 Çäøä¿
óãuâô =

1
Yäø
%`—Yä¿

—
1
YÖÖ∈ü“ø∩ü“¿
.	 	(4.11)	

Therefore,	œ = 0	gives	 the	 standard	MD	method,	 and	œ = 1	gives	 the	 standard	 HC	method.	 By	

adjusting	the	parameter	œ,	the	hybrid	algorithm	HC+MD	can	find	the	optimised	value	to	offer	both	

accurate	and	diverse	recommendations	as	shown	in	4.8.	While	one	can	define	any	utility	function	

to	determine	 the	optimised	parameter	œ,	here	we	also	choose	 the	parameter	œ	to	minimise	 the	

ranking	score	´¨,	to	be	same	with	the	proposed	TNS-HC.	With	MD	and	HC	as	lower-boundary	(œ =
0)	and	upper-boundary	(œ = 1),	the	HC+MD	recommendations’	stability	 Δ 	become	larger	when	

tuning	œ	from	0	to	1.	Therefore,	at	the	optimised	œ,	the	stability	of	recommendation	 Δ 	is	better	

than	HC	but	worse	than	MD.	The	optimised	value	of	œ	is	0.85,	0.5,	0.55	and	0.35	for	MovieLens,	

Netflix,	Last.fm	and	Epinions	respectively.	

	
Figure	4.8	|	Recommendation	results	of	HC+MD	on	four	datasets.	The	red	dashed	 line	 in	
each	column	marks	the	optimised	parameter	œ	for	each	dataset	to	minimise	the	accuracy.	
With	 respect	 to	 the	 proposed	 TNS-HC,	 here	 we	 take	 ; = 20 	for	 the	 length	 of	
recommendation	list	for	the	calculation	of	the	stability	 Δ 	and	diversity	¨.	
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4.3.2.	Individual	algorithms	

In	 addition	 to	 the	 hybrid	 algorithms,	we	 consider	 individual	 algorithms	with	 different	 similarity	

measures,	including	HC	(Eq.	2.24),	Improved	Heat	Conduction	(IHC),	CN	(Eq.	2.13),	SAL	(Eq.	2.14),	

JAC	(Eq.	2.16),	MD	(Eq.	2.23).	Since	the	definitions	of	the	HC,	CN,	SAL,	JAC	and	MD	measures	have	

been	introduced	in	section	2.2,	here	we	only	introduce	the	mathematical	definition	of	IHC,	which	

defines	the	object	similarity	as		

	 Çäøä¿
‘óã =

1
Yä¿
'

1
YÖÖ∈ü“ø∩ü“¿
.	 	(4.12)	

While	the	CN-based	methods	consider	the	population	of	two	objects’	neighbourhood	(users	who	

selected	both	of	 them),	 it	 has	been	argued	 that,	 the	density	of	 the	neighbourhood	 is	 also	 very	

important	 for	 the	 evaluation	 of	 the	 similarity	 (Cannistraci	 et	 al.	 2013;	 Daminelli	 et	 al.	 2015).	

Accordingly,	an	algorithm	entitled	Local-Community-Paradigm	(LCP)	has	been	proposed	for	the	link	

prediction	in	bipartite	networks	by	considering	both	the	number	of	the	common	neighbours	and	

the	number	of	local	links	among	those	common	neighbours	(Daminelli	et	al.	2015).		

Different	with	other	similarity	measures	which	calculate	the	similarity	between	two	objects,	the	

LCP	directly	calculates	the	similarity	between	a	user	and	an	object.	Firstly,	one	needs	to	find	the	

local	 community	 between	 a	 user	£ 	and	 an	 object	ß1 .	 Notably,	 LCP	 defines	 the	 local	 community	

differently	 from	the	classical	CN	method	of	bipartite	network.	 Instead	of	 the	nodes	 (users)	 that	

connecting	both	of	the	target	nodes,	the	LCP	considers	any	nodes	(both	users	and	objects)	that	are	

on	the	paths	with	length	three	between	the	user	£	and	the	object	ß1 	as	their	common	neighbour.	

Thus,	the	LCP	defines	the	similarity	between	the	user	£	and	any	other	object	ß1 	as,	
	 ÇJäø

îãò = W?Jäø
îãò ∙ ;W;Jäø,	 	(4.13)	

where	 the	W?Jäø
îãò 	is	 the	 number	 of	 nodes	 in	 the	 local	 community	 of	£ 	and	ß1 ,	 and	 the	;W;Jäø 	

represents	the	number	of	links	in	the	local	community,	i.e.	links	among	these	common	neighbours.	

This	method	was	proposed	for	the	link	prediction	of	bipartite	networks	and	thus	they	rank	all	the	

user-object	pairs	together	in	terms	of	the	similarity	and	the	top	ones	are	considered	as	predictions.	

In	order	to	introduce	such	method	to	the	recommendation	scenario,	we	rank	the	similarities	for	

each	user,	and	these	objects	with	the	highest	similarity	with	the	target	user	are	considered	as	the	

recommendations.	

4.3.3.	Comparison	

With	all	the	classical	recommendation	algorithms	introduced,	here	we	compare	the	performances	

of	different	algorithms	with	the	proposed	TNS-HC	algorithm.	Note	that,	all	 the	object-similarity-

based	 algorithms	 are	 to	 firstly	 develop	 the	 similarity	 matrix	 for	 objects,	 and	 then	 make	

recommendations	 for	each	user	 following	Eq.	2.25.	 For	 the	 LCP	algorithm,	 since	 the	 similarities	

between	users	and	objects	are	directly	calculated,	the	recommendations	are	made	accordingly.	As	

the	quantification	for	the	stability	metric	requires	the	data	to	be	partitioned	according	to	5:5	to	

training	and	testing	set,	all	the	recommendation	experiments	are	based	on	such	partition.		
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Based	on	a	recommendation	list	length	of	; = 20,	Table	4.2	reports	the	stability	 Δ ,	accuracy	´¨	
and	diversity	¨	of	the	recommendations	resulted	from	each	of	these	introduced	algorithms.	One	

can	find	from	the	numerical	comparison	within	the	HC-based	algorithms	that,	the	proposed	TNS-

HC	 algorithm	has	 relatively	 good	 performances	 for	 all	 the	 three	metrics.	 As	 to	 other	 HC-based	

algorithms,	some	still	have	low	stability	and	somehow	low	accuracy	such	as	HC	itself,	IHC	algorithm	

and	the	TNP-HC	algorithm,	and	some	sacrifice	the	diversity	when	trying	to	gain	better	stability	and	

accuracy	such	as	 the	HC+MD	and	the	Biased-HC	algorithms	especially	 in	 the	Netflix	and	Last.fm	

datasets.	The	TNS-HC	algorithm,	on	the	other	hand	is	able	to	improve	the	stability	and	accuracy	

without	sacrificing	the	high	diversity,	and	thereby	has	very	balanced,	yet	good,	performances	 in	

terms	of	the	stability,	accuracy	and	diversity.	The	CN-based	algorithms	have	generally	very	good	

stabilities	due	to	the	apparent	popularity	correlation	of	the	CN	nature	which	is,	popular	objects	are	

more	likely	to	have	more	common	neighbours	with	others.	However,	the	accuracy	and	especially	

the	diversity	of	CN-based	algorithms	are	low	in	comparison	with	the	proposed	TNS-	HC	algorithm.	

The	LCP	algorithm	behaves	very	similar	to	the	CN-based	algorithms	with	very	good	stability	but	low	

accuracy	and	diversity.		

4.4.	Summary	

Due	to	the	rapid	data	change	in	online	systems,	it	becomes	an	urgent	question	that	how	could	we	

guarantee	the	stability	of	the	similarity	quantification	and	recommendation?	The	stability	problem	

will	 result	 in	a	great	gap	between	the	 laboratory	 investigations	and	the	practical	applications	of	

recommender	 systems.	 Furthermore,	 there	 arises	 the	 dilemma	 between	 diversity	 and	 stability.	

While	 high-diversity	 requires	 the	 system	 to	 recommend	 those	 unpopular	 objects,	 the	 local	

structures	of	 those	unpopular	objects	 are	 generally	unstable.	Considering	additionally	 the	basic	

accuracy	requirement	of	recommender	systems,	the	challenge	lies	in	how	to	overcome	the	triple	

dilemma	of	stability-accuracy-diversity.	

Though	it	is	found	that	when	the	data	changes,	the	similarity	between	objects	also	change	vastly,	

not	 every	 pair	 of	 objects	 has	 unstable	 similarities.	 Regarding	 the	 unstable	 similarities	 as	 false	

quantifications,	the	stable	similarities	are	identified	and	we	only	consider	a	certain	amount	of	stable	

similarities	in	the	recommendation	process,	resulting	the	Top-N-Stability	method	based	on	the	Heat	

Conduction	(TNS-HC)	algorithm.	Applying	the	proposed	TNS-HC	algorithm,	we	explore	whether	the	

removal	of	unstable	similarities	can	benefit	the	recommender	system,	to	assess	the	role	of	unstable	

similarities.	Gradually	removing	the	unstable	similarities	is	shown	to	be	able	to	largely	improve	the	

recommendation's	stability	and	accuracy	simultaneously,	and	yet	retain	the	high-diversity	nature	

of	the	HC	algorithm.	In	comparison	to	benchmark	algorithms,	the	proposed	TNS-HC	algorithm	is	

one	of	the	best	algorithms	in	terms	of	each	metric,	and	arguably	the	best	algorithm	if	considering	

all	three	metrics	simultaneously.	Therefore,	the	TNS-HC	algorithm	can	be	regarded	as	an	efficient	

method	overcoming	the	stability-accuracy-diversity	dilemma	of	personalised	recommendations.	

This	Chapter	aims	to	tackle	the	RQ	1	of	the	thesis	(can	the	object	similarities	remain	stable	over	the	

data	 change	 and	 how	 can	 we	 ensure	 the	 recommendation	 stability?)	 For	 the	 first	 part	 of	 the	

question,	it	is	confirmed	in	section	4.1	that	the	objects	are	not	stable	at	all.	On	the	other	hand,	the	
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proposed	 TNS-HC	 algorithm	 is	 proved	 through	 recommendation	 experiments	 and	 comparative	

analysis	to	be	an	effective	method	to	ensure	the	recommendation	stability.	As	a	consequence,	the	

RQ1	has	been	fully	addressed	by	this	Chapter.		
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Chapter	5.	A	New	Similarity	Measure	for	

Personalised	Recommendation	

The	 degree	 preference	 has	 been	 considered	 as	 the	 key	 attractiveness	 driving	 the	 evolution	 of	

networks	(Fortunato	et	al.	2006a;	Ratkiewicz	et	al.	2010;	Bagrow	&	Brockmann	2013)	ever	since	

the	finding	of	the	scaling	phenomena	(Barabási	&	Albert	1999).	However,	real	networks	are	also	

found	to	be	highly	clustered	(Watts	&	Strogatz	1998)	and	with	dense	community	structure	(Girvan	

&	 Newman	 2002;	 Cui	 et	 al.	 2015)	 which	 cannot	 be	 explained	 by	 the	 preferential	 attachment	

mechanism	 alone.	 Accordingly,	 node	 similarity	 is	 also	 argued	 to	 be	 a	 driver	 for	 networks	

(Papadopoulos	et	al.	2012)	and	has	been	applied	to	study	the	formation	and	evolution	of	different	

networks	(Crandall	et	al.	2010;	Chen	et	al.	2017;	Zeng	et	al.	2014).	As	has	been	introduced	in	Section	

2.2,	a	number	of	node	similarity	measures	for	complex	networks	have	been	proposed.	Normally,	

the	nodes	that	share	the	same	neighbours	are	considered	to	be	similar	to	each	other.	However,	we	

show	 in	 Section	 5.1	 that	 the	 similarities	 quantified	 by	 these	 existing	 measures	 mostly	 have	

systematic	bias	regarding	the	node	degree,	i.e.	hub	nodes	tend	to	have	more	common	neighbours	

with	others	due	to	their	rich	consecutiveness.	As	a	consequence,	it	is	difficult	to	determine	whether	

the	common	neighbours	are	due	to	the	similarity	between	nodes	or	just	random	mechanism.		

Such	systematic	bias,	we	 refer	as	degree	bias	henceforth,	mixes	 the	degree	preference	and	 the	

similarity	 preferences	 of	 the	 network	 evolution	 mechanism	 and	 thus	 makes	 the	 quantified	

similarities	 incorrect	 and	 sometimes	misleading.	 Therefore,	 the	 key	 question	 is	 that	 how	many	

common	neighbours	two	particular	nodes	are	expected	to	share	due	to	the	degree	preference	in	a	

given	 network,	 and	 how	 can	 we	 remove	 such	 number	 to	 get	 an	 unbiased	 similarity	 measure	

describing	solely	the	similarity	preference	(RQ2	of	the	thesis)?		

In	this	chapter,	we	theoretically	study	the	expected	number	of	common	neighbours	between	two	

nodes	with	given	degrees	in	random	networks,	and	propose	a	new	similarity	measure,	namely	the	

Balanced	Common	Neighbour	measure	for	unipartite	network	(Section	5.2)	and	bipartite	network	

(Section	 5.3)	 respectively,	 by	 removing	 the	 expected	 number	 from	 the	 empirical	 number	 of	

common	neighbours.		
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This	 Chapter	 contributes	 a	 new	 similarity	 measure	 theoretically	 with	 no	 degree	 bias	 for	 both	

unipartite	 networks	 and	 bipartite	 networks.	 In	 addition,	 it	 is	 concluded	 that	 separating	 and	

controlling	the	preference	for	degree	can	largely	improve	the	recommendation	performance.	

5.1.	Degree	Bias	of	Similarity	Measures	

To	show	the	degree	bias	of	the	existing	similarity	measures,	here	we	calculate	the	node	similarities	

according	 to	 some	 of	 the	widely-used	measures	 in	 an	 empirical	 network.	 Considering	 that	 the	

present	thesis	majorly	focuses	on	the	online	recommendation,	here	we	apply	the	empirical	user-

book	bipartite	network	collected	from	Amazon,	which	has	been	introduced	in	Section	3.1.		

	
Figure	5.1	|	Degree	bias	of	CN	similarity	measure.	Subplot	(a)	shows	the	correlation	between	
the	average	similarity	of	an	object		Ç∙äã),	and	its	degree	Yä.	Subplot	(b)	is	the	occurrence	of	
an	object	in	others’	top-10	most	similar	objects,	versus	its	degree.	We	categorise	the	objects	
into	groups	in	terms	of	their	degree,	and	show	the	average	value	or	the	value	distribution	
(box	plot)	of	each	group	accordingly.		

We	 start	with	examining	 the	most	 fundamental	measure,	namely	 the	Common	Neighbour	 (CN)	

measure.	For	each	object	ß	in	the	network,	we	calculate	the	similarity	from	every	other	object	to	

it,	and	then	we	have	the	similarities	{Ç%äã), Ç'äã), … , Ç)äã)}.	For	the	non-zero	similarities	(at	least	one	

common	neighbour	between	ß	and	another	object),	we	take	average	over	them	and	denote	with	

Ç∙äã) .	 Accordingly,	 the	 question	 then	 is	 transferred	 as:	 is	 the	 similarity	Ç∙äã) 	correlated	 with	 the	
degree	of	 the	object	ß?	The	 similarities	 for	every	of	 the	157,856	objects	are	 calculated	and	 the	

relation	between	object	similarity	and	object	degree	is	shown	in	Figure	5.1a.	Since	there	are	too	

many	 data	 points	 (objects),	 we	 divide	 these	 objects	 into	 groups	 in	 terms	 of	 degree,	 and	 the	

similarity	and	degree	in	the	figure	are	all	the	average	value	over	each	group	of	objects.	Apparently,	

the	CN	similarity	is	positively	correlated	with	the	object	degree,	i.e.	objects	with	higher	degree	tend	

to	be	more	similar	to	others.	To	more	closely	show	this,	we	measure	how	many	times	(occurrence,	

d)	an	object	ß	is	 in	the	top-10	similar	objects	for	others.	Figure	5.1b	shows	the	box	plot,	 i.e.	the	

distribution,	of	 such	occurrences	 for	each	group	versus	 the	average	degree	of	 the	group.	Being	

consistent	 with	 the	 average	 similarity	 (subplot	 a),	 the	 top-ranking	 occurrence	 is	 also	 positively	

correlated	with	the	object	degree	 for	 the	CN	measure.	Note	that,	 the	top-ranking	occurrence	 is	
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directly	linked	to	the	possibility	of	an	object	being	recommended.	Thus,	such	results	suggest	that	

the	popular	 (large-degree)	objects	 have	more	 chance	 to	be	 recommended	according	 to	 the	CN	

measure.	According	to	these	results,	we	can	conclude	that	the	CN	measure	does	have	a	strong,	and	

positive	degree	bias.		

The	degree	bias	of	CN	measure	 is	easy	 to	be	understood	 since	 it	only	 considers	 the	number	of	

common	 neighbours	 between	 two	 nodes.	 It	 has	 been	 argued	 that	 CN	 measure	 can	 only	 well	

describe	strongly	assortative	networks,	where	high-degree	nodes	tends	to	connect	to	high-degree	

nodes	(Newman	2001b;	Clauset	et	al.	2008).	The	other	measures,	which	have	been	introduced	in	

section	2.2,	are	basically	normalisations	of	the	CN	measure.	Here	we	further	explore	whether	are	

these	measures	able	to	balance	such	degree	bias	of	the	CN	measure.		

	
Figure	5.2	|	Degree	bias	of	similarity	measures.		

Following	 the	 same	method	of	 studying	 the	CN	measure,	 Figure	5.2	 shows	 the	 relation	of	 nine	

widely-used	similarity	measures	versus	object	degree.	The	JAC	(a),	SAL	(b),	SOR	(c),	HPI	(d),	HDI	(e)	

and	 LHN	 (f)	 measures	 can	 be	 regarded	 as	 variations	 of	 the	 CN	 measure,	 with	 additional	

consideration	 of	 the	 degree	 information	 of	 the	 two	 measured	 objects.	 After	 normalising	 the	

number	of	common	neighbours	between	two	measured	objects	with	the	degree	information,	the	

positive	correlation	between	the	CN	similarity	and	the	degree	is	revised	to	be	negative	correlations.	
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For	all	these	measures,	i.e.	the	JAC,	SAL,	SOR,	HPI,	HDI	and	LHN	measures,	unpopular	objects	tend	

to	have	higher	similarity	with	others.	When	counting	the	number	of	common	neighbours,	the	AA	

and	 RA	 measures	 weight	 each	 common	 neighbour	 (user)	 5 	with	 his/her	 degree,	 ln Y1 	and	Y1 	
respectively	(Eq.	2.21;	2.22).	Thus,	the	more	active	(higher	degree)	a	user	is,	the	lower	the	value	

that	 two	 objects	 being	 selected	 together	 by	 this	 user	 would	 be	 contributed	 to	 the	 similarity.	

However,	such	weightings	for	the	CN	measure	does	not	remove	the	degree	bias	of	the	similarity.	

As	suggested	by	the	subplots	(g)	and	(h),	there	are	still	positive	correlations	between	the	measured	

similarity	and	the	degree.	The	HC	measure	 (i)	 is	based	on	the	diffusion	process	on	the	bipartite	

network.	While	the	HC	measure	has	been	found	efficient	in	recommending	unpopular	objects,	the	

reason	partially	lies	in	the	fact	that	the	unpopular	(low-degree)	objects	tend	to	be	more	similar	to	

others	according	to	 the	HC	measure.	As	shown	 in	 the	subplot	 (i),	 the	HC	similarity	has	negative	

correlation	with	the	popularity	of	the	measured	object.	

To	briefly	conclude,	the	results	show	that	most	existing	node	similarity	measures	have	apparent	

degree	bias.	Such	bias	may	cause	several	problems	for	the	study	of	the	networked	systems.	In	the	

context	of	personalised	recommendation,	there	is	a	long-standing	challenge	which	is	the	trade-off	

between	 the	accuracy	and	diversity	of	 recommendations	 (McNee	et	al.	 2006;	Vargas	&	Castells	

2011).	 It	has	been	shown	that	simply	ranking	the	objects	 in	 terms	of	 their	popularities	 (degree)	

across	the	system,	and	recommending	the	most	popular	ones	to	every	object	would	have	quite	

accurate	performance	(Zhou	et	al.	2010).	However,	 this	 is	only	due	to	the	degree	preference	of	

such	systems,	rather	than	the	similarity	preference.	This	is	also	largely	the	reason	for	the	fact	that	

measures	such	as	CN,	AA	and	RA	have	good	accuracy	of	recommendations	that	such	similarities	are	

positively	correlated	with	the	object	degrees.	With	the	degree	preference	and	similarity	preference	

mixed	 together,	 the	 trade-off	 between	 the	 accuracy	 and	diversity	would	be	 very	 difficult	 to	 be	

studied,	because	such	two	mechanisms	cannot	be	controlled	efficiently	and	separately.	Therefore,	

we	 believe	 to	 separate	 the	 similarity	 from	 degree	 preference	 can	 be	 an	 efficient	 approach	 to	

optimise	the	performance	of	personalised	recommendations.	

5.2.	Balanced	Common	Neighbour	Measure	for	Unipartite	Network	

Based	on	the	CN	measure,	in	this	section	we	develop	a	new	measure	for	the	unipartite	networks,	

which	consists	only	one	kind	of	nodes.	Here	we	use	the	term	‘unipartite	network’	to	distinguish	it	

from	the	bipartite	network	which	will	be	studied	in	Section	5.3.	But	within	this	section	(5.2),	for	

simplicity,	we	use	‘network’	to	refer	to	‘unipartite	network’.		

5.2.1.	Theoretical	calculation	

The	 CN	 measure	 believes	 that	 nodes	 sharing	 common	 neighbours	 are	 similar	 to	 each	 other.	

However,	two	nodes	{	and	|	that	are	not	similar	to	each	other	at	all,	especially	these	with	large	

degrees,	could	still	have	common	neighbours	by	chance.		

For	example,	in	a	network	of	11	nodes,	{	and	|	with	degrees	Y} = Y~ = 6,	and	not	connecting	to	
each	other,	should	have	at	least	3	common	neighbours.	But	having	3	common	neighbours	does	not	
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mean	that	they	are	similar,	because	they	could	have	more	and	3	is	the	lowest	number	possible.	As	

a	consequence,	these	two	nodes	should	be	considered	not	similar	rather	than	similar	to	each	other.		

In	other	words,	every	pair	of	nodes	{	and	|	even	with	no	similarity	is	expected	to	have	a	certain	

number	of	common	neighbours,	denoting	with	d}~
I}l,	due	to	pure	random	mechanism	or	the	degree	

preference.	In	a	given	network,	if	the	observed	number	of	common	neighbours	d}~ = d}~
I}l,	we	can	

consider	 these	 two	 objects	{ 	and	| 	to	 be	 neutral	 to	 each	 other,	 i.e.	 not	 similar,	 nor	 dissimilar.	

Accordingly,	the	difference	between	the	observed	and	expected	number	of	common	neighbours,	

which	reads	

	 Ç}~ = d}~ − d}~
I}l,	 	(5.1)	

can	be	used	to	describe	the	tendency	of	{	and	|	to	connect	the	same	nodes,	which	we	argue	is	a	

more	meaningful	 way	 to	 represent	 their	 similarity.	 Therefore,	 here	 we	 calculate	 the	 expected	

number	of	common	neighbours	between	two	nodes	with	given	degrees	in	a	given	network.	Such	

expected	number	can	be	regarded	as	the	random-caused	common	neighbours	which	cannot	reflect	

the	real	similarity	between	the	measured	objects.	Accordingly,	we	can	remove	such	random-caused	

common	neighbours	from	the	observed	number	to	estimate	their	real	similarity.	

	
Figure	5.3	|	Illustration	of	the	random	rewiring	of	networks.	Each	node	$	in	the	network	has	
Y$	half-links	 to	be	paired	with	others’	 and	each	pair	of	half-links	has	equal	 chance	 to	be	
connected.	Obviously,	nodes	with	more	half-edges	are	more	likely	to	be	connected	to	each	
other.	

