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Abstract 

 

The most commonly cultivated mushroom in Europe and North America is the Agaricus 

bisporus, also known as the button mushroom or Portobello mushroom. Bacterial diseases of 

Agaricus bisporus caused by Pseudomonas species are a cause of significant crop loss and 

downgrading of produce, resulting in considerable economic cost. Bacteriophage have long 

been an attractive option for biocontrol of bacterial contamination of food products, however 

the precise genetic interactions between phage, bacterium and host are often inadequately 

explored. 

 

This project aims to explore the genetic interactions between the mushroom pathogenic 

bacterium Pseudomonas tolaasii and Pseudomonas agarici with the newly identified 

bacteriophage Pseudomonas phage NV1 and Pseudomonas phage ϕNV3. Full genome 

sequencing has been performed on the P. tolaasii strain 2192T and P. agarici NCPPB 2472, 

and the genomes of both mined for potential biosynthetic clusters involved in virulence as well 

as genes involved in phage resistance. Within the genome of P. tolaasii 2192T, putative non-

ribosomal peptide synthases have been identified which are hypothesised to be involved in the 

production of the tolaasin toxin involved in disease symptom appearance on mushroom 

surfaces. Within the genome of P. agarici NCPPB 2472, a biosynthetic cluster was identified 

that is hypothesised to produce the siderophore achromobactin, an important virulence factor. 

P. agarici NCPPB 2472 was identified as possessing a single Type I-F CRISPR/Cas system, 

predicted to be involved in the development of phage resistance, as well as complete operon 

predicted to be involved in the production of the exopolysaccharide alginate. 
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A third Pseudomonas species was identified on the surface of disease free mushrooms which 

was identified as a potentially new species of Pseudomonas, named Pseudomonas sp. NS1. 

The genome of P. sp. NS1 was likewise sequenced and mined for potential biosynthetic gene 

clusters which identified a cluster demonstrated to be involved in the production of White Line 

Inducing Principle.  

 

The Pseudomonas phages NV1 and ϕNV3 were isolated from environmental samples and 

identified to be narrow host range phage specific for P. tolaasii 2192T and P. agarici NCPPB 

2472 respectively. Both phage NV1 and ϕNV3 were identified as new species of the 

Luz24likeviruses and phiKMVlikeviruses respectively. The genomes of both phages were 

isolated and sequenced, with phage ϕNV3 identified as containing a conserved Signal-Arrest-

Release endolysin system, which was confirmed by in vitro protein expression. Likewise, the 

lysis cassette proteins of ϕNV3 were identified and investigated via protein complementation 

assay in vitro. The full growth characteristics and life cycle of phage ϕNV3 has been 

investigated and reported in this study and a broad-host range mutant of ϕNV3 identified which 

has allowed the T7-like tail protein of ϕNV3 to be identified as the host specificity determinant.  

 

 Transcriptome analyses of non-infected P. agarici NCPPB 2472 and P. agarici NCPPB 2472  

infected with phage ϕNV3 at a multiplicity of infection (MOI) of 1 at 40 min post infection, 

were performed in triplicate using RNA-seq. A reliable method has been established that will 

be useful in future studies, although comparative gene expression analysis revealed no 

significant differences in expression between the two treatments at the multiplicity of infection 

and time point chosen in this case a significant quantity of phage transcripts were detected, 

demonstrating active phage infection. 
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1.1       Cultivated mushrooms and their importance 

The most commonly cultivated mushroom in Europe and North America is Agaricus bisporus 

(Figure 1.1), which is known by many names depending on the colour and maturity of the 

mushroom but is most frequently known as the ‘button mushroom’ or ‘Portobello mushroom’. 

Global production of Agaricus bisporus is reported to exceed 1.8x106 tonnes per year, of which 

8-9x105 tonnes are cultivated in Europe alone, worth an approximate 2 billion Euros annually 

[1].  

 

 
Figure 1.1: Image showing Agaricus bisporus mushrooms with unopened caps and a cross 

section of an immature cap.  

 

Commercial mushroom production is a complex procedure that comprises of several distinct 

stages, these are: composting, spawning, casing, case run, pinning and harvesting. The material 

on which A. bisporus is cultivated varies but can include horse manure, wheat straw, plant 

wastes and animal wastes such as feather meal and chicken manure. This mixture is then 

composted, where it is mixed and wetted to allow aerobic fermentation to take place. When 

completed the mixture becomes pliable and capable of holding water. 

Once the composting has been completed spawning can begin, this involves the spreading of 

spawning grains (grains previously inoculated with the A. bisporus mycelium) and nutrient 

supplements over the compost. This stage requires high levels of cleanliness; therefore, all 

equipment and tools must be thoroughly disinfected before use. The mycelia from the spawning 

Mushroom!cultivation!and!diseases!!

The!most!commonly!cultivated!mushroom!in!Europe!and!North!America!is!
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colour!and!maturity!of!the!mushroom!but!is!most!frequently!known!as!the!

‘button!mushroom’!or!‘Portobello!mushroom’.!Production!of!Agaricus)bisporus!is!
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grains will then grow throughout the compost, forming a network of fine root-like threads that 

fuse together to form a continuous bed, this process normally takes between 14-21 days to 

complete [2]. 

 

 

1.2      Bacterial diseases of cultivated mushrooms  

Bacterial diseases of Agaricus bisporus include cavity disease, also known as rapid soft rot 

disease, that forms large cavities in the cap of the mushroom that may extend to the stipe, and 

the causal bacterium was initially identified as Pseudomonas cepacia [3]. However, 

Pseudomonas cepacia was renamed Pseudomonas gladioli pv. agaricicola [4] before finally 

being classified as Burkholderia gladioli pv. agaricicola [5]. The soft rot caused by B. gladioli 

pv agaricicola is believed to be caused by degradative enzymes such as chitinase and protease 

virulence factors that are secreted by the Type II secretion system [5].  

 

Another soft rot disease of Agaricus bisporus has also been reported to be caused by the Gram 

negative Janthinobacterium agaricidamnosum, the symptoms of which include pitting and 

sticky blotches on the mushroom cap and in some severe cases, complete dissolution of the 

mushroom [6]. Unlike the soft rot disease caused by B. gladioli pv. agaricicola, the symptoms 

of J. agaricidamnosum soft rot are caused by a singular virulence factor, jagaricin, which is 

produced as a secondary metabolite by non-ribosomal peptide synthetases (NRPS) [7].  

 

Several pathogenic Pseudomonads are known to cause discolouration of Agaricus bisporus, 

termed ‘blotch diseases’. This includes Pseudomonas tolaasii, that causes brown blotch [8]; 

Pseudomonas reactans that causes purple or light brown blotch; Pseudomonas gingeri that 

causes a reddish ginger-coloured blotch and Pseudomonas agarici, that causes both yellow 

blotch and a disease of the mushroom gill structures [9].  
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1.2.1      Pseudomonas tolaasii  

Of all the bacterial blotch disease causal organisms, Pseudomonas tolaasii is the most 

intensively documented in literature. As previously mentioned P. tolaasii is the causal 

organism of “brown blotch disease” on Agaricus bisporus [8] and other cultivated mushrooms 

such as Pleurotus ostreatus, also known as the oyster mushroom [10]. 

 

The symptoms of brown blotch disease commence as small (1-4mm) brown or cream lesions 

on the pileus and stipe that become darker and more sunken as the damage progresses, a large 

and sunken lesion of 1cm in diameter is shown in Figure 2. The individual lesions may merge 

to cover the entire surface of the mushroom [1].  

 

 
Figure 1.2. A characteristic dark, sunken lesion of approximately 1cm in diameter caused by 

P. tolaasii infection of an Agaricus bisporus mushroom.  

 

Mushroom loss due to brown blotch is economically important as P. tolaasii was previously 

estimated to be responsible for  5-10% of crop loss in the U.K and a further downgrading of 

10% of mushrooms produced [11]. It has been reported by Wong et al. [12] that the primary 

source of P. tolaasii on a mushroom farm is the peat and limestone mix used during the casing 

process. They have reported that P. tolaasii could not be detected in the compost, water supply 

or mushroom spawn, but was detected in the casing mix [12]. Once P. tolaasii has colonized a 

mushroom bed secondary sources of infection are plenty, including tools and equipment, hands 
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and clothing of farm workers, airborne dust as well as flies and mites that are frequent pests of 

mushroom farms [12].  

 

Phylogenetic analysis based on 16S rDNA places P. tolaasii in the Pseudomonas fluorescens 

subgroup [13] and has been officially placed in the taxonomic group of fluorescent 

Pseudomonas biotype II [1]. P. tolaasii can undergo phenotypic variation, a tactic that is 

beneficial for its survival in nutrient-poor environments [14]. The wild-type colony 

morphology is pathogenic, opaque, mucoid, non-fluorescent, able to hydrolyse casein and 

capable of normal growth on medium containing cetrimide; whereas the phenotypic variant is 

translucent, non-mucoid, non-pathogenic, fluorescent, does not have the ability to hydrolyse 

casein or to grow normally on medium containing cetrimide [14, 15], the observable 

differences in colony morphology are shown in Figure 1.3. 

 

 The phenotypic variant of P. tolaasii has also been shown to swim faster via flagellar motility 

and respond more rapidly to chemotactic gradients than the wild-type, as well as produce larger 

amounts of siderophore, which would confer advantages in nutrient-poor water-saturated 

environments such as the casing layer in mushroom production [16]. P. tolaasii has a distinct 

polar flagella type that does not conform to the H1 and H2 serotyping methods used to type 

Pseudomonas flagella, similar to P. fluorescens which also does not conform, as described by 

Guillorit-Rondeau et al. [17].  
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Figure 1.3. Colony morphology of P. tolaasii with the pathogenic wild-type colony on the 

left and the non-pathogenic translucent colony on the right.   

 

The phenotypic shift in P. tolaasii is positively regulated by a 99-kDa protein, PheN, which 

shows amino acid similarities to members of a family of two-component regulatory proteins 

including LemA of P. syringae pv. syringae [18], BvgC of Bordetella Pertussis [19] and RcsC 

of Escherichia coli [20] and is required to maintain the wild-type pathogenic phenotype [14]. 

It is believed that PheN is involved either directly or indirectly with the activation of expression 

of genes involved in tolaasin synthesis, protease production and mucus production but 

represses other genes such as those controlling motility, chemotaxis and siderophore 

production [14]. 

 

Sinha et al. [21] have demonstrated that inactivation of the PheN gene results in the phenotypic 

shift from pathogenic to non-pathogenic, due to a 661bp duplication within the gene which 

results in early termination of the PheN ORF and the synthesis of a truncated protein lacking 

the N-terminus periplasmic domain. This N-terminal domain has been deduced to be the 

environmental sensor, the loss of which is predicted to result in loss of gene function [21]. It 

has also been shown that phenotypic switching from the pathogenic wild-type to the non-

pathogenic phenotype is recA dependent whereas the reverse switch appears to be recA 

independent [22]. The precise stimuli that regulate expression are not known; however, it has 

been suggested that it is a ‘social phenomenon’ possibly due to quorum sensing and 
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autoregulatory compounds, which occurs when cells are present at a high enough density and 

in nutrient-poor conditions [14]. 

 

The brown blotch disease mushroom pitting symptoms of P. tolaasii infection are caused by a 

secondary metabolite, tolaasin, that is explained in detail in Section 1.3.2. Other enzymes and 

secondary metabolites of P. tolaasii that may play roles in pathogenicity are also outlined in 

Section 1.3. 

 

 

1.2.2      Pseudomonas agarici  

While P. tolaasii may be one of the most intensively studied causes of bacterial disease of 

cultivated mushrooms, P. agarici arguably takes the title as the least well studied mushroom 

pathogen in academic literature. P. agarici is a Gram negative, non-spore forming, short rod 

that can occur singly, in pairs or in chains, and based on 16S rRNA gene topology analysis, 

belongs to the P. fluorescens intragenic cluster [23, 24]. However, further phylogenetic 

analysis of P. agarici involving four ‘housekeeping’ genes 16S rRNA, gyrB, rpoB and rpoD 

by Mulet et al. failed to place P. agarici in any specific Pseudomonas subgroup [25].  

 

P. agarici was demonstrated by Young [24] in 1970 to be the causal agent of the disease ‘drippy 

gill’ in A. bisporus mushrooms. The disease is characterised by the appearance of small, dark 

pigmented spots on the gills of mature mushrooms which progressively increase to a diameter 

of 2mm or more, which contain a light cream or grey spot in their centre. The infection of the 

gills may cause a collapse of the locally affected tissue or in the case of severe infections the 

bacterial droplets may coalesce between gills and lead to a total collapse of gill tissue [24]. 

Outside of the gill tissue, the stipes of infected mushrooms also often show fine longitudinal 

splits that contain large numbers of bacteria, which as the mushroom matures become dark 

brown [24].  
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The droplets were also reported to be found inside unbroken veils of immature mushrooms, 

which appeared to indicate the bacterium was already present within the mycelium [24]; 

however, it was then shown that P. agarici has the ability to degrade the extracellular matrix 

and pass through protective membranes unnoticed, which allows it to infect the stipe and gills 

before the veil opens during the maturation process [26, 27]. In cases where the bacteria are 

observed to be intrahyphal, it is believed that it gains access by a break in the fungal cell wall 

and thus is opportunistic in this aspect [27]. 

 

Chitinase enzymes are found in many Pseudomonas species including Pseudomonas stutzeri 

YPL-1 [28], Pseudomonas aeruginosa [29] and members of Pseudomonas fluorescens biovar 

I, VI and III, frequently as antagonists of fungi [30]. Chitin is a simple polysaccharide that 

forms an essential component in the cell walls and septa of all fungi studied to date [31]. P. 

agarici is distinct from other Pseudomonas species pathogenic to fungi in its inability to 

produce the chitinase enzyme, which prevents it from actively penetrating hyphal cell walls 

[26]. 

 

While the majority of large U.K based outbreaks were reported before 1980, outbreaks of P. 

agarici have also been reported in New Zealand in 1991 [26] and in Serbia as recently as 2008 

[32]. 

 

 

 

 

 



 20 

1.3      Secondary metabolites, non-ribosomal peptide synthesis and bacteriocins in 

Pseudomonas 

The Pseudomonas genus is well known for its production and use of secondary metabolites, 

they have been reported to produce compounds such as lipids, phenazines, pyrroles, indoles, 

amino acids and peptides, pterines and other miscellaneous compounds [33].  

 

One method for production of peptide secondary metabolites in Pseudomonads is via the use 

of non-ribosomal peptide synthetases (NRPSs), NRPSs are very large multimodular enzymes 

that synthesise specific peptide products. NRPSs are comprised of multiple modules which 

each contain three catalytic domains, the first is the adenylation domain (A domain) which is 

involved in the activation of the amino acid, the second a thiolation or peptidyl carrier protein 

(PCP domain) which is involved in the extension of the peptide and the third which is the 

condensation (C domain) domain which is involved with the condensation of the amino acids. 

A final fourth catalytic domain which is located only in the termination module is the 

thioesterase (TE) domain [34].  

 

The NRPS produced secondary metabolites perform a wide variety of roles such as in 

phytopathogenicity, microbial and predatory antagonism, swarming motility and biofilm 

formation [35, 36]. 

 

In Pseudomonads, NRPSs are heavily involved in the production of cyclic-lipopeptides, which 

are important secondary metabolites. These cyclic lipopeptides produced by Pseudomonads 

are classified into six groups primarily based on their length and amino acid sequence, these 

groups are: viscosin, amphisin, tolaasin, syringomycin, putisolvin and syringopeptin [37, 38].  