Consider	a	network	of	N	nodes	á = {$%, $', … , $)}	with	a	given	degree	sequence	{Y%, Y', … , Y)}.	
The	expected	number	of	common	neighbours	between	two	arbitrary	nodes	can	be	calculated	by	

considering	a	random	rewiring	process	of	the	given	network.	Assume	all	the	links	are	broken	into	

two	 half-links	 (stubs)	 and	 thus	 each	 node	$ 	has	YÖ 	half-links	 to	 be	 paired	 again	with	 others	 as	
shown	in	Figure	5.3.	This	process	is	normally	referred	as	the	configuration	model	(Newman	2003;	

Kang	&	Seierstad	2007)	which	generates	random	networks	with	a	given	degree	sequence.	In	the	

rewiring	process,	for	each	of	a	node	5’s	half-links,	the	paired	half-link	is	chosen	randomly	but	from	

another	node	that	has	not	been	connected	by	5	to	avoid	multi-links	or	self-loops.	Therefore,	the	

probability	of	the	paired	half-link	coming	from	node	6	is	thus	Y2/ YÖÖ .	Considering	all	the	Y1 	links	
that	node	5	possessing,	we	have	the	probability	of	two	random	nodes	5	and	6	connecting	with	each	
other	as	(Chuang	&	Lu	2002a;	2002b),	
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	 g 5 ↔ 6 =
Y1Y2
YÖÖ
,	 	(5.2)	

where	 YÖÖ 	is	the	total	number	of	half-links	in	the	network.	Accordingly,	the	probability	of	a	node	

5	being	a	common	neighbour	for	nodes	{	and	|,	i.e.	connecting	to	both	{	and	|,	can	be	written	as,	

	 g 5 ↔ {, | = g 5 ↔ { ∙ g 5 ↔ | =
Y1(Y1 − 1)
( YÖÖ )' ∙ Y}Y~.	 	(5.3)	

Following	this	logic,	every	node	could	possibly	be	the	common	neighbour	for	nodes	{	and	|	with	
different	probabilities	to	be	calculated	according	to	Eq.	(5.3).	Considering	all	the	possible	common	

neighbours,	we	then	have	the	expected	number	of	common	neighbours	for	{	and	|,	which	reads,	

	 d}~
I}l = g 5 ↔ {, |

1

=
YÖ(YÖ − 1)Ö
( YÖÖ )' ∙ Y}Y~.	 	(5.4)	

Therefore,	 as	 suggested	 by	 Eq.	 5.4,	 the	 neighbourhood	 size	 for	 two	 arbitrary	 nodes	{ 	and	| 	is	
expected	to	have	a	linear	relation	with	the	product	of	their	degrees,	i.e.	d}~

I}l ∝ Y}Y~.	To	validate	
whether	 such	 theoretical	 calculations	are	correct,	we	 test	 the	 relation	shown	 in	Eq.	 (5.4)	 in	 the	

Barabási-Albert	(BA)	random	network	model	(Barabási	&	Albert	1999),	which	has	been	introduced	

in	section	2.1.	The	BA	model	is	a	random	network	model	in	which	the	links	are	attached	randomly	

according	to	the	degree	preference	without	any	predefined	similarity.	Accordingly,	the	nodes	in	a	

BA	 network	 are	 expected	 to	 be	 with	 no	 similarity	 and	 thus	 we	 should	 have	d}~
I}l = d}~ .	 The	

simulated	network	starts	from	a	complete	network	of	op = 6	nodes.	At	each	of	the	following	step,	
one	node	is	added	to	the	network	to	connect	to	o = 5	existing	nodes.	The	probability	of	each	node	
being	connected	is	proportional	to	its	current	degree,	i.e.	g($) ∝ YÖ.	Nodes	are	added	continuously	
until	 the	 network	 size	 reach	? = 109 .	 Considering	 most	 node	 pairs	 would	 have	 no	 common	

neighbour	 at	 all	 in	 a	 single	 realisation	 of	 network,	we	 average	d}~ 	over	109 	realisations	 of	 the	
generated	BA	network.	We	rewire	the	generated	BA	network	as	follows:		

1) select	two	from	o?	links	uniformly	at	random;		

2) chose	one	node	from	each	link	and	switch	if	this	will	not	result	in	multi-links	or	self-loops;		

3) repeat	1)	and	2)	for	2o?	times.		

In	 such	way,	 the	 degree	of	 each	 node	will	 not	 be	 changed	while	 the	 network	 structure	will	 be	

reshuffled	for	each	realisation.	We	can	average	the	number	of	common	neighbours	between	two	

specific	nodes	d}~	over	all	realisations	of	the	network	accordingly.	

Figure	5.4	shows	the	relation	between	the	average	number	of	common	neighbours	 d}~ 	and	the	

produc	of	the	degrees	of	the	measured	nodes	Y}Y~.	Since	both	axes	are	in	log	scale,	one	should	
expect	from	Eq.	(5.4)	that	log d}~

I}l = log Y}Y~ + x,	which	indicates	a	slope	of	1	in	the	log-scaled	
plot.	As	predicted	by	Eq.	(5.4),	the	figure	shows	such	relation,	and	thus	we	can	conclude	that	the	

theoretical	 calculation	 for	 the	 expected	 number	 of	 common	 neighbours,	 i.e.	 random-caused	

common	neighbours,	is	correct.		
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Figure	5.4	|	Validation	for	the	calculation	of	expected	number	of	common	neighbours.	Since	
BA	network	is	randomly	generated,	and	the	results	are	averaged	over	109	random	rewiring,	
the	observed	common	neighbours	can	represent	the	expected	number.		

The	parameter	before	the	product	Y}Y~	can	be	rewritten.	Actually,	in	Eq.	(5.4),	 YÖÖ 	can	be	given	

by	the	product	of	the	network	size	?	and	the	average	degree	 Y ,	i.e.	? Y .	Accordingly,	we	have	

also	

	 YÖ(YÖ − 1)
Ö

= (YÖ' − YÖ)
Ö

= ? Y' − Y .	 	(5.5)	

Therefore,	we	can	rewrite	the	expression	for	the	expected	number	of	common	neighbours	as	

	 d}~
I}l =

Y' − Y
? Y ' Y}Y~.	 	(5.6)	

The	parameter	for	the	product	of	the	degrees	basically	describes	the	degree	distribution	feature	of	

the	whole	 network.	 The	 component	 Y' / Y ' 	is	 usually	 used	 to	 described	 a	 network's	 degree	

heterogeneity	≥	(Zhou	et	al.	2009;	Vespignani	2012),	which	indicates	how	different	the	degrees	are	
from	 node	 to	 node.	With	 a	 unified	 degree	 for	 each	 node,	 a	 network	 has	 Y' = Y ' 	and	 thus	

heterogeneity	≥ = 1.	The	more	heterogeneous	the	network's	degree	distribution	is,	the	higher	the	

value	≥ 	would	 be.	 The	 BA	 network	 with	 the	 applied	 settings	 in	 this	 section	 has	 a	 degree	

heterogeneity	 ≥ = 2.79 ± 0.08 .	 The	 parameter	 here	 is	 thus	 a	 function	 of	 the	 degree	

heterogeneity.	 Here	 we	 define	 it	 as	 a	 heterogeneity	 parameter	 denoting	 with	ℋ ,	 which	

consequently	reads,	

	 ℋ =
Y' − Y
? Y ' =

1
? ≥ −

1
Y .	 	(5.7)	

Introducing	Eq.	(5.7)	into	Eq.	(5.6)	gives	us	the	final	expression	for	the	expected	number	of	common	

neighbours	for	two	randomly	given	nodes	{	and	|	as	

	 d}~
I}l = ℋ ∙ Y}Y~.	 	(5.8)	

Basically,	the	more	heterogeneous	the	degrees	are,	the	more	common	neighbours	two	nodes	with	

given	degrees	would	share,	and	on	the	other	hand,	nodes	with	higher	degrees	are	likely	to	have	

more	common	neighbours	with	others.	With	the	expected	number	of	common	neighbours	d}~
I}l	

defined,	we	can	then	define	the	similarity	between	nodes	{	and	|	as	

slope=1) "
#

!"!#
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	 Ç}~ = d}~ − d}~
I}l = Γ}⋂Γ~ − ℋ ∙ Y}Y~,	 	(5.9)	

where	ΓÖ	is	the	set	of	nodes	that	are	connecting	to	node	$	and	|Γ|	gives	the	number	of	nodes	in	

the	set.		

The	developed	similarity	Ç}~	indicates	how	many	more	(or	less)	common	neighbours	are	nodes	{	
and	|	sharing	than	expected	(random).	If	the	number	of	common	neighbours	is	the	same	to	the	

expected	number,	i.e.	Ç}~ = 0,	one	can	then	consider	{	and	|	to	be	neutral	to	each	other.	On	the	
other	 hand,	 if	 the	 nodes	{ 	and	| 	share	more	 (less)	 neighbours,	 i.e.	Ç}~ > 0	(Ç}~ < 0),	 they	 are	
suggested	 to	 be	 similar	 (dissimilar)	 to	 each	 other.	 Hence,	 we	 call	 the	 proposed	 measure	 the	

Balanced	Common	Neighbour	(BCN)	measure.		

Let’s	review	again	the	example	discussed	earlier,	that	a	network	with	11	nodes	and	nodes	{	and	|	
have	 degrees	Y} = Y~ = 6 	and	 are	 not	 connecting	 to	 each	 other.	 Accordingly,	{ 	and	| 	should	
randomly	 connect	 to	6	out	of	 the	 remaining	9	nodes	 (aside	 from	{	and	|).	 If	 ignore	 the	degree	
distribution,	every	of	these	9	nodes	has	a	same	probability	of	6/9	to	connect	to	{	and	|,	and	thus	

a	 probability	 of	
⁄
¤
∙ ⁄
¤
	to	 be	 the	 common	 neighbour	 for	{ 	and	|.	 Counting	 all	 these	 9	 nodes,	 the	

expected	number	of	common	neighbours	d}~
I}l = 9 ∙ ⁄

¤
∙ ⁄
¤
= 4.	As	a	consequence,	having	3	common	

neighbours,	though	seems	a	lot,	would	indicate	{	and	|	dissimilar	to	each	other,	because	they	are	

expected	to	have	4.	Only	if	they	share	5	or	6	common	neighbours,	they	can	be	regarded	similar.	

Comparison	to	LHN	measure	

There	 is	 a	 very	 similar	 measure	 entitled	 LHN	 measure	 (Leicht	 et	 al.	 2006),	 in	 terms	 of	 the	

consideration	 and	 mathematical	 definition.	 The	 LHN	 considers	 the	 expected	 number	 of	 paths	

between	 two	 nodes	 with	 length	 of	 two,	 which	 is,	 in	 other	 words,	 the	 number	 of	 common	

neighbours.	Although	the	same	expression	for	the	expected	number	of	common	neighbours	d}~
I}l	

was	 derived,	 they	 defined	 the	 node	 similarity	Ç}~îó) 	by	 dividing	 the	 observed	 number	 by	 the	

expected	number,	i.e.	(Leicht	et	al.	2006),	

	 Ç}~îó) =
Γ}⋂Γ~
Y}Y~

,	 	(5.10)	

While	such	definition	has	shown	good	results	in	estimating	the	similarities	in	many	networks,	we	

believe	our	definition	shown	in	Eq.	(5.9)	has	advantages	in	following	aspects.	The	real	networks	are	

usually	extremely	sparse,	and	thus	most	node	pairs	will	share	no	common	neighbours	at	all.	For	

such	nodes,	the	LHN	measure	considers	the	similarities	uniformly	to	be	zero.	However,	two	hub	

nodes	 having	 no	 common	 neighbours	 has	 apparently	 different	 meaning	 from	 two	 low-degree	

nodes	sharing	no	neighbours.	The	proposed	BCN	measure	is	able	to	estimate	the	similarity	for	node	

pairs	even	sharing	no	neighbours.	Additionally,	the	BCN	measure	may	yield	negative	values	when	

the	number	of	common	neighbours	is	less	than	expected	(random	case),	which	can	be	regarded	as	

the	dissimilarity	between	the	measured	nodes.	Especially,	with	the	random	case	as	the	baseline,	

we	 can	apply	 the	defined	 similarity	measure	 to	explore	 that	whether,	or	 to	what	extent,	 is	 the	

similarity	governing	the	complex	networks	(to	be	discussed	in	the	Section	5.2.2).	
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Validation	for	BCN	similarity	

To	 test	 the	 accuracy	 of	 the	 proposed	 BCN	 similarity	 measure,	 we	 introduce	 the	 influence	 of	

similarities	 into	 the	 BA	network	model	 to	 generate	 networks	with	 both	 degree	 preference	 and	

similarity	preference.		

Inspired	 by	 the	 popularity-similarity	model	 (Papadopoulos	 et	 al.	2012),	 we	 randomly	 assign	 an	

angular	 position	z 	to	 each	 node.	 Nodes	 near	 to	 each	 other	 (with	 small	 angular	 distance),	 are	

considered	to	be	similar	to	each	other.	Therefore,	the	predefined	similarity	between	two	nodes	{	
and	|	can	be	written	as	

	 Ç}~
l = 1 −

2∆z}~
› ,	 	(5.11)	

where	∆z}~	is	the	angular	distance	between	the	two	nodes,	i.e.	∆z}~ = › − |› − |z} − z~||.	Thus,	
the	predefined	similarity	Ç}~

l 	has	a	range	of	[-1,	1]	and	the	larger	the	similarity	is,	the	more	similar	

the	nodes	are	considered	to	be.		

Instead	 of	 letting	 new	 node	 attach	 each	 of	 its	o 	edges	 to	 an	 existing	 node	5 	with	 probability	
proportional	to	only	the	degree,	we	define	the	probability	of	the	new	node	6	connecting	5	as	

	 g(5) ∝
Y1

1 + ,`æÑ¿ø
fi ,	 	(5.12)	

where	fl	is	a	parameter	controlling	the	influence	of	the	predefined	similarity.	The	case	fl = 0	gives	
the	standard	BA	model	where	the	links	are	attached	according	to	only	the	degree	preference	with	

no	enhancement	from	the	similarity.	For	any	positive	fl,	the	similar	nodes	are	more	likely	to	connect	

with	each	other	and	the	larger	the	parameter	fl	is,	the	stronger	the	influence	of	similarity	would	be	

governing	 the	 network	 evolution.	 Additionally,	 with	 such	 mechanism,	 positive	 predefined	

similarities	Ç}~
l > 0	will	enhance	the	probability	of	attachment	while	negative	values	reduce	such	

probability.		

In	the	experiment,	we	randomly	assign	angular	positions	for	? = 109	nodes,	and	accordingly	use	
the	 same	 angular	 positions	 to	 generate	10\ 	networks.	 Thus,	 in	 all	 the	 generated	 networks,	 a	
particular	pair	of	nodes	always	has	the	same	predefined	similarity.	We	then	calculate	the	similarity	

of	every	node	pair	according	to	the	proposed	BCN	similarity	measure,	and	average	such	similarity	

over	 these	 10\ 	networks,	 to	 check	 whether	 the	 BCN	 similarity	 can	 recover	 the	 predefined	

similarities.	The	results	are	shown	in	Figure	5.5.	When	setting	the	parameter	fl = 0,	which	indicates	
that	the	links	does	not	emerge	according	to	similarity,	the	estimated	similarities	do	not	differentiate	

from	 each	 other	 at	 all.	 As	 the	 parameter	fl 	increases,	 the	 node	 pairs	with	 different	 predefined	
similarities	become	more	and	more	distinguishable	from	each	other.	Especially	the	BCN	measure	

can	accurately	detect	whether	two	nodes	are	similar,	neutral	or	dissimilar	to	each	other.		

According	 to	 the	 results	 shown	 in	 Figure	 5.5,	 the	 fact	 that	 the	 BCN	measure	 can	 recover	 the	

predefined	similarities	indicate	the	proposed	BCN	measure	to	be	an	efficient	and	accurate	measure	

for	similarity	quantifications	in	networks.		
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Figure	 5.5	 |	 Validation	 for	 the	 BCN	 similarity.	 The	 estimated	 similarity	 stands	 for	 the	
proposed	BCN	similarity,	while	the	predefined	similarity	is	given	by	the	model	according	to	
Eq.	(5.11).	The	vertical	and	horizontal	dashed	lines	show	the	neutral	case	for	the	predefined	
and	estimated	similarity	respectively.		

5.2.2.	Application	to	similarity	intensity	in	networks		

So	far,	the	BCN	measure	has	been	proposed	for	the	unipartite	network,	and	thus	cannot	yet	be	

applied	 to	 personalised	 recommendation.	 However,	 similarity	 measures	 may	 have	 significant	

applications	in	unipartite	networks	as	well.	Though	it's	a	little	bit	off	topic,	here	we	explore	one	of	

the	possible	major	applications	of	the	proposed	BCN	measure	in	unipartite	networks.	Since	we	have	

defined	 a	 symmetrical	 similarity	measure	which	 can	 be	 used	 to	 detect	whether	 two	 nodes	 are	

similar	or	dissimilar	to	each	other	in	comparison	to	the	random	case,	in	this	section	we	examine	

the	 connected	 nodes	 in	 a	 given	 network	 to	 explore	 whether	 and	 to	 what	 extent	 the	 links	 are	

established	according	to	the	similarity	preference.		

In	a	given	network,	for	each	link	,	with	two	nodes	,}	and	,~	on	its	ends,	we	examine	the	similarity	

between	 such	 two	nodes.	Note	 that,	 as	,}	and	,~	have	already	connected	 to	each	other,	 in	 the	
calculation	of	similarity,	we	exclude	this	link	from	the	node	degrees,	leading	the	similarity	to	be		

	 ÇI†I° = ΓI†⋂ΓI° − ℋ ∙ YI† − 1 YI° − 1 .	 	(5.13)	

Accordingly,	 we	 define	 the	 similarity	 intensity	 of	 the	 network	‡ 	as	 the	 average	 value	 of	 the	
similarity	of	every	pair	of	connected	nodes,	which	reads,	

	 ‡ =
1
+ ÇI†I°I∈+

,	 	(5.14)	

where	+	is	the	full	set	of	links	in	the	network.	Since	the	BCN	similarity	is	symmetrical	with	positive	

values	 representing	 similar	 nodes	 and	 negative	 values	 representing	 dissimilar	 nodes,	 a	 positive	

predefined similairty, sp
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value	of	‡	would	suggest	that	the	connected	nodes	share	more	common	neighbours	than	expected	

which	implies	that	the	network	is	shaped	by	the	similarity	preference.	On	the	other	hand,	a	neutral	

value	‡ = 0	indicates	that	the	formation	of	the	network	is	irrelevant	to	the	similarity.	Additionally,	

larger	values	suggest	stronger	governance	of	similarity	in	the	network	evolution.		

While	the	similarity	intensity	‡	can	depict	the	similarity	preference	of	a	network,	we	also	use	the	

degree	heterogeneity	≥	to	quantify	the	degree	preference	of	the	networks.		

Similarity	versus	degree	in	artificial	networks	

We	firstly	analyse	the	similarity	intensity	and	degree	heterogeneity	of	artificial	networks,	including	

the	ER	network	(Erdös	&	Rényi	1959;	1960),	BA	network	(Barabási	&	Albert	1999),	and	Ring	Lattice.	

In	particular,	we	study	the	influence	of	link	densities	on	such	two	features.		

The	ER	random	network	(introduced	in	Section	2.1)	takes	a	fixed	probability	for	each	node	pair	to	

establish	 a	 link.	 Since	 the	 links	 are	 established	 randomly,	 the	 ER	 networks	 have	 no	 similarity	

preference	 and	 thus	 one	 should	 expect	 a	 neutral	 similarity	 intensity	‡ = 0 .	 As	 expected,	 the	
similarity	intensity	of	ER	networks	is	shown	by	Figure	5.6(a)	to	be	neutral	regardless	of	the	network	

size	 and	 average	 degree.	 Additionally,	 following	 a	 Poisson	 degree	 distribution	 (Eq.	 2.7),	 the	 ER	

random	networks'	degree	heterogeneity	is	very	close	to	the	lower-limit	≥ = 1	as	shown	in	Figure	
5.6	(b)	especially	for	networks	with	dense	links	(higher	average	degree	 Y ).	

	
Figure	5.6	|	Similarity	intensity	‡	and	degree	heterogeneity	≥	in	artificial	networks.	For	ER	
and	 BA	 networks,	 the	 results	 for	 each	 size	 and	 average	 degree	 are	 averaged	 over	 50	
independent	realisations.	For	the	Ring	Lattice,	since	it	is	a	regular	network,	the	results	are	
based	on	one	realisation	for	each	size	and	average	degree.		
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The	BA	network	(introduced	in	Section	2.1)	which	introduces	the	degree	preference	to	model	the	

power-law	 degree	 distribution	 observed	 in	 real	 networks,	 has	 been	 considered	 as	 a	 standard	

heterogeneous	 network	 and	 thus	 has	 a	 relatively	 high	 degree	 heterogeneity.	 As	 shown	 in	 Fig.	

5.6(d),	the	degree	heterogeneity	of	BA	networks	is	correlated	with	the	network	size	and	the	average	

degree,	but	always	takes	value	that	is	significantly	larger	than	1.	On	the	other	hand,	since	the	links	

in	BA	networks	are	attached	purely	according	to	the	degree	preference,	the	similarity	intensity	‡	
takes	a	neutral	value	(close	to	0)	similar	to	the	ER	random	network	as	shown	in	Figure	5.6(c).	

Different	from	the	ER	and	BA	networks,	the	Ring	Lattice	is	a	regular	network	which	places	?	nodes	
evenly	on	a	circle	and	lets	each	node	connect	to	its	 Y 	nearest	neighbours.	Therefore,	every	node	

has	exactly	 the	same	degree	and	 thus	 the	degree	heterogeneity	 is	exactly	≥ = 1	for	 ring	 lattice	
regardless	of	the	size	and	average	degree	as	shown	in	Figure	5.6(f).	On	the	other	hand,	since	the	

links	are	established	according	to	the	positions,	the	nodes	near	(similar)	to	each	other	will	have	

many	common	neighbours	leading	to	a	high	similarity	intensity	as	shown	in	Figure	5.6(e).	Assuming	

the	nodes	are	numbered	according	to	their	positions,	the	neighbours	of	an	arbitrary	node	5	will	be	

!1 = {5 − h
'
, … , 5 − 1, 5, 5 + 1, … 5 + h

'
}.	The	number	of	common	neighbours	between	5	and	6	(6 ∈

!1)	can	be	given	by	d12 = Y − 6 − 5 − 1.	The	average	number	of	common	neighbours	for	node	

pairs	involving	5	is	thus	

	 d1 =
Y − 6 − 5 − 12∈!ø

Y =
Y ' − Y − 2 oh /'

sw%
Y =

3 Y − 6
4 .	 	(5.15)	

Accordingly,	we	can	theoretically	have	the	similarity	intensity	of	a	ring	lattice	to	be		

	 ‡≠1Gö =
3 Y − 6

4 − ℋ ∙ Y}Y~ .	 	(5.16)	

Since	in	ring	lattice,	any	Y} = Y ,	we	have	 Y}Y~ = Y '.	We	can	thus	rewrite	Eq.	(5.16)	as	

	 ‡≠1Gö =
3 Y − 6

4 −
Y '

? (1 −
1
Y ).	

	(5.17)	

For	 any	 ring	 lattice	 in	 which	? ≫ Y ' ,	 we	 can	 approximately	 have	 ‡≠1Gö = (3 Y − 6)/4 .	
Therefore,	as	shown	by	Figure	5.6	(e),	the	similarity	intensity	of	ring	lattice	is	closely	correlated	with	

the	average	degree,	but	generally	irrelevant	to	the	network	size.	

Examination	in	empirical	networks	

We	further	examine	the	similarity	intensity	‡	and	degree	heterogeneity	≥	of	empirical	unipartite	

networks.	To	explore	the	features	of	different	networks,	here	we	consider	four	classes	of	networks,	

including	social	networks,	biological	networks,	infrastructure	networks	and	animal	networks,	the	

statistics	of	which	are	reported	in	Table	5.1.		

In	the	Coauthorship	network	(Leskovec	et	al.	2007),	nodes	are	authors	of	academic	papers	and	a	

link	indicates	that	two	authors	have	at	least	one	joint	publication.	The	Facebook	(Viswanath	et	al.	

2009),	 Yelp	 (data	 published	 by	 Yelp	 dataset	 challenge),	 Gowalla	 (Cho	 et	 al.	 2011)	 and	 Flixster	

(Zafarani	 &	 Liu	 2009)	 are	 social	 networking	 websites	 where	 users	 (nodes)	 can	 establish	 online	
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friendships	 (links)	 with	 others.	 The	 Trust	 network	 (Papadopoulos	 et	 al.	 2012)	 is	 based	 on	 an	

encryption	program,	 entitled	Pretty-Good-Privacy	 (PGP)	where	nodes	 are	 certificates	 and	 a	 link	

represents	authorisation	 from	 the	owner	of	 a	 certificate	 to	 that	of	 another.	 The	Email	network	

(Leskovec	et	al.	 2009)	describes	 the	email	 exchanges	 (links)	between	employees	 (nodes)	of	 the	

company	 entitled	 Enron.	 The	 Yeast	 (Stumpf	 et	 al.	 2005)	 and	 PDZBase	 (Beuming	 et	 al.	 2004)	

networks	are	the	metabolic	interactions	(links)	between	proteins	(nodes).	For	the	Road	networks	

of	 Pennsylvania	 (PA.)	 and	 California	 (CA.),	 a	 road	 is	 a	 link	 connecting	 intersections	 as	 nodes	

(Leskovec	et	al.	2009).	For	the	power	grid	(Watts	&	Strogatz	1998),	either	a	generator,	a	transformer	

or	 a	 substation	 is	 regarded	 as	 a	 node	while	 the	 supply	 lines	 are	 regarded	 as	 links.	 The	 animal	

networks	regard	animals,	i.e.	dolphins	(Lusseau	et	al.	2003),	zebras	(Sundaresan	et	al.	2007)	and	

kangaroos	(Grant	1973)	respectively,	as	nodes	and	there	will	be	a	link	connecting	two	individuals	if	

they	 have	 at	 least	 one	 interaction	 during	 the	 observation.	 All	 these	 empirical	 networks	 are	

unipartite	and	considered	as	simple	graphs,	i.e.	unweighted,	undirected.	
	

Table	5.1	|	Statistics	of	networks	applied	in	the	similarity	intensity	study.	In	the	table,	?	and	
™ 	represent	 the	 number	 of	 nodes	 and	 links	 respectively;	W 	is	 the	 clustering	 coefficient	
(Watts	&	Strogatz	1998)	of	the	network;	Ä	is	the	degree	assortativity	coefficient	(Newman	
2002);	 ≥ 	represents	 the	 degree	 heterogeneity,	 i.e.	 ≥ = Y' / Y ' ;	 and	 the	 ‡ 	is	 the	
similarity	intensity	defined	in	this	section.	

	

For	each	of	the	empirical	networks,	we	calculate	its	similarity	intensity	‡	and	degree	heterogeneity	
≥	and	the	results	are	reported	in	Table	5.1	and	Figure	5.7.	In	order	to	explore	whether	the	artificial	
network	models	 (the	 ER,	 BA	 and	Ring	 Lattice)	 can	 efficiently	 describe	 the	 features	 of	 empirical	

networks,	we	also	simulate	artificial	networks	according	to	the	size	and	density	of	each	empirical	

network	 and	 examine	 the	 similarity	 intensity	‡ 	and	 degree	 heterogeneity	≥ 	of	 the	 generated	

networks,	which	are	shown	in	Table	5.2.		

The	 biological	 networks	 are	 shown	 to	 have	 high	 degree	 heterogeneity	 and	 neutral	 similarity	

intensity	which	is	very	similar	to	the	BA	network.	The	infrastructure	networks	show	different	results	

on	the	degree	heterogeneity	that,	while	the	road	network	in	Pennsylvania	as	well	as	the	power	grid	

Table 1: Statistics of networks applied in this paper. In the table, N and M represent the number of vertices and edges respectively; C is the clustering coe�cient
[? ]; r is the degree assortativity coe�cient [? ]; H represent the degree heterogeneity, i.e. H = hk2i/hki2; and the S is the defined similarity intensity. In the
Coauthorship network, vertices are authors and an edge represents at least one common publication between two authors. The Facebook, Yelp, Gowalla and Flixster
are social networking websites where users (vertices) can establish online friendships (edges) with others. The Trust network is based on an encryption program,
entitled Pretty-Good-Privacy (PGP) where vertices are certificates and an edge represents authorisation from the owner of a certificate to that of another. The
Email network describes the email exchanges (edges) between employees (vertices) of the company Enron. The Yeast and PDZBase networks are the metabolic
interactions (edges) between proteins (vertices). For the Road networks of Pennsylvania (PA.) and California (CA.), a road is an edge connecting intersections
as vertices. For the power grid, either a generator, a transformer or a substation is regarded as a vertex while the supply lines are regarded as edges. The animal
networks regards animals, i.e. dolphins, zebras and kangaroos respectively, as vertices and there will be an edge connecting two individuals if they have at least one
interaction during observation. All the empirical networks are considered as simple graphs, i.e. unweighted, undirected.

Network Type Network N M hki C r H S

Social

Coauthorship 18771 198050 21.1 0.63 0.45 3.09 19.65
Facebook 63731 817035 25.64 0.22 0.42 3.43 12.36
Trust (PGP) 10680 24316 4.55 0.26 0.42 4.14 6.58
Email 36692 183831 10.02 0.49 0.13 13.97 7.1
Yelp 174097 1288077 14.79 0.11 0.18 15.79 9.03
Gowalla 196591 950327 9.66 0.23 0 31.71 3.41
Flixster 2523386 7918801 6.27 0.08 0.11 35.07 2.73

Biological Yeast 1846 2203 2.38 0.06 0.04 2.72 0.28
PDZBase 212 242 2.28 0 0 2.33 -0.08

Infrastructure
Rooad (PA.) 1088092 1541898 2.83 0.04 0.26 1.12 0.13
Power grid 4941 6594 2.66 0.08 0.18 1.45 0.29
Road (CA.) 1965206 2776607 2.82 0.04 0.99 13.86 -2.35

Animal
Dolphin 61 159 5.16 0.26 0.24 1.32 1.17
Zebra 27 111 8.22 0.87 0.81 1.33 3.51
Kangaroo 17 91 10.7 0.82 0.11 1.13 1.88

2
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are	less	heterogeneous,	the	road	network	in	California	has	extremely	heterogeneous	degrees.	On	

the	other	hand,	the	similarity	of	infrastructure	networks	is	neutrally	or	even	negatively	shaping	the	

structure.	 Actually,	 the	 wiring	 patterns	 of	 such	 networks	 are	 constructed	 according	 to	 the	

geographical	 locations	of	 the	nodes	 (intersections	 in	 road	network;	 generators,	 transformers	or	

substations	 in	power	grid)	which	 can	be	 regard	as	 location	 similarity.	However,	 to	achieve	high	

efficiency,	nodes	 in	 infrastructure	networks,	even	geographically	near	 to	each	other,	would	not	

share	many	common	neighbours.	Especially	in	road	networks,	the	nodes	(intersections)	are	mostly	

organised	 in	 squares	 resulting	 in	 second-order	 common	 neighbours	 rather	 than	 in	 triangles	

resulting	in	direct	common	neighbours.	For	the	animal	networks,	the	features	are	opposite	to	the	

biological	networks	and	BA	networks	in	terms	of	the	degree	heterogeneity	and	similarity	intensity.	

Though	 with	 low	 degree	 heterogeneity,	 the	 similarity	 is	 shown	 to	 be	 playing	 a	 part	 in	 the	

interactions	 among	 animals.	 However,	 please	 be	 noted	 that	 the	 sizes	 of	 the	 studied	 animal	

networks	are	quite	small	which	may	cause	uncertainties	on	their	similarity	intensities	and	degree	

heterogeneities.	

	
Figure	 5.7	 |	 The	 similarity	 intensity	‡ 	versus	 degree	 heterogeneity	≥ 	of	 fifteen	 empirical	
networks.	While	large	≥	means	the	node	degrees	are	very	different	(heterogeneous)	from	
each	 other,	 the	 lower-limit	≥ = 1 	represents	 the	 case	 where	 each	 node	 has	 the	 same	
degree	YÖ = Y , ∀$.	A	large	(positive)	‡	indicates	that	the	links	tend	to	establish	between	
similar	nodes	while	small	(negative)	values	suggest	the	links	tend	to	connect	dissimilar	nodes.	

Particularly,	we	address	the	social	networks	which	are	shown	to	be	a	special	class	of	networks	in	

terms	 of	 the	 degree	 heterogeneity	 and	 similarity	 intensity.	 The	 social	 networks	 have	 very	

heterogeneous	degree	distributions,	normally	more	heterogeneous	than	the	BA	networks.	While	

BA	model	can	generate	a	power-law	degree	distribution	with	slope	of	3,	social	networks	in	many	

cases	may	have	much	smaller	slopes	for	the	degree	distribution	leading	to	higher	heterogeneities.	

A	more	interesting	feature	of	social	networks	is	the	high	similarity	intensity.	One	can	find	that	the	

similarity	intensities	of	social	networks	are	sometimes	similar	or	even	higher	(Trust	network)	than	

the	ring	lattice.	In	other	words,	for	social	networks,	each	connected	node	pair	shares	much	more	

common	neighbours	than	the	random	case	on	average.	Such	result	suggests	the	extremely	strong	

governance	 of	 similarity	 in	 human	 interactions.	 Social	 networks	 with	 both	 high	 degree	
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heterogeneity	and	high	similarity	intensity,	stand	alone	as	a	special	class	of	networks	in	comparison	

to	others.		
	

Table	5.2	|	Comparison	of	degree	heterogeneity	and	similarity	intensity	between	empirical	
and	artificial	networks.	For	each	empirical	network,	 the	artificial	networks	are	generated	
according	to	 its	network	size	?	and	 link	density.	For	ER	networks,	 the	probability	of	each	
node	pair	connecting	each	other	is	set	to	be	g = 2™(? − 1)/?.	For	BA	networks,	we	set	
op = 1 + 2™/?	and	o = ™/?.	As	to	the	ring	lattices,	we	let	each	node	to	connect	2™/?	
nearest	neighbours.	

	

A	number	of	artificial	network	models	have	been	developed	over	the	years,	and	many	studies	have	

been	carried	out	based	on	 these	models	 to	 try	 to	make	 implications	 for	 the	understanding	and	

control	 of	 the	 dynamics	 in	 real-world	 networks.	 But	 only	 if	 the	 network	models	 can	 reveal	 the	

structural	features	of	real	networks,	these	theoretical	studies	could	contribute	to	the	knowledge	of	

real-world	systems.	Here	we	show	that	the	ER,	BA	and	Ring	Lattice	cannot	well	describe	the	social	

networks	in	terms	of	the	degree	heterogeneity	and	similarity	intensity	simultaneously.	Hence,	more	

efforts	 shall	 be	 devoted	 to	 the	 development	 of	 network	 models	 with	 both	 high	 degree	

heterogeneity	and	 similarity	 intensity.	 In	addition,	 the	examination	of	 similarity	 intensity	 in	 this	

study	provides	a	method	to	match	the	real	networks	with	network	models	so	that	we	can	pick	up	

the	appropriate	model	according	to	the	match	to	study	with	to	make	contributions	to	the	target	

networks.	

5.3.	Balanced	Common	Neighbour	Measure	for	Bipartite	Network	

So	 far,	 a	BCN	similarity	measure	 for	unipartite	networks	has	been	developed	by	 comparing	 the	

empirical	network	to	the	random	ones	and	removing	the	random-based	common	neighbours	from	

the	 similarity.	 Considering	 that	 the	 present	 thesis	 focuses	 on	 the	 application	 in	 online	

recommendations,	where	the	user-object	bipartite	network	is	normally	the	model,	in	this	section	

we	 introduce	 the	 BCN	 measure	 to	 bipartite	 networks	 and	 apply	 it	 to	 the	 personalised	

recommendation.			

Table 1: Statistics of networks applied in this paper. In the table, N and M represent the number of vertices and edges respectively; C is the clustering coe�cient
[? ]; r is the degree assortativity coe�cient [? ]; H represent the degree heterogeneity, i.e. H = hk2i/hki2; and the S is the defined similarity intensity. In the
Coauthorship network, vertices are authors and an edge represents at least one common publication between two authors. The Facebook, Yelp, Gowalla and Flixster
are social networking websites where users (vertices) can establish online friendships (edges) with others. The Trust network is based on an encryption program,
entitled Pretty-Good-Privacy (PGP) where vertices are certificates and an edge represents authorisation from the owner of a certificate to that of another. The
Email network describes the email exchanges (edges) between employees (vertices) of the company Enron. The Yeast and PDZBase networks are the metabolic
interactions (edges) between proteins (vertices). For the Road networks of Pennsylvania (PA.) and California (CA.), a road is an edge connecting intersections
as vertices. For the power grid, either a generator, a transformer or a substation is regarded as a vertex while the supply lines are regarded as edges. The animal
networks regards animals, i.e. dolphins, zebras and kangaroos respectively, as vertices and there will be an edge connecting two individuals if they have at least one
interaction during observation. All the empirical networks are considered as simple graphs, i.e. unweighted, undirected.

Network Type Network N M hki C r H S

Social

Coauthorship 18771 198050 21.1 0.63 0.45 3.09 19.65
Facebook 63731 817035 25.64 0.22 0.42 3.43 12.36
Trust (PGP) 10680 24316 4.55 0.26 0.42 4.14 6.58
Email 36692 183831 10.02 0.49 0.13 13.97 7.1
Yelp 174097 1288077 14.79 0.11 0.18 15.79 9.03
Gowalla 196591 950327 9.66 0.23 0 31.71 3.41
Flixster 2523386 7918801 6.27 0.08 0.11 35.07 2.73

Biological Yeast 1846 2203 2.38 0.06 0.04 2.72 0.28
PDZBase 212 242 2.28 0 0 2.33 -0.08

Infrastructure
Rooad (PA.) 1088092 1541898 2.83 0.04 0.26 1.12 0.13
Power grid 4941 6594 2.66 0.08 0.18 1.45 0.29
Road (CA.) 1965206 2776607 2.82 0.04 0.99 13.86 -2.35

Animal
Dolphin 61 159 5.16 0.26 0.24 1.32 1.17
Zebra 27 111 8.22 0.87 0.81 1.33 3.51
Kangaroo 17 91 10.7 0.82 0.11 1.13 1.88

Table 2: Comparison of degree heterogeneity H and similarity intensity S between empirical networks and artificial networks including ER, BA and Ring Lattice.
For each empirical network, the artificial networks are generated according to its network size N. For ER networks, the probability of each vertex pair connecting
each other is set to be p = 2M(N � 1)/N. For BA networks, we set m0 = 2M/N + 1 and m = M/N. As to the ring lattices, we let each vertex to connect 2M/N
nearest neighbours.

Degree Heterogeneity H Similarity Intensity S
Empirical ER BA Ring Empirical ER BA Ring

Social

Coauthorship 3.09 1.02 2.46 1 19.65 0 0 29.91
Facebook 3.43 1.02 2.71 1 12.36 0 0 35.96
Trust (PGP) 4.14 1.12 2.96 1 6.58 0 -0.03 4.49
Email 13.97 1.04 2.87 1 7.1 -0.01 -0.02 13.49
Yelp 15.79 1.03 3.17 1 9.03 0 -0.01 19.49
Gowalla 31.71 1.05 3.44 1 3.41 0 -0.01 11.99
Flixster 35.07 1.11 4.93 1 2.73 0 -0.01 2.99

Biological Yeast 2.72 1.08 3.03 1 0.28 0 -0.03 -0.01
PDZBase 2.33 1.14 2.33 1 -0.08 0 -0.07 -0.01

Infrastructure
Rooad (PA.) 1.12 0.99 6.62 1 0.13 -0.01 -0.01 0
Power grid 1.45 1.13 4.41 1 0.29 0 -0.03 -0.01
Road (CA.) 13.86 1.13 8.19 1 -2.35 0 -0.01 0

Animal
Dolphin 1.32 1.05 2.24 1 1.17 0 -0.45 1.38
Zebra 1.33 1.03 1.33 1 3.51 0 0.55 2.91
Kangaroo 1.13 1.19 1.09 1 1.88 0 1.66 1.71

2
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5.3.1.	Theoretical	calculation	

Similar	to	the	calculation	for	the	unipartite	network,	we	argue	the	number	of	common	neighbours	

for	two	objects	û	and	fl	in	a	bipartite	network	consists	of	two	components	that	one	comes	from	

random	mechanism	d•æ≠iGH 	and	the	other	one	comes	from	the	similarity	between	them,	d•æÑ1s.	While	

the	 random	 component	 is	 completely	 popularity(degree)-correlated,	 the	 other	 one	 describes	

purely	the	similarity	regardless	of	object	popularities.	To	distinguish	these	two	components	is	thus	

of	 significance	 for	 us	 to	 control	 the	 popularity	 tendency	 and	 the	 similarity	 tendency	 of	 the	

personalised	recommendations	to	optimise	the	performances.	To	do	so,	we	firstly	assume	the	user-

object	bipartite	network	to	be	completely	random	and	explore	the	expected	number	of	common	

neighbours	d•æ
I}l	for	two	arbitrary	objects	with	given	popularities	as	the	estimation	for	the	random	

component.	

Considering	a	random	user-object	bipartite	network	with	™	users	and	?	objects,	we	let	∂	to	be	the	
total	number	of	links	between	users	and	objects,	i.e.	∂ = YJJ = Yää .	The	probability	of	a	pair	

of	randomly	chosen	user	5	and	object	û	being	connected	with	each	other	is	therefore	proportional	
to	their	degrees,	which	reads	(Chuang	&	Lu	2002a;	2002b;	Liu	et	al.	2013)	

	 g 5 ↔ û =
Y1Y•
∂ .	 	(5.18)	

Accordingly,	 the	 probability	 of	 a	 user	5 	being	 a	 common	 neighbour	 for	 objects	û 	and	fl 	can	 be	
written	as	

	 g 5 ↔ û, fl =
Y1(Y1 − 1)

∂' Y•Yæ.	 	(5.19)	

Therefore,	 every	 user	 has	 a	 probability	 to	 be	 a	 common	 neighbour	 for	 the	 objects	û 	and	fl .	
Considering	all	the	possible	users	can	thus	give	us	the	expected	number	of	common	neighbours	

between	û	and	fl,	

	 d•æ
I}l = g £ ↔ û, fl

J

=
YJ(YJ − 1)J
∂' ∙ Y•Yæ.	 	(5.20)	

Actually,	such	derivation	can	also	be	obtained	by	considering	this	process	as	the	hypergeometric	

distribution.	Assuming	an	object	fl	has	 randomly	connected	to	Yæ 	users,	and	we	 let	∂æ 	to	be	 the	
total	number	of	the	remaining	half-links	originating	from	these	Yæ 	users.	For	each	half-link	of	the	
object	fl,	its	probability	to	connect	to	a	user	£	can	be	given	by	YJ/∂,	leading	the	expected	degree	
of	the	user	at	the	other	end	of	fl’s	half-link	to	be	 YJ'/∂J .	Accordingly,	we	have	

	 ∂æ = Yæ ∙ (
YJ'

∂
J

− 1).	 	(5.21)	

The	number	of	common	neighbours	between	any	other	object	û	with	fl	is	thus	determined	by	the	

process	where	û	select	Y• 	out	of	∂ − Yæ 	half-links.	When	one	of	the	∂æ 	half-links	is	selected,	one	
common	 neighbour	 is	 generated	 for	û 	and	fl .	 Therefore,	 the	 number	 of	 common	 neighbours	

between	û	and	fl	can	be	described	by	a	hypergeometric	distribution	≥ d•æ; Y•, ∂æ, ∂ − Yæ .	 For	

any	 bipartite	 network	 which	 is	 sparse	 enough,	 i.e.	∂ ≫ Yä, ∀ß ,	 we	 can	 approximately	 have	
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≥ d•æ; Y•, ∂æ, ∂ 	to	 describe	 the	 distribution	 of	 d•æ .	 The	 mean	 of	 such	 hypergeometric	

distribution	is	thus	the	expected	number	of	the	common	neighbours	between	two	random	objects,	

which	reads,	

	
d•æ
I}l = ≥ d•æ; Y•, ∂æ, ∂ =

Y•∂æ
∂ =

Y•
∂ ∙ Yæ

YJ'

∂
J

− 1

= Y•Yæ ∙
YJ'J − YJ
∂' .	

	(5.22)	

As	 a	 result,	we	have	 the	exactly	 same	 solution	 for	 the	expected	 common	neighbours	using	 the	

hypergeometric	distribution	with	that	using	the	network	analysis	(Eq.	5.20).	In	addition,	since	∂	is	
the	 total	 links	between	users	and	objects,	we	have	∂ = YJJ = ™ YJ .	 The	expression	 for	 the	

expected	number	of	common	neighbours	(Eq.	5.20	and	Eq.	5.22)	can	thus	be	rewritten	as	

	 d•æ
I}l =

YJ' − YJ
™ YJ ' ∙ Y•Yæ.	 	(5.23)	

Note	that,	such	consideration	does	not	exclude	the	case	of	multi-links,	leading	the	calculated	value	

slightly	higher	than	the	actual	theoretical	value	for	number	of	common	neighbours,	especially	for	

these	objects	with	very	large	degrees.	However,	the	expression	is	valid	for	sparse	limit	or	the	limit	

of	™ → ∞; 	? → ∞.	

As	shown	by	Eq.	5.23,	the	expected	number	of	common	neighbours	between	two	objects	û	and	fl	
is	linearly	correlated	with	the	product	of	their	popularities	Y•Yæ,	which	is	very	similar	to	that	for	

the	unipartite	networks	as	have	been	discussed	in	the	Section	5.2.	Similarly,	we	further	use	ℋ	to	

denote	the	parameter	before	the	product	of	the	popularities,	which	reads	

	 ℋ =
YJ' − YJ
™ YJ ' =

1
™

YJ'

YJ ' −
1
YJ

.	 	(5.24)	

As	a	consequence,	the	parameter	ℋ	describes	the	heterogeneity	of	the	user	degree	distribution.		

With	the	expected	number	of	common	neighbours	as	the	estimation	for	the	random	component,	

one	can	compare	the	actual	and	expected	number	by	taking	either	ratios	or	differences	to	get	the	

similarity	measure.	Normally,	 real	 user-object	 systems	are	extremely	 sparse	where	most	object	

pairs	would	have	no	common	neighbours	at	all.	In	order	to	make	these	object	pairs	distinguishable	

from	each	other,	we	define	the	similarity	between	two	objects	û	and	fl	by	taking	the	difference	as	
d•æÑ1s = d•æã) − d•æ

I}l = Γ•⋂Γæ − ℋ ∙ Y•Yæ .	 This	 expression	 can	 be	 used	 as	 an	 object	 similarity	

measure	and	theoretically	 there	would	be	no	popularity	bias	 (or	degree-bias)	 for	 the	quantified	

object	similarities.		

5.3.2.	Application	to	personalised	recommendation	

Considering	the	popularity	of	objects	may	be	an	influential	factor	in	recommender	systems,	here	

we	explore	to	what	extent	should	the	popularity	bias	be	balanced	to	achieve	good	performance.	By	

introducing	a	free	parameter	ú,	we	define	a	new	similarity	measure	for	bipartite	networks,	namely	

the	Balanced	Common	Neighbour	(BCN)	measure	as	
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	 Ç•æ–ã) = Γ•⋂Γæ − ú ∙ ℋY•Yæ.	 	(5.25)	

One	may	find	from	the	expression	that	ú = 0	gives	the	standard	CN	measure.	As	the	parameter	ú	
increases,	more	and	more	popularity	bias	would	be	removed,	until	and	ú = 1	gives	the	theoretical	
similarity	with	no	popularity	bias.		

We	 carry	 out	 recommendation	 experiments	 based	 on	 three	 empirical	 datasets	 namely	 the	

MovieLens,	 Netflix	 and	 Last.FM	 (see	 Chapter	 3	 for	 descriptions	 of	 these	 datasets).	 For	 all	 the	

recommendation	experiments	here,	we	randomly	divide	20%	of	the	links	into	the	testing	set	for	

each	dataset,	and	take	a	recommendation	list	length	; = 20.	To	Evaluate	the	performance	of	the	

recommendations,	 we	 use	 the	 precision	^(;)	and	 recall	´(;)	as	 the	 accuracy	metrics,	 and	 the	

personalisation	¨(;)	and	novelty	?(;)	as	the	diversity	metrics	(see	Chapter	2,	Section	2.3.2	for	the	

definition	 of	 these	 evaluation	metrics).	 Furthermore,	 all	 of	 the	 results	 on	 the	 recommendation	

performance	are	averaged	over	100	independent	experiments.		