However, some lipopeptides produced do not fit into these groups, these include; entolysin of 

Pseudomonas entomophila [39], orfamide produced by Pseudomonas fluorescens Pf-5 [40] 
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and linear lipopeptides produced by strains of Pseudomonas syringae such as syringofactins of 

Pseudomonas syringae pv. tomato strain DC3000 [36] and a structural variant of syringopeptin, 

peptin31, produced by P. syringae strain 31R1 [40].  

 

A major group of these Pseudomonas lipopeptides produced by NRPSs is the viscosin-related 

nonapeptides, which has six-subtypes that have been identified: viscosin, massetolide, 

viscosinamide, pseudophomin and white line-inducing principal (WLIP) [41]. Within this 

group, a minor difference in amino acid sequence confers significantly different biological 

properties, making predictions on function based on amino acid sequence difficult, such as with 

the WLIP and viscosin. WLIP produces a precipitate in agar medium when a WLIP producing 

Pseudomonas strain is co-cultured alongside a strain of tolaasin producing Pseudomonas 

tolaasii. However, viscosin, which is extremely similar structurally to WLIP (differing only in 

the fifth amino acid residue where D-Leu is replaced with L-Leu) or viscosinamide (similar to 

viscosin but with D-Gln instead of D-Glu at amino acid position 2) fail to produce this 

precipitate [42].  

 

1.3.1      Tolaasin  

 

While it had been known since 1973 that nutrient broth suspensions of P. tolaasii that had been 

placed on mushroom surfaces, but separated by dialysis membranes, were able to produce 

disease symptoms [43]; it was not until 1986 that J. T Peng devised a method for isolating the 

tolaasin toxin. It was reported that addition of a partially purified toxin, which he had identified 

as a polypeptide between 1 and 10 kDa in weight, reproduced P. tolaasii disease symptoms 

and interacted with the WLIP of P. reactans [44].  

 

The molecular structure of tolaasin was determined by Nutkins et al. [45] and was published 

in 1991, they showed that tolaasin is comprised of 18 amino acids, with a mass of 1,985Da and 
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due to the presence of two positive charges a the C-terminus, that it is an amphipathic peptide 

[45].  

 

Nutkins et al. reported to have isolated two isomers of tolaasin, Tol I and Tol II, with Tol II 

being a structural analogue of Tol I, which is identical to Tol I, except for a substitution of 

homoserine for glycine at amino acid position 16 [45]. Since then, Shirata et al. in 1995, 

identified 8 isomers of tolaasin I, of which 4 and 6 were identified as Tol I and Tol II 

respectively [46]; and in 2004 Bassarello et al. reported the discovery of 5 new minor products, 

Tol A-E produced by P. tolaasii NCPPB 2192 together with Tol I and Tol II, of which only 

two differ structurally from those hypothesised by Shirata et al. [46, 47] 

 

Tolaasin can cause disruption of Agaricus bisporus cells via two distinct methods, the first is 

as a result of its ability to form Zn2+-sensitive ion channels, which is observed at low tolaasin 

concentrations [48]. The second is due to the surfactant properties of tolaasin, which is 

observed at higher concentrations. Interestingly, the surfactant properties are reported to be 

responsible for causing damage on the mushroom caps, whereas it is the ion channel properties 

that induce cell lysis in cut mushroom tissue [49].  

 

Scherlach et al. [50] have demonstrated in P. costantinii, which also produces tolaasin, that 

tolaasin production is dependent on a biosynthetic gene cluster comprised of 5 NRPS proteins. 

This NRPS cluster is reported to contain 18 biosynthetic ‘modules’ each comprised of a 

condensation, adenylation and thiolation domain [50]. 
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1.3.2      Siderophores 

Under iron limited conditions the majority of fluorescent Pseudomonads produce yellow-green 

fluorescent siderophores called pyoverdines [33]. While pyoverdine was first described as a 

pigment in the late 19th century [51], it was not until 1978 that the link between Fe3+ 

concentrations and P. fluorescens pyoverdine synthesis and its role in the transport of iron was 

correlated [52]. Pyoverdines are powerful iron(III) scavengers and transporters with a 

conserved structure comprised of 3 domains; the first is a dihydroxyquinolone chromophore, 

the second, a variable peptide chain of between 6-12 amino acids in length and finally a third 

domain comprising of a side chain which is usually either a dicarboxylic acid or dicarboxylic 

amide [53].  

Several genes have been identified to be involved in the biosynthesis of pyoverdine in P. 

aeruginosa, P. putida [54] and P. fluorescens, including the NRPSs pvdD [55] and pvdIJK [56] 

of P. aeruginosa. Likewise, Mossialos et al. have identified a NRPS of P. fluorescens ATC 

17400, PvsA that is necessary for pyoverdine biosynthesis [57].  

 

The biosynthesis of siderophores by NRPSs within the Pseudomonas is not limited to 

pyoverdine, with a second siderophore of P. aeruginosa, pyochelin, also synthesised by NRPSs 

[58]. Synthesis of pyochelin in P. aeruginosa is dependent on two gene clusters, pchEF [59] 

and pchDCBA [60], with the proteins PchE and PchF having been identified as showing 

significant characteristics of NRPSs.  

 

However not all of Pseudomonas siderophores are dependent on NRPSs for biosynthesis. For 

example, P. syringae pv. syringae B728a has been demonstrated by Berti and Thomas [61] to 

produce a siderophore, achromobactin, via the NRPS-independent synthetases AcsD, AcsA 

and AcsC from the precursor citrate.  
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1.3.3 Bacteriocins and phage tail-like bacteriocins 

Bacteria possess and produce a diverse range of defence systems against other microorganisms, 

including broad-killing antibiotics and bacteriocins, which often demonstrate more narrow 

killing activity [64]. 

 

Phage tail-like bacteriocins (PTLBs) are an example of antimicrobial peptides produced by 

bacterial ribosomal protein synthesis, in contrast to the peptides produced by alternative 

mechanisms such as NRPSs. While other antimicrobial compounds produced by the 

Pseudomonads tend to offer antimicrobial action against a broader spectrum of 

phylogenetically distant species, bacteriocins such as the pyocins produced by Pseudomonas 

aeruginosa frequently possess a narrower target range which often include closely related 

Pseudomonas species [62] [63].  

 

Bacteriocins, such as PTLBs, offer a commercially attractive alternative to chemical 

preservatives in food production and preservation for a variety of reasons and their use in these 

situations has been well documented in literature. The primary allure of the use of bacteriocins 

stems from their sheer variety and abundance, with estimates that over 99% of bacteria are 

capable of producing one or more bacteriocin [64], offering a large pool of potential 

commercially viable products. Furthermore, as public opinion on the use of chemical 

preservatives in food has shifted and the legal and the moral implications of the presence of 

antibiotics or their associated residues in food the appeal of proteinaceous ‘naturally’ produced 

compounds such as bacteriocins that have been demonstrated to be sensitive to and degraded 

by proteases in the stomach [65], is amplified. Finally, the use of bacteriocins, such as the FDA 

approved nisin that is produced by Lactococcus lactis [64, 66], in food to prevent spoilage has 

been well studied and demonstrated to be both safe and effective. 
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While the ability of bacteria to produce PTLBs has been known for over 60 years, to date few 

studies have specifically detailed the scope of their production among bacteria. PTLBs are very 

large (1x106-1x107 Da) protein structures that are encoded in distinct gene clusters, similar to 

those of the related phage tail proteins encoded in phage structural protein regions, which often 

likewise contain assembly and/or chaperone proteins necessary for assembly as well as 

associated regulatory genes [67].  

 

PTLBs are comprised of two broad groups, R-type and F-type, as illustrated in Figure 1.4. The 

F-type PTLBs are phylogenetically related to the tails of Siphoviridae bacteriophage and are 

non-contractile, comprised only of a tube and no sheath.  The R-type PTLBs are related to the 

tails of Myoviridae phage and are contractile, consisting of a central tube surrounded by a 

sheath which is connected to an additional baseplate structure to which receptor-binding 

proteins such as tail fibers are bound [69] [67].  

 

 
Figure 1.4. Diagrammatic representation of: F. F-Type non-contractile PTLB consisting only 

of a central tube and no sheath; R, R-Type contractile PTLB possessing both a tube and 

contractile sheath as well as a baseplate and tail fiber-like proteins. Generated in Microsoft 

PowerPoint, based on data from [67, 68]. 

 

 

F. R.
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Examples of R-type and F-type PTLBs include the R-type and F-type pyocins produced by 

Pseudomonas aeruginosa, which are reported to be produced by 90% of P. aeruginosa strains. 

It has been demonstrated by Köhler et al. [62] that in the case of the R1, R2 and R5 (R-type) 

pyocins, that the binding receptors are specific residues of the lipopolysaccharide core, 

accounting for their O-serotype specific binding affinities.  

 

The precise stimuli behind the timing of PTLB expression is not known although it has been 

reported that expression can be induced by DNA damage [67]. In Pseudomonas fluorescens 

SF4c PTLB expression can be induced by mitomycin C, UV light and hydrogen peroxide [70]. 

In Pseudomonas aeruginosa PAO1, control over expression of the pyocin genes is controlled 

by the prtN gene, which encodes a transcriptional activator, which in turn in controlled by the 

PrtR repressor protein. PrtR is reported to be inactivated by the presence of the RecA protein 

which is activated by DNA damage [71]. 

 

 

1.4      Bacteriophage Treatments of Pseudomonas infections  

Bacteriophage are viruses that infect and frequently kill bacteria, which were first discovered 

early in the 20th century by Fredrick Twort and Felix d’Hérelle [72].  Bacteriophage offer an 

attractive biocontrol agent for Pseudomonas infections of cultivated mushrooms as some 

Pseudomonas strains such as Pseudomonas putida, which colonises the casing layer, are 

beneficial for mushroom growth and maturation [73]. Therefore, total sterilisation of the casing 

material could potentially harm mushroom production and a more targeted approach is 

necessary.  

 

While little research has been conducted on phage capable of infecting P. agarici, several 

phages have been characterized that utilise P. tolaasii as a host. Recently Kim et al. have 
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isolated 21 environmental phage of P. tolaasii of varying lytic ability [74]. With two phage, 

hb1a and hb2d, they achieved complete bacterial lysis after 12 hours with a multiplicity of 

infection (MOI) of 100. Similarly, they also managed to suppress blotch formation on oyster 

mushroom (P. ostreatus) surfaces when phage hb1a was added simultaneously with P. tolaasii 

[74].  

 

1.5      Bacteriophage background 

Bacteriophage are thought to be the most numerous organism on Earth, with estimates of the 

global population of bacteriophages being as high as 1031 virus particles [75]. Broadly, 

bacteriophage can be split in to two groups based on life cycle, either ‘lytic’ in the case of 

virulent phage or ‘lysogenic’ in the case of temperate phage. A lytic or virulent phage lyses the 

host cell soon after initial infection, whereas a lysogenic or temperate phage may establish a 

latent infection and become dormant for a period of time [76]. Lysogenic infections most often 

involve integration of the phage genome into the host chromosome or plasmid as a ‘prophage’, 

which is passively copied to daughter cells when the host cell divides. A prophage can be 

activated in response to environmental stimuli, for example if the host cell is damaged,  to 

produce phage via the lytic cycle [76]. Other temperate phage establish lysogenic infections by 

forming autonomous plasmids within the host [76, 77].  

 

Taxonomic classification of bacteriophage is based on several factors, including host range, 

phage particle morphology, genome type and protein structures such as tails, the most 

important of these factors being the phage particle morphology and genome type. The largest 

order of bacteriophages is the Caudovirales, which are the tailed dsDNA containing phages, 

that represent 96% of all known phage [78].  
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The Caudovirales comprises of three families, depending on tail structure; the Myoviridae that 

possess contractile tails consisting of a sheath and a central tube; the Siphovoridae which 

possess long, non-contractile tails; and the Podoviridae which possess short, non-contractile 

tails. The Podoviridae will be explored in greater detail in Section 1.5.1.  

 

1.5.1      The Podoviridae, subfamily Autographivirinae and genus Luz24likeviruses 

The Podoviridae are a family of bacteriophage within the Caudovirales that are 

characteristically non-enveloped, with a dsDNA genome, an icosahedral head and a short non-

contractile tail, as illustrated in Figure 1.5. As of 2016 the Podoviridae family now comprises 

of three subfamilies, the Autographivirinae, Picovirinae and the newly added Sepvirinae as 

well as 21 genera, such as the Luz24likevirus [79].  

 

 
Figure 1.5. Diagram representing standard virion morphology of the Podoviridae, visible are 

A. Icosahedral head, B. Tail Fibers, C. Short Tail. Generated by Microsoft PowerPoint, based 

on data from Fokine and Rossman [80]. 

 

The Autographivirinae are a subfamily of the Podoviridae and is comprised of 7 confirmed 

genera to date: Fri1virus, Kp32virus, Kp32virus, Phikmvvirus, Pradovirus, Sp6virus and 

T7virus [81]. The Autographivirinae contains 40 species to date of which only 3 are unassigned 

to a genus, Prochlorococcus virus PSSP7 and Synechoccus virus P60 and Syn5 [81]. The 

bacteriophage Escherichia virus T7, also known as Enterobacteria phage T7 or simply T7 

phage, is the most extensively studied phage of the Autographivirinae subfamily. Phage T7 
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was first isolated and identified around 1944 by Demerec and Fano [82] who demonstrated its 

ability to cause large plaques with a large halo on plates of E. coli. Since it was identified it has 

been the subject of intense study, with the first genetic ‘map’ of T7 being published in 1969 by 

William Studier who identified a total of 19 genes [83], from which he identified 12 protein 

products [84].  

 

In 1983 the complete nucleotide sequence of phage T7 was published by Dunn et al. [85], who 

reported that the genome contained 39,936bp with a low GC content of 49% and coding for 50 

genes. The nucleotide sequence of T7 has been subject to several minor revisions in subsequent 

years, including the addition of a single ‘T’ nucleotide, bringing the total nucleotide count to 

39,937bp [86-88]. It is now predicted that the genome of phage T7 contains up to 57 genes 

encoding 60 potential proteins, of which only 35 have a known function [89]. The genes of 

phage T7 are arranged linearly within the genome and are categorised in to three temporal 

classes [90, 91]:  

Class I:  These genes are expressed early in in infection and encode proteins that are 

involved in host conversion. 

Class II: These genes are expressed mid-infection and are encode proteins primarily 

involved in DNA replication. 

Class III:  These genes are expressed late in infection and encode proteins involved in 

virion structure and assembly.  

Structurally, phage T7 is characteristic of the Podoviridae, composed of an icosahedral capsid 

‘head’ ~60nm in diameter [92], a short stubby tail of 23nm in length that is attached to the 

capsid by way of a head-tail connector protein [90]. Attached towards the head end of the tail 

are six tail fibers, each composed of three copies of a single protein Gp17, that form a kinked 

structure [93]. Initial host recognition is performed by these tail fibers, although this stage is 
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reversible; before a second irreversible host cell binding is hypothesised to be mediated by a 

tail-tube protein [94]. Upon binding, genomic DNA is injected in to the host by extension of 

the T7 tail [95]. Only a small fraction of the genomic DNA (~1kb) is ejected at this initial stage 

of infection and is pulled in to the host cell by the action of the host RNA polymerase, which 

recognises promotors present early in the phage genomic DNA [96]. Transcription of the phage 

DNA is halted approximately 19% through, at which point the phage RNA polymerase that has 

been produced from the initial genes begins transcription, acting to ‘pull’ the remaining 

genomic DNA from the phage particle [96, 97]. Temporal regulation of phage T7 genes 

throughout replication is achieved by promotors specific for T7 RNA polymerase, while the 

host RNA polymerase is inhibited by a Class II gene Gp2 to prevent the detrimental effects of 

uncontrolled transcription [91, 98]. The specificity of T7 RNA polymerase for T7 promotors 

has resulted in the adaptation of T7 RNA polymerase for a number of research applications.  