	
Figure	 5.8	 |	 Recommendation	 performances	 of	 Balanced	 Common	 Neighbour	 similarity	
measure.	The	precision	and	recall	as	the	accuracy	of	the	recommendations,	are	the	higher	
the	better.	As	to	the	diversity,	personalisation	is	the	higher	the	better	while	the	novelty	is	
the	lower	the	better.	Each	column	of	subplots	is	the	result	for	one	dataset,	where	the	red	
dashed	line	represents	the	optimised	parameter	úä	maximising	the	precision.	The	results	for	
each	dataset	 are	 based	on	100	 independent	 recommendation	 experiments	with	 random	
data	partitions.	
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We	start	with	exploring	that	to	what	extent	should	the	popularity	bias	of	object	similarity	should	

be	balanced	by	tuning	ú	to	achieve	better	recommendation	performances	in	terms	of	accuracy	and	

diversity.	The	results	are	shown	in	Figure	5.8.		

As	 has	 been	 discussed	 earlier,	ú = 0 	gives	 us	 the	 standard	 CN	 measure,	 which	 can	 result	 in	

relatively	 good	 accuracy	 but	 poor	 diversity.	 The	 reason	 is	 that	 CN	 recommends	 generally	 the	

extremely	 popular	 objects,	 which	 have	 better	 chance	 to	 suite	 more	 users'	 common	 interests.	

However,	 every	 user's	 recommendation	 list	would	 be	 dominated	 by	 the	 same	 popular	 objects,	

leading	to	poor	personalisation	and	novelty.	When	gradually	increasing	the	parameter	ú,	the	BCN	
measure	removes	more	and	more	randomly-generated	common	neighbours	as	suggested	by	Eq.	

5.25.	Accordingly,	the	average	popularity	of	the	recommended	objects,	 i.e.	the	novelty	$N(20)$,	

decreases	with	the	increase	of	ú,	since	those	not-so-popular	objects	are	evaluated	as	more	similar	

to	others.	The	recommendations	thus	become	more	and	more	personalised.	Therefore,	Figure	5.8	

suggests	 that	 to	 remove	 the	 random	 component	 of	 the	 common	 neighbours	 can	 remarkably	

improve	the	diversity	of	the	recommendations.	On	the	other	hand,	the	recommendation	accuracy	

will	 also	 be	 largely	 influenced	 by	 the	 balancing	 of	 the	 popularity	 bias.	 If	 slightly	 balance	 the	

popularity	bias,	the	recommendations	are	shown	to	be	more	accurate.	However,	when	applying	a	

large	ú,	which	means	to	totally	remove	the	popularity	bias	(ú = 1)	or	even	reverse	the	bias	(ú > 1),	
the	recommendation	lists	would	be	dominated	by	only	unpopular	objects,	leading	to	poor	accuracy.	

Here	we	take	an	optimised	value	úp	maximising	the	precision	for	each	dataset.	With	the	optimised	

value	úä,	both	the	accuracy	and	diversity	of	the	the	recommendations	can	be	significantly	improved	

in	comparison	to	the	algorithm	applying	the	original	CN	measure.	The	optimised	values	úä	are	0.33,	
0.36	and	1.4	for	MovieLens,	Netflix	and	Last.FM	datasets	respectively.	

	

Table	5.3	|	Numerical	results	of	recommendation	with	BCN	measure.	

	

As	shown	in	Table	5.3,	the	accuracy	metrics	(precision	^(20)	and	recall	´(20))	are	improved	about	

10%	 for	 the	MovieLens	 and	 Netflix	 datasets	 and	more	 than	 20%	 for	 the	 Last.FM	 dataset.	 The	

diversity	 performances	 are	 improved	 even	more	 significantly,	 especially	 for	 the	 personalisation	

¨(20)	which	has	been	improved	for	43.72%,	54.37%	and	26.12%	for	MovieLens,	Netflix	and	Last.FM	

datasets	respectively.		
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Table 1. Numerical results of recommendation algorithm ap-
plying BCN index and its improvements in comparison to the
CN index.

P (20) R(20) S(20) N(20)
MovieLens
� = 0 0.111 0.123 0.486 1118.1
�
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= 0.33 0.124 0.138 0.699 913.7
Improvement 11.64% 11.68% 43.72% 18.29%
Netflix
� = 0 0.082 0.160 0.455 1171.0
�
o

= 0.36 0.090 0.177 0.702 909.4
Improvement 9.95% 10.46% 54.37% 22.34%
Last.FM
� = 0 0.093 0.205 0.705 227.0
�
o

= 1.4 0.114 0.254 0.889 136.5
Improvement 22.52% 23.79% 26.12% 39.89%
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We	further	compare	the	recommendation	performances	of	the	optimised	BCN	measure	with	that	

of	classical	similarity	measures	including	the	CN,	LHN,	HP,	AA,	RA,	MD,	and	HC	measures	which	have	

been	introduced	in	Chapter	2.	As	shown	in	Table	5.4,	the	recommendation	accuracies	(precision	

^(20)	and	recall	´(20))	of	the	BCN	measure	are	comparable	to	the	MD	measure	which	is	normally	

considered	as	one	of	the	most	accurate	algorithms.	The	BCN	measure	is	more	accurate	than	many	

of	the	accuracy-based	measures	such	as	the	CN,	AA,	RA.	In	terms	of	the	diversity,	the	BCN	measure	

is	 comparable	 to	 the	 HC	 measure,	 which	 is	 designed	 to	 achieve	 good	 diversity.	 While	 some	

diversity-based	measures	 such	 as	 LHN,	 HP,	 and	HC	 sacrifice	 the	 accuracy	 a	 lot	 to	 focus	 on	 the	

extreme	unpopular	recommendations,	the	proposed	BCN	measure	can	achieve	good	accuracy	and	

diversity	simultaneously	with	reasonable	preference	on	the	popularity	of	recommended	objects.	
	

Table	5.4	|	Comparison	of	recommendation	performances	of	BCN	measure	to	benchmarks.	
The	results	of	BCN	measure	are	based	on	the	optimised	value	úß,	i.e.	0.33,	0.36	and	1.4	for	
the	MovieLens,	Netflix	and	Last.FM	respectively.		

	

5.4.	Summary	

By	 comparing	 a	 given	 network	 with	 the	 random	 network,	 this	 Chapter	 develops	 a	 Balanced	

Common	 Neighbour	 similarity	 measure	 for	 the	 quantification	 of	 node	 similarities	 in	 networks	

especially	 for	 the	 object	 similarities	 in	 bipartite	 networks.	 Applying	 the	 BCN	 algorithm	 on	

recommendations,	 the	 diversity	 of	 recommendations	 can	 be	 largely	 improved.	 However,	 the	

accuracy	 will	 be	 sacrificed	 if	 removing	 all	 the	 random-driven	 common	 neighbours	 (ú = 1).	 To	
achieve	 good	 accuracy	 and	 diversity	 simultaneously,	 one	 should	 optimise	 the	 similarity	

quantification	 to	 remove	 the	 random-driven	 common	neighbours	 to	only	 a	 certain	degree.	 The	

optimised	value	úä	for	 the	MovieLens	and	Netflix	are	0.33	and	0.36	 respectively,	which	are	 less	

than	 the	 theoretical	value	ú = 1.	On	 the	other	hand,	 the	optimised	value	 for	 the	Last.FM	 is	1.4	

which	is	larger	than	the	theoretical	value.	Such	difference	between	the	Last.FM	dataset	with	others	

may	be	raised	from	the	different	object	degree	distributions,	and	the	extremely	even	user	degree	

distribution	 (see	 Figure	 3.2).	Without	 hub	 users,	 objects	 are	 less	 likely	 to	 share	many	 common	

neighbours,	leading	to	the	possibility	that	we	may	need	a	relatively	larger	value	of	ú	to	balance	the	
popularity	bias.	With	the	optimised	value,	the	accuracy	and	diversity	of	the	recommendations	can	

be	simultaneously	improved	and	are	comparable	to	accuracy-based	algorithms	(such	as	MD)	and	

diversity-based	algorithms	(such	as	HC)	respectively.	

This	Chapter	explores	RQ2	of	 the	 thesis	 (how	can	we	develop	a	balanced	similarity	measure	by	

comparing	the	empirical	network	with	random	ones?).	The	answer	lies	in	the	theoretical	calculation	

2 Lei Hou et al.: Balancing the popularity bias of object similarities for personalised recommendation

Table 2. Comparison of recommendation performances among algorithms applying di↵erent similarity indices. The results of
BCN index are based on the optimised value of �

o

, i.e. 0.33, 0.36 and 1.4 for the MovieLens, Netflix and Last.FM respectively.

MovieLens Netflix Last.FM

P (20) R(20) S(20) N(20) P (20) R(20) S(20) N(20) P (20) R(20) S(20) N(20)
CN 0.111 0.123 0.486 1118.1 0.082 0.160 0.455 1171.0 0.093 0.205 0.705 227.0
LHN 0.001 0.001 0.469 1.1 0.001 0.001 0.922 1.4 0.017 0.044 0.994 2.1
HP 0.001 0.001 0.497 1.8 0.001 0.002 0.848 8.7 0.068 0.154 0.948 78.3
AA 0.114 0.130 0.500 1120.7 0.085 0.172 0.479 1175.6 0.093 0.203 0.707 227.2
RA 0.117 0.140 0.542 1114.2 0.089 0.199 0.542 1160.4 0.093 0.205 0.709 226.5
MD 0.121 0.145 0.560 1106.1 0.092 0.207 0.561 1144.9 0.115 0.255 0.794 196.8
HC 0.031 0.022 0.852 49.6 0.001 0.001 0.913 1.52 0.015 0.040 0.977 1.8
BCN 0.124 0.138 0.699 913.7 0.090 0.177 0.702 909.4 0.114 0.254 0.889 136.5
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for	 the	 expected	 number	 of	 common	 neighbours	 in	 random	 networks,	 which	 has	 been	 fully	

addressed	in	Section	5.2.1	and	5.3.1	for	unipartite	and	bipartite	networks	respectively.	In	addition,	

the	developed	similarity	measure	has	been	applied	to	empirical	scenarios	to	explore	the	similarity	

intensity	of	networks	and	the	personalised	recommendations.		
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Chapter	6.	Navigation	Accuracy	of	

Recommendation	Networks	

	

In	the	previous	chapters,	the	application	of	similarity	measures	in	personalised	recommendation	

has	 been	 discussed.	 In	 the	 online	world,	 there	 is	 yet	 another	 commonly	 existed	 recommender	

system,	 which	 is	 normally	 referred	 as	 recommendation	 networks.	 From	 this	 chapter	 onwards,	

including	Chapter	6	and	Chapter	7,	we	will	focus	on	the	evaluation	of	recommendation	networks	

and	the	application	of	similarity	measures	in	such	systems.		

The	world-wide	web,	as	the	major	channel	where	people	access	information	from,	is	naturally	a	

complex	network	enabled	by	hyperlinks,	and	thereby	its	topology	attracted	a	significant	amount	of	

scientific	attentions	(Albert	et	al.	1999;	Barabási	et	al.	2000;	Kleinberg	&	Lawrence	2001;	Henzinger	

&	Lawrence	2004;	Fortunato	et	al.	2006b;	Cheng	et	al.	2009).	The	connected	webpages	enable	users	

to	 surf	 on	 such	 network	 to	 explore	 massive	 amount	 of	 information	 (Bilenko	 &	 White	 2008).	

Particularly,	 in	many	online	content-browsing	systems,	such	as	e-commerce	websites	and	movie	

websites,	where	each	object	(product	or	movie	etc.)	is	displayed	in	a	dedicated	webpage,	the	object	

similarities	are	evaluated	and	hyperlinks	are	established	accordingly	as	recommendations.	When	

browsing	a	specific	object	in	such	website,	there	is	normally	a	recommendation	list	consisting	of	

objects	that	the	system	considers	to	be	similar	with	the	current	one.	This	kind	of	similar	object	list	

can	be	found	in	a	wide	range	of	websites,	such	as	the	"Customers	who	bought	this	item	also	bought"	

list	in	Amazon,	and	the	"People	also	viewed"	list	in	Yelp.	As	a	consequence,	these	recommendation	

lists	on	various	webpages	enable	 the	overwhelming	online	objects	 to	connect	 to	each	other	via	

hyperlinks	as	a	massive	recommendation	network.		

Regarding	the	topology,	the	recommendation	networks	are	found	with	power-law	distributed	in-

degrees	and	a	small	average	shortest	path	length	(Cano	et	al.	2006;	Buldú	et	al.	2007).	From	the	

perspective	 of	 the	 commercial	 values	 (Oestreicher-Singer	 et	 al.	 2013;	 Goldenberg	 et	 al.	 2012),	

product	sales	and	demands	are	argued	to	be	closely	related	to	the	products'	position	in	the	network	

(Leem	 &	 Chun	 2014;	 Oestreicher-Singer	 &	 Sundararajan	 2012b)	 and	 a	 long-tail	 effect	 can	 be	

observed	 (Oestreicher-Singer	 &	 Sundararajan	 2012a).	 In	 addition,	 the	 hyperlinks	 connecting	
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different	objects	may	be	able	to	spread	the	web	traffic,	and	as	a	result,	the	demands	of	objects	are	

argued	to	be	contagions	in	the	recommendation	networks	(Carmi	et	al.	2009;	2017).	

The	major	function	of	recommendation	networks	is,	in	nature,	to	serve	users	by	navigating	them	

to	what	they	may	be	interested	in.	While	the	amount	of	online	objects	are	too	much	for	anyone	to	

even	skim	over	and	the	search	engine	normally	provides	only	biased	results	(Fortunato	et	al.	2006b;	

De	Corniere	&	Taylor	2014),	the	recommendation	network	can	be	a	good	way	for	users	to	access	

online	information	and	correct	the	initial	searching	bias.	By	surfing	on	such	network	following	the	

recommendation	hyperlinks,	users	are	thereby	enabled	to	explore	massive	relevant	objects	to	try	

to	 find	 interesting	 ones.	 However,	 it	 is	 still	 an	 open	 question	 that,	 how	 accurately	 can	

recommendation	 networks	 navigate	 users	 to	 find	what	 they	 interested	 in	 (RQ3	 of	 this	 thesis)?	

Additionally,	while	the	structure	of	recommendation	networks	constructed	by	the	website	is	totally	

determined	 by	 how	 the	 similarities	 of	 objects	 are	 evaluated,	 and	 there	 are	 quite	 a	 number	 of	

methods	 of	 quantifying	 the	 similarity	 according	 to	 the	 users'	 co-accessing	 pattern,	 how	would	

different	 similarity	measures	 influence	 the	accuracy	of	 recommendation	networks	 is	 a	question	

that	at	the	central	for	the	understanding	and	design	of	such	systems.		

By	developing	an	evaluation	framework	based	self-avoiding	random	walks,	this	Chapter	shows	that	

the	navigation	accuracy	of	recommendation	networks	constructed	by	similarity	measures	is	very	

limited.	Though	CN,	AA	and	RA	measures	are	able	to	generate	relatively	high	accuracies,	about	7%	

retrieval	accuracy,	they	fail	to	guarantee	the	retrieval	for	niche	objects.	 In	addition,	we	discover	

that	the	length	of	recommendation	list	is	an	important	factor	for	the	accuracy	of	recommendation	

networks.	The	optimal	 length	should	be	relatively	short,	about	2-6	objects,	 in	order	to	gain	best	

retrieval	accuracy.		

The	 rest	 of	 this	 chapter	 is	 organised	 as	 follows:	 Section	 6.1	 theorises	 the	 construction	 of	

recommendation	 networks	 as	 the	 bipartite	 projection	 using	 object	 similarity	 measures	 and	

discusses	the	topology	of	the	constructed	networks;	Section	6.2	models	the	user	surfing	behaviour	

as	 a	 self-avoiding	 random	 walk	 process	 and	 thereby	 explores	 the	 navigation	 accuracy	 of	 the	

recommendation	networks;	Section	6.3	discusses	the	influence	of	the	recommendation	list	length	

on	 the	 accuracy	 of	 navigating	 users;	 Section	 6.4	 empirically	 studies	 the	 book	 recommendation	

network	collected	from	Amazon;	and	Section	6.5	gives	a	summary	for	this	Chapter.		

6.1.	Construction	of	Recommendation	Networks	

6.1.1.	Top-L	projection	for	the	user-object	bipartite	networks	

A	 recommendation	 network	 can	 be	 constructed	 by	 connecting	 similar	 objects	 with	 directed	

hyperlinks.	The	quantification	of	object	similarities	is	thus	at	the	central	to	the	construction	as	well	

as	the	performances	of	recommendation	networks.		

There	 are	 a	 number	 of	 well-developed	 methods	 in	 network	 science	 to	 quantify	 the	 object	

similarities	 according	 to	 how	 are	 they	 connected	 by	 the	 same	 users,	 as	 has	 been	 discussed	 in	
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Chapter	2,	section	2.2.	Basically,	the	more	common	neighbours	two	objects	share,	the	more	similar	

they	 would	 be	 considered.	 In	 this	 Chapter,	 to	 explore	 the	 performance	 of	 recommendation	

networks	constructed	by	different	similarity	measures,	we	apply	eight	such	measures,	including	the	

CN,	SAL,	SOR,	HPI,	LHN,	AA,	RA	and	HC	measure	(for	detailed	definitions,	please	refer	to	section	

2.2).		

Consider	a	user-object	bipartite	network	with	a	set	of	™	users	„ = {£%, £', … , £â}	and	a	set	of	?	
objects	‰ = {ß%, ß', … , ß)} 	(Figure	 6.1a),	 and	 the	 links	 can	 thus	 be	 described	 by	 an	 adjacency	
matrix	Â = {ÊJä}â×) 	where	Ê£ß = 1	if	 there	 is	 a	 link	 between	 user	£ 	and	 object	ß 	and	Ê£ß = 0	
otherwise	(Figure	6.1b).	Applying	an	arbitrary	similarity	measure,	the	similarity	between	every	pair	

of	objects	can	be	calculated	and	thus	the	similarity	matrix	can	be	obtained	that	Á = {Ç•æ})×),	as	
shown	in	Figure	6.1c.	

	
Figure	6.1	|	A	toy	example	of	constructing	the	recommendation	network.	(a)	A	user-object	
bipartite	network	with	five	users	(top	nodes)	and	six	objects	(bottom	nodes),	where	the	links	
represent	the	interactions.	(b)	The	adjacency	matrix	for	the	bipartite	network	Â = {ÊJä}∫×⁄	
where	ÊJä = 1	if	there	is	a	link	between	user	£	and	object	ß	and	0	otherwise.	(c)	The	object	
similarity	matrix	Á = {Ç•æ}⁄×⁄	which	can	be	calculated	by	applying	any	similarity	measure.	
In	 this	 example,	 we	 apply	 the	 Resource	 Allocation	 (RA)	 measure.	 (d)	 By	 ranking	 the	
similarities,	and	only	keeping	;	highest	values	as	1	in	each	row	of	the	matrix	Á,	the	adjacency	
matrix	for	recommendation	network	Ë	is	obtained.	(e)	The	recommendation	network	can	
thus	be	constructed	according	to	the	adjacency	matrix	Ë,	leading	to	a	directed	network	with	
the	same	out-degree	for	each	node,	i.e.	YääJv = ;, ∀ß.	

Though	each	object	can	be	similar	to	quite	a	lot	of	others,	most	practical	systems	only	recommend	

a	 fixed	number	of	 similar	objects	 for	 each	one	 considering	 the	 limited	 space	on	 the	webpages,	

rather	than	connecting	every	pair	of	objects	sharing	at	common	neighbours	(Buldú	et	al.	2007).	In	

a	recommendation	network,	each	object	thus	only	connects	to	;	others,	to	which	it	has	the	highest	
similarities.	Therefore,	the	object	similarity	matrix	Á	can	be	transferred	to	an	adjacency	matrix	for	

the	recommendation	network	Ë	by	ranking	each	row	and	keeping	only	the	;	highest	values	as	1	
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and	 others	 as	 0,	 as	 shown	 by	 Figure	 6.1d.	 In	 other	 words,	 in	 the	 recommendation	 network	

adjacency	matrix	Ë = {Ä•æ})×),	we	let	

	 Ä•æ =
1, 5…	´0dY fl, û ≤ ;
0, 5…	´0dY fl, û > ;,	 	(6.1)	

where	´0dY fl, û 	is	 the	 rank	of	 similarity	Ç•æ 	in	 the	 row	{Ç•äÈ, Ç•äÍ, … , Ç•äÎ}	from	high	 to	 low.	

Accordingly,	 the	 recommendation	 network	 (Figure	 6.1e)	 can	 be	 constructed	 to	 be	 a	 directed	

network	with	a	fixed	out-degree	for	every	object,	i.e.	YääJv = ;, ∀ß.	

Here	we	have	described	the	construction	of	recommendation	networks	as	the	ranking	process	for	

the	similarity	matrix.	Actually,	it	can	also	be	regarded	as	the	projection	of	bipartite	networks	(Zhou	

et	al.	2007;	Zweig	&	Kaufmann	2011),	which	connects	every	pair	of	objects	who	are	accessed	by	at	

least	one	same	user.	 In	this	way,	every	object	would	connect	to	a	 lot	of	others,	resulting	a	very	

dense	 recommendation	 network,	 while	 the	 space	 of	 recommendation	 lists	 should	 be	 limited.	

Therefore,	a	key	question	is	how	to	weight	the	connections	so	that	one	can	rank	them	and	keep	

only	the	top-L	connections.	This	is	where	the	similarity	measures	can	be	applied.	By	weighting	each	

projected	connection	with	an	arbitrary	similarity	measure,	one	can	keep	only	;	outgoing	links	for	
each	 source	 object.	 As	 a	 consequence,	 the	 construction	 of	 recommendation	 networks	 can	 be	

regarded	as	a	top-;	projection	of	the	user-object	bipartite	network.		

6.1.2.	Topological	Structure	of	Recommendation	Networks	

Since	it	appears	as	networks,	the	recommendation	network’s	degree	distribution	may	be	the	most	

important	 feature	 determining	 its	 performances.	 Here	 in	 this	 section,	 we	 examine	 the	 degree	

distribution	of	the	constructed	recommendation	networks.		

Three	datasets,	including	the	user-book	interactions	from	Amazon,	the	user-business	interactions	

from	Yelp	and	the	user-product	interactions	from	Epinions	are	applied.	All	three	data	sets	can	be	

modelled	as	user-object	bipartite	networks,	and	the	descriptions	can	be	found	in	Chapter	3.	Note	

that,	there	are	two	Amazon	datasets	introduced	in	this	thesis:	one	is	the	recommendation	network	

collected	directly	from	the	website;	the	other	one	is	the	user-book	bipartite	network.	In	this	section	

and	also	sections	6.2	and	6.3,	we	study	the	recommendation	networks	projected	from	the	latter	

dataset,	 i.e.	 the	 bipartite	 network;	 and	 in	 section	 6.4,	 we	 will	 empirically	 examine	 the	

recommendation	network	constructed	by	Amazon.		

We	apply	eight	similarity	measures,	including	the	CN,	SAL,	SOR,	HPI,	LHN,	AA,	RA	and	HC	measure,	

to	calculate	the	object	similarity	matrix	 for	each	of	 the	three	data	sets,	and	therefore	construct	

recommendation	networks	with	recommendation	list	length	;.	

To	set	 the	baseline	of	 the	performances,	we	also	construct	 random	recommendation	networks,	

where	each	object	connects	to	;	others	chosen	from	the	whole	population	uniformly	at	random.	

While	the	out-degree	is	fixed	for	every	object,	i.e.	YääJv = ;, ∀ß	according	to	the	mechanism	of	the	

construction	method,	the	 in-degree	varies.	 In	a	recommendation	network,	an	object’s	 in-degree	

Y1G	represents	its	frequency	of	occurrences	in	others’	recommendation	list,	and	thus	well	links	to	



Chapter	6.	Navigation	Accuracy	of	Recommendation	Networks	

	 81	

its	 visibility	 for	 users.	 However,	 as	 shown	 by	 Figure	 6.2,	 the	 in-degrees	 of	 the	 constructed	

recommendation	networks	have	very	heterogeneous	distributions.	For	Amazon	and	Yelp	system,	

all	 the	 measures	 except	 HC	 have	 power-law	 in-degree	 distributions	 with	 slopes	 of	 -2.7	

approximately.	 The	 CN,	 AA	 and	 RA	 measures	 in	 Epinions	 system	 also	 show	 the	 power-law	

distributions.	Such	in-degree	distributions	suggest	that	there	are	a	few	objects	frequently	show	up	

in	others’	recommendation	list,	while	most	others	barely	get	recommended.	The	HC	measure	(also	

the	SAL,	 SOR,	HPI	and	LHN	measures	 for	Epinions	dataset),	on	 the	other	hand,	 can	 result	 in	an	

exponential-like	 in-degree	 distribution	which	means	 the	 objects	 have	 relatively	more	 equalised	

chances	to	be	recommended	and	visited.	As	the	baseline,	the	random	recommendation	networks	

connecting	objects	randomly,	have	normal	(Gaussian)	 in-degree	distributions,	 i.e.	the	 in-degrees	

are	extremely	evenly	distributed.		

	
Figure	6.2	|	In-degree	distributions	of	recommendation	networks.	The	plots	are	in	log-log	
scale,	and	 in	each	subplot	 the	straight	dashed	 line	marks	 the	slope	of	 -2.7	 indicating	 the	
corresponding	distributions	have	an	exponent	b = 2.7	for	 the	power-law	distribution.	All	
the	recommendation	networks	are	constructed	with	a	recommendation	list	 length	of	; =
10.	

The	different	behaviour	of	the	similarity	measures	may	be	caused	by	the	apparent	popularity	bias	

that	 the	 estimated	 similarities	 are	 highly	 correlated	 with	 the	 object	 popularity	 (as	 has	 been	

discussed	in	Chapter	5),	either	positively	(the	CN,	AA,	RA	and	HPI	measures)	or	negatively	(the	SAL,	

SOR,	 LHN	 and	 HC	 measures).	 Such	 popularity	 bias	 will	 result	 in	 the	 fact	 that	 the	 links	 in	

recommendation	 networks	 will	 concentrate	 on	 those	 either	 every	 popular	 or	 very	 unpopular	

objects	leading	to	the	inequality	of	in-degree	distribution.	

6.2.	Self-Avoiding	Random	Walks	and	Navigation	Accuracy	

6.2.1.	Information	retrieval	experiments	based	on	random	walks	

While	the	recommendation	networks	enable	the	numerous	objects	to	connect	to	each	other	with	

hyperlinks,	the	user	behaviour	of	browsing	objects	from	one	to	another	following	the	hyperlinks	
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can	thus	be	naturally	modelled	as	the	random	walk	(Masuda	et	al.	2017)	on	the	recommendation	

networks.	 Considering	 that	 the	 users	may	 not	 be	 interested	 in	 objects	 that	 have	 already	 been	

visited,	we	adopt	the	self-avoiding	random	walk	model	to	describe	the	users’	surfing	behaviour.	

Different	from	the	classical	random	walk	on	network,	users	in	self-avoiding	random	walk	will	not	

revisit	any	nodes.	As	shown	in	Figure	6.3,	we	assume	a	user	to	start	walking	from	a	random	object	

at	the	initial	time	X = 0.	At	each	following	step,	we	let	the	user	randomly	move	from	the	current	

node	to	one	of	its	out-going	nodes	(another	object	that	in	the	current	one’s	recommendation	list)	

which	has	not	been	visited	 in	previous	steps,	 following	the	hyperlink.	Accordingly,	each	random	

walk	will	continue	for	a	limited	number	of	steps	until	the	walker	comes	to	a	node	whose	out-going	

nodes	have	all	been	visited.		

	
Figure	6.3	|	An	example	of	self-avoiding	random	walk	on	a	toy	recommendation	network	
with	six	objects.	As	we	assume	the	walker	won’t	revisit	any	node,	the	random	walk	ends	at	
X = 3	when	all	the	out-going	nodes	have	been	visited	in	previous	steps.	

In	the	random	walk	process,	an	apparent	question	is	that,	are	these	objects	visited	by	a	random	

walker	 really	 of	 his/her	 interests?	 To	 examine	 the	 accuracy	 of	 the	 recommendation	 network	

navigation,	we	randomly	divide	the	users	into	a	training	group	and	a	testing	group,	for	each	of	the	

three	 applied	 bipartite	 networks.	 The	 training	 group	 consisting	 of	 90%	 of	 the	 users	 is	 used	 to	

construct	the	recommendation	networks	via	the	top-L	projection.	For	each	of	the	remaining	10%	

testing	users,	we	assume	that	the	objects	they	have	selected	in	the	data	can	well	represent	their	

interests,	and	examine	how	many	of	their	historical	selections	can	be	retrieved	by	randomly	walking	

on	the	constructed	recommendation	networks.		For	a	target	user	£,	who	selected	dJ	objects	in	the	
data,	 we	 let	 him/her	 to	 perform	 self-avoiding	 random	 walks	 starting	 from	 one	 of	 his/her	dJ	
selected	 objects.	 Suppose	 at	 step	X 	of	 the	 random	walk,	ℎJ(X)	of	 the	dJ − 1	remaining	 objects	

have	been	visited,	we	then	have	the	retrieval	percentage	as		

	 bJ(X) = ℎJ(X)/(dJ − 1),	 	(6.2)	

Accordingly,	we	use	the	retrieval	percentage	b(X)	averaged	over	all	testing	users	as	the	indicator	
for	 the	 accuracy	 of	 the	 recommendation	 networks.	 Apparently,	 higher	 values	 of	 retrieval	

percentage	b(X)	mean	higher	accuracy.		

Note	that,	in	the	experiments,	we	carry	out	10	independent	experiments	for	each	possible	starting	

object	for	every	user.	And	the	recommendation	list	length	of	the	constructed	networks	is	; = 10.		

As	shown	by	Figure	6.4,	limited	amount	of	objects	can	be	retrieved	by	letting	users	to	walk	on	the	

recommendation	 networks.	 Generally,	 the	 retrieval	 percentages	 are	 less	 than	 9%	 even	 for	 a	

random	walk	process	of	X = 10\	steps.	Especially,	while	eight	similarity	measures	are	studied,	only	
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the	CN,	AA	and	RA	measures	are	shown	to	be	able	to	construct	recommendation	networks	with	

reasonable	 accuracies.	 The	 SAL,	 SOR,	 HPI,	 LHN,	 and	 HC	 measures	 generally	 have	 retrieval	

percentages	less	than	2%,	being	similar	to	that	of	the	random	recommendation	networks.	Having	

similar	retrieval	percentage	with	the	random	recommendation	networks	means	these	measures	

can	mine	the	similarity	between	objects	no	better	than	random	recommendations.	

Actually,	one	should	not	expect	users	to	keep	walking	on	recommendation	networks	for	too	long	

time.	Once	realised	that	following	the	navigation	cannot	quickly	locate	interesting	objects,	the	users	

may	dropout	or	start	from	searching	anew.	Accordingly,	a	more	reliable	way	to	check	the	accuracy	

of	such	random	walk,	is	the	short-term	accuracy.	Taking	X = 10	as	an	example	for	the	short-term	

accuracy,	the	most	accurate	measure	retrieves	only	3%	(CN),	3.2%	(CN)	and	1.9%	(AA)	objects	for	

the	Amazon,	Yelp	and	Epinions	dataset	respectively	if	letting	users	to	surf	on	the	recommendation	

networks	for	10	steps.	

	
Figure	6.4	|	The	retrieval	percentage	b(X)	of	the	random	walk	experiments	versus	walking	
steps	for	Amazon,	Yelp	and	Epinions	respectively.	

6.2.2.	Retrieval	for	niche	versus	popular	objects	

For	the	random	walk	on	the	recommendation	networks,	one	may	also	be	interested	in	the	question	

that	which	objects	are	the	users	visiting.	We	measure	how	many	users	a	specific	object	has	been	
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accessed	by,	i.e.	the	bipartite	degree	of	the	object	Yä,	as	its	popularity,	and	explore	the	popularity	
of	 the	 visited	 objects	 at	 each	 step	X	of	 the	 random	walk,	 denoting	with	Y(X).	 Instead	of	 letting	
testing	 users	 start	 random	 walk	 from	 their	 historical	 objects,	 we	 simulate	10? 	random	 walks	

starting	from	random	objects	for	each	recommendation	network.		

For	 the	 random	 recommendation	 networks,	 since	 there	 are	 no	 popularity	 preferences	 for	 the	

recommendation	 linkages,	 the	 popularity	 of	 visited	 objects	 at	 each	 step	 is	 expected	 to	 be	 the	

average	popularity	of	the	whole	population	of	objects,	i.e.	Y X = Y .	As	shown	by	Figure	6.5a-c,	

the	 random	 recommendation	 networks	 generate	 balanced	 popularity	 dynamics	 as	 expected.	

However,	the	popularity	of	the	visited	objects	Y X 	for	almost	all	the	similarity	measures	(except	

for	the	HC	and	HPI	measure	in	Amazon	data	set)	deviates	from	the	average	level,	which	means	the	

random	walkers	on	such	recommendation	networks	are	navigated	to	either	popular	or	unpopular	

objects.		

	
Figure	6.5	|	Retrieval	for	popular	versus	niche	objects.	(a-c),	The	popularity	of	objects	visited	
at	 each	walking	 step.	 These	 results	 are	 based	 on	 random	walks	 that	 start	 from	 random	
objects,	not	limited	to	these	that	are	historically	selected	by	the	random	walker.	Note	that,	
for	some	recommendation	networks,	 the	self-avoiding	random	walk	may	not	 last	 for	103	
steps.	Consequently,	there	may	be	missing	data	points	at	the	tails	of	the	results,	such	as	for	
the	LHN	recommendation	networks.	(d-f),	The	retrieval	percentage	for	popular	(more	than	
average)	objects	bläl(X).	(g-i),	The	retrieval	percentage	for	niche	(less	than	average)	objects	
bG1Ï X .	

The	 CN,	 AA	 and	 RA	 measures,	 which	 have	 relatively	 high	 accuracy	 of	 retrieving	 users'	 history	

records,	are	shown	to	be	rapidly	navigating	users	to	extreme	popular	objects	in	a	short	10-steps	

random	walk,	which	can	be	about	30	(for	Amazon	and	Yelp	data	sets)	or	even	more	than	100	(for	
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Epinions	data	set)	times	more	popular	than	the	average.	On	the	other	hand,	the	recommendation	

networks	constructed	by	the	SAL,	SOR	and	LHN	measure	(also	the	HC	measure	in	Epinions	data	set)	

gradually	navigate	users	to	objects	with	quite	low	level	of	popularity.	Such	biased	accessibility	may	

be	caused	by	the	systemic	bias	of	the	similarity	measures	as	discussed	in	Chapter	5.	Measures	such	

as	 the	 CN,	 AA	 and	 RA,	 do	 not	 take	 any	 normalisation	 for	 the	 weighted	 sum	 of	 the	 common	

neighbours,	and	thus	the	popular	objects	tend	to	be	similar	to	most	others	since	they	have	higher	

chances	of	getting	common	neighbours	even	randomly.	On	the	other	hand,	measures	such	as	SAL,	

SOR,	 LHN	and	HC	normalise	 the	 common	neighbours	by	 the	object	degree,	 and	 result	negative	

correlations	between	the	object	degree	(popularity)	and	the	similarity.		

Despite	the	moderate	accuracy	regarding	retrieving	users’	historical	records,	the	recommendation	

networks	are	shown	to	be	navigating	users	to	either	popular	or	unpopular	objects	rather	than	in	

balanced	 manners.	 Inspired	 by	 the	 study	 of	 personalised	 recommendation,	 which	 has	 been	

addressing	 the	 importance	 of	 diverse	 and	 novel	 recommendations,	 here	we	 further	 separately	

examine	the	systems’	accuracy	of	retrieving	popular	and	niche	objects.	

Setting	a	baseline	as	the	average	popularity	 Y 	of	the	whole	population	of	objects,	we	regard	any	

object	ß	with	popularity	higher	 than	average,	 i.e.	Yä > Y ,	 as	 a	popular	object,	 and	 these	with	

popularity	 less	 than	or	 equal	 to	 the	 average	 as	 niche	objects.	 Accordingly,	 for	 a	 testing	user	£,	
his/her	dJ 	historical	 records	 consist	 of	dJ

läl 	popular	 objects	 and	dJG1Ï 	niche	 objects,	 with	dJ =
dJ
läl + dJG1Ï.	Similarly,	we	let	each	testing	user	to	start	from	one	of	his/her	historical	object	and	

examine	how	many	popular	and	niche	objects	can	be	 retrieved	at	a	given	step	X,	denoting	with	
ℎJ
läl(X) 	and	ℎJG1Ï(X) 	respectively.	 We	 then	 have	 the	 retrieval	 percentage	 for	 popular	 objects	

bläl(X),	and	niche	objects	bG1Ï(X)	respectively,	averaged	over	all	the	random	walk	experiments.		

As	shown	by	Figure	6.5d-f,	the	retrieval	percentages	for	popular	objects	have	similar	patterns	in	

comparison	to	the	overall	retrieval	(Figure	6.4).	The	most	accurate	measures,	i.e.	the	CN,	AA	and	

RA,	 generally	 have	 higher	 retrieval	 percentages	 for	 popular	 objects	 than	 that	 for	 all	 objects	

(bläl X > b(X)).	For	other	measures,	there	are	no	apparent	differences	between	the	retrieval	for	

popular	objects	and	for	all	objects.	On	the	other	hand,	the	retrieval	for	the	niche	objects	bG1Ï X 	

show	different	patterns	in	Figure	6.5g-i.	Despite	the	high	accuracies	of	CN,	AA	and	RA	measures	for	

the	popular	objects,	their	ability	of	helping	users	to	find	niche	objects	is	very	limited.	The	relatively	

accurate	 measures	 for	 retrieving	 niche	 objects	 are	 SOR,	 HC	 and	 SAL,	 but	 have	 also	 quite	 low	

retrieval	 percentages	 ( bG1Ï X < 2% ),	 which	 can	 be	 even	 lower	 than	 that	 of	 the	 random	

recommendation	networks	in	the	long-term	random	walks.	

Such	results	suggest	that	the	recommendation	networks	constructed	by	the	eight	applied	similarity	

measures	can	only	navigate	users	to	find	some	(generally	about	10%	or	less)	popular	objects,	while	

fail	to	help	them	find	diverse	and	novel	ones.	

Similar	to	the	results	for	the	retrieval	for	all	objects,	its	more	reliable	to	examine	the	short-term	

retrieval	percentages	for	niche	and	popular	objects.	We	still	take	X = 10	as	an	example,	the	short-

term	 accuracies	 for	 popular	 objects	bläl X = 10 	and	 niche	 objects	bG1Ï X = 10 	are	 shown	 in	

Figure	6.6.	One	can	regard	these	similarity	measures	as	two	clusters.	The	cluster	consisting	of	the	
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CN,	AA	and	RA	measures,	generally	have	better	accuracies	 retrieving	popular	objects	but	 is	not	

good	at	retrieving	niche	objects.	On	the	other	hand,	the	second	cluster	consisting	of	SAL,	SOR,	HPI,	

LHN,	and	HC	measures	has	poor	retrieval	percentages	for	both	popular	and	niche	objects.	

	
Figure	6.6	|	Short-term	retrieval	percentages	for	popular	and	nice	objects.	

6.3.	Influence	of	the	Length	of	the	Recommendation	List	

So	 far,	all	 the	analysis	 is	based	on	 the	 recommendation	 list	 length	of	; = 10.	Actually,	practical	
websites	have	different	lengths	from	each	other,	such	as	; = 3~10	in	Amazon	depending	on	the	

window	 size	 of	 the	 Internet	 browser	 and	; = 3 	in	 Yelp.	 Here	 we	 explore	 the	 influence	 of	 the	
recommendation	list	length	;	on	the	network	structure	and	the	navigation	accuracy.		

Apparently,	 the	 length	 of	 recommendation	 list	 directly	 decides	 how	many	 other	 objects	 can	 a	

specific	object	connect	to	with	hyperlinks.	Thus,	the	length	;	will	largely	influence	the	structure	of	
the	recommendation	networks.	Here	we	investigate	two	aspects	of	the	network	structure,	which	

are	network	efficiency	and	the	reachable	objects.		

As	has	been	 introduced	 in	Chapter	2,	Section	2.1.1,	 the	shortest	path	 length	of	a	network	 is	an	

important	 indicator	 for	 its	efficiency.	The	distance	 from	one	object	5	to	another	6	is	 the	smallest	

number	of	links	that	can	direct	a	random	walker	from	the	source	to	target,	denoting	with	812.	Since	
in	the	recommendation	network,	not	every	pair	of	objects	has	a	route,	here	we	use	the	efficiency	

metric	to	describe	such	feature,	which	is	defined	as	

	 D =
1
812

=
1/8121,2∈ï;1>2

?(? − 1) ,	 	(6.3)	

which	is	basically	the	average	value	of	the	reciprocals	of	the	distance,	with	the	distance	between	

these	unconnected	object	pairs	to	be	infinite,	i.e.	812 = ∞	if	there	are	no	paths	connecting	from	5	
to	6.	Accordingly,	a	larger	value	for	D	means	the	network	is	more	efficient.		
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Figure	6.7	|	Impact	of	recommendation	list	length	on	the	network	structure.	The	number	of	
reachable	objects	is	normalised	by	the	population	of	the	objects	?.	

Since	 larger	 list	 length	; 	means	 that	 more	 links	 will	 be	 introduced	 into	 the	 recommendation	

networks,	the	shortest	path	length	between	two	objects,	i.e.	the	network	efficiency,	will	be	largely	

improved,	 as	 shown	 in	 Figure	 6.7a-c.	 But	 one	may	 notice	 that,	 the	 recommendation	 networks	

projected	by	all	the	applied	measures	are	much	less	efficient	than	the	randomly	constructed	ones	

in	 terms	 of	 the	 network	 efficiency.	 The	 reason	 lies	 in	 the	 fact	 that,	 random	 recommendation	

networks	have	more	equalised	in-degree	distributions.		

There	are	also	critical	points	in	the	increase	of	the	network	efficiency	versus	recommendation	list	

length.	When	the	length	; < 4	for	Amazon	and	; < 5	for	Yelp	and	Epinions	datasets,	the	network	
efficiency	is	almost	D = 0,	regardless	of	the	increase	of	the	length.	As	soon	as	the	length	increases	
to	 values	 larger	 than	 the	 critical	 points	 (; = 4 	for	 Amazon,	; = 5 	for	 Yelp	 and	 Epinions),	 the	
network	efficiency	dramatically	 increases.	 Such	phenomenon	 is	 normally	 known	as	 the	 second-

order	phase	transition	in	Physics	and	has	also	been	widely	observed	in	networks	(Buldyrev	et	al.	

2010;	Gómez-Gardenes	et	al.	2011;	Gao	et	al.	2011).		

Another	 apparent	 change	 that	 the	 increase	 of	 length	; 	brings	 to	 the	 network	 structure	 is	 the	
number	of	reachable	objects.	For	a	specific	source	object,	if	there	is	at	least	one	path	connecting	

to	 any	 other	 objects	ß ,	 we	 call	ß 	reachable	 for	 the	 source	 object.	 Therefore,	 the	 number	 of	
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reachable	objects	is	actually	the	average	number	of	object	that	can	be	reached	starting	from	the	

source	object.	As	shown	by	Figure	6.7d-f,	as	the	length	;	increases,	more	and	more	objects	become	

reachable	 for	 random	 walkers.	 Apparently,	 the	 random	 recommendation	 networks	 have	 the	

highest	ratio	of	reachable	objects,	which	are	generally	more	than	80%	for	Amazon	and	more	than	

95%	 for	 Yelp	 and	 Epinions	 systems	when	 the	 length	; > 2.	 Notably,	 the	 increase	 of	 reachable	
objects	 has	 also	 critical	 points	which	 are	 the	 same	 to	 that	 of	 network	 efficiency,	 i.e.	; = 4	for	
Amazon	and	; = 5	for	Yelp	and	Epinions.		

	
Figure	 6.8	 |	 Heatmaps	 of	 retrieval	 percentage	 for	 CN,	 AA	 and	 RA	 measures	 versus	 the	
recommendation	list	 length	and	walking	time.	Each	row	(dataset)	shares	the	same	colour	
scale,	and	thus	the	results	are	comparable	to	each	other	within	the	same	dataset.		

While	the	recommendation	list	length	has	significant	influence	over	the	network	structure,	a	key	

question	is	that	how	would	it	influence	the	accuracy	of	recommendation	networks	navigating	users.	

With	different	 length	of	 recommendation	 list	 (1 ≤ ; ≤ 20),	we	carry	out	again	 the	 information	

retrieval	experiments	and	the	results	are	shown	in	Figure	6.8	(for	CN,	AA	and	RA	measures)	and	

Figure	 6.9	 (for	 SAL,	 SOR,	 HPI,	 LHN	 and	 HC	measures).	 In	 these	 heatmaps,	 cooler	 colour	 (blue)	

represents	 low	retrieval	percentages	while	warmer	colour	(yellow)	represents	higher	accuracies.	

One	may	notice	that	the	warm	colour	generally	distributes	on	the	right	side	(larger	walking	time	X),	
which	indicates	that	the	longer	the	walkers	surf	on	the	recommendation	network,	the	more	history	

records	can	be	retrieved.	However,	the	warm	colour	does	not	necessarily	distribute	on	the	top	of	

the	 heatmap	 (longer	 list	 length	;),	which	means	 that	 the	 length	; 	is	 not	 simply	 the	 longer	 the	

better.		
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Figure	 6.9	 |	 Heatmaps	 of	 retrieval	 percentage	 for	 SAL,	 SOR,	 HPI,	 LHN	 and	HC	measures	
versus	the	recommendation	list	length	and	walking	time.	Each	row	(dataset)	shares	the	same	
colour	scale,	and	thus	the	results	are	comparable	to	each	other	within	the	same	dataset.		

Taking	X = 10	as	an	example,	we	 take	 the	 intersection	 from	each	heatmap	and	put	 it	 into	 two-

dimensional	plots	as	shown	in	Figure	6.10.	The	short-term	retrieval	percentage	b(X = 10)	generally	
increases	at	 first	when	 the	 length	;	increases,	but	will	 drop	 for	 large	;.	 It	means	 that	 there	are	

optimal	values	of	length	;älv	to	maximise	the	accuracy.	For	the	short-term	retrieval	(X = 10),	the	
optimal	 list	 length	 should	 be	;älv = 2~4 	for	 Amazon	 dataset,	 and	;älv = 4~6 	for	 Yelp	 and	
Epinions	datasets	as	shown	in	Figure	6.10.		

Actually,	for	every	given	time	step,	an	optimal	value	for	the	length	can	be	achieved.	Considering	

the	SAL,	SOR,	HPI,	LHN	and	HC	measures	are	not	accurate,	here	we	only	show	the	optimal	lengths	

for	CN,	AA	and	RA	measures	 in	Figure	6.8,	where	each	 red	solid	dot	 represents	 the	 length	;älv	
maximising	the	accuracy	for	the	corresponding	time	step.	The	results	show	that	 if	one	wants	to	

achieve	high	accuracy	at	a	given	time	step	Xä,	the	optimal	length	;älv	would	normally	be	taken	as	

a	relatively	small	value.	Only	when	one	wants	to	optimise	the	accuracy	for	a	very	long-term	random	

walk,	 for	 example	Xä > 100 ,	 long	 recommendation	 lists	 can	 be	 considered	 (only	 for	 Yelp	 and	

Epinions	dataset).	For	short-term	retrieval,	a	long	recommendation	list	may	reduce	the	accuracy	

for	 users	 finding	 interesting	 objects.	 The	 reason	 may	 lie	 in	 the	 fact	 that,	 offering	 a	 lot	 of	

recommendations	in	the	list	would	distract	users	from	visiting	the	most	similar	ones.	
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Figure	6.10	|	Short-term	retrieval	percentage	versus	recommendation	list	length.		

6.4.	Empirical	Study	on	Amazon’s	Book	Recommendation	Network	

In	the	previous	sections,	we	have	focused	on	the	performance	of	recommendation	networks	that	

are	constructed	by	projecting	the	user-object	bipartite	networks.	Actually,	in	many	practical	online	

systems,	the	mechanisms	through	which	the	recommendation	networks	are	constructed	are	not	

exactly	known,	and	they	may	include	some	promotions	and	advertisements	in	some	way.	Since	we	

have	collected	the	empirical	book	recommendation	network	from	Amazon	using	a	web	crawler,	

here	in	this	section,	we	examine	the	Amazon’s	recommendation	network.		