 

PhiKMV-like viruses 

The “PhiKMV-like viruses” are a phage genus of the subfamily Autographivirinae which 

contains 4 confirmed species to date, including the type species Pseudomonas phage ϕKMV, 

Pseudomonas phage LKA1 and Pantoea virus LIMElight [99].  

 

The type strain, Pseudomonas phage ϕKMV was first identified in literature in 2003 by 

Lavigne et al. [100], and was reported to infect several clinical isolates of Pseudomonas 

aeruginosa including P. aeruginosa PA01.  ϕKMV possesses a dsDNA genome of 42,105bp 

in length with a relatively high GC content of 62.3%, which is predicted to encode 48 ORFs 

[100]. The genomic structure of ϕKMV is similar to that of phage T7, illustrated in Figure 1.6, 

in that it comprises of three distinct clusters: 1. Early genes (host conversion), 2. Middle genes 

(DNA metabolism), 3. Late genes (structural and host cell lysis); with the exception of the 
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location of the DNA-dependent RNA polymerase which, in ϕKMV, is located in the middle-

stage genes, rather than within the early genes as is the case in T7 [100]. 

 

 

Figure 1.6. Genomic organisation diagram of 1. Escherichia virus T7, 2. Pseudomonas phage 

ϕKMV. Early (host conversion) genes are illustrated in green, middle genes (DNA metabolism) 

in yellow, late (structural and host cell lysis) genes in orange; the location of the DNA-

dependent RNA polymerase gene is illustrated in red. Diagram generated in Microsoft 

PowerPoint from data reported by Lavigne et al. [100] and Dunn et al. [85]. 

 

 

For ϕKMV, adsorption and infection is dependent on the type IV pili, as reported by Chibeu et 

al. [101]; who identified a spontaneous mutant of P. aeruginosa PAO1 that was resistant to 

ϕKMV infection, named P. aeruginosa PAO1KR. Using cosmid complementation they found 

that a common regulatory mechanism of, or an interaction between, the gene products of ponA 

and pilMNOPQ is responsible for the demonstrated resistance, due to atypical type IV pili 

expression caused by poorly regulated transcription of these genes [101]. Host cell lysis for 

phage ϕKMV is achieved using a Signal-Anchor-Release (SAR) endolysin system comprising 

of a holin, endolysin, Rz and Rz1 proteins [102], which will be detailed further in Section 1.5.4. 

 

The phage Pantoea virus LIMElight and Pantoea virus LIMEzero, infect the bacterium 

Pantoea agglomerans [103], a Gram negative member of the Enterobacteriaceae that, similar 

to the Pseudomonadaceae, are ubiquitous in nature and found in water, soil and plant surfaces, 

as a host [104, 105]. The phages LIMEzero and LIMElight were isolated from soil samples in 

Belgium and were identified as causing plaques on the Pantoea agglomerans strain 

GBBC2043. However, the plaques of each phage varied in morphology with those of 

LIMEzero showing plaques of ~2mm with a halo like appearance while LIMElight showed a 

1.

2.
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clear ~1mm plaque morphology [103]. Both phage have a classic Podoviridae virion structure, 

with EM images reported as showing a head of 60nm in diameter, a short (12nm) stubby tail 

and a number of tail spikes. While both phage share similarities in terms of morphology and 

host, there are stark differences in their growth characteristics; while the latent period for phage 

LIMEzero is relatively short, at 30 min, the latent period for LIMElight is significantly larger 

at 270 min; similarly, while the adsorption constant of LIMEzero is high, at 8.2x10-9 ml/min, 

the adsorption constant of LIMElight is significantly lower at 1.2x10-9 ml/min [103].  

 

The genomes of LIMElight and LIMEzero are relatively similar in size, at 44,546bp and 

43,032bp respectively (54% and 55.4% GC content) and are predicted to encode 57 and 55 

ORFs respectively. However, to date, direct terminal repeats of 277bp have only been 

identified in the genome of LIMElight, while they are expected in the genome of LIMEzero.  

Both phage possess 18 ORFs that are similar in amino acid sequence to those found in ϕKMV, 

there is no significant DNA similarity between either LIMEzero or LIMElight and ϕKMV. 

Phage LIMEzero and LIMElight share the common genome architecture of the 

PhiKMVlikevirus genus, with three distinct regions of early, middle and late genes with the 

unusual location of the DNA-dependent RNA polymerase, which is located in the middle-stage 

genes, rather than within the early genes [100, 103]. 

 

Luz24likeviruses and UFV-P2 

The Luz24likevirus, is a genus of phage within the family Podoviridae, similar to the subfamily 

Autographivirinae. The Luz24likevirus genus to date contains 7 confirmed species, including 

the type strain Pseudomonas virus LUZ24 and Pseudomonas virus PaP3 and PaP4 [81].  
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The virulent type strain, LUZ24, was originally isolated from hospital sewage samples in 

Belgium, where it was observed to cause zones of lysis on lawns of the P. aeruginosa strain 

Li010. The phage particle morphology of LUZ24, of an icosahedral head of 63nm and a short 

tail of 12nm in length, is characteristic of the Podoviridae family. The LUZ24 genome consists 

of a linear dsDNA of 45,625bp (52% GC), includes two 184bp direct terminal repeats, and 

possesses 68 protein encoding ORFS in a bidirectional organisation, with 47 encoded on the 

positive strand and 21 on the negative [106]. 

 

Phage UFV-P2, a tentative member of the Luz24likeviruses was isolated from dairy industry 

waste water in Brazil and shown to be capable of infecting P. fluorescens 07A. UFV-P2, similar 

to LUZ24, possesses a linear dsDNA genome of 45,517bp (51.5%GC) and was initially 

reported to encode 41 ORFs in a bidirectional organisation with 19 encoded on the positive 

strand and 22 on the negative strand [107]. However, further analysis revealed the genome to 

encode a total of 75 ORFs.  55 of these ORFs are encoded on the positive strand and are 

involved in nucleotide biosynthesis and replication; and 20 encoded on the negative strand 

involved with virion particle assembly and composition, DNA packaging and host cell lysis 

[108].  

 

Alignment and pairwise comparisons of the genomic sequences of phage UFV-P2 and other 

members of the Podoviridae showed that UFV-P2 shares a large degree of nucleotide identity 

with other members of the Luz24likeviruses, such as LUZ24, PaP3 and PaP4 (56.8%, 56.7% 

and 56.2% respectively), however it also shared a 46.4% identity with Pseudomonas phage 

PhiKMV. Analysis of conserved locally collinear blocks within the members of the LUZ24 

and phage UFV-P2, as well as the presence of a shared conserved bidirectional genome 



 34 

organisation, are reported to show that UFV-P2 is highly likely to be a member of the 

Luz24likevirus genus [108].  

 

 

1.6      Endolysin systems  

At the end of the late phase of the bacteriophage infective cycle, once progeny phage have been 

created, they must escape into the environment. To do this, most dsDNA phage such as the 

Autographivirinae, use a lytic enzyme, or lysin, to achieve lysis of their hosts and release 

progeny virions out into the external environment. These lysins are termed endolysins to 

distinguish them from a second type of bacteriophage lysin, a glycosylase, that is associated 

with the phage tail proteins and is involved in penetration into the host at the start of the 

infection cycle [109].  

 

Endolysins attack the four major bonds in the peptidoglycan host cell wall via a variety  of 

actions [110]. This catalytic activity can be classified into several groups, the N-

acetylmuramidases (lysozymes or muramidases), endo-β-N-acetylglucosaminidases 

(glucosaminidases), N-acetylmuramoyl-L-alanine amidases (NAM-amidases), endopeptidases 

and lytic glycosylases. The glucosaminidases and lytic glycosylases cleave the glycan 

component of the peptidoglycan, whilst the endopeptidases cleave the peptide cross-bridge and 

the NAM-amidases hydrolyze the amide bond connecting the sugar and peptide constituents 

of the peptidoglycan. [110-112]. Despite the variety of enzymatic activities, the endolysins 

weaken the integrity of the cell wall and bacteriolysis occurs when the cell ruptures due to the 

internal osmotic pressure [113].  
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1.6.1      Types of host cell lysis systems 

The host cell lysis systems of bacteriophage, also termed the ‘lysis cassette’, can be broadly 

categorised into two functional classes, canonical and signal-anchor-release (SAR) lysis 

systems. Both systems require the action of transmembrane proteins, holins, to control the 

precise timing of host cell lysis, however the mechanisms by which these proteins perform 

their roles differs dramatically between these two classes [114].  

 

Within the first system, canonical lysis, the majority of endolysins have no intrinsic secretory 

signals and thus accumulate in the host cytoplasm in their active form, restricted from accessing 

the peptidoglycan by the host cytoplasmic membrane [109, 115]. In these cases, a second 

protein is required to allow the endolysin protein to physically access the peptidoglycan, termed 

a ‘holin’.  

 

The holin proteins accumulate in the cytoplasmic membrane until at a genetically 

predetermined time, they form clusters [116]. These clusters form non-specific lesions, or 

holes, in the cytoplasmic membrane that allows the endolysin direct physical access to the 

peptidoglycan layer [117]. The formation of these large, micron scale holes that allow the fully 

active and pre-folded endolysin access to the peptidoglycan is characteristic of the canonical 

lysis systems. These holins are also non-specific, that is, they can serve unrelated canonical 

endolysins of different phage species [116].  

 

The second type of endolysin system is the Signal-Anchor-Release (SAR) lysis system, such 

as that found in phage ϕKMV and enterobacteriophage P1 [102, 118]. Some phage endolysins 

possess an N-terminal signal sequence that allows the endolysin to be exported by the host sec 

system to the cytoplasmic membrane where they are tethered and accumulate as inactive 
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proteins [119]. They become active when their SAR domains leave the membrane and form 

the mature, fully folded form in the periplasm. This can either occur gradually at a slow rate 

by spontaneous release, or simultaneously when the cytoplasmic membrane is depolarized 

[120]. This membrane depolarization is caused at a genetically predetermined time again by 

the holin, however, these holins which are known as ‘pinholins’ do not form the large micron 

scale holes as in the canonical system, but instead form small nanometer scale (~2nm) holes 

that result in membrane depolarization, rather than allow passage of the endolysin [116]. This 

depolarization causes the release of the SAR domain of the endolysin, resulting in the refolding 

of the lysozyme into its active state [102]. Differences in the mechanisms of the canonical and 

SAR-endolysin systems are illustrated graphically in Figure 1.7.  

 

 

Figure 1.7. Schematic representation of canonical (1.) and SAR-endolysin (2.) lysis systems. 

Endolysins are illustrated by red circles, holins/pinholins by brown ovals and Rz/Rz1 proteins 

by grey squares. Within the canonical lysis diagram (1.); A. illustrates the accumulation of 

active endolysin within the cytoplasm and the accumulation of holin proteins within the inner 

membrane before reaching a critical concentration in B. showing the formation of holin clusters 

and micron scale holes allowing the endolysin access to the peptidoglycan. Within the SAR-

endolysin lysis diagram (2.); A. illustrates the accumulation of the inactive endolysin proteins, 

Rz/Rz1 proteins and pinholin proteins within the inner membrane before the critical 

concentration of pinholin proteins is reached in B. where pinholins aggregate to form pinholes, 

depolarizing the membrane and releasing active form endolysins, simultaneously the outer and 

inner membranes are pulled into close proximity by the Rz/Rz1 proteins. Generated in 

Microsoft PowerPoint, based on data from [121, 122]. 

 

A.

B. B.

A.

1. 2.
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Timing of host cell lysis is performed by the holin in both canonical and SAR endolysin 

systems, however the precise mechanism involved in timing of holin triggering is unknown. 

The leading model is that the timing of holin triggering is encoded in the physical structure of 

the holin protein itself and is allele-specific [123]. The holin or pinholin proteins accumulate 

harmlessly in the cytoplasmic membrane until a critical concentration of proteins is reached, 

at which point a reduction in membrane potential reaches a triggering threshold causing the 

holin proteins to aggregate in to two-dimensional ‘rafts’ [124, 125]. The formation of rafts 

results in the creation of large holes or pinholes, depending on the lysis system, further reducing 

membrane potential and instigating further holin aggregation resulting in a complete collapse 

of the proton motive force (PMF) [126]. This model is validated by the observations that 

treatment of phage infected cells with compounds that reduce the membrane polarization and 

PMF results in premature lysis of the host cells [124].  

 

 

1.6.2      Lysis systems and host cell wall structure 

Endolysins instigate host cell lysis by damaging peptidoglycan within the host cell wall. One 

of the key differences between the Gram positive and Gram negative cell wall structure is the 

thickness and location of the peptidoglycan layer. In Gram negative bacteria the peptidoglycan 

lies between the inner cell membrane and outer membrane, within the periplasmic space. It is 

relatively thin and lacking in surface proteins and carbohydrates. In comparison the 

peptidoglycan layer in Gram positive bacteria is much thicker, external-facing and is embedded 

with a variety of surface proteins and carbohydrates [127]. These differences are reflected in 

the structure and function of the endolysins and lysis systems that have evolved to target Gram 

negative vs. Gram positive cell walls.  
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Endolysins that target Gram negative bacteria tend to be single domain globular proteins 

composed of only a single catalytic domain. However, some endolysins such as that from 

Pseudomonas phage KZ144 have been shown to possess both a lytic domain and an N-terminal 

cell wall-binding domain [112, 128]. The binding domain of KZ144 is of particular interest as 

it recognizes a common peptidoglycan composition of all Gram negative species, which 

provides it with a wide binding spectrum and can be combined with peptidoglycan hydrolases 

of other phages in order to enhance their specific activity [129].  

A further, recently identified, common feature of the lysis cassettes of Gram negative infecting 

bacteriophage is the presence of Rz/Rz1-like lysis proteins, known as spanins [130]. The Rz 

and Rz1 genes were initially identified in bacteriophage λ, where it was documented that 

nonsense mutations in either Rz or Rz1 prevented host cell lysis if the growth medium contained 

divalent cations at concentrations >5mM [131]. An unusual feature of the phage λ Rz and Rz1 

genes which drew initial interest, is that the Rz1 gene is nested within Rz gene in the +1 reading 

frame [131]. It is now known that the Rz protein resides within the inner membrane and the 

Rz1 protein within the outer membrane and interact via their associated periplasmic domains, 

spanning the periplasm and linking the inner and outer membranes [132]. It has been recently 

demonstrated by Berry et al. [133] that the presence of the Rz and Rz1 proteins is essential for 

complete host cell lysis by phage λ and that expression of λ prophages lacking these proteins 

prevents lysis and results instead in host cells with a spherical shape. It is believed that fusion 

of the inner and outer membranes, mediated by a Rz and Rz1 protein complex bringing the two 

membranes in close proximity following degradation of the peptidoglycan by the endolysin 

causing host cell lysis [122].  