Please	be	noted	that	 in	Section	6.1	–	6.3,	there	are	also	results	 for	dataset	 ‘Amazon’,	which	are	

referring	to	the	networks	projected	from	the	Amazon	user-book	bipartite	network,	rather	than	the	

actual	amazon	recommendation	network.	Here	we	focus	on	the	actual	recommendation	network	

of	Amazon	which	is	collected	in	January	2016	as	has	been	introduced	in	Chapter	3,	Section	3.1.		
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Previous	research	has	also	considered	the	empirical	book	recommendation	network	from	Amazon.	

However,	 the	networks	were	 collected	with	 a	 depth-first	 searching	 strategy	 (Carmi	 et	 al.	 2017;	

Oestreicher-Singer	&	 Sundararajan	2012a;	 2012b).	While	 in	most	 actual	 system,	 the	number	of	

recommendations	for	each	object	is	uniform	and	fixed,	the	depth-first	search	may	fail	to	achieve	

this,	resulting	heterogeneous	out-degrees	for	different	objects.	The	difference	in	such	fundamental	

structure	may	lead	to	biases	in	the	observations	and	investigations.	In	our	collection,	we	adopted	

a	width-first	searching	strategy,	which	collects	exactly	10	hyperlinks	for	every	object.		

While	the	out-degree	is	fixed	for	each	book	in	our	data	collection,	i.e.	YääJv = 10, ∀ß,	the	in-degree	
generally	follows	a	power-law	distribution	as	shown	in	Figure	6.11a	with	an	exponent	of	-3.3.	In	the	

Amazon	recommendation	network,	a	book's	in-degree	Yä1G	represents	its	frequency	of	other	books	
recommending	it.	Such	in-degree	distribution	suggests	that	there	are	a	few	books	frequently	show	

up	in	others'	recommendation	list,	while	most	others	barely	get	recommended.	Note	that,	there	

may	be	a	significant	amount	of	books	that	are	not	recommended	in	any	lists	at	all.	But	due	to	the	

data	collection	mechanism	which	is	based	on	a	tree	search,	we	can	only	collect	those	reachable	

books,	 i.e.	 those	 at	 least	 get	 recommended	 once.	 In	 addition,	 the	 in-degree	 of	 books	 shows	 a	

moderate	correlation	with	 the	popularity,	as	 shown	 in	Figure	6.11b,	with	a	Pearson	Correlation	

Coefficient	of	0.396.	It	suggests	that	the	popular	books	tend	to	be	more	frequently	recommended	

in	others'	 lists.	Such	phenomena	may	be	caused	by	 the	mechanism	of	Amazon	constructing	 the	

recommendation	networks,	which	is	based	on	a	collaborative	filtering	method	with	a	certain	form	

of	network-based	object	similarity	measure.	To	be	more	specific,	 it	 is	the	measure	that	Amazon	

adopted	 to	 evaluate	 the	 co-accessing	 pattern	 caused	 such	 correlation	 between	 in-degree	 and	

popularity	of	books,	because	most	measures	have	been	found	to	be	biased	by	the	popularity	(as	

studied	in	Chapter	5),	that	popular	objects	tend	to	be	evaluated	as	more	similar	to	others.	Such	bias	

will	lead	to	the	heterogeneous	visibility	for	the	books,	which	will	be	discussed	in	the	following.	

	
Figure	6.11	|	In-degree	distribution	of	books	in	Amazon	recommendation	networks.	

To	study	the	performance	of	the	empirical	book	recommendation	network,	we	also	apply	the	self-

avoiding	random	walks	to	examine	its	traffic	distribution	and	accuracy.		
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In	 the	 random	walk	 experiment,	 the	 traffic	 of	 each	 book	may	 be	 of	 the	 first	 interest.	 Here	we	

examine	the	 frequency	of	each	book	being	visited	 in	 random	walks	…	to	show	the	traffic	on	the	
recommendation	network.	As	the	users	do	not	revisit	any	books	in	the	defined	random	walk,	each	

book	can	be	visited	at	maximum	for	one	time	in	an	individual	experiment.	Accordingly,	we	define	

the	visiting	frequency	of	a	book	ß	as	the	times	that	it	is	visited	over	the	?I}lI≠1sIGvÑ	experiments,	

i.e.	…ä = ?äÖ1Ñ1vIH/?I}lI≠1sIGvÑ .	 Therefore,	 a	 higher	 value	 of	 visiting	 frequency	…ä 	means	 more	

chance	for	the	book	ß	to	be	visited	by	the	random	walkers.	The	upper-limit	…ä = 1	would	suggest	
that,	 the	 book	ß 	is	 visited	 by	 every	 user	 starting	 from	 any	 initial	 book.	 Here	 we	 perform	10⁄	
independent	self-avoiding	random	walks.		

Due	to	the	heterogeneous	in-degree	distribution,	the	visiting	frequency	also	approximately	follows	

the	power-law	distribution	as	shown	in	Figure	6.12a,	which	has	an	exponent	of	2.22	for	the	tail.	

Some	 books	 are	 dominating	 the	 attention	 of	 users	 who	 are	 surfing	 on	 the	 recommendation	

network.	The	visiting	frequency	…	of	some	books	could	be	as	high	as	0.2,	which	means	these	books	

would	be	visited	by	one	of	every	five	random	walkers	regardless	of	where	they	started	the	walk.	

Such	 dominance	 on	 network	 traffic	 is	 resulted	 by	 the	 heterogeneous	 in-degree	 distribution,	 as	

books	with	high	in-degrees	are	more	likely	to	be	visited	during	the	random	walks.	As	shown	by	the	

red	line	in	Figure	6.12b,	the	correlation	between	the	visiting	frequency	and	book	in-degree	is	fitted	

to	be	ln …ä = 1.3 ln Yä1G − 10.52	(´' = 0.54).		

	
Figure	 6.12	 |	 Results	 of	 self-avoiding	 random	 walks	 on	 Amazon	 book	 recommendation	
network.	

We	also	examine	the	visiting	ranges	of	the	random	walks,	which	is	defined	as	the	maximum	number	

of	books	d	visited	by	a	random	walker	without	returning	to	any	visited	book.	The	visiting	range	can	

well	describe	for	how	long	could	the	system	keep	users	surfing	on	the	recommendation	networks,	

and	 thus	 is	 expected	 to	 be	 a	 large	 value.	 However,	 as	 shown	 in	 Figure	 6.12c,	 following	 an	

exponential	distribution	(the	plot	is	log-normal	scaled),	the	visiting	range	is	very	limited.	The	users	

can	only	visit	1.3%	of	the	books	at	most	by	randomly	walking	on	the	recommendation	network,	and	

for	most	cases,	the	visiting	range	is	less	than	0.1%.	The	limited	visiting	range	may	be	caused	by	the	

frequent	occurrence	of	reciprocal	links.	Normally,	if	a	book	5	is	similar	to	6,	the	book	6	will	also	be	
similar	 to	5.	 Therefore,	many	pairs	of	books	appear	 in	each	other's	 recommendation	 list.	 In	 the	

collected	Amazon	book	recommendation	network,	58%	of	the	links	are	reciprocal.		
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Figure	6.13	|	The	average	popularity	of	books	that	are	visited	at	each	walking	step.	In	the	
inset,	the	distributions	of	popularities	are	shown.	The	green	circles	are	the	distribution	for	
all	the	books.	The	blue	diamonds	and	red	squares	are	the	popularity	distributions	for	the	
books	 that	 are	 visited	 at	 the	 step	 of	X = 1 	and	X = 5 ,	 i.e.	g(Y(X = 1)) 	and	g(Y(X = 5))	
respectively.	

During	the	self-avoiding	random	walk,	we	are	also	interested	in	the	popularity	of	books	that	the	

walker	visits	at	each	step.	In	a	single	random	walk	experiment,	if	denote	the	book	that	is	visited	at	

step	X	with	ß(X),	we	examine	 the	popularity	of	 this	book	Y X = Yä(v).	As	 the	 random	walks	are	

assumed	to	start	from	a	randomly	chosen	book,	the	average	popularity	of	the	initial	book	should	

be	 Y(X = 0) = Y = 28.6.	However,	as	shown	by	Figure	6.13,	as	soon	as	the	random	walk	starts,	

the	users	are	navigated	rapidly	to	popular	books.	At	the	step	of	X = 10,	the	average	popularity	of	
the	visited	books	 is	 about	6	 times	higher	 than	 the	average	 level	of	 all	 the	books.	 To	pay	 closer	

attention,	we	show	in	the	inset	of	Figure	6.13	the	distribution	of	popularity	of	books	that	are	visited	

at	X = 1	and	X = 5,	in	comparison	to	the	overall	distribution	of	book	popularity.	One	can	find	that,	

the	tails	of	the	distributions	g(Y(X = 1))	and	g(Y(X = 5))	are	significantly	higher	than	that	of	the	
original	distribution	g(Y).	This	means	the	popular	books	have	much	higher	possibility	to	be	visited	

by	random	walkers	at	the	steps	X = 1	and	X = 5	than	expected.	Although	it	has	been	found	that	
the	 presence	 of	 recommendation	 network	 in	 Amazon	 redistributed	 the	 demands	 and	 thereby	

increased	the	sale	of	the	20%	least	popular	products	by	50%	(Oestreicher-Singer	&	Sundararajan	

2012a),	 the	 visibility	 and	 reachability	 of	 books	 with	 different	 popularity	 levels	 are	 extremely	

heterogeneous	after	all.	While	the	search	engine	is	already	providing	biased	results	with	preference	

on	popular	objects,	the	recommendation	network	of	Amazon	is	further	enhancing	the	dominance	

of	them.	

A	more	straightforward	method	to	examine	the	recommendation	network	is	to	look	at	its	accuracy	

in	navigating	users	to	their	potential	interests.	Such	accuracy	can	be	well	reflected	by	how	many	of	

the	recommended	products	are	of	users'	interests	leading	to	purchasing	behaviours.	We	follow	the	

information	retrieval	methods	introduced	in	Section	6.2.1	here	to	study	the	accuracy	of	Amazon’s	

book	recommendation	network.		
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Figure	6.14	|	Retrieval	percentages	for	empirical	Amazon	book	recommendation	network.	
We	show	here	only	the	results	within	1000	steps	of	random	walks	considering	the	limited	
visiting	range	of	the	experiment.	The	popular	and	niche	books	are	defined	as	the	ones	whose	
popularities	are	larger	and	less	than	the	average	respectively.	

As	shown	in	Figure	6.14,	as	the	random	walk	starts,	more	and	more	historical	purchases	of	the	users	

can	be	retrieved,	but	only	6.13%	books	can	be	retrieved	even	for	1000	steps	of	random	walk.	One	

may	find	that	the	increase	of	the	retrieval	percentage	slows	down	for	the	late	stage	of	the	random	

walk.	There	are	possibly	two	reasons:	1)	the	books	can	be	possibly	retrieved	are	already	found	in	

the	early	stage;	and	2)	the	random	walk	only	lasts	for	limited	steps	as	shown	in	the	Figure	6.12c.	

Particularly,	one	should	not	expect	the	users	to	surf	on	the	recommendation	network	for	too	many	

steps.	 Once	 a	 user	 finds	 the	 recommendation	 network	 not	 efficient	 in	 helping	 them	 finding	

interesting	objects,	s/he	may	drop	out	from	the	surfing.	A	more	reliable	way	is	thus	to	look	at	the	

short-term	retrieval	percentage.	Taking	t=5	as	an	example,	only	3.42%	of	users'	history	records	can	

be	retrieved	by	randomly	walking	on	the	recommendation	network.		

To	examine	whether	are	the	retrieved	books	are	popular	or	unpopular	ones,	one	can	further	divide	

the	books	into	groups.	We	take	the	average	popularity	 Y = 28.6	as	a	benchmark	and	regard	the	

books	whose	popularity	is	larger	than	average	as	popular	books	and	others	as	niche	books	which	

are	 not	 popular	 but	 can	 fit	 some	 users'	 interests.	 Accordingly,	 we	 can	 have	 also	 the	 retrieval	

percentage	for	popular	books	bläl X 	and	for	niche	books	bG1Ï X 	respectively.	As	shown	in	Figure	

6.14,	though	limited	number	of	books	can	be	retrieved,	most	of	the	retrieved	books	are	popular	

ones.	For	1000	steps	of	random	walk,	only	2.81%	niche	books	can	be	retrieved.	For	a	short-term	

retrieval,	3.66%	of	popular	books	and	1.95%	of	niche	books	can	be	retrieved	within	5	steps.	
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6.5.	Summary	

By	 applying	 eight	 widely-used	 similarity	 measures	 to	 project	 the	 user-object	 interactions	 as	

recommendation	networks,	this	Chapter	explores	whether	such	network	can	accurately	navigate	

users	to	what	they	may	be	interested	of.	

Though	 it	 is	expected	that	recommendation	networks	should	be	able	to	help	users	to	find	what	

they	want,	the	accuracy	of	current	methods	are	shown	to	be	limited	and	only	focused	on	extreme	

popular	information.	The	relatively	accurate	measures,	such	as	CN,	AA	and	RA,	rapidly	navigating	

users	 to	 popular	 objects,	 fail	 to	 help	 users	 to	 find	 niche	 ones.	 The	 navigation	 for	 popular	

information,	though	accurate,	is	of	less	meaning	than	that	for	the	niche	information.		

We	 also	 applied	 the	 developed	 evaluation	 methods	 to	 examine	 the	 empirical	 book	

recommendation	network	 of	Amazon.	 It	 is	 shown	 that	 the	web	 traffic	 on	 the	 recommendation	

network	 is	 monopolised	 by	 the	 blockbusters,	 i.e.	 very	 popular	 books.	 Similar	 situation	 of	 the	

accuracy	is	found	with	the	Amazon	book	recommendation	network,	that	only	popular	books	can	

be	retrieved	while	very	limited	number	of	niche	books	can	be	found	by	the	random	walkers.	Though	

it	is	unknown	to	us	that	what	detailed	algorithm	is	being	used	by	Amazon	to	construct	this	book	

recommendation	network,	the	results	suggest	it	to	be	similar	to	the	similarity	measure	group	of	

CN,	AA	and	RA.		

Additionally,	while	 in	practical	systems	the	recommendation	 list	 lengths	are	different	from	each	

other,	we	show	that	there	are	optimal	lengths	in	terms	of	achieving	best	random	walk	accuracy	for	

a	given	time	step.	Recommending	more	objects	may	provide	diverse	choices	for	users,	but	on	the	

other	hand	may	also	distract	users	from	visiting	the	most	relevant	information.	Generally,	though	

long	recommendation	list	length	could	result	in	good	accuracy	for	longer	random	walks,	the	length	

should	be	short	if	one	wants	the	recommendation	network	to	quickly	locate	the	interesting	objects.	

This	Chapter	is	to	explore	the	RQ3	(how	accurately	can	recommendation	networks	navigate	users	

to	find	what	they	interested	in?).	Though	the	self-avoiding	random	walk	model,	such	question	is	

addressed	 by	 the	 developed	 evaluation	 framework	 as	 the	 information	 retrieval	 percentage.	

Experiments	show	that	such	recommendation	networks	have	limited	accuracy,	and	especially	fail	

to	help	uncover	the	niche	objects.		
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Chapter	7.	Information	Accessibility	and	Traps	

in	Recommendation	Networks	

In	 Chapter	 6,	 the	 accuracy	 of	 recommendation	 networks	 to	 navigate	 users	 to	 find	 interesting	

objects	 has	 been	 studied.	 Generally,	 recommendation	 networks	 are	 in	 nature	 information	

networks.	Yet,	the	information	accessibility,	which	is	central	to	the	understanding	of	such	systems'	

function	 and	 efficiency,	 is	 still	 unknown.	 Since	 users	 normally	 surf	 on	 such	 network	 to	 explore	

online	content,	a	fundamental	question	raises	that	are	the	recommendation	networks	navigable	

(RQ4	of	this	thesis)?		

In	 this	Chapter,	we	explore	such	simple	question	by	examining	how	many	distinct	objects	can	a	

random	walker	visit	 in	the	recommendation	networks	(navigability).	This	Chapter	concludes	that	

the	recommendation	networks	are	not	navigable,	which	means	users	cannot	efficiently	discover	

different	objects	by	surfing	on	it.	We	also	uncover	the	existence	of	traps	in	such	networks	which	is	

the	 reason	 of	 the	 low	 navigability.	 As	 an	 additional	 contribution,	 an	 efficient	 local	 metric	 is	

developed	for	the	identification	of	traps	in	recommendation	networks.		

The	present	Chapter	is	organised	as	following.	Since	the	construction	of	recommendation	networks	

has	been	introduced	in	Chapter	6,	Section	6.1,	here	in	this	Chapter	we	do	not	repeat	it,	and	directly	

apply	 the	 measures	 of	 CN,	 LHN,	 RA,	 AA	 and	 HC	 to	 project	 the	 user-object	 bipartite	 networks	

accordingly.	Therefore,	this	Chapter	starts	by	introducing	a	toy	bipartite	network	model	in	Section	

7.1,	which	will	be	used	as	a	benchmark	dataset	alongside	with	two	empirical	datasets,	including	the	

Amazon	user-book	bipartite	network	and	the	Yelp	user-restaurant	bipartite	network.	Section	7.2	

gives	the	calculations	and	experimental	results	for	the	accessibility	and	navigability	of	constructed	

recommendation	 networks.	 Section	 7.3	 uncovers	 the	 existence	 of	 traps	 in	 recommendation	

networks	which	are	small	collections	of	objects	which	have	dense	internal	linkages	but	few	or	even	

no	links	connecting	out.	We	further	develop	a	local-structure-based	metric	to	help	identify	the	trap	

objects	in	large	scale	networks	in	Section	7.4.	At	last,	Section	7.5	summarises	this	Chapter.	
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7.1.	A	Toy	Bipartite	Network	Model	

Apart	from	two	empirical	bipartite	networks,	we	also	aim	to	analyse	the	recommendation	networks	

constructed	according	 to	a	 toy	bipartite	network,	so	 that	 the	results	could	be	more	generalised	

rather	than	limited	to	the	applied	datasets.			

Considering	 the	 fact	 that	most	empirical	user-object	bipartite	networks	have	power-law	degree	

distributions	for	both	users	and	objects	(Figure	3.2),	we	aim	to	generate	toy	networks	with	similar	

properties.	 Inspired	 by	 the	 Barabási-Albert	 model	 (Barabási	 &	 Albert	 1999),	 we	 also	 adopt	 a	

dynamical	process	for	generating	networks.		

At	the	initial	stage,	we	consider	a	complete	bipartite	network	with	op
J = 10	users	and	op

ä = 10	
objects,	where	every	user-object	pair	is	connected.	For	every	following	step:	

1) an	object	node	is	added	to	the	network	with	oä	links,	each	of	which	connects	to	an	existing	

user	node	with	a	probability	proportional	to	the	user	node's	degree,	i.e.	g ∝ YJ
U1l;	

2) a	user	node	is	added	to	the	network	with	oJ	links,	each	of	which	connects	to	an	existing	

object	node	with	a	probability	proportional	to	the	object	node's	degree,	i.e.	g ∝ Yä
U1l.	

Since	oä	and	oJ	will	determine	the	minimal	degree	for	objects	and	users,	and	in	order	to	make	

the	bipartite	degrees	in	a	wider	range,	we	set	oä	and	oJ	to	be	a	number	selected	from	{1, 2, . . . , 9}	
uniformly	at	random.	Such	process	is	continued	until	the	population	of	objects	and	users	reach	? =
10∫	and	™ = 10∫.	

In	such	toy	bipartite	network,	since	every	object	and	user	brings	on	average	5	new	links,	the	average	

degree	for	both	users	and	objects	are	expected	to	be	10.	In	particular,	the	degree	distribution	for	

both	users	and	objects	will	follow	a	same	power-law	form,	as	shown	by	Figure	7.1,	with	exponential	

of	2.9.	

	
Figure	7.1	|	Degree	distributions	of	the	toy	bipartite	network.		

The	 toy	 bipartite	 network	 generated	 here	 will	 be	 used	 as	 one	 of	 the	 three	 bipartite	 network	

datasets	 in	the	following	studies.	The	advantage	of	adding	this	toy	dataset	 is	that	 it	has	no	user	

preference	in	the	linkages.	Therefore,	any	significant	results	uncovered	from	this	dataset	will	not	
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be	caused	by	the	system	design	of	the	website	nor	the	user	behaviour.	Instead,	the	results	will	be	

accounted	to	the	general	mechanisms	from	normal	bipartite	network.		

Hence,	in	the	following	studies,	three	datasets	will	be	applied,	including	the	ToyData,	Amazon	and	

Yelp.	For	the	description	of	bipartite	network	datasets	of	Amazon	and	Yelp,	please	refer	to	Chapter	

3,	Section	3.2.		

7.2.	Accessibility	and	Navigability	of	Recommendation	Networks	

Following	 the	 method	 of	 top-; 	projection	 introduced	 in	 Chapter	 6,	 here	 we	 apply	 similarity	

measures	 of	 CN,	 LHN,	 RA,	 AA	 and	 HC	 to	 calculate	 the	 object	 similarity	 and	 construct	

recommendation	networks	based	on	each	of	the	three	applied	bipartite	networks.	In	particular,	we	

also	consider	a	random	recommendation	network,	which	is	to	let	each	object	connect	to	;	random	

objects.		

To	study	the	accessibility	and	navigability	of	recommendation	networks,	we	consider	the	random	

walk	 process	 in	 it.	Different	 from	 the	 self-avoiding	walks	 introduced	 in	 Chapter	 6,	 here	we	use	

traditional	 (repeatable)	 random	 walk	 which	 is	 more	 suitable	 for	 the	 exploration	 of	 network	

navigability.	To	be	more	specific,	a	random	walker	starts	from	a	random	object	and	walks	through	

the	 network	 following	 the	 hyperlinks	 regardless	 of	 whether	 an	 object	 has	 been	 visited	 or	 not.	

Therefore,	such	random	walk	is	endless	and	a	specific	object	could	be	visited	for	multiple	times.		

The	first-passage	time,	characterising	the	time	that	a	random	walker	reaches	an	object	for	the	first	

time	(Condamin	et	al.	2007;	Perkins	et	al.	2014)	as	introduced	in	Chapter	2,	Section2.1.3,	is	normally	

the	first	interest	when	studying	how	navigable	is	each	entity	or	the	whole	network	(Boguná	et	al.	

2009).	However,	 in	directed	networks	especially	 recommendation	networks	where	 the	 links	are	

sparse,	many	nodes	may	be	not	reachable	at	all,	leading	to	difficulties	for	exploring	the	first-passage	

time.	We	thus	firstly	look	at	the	number	of	distinct	objects	that	can	be	visited	in	a	X-steps	random	

walk	 process,	 which	 has	 been	 regarded	 as	 a	 network's	 navigability	 (De	 Domenico	et	 al.	 2014),	

denoting	with	d(X).	Apparently,	a	larger	value	of	navigability	d(X)	represents	a	better	connectivity	
for	the	network	where	random	walkers	can	easily	explore	more	objects.	

Another	 important	quantity	 to	directly	describing	object	accessibilities	 is	 that	how	 frequently	 is	

every	object	being	visited	during	the	random	walk.	With	?	as	the	population	of	the	objects,	every	
object	is	expected	to	be	visited	once	in	a	?-steps	random	walk.	For	simplicity,	we	thus	define	the	

visiting	frequency	of	object	$	as	the	times	that	it	being	visited	in	a	?-steps	random	walk,	denoting	

with	…Ö.	

7.2.1.	Theoretical	calculations	for	random	networks	

Considering	that	the	random	recommendation	networks	are	constructed	randomly,	exact	solutions	

for	its	navigability	and	accessibility	can	be	theoretically	calculated.	Here	we	show	the	theoretical	

results	for	random	networks	so	that	the	experimental	results	for	other	projected	recommendation	

networks	can	be	compared	with	the	random	case.		
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Navigability	Ó(Ô).	Consider	a	random	recommendation	network	with	?	objects	and	each	object	
connects	;	others,	i.e.	YääJv = ;, ∀ß.	Suppose	at	step	X,	the	random	walker	is	visiting	object	ß	and	
d(X)	distinct	objects	in	the	recommendation	network	has	been	visited.	For	the	next	step,	the	walker	

will	visit	one	of	ß’s	;	outgoing	objects.	Since	in	the	random	recommendation	networks,	the	links	

are	 randomly	 wired,	 these	 ; 	outgoing	 objects	 should	 be	 an	 unbiased	 sample	 of	 the	 whole	

population	? .	 Thus,	 in	 these	; 	objects,	 we	 can	 expect	; ∙ d(X)/? 	objects	 to	 be	 visited	 in	 the	

previous	steps.	Accordingly,	at	step	X + 1,	the	probability	of	the	object	to	be	visited	being	a	new	
one	(have	not	been	visited	before)	can	be	written	as,	

	 gÄßÊ X + 1 = 1 −
1
; ∙
; ∙ d X
? = 1 −

d X
? .	 	(7.1)	

In	other	words,	for	step	X + 1,	the	random	walker	has	a	probability	to	visit	one	more	distinct	object.	

Therefore,	one	can	have	the	master	equation	for	the	navigability	as	

	 d X + 1 = d X + gÄßÊ X + 1 = d X + 1 −
d X
? .	 	(7.2)	

Accordingly,	a	simple	first	order	differential	equation	for	the	system	can	be	written	as	

	
d
dX d X = d X + 1 − d X = 1 −

1
? d X ,	 	(7.3)	

with	 an	 initial	 condition	of	d X = 0 = 0.	 Solving	 such	equation	 gives	us	 the	expression	 for	 the	
navigability	of	random	recommendation	networks	which	reads,	

	
d X
? = 1 − ,`v/).	 	(7.4)	

Expectedly,	for	a	random	walk	of	?	steps,	the	ratio	of	objects	can	be	visited	is	thus	d X = ? /? =
1 − 1/, ≈ 0.632.	Thus,	63.2%	distinct	objects	can	be	expected	to	be	visited	in	an	N-steps	random	

walk.		

Since	we	have	here	the	theoretical	navigability	for	random	recommendation	networks,	we	should	

expect	the	constructed	recommendation	networks	have	navigability	that	as	close	to	Eq.	 (7.4)	as	

possible.		

Visiting	frequency	ÚÛ.	Consider	a	target	object	$,	with	in-degree	YÖ	in	a	random	recommendation	

network.	For	any	other	object	ß,	with	;	outgoing	links,	the	probability	of	each	link	to	connect	to	the	
target	object	is	proportional	to	$’	in-degree,	i.e.	gÄßÊ ∝ YÖ.	Considering	that	the	summation	of	in-

degrees	over	all	the	objects	can	be	written	as	?;,	we	have	such	probability	as	gÄßÊ = YÖ/(?;).	
Therefore,	at	every	step,	the	probability	of	the	random	walker	moving	from	the	current	object	to	

the	target	object	$	is	YÖ/(?;).	In	other	words,	the	visiting	frequency	of	$	for	every	step	is		

	
d
dX …Ö X =

YÖ
?;.	

	(7.5)	

Accordingly,	 for	 a	? -steps	 random	 walk	 in	 the	 random	 recommendation	 network,	 the	 visiting	

frequency	of	the	target	object	$	is		
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	 …Ö =
YÖ
; .	

	(7.6)	

7.2.2.	Empirical	results	for	recommendation	networks	

In	this	section,	we	carry	out	random	walk	experiments	on	recommendation	networks	constructed	

by	 five	 similarity	 measures	 (CN,	 LHN,	 RA,	 AA	 and	 HC)	 and	 the	 random	 mechanism.	 Here	 we	

construct	recommendation	networks	with	recommendation	list	length	; = 10,	and	we	simulate	?	
independent	random	walk	experiments,	each	of	which	lasts	for	?	steps.		

As	suggested	by	Eq.	(7.4),	the	number	of	distinct	objects	d(X)	increases	with	the	walking	steps	X,	
and	63.2%	objects	can	be	expected	to	be	visited	 for	?	steps	of	 random	walk.	The	results	of	 the	

random	walk	experiments	are	shown	in	Figure	7.2,	where	in	each	subplot,	the	solid	line	represents	

the	theoretical	navigability	predicted	by	Eq.	(7.4).	For	the	random	recommendation	networks,	the	

navigability	d(X)	is	consistent	as	predicted.	However,	 recommendation	networks	constructed	by	

most	similarity	measures	have	much	lower	navigability.	Taking	the	ToyData	which	has	a	population	

of	? = 10∫	as	an	example,	?	steps	of	random	walk	can	only	cover	~10%	objects	for	the	CN,	LHN	
and	AA	measure.	For	the	empirical	data	Amazon	and	Yelp,	?	steps	of	random	walk	generally	covers	

less	than	1%	objects	which	is	much	less	than	the	expected	63.2%.	Such	result	suggests	that,	the	

recommendation	networks	constructed	by	collaborative-based	methods	(top-;	projections	based	
on	existing	similarity	measures)	are	generally	unnavigable.	Users	surfing	on	such	recommendation	

network	cannot	efficiently	and	massively	explore	different	objects.	

	
Figure	7.2	|	The	navigability	of	recommendation	networks	with	; = 10.	

For	 the	 visiting	 frequency,	 as	 shown	 in	 Figure	 7.3,	 the	 random	 recommendation	 networks	well	

follow	the	prediction	of	Eq.	(7.6)	which	is	marked	by	the	solid	line	in	each	subplot.	However,	all	the	

others	largely	deviate	from	it.	Though	the	general	pattern	is	still	that	high-degree	objects	tend	to	

have	 high	 visiting	 frequency,	 some	 objects	 (not	 necessarily	 those	with	 highest	 in-degree)	 have	

extreme	values	of	visiting	frequency	which	can	be	~10∫	times	higher	than	others.	Note	that,	in	a	

?-steps	random	walk,	every	object	can	be	expected	to	be	visited	by	once,	leading	the	mean	visiting	

frequency	 … = 1.	However,	in	the	recommendation	networks	constructed	by	similarity	measures,	

some	objects	are	shown	to	have	visiting	frequency	as	high	as	…Ö = 10'~109.		
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Figure	7.3	|	Visiting	frequency	of	objects	versus	in-degree	in	recommendation	networks	with	
; = 10.		

The	distributions	of	visiting	frequency	for	different	recommendation	networks	are	shown	in	Figure	

7.4.	While	most	distributions	follow	power-law	forms	(for	CN,	LHN,	RA	and	AA	measures),	there	are	

intermittents	in	the	distributions.	Taking	the	AA	measure	in	Yelp	data	set	as	an	example,	there	are	

no	objects	with	frequency	in	the	range	of	…Ö = 10`\~10%,	while	some	objects	have	frequencies	of	

…Ö > 10%.	 Such	 extreme	 inequality	 of	 visiting	 frequency	 implies	 that,	most	 of	 the	 traffic	 on	 the	

recommendation	networks	are	dominated	by	some	tens	of	objects,	while	most	objects	have	very	

slim	chance	to	be	visited.	This	is	also	a	direct	clue	that	something	is	wrong	with	the	random	walk	in	

recommendation	networks.	

	
Figure	7.4	|	Distribution	of	visiting	frequency	in	recommendation	networks	with	; = 10.		

Actually,	not	only	the	distributions	of	visiting	frequency	are	extremely	heterogeneous,	but	also	a	

significant	number	of	objects	are	not	accessible	at	all,	i.e.	have	visiting	frequencies	of	0.	As	shown	

in	 Table	 7.1,	 there	 are	 significant	 ratios	 of	 objects	 that	 are	 not	 accessible	 in	 recommendation	

networks	except	for	the	random	ones.	Generally,	such	objects	are	these	with	no	in-degree,	i.e.	YÖ =
0	and	thus	have	no	chance	to	be	visited	during	random	walks.	
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Table	7.1	|	Ratio	of	objects	that	have	visiting	frequency	of	…$ = 0	in	each	recommendation	
networks.	

	 CN	 LHN	 RA	 AA	 HC	 random	
ToyData	 52.88%	 27.96%	 11.82%	 38.02%	 1.65%	 0%	
Amazon	 51.42%	 41.53%	 8.50%	 14.29%	 3.77%	 0%	
Yelp	 44.53%	 13.63%	 11.36%	 37.90%	 1.25%	 0%	

7.3.	Traps	in	Recommendation	Networks	

The	 unexpected	 results	 of	 the	 random	walk	 experiment	 naturally	make	 one	wonder	 that	what	

makes	the	recommendation	networks	constructed	by	similarity	measures	so	unnavigable	and	why	

would	the	extreme	objects	exist	dominating	most	traffic.	Though	the	in-degrees	of	objects	are	quite	

heterogeneous,	evidences	have	been	found	that	networks	with	power-law	degree	distributions	are	

still	navigable	(Boguná	et	al.	2009).	Accordingly,	a	seemingly	explanation	is	that	there	are	'traps'	in	

the	constructed	recommendation	networks.		

We	define	a	trap	as	a	small	collection	of	objects	who	have	dense	internal	linkages,	but	few	links	

connecting	out	to	others	as	shown	in	Figure	7.5.	In	the	toy	recommendation	network	shown	in	the	

figure,	each	of	the	node	has	an	out-degree	of	; = 2.	The	solid	black	nodes	are	the	members	of	the	

illustrated	trap,	most	out-going	links	of	which	are	connected	to	each	other.	There	is	only	one	link	

from	the	trap	nodes	connecting	to	the	outside	(green	dash-dot	line)	defined	as	an	escaping	link.	

Normally,	for	a	significant	trap	which	may	account	for	a	large	share	of	traffic,	there	would	be	a	lot	

of	links	connecting	to	the	trap	(trapping	links	as	shown	by	the	dotted	lines).	Accordingly,	a	random	

walker	in	such	network	will	have	a	high	probability	getting	into	the	trap	while	a	very	low	probability	

getting	out.	

	
Figure	7.5	|	Illustrative	example	of	a	trap	in	recommendation	networks.	

Theoretically	 consider	a	 trap	with	 size	of	Ç,	 i.e.	 there	are	Ç	objects	 in	 it,	 there	would	be	Ç;	links	
originating	 from	 these	 trap	 nodes.	 An	 important	 quantity	 is	 that	 how	many	 of	 these	 links	 are	

connecting	to	outside	the	trap	which	is	defined	as	escaping	links	as	shown	by	the	green	dash-dot	
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line	in	the	Figure	7.5.	If	there	are	?IÑÏ 	escaping	links,	we	thus	can	define	the	escaping	probability	

g,	for	a	random	walker	who	is	in	the	trap	as,	

	 g, =
?IÑÏ

Ç; .	 	(7.7)	

The	determination	of	whether	a	collection	of	nodes	is	a	trap	or	not,	is	rather	arbitrary.	Generally,	a	

low	escaping	probability	g,	is	 required.	 Furthermore,	 if	 the	probability	g, > 0,	 the	 trap	 can	be	
regarded	as	an	open	trap,	random	walkers	in	which	still	have	chance	of	getting	out.	On	the	other	

hand,	a	trap	with	g, = 0	can	thus	be	defined	as	a	closed	trap,	which	means	a	random	walker	can	

never	get	out	once	trapped.		

	
Figure	7.6	|	Identifying	traps	among	highest-visiting-frequency	objects	in	recommendation	
networkswith	; = 10.	

To	explore	whether	the	extreme	visiting	frequencies	of	a	few	objects	are	due	to	the	existence	of	

traps,	we	rank	the	objects	in	terms	of	the	visiting	frequency,	as	shown	in	Figure	7.6	in	the	top	row	
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of	each	dataset.	Significant	drops	can	be	observed	in	many	of	the	ranking.	For	example,	in	the	HC	

recommendation	network	based	on	the	ToyData,	the	61st	object	has	a	visiting	frequency	of	449.0,	

while	that	of	the	62nd	object	is	about	2.9.	To	check	whether	are	these	objects	a	trap,	we	examine	

the	escaping	probability	g,	for	the	d	highest-visiting-frequency	objects.	In	the	bottom	row	of	each	

data	set,	the	corresponding	escaping	probabilities	are	shown.	The	escaping	probability	shown	here	

is	calculated	by	assuming	the	top-d	objects	with	highest	visiting	frequency	as	a	single	trap.	For	some	

recommendation	networks,	the	probability	g,	could	reach	a	quite	low	level	(or	0),	and	seems	to	be	

periodic.	Such	phenomenon	suggests	that	there	may	exist	smaller	traps	in	a	bigger	trap.	Taking	the	

HC	recommendation	network	in	ToyData	as	an	example,	the	11	highest-visiting-frequency	objects	

have	a	g,(11) = 0,	while	the	top-61	objects	also	have	a	g,(61) = 0.	It	indicates	that	the	trap	of	
11	objects	is	a	closed	trap	within	a	bigger	closed	trap	of	size	61.	For	the	determination	of	the	traps,	

we	follow	the	rules:		

1) if	there	are	values	of	g,(Ç) = 0,	we	regard	the	last	such	value	Ç	within	the	top-100	as	the	
trap	size;		

2) if	there	are	no	such	values	of	g,(Ç) = 0,	we	consider	the	last	value	Ç	which	has	g,(Ç) <
0.01	as	the	trap	size;		

3) if	the	escaping	probability	g,	is	always	higher	than	0.01,	we	consider	there	is	no	traps.	

According	 to	such	rules,	we	 identified	 the	 traps	among	the	 top-ranking	objects	as	shown	 in	 the	

Figure	7.6	where	marked	by	a	solid	line.	We	summarise	the	statistics	of	the	identified	traps	in	Table	

7.2.	Generally,	the	traps	are	of	very	small	size	(~10%)	in	comparison	to	the	whole	populations,	i.e.	

10∫	for	the	ToyData,	157,856	for	Amazon,	and	61,184	for	Yelp.	Though	with	small	size,	the	traps	

are	accounting	for	most	of	the	web	traffic.	Taking	the	CN	measure	in	ToyData	as	an	example,	the	

18	objects	with	highest	visiting	frequency	are	a	closed	trap	with	g,	 = 	0	which	accounts	for	99.99%	
of	the	random	walk	traffic.	In	particular,	whether	an	object	belongs	to	a	trap	or	not	significantly	

separates	its	visiting	frequency,	leading	to	dramatic	drops	in	its	ranking	as	shown	in	Figure	7.6.	
	

Table	7.2	|	Traps	among	top-visiting-frequency	objects	in	recommendation	networks	with	
; = 10.	The	values	‘-’	mean	that	there	is	no	trap	among	the	top-visiting-frequency	objects.	

	 	 CN	 LHN	 RA	 AA	 HC	

ToyData	
Size	 18	 84	 -	 24	 61	
Traffic	 99.99%	 99.53%	 -	 99.99%	 73.49%	

Amazon	
Size	 26	 79	 12	 27	 67	
Traffic	 85.09%	 81.30%	 90.07%	 92.25%	 98.89%	

Yelp	
Size	 -	 42	 -	 -	 22	
Traffic	 -	 93.34%	 -	 -	 81.09%	

Focusing	on	only	closed	traps,	we	further	uncover	all	the	traps	regardless	of	their	traffic	shares	in	

recommendation	networks	with	different	out-degree	;,	and	examine	the	severity	of	them.		

For	the	identification	of	the	closed	traps,	we	adopt	a	greedy	search	following	directed	links	in	the	

recommendation	network.	Starting	from	an	arbitrary	node,	we	check	how	many	other	nodes	can	a	

greedy	search	find.	For	example,	in	Figure	7.7,	starting	from	node	5,	the	first	step	of	the	search	will	

find	node	4	and	1,	and	at	the	second	step	node	2	and	3	will	be	found.	After	that,	the	search	will	not	
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discover	 any	 new	 nodes.	 Accordingly,	 such	 greedy	 search	 can	 be	 ended	 and	 these	 nodes	 are	

regarded	as	a	closed	trap,	i.e.	{5,	4,	1,	2,	3}.	

	
Figure	7.7	|	Illustration	for	the	closed	trap	identification	where	the	out-degree	L	=	2.	

An	apparent	 flaw	can	be	observed	 from	such	method	of	discovering	closed	traps,	 that	different	

traps	may	have	overlaps.	Actually,	one	may	find	from	Figure	7.7	that	the	smallest	closed	trap	in	this	

toy	 network	 is	 formed	 by	 nodes	 {1,	 2,	 3},	 connecting	 to	 each	 other.	 However,	 due	 to	 the	

identification	method,	which	 is	a	greedy	search	starting	 from	an	arbitrary	node,	multiple	closed	

traps	are	possible	to	be	considered	including:	{5,	4,	1,	2,	3},	{4,	1,	2,	3}	and	{6,	1,	2,	3}.	It	is	apparent	

that	once	a	walker	is	trapped	in	any	of	these	traps,	he/she	can	only	keep	visiting	nodes	1,	2	and	3.	

The	marginal	nodes	such	as	5	and	6	have	no	in-degree,	and	thus	though	been	included	in	a	trap,	

they	will	not	be	visited	anymore.	Several	disadvantages	may	be	resulted	that,	1)	 the	number	of	

discovered	traps	would	be	significantly	and	falsely	 increased;	2)	many	non-trap	nodes	would	be	

regarded	as	trap	members.		

To	 best	 avoid	 such	 situation,	 we	 adopt	 following	 strategies.	 First	 of	 all,	 we	 only	 start	 greedy	

searches	from	nodes	with	in-degree	larger	than	0	so	that	such	nodes	would	at	least	have	chance	to	

be	visited	during	a	random	walk.	In	this	way,	a	significant	amount	of	nodes	would	be	prevented	

from	being	regarded	as	trap	members	since	there	are	quite	a	lot	nodes	with	in-degree	of	0	as	shown	

in	Table	7.1.	 Secondly,	when	doing	 the	greedy	search	 iteratively	 for	different	nodes,	we	do	not	

consider	the	nodes	that	have	been	included	in	any	of	the	traps	discovered	in	the	early	steps.	For	

example,	in	Figure	7.7,	if	we	firstly	do	the	search	starting	from	node	4,	the	trap	{4,	1,	2,	3}	will	be	

discovered.	Consequently,	we	do	not	carry	out	searches	starting	from	nodes	1,	2,	3	any	more.	With	

such	 strategies,	 we	 believe	 that	 the	 inclusion	 of	marginal	 objects	 into	 the	 traps	will	 be	 largely	

avoided.		

	
Figure	7.8	|	Number	of	closed	traps	in	recommendation	networks	with	different	out-degree.	
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In	more	general	words,	for	each	object	in	a	network	with	an	in-degree	of	Y > 0,	we	explore	how	
many	others	it	can	reach.	If	an	object	can	only	reach	a	very	finite	number	Ç − 1	of	objects,	it	and	
its	reachable	objects	are	thus	a	closed	trap	with	size	of	Ç.	Note	that,	here	we	consider	only	these	
with	size	Ç < 1000	as	closed	traps	since	the	traffic	would	also	be	quite	evenly	distributed	if	the	trap	
has	a	considerably	large	size.	After	all,	the	whole	population	can	also	be	considered	as	a	trap	with	

escaping	probability	of	0.	Figure	7.8	reports	the	number	of	closed	traps	uncovered	following	such	

strategy	in	recommendation	networks	with	out-degrees	1 ≤ ; ≤ 20.	As	has	been	discussed	earlier,	
the	traps	may	have	overlaps	on	the	core	set	of	objects,	and	thus	the	number	of	closed	traps	shown	

here	may	be	 larger	 than	the	actual	number.	Anyway,	when	a	recommendation	network	takes	a	

small	 size	 of	 recommendation	 list	; ,	 there	 would	 emerge	 a	 lot	 of	 closed	 traps.	 As	 the	 length	

increases,	there	would	be	generally	less	and	less	traps	in	the	network.	Actually,	one	can	imagine	

that	when	the	length	; = 1,	there	will	be	a	lot	of	pairs	of	objects	that	are	connecting	to	each	other	
and	no	links	connecting	to	other	objects.	Such	pairs	of	objects	are	typical	closed	traps.	Similarly,	

; = 2	may	results	 in	many	 local	 structures	as	 triangles,	where	 three	objects	connecting	 to	each	

other.	Same	logic	could	apply	to	any	;,	that	; + 1	objects	connects	to	each	other	as	a	closed	trap.	
When	the	length	;	takes	a	small	value,	it’s	easier	to	result	such	structure	while	large	;	is	harder.	
This	explains	the	dynamics	of	the	number	of	closed	traps	over	the	length.		

	
Figure	7.9	|	Size	and	traffic	share	of	closed	traps	in	recommendation	networks.	

0 5 10 15 20

tra
p 

ob
je

ct
s,

 S
/N

10-5

10-4

10-3

10-2

10-1
100

CN LHN RA AA HC

0 5 10 15 20

tra
p 

ob
je

ct
s,

 S
/N

10-5

10-4

10-3

10-2

10-1
100

out-degree, L
0 5 10 15 20

tra
p 

ob
je

ct
s,

 S
/N

10-3

10-2

10-1

100

0 5 10 15 20

tra
ffi

c 
sh

ar
e,

 F

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

tra
ffi

c 
sh

ar
e,

 F

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

tra
ffi

c 
sh

ar
e,

 F

0

0.2

0.4

0.6

0.8

1

d

c

a

b

e

f



Chapter	7.	Information	Accessibility	and	Traps	in	Recommendation	Networks	

	 107	

In	particular,	we	examine	how	many	distinct	objects	are	involved	in	any	closed	trap,	denoting	with	

¨,	and	how	much	of	the	random	walk	traffic	are	they	accounting	for,	denoting	with	Ù.	As	the	mean	

visiting	 frequency	 is	 expected	 to	 be	 …Ö 	= 	1 	according	 to	 the	 definition,	 the	 traffic	 share	 is	
calculated	as	Ù = …ÖÖ∈ü /?,	where	Γ	is	the	set	of	trap	objects	with	population	of	¨.	As	suggested	
by	 Figure	 7.9,	 not	 every	 recommendation	 network	 has	 closed	 traps.	 Generally,	 recommending	

more	objects	(larger	out-degree	;)	significantly	reduces	the	number	of	trap	objects.	With	a	large	

enough	value	of	out-degree	;,	for	example	; > 5	for	RA	and	AA	measures	in	ToyData	and	; > 11	
for	CN,	RA,	AA	measures	in	Amazon,	no	closed	traps	would	emerge.	Though	a	very	small	proportion	

of	objects	 involving	 in	 traps	when	 the	 recommendation	 list	 length	 is	 relatively	 short,	 these	 trap	

objects	account	for	significant	shares	of	random	walk	traffic	because	the	walkers	cannot	get	out	

once	trapped.	

7.4.	Local	Return	Rate	Metric	for	the	Identification	of	Significant	Traps	

It	is	easy	to	uncover	all	the	traps	by	examining	every	object	in	laboratory.	However,	in	real	online	

systems	where	there	may	be	billions	of	objects,	it	is	impossible	to	check	every	of	them.	On	the	other	

hand,	 not	 every	 closed	 trap	 harms	 the	 system	 significantly.	 Only	 these	 accounting	 for	 a	 large	

amount	of	traffic	are	breaking	down	the	navigability	of	the	system.	As	a	consequence,	an	apparent	

challenge	is	how	to	identify	significant	trap	members	in	very	large	networks.		

We	believe	that	an	object	with	a	very	short	return	time	(Condamin	et	al.	2007;	Perkins	et	al.	2014)	

in	random	walks,	would	be	significant	trap	members.	Accordingly,	a	simple	measure,	namely	the	

local	return	rate,	can	be	developed	as	

	 ´Ö = (bÖ
' + bÖ

\ )/2.	 	(7.8)	

where	bÖ
G 	is	the	fraction	between	the	number	of	returning	paths	ÄÖ

G 	with	length	d,	and	all	the	
paths	with	length	d	originating	from	object	$,	i.e.	

	 bÖ
G = ÄÖ

G /;G.	 	(7.9)	

A	returning	path	is	the	path	that	starts	from	an	object	and	also	ends	at	it.	For	example,	5 → 6 → 5	is	
a	returning	path	for	object	5	with	length	2.	

Actually,	the	metric	can	be	extended	to	include	more	rates	for	higher-order	paths	(larger	d),	hence	
a	more	precise	form	to	write	the	expression	is		

	 ´Ö = bÖ
G

ı

Gw%
.	 	(7.10)	

However,	 the	 purpose	 of	 developing	 this	 metric	 is	 to	 more	 efficiently	 deal	 with	 very	 large	

recommendation	 networks	 so	 that	 the	most	 significant	 traps	 can	 be	 quickly	 identified	without	

costing	too	much	computational	power	and	time.	In	any	networks,	to	find	path	with	larger	length	

is	significantly	more	time-demanding	than	finding	shorter	paths.	Therefore,	here	when	applying	the	

local	return	rate,	we	still	stick	with	the	Eq.	(7.8),	i.e.	only	consider	paths	with	length	of	2	and	3.		
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To	identify	the	significant	traps,	originally	one	need	to	check	every	object	as	introduced	in	Section	

7.3.	With	the	developed	local	return	rate,	one	can	firstly	identify	objects	with	the	highest	value	of	

´Ö,	and	then	further	examine	how	many	others	can	each	reach	to	uncover	significant	closed	traps.	