 

Endolysins that target Gram positive bacteria, which possess no outer membrane but instead 

have a much thicker peptidoglycan layer that is heavily cross-linked and decorated with surface 
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proteins and carbohydrates, typically use a modular structure. These modular endolysins 

typically have one or more catalytic domains and a cell-wall binding domain that often allows 

strain or species-specific binding [112].  

 

 

 

 

1.6.3      Endolysins in the treatments of bacterial infections 

Due to their bacteriolytic activities, endolysins offer an attractive alternative to antibiotics in 

the treatment of bacterial infections, both within the medical field and food industries. The rise 

of antibiotic resistance and increasing pressure to reduce the use of antibiotics in agriculture 

has seen a surge in interest in the use of ‘enzybiotics’.  The term ‘enzybiotic’ is a fusion of the 

words ‘enzyme’ and ‘antibiotic’, although it can refer to any enzyme with antimicrobial 

activity, but most commonly refers to phage associated lysins and was first utilised in this 

context by Daniel Nelson et al. in 2001 [112, 134]. 

 

A great deal of research has been performed on endolysins from phage that affect Gram positive 

bacteria as they can be added exogenously to act as exolysins due to the peptidoglycan, in most 

cases, being accessible from the outside [111]. For example, Nelson et al. reported that with a 

lysin of Streptococcal phage G, addition of 1,000 units (10ng) of purified lysin in vitro is 

sufficient to sterilize a culture of ~107 group A streptococci within 5 seconds [134]. The use of 

phage endolysins has also been studied in vivo, Loeffler et al. show that the use of a lysin, Cpl-

1 of a pneumococcal bacteriophage has potential as a therapy for pneumococcal bacteraemia 

in mice. They report that a 2000µg dose of lysin could reduce pneumococcal titres from a 

median of log10 4.7 cfu/ml to undetectable levels within 15 minutes; and that this dose given 1 

hour post intravenous infection, led to 100% survival at 48 hours, compared to 20% survival 

of buffer-treated control mice [135]. 
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As these studies show, endolysins offer promise as treatment for bacterial infections, however 

they are not without their drawbacks. The most pressing being that lysins, as proteins, can 

trigger an immune response, unlike the majority of antibiotics, that are generally not 

immunogenic. However, the majority of studies regarding the immunogenicity of phage lytic 

enzymes are based on their use intravenously, where it has been shown that hyperimmune 

rabbit serum only modestly inhibits enzymatic activity and that no signs of anaphylaxis or 

adverse side effects were observed in mice, although human studies would be needed to be 

certain that there are no adverse effects of endolysin based therapies [135].  

 

While the use of lysins for treating Gram positive infections is relatively straightforward, the 

use of lysins for treating Gram negative infections is more complex due to the outer membrane 

shielding the peptidoglycan from their lytic activity. There are several methods that have been 

proposed to overcome this challenge, including the use of outer membrane permeabilizers. For 

example, Briers et al. have researched the use of various compounds such as ethylene diamino 

tetraacetic acid disodium salt dehydrate (EDTA), citric acid, poly-L-lysine and polymyxin B 

nonapeptide (PMBV) as membrane permeabilizers of various Pseudomonas aeruginosa strains 

[136]. They concluded that EDTA was the most suitable, however EDTA has been shown to 

inhibit blood coagulation at very low concentrations (1.3 mmol-1) and thus is unlikely to be 

used in the treatment of systemic infections or as a treatment for food products [136]. 

 

Another approach is the use of high hydrostatic pressure (HHP), a technique that uses a liquid, 

often water and high pressures (200-500MPa) to inactivate pathogenic and food spoilage 

organisms [137]. HHP can be combined with lysozymes to inactivate bacteria, and has been 

shown to inactivate the Gram positive bacteria Staphylococcus aureus and Listeria innocua in 



 41 

vitro by Masschalk et al. (2002) [138]. In relation to Gram negative organisms, HHP is capable 

of permeabilizing the outer membrane and allowing access for bacteriophage lysins to act. This 

has been demonstrated with P. aeruginosa, where under high hydrostatic pressure (175MPa) 

for 15 mins, the bacteriophage endolysins KZ144 and EL188 showed a reduction in bacterial 

cell numbers of ~3.5 log units, of which two thirds was caused by the lytic enzymes alone 

(3.5±0.2 log units vs. 1.4±0.2 log units for HHP alone)  [139]. As HHP is already used 

frequently in the food industry it offers a more practical approach to membrane 

permeabilization, however due to the high pressures involved and large costs associated with 

producing these pressures, it may not be suitable for all food based applications. 

 

1.7       Host cell receptors and phage host specificity determinants 

Bacteriophage specificity is frequently determined by the interaction of a phage receptor-

binding protein (RBP) and a specific receptor on the host cell surface, for Gram negative 

bacteria such as the Pseudomonas, these receptors can be extremely diverse and include both 

protein receptors, lipopolysaccharide receptors [140] and capsular polysaccharides, present in 

the cell wall or via interaction with a specific bacterial structure such as a capsule, pili and 

flagellum [141].  

 

Rakhuba et al. classify the potential protein receptors of the outer membrane of Gram negative 

bacteria into 5 classes: 1. Structural proteins interacting with the peptidoglycan layer; 2. 

Specific and non-specific porins forming membrane channels; 3. Enzymes; 4. Substrate 

receptors with high affinity; 5. Transport proteins responsible for secretion [141]. Examples 

include: OmpA, an outer membrane protein of Escherichia coli involved in conjugation and 

resistance to chelating agents and acts as a receptor for bacteriophage K3 binding [142-145]; 

OmpC, a major outer membrane porin protein of E. coli K-12 which acts as a receptor for 
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phage T4 (however lipopolysaccharide is also required for T4 binding) [146, 147]; and TonA, 

now named FhuA, and TonB, which are membrane transport proteins of E. coli and act as 

binding receptors for many phage including T1, T5, φ80, and UC-1 [148]. 

 

 

1.7.1      Lipopolysaccharide (LPS) receptors 

Lipopolysaccharide (LPS) is ubiquitously expressed by all Gram negative bacteria and is vital 

to the structural and functional integrity of the bacterial outer wall [149]. LPS is a complex 

polymer comprised of a lipid moiety attached to a long chain polysaccharide and comprises of 

three structural regions: 1) Lipid A; 2) An inner and outer polysaccharide core; 3) Distal 

polysaccharide (O-antigen) [150]. Lipid A, the highly hydrophobic and endotoxically active 

part of LPS, is different from typical phospholipids found in prokaryotic membranes as it 

contains six saturated fatty acid chains rather than two saturated or unsaturated chains [149, 

151]. The polysaccharide core is branched and contains 6 to 10 sugars and 3-deoxy-D-manno-

octulosonic acid and some regions are highly conserved among strains and species. The O-

antigen is an immunogenic oligosaccharide which is attached to the polysaccharide core and is 

comprised of repeating saccharide subunits and differs greatly among Gram negative species 

[149, 151]. 

 

There are several morphologies of colonies caused by LPS truncations; the wild-type which 

contains intact LPS have the ‘smooth’ morphology, those which have lost the O-antigen 

portion, termed ‘rough’ and those that have lost both the O-antigen and outer core 

polysaccharide termed ‘deep rough’[152]. Most phage appear to be specific for a single 

morphology, either smooth or rough. Those that are specific for the ‘smooth’ type tend to 

display a very narrow host range as they depend on the O-antigen for binding, which is highly 
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variable in structure; for example, bacteriophage Sf6 of Shigella flexneri, which has a very 

narrow host range (those with the 3,4 group antigen) [153]. Another example is the “ϕKMV-

like” phage LKA1 that infects P. aeruginosa, which is dependent on algC expression for 

successful infection [154]; the algC gene encodes the enzyme phosphomannomutase and 

mutants lacking this gene do not express the O-antigen or A-band antigen and the LPS is more 

similar to that of rough-type colonies [155].  

 

1.7.2      Capsule phage 

A large number of bacteria possess an external protective layer or “capsule” that protects them 

both from the environment and from the host immune system, and can be an important 

virulence factor of pathogens [156]; for example the capsule of Pasteurella multocida, an 

important livestock pathogen, is a key virulence determinant that prevents phagocytosis by host 

macrophages [157]. Capsules are typically composed of polysaccharide chains, repeating 

chains of monosaccharide units linked by glycosidic linkages, known as capsular 

polysaccharides [158, 159]. While the capsule may offer protection from external stress it also 

provides an attachment site for many phage species that possess polysaccharide depolymerases 

as tail-associated proteins [160]. An example of phage that infect via the capsule are the “K 

Phage” of Escherichia coli such as phage phi K1A and phi K1F which are specific for the K1 

capsular polysaccharide antigen of E. coli [161-163]. However, while some phage such as K1F 

and K15 appear to have evolved to utilise the K1 capsule as a receptor, the K1 capsule acts to 

block infection of other phage such as phage T7, which uses a LPS-binding receptor [164]. The 

use of capsular receptors is not limited to E. coli phage, for example the Camplyobacter jejuni 

phage F336, F198, F287, F303 and F326 all utilise a capsular polysaccharide receptor, in this 

case it is the phase variable O-methyl phosphoramidate moiety [165].  
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1.7.3      Pili phage 

The use of the pili of Gram negative bacteria as a receptor for bacteriophage attachment has 

been documented as early as 1949 [166]. In order to understand the diversity of phage that 

target pili, it is first necessary to understand the inherent diversity of pilus types and uses. The 

pili of Gram negative bacteria, such as those of the Pseudomonas genus, can be broadly 

categorised based on their associated assembly pathways into four categories.  

 

The first category is broadly defined as the ‘pili assembled by the chaperone-usher’ pathway 

[167]. This includes the Type I pili that are found on the majority of E. coli strains, particularly 

the uropathogenic E. coli (UPEC) strains where binding to the host cells is mediated by the 

FimH adhesin located at the distal tip of the pilus [168, 169]. 

 

The second category is defined as the ‘Type IV pili’, which are homopolymers of a 15-20kDa 

pilin subunit and are found in a large variety of Gram negative bacteria including Pseudomonas 

aeruginosa, Neisseria gonorrhoeae and enteropathogenic E. coli [170, 171]. Type IV pili 

perform a wide variety of functions including host cell adhesion, DNA uptake in 

transformation, phage transduction as well as twitching and gliding motility [171]. The 

assembly of Type IV pili requires a large number of genes, unlike other pilus structures which 

may require only one or two genes, in the case of Pseudomonas aeruginosa studies have shown 

that Type IV pilus assembly requires at least 35 genes [172]. Due to their ubiquity in Gram 

negative bacteria Type IV pili present an attractive target and thus a large number of 

bacteriophage utilise the Type IV pili as a binding site including phage PA1Ø, a member of 

the Siphoviridae, and as previously mentioned, Pseudomonas phage ϕKMV infection has been 

demonstrated to be dependent on Type IV pili. Interestingly, while ϕKMV is limited in host 

range to strains of P. aeruginosa, phage PA1Ø is capable of forming plaques on lawns of P. 
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aeruginosa, Staphylococcus aureus, Staphylococcus epidermis, Listeria monocytogenes 

among others, despite the common binding receptor [101, 173]. 

 

The third category of pili are the curli pili, which were first described in 1989 by Olsén et al. 

as coiled surface structures comprised of a single subunit on the surface of E. coli [174]. Curli 

pili have subsequently been found in both E. coli and Salmonella species and are implicated in 

host cell adherence, biofilm formation and surface adhesion [175, 176].  

 

Finally, the fourth category of pili are the CS1 pili, which are a serologically distinct family of 

pili associated with enterotoxigenic E. coli (ETEC) and are also known as the ‘alternative 

chaperone usher family’, Class 5 or α-fimbriae [167]. CS1 pili are implicated in mediating 

adhesion of ETEC cells to the intestinal wall of the host as well as attachment to bovine 

erythrocytes resulting in hemagglutination [177].  

 

1.7.4      Flagella phage 

Bacterial flagella are complicated organelles that protrude out of the bacterial cell surface and 

can be considered to be the ‘propellers’ driving bacterial movement, involved in many 

processes from chemotaxis to exiting biofilms in order to find new habitats [178, 179]. 

However, similar to pili, as an appendage extruding from the cell surface into the environment 

they offer a site for bacteriophage binding. For example, the Salmonella typhimurium phage 

iEPS5, a member of the Siphoviridae, requires both the presence of flagella and flagellar 

movement for phage adsorption and successful infection [180]. Similarly, the phage PhiAT1, 

a member of the Myoviridae, which is capable of infecting the phytopathogenic bacterium 

Erwinia carotovora ssp. Attroseptica, has been shown to be dependent on the bacterial 

flagellum for successful infection [181].  
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1.7.5      Phage receptor binding proteins 

The previous section focused on the host receptor to which bacteriophage adsorb. This section 

describes the phage associated proteins involved in host recognition and binding, the phage 

receptor binding proteins (RBPs), with a primary focus on the RBPs of the Podoviridae, such 

as the Escherichia coli phage T7.  

 

In the majority of Caudovirales, that is the tailed bacteriophages, the first stage of recognition 

and binding to the host cell is performed via the tail-spike proteins or tail fibers, this stage is 

reversible [94, 182]. Positive recognition by these tail fibers will then lead to a second, 

irreversible binding to the host membrane followed by DNA ejection by the phage tail proteins 

[94, 182]. 

 

In the case of the initial reversible binding of phage T7 to the host lipopolysaccharide receptor 

in the E. coli outer membrane is mediated via six tail fibers, each comprised of three copies of 

the protein gp17 [94, 183]. While the tail fibers of the E. coli phage T7 simply recognise the 

host cell surface receptor, in some cases such as with the Salmonella phage P22 (Podoviridae); 

not only do the tail spike proteins bind to the O-antigen moiety of the LPS, it also possesses an 

enzymatic ability that allows it to cleave the O-antigen, although the current purpose of this is 

unclear it is hypothesised that it may facilitate access to the membrane and a secondary receptor 

[184].  
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1.8      Host resistance and phage response   

Bacteria and phage have been evolving alongside each other for millions of years and so 

bacteria have evolved a wide variety of mechanisms for phage resistance, and in response the 

phage have similarly evolved a variety of mechanisms by which to overcome or avoid these 

resistance mechanisms. For bacteriophages to be a viable form of antimicrobial treatment or 

for the identification of novel antimicrobials produced by phages, a greater understanding of 

the mechanisms behind these adaptations of both host and phage is needed. A brief outline of 

the various mechanisms of host resistance and the phage responses is outlined below. 

 

 

1.8.1      Prevention/inhibition of adsorption 

Bacteriophage adsorption and successful infection is dependent on access to the host cell 

surface receptor, therefore the most effective method of resistance to infection is to prevent the 

interaction between the bacteriophage receptor binding protein and the host cell surface 

receptor. This can be via several methods, such as blocking the receptor, modification of the 

receptor or even preventing the receptor from being synthesised, which will be outlined in 

further detail below.  

 

The first method, blocking of the phage binding receptor has been documented as far back as 

1974 where it was reported by Nordström and Forsgren [185] that Staphylococcus aureus 

strains that expressed higher levels of ‘protein A’, which is located in the outermost part of the 

cell wall, were more resistant to staphyloccocal phage 80 than those deficient in the protein, 

and it was hypothesised that this was due to masking of the phage binding receptor. Similarly, 

Riede and Eschbach [186] have demonstrated that the E. coli outer membrane protein OmpA, 
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which acts as a receptor protein for a variety of bacteriophage including phage K3, can be 

blocked by expression of the outer membrane lipoprotein TraT, preventing phage adsorption.  

 

The second method, modification of the phage binding receptor, is more likely to occur as a 

method of superinfection exclusion (detailed further later in this section) in temperate phage, 

rather than prevention of initial phage infection. For example, lysogenization of Salmonella 

enterica serovar Typhimurium by the temperate bacteriophage P22 results in a change in 

serotype by modification of the LPS O-antigen, which results in the prevention of further 

binding by phage P22 and other serovar Typhimurium phage [187]. Similarly, the temperate 

E. coli phage PhiV10 is capable of modifying the host O-antigen to prevent further O-antigen 

dependent phage infection; however, in this case it is due to the expression of a specific 

enzyme, a serotype converting O-antigen acetyltransferase, encoded within the PhiV10 

genome [188].  

 

The third method is a total removal of the phage binding receptor, for example the O1 Vibrio 

cholerae phage K139 is dependent on the O1 antigen for host cell binding; in response several 

K139 resistant strains have been identified which completely lack the O1 side chain, caused by 

an insertion of a transposable element (IS1004) into the biosynthetic gene cluster encoding the 

O antigen [188].  

 

Methods such as blocking or removal of phage binding receptors, by which bacteria acquire 

resistance, are often permanent and frequently come at a significant cost to the bacteria. For 

example, the O-antigen of UPEC provides a significant survival advantage to these bacteria 

and thus modification or loss could have significant knock on effects [189]. One method 

bacteria use to overcome this is phase-variable transient resistance mechanisms. Phase 
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variation is frequently described as an ‘all-or-none’ control mechanism; this is because the 

expression of the factor(s) is either completely on or completely off. However, they are usually 

reversible, as well as being heritable and are in general randomly switched on and off at high 

frequency (between 10-5 to 10-1 per generation), although the frequency can be impacted by 

environmental signals. This rapid switching results in a phenotypically diverse population, 

which when applied to bacteriophage binding receptors can be extremely beneficial in 

maintaining resistant populations [190, 191]. For example, as previously mentioned in Section 

1.7.2, the C. jejuni phage F336, among others, utilises a capsular polysaccharide as a binding 

receptor and it has been reported by Sørensen et al. that resistance of C. jejuni to infection by 

phage F336 was due to the loss of the capsular polysaccharide receptor caused by phase 

variation of the gene encoding the receptor [165]. Another example is reported by Kim and 

Ryu [192] who have demonstrated that the Salmonella enterica subspecies enterica serovar 

Typhimurium bacterium is capable of acquiring resistance to phage SPC35 through phase-

variable modification of the surface O-antigen. 

 

 

1.8.2      Exopolysaccharides  

Exopolysaccharides (EPSs) are polysaccharide substances secreted into the external 

environment by many bacterial species. These polysaccharides can be covalently bound 

cohesive layers as capsular exopolysaccharides which are found in a wide range of bacteria 

including Acinetobacter baumannii [193], Pseudomonas putida [194] and even species as 

diverse as Cyanobacteria [195]; or excreted fully in to the external environment as a viscous 

material such as in alginate production by Pseudomonas aeruginosa [196] or EPS by lactic 

acid producing bacteria used in the dairy industry [197]. These EPSs can perform a wide variety 

of roles, from avoidance of host immune systems [193], surface adhesion, biofilm formation 

[198] and even binding of heavy metals [199].  
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These EPS compounds or capsules can block access to or mask the phage binding receptor, 

however many phage have evolved tools to overcome this. For example, in the case of the K1 

polysaccharide capsule of E. coli, which has been shown to block phage T7 infection, can be 

broken down by endosialidases produced by the K1-specific phages K1F and K1-5 that can 

hydrolyze the K1 structure [164]. Similarly, in the case of the Pseudomonas phage PT-6, a 

member of the Podoviridae, produces a 37kDa alginate lysase that is capable of reducing 

viscosity of secreted alginate, presumable to facilitate access to the phage binding receptors 

[200].  

 

1.8.3      Superinfection exclusion systems 

Superinfection exclusion is the process by which a bacteriophage prevents secondary infection 

of its host by further phage; while not being a true method of host resistance, is still a relevant 

method by which a phage is prevented from infecting a host cell and so will be covered very 

briefly. A further example of a superinfection exclusion system is the temperate Pseudomonas 

phage D3112 which utilises a protein, D3112 protein gp05, to inhibit the Type IV pili assembly 

protein PilB, with the effect of a loss of surface pilation and consequently a loss of twitching 

motility [201]. Most notably, this loss of surface pili has been demonstrated to prevent the 

further infection of the host Pseudomonas aeruginosa cell by other phage that utilise the Type 

IV pili as a binding receptor and enabling the hosts to become resistant to superinfection [202].  

 

1.8.4      Restriction modification systems 

After succeeding in binding to the host cell and ejecting its genome, a phage may still have to 

overcome bacterial defence systems in order to complete the infection process. One of the most 



 51 

well documented is the restriction-modification (R-M) systems that are ubiquitous among 

prokaryotes [203].  

 

R-M systems are frequently referred to as an aspect of the prokaryotic ‘immune system’ in that 

they recognise and attack foreign DNA that enters the cell and are usually comprised of 

enzymes with two distinct actions: 1) an endonuclease; and 2) a methyltransferase. The 

restriction endonuclease recognises a specific DNA sequence (a restriction site) as a target for 

cleavage. The methyltransferase adds methyl groups to either adenine or cytosine within the 

same target sequence, which prevents cleavage by the restriction endonuclease. Working in 

tandem, these two enzymes constitute a basic ‘self’ and ‘non-self’ recognition system [204]. 

The methyltransferase modifies the bacterial genome, effectively labelling it as a ‘self’ 

sequence. When foreign DNA that enters the cell, such as phage genomes or plasmids, the non-

methylated (‘non-self’) restriction sites are susceptible to cleavage by the bacterial restriction 

endonuclease.  

 

R-M systems are classified into four major groups (Type I-IV) depending on their subunit 

composition, cleavage position, cofactor requirement and recognition site and each will be 

briefly outlined below [204, 205].  

 

Type I  

Type I R-M systems are multifunctional hetero-oligomeric enzymes that typically comprise of 

two restriction subunits (R subunits), a specificity subunit (S subunit) and two 

methyltransferase (M subunits) that utilise S-adenosylmethionine (SAM) to methylate 

adenosine within the target sequence [204]. The target sequence recognised by Type I R-M 

systems are asymmetric and comprised of two separate components and a nonspecific spacer 
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sequence and the reaction requires SAM, ATP and Mg2+ as cofactors [204, 206]. An example 

of a Type I R-M enzyme is EcoKI, originally isolated from E. coli K-12 [207].  

 

Type II  

Type II R-M systems are among the most widely documented with over 3600 systems 

identified to date [204]. Type II restriction endonucleases and methyltransferases recognize the 

same short, palindromic sequence that is normally between 4-8bp in length; all Type II 

restriction endonucleases cleave within or adjacent to its recognition site, are usually Mg2+ 

dependent and do not require ATP [203, 204]. An example of a Type II restriction endonuclease 

is the well-known EcoRI enzyme [208]. 

 

Type III 

Type III R-M systems are comprised of two subunits, a ‘Mod’ subunit that is involved in site 

recognition and methylation, and a ‘Res’ subunit that is involved with DNA and ATP 

hydrolysis [209]. While the Mod subunit can act independently as a methyltransferase, the Res 

subunit is only active in a Res(2)Mod(2) complex with the Mod subunit [210]. Type II R-M 

systems recognize two inversely oriented, asymmetric recognition sequences of 5-6bp in length 

and require both Mg2+ and ATP for cleavage [204]. An example of a Type III R-M system is 

the EcoP1I system of the P1 prophage [211].  

  

Type IV  

Type IV R-M systems are unusual in that they target DNA that have been modified, for 

example DNA that has been methylated [204]. The Type IV R-M systems usually combine 

both the methyltransferase and restriction endonuclease activities into a single polypeptide 

chain [212]. While the endonuclease action is reported to be positively impacted by SAM and 



 53 

Mg2+ is required for activity, ATP does not impact on either enzymatic action [204, 212]. Type 

IV enzymes typically recognise asymmetrical DNA sequences [212]. An example of a Type 

IV R-M system is the McrBC system isolated from E. coli K12 [213].  

 

These R-M systems present a barrier to successful phage infection, however phage themselves 

have, perhaps unsurprisingly, evolved a multitude of ways in which to overcome this challenge 

that can be broadly categorised into passive and active systems, as outlined below.  

 

 

Passive evasion of R-M systems 

A phage can be protected from the R-M defence system if the host methyltransferase is fast-

acting that it rapidly methylates the injected phage genomic DNA before it is cleaved by the 

restriction endonuclease. This will also protect the progeny phage when infecting other 

bacterial cells that express the same R-M system [214]. Alternatively, the phage can acquire 

mutations that remove the restriction site from the genome sequence: a phage with less 

restriction sites will have an advantage over a phage with more. As previously mentioned, 

many restriction endonucleases require specific orientation of their recognition sites and 

therefore a shift in orientation will confer resistance to this R-M system; this is apparent in the 

genome of phage T7 where the recognition sites of the EcoP15I (a Type III R-M system related 

to the previously mentioned EcoP1I system [210]) are in the same orientation rather than in the 

inverse orientation required for recognition by the restriction endonuclease [215]. Some phage 

instead resort to the incorporation of unusual bases into their DNA as a method of avoiding R-

M systems, such as the E. coli phage Mu whose genome contains a modified purine that confers 

resistance to a variety of restriction enzymes [216, 217]; or the Shigella phage DDVI which 

contains a methylated guanine which provides a protective function [218].  
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Active evasion of R-M systems  

Active evasion systems involve proteins produced by the phage and can involve methods such 

as subverting the activities of the R-M systems or by direct inhibition of these systems. An 

example of subversion would be the activity of the phage λ gene ral, which has been shown to 

prevent restriction of the phage genome in E. coli K and E. coli B by enhancing the methylation 

modification properties of their associated R-M genes, thus allowing the genome to be 

methylated and protected before the host restriction endonuclease can act [219]. Another 

method by which phage can subvert the host R-M systems is masking of the recognition sites 

by phage encoded proteins; as is the case with the DarA and DarB proteins of coliphage P1, 

which are injected into the host along with the phage genome and bind to the phage DNA 

effectively masking the R-M system recognition sites [220]. Direct inhibition of the R-M 

systems is a method employed by many phage; for example phage T7 utilises a protein ‘ocr’ 

which is similar in structure to the DNA target of the EcoKI R-M system and binds to the 

restriction enzymes, blocking and overwhelming them, thus allowing successful phage 

infection [221].  

 

 

1.8.5      Abortive-infection systems 

Abortive infection systems, also known as ‘Abi(s)’ are another bacterial defence mechanism, 

sometimes referred to as the ‘innate immune system’ of bacteria. Similar to R-M systems they 

are a form of post-infection response, however in the case of Abi systems they act by killing 

the infected cell in an effort to limit the spread of phage throughout the bacterial population, 

and has therefore been referred to as ‘altruistic cell suicide’ [222]. These Abi systems are 

widespread among bacteria and have been documented in a wider variety of species including, 
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Erwinia carotovora subspecies atroseptica [223], Lactococus lactis [224], E. coli [225] and 

Shigella dysenteriae [226]. 

 

Abi systems frequently operate on the basis of a toxin/antitoxin (TA) pair, under normal 

conditions both the toxin and the antitoxin are expressed, preventing the action of the toxin; 

upon phage infection the expression of both is suppressed. Antitoxins are less stable than their 

associated toxins, therefore when both cease being synthesized the antitoxins break down 

before the toxins, allowing them to act, thus killing the infected cell and preventing completion 

of prophage development [222-224]. For example, the ToxIN system of the phytopathogen 

Erwinia carotovora subspecies atroseptica, the action of the growth-inhibiting protein ToxN 

is suppressed by the RNA product of the toxI gene (an antitoxic RNA); upon phage infection 

the ratio of ToxI:ToxN is disrupted, which allows ToxN to act and restrict growth [223].  

 

 

1.8.6      CRISPR/Cas Systems  

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated 

genes (cas) are often regarded as the ‘adaptive’ immune system of prokaryotes. The first 

CRISPR elements were described in 1987 by Ishino et al. [227] although their significance was 

not noted until early 2002 when it was discovered by Jansen et al. [228] that these repeat 

elements were present in both Archaea and Bacteria, that they were direct repeats between 21-

37bp separated by spacer regions of DNA and the presence of the cas genes was identified, 

although the exact function of the system remained elusive. In 2005 Bolotin et al. [229] 

reported that these spacer regions were comprised of extrachromosomal DNA from both phage 

and plasmid sources, with a ratio of approximately 3:1 phage to plasmid origin; they also 

reported a correlation between the number of spacer regions to resistance to phage infection 

although the mechanism that mediated this effect continued to remain elusive. In 2007 
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Barrangou et al. [230] demonstrated in S. thermophilus that spontaneous resistance to phage 

infection corresponded to the addition of 1 to 4 spacers within the CRISPR region and that the 

addition of these spacers was polarised to one end of the CRISPR region; they also 

demonstrated through selective addition and deletion of spacers that resistance to particular 

phage could be specifically modulated by addition of phage homologous DNA within the 

spacer region. Since 2007, CRISPR/Cas systems have undergone a significant amount of 

research due to their potential uses in genome editing technologies [231]. 

 

In order to understand the mechanisms behind the CRISPR/Cas systems it is first necessary to 

understand the diversity of the CRISPR/Cas sytems in prokaryotes. CRISPR/Cas systems are 

broadly categorised into two classes, Class 1 and Class 2, although these are then further 

categorised into five types and sixteen subtypes [232]. Each of the two main classes has a 

signature Cas protein, for Type I the signature protein is Cas3 and in Class 2 the signature 

protein is the Cas9 protein [233]. Type 1 is the most common and is divided into seven 

subtypes, Type I-A to I-F and I-U [234].  

 

It is now known that the activity of the CRISPR/Cas system can be split in to three distinct 

stages; the first stage is known as the activation stage, the second is known as the ‘expression 

and processing’ stage and the third stage is known as the interference stage, illustrated below 

in Figure 1.8 [235].  
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Figure 1.8. Schematic representation of the stages of CRISPR/Cas system. 1. Activation stage: 

Acquisition of proto-spacers (red) and integration in to the CRISPR loci. 2. Expression and 

Processing stage: Transcription of the CRISPR locus and processing in to crRNAs. 3. 

Interference stage: Targeting of foreign DNA/RNA by crRNA and Cas proteins. Generated in 

Microsoft PowerPoint and adapted from [236, 237]. 

 

The first stage, known as the activation stage and as described by Barrangou et al. [230], is the 

stage in which short spacers (known as proto-spacers) that are acquired from 

extrachromosomal phage or plasmid DNA are integrated in to the CRISPR loci. In most 

CRISPR/Cas systems the two distinct Cas proteins Cas1 and Cas2 are involved in the 

acquisition and integration of new spacer by forming an integrase complex [238], however in 

Type 1 subtype I-F CRISPR systems, such as found in Pseudomonas aeruginosa PA14 the 

Cas2 protein is in fact a fusion of the Cas2 and Cas3 proteins into a single protein (Cas 2/3) 

[239]. Some CRISPR/Cas systems also require the presence of short motifs adjacent to the 

proto-spacer, known as proto-spacer adjacent motifs (PAMs), for acquisition of these proto-

spacer sequences [240].  

 

The second stage, the ‘expression and processing’ stage is where the CRISPR locus is 

transcribed into a long transcript, known as the precursor transcript (pre-crRNA), which is then 

1.

2.
3.
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processed into small crRNAs by endoribonucleases that cleave the repeat regions, either 

bacterial RNase III [241] or, as is the case for Type 1 CRISPR/Cas systems, an 

endoribonuclease subunit of a larger protein complex known as Cascade (CRISPR-associated 

complex for antiviral defence) [235]. 

 

The final stage, the interference stage, is where the ‘invading’ DNA or RNA is targeted by a 

ribonucleoprotein complex comprised of the crRNA guide and Cas proteins which cleaves the 

target DNA/RNA [232].  

 

Phage CRISPR/Cas Resistance 

Similar to the resistance mechanisms of phage again R-M systems, phage resistance 

mechanisms against CRISPR/Cas systems can be broadly categorised into active and passive 

mechanisms. Passive mechanisms involve mutations in either the phage proto-spacer sequence 

or PAM that confer protection from the host CRISPR/Cas system; it has been shown that a 

single base mutation in the PAM region or certain positions within the proto-spacer can confer 

resistance to CRISPR/Cas degradation, these can be substitutions or deletions [242]. It is worth 

noting, however, that it has also been demonstrated that the CRISPR/Cas systems can be 

tolerant of single nucleotide mismatches at certain positions within the proto-spacer sequence 

[243]. It has also been reported by Datsenko et al. [244] that these substitutions within the 

proto-spacer or PAM that confer initial protection from the CRISPR/Cas system actually 

stimulate the acquisition of new spacers.  

 

Active mechanisms involve proteins produced by phage in order to inactivate the host 

CRISPR/Cas system. An example of this is the recently reported anti-CRISPR proteins 

identified by Bondy-Denomy et al. [245] in temperate phage of P. aeruginosa. Bondy-Denomy 

et al. have identified 5 proteins produced by the aforementioned phage that inhibit the Type 1 



 59 

subtype I-F CRISPR/Cas system found in P. aeruginosa strains (although not the closely 

related subtype I-E systems); these anti-CRISPR proteins have been shown not to protect 

specific DNA sequences or to impact on the expression of the CRISPR loci or cas genes, but 

to exert their inhibitory effect at a stage after the formation of the crRNA-Cas complex [245].  
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1.9      Aims and Objectives  

The primary aim of this study is to: 1) perform genetic analyses of P. tolaasii NCPPB 2192T 

and P. agarici NCPPB 2472 in order to better understand how they colonise and cause disease 

symptoms on Agaricus bisporus mushrooms, and; 2) to isolate and characterise bacteriophage 

that are capable of infecting these bacteria. Characterisation and genomic sequencing of the 

identified bacteriophage should elucidate the interactions between the phage and the host 

bacterium, with the potential for the whole phage or phage proteins to be used as a future 

treatment of P. tolaasii or P. agarici infections. These aims will be achieved by working 

through the following objectives:  

1. Extract and sequence genomic DNA of both P. tolaasii NCPPB 2192T and P. agarici 

NCPPB 2472. Perform assemblies and genome mining for potential virulence factors 

and phage susceptibility or resistance factors. 

2. Isolate, identify and characterise bacteriophage capable of infecting P. tolaasii NCPPB 

2192T and P. agarici NCPPB 2472, including full genome sequencing. This will 

provide the basis for analysis into the interactions between phage and host bacterium 

and allow the identification of phage proteins with the potential for use in treatment of 

P. tolaasii and P. agarici infections.  

3. Investigate the genetic basis of phage/host interactions. Full genomic sequencing and 

characterisation of both the phage and bacterial host achieved in the previous objectives 

should allow for the analysis of phage/host interactions at a genetic and transcriptomic 

level using RNA sequencing (RNA-seq).  

 

 

 

 

 

 

 

 



 61 

 

 

 

 

 

 

Chapter 2: 
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2.1         Bacterial strains, phage preparations and growth conditions  

2.1.1      Bacterial strains  

Bacterial strains used in this study are outlined below in Table 2.1.  

Table 2.1. Bacterial strains used in this study. (R.W.J.: Gift from Professor Robert Jackson) 

 

Strain: Source 

P. tolaasii NCPPB 2192T R.W.J. 

P. agarici NCPPB 2472 R.W.J. 

P. sp NS1 Agaricus bisporus mushroom surface. This study 

P. syringae pv. morsprunorum R1 5244 R.W.J. 

P. syringae pv. syringae 9097 R.W.J. 

P. syringae pv. morsprunorum R2 5255 R.W.J. 

P. fluorescens Pfo-1 R.W.J. 

P. aeruginosa 14207 R.W.J. 

Bl21-AI™ One Shot® Chemically 

Competent E. coli 

Invitrogen 

One Shot® TOP10 Chemically 

Competent E. coli 

Invitrogen 

 

 

2.1.2      Proof of pathogenicity 

 

In order to demonstrate that the bacteria P. tolaasii 2192T and P. agarici 2472 were capable 

of causing the symptoms of disease associated with brown blotch and drippy gill respectively 

on Agaricus bisporus mushrooms, a series of inoculations were performed on excised ‘button’ 

(immature, unopened) mushroom caps sourced from a local supermarket, that showed no prior 

signs of browning or lesions.  

 

A single non-fluorescent colony of either P. tolaasii NCPPB 2192T or P. agarici NCPPB 2472 

was taken from a streak plate on KB agar and used to inoculate 10 ml of KB, before overnight 

incubation at 28°C with shaking. This overnight culture was then pelleted at 1,500 g for 30 

minutes and the pellet resuspended in 2ml Phosphate Buffered Saline (PBS) (NaCl 8 gL-1; KCl 

0.2 gL-1; Na2HPO4 1.44 gL-1; KH2PO4 0.24 gL-1). 10 µl of the bacterial suspension was then 

applied to either the mushroom cap for P. tolaasii or for P. agarici the mushroom hymenial 

tissue was removed and the suspension applied to the exposed gill tissue. Care was taken to 



 63 

avoid damaging the tissue during pipetting. The inoculated mushrooms were then placed into 

sterile beakers which were sealed with cling-film before being incubated at 28°C until disease 

symptoms appeared.  

 

2.1.3      Sampling and sample preparation for phage isolation 

 

Samples of water were taken from several environmental sources including the River Thames, 

sampling locations shown in Figure 2.1, and un-treated sewage. 10 ml of these samples was 

combined with an equal volume of overnight culture of either P. tolaasii NCPPB 2192T or P. 

agarici NCPPB 2472, followed by overnight incubation at 28°C with 220 rpm shaking. Post-

incubation the bacteria were pelleted by centrifugation at 1,500 g and the supernatant was 

removed and filtered with a 0.45 µm pore-size syringe injection filter (Millipore) and stored at 

4°C. 
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Figure 2.1. Map of South-West London with bacteriophage sampling locations marked (red) 

© OpenStreetMap contributors. 

 

 

Environmental samples were taken from locations around the University of Reading campus 

that correspond to likely habitats for wild mushroom growth for example, partially or fully 

shaded leaf litter and soil, sampling locations shown in Figure 2.2.  
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Figure 2.2. Map of the University of Reading Campus with bacteriophage sampling locations 

marked (red) © OpenStreetMap contributors. 

 

 

 

The environmental samples were suspended in Nanopure water to a total volume of 50 ml in a 

50 ml falcon tube before being centrifuged for 10 min at 1,500 g. The supernatant was then 

decanted into a new 50 ml falcon tube before being passed through a 0.45 µm pore-size syringe 

injection filter (Millipore). The filtered samples were then pooled to a total volume of 1 ml 

which was then added to 5 ml KB cultures of P. agarici NCPPB 2472 and P. tolaasii NCPPB 

2192T then incubated overnight at 28°C. The overnight cultures were then centrifuged at 1,500 

g for 30 min to pellet the bacterial cells and the supernatant was either used immediately for 

phage isolation or stored at 4°C. 
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2.1.4      Phage isolation  

 

100 µl of the supernatant from the environmental sample preparations outlined in Section 2.1.3, 

were serially diluted eightfold in PBS. 100 µl of each serial dilution was then plated on KB 

agar plates and overlaid with 0.7% agar containing either P. agarici NCPPB 2472 or P. tolaasii 

NCPPB 2192T. The plates were then incubated overnight at 28°C and observed for the 

presence of visible plaques. 

 

If visible plaques were present, a new overnight culture of either P. tolaasii or P. agarici was 

inoculated with a stab of an isolated phage plaque before being incubated overnight at 28°C. 

The overnight culture was then spun at 1,500 g for 30 minutes to pellet cells and the supernatant 

filtered with a 0.45 µm pore-size syringe injection filter and 100 µl of filtered supernatant was 

eightfold serially diluted and each dilution plated of KB agar and overlaid with 0.7% agarose 

containing either P. agarici or P. tolaasii before incubation at 28°C overnight. The plates were 

then checked for uniform plaque morphology and if there was variable plaque morphology the 

process was repeated with each distinct plaque morphology until a uniform morphology was 

attained for each inoculation. 

 

 

2.1.5      Plaque assay protocols 

 

Plaque Assay  

Standard plaque assay procedure involved the addition of 1 ml of diluted phage sample in PBS 

or phage stock to 5 ml of 0.7% agar cooled to approximately 37°C in a sterile 50 ml falcon 

tube, this was then mixed by gently inverting the tube several times. The phage/agar mix was 

then poured onto a pre-prepared hard KB or LB agar plate and allowed to solidify at room 

temperature in a laminar flow cabinet before being inverted and incubated at 28°C overnight.  
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Droplet Assay 

Droplet assays procedure involved preparing a 10ml KB culture of either P. tolaasii or P. 

agarici which was then incubated overnight at 28°C with 220 rpm shaking. 5 ml of the 

overnight culture was then combined with 45 ml of molten overlay agar in a 50 ml falcon tube 

and mixed by inverting the tube several times. 5 ml of the culture/overlay agar mix was poured 

on to a pre-prepared hard KB or LB agar plate, which was allowed to solidify in a laminar flow 

cabinet at room temperature. A phage sample or stock was then passed through an eightfold 

serial dilution in sterile PBS, with mixing by vortexing between each dilution stage. 10 µl of 

each dilution was then pipetted on to the surface of the solidified plates and returned to the 

laminar flow cabinet to allow the droplets to dry, followed by inversion and overnight 

incubation at 28°C. 

 

 

2.1.6      Phage stocks  

 

Low titre phage stock 

Standard, low titre (<1x1010 pfu/ml) phage stocks were created by addition of 1ml of previous 

phage stock to 1ml of overnight bacterial culture in 10 ml of KB broth, before incubation 

overnight at 28°C with 200 rpm shaking. The bacterial cells were then pelleted out by 

centrifugation at 1,500 g for 30 minutes, and the phage containing supernatant clarified by 

filtration through a 0.45 µm pore-size syringe filter. The filtered phage supernatant was then 

stored at 4°C. 

 

High titre phage stocks 

The standard phage stock was serially diluted eightfold and each dilution used to create 3 repeat 

plaque assay plates and the plates then incubated for 24 hours at 28°C. After incubation 5 ml 

of PBS was added to the surface of the dilution plates in triplicate with almost confluent lysis 
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and the plates left for 90 minutes at room temperature with agitation every 15 minutes. 

Following this the PBS from all 3 plates was combined together and filtered through a 0.45 µm 

pore-size syringe filter.  

 

2.1.7      Phage host range assay  

 

Phage host range assays were performed using the plaque assay protocol and 1ml of undiluted 

low titre phage stock on Pseudomonas species shown in Table 2.2. 

 

Table 2.2. Bacterial strains used in phage host range assay. (R.W.J.: Gift from Professor 

Robert Jackson) 

 

 

Strain: Source 

P. tolaasii NCPPB 2192T R.W.J. 

P. agarici NCPPB 2472 R.W.J. 

P. sp NS1 Agaricus bisporus mushroom surface. This study 

P. syringae pv. morsprunorum R1 5244 R.W.J. 

P. syringae pv. syringae 9097 R.W.J. 

P. syringae pv. morsprunorum R2 5255 R.W.J. 

P. fluorescens Pfo-1 R.W.J. 

P. aeruginosa 14207 R.W.J. 

 

 

2.1.8      Chloroform sensitivity assay  

 

A 100 µl sample of phage culture of known concentration (1x108 pfu/ml) was incubated with 

5 µl of chloroform. The phage culture containing chloroform was then eightfold serially diluted 

with PBS and 10 µl drops of each dilution was spotted on to a pre-prepared soft agar overlay 

plate of P. agarici or P. tolaasii and incubated for 24 hours at 28°C and observed for plaque 

formation. 

 

2.1.9      Single step growth curve 

 

A 10 ml culture of P. agarici in KB was incubated overnight at 28°C with shaking at 220 rpm. 

1 ml of the stationary overnight culture was taken and transferred to a fresh 10 ml of KB and 

incubated at 28°C with shaking for 2 hours. The OD 600 was measured and the culture diluted 
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to a concentration of 1x108 cfu/ml (~0.028 Abs). 2.5 ml of P. agarici at 1x108 cfu/ml was then 

combined with 25 µl of ϕNV3 stock (1x109 pfu/ml) to give a MOI of 0.1.  

The mixture of P. agarici and ϕNV3 was then mixed by vortexing and incubated for 10 minutes 

on ice to allow for adequate phage adsorption, before being added to 247.5 ml of KB for a final 

volume of 250 ml to sufficiently dilute the culture and prevent further adsorption events. The 

culture was then transferred to a water bath at 28°C with frequent shaking. A 1 ml sample was 

transferred to a 1.5 ml Eppendorf every 1.5 minutes for 15 minutes then every 5 minutes for a 

further 75 minutes. These 1 ml samples were centrifuged at 10,000 g for 2 minutes to pellet 

any P. agarici cells that may otherwise form infective centres and 100 µl of the phage-

containing supernatant transferred to an Eppendorf containing 900 µl PBS, on ice. The samples 

were then passed down a threefold serial dilution in PBS and placed back on ice. 10 µl droplets 

from each time point were placed on pre-made soft agar plates of P. agarici and repeated in 

duplicate and allowed to dry at room temperature before incubation for 24 hours at 28°C to 

allow plaques to form.  

 

2.1.10      Adsorption assay  

 

A 10 ml inoculation of a single plate colony of P. agarici in KB was incubated overnight at 

28°C with shaking at 220 rpm, 1 ml of the stationary phase overnight culture was taken and 

transferred to a fresh 10 ml of KB and incubated at 28°C with shaking until cells reached mid 

log-phase (~0.4 Abs). Dilution tubes were prepared containing 1 ml of chloroform saturated 

PBS, which were placed on ice. The mid-log phase culture was then used to create a 50 ml 

culture in pre-warmed KB at 28°C containing 1x108 cfu/ml as determined by OD 600 (0.028 

Abs) to which 5x108 pfu of phage ϕNV3 was added and mixed by vortexing to give a final 

MOI of 0.1. The culture was then incubated at 28°C with regular mixing and at time intervals 

of 1 minute for 10 minutes, 1 ml of culture was taken from the ϕNV3/P.agarici culture and 

added to the chloroform saturated PBS.  
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The chloroform saturated samples were then fivefold serially diluted and 10 µl of appropriate 

dilutions of each time point were spotted in triplicate on to a pre-prepared P. agarici containing 

soft agar overlay plate and incubated overnight at 28°C.   

 

2.1.11      Kill curve assay  

 

Kill curves were performed using either P. tolaasii 2192T or P. agarici NCPPB 2472 taken 

from stationary phase overnight cultures grown in 10 ml KB broth at 28°C. 1 ml of overnight 

culture was taken and added to a fresh tube of 10 ml KB broth and incubated at 28°C. After 2 

hours OD 600 was measured, and culture diluted to the appropriate starting OD 600 of 0.092 

Abs for P. tolaasii or 0.028 Abs for P. agarici, that is equal to approximately 1x108 cfu/ml.  

 

Phage stocks were then diluted to the appropriate starting concentrations to produce MOI’s of 

0.1, 0.01 and 0.001 (1x108, 1x107, 1x106 pfu/ml respectively) and 100 µl of these phage 

dilutions added to 1 ml of the 1x108 cfu/ml bacterial solutions in a 1.5 ml Eppendorf tube and 

vortexed to mix. These mixes were left to stand at room temperature for five minutes to allow 

adequate diffusion of the phage particles throughout the solution and then 100 µl aliquots were 

transferred to 10 individual wells in a 96 well Cellstar® Cell Culture Plate with one row per 

MOI. The plates were then transferred to a Tecan GENios microplate reader at 28°C, and OD 

595 readings taken ever 5 minutes over a period of 12 hours. Data was visualised using 

GraphPad Prism 5, Version 5.0b. 

 

2.1.12      Phage/host co-evolution assay 

 

The phage/host co-evolution assays in this study were performed using a method adapted from 

Betts et al. [246]. The initial phage/host incubation was performed in 6 ml of KB in a 30 ml 

universal tube with 5 µl of ancestral ϕNV3 phage (~5x105 pfu) with 10 µl of ancestral P. 

agarici (~2x106 cfu), which was incubated at 27°C for 24 hours. From this overnight 

phage/bacteria culture 100 µl was taken and transferred to a new universal containing 6 ml of 
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fresh KB and incubated for 24 hours at 27°C. This process was repeated for a total of 12 

sequential transfers. For each of the transfers 1 ml of bacteria/phage mixture was removed and 

stored in 40% glycerol at -80°C; phage was isolated from each transfer by adding 100 µl of 

chloroform to 900 µl of bacteria/phage culture, mixed by vortexing for several seconds 

followed by centrifugation for 4 minutes at 10,000 g before the supernatant of purified phage 

was removed and stored at -80°C. 

 

Phage infection capacity for bacterial transfers T1, T3, T5, T7 and T9 was measured by 

streaking of 16 arbitrarily sampled bacterial colonies from streak plates of each transfer that 

were incubated at 27°C for 72 hours on KB agar. Each bacterial transfer was tested against the 

ancestral, present and future phage transfers (T-1, T0, T+1). To each of the 16 arbitrarily 

sampled bacterial streaks 5 µl of purified phage was placed in the centre of each line. This 

process was repeated 5 times per phage time point (ancestral, present and future). After 

incubation for 72 hours at 28°C a bacterial colony was considered resistant if its growth 

continued uninterrupted by the addition of phage.  

 

2.1.13      Electron microscopy  

 

Copper coated carbon-formvar TEM grids were prepared via floating on 10 µl drops of filtered 

phage lysate solutions of roughly 106-108 pfu/ml for 10 minutes. Excess liquid was removed 

by touching the side of the grid to filter paper. 10 µl of 1.5% (w/v) uranyl acetate stain was 

then spotted on to the grid for 20-30 seconds, excess stain was removed by touching the side 

of the grid to filter paper and the grids were left to dry at room temperature in a fume hood 

before being stored at room temperature in a grid box. Grids were then viewed under a Phillips 

CM200 Transmission Electron Microscope (TEM) operated at 80 kV.  
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2.2      Growth and microbiological media  

 

P. agarici and P. tolaasii were routinely cultured in both Kings B (KB) broth (Proteose peptone 

#3 20 gL-1; K2HPO4 1.5 gL-1; MgSO4 7H2O 1.5 gL-1; Glycerol 0.01% (v/v)) and Lysogeny 

Broth (LB) (Tryptone 10 gL-1; Yeast Extract 5 gL-1; NaCl 10 gL-1). For plating, bacteriological 

agar was added to broth media at a concentration of 15 gL-1. 

 

2.3      Antibiotics  

 

All stock antibiotics used were dissolved in nanopure water before filter sterilisation through 

a 0.22 µm filter and storage at -20°C. Working concentrations for ampicillin was 100 µg.ml-1 

and kanamycin was 50 µg.ml-1.  

 

2.4      Molecular biological techniques  

2.4.1   Phage DNA extraction and purification 

Phage genomic DNA was isolated and purified from 1 ml of 0.45 µm filtered phage lysate 

containing between 1x109 pfu/ml-1x1010 pfu/ml using a Norgen Biotek Phage DNA Isolation 

Kit using the standard manufacturers protocol, supplemented with a 30 minute incubation with 

4 µl of Proteinase K (20 mg/ml) at 50°C. DNA concentration was measured using a 

NanoDrop 2000, using standard manufacturers protocol (ThermoFisher Scientific). 

 

 

2.4.2      Bacterial genomic DNA extraction and purification 

 

Bacterial genomic DNA was isolated and purified with a Sigma-Aldrich GenElute™ Bacterial 

Genomic DNA Kit from 1.5 ml aliquots of 10 ml cultures of either P. agarici, P. tolaasii or 

Pseudomonas sp. NS1 grown overnight in KB at 28°C with shaking and eluted in nanopure 

water. DNA concentrations were quantified by NanoDrop 2000 (ThermoFisher Scientific).  
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2.4.3      PCR protocols 

 

Polymerase chain reaction (PCR) was used to amplify specific target regions of DNA for 

cloning and sequencing. Primers were designed using ApE v2.0.47 

(http://biologylabs.utah.edu/jorgensen/wayned/ape/) and manufactured by Integrated DNA 

Technologies, all primers were diluted with nuclease-free water to a stock concentration of 

100 pmol/µl. Standard PCR was performed with GoTaq Green Master Mix manufactured 

by Promega in 20 µl total reaction volumes (1 µl forward primer, 1 µl reverse primer, 3 µl 

template DNA, 7 µl nuclease-free water, 10 µl GoTaq Green Master Mix); reaction 

conditions were as follows: Denaturation at 95°C for 2 min; Cycle 30x at 95°C for 30 

seconds, 58°C for 45 seconds, 72°C for 1 min/kb of predicted product; Final elongation at 

72°C for 5 min.  

 

Colony PCR protocol reaction conditions were as per standard PCR protocol, with extended 

initial denaturation (5 min) and 3 µl of liquid culture/stock or 3 µl nanopure water with 

colony scraping to replace template DNA.  

 

Self-priming primer PCR protocol was as per standard PCR, with 2 µl of a single primer and 

8 µl of nuclease-free water.  

 

2.4.4      Agarose gel electrophoresis  

 

PCR products were separated by agarose gel electrophoresis. Agarose powder was dissolved 

to the required concentration (1.5% (w/v) for PCR products <1000 bp, 1% (w/v) for PCR 

products >1000 bp or unknown size and 0.7% (w/v) for agarose gel extraction) in 0.5X 

Tris/Borate/EDTA (TBE) buffer (5X TBE stock contains: Tris base 54 gL-1; Boric acid 27.5 

gL-1; 0.02% (v/v) EDTA). 1 µl of 10,000X Biotium GelRed was added to 100 ml 

agarose/TBE solution for nucleic acid staining. 1 µl of sample DNA was mixed with 1 µl of 
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5X Bioline Sample Loading Buffer and 3 µl of nanopure water. The sample mix and ladder 

(Bioline HyperLadder™ 1) were loaded into the pre-cast gel and run at 80-120V for the desired 

time (45-90 min). Completed gels were imaged using a Syngene G:BOX Chemi.  

 

2.4.5      DNA gel recovery  

 

DNA was extracted from 0.7% agarose gels using a Qiagen QIAquick Gel Extraction Kit as 

per manufacturers protocol.  Final elution was performed using 50 µl of Qiagen EB buffer. 

 

2.4.6      Genomic DNA sequencing  

 

De novo paired-end sequencing was performed by Source Bioscience on a single lane of an 

Illumina MiSeq with a read length of 50 bp. Whole genome sequencing libraries were 

generated by Source Bioscience using an Illumina TruSeq DNA Nano kit. The forward 

adapter sequence was: AGATCGGAAGAGCACACGTCTGAACTCCAGTCA and the 

reverse adapter sequence was: AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT. 

Returned data was adapter and quality trimmed using Skewer v0.1 [247] and trimmed reads 

were assembled into contigs with SPAdes v3.6.2 [248].  

 

The phage ΦNV3 genomic sequence was confirmed with extensive primer walking (Primer 

sequences available in Appendix 2, Tables Ap2.3 and Ap2.4) combined with Sanger 

Sequencing performed by Source Bioscience.  

 

2.4.7      P. agarici contig stitching  

 

Mapped contig junctions were assigned a numerical reaction number and primers were 

designed to allow for PCRs to amplify the unknown junction region as shown in Figure 2.3, a 

full list of primers used is available in Appendix 2 Tables Ap2.1 and Ap2.2.  
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Figure 2.3. Diagram of the primer design process for contig junction stitching.  

 

For contig stitching reactions related to predictions of contig order and orientation produced 

by alignment of P. agarici NCPPB 2472 sequenced contigs to P. fluorescens A506 outlined in 

Section 2.5.1 see Table 2.6. 

 

 

Table 2.6. Reaction list for contig junctions generated from mapping P. agarici NCPPB 2472 

sequenced contigs with P. fluorescens A506 (GCA_000262325.2). 

 

Reaction 

Number: 
Contig 1: Contig 2: 

Primer 1: Primer 2: 

1 C3 C21 Seq 6 Seq 33 

2 C21 C38 Seq 34 Seq 66 

3 C38 C26 Seq 65 Seq 42 

4 C26 C35 Seq 41 Seq 59 

5 C35 C16 Seq 60 Seq 23 

6 C16 C17 Seq 24 Seq 25 

7 C17 C59 Seq 26 Seq 98 

8 C59 C14 Seq 97 Seq 19 

9 C14 C10 Seq 20 Seq 11 

10 C10 C1 Seq 12 Seq 2 

11 C1 C33 Seq 1 Seq 56 

12 C33 C27 Seq 55 Seq 43 

13 C27 C34 Seq 44 Seq 57 

14 C34 C28 Seq 58 Seq 45 

15 C28 C2 Seq 46 Seq 4 

16 C2 C39 Seq 3 Seq 67 

17 C39 C11 Seq 68 Seq 13 

18 C11 C9 Seq 14 Seq 9 

19 C9 C42 Seq 10 Seq 74 

20 C42 C18 Seq 73 Seq 27 

21 C18 C32 Seq 28 Seq 53 

22 C32 C29 Seq 54 Seq 47 

23 C29 C6 Seq 48 Seq 7 

24 C6 C30 Seq 8 Seq 49 

25 C30 C24 Seq 50 Seq 40 

26 C24 C15 Seq 39 Seq 22 

27 C15 C13 Seq 21 Seq 17 

28 C13 C46 Seq 18 Seq 81 

29 C46 C12 Seq 82 Seq 16 

30 C12 C23 Seq 15 Seq 38 

 

Con g	1	 Con g	2	Junc on	

Primer	1	 Primer	2	
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For contig stitching reactions related to predictions of contig order and orientation produced 

by alignment of P. agarici sequenced contigs to P. agarici NCPPB 2289, outlined in Section 

2.5.1, see Table 2.7. 

 

Table 2.7. Reaction list for contig junctions generated from mapping P. agarici NCPPB 2472 

sequenced contigs with P. agarici NCPPB 2289.  

 

Reaction 

Number: 
Contig 1: Contig 2: 

Primer 1: Primer 2: 

Rb1 C46 C73 Seq 82 Seq 108 

Rb2 C73 C44 Seq 107 Seq 77 

Rb3 C44 C12 Seq 78 Seq 15 

Rb4 C12 C49 Seq 16 Seq 87 

Rb5 C49 C58 Seq 88 Seq 95 

Rb6 C58 C13 Seq 96 Seq 18 

Rb7 C13 C57 Rseq 17 Seq 93 

Rb8 C57 C53 Seq 94 Seq 113 

Rb9 C53 C52 Seq 114 Seq 91 

Rb10 C52 C62 Seq 92 Seq 102 

Rb11 C62 C23 Seq 101 Seq 38 

Rb12 C23 C35 Seq 37 Seq 59 

Rb13 C35 C22 Seq 60 Seq 35 

Rb14 C22 C37 Seq 36 Seq 63 

Rb15 C37 C1 Seq 64 Seq 1 

Rb16 C1 C65 Seq 2 Seq 104 

Rb17 C65 C19 Seq 103 Rseq 30 

Rb18 C19 C15 Rseq 29 Rseq 21 

Rb19 C15 C24 Seq 22 Seq 39 

Rb20 C24 C10 Rseq 40 Seq 11 

Rb21 C10 C28 Seq 12  Rseq 45 

Rb22 C28 C11 Rseq 46 Seq 14 

Rb23 C11 C42 Seq 13  Rseq 74 

Rb24 C42 C26 Seq 73 Rseq 42 

Rb25 C26 C2 Seq 41 Rseq 3 

Rb26 C2 C16 Rseq 4 Rseq 23 

Rb27 C16 C27 Rseq 24 Rseq 43 

Rb28 C27 C3 Seq 44 Rseq 6 

Rb29 C3 C33 Seq 5 Rseq 55 

Rb30 C33 C21 Rseq 56 Seq 34 

Rb31 C21 C18 Rseq 33 Rseq 28 

Rb32 C18 C38 Seq 27 Rseq 65 
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Rb33 C38 C14 Seq 66 Seq 20  

Rb34 C14 C29 Seq 19 Seq 47 

Rb35 C29 C6 Seq 48 Seq 7 

Rb36 C6 C32 Seq 8 Rseq 53 

Rb37 C32 C20 Seq 54 Seq 31 

Rb38 C20 C34 Seq 32 Seq 57 

Rb39 C34 C61 Rseq 58 Seq 99  

Rb40 C61 C39 Seq 100  Seq 68 

Rb41 C39 C59 Seq 67 Rseq 97 

Rb42 C59 C9 Seq 98 Seq 9  

Rb43 C9 C47 Rseq 10  Seq 84 

Rb44 C47 C17 Seq 83 Seq 26 

Rb45 C17 C30 Rseq25 Rseq50 

Rb46 C30 C31 Seq 49  Seq 52 

 

All designed primers were first run using the Self Priming Primer PCR protocol to check for 

multiple bands and self-priming due to inverted repeat regions in the unknown inter-contig 

sequence, if signs of self-priming were evident the primers were re-designed and moved ~500 

bp back from their previous position and re-run using the Self Priming Primer PCR until a 

single band was achieved.  

 

PCRs were then run on a 1% agarose gel, and those showing a single band the reactions were 

then repeated 2x in 160 l volumes before being gel extracted and purified as per the described 

protocol in 2.4.6. The DNA concentrations were then analysed using a NanoDrop 2000, any 

samples below the required concentration for Sanger sequencing were then concentrated via 

rotary evaporator at 40°C for 90 min.  

 

The samples were then sent for Sanger sequencing by Source Bioscience and the returned reads 

were analysed, aligned and assembled into a single sequence with ApE v2.0.47.  
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2.4.8      Vectors, cloning and plasmid construction  

 

The DNA vectors and plasmids used for cloning phage and bacterial genes for expression and 

knockout creation are listed below in Table 2.8.  

 

Table 2.8. Vectors and plasmids used in this study. (R.W.J: Gift from Professor Robert 

Jackson, UoR) 

 

Plasmid Features Source 

pEXP5-

CT/TOPO® 

T7 promoter, T7 forward binding site, Ribosome 

binding site, TOPO® Cloning site, C-terminal 

polyhistidine (6xHis) tag, T7 transcription 

terminator, T7 reverse priming site, bla promoter, 

Ampicillin resistance gene (ß-lactamase), pUC 

origin of replication (ori) 

Invitrogen 

pCR™2.1- TOPO® 

LacZα fragment, M13 reverse priming site, Multiple 

cloning site, T7 promoter/priming site, M13 

Forward (-20) priming site, f1 origin, Kanamycin 

resistance ORF, Ampicillin resistance ORF, pUC 

origin 

Invitrogen 

pBBR1MCS-2 

 

pBBR1 oriV, pBBR1 Rep, LacZα promoter, 

NeoR/KanR, M13 Forward priming site, M13 

Reverse priming site, Multiple cloning site. 

R.W.J. 

 

 

 

Endolysin constructs 

To allow for expression of the NV1 cell lysis proteins, two constructs were created using the 

primers in Table 2.9 that contain the native stop codon and the vector pEXP5-CT/TOPO® 

(Table 2.8). PCR amplification of the desired genes was performed using phage colony PCR 

and the product checked by agarose gel electrophoresis. The band corresponding to the desired 

product was extracted using the DNA gel recovery method and sent for Sanger Sequencing by 

Source Bioscience using the stock T7-promoter forward and reverse primers. After the returned 

sequence was confirmed to be the desired product by alignment in ApE v2.0.47, the products 

were TOPO® cloned into the pEXP5-CT/TOPO® vector as per the manufacturer’s protocol 

using 4 µl of DNA. Following the cloning reaction, 2 µl of the products were transformed in 

to One Shot® TOP10 Chemically Competent E. coli, as per the manufacturer’s protocol, and 
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plated on to selective LB agar plates containing ampicillin (100 µg/ml), then incubated at 37°C 

overnight.  

 

Colonies that grew on the overnight plates were checked for the presence of the respective NV1 

holin and lysozyme genes via colony PCR with a negative control containing water instead of 

bacterial cells and a positive control of NV1 DNA, with the products visualised via agarose gel 

electrophoresis.  

 

The colonies that were determined to contain the required inserts were then used to inoculate 

universals containing 10ml of ampicillin (100 µg/ml) infused LB broth and incubated for 24 

hours at 37°C. The constructs were then purified form the cultures using a QIAprep Spin 

Miniprep kit and the concentrations of the returned DNA analysed by Nanodrop™ 2000 

(ThermoFisher Scientific). The sequence of the products was then confirmed by Sanger-

Sequencing (Source Bioscience) with stock T7 forward primers supplied by Source Bioscience. 

 

Table 2.9. Primers used in phage NV1 lysis protein constructs. 

 

Name: Length: Tm: Sequence:  

NV1HolinF 21 54 ATGGTATTCTTTGCTGCGTAC 

NV1HolinR 21 54 TCATTTGGTTGCTCTCCATTC 

NV1LysoF 19 55 ATGTCGCGGATCTCACTAC 

NV1LysoR 26 54 TTATCCTTTATAAAGGTCGTACAGTG 

 

 

The method for producing the constructs for the ϕNV3 lysis proteins was the same as for the 

NV1 constructs, however instead using the primers in Table 2.10, 5 separate constructs were 

created. Each of the lysis proteins was cloned separately in to pEXP5-CT/TOPO® (pinholin, 

lysozyme, Rzl-like protein), as well as one construct containing both the pinholin and lysozyme 

from a DNA fragment produced from primer pair Nv3aPin-F and 3aLys_ex_R, and one 
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construct containing all the lysis proteins from a DNA fragment produced from the primer pair 

Nv3aPin-F and 3aRz1_ex_R. 

 

Table 2.10. Primers used in ϕNV3 lysis protein constructs.  

 

Name: Length: Tm: Sequence: 

Nv3aPin-F 22 61 ATGCAACTAGACACCACGAGCG 

Nv1Lyso_ex_F 24 61 ATGTCGCGGATCTCACTACTGAGG 

Nv3aRzl-F 22 62 ATGCGCTACGCCATCATTGCTG 

3aLys_ex_R 23 60 ATCCAGCAATAGTGGCGAGTACG 

3aPin_ex_R 22 61 TTCCTTAGGTTCATCCGCAGCC 

3aRz1_ex_R 26 61 ATCCTCCAGTGGGTATCCATTAAGGG 

 

 

A full table of all lysis protein constructs used in this study are outlined in Table 2.11. 

 

 

Table 2.11: Table of all lysis protein constructs used in this study. 

 

Name: Contains:  

pEXP5-NV1Hol Phage NV1 Holin  

pEXP5-NV1Lys Phage NV1 Lysozyme 

pEXP5-NV3Pin Phage ϕNV3 Pinholin 

pEXP5-NV3Lys Phage ϕNV3 Endolysin 

pEXP5-NV3Rzl Phage ϕNV3 Rzl/Rzl-like protein 

PEXP5-NV3PinLys Phage ϕNV3 Pinholin and Endolysin 

pEXP5-NV3Full  Phage ϕNV3 Pinholin, Endolysin and Rzl/Rzl-like protein.  

 

 

 

2.4.9      Protein expression  

 

Expression of the phage lysis proteins was performed by first transforming the 5-10 ng of lysis 

protein constructs, outlined in Table 2.8, in a volume of 1-5 µl into BL21-AI™ One Shot® 

Chemically Competent E. coli using the manufacturers basic protocol using 5-10 ng of DNA 

in a volume of 1-5 µl; all growth media was supplemented with 0.1% (w/v) glucose due to the 

toxic nature of the proteins encoded by the constructs. Following incubation of the 

transformation plates at 37°C overnight, colonies were picked from the plates and cultured 

overnight at 37°C in 10 ml LB supplemented with 0.1% glucose and ampicillin. Each overnight 
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culture was aliquoted in to 10, 1 ml volumes in 2 ml Eppendorf tubes and supplemented with 

300 µl of 40% (v/v) glycerol solution and immediately frozen at -80°C. One of each aliquot 

was analysed by PCR using the appropriate primers from Table 2.6 and Table 2.7 

corresponding to the relevant lysis proteins, including a negative control containing water and 

a positive control of the corresponding phage DNA. Bands corresponding to the desired 

product were excised from the gels using the gel extraction protocol and sent for Sanger 

Sequencing by Source Bioscience with the appropriate primers from Table 2.6 and Table 2.7 

corresponding to the relevant lysis proteins. Any aliquots that did not contain the required 

phage sequence were discarded. 

  

For the protein expression assay, 1 ml of the required -80°C aliquots of BL21-AI cells 

containing phage lysis protein sequences was pipetted in to 10 ml of 0.1% glucose 

supplemented ampicillin infused LB broth and incubated at 37°C with 220 rpm shaking until 

the OD 600 reached approximately 0.4 Abs. 100 µl of each culture was then pipetted into 12 

wells of a Cellstar® 96 well cell culture plate. To 6 of each of the culture containing wells, 2 µl 

of 10% L-Arabinose solution was added to induce protein expression and the plate immediately 

transferred to a Tecan GENios microplate reader pre-warmed to 37°C and maintained at 37°C 

while OD 595 readings were taken every 5 minutes for 150 cycles with rotary shaking between 

readings.  

 

 

2.4.10      P. agarici knockout vector construction and competent cell preparation  

 

The vector used in the creation of the knockout construct was Invitrogen pCR2.1-TOPO 

TA, containing both ampicillin and kanamycin resistance markers. The gene fragment used 

was from the P. agarici NCPPB 2472 Type IV pilus assembly ATPase PilB gene (Locus Tag: 
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AWM79_RS16250), amplified by PCR using the primers P.ag-IVPiliF and P.ag-IVPili-R to 

create an insert of 840 bp in length with an ‘A’ overhang for TOPO cloning.  

A map of the completed construct is shown below (Figure 2.4). 

 

 
Figure 2.4. Map of the pCR2.1/TypeIV pilus construct indicating the location of the AmpR 

and KanR resistance markers. Generated using ApE v2.0.47.  

 

 

The insert was then purified by gel extraction and imaged on an agarose gel, the concentration 

of the insert was determined to be 43.2 ng/l via NanoDrop 2000 (ThermoFisher Scientific). 

The insert was then cloned in to the pCR2.1-TOPO TA vector using the method outlined 

in the manufacturers recommendations as follows: 4 l of insert and 1 l of pCR2.1-TOPO 

TA vector were combined in a TOPO cloning reaction with 1 l of salt solution (1.2 M NaCl; 

0.06 M MgCl2), followed by transformation of 2 l of the TOPO cloning reaction into 

chemically competent One Shot TOP10 and plating on to selective agar containing 

ampicillin. After overnight incubation at 37°C, 6 colonies were selected and analysed by 

colony PCR for the presence of the gene insert, these reactions were separated on a 1% agarose 

gel by gel electrophoresis and imaged using a Syngene G:BOX Chemi. The colonies that were 

demonstrated to contain the insert were then inoculated into 10ml LB supplemented with 

ampicillin and incubated overnight at 37°C, 220 rpm. Following overnight incubation, plasmid 
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DNA was purified from all cultures and sent for Sanger sequencing (Souce Bioscience) using 

T7 forward and reverse sequencing primers, to analyse the quality of the DNA insert.  

The next step was to create competent P. agarici NCPPB 2472 cells for transformation of the 

knockout plasmid. A positive control plasmid, pBBR1MCS-2, containing a kanamycin 

resistance marker (Figure 2.5), was used to determine the competency of the P. agarici cells. 

 
Figure 2.5. Map of the control plasmid pBBR1MCS-2 indicating the location of the 

Kan/neoR resistance marker. Generated using ApE v2.0.47. 

 

 

The method for preparing electrocompetent Pseudomonas cells was adapted from the method 

described by Choi et al. [249]. Six millilitres of overnight P. agarici culture grown in LB 

medium was split into three 2ml microcentrifuge tube and were centrifuged at 10,000 g for 4 

min at room temperature. The cell pellet was then washed with 2 ml room temperature 300mM 

sucrose, then centrifuged at 10,000 g for 4 min. The wash was step repeated and the excess 

sucrose solution was removed by pipette following centrifugation and the resultant cell pellet 

was resuspended in 100 l 300mM sucrose solution.  

 

For electroporation, 2 l of 246 ng/l pCR2.1-TOPO Pili construct or 2.7 l of 183ng/l 

pBBR1MCS-2 positive control vector was used. DNA was mixed with 100 l of fresh 

electrocompetent cells was transferred to the electroporation cuvette. The cells were pulsed 

(settings: 25F; 200, 2.5kV) before 1 ml of room temperature LB medium was added and 
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the tube was transferred to a 28C incubator for 2 hours. The cells were then centrifuged at 

10,000 g for 4 minutes and the supernatant was discarded. The cells were then resuspended in 

100 l LB medium and plated on to a LB agar containing kanamycin and incubated at 28C 

for 48 hours. A negative control of competent P. agarici was also performed, without 

electroporation. 

 

The protocol for preparation of chemically competent Pseudomonas cells was adapted from 

Chuanchuen et al. [250]. 10 ml P. agarici cells were grown overnight in LB medium until they 

reached saturation. A 2 ml microcentrifuge was pre-chilled on ice for ~20min, then 2 ml of 

overnight culture was transferred to the tube followed by 1 minute centrifugation at 10,000 g. 

The cell pellet was resuspended in 2 ml 0.1M MgCl2 at 4C. The cell suspension was then 

centrifuged again at 10,000 g for 1 minute. The supernatant was removed, and the cell pellets 

were resuspended in 1 ml transformation salts with glycerol solution (75mM CaCl2, 6mM 

MgCl2, 15% glycerol) at 4C. The cell suspension was then incubated on ice for 10 min then 

centrifuged at 10,000 g for 1 min. After decanting the supernatant, the cell pellets were then 

resuspended in 200 l transformation salts solution at 4C with glycerol and flash frozen in 

liquid nitrogen before being transferred to -80C freezer for storage.  

 

For transformation, 2 l of 246 ng/l PCR2.1-TOPO Pili construct or 2.7 l of 183 ng/l 

pBBR1MCS-2 was used as a positive control. The DNA and competent cells were combined 

in a 2 ml microcentrifuge tube, a negative control using nanopure water was also performed. 

The cell/DNA suspension was then incubated on ice for 15 min, followed by a 2 min heat-

shock at 37C, after which 500 l LB broth was immediately added to the tubes. The tubes 

were then incubated at 28C for two hours. After incubation, 200 l was taken of each 

transformation and plated on to LB agar containing kanamycin. 
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2.4.11      RNA Extraction, purification and sequencing 

 

P. agarici NCPPB 2472 was inoculated in triplicate in 10 ml KB and incubated at 28°C 

overnight, then subcultured 1:10 in fresh KB for ~2 hours until cells reached mid log phase 

(0.4 Abs at 600 nm). Each culture was diluted to 0.28 Abs (approximately 1x109 cfu) and two 

1 ml aliquots of cells per culture were transferred to 2 ml reaction tubes. To 3 of the 6 reaction 

tubes 100 µl of 1x1010 pfu/ml ϕNV3a in PBS was added, to the remaining 3 reaction tubes 100 

µl of PBS was added. The reaction tubes were incubated at room temperature for 5 mins before 

being transferred to a 28°C shaking incubator at 220 rpm for 40 min. Following incubation, the 

tubes were spun at 10,000 g for 5 minutes and the resultant cell pellet was resuspended in 2 ml 

RNAlater® before being stored at 4°C.  

 

RNA was extracted from the samples stored in RNAlater® using an Ambion® PureLink® RNA 

Mini Kit. Homogenisation of the bacterial cells was achieved using MP Biomedical Lysing 

Matrix B 2 ml tubes in a MP Biomedical FastPrep®-24 benchtop homogeniser at maximum 

speed for 45 seconds and immediately placed on ice. RNA was extracted using a PureLink 

RNA Mini Kit. DNA was removed from the samples by on-column DNase treatment using the 

PureLink DNase Set. The extracted RNA was concentrated using a Thermo Scientific 

GeneJET RNA Cleanup and Concentration Micro Kit and stored at -80°C. 

 

Initial RNA concentration was determined by NanoDrop 2000 (ThermoFisher Scientific), 

RNA integrity and concentration were analysed using an Agilent RNA 6000 Nano Kit in an 

Agilent 2100 Bioanalyzer.  
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Sequencing was performed by Source Bioscience using a NextSeq® 500 v2 using one Mid-

output flow cell at 75 bp paired-end reads, library preparation was performed using a TruSeq 

Stranded mRNA kit with Ribo-Zero™. 

 

2.5      Bioinformatic techniques 

2.5.1   Contig mapping and scaffold construction  

P. agarici NCPPB 2472  

Mapping of P. agarici contigs provided by Source Bioscience was performed using both P. 

fluorescens A506 (GCA_000262325.2) and P. agarici 2289 (GCA_000280785.1) as a 

reference sequence using CONTIGuator 2.7.4 [251]. 

 

P. tolaasii NCPPB 2192T  

Mapping of the P. tolaasii contigs provided