To	show	the	power	of	the	local	return	rate,	here	we	only	check	0.1%	objects	with	highest	´Ö,	so	
that	 the	 computational	 costs	would	 theoretically	 be	 1/1000	 of	 the	 original	methods.	 The	 traps	

identified	by	checking	only	the	0.1%	highest	local	return	rate	are	summarised	in	Table	7.3.		
	

Table	 7.3	 |	 Traps	 identified	 involving	 0.1%	 objects	 with	 highest	 local	 return	 rate	 in	
recommendation	networks	with	out-degree	;	 = 	10.	

Dataset	 Measure	 size	 matched		 traffic	share	 accuracy	

ToyData	

CN	 18	 18	 99.99%	 18(18)	

LHN	

12	 12	 1.93%	

69(84)	

11	 11	 17.09%	
11	 11	 24.63%	
11	 11	 1.82%	
11	 11	 13.16%	
13	 13	 15.68%	

RA	 No	trap	
AA	 24	 24	 99.99%	 24(24)	

HC	

11	 11	 26.39%	

61(61)	
11	 11	 11.02%	
11	 11	 8.97%	
15	 15	 19.25%	
13	 13	 7.84%	

Amazon	

CN	
16	 14	 20.97%	

26(26)	12	 12	 64.12%	
19	 0	 0.05%	

LHN	

11	 0	 1.87%	

24(79)	

11	 11	 13.8%	
11	 0	 0.22%	
11	 0	 2.68%	
14	 0	 4.46%	
11	 0	 4.22%	
14	 0	 4.59%	
13	 13	 8.53%	

RA	 12	 12	 90.06%	 12(12)	
AA	 12	 12	 56.2%	 12(27)	
HC	 11	 11	 30.29%	 11(67)	

Yelp	

CN	 58	 0	 3.69%	 0(0)	

LHN	
20	 20	 68.82%	

42(42)	11	 11	 3.82%	
11	 11	 20.69%	

RA	 No	trap	
AA	 No	trap	

HC	
11	 11	 58.46%	

22(22)	
11	 11	 22.61%	
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For	 a	 given	 recommendation	 network,	 multiple	 closed	 traps	 can	 be	 possibly	 identified,	 each	

corresponding	to	a	record	(line)	in	the	table.	The	size	and	traffic	represent	the	population	and	ratio	

of	random	walk	traffic	of	the	identified	trap.	Regarding	the	traps	identified	in	Figure	7.6	and	Table	

7.2	as	the	benchmark	for	the	ground	truth	of	significant	traps,	we	also	examine	how	many	of	the	

traps	 identified	by	 local	 return	 rate	 can	match	with	ground-truth	 taps.	Take	 the	CN	measure	 in	

ToyData	as	an	example,	the	18	highest-visiting-frequency	objects	form	a	closed	trap	as	shown	in	

Figure	7.6.	Thus,	we	regard	these	18	objects	as	a	ground-truth	trap,	and	we	examine	whether	our	

local	return	rate	method	can	also	uncover	such	18	objects.	As	the	results	in	Table	7.3	suggested,	all	

these	18	objects	are	found	by	our	method,	and	thus	the	number	of	matched	objects	is	18	as	well.	

The	 column	 of	 accuracy	 shows	 the	 total	 number	 of	 matched	 objects	 and,	 in	 bracket,	 the	 full	

population	of	the	top-visiting-frequency	trap.	The	aim,	of	course,	is	to	match	all	of	the	ground-truth	

trap	objects,	which	is	that	the	value	is	expected	to	be	as	close	to	the	number	in	bracket	as	possible.	

As	suggested	by	Table	7.3,	for	most	identified	closed	traps,	the	members	well	match	with	the	top-

visiting-frequency	objects.	Though	some	traps	do	not	match	with	the	top-visiting-frequency	trap,	

their	traffic	shares	are	still	significantly	higher	than	average.	Taking	the	CN	measure	in	Yelp	as	an	

example,	the	trap	with	size	of	58	is	expected	to	account	for	0.09%	(58/61184)	of	the	traffic,	while	

actually	account	 for	3.70%,	which	 is	about	41	times	higher	than	expected.	 In	addition,	one	may	

observe	that	11	 is	 the	most	commonly-appeared	size	 for	 the	closed	traps.	As	 the	out-degree	of	

every	object	is	fixed	at	; = 10,	a	population	of	11	objects	could	be	the	smallest,	densest	as	well	as	

simplest	closed	trap,	where	each	object	connects	to	every	other.	As	discussed	earlier,	for	any	out-

degree	;	especially	these	smaller	values,	the	majority	of	traps	are	with	seize	Ç = ; + 1.		

We	also	examine	the	efficiency	of	the	proposed	local	return	rate	in	recommendation	networks	with	

different	 recommendation	 list	 length	 (out-degree)	; .	We	 don't	 aim	 to	 uncover	 every	 trap	 in	 a	

recommendation	network.	There	are	too	many	trivial	closed	traps	in	recommendation	networks	

that	 are	 not	 accounting	 for	 significant	 traffic	 at	 all.	 Accordingly,	 instead	 of	 the	 number	 of	 trap	

objects,	we	compare	 the	 traffic	 share	 to	explore	whether	 the	 local	 return	 rate	can	uncover	 the	

significant	 traps.	As	 has	been	discussed	 in	 the	 Figure	 7.9,	 all	 the	 traps	 account	 for	 a	 significant	

amount	of	traffic,	denoting	with	Ù = …ÖÖ∈ü /?,	where	Γ	is	the	set	of	trap	objects,	 identified	by	
traversing	all	the	objects.	We	also	check	the	traffic	share	of	the	traps	identified	by	these	0.1%	top-

local-return-rate	objects,	i.e.	Ùõ≠≠ = …ÖÖ∈ü¡ /?,	where	Γ′	is	the	new	set	of	trap	objects.	Therefore,	
a	large	value	of	Ùõ≠≠/Ù	would	suggest	that,	the	local	return	rate	is	efficient	in	detecting	significant	
traps,	and	vice	versa.	

The	comparison	between	the	traffic	share	Ùõ≠≠ 	and	Ù	is	shown	in	Figure	7.10.	The	recommendation	

networks	with	very	small	out-degree	;,	are	normally	segmented	into	thousands	of	traps.	As	a	result,	

there	 may	 be	 less	 differences	 between	 the	 traffic	 shares	 of	 different	 traps,	 and	Ùõ≠≠/Ù 	thus	
generally	take	small	values	since	much	less	number	of	traps	can	be	identified.	When	the	out-degree	

;	is	relatively	large,	for	example	; > 3,	the	local	return	rate	is	shown	to	be	efficient	except	for	the	
LHN	and	HC	measure	in	Amazon	datasets.	
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Figure	7.10	|	Traffic	share	of	closed	traps	identified	by	0.1%	top-local-return-rate	objects	in	
comparison	to	that	of	all	the	traps.	

7.5.	Summary	

The	recommendation	network	enables	the	numerous	online	objects	such	as	products,	movies	or	

restaurants,	to	connect	with	each	other	by	hyperlinks.	Users	can	thus	surf	on	the	recommendation	

network	to	access	massive	information	and	find	interesting	ones.	However,	the	recommendation	

networks	constructed	according	to	the	user	co-accessing	patterns,	are	found	unnavigable	with	a	

very	limited	number	of	objects	to	be	reached	during	random	walks.	The	existence	of	traps	is	shown	

to	 be	 the	 underlying	 reason	 for	 the	 poor	 navigability,	 which	 means	 users	 surfing	 on	

recommendation	networks	can	easily	fall	into	a	small	group	of	objects	and	stuck	to	them	with	little	

or	even	no	chance	of	visiting	other	objects.	

The	emergence	of	traps	in	recommendation	networks	may	be	caused	by	the	evaluation	of	the	co-

accessing	 patterns,	 i.e.	 the	 similarity	 measure.	 While	 the	 user	 interests,	 represented	 by	 the	

selection	behaviour,	is	highly	clustered	(Liu	et	al.	2013),	many	similarity	measures	make	the	object	

co-accessing	relations	even	more	clustered.	The	similarity	measures	studied	 in	this	thesis	are	all	

collaborative-filtering-based	(network-based)	and	only	focus	on	the	local	structure	of	the	network.	

Improvements	are	thus	possible	via	adopting	other	approaches	such	as	content-based	similarities	

(Pera	&	Ng	2003;	Lops	et	al.	2011)	or	global-based	methods	(Leicht	et	al.	2006;	Katz	1953).	However,	

the	trade-offs	between	either	internal	similarity	and	user	co-accessing	patterns,	or	accuracy	and	

computational	efficiency,	would	become	challenges.	

This	Chapter	addressed	RQ4	of	the	thesis	(are	the	objects	accessible	and	is	the	recommendation	

network	navigable?).	The	short	answer	to	this	according	to	the	results	in	this	Chapter	is:	the	objects	

are	not	easily	accessible	and	the	recommendation	networks	are	totally	unnavigable.	For	an	?-steps	
random	walk,	only	1%	objects	in	general	can	be	visited,	while	the	expected	ratio	is	about	63%.	To	

deepen	the	answer	to	the	question,	the	reason	of	the	networks	being	unnavigable	is	the	emergence	

of	traps,	which	has	dense	internal	linkages	that	block	the	web	traffic.		
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Chapter	8.	Discussions	

8.1	Validity	Discussions	

The	 validity	of	 the	 results	 in	 this	 thesis	 comes	 from	 the	proper	 scientific	methods	we	adopted,	

including	the	Mathematical	analysis,	empirical	experiments	on	large	data	sets,	and	the	comparative	

analysis.	The	following	is	the	discussion	of	the	validity	of	the	results	in	each	of	the	Chapters	4	to	7.		

Chapter	 4	 studies	 the	 stability	 problem	 of	 similarity	 measures	 and	 its	 influence	 on	 the	

recommendations.	The	major	output	 is	the	TNS-HC	algorithm	which	is	proposed	for	tackling	the	

stability-accuracy-diversity	triple	dilemma	of	the	personalised	recommendation.	Through	empirical	

recommendation	experiments	on	 four	user-object	 interaction	data	sets,	 it	 is	confirmed	that	 the	

proposed	 TNS-HC	 algorithm	 can	 largely	 improve	 the	 recommendation	 performance	 from	 the	

original	HC	algorithm,	by	more	than	18%	and	45%	for	the	accuracy	and	stability	(; = 20).	In	order	
to	further	illustrate	the	effectiveness	of	the	proposed	method,	we	extensively	compare	it	with	other	

benchmark	algorithms.	The	comparison	shows	that,	the	TNS-HC	algorithm	is	among	the	best	ones	

in	terms	of	either	accuracy,	stability	or	diversity	of	the	recommendation.	Thus,	according	to	the	

empirical	experiments	and	comparison	with	other	algorithms,	we	can	conclude	that	the	proposed	

method	 is	 effective	 and	 valid	 for	 overcoming	 the	 challenge	 of	 stability-accuracy-diversity	 triple	

dilemma.	

In	 Chapter	 5,	 the	 expected	 number	 of	 common	 neighbours	 is	 firstly	 studied	 via	 adopting	 the	

mathematical	analysis	with	 the	assumption	 that	 the	network	 is	purely	 random,	 i.e.	without	any	

influence	of	user	interests.	By	doing	so,	the	resulted	equation	for	the	expected	number	of	common	

neighbour	(Eq.	5.4	and	Eq.	5.22)	should	be	valid	for	real	networks	without	similarity-driven	links.	

However,	 in	 real	 networks	 there	 always	 will	 be	 links	 governed	 by	 similarities,	 and	 hence	 the	

difference	 between	 the	 expected	 number	 of	 common	 neighbours	 and	 observed	 number	 of	

common	neighbours	is	theoretically	a	representation	for	the	similarity	between	any	nodes	(objects).	

This	is	the	theoretical	validity	for	the	proposed	BCN	similarity	measures	(Eq.	5.9	and	Eq.	5.25).	Later	

on,	by	adopting	the	empirical	experiment	approach,	the	validation	on	the	performance	of	BCN	in	

improving	personalised	recommendations	are	carried	out	which	proves	that	the	proposed	method	

is	efficient	to	generate	accurate	and	diverse	recommendations.	Similar	to	the	Chapter	4,	at	the	end	

of	Chapter	5,	the	proposed	method	is	also	validated	by	comparing	with	other	benchmark	algorithms.		
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Chapter	6	and	7	are	more	exploratory,	 looking	at	 the	evaluation	of	 recommendation	networks.	

Since	 there	are	no	previous	work	on	evaluating	 the	performance,	we	developed	 the	evaluation	

framework	based	on	mathematical	modelling,	which	is	further	tested	via	empirical	experiments.	In	

order	to	validate	the	framework	as	well	as	to	assess	the	results	of	the	evaluation,	we	compared	the	

empirical	 results	with	 the	 theoretical	 results	 conducted	 via	mathematical	 analysis.	 Through	 the	

comparison,	 the	 conclusion	 is	made	 that	 the	 recommendation	 networks	 are	 not	 as	 efficient	 as	

expected	in	terms	of	navigating	users	to	find	interesting	objects	or	to	find	diverse	objects.			

8.2	Limitations	

Regarding	 limitations,	this	thesis	 is	rather	to	uncover	the	challenges	for	online	recommendation	

and	explore	its	influences,	than	to	deliver	comprehensive	solutions	for	the	challenges.	Though	there	

are	 some	 possible	 solutions,	 including	 the	 top-n-stability	 algorithm,	 the	 balanced	 common	

neighbour	similarity	measure,	the	optimisation	of	the	recommendation	 list	 length,	and	the	 local	

return	 rate	 metric,	 we	 focused	 more	 on	 the	 popularity	 bias	 of	 similarity	 measures	 and	 its	

consequence	of	failing	to	discover	niche	information.	For	the	stability	problem,	the	top-n-stability	

algorithm	though	shown	good	performance,	an	apparent	limitation	is	its	computational	complexity.	

To	apply	such	algorithm	in	practical	systems,	one	need	to	calculate	the	stability	for	the	similarity	of	

every	 object	 pair,	 which	 is	 very	 time-consuming.	 The	 balanced	 common	 neighbour	 similarity	

measure	has	also	similar	limitation	that	it	needs	optimisation	to	determine	the	parameter	in	the	

algorithm.	In	the	recommendation	networks,	optimisation	of	the	recommendation	list	length	and	

the	metric	 are	 rather	 analytical	methods	 to	 explore	 the	 problem,	which	 do	 not	 fundamentally	

overcome	the	challenges.	Hence,	comprehensive	solutions	for	the	niche	object	finding	should	be	

developed	 in	 the	 future.	 Possible	 directions	 include	 hybrid	 similarity	 measures	 which	 combine	

network-based	 measure	 and	 content-based	 measure,	 and	 new	 mechanisms	 to	 generate	

recommendations	 or	 construct	 recommendation	 networks.	 Since	 the	 trade-offs	 between	

popularity	 preference	 and	 similarity	 preference	 is	 an	 important	 influencer	 for	 the	 online	

recommendations,	to	further	and	more	closely	study	such	systems’	evolution	and	the	consumer	

behaviours	would	also	benefit	the	study	of	online	recommendations.		
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Chapter	9	Summary	

9.1.	Concluding	Remarks	

The	scale	of	the	Internet	is	nowadays	increasing	vastly	in	both	the	amount	of	information	and	the	

number	of	users.	Billions	of	new	records	being	created	every	day	brings	abundant	information	for	

online	 users	 to	 access	 which	 basically	 fit	 every	 aspect	 of	 their	 daily	 needs.	 However,	 the	

overwhelming	information	and	the	fast	evolution	not	only	call	for	efficient	online	recommendation	

systems,	but	also	leave	us	challenges	for	making	proper	recommendations.	Focusing	on	the	inability	

of	current	similarity	measures	fulfilling	the	practical	needs	of	uncovering	niche	objects	due	to	the	

apparent	 degree	 bias	 problem,	 this	 thesis	 explores	 the	 similarity	 quantification	 in	 complex	

networks	and	applies	it	to	online	recommendations.			

The	 first	 challenge	 brought	 by	 the	 overwhelming	 information	 is	 that	 how	 can	 we	 accurately	

recommend	users	with	what	 they	 interested	 in.	Accordingly,	 a	 large	body	of	 research	has	been	

addressing	 such	 problem	 with	 a	 lot	 of	 similarity	 measures	 and	 recommendation	 algorithms	

proposed.	Another	challenge,	as	well	as	the	urgent	need	of	the	users,	is	that	how	can	we	help	users	

to	discover	niche	information.	For	most	users,	their	interests	may	consist	of	both	common	interests	

which	can	be	represented	by	the	popular	information,	and	personalised	interests	which	can	only	

be	fitted	by	the	niche	information.	Thus,	the	accuracy	and	diversity	of	the	recommendations	are	

equally	 important.	However,	 the	existing	similarity	measures	 fail	 to	generate	both	accurate	and	

diverse	recommendations	due	to	the	degree	bias	problem.	In	this	thesis,	we	address	such	problem	

in	both	scenarios	of	personalised	recommendation	and	recommendation	networks.		

We	systematically	outlined	the	inability	of	current	network-based	similarity	measures	to	fulfil	the	

need	of	online	recommendation	to	discover	niche	information.	Existing	network-based	measures	

were	shown	unable	to	stably	quantify	the	similarity	among	objects,	and	through	experiments,	the	

unstable	similarities	were	proved	to	be	false	quantifications,	which	severely	affect	the	performance	

of	online	recommendations	in	terms	of	diversity,	stability	and	even	accuracy.	While	the	commonly	

existed	popularity	bias	of	these	similarity	measures	mixed	the	similarity	preference	with	popularity	

preference,	this	thesis	presented	evidences	for	the	fact	that	controlling	the	similarity	preference	

and	 popularity	 preference	 separately	 can	 largely	 enhance	 the	 performance	 of	 personalised	

recommendations.	A	theoretical	similarity	measure	without	such	popularity	bias	was	developed	in	

this	thesis	for	both	unipartite	and	bipartite	networks,	which	may	enrich	the	understanding	of	the	

quantification	of	node	 similarities	 in	networks.	Despite	 the	 increasing	attention	on	 the	value	of	

recommendation	networks	in	recent	years,	the	valuation	of	the	fundamental	performances	of	such	

system	 serving	 users	 is	 still	 a	 huge	 gap.	 For	 the	 first	 time,	 we	 comprehensively	 explored	 and	

evaluated	 the	 accuracy	 and	 navigability	 of	 recommendation	 networks.	 The	 popularity	 bias	 of	

similarity	measures,	 again,	was	 shown	 breaking	 down	 the	 accuracy	 of	 such	 system	 in	 terms	 of	

navigating	 surfing	 users	 to	 find	 interesting	 niche	 objects.	 On	 the	 other	 hand,	 the	 traps	 in	
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recommendation	networks	were	uncovered	which	explained	the	poor	navigability.	These	findings	

may	contribute	not	only	 to	the	knowledge	of	online	recommendations,	but	also	to	the	study	of	

general	networked	systems	such	as	social	systems,	and	the	biological	networks	etc.		

The	results	in	this	thesis	have	also	fruitful	practical	implications	and	applications.	For	example,	the	

fact	 that	 the	unstable	 similarities	 are	 false	quantifications,	 should	be	 considered	by	 the	 system	

developers,	 and	 in	 practice,	 these	 unstable	 similarities	 should	 be	 removed	 to	 gain	 better	

performances.	The	developed	algorithms,	namely	the	TNS-HC	and	the	BCN,	are	directly	applicable	

to	a	wide	range	of	practical	systems,	or	can	be	easily	tailored	by	combining	with	other	methods	as	

hybrid	algorithms.	This	thesis	also	provided	systematic	frameworks	to	check	the	performance	of	

any	 given	 recommendation	 networks,	 such	 as	 the	 self-avoiding	 random	 walks	 can	 be	 used	 to	

evaluate	the	accuracy	of	a	practical	recommendation	network,	and	the	local	return	rate	metric	can	

be	applied	to	uncover	traps	in	very-large-scale	systems.	The	exploration	of	the	recommendation	

list	length	also	informs	relevant	system	designers	about	how	to	determine	an	optimal	length	for	

their	system.	In	every	study	of	this	thesis,	multiple	widely-used	similarity	measures	were	evaluated	

and	 compared.	 Therefore,	 the	 results	 can	 inform	 practitioners	 with	 the	 features	 of	 different	

measures	and	thereby	help	them	make	choice	according	to	their	needs.		

9.2.	Future	Work	

As	has	been	discussed	in	section	8.2,	the	research	in	this	thesis	has	many	limitations.	Some	possible	

future	directions	can	be	followed	to	make	such	line	of	research	more	complete	and	comprehensive.	

The	first	problem	is	the	computational	complexity	of	the	proposed	personalised	recommendation	

algorithms	including	the	TNS-HC	and	BCN,	since	both	of	them	have	a	free	parameter	to	be	trained	

to	achieve	best	performance.	A	possible	solution	of	this	is	to	intensively	experiment	with	different	

kind	of	systems	to	conclude	the	pattern	of	optimised	parameter	as	the	reference	for	practice	with	

a	certain	kind	of	system.	For	example,	in	the	BCN	experiments,	the	system	Last.FM	takes	a	totally	

different	optimised	value	of	ú = 1.4	in	comparison	to	that	of	the	MovieLens	and	Netflix	which	have	

the	 value	 of	ú = 0.33 	and	ú = 0.36 	respectively.	 A	 possible	 pattern	 is	 that	 the	 movie	 systems	

(MovieLens	and	Netflix)	have	smaller	such	optimised	parameters	while	the	music	systems	(Last.FM)	

normally	 have	 larger	 parameters.	 But	 to	 confirm	 this	 pattern,	 we	 need	 to	 carry	 out	 more	

experiments	in	more	different	systems.	By	doing	so,	we	may	be	able	to	answer	questions	such	as	

can	we	infer	the	optimised	parameter	by	examining	the	observable	feature	of	a	certain	system?	

Such	 results	will	 largely	benefit	 the	practical	 application	via	 reducing	 the	 computational	 cost	of	

adopting	the	proposed	algorithms.	

While	 the	 algorithms	 and	 recommendation	 experiments	 are	 all	 carried	out	 based	on	 solely	 the	

collaborative	 filtering,	 hybrid	 recommendation	 systems	 should	 be	 considered	 in	 the	 future.	

Collaborative	 filtering	 is	 good	 at	 quantifying	 the	 similarity	 among	 objects	 via	 collective	 user	

behaviours,	and	hence	uncovering	hidden	association	patterns.	However,	as	part	of	the	conclusion	

of	this	thesis,	such	method	is	shown	unable	to	stably	and	accurately	measure	the	similarities	among	

unpopular	objects.	Other	methods,	such	as	the	content-based	systems,	will	not	have	such	problem.	
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As	a	consequence,	the	integration	of	collaborative	filtering	and	content-based	techniques	has	the	

potential	to	take	the	advantages	from	each	method	and	achieve	better	overall	performances.		

The	 recommendation	 network	 study	 in	 this	 thesis	 is	 exploratory.	 The	 developed	 evaluation	

framework	shows	the	inability	of	recommendation	networks	to	guarantee	the	navigation	accuracy	

and	equal	information	accessibility.	How	to	develop	new	methods	to	construct	recommendation	

networks	with	accurate	navigation	and	equal	information	accessibility	should	be	the	focus	of	the	

future	 research.	A	 simple	 solution	 is	 to	explore	appropriate	 similarity	measures	 to	apply	 to	 the	

projection	of	bipartite	networks	as	recommendation	networks.	But	such	method	may	sill	result	in	

systemic	patterns	of	recommendation	networks	leading	to	information	monopoly.	Thus,	the	future	

research	should	focus	attentions	on	new	construction	methods	other	than	the	direct	projection	of	

bipartite	networks.	 For	example,	 the	 recommendation	networks	 can	be	made	personalised,	 i.e.	

instead	 of	 all	 users	 share	 one	 unified	 network,	 each	 user	 should	 have	 a	 personalised	

recommendation	network.	Another	direction	may	be	to	empower	the	memory	of	recommendation	

networks	so	that	the	network	can	be	dynamically	changing.	To	be	more	specific,	the	system	should	

remember	what	a	user	has	just	browsed	and	remove	the	recent	history	from	the	recommendation	

network	as	the	user	keep	surfing.	Doing	so	will	prevent	users	from	being	trapped,	and	provide	users	

with	more	diverse	navigations.	
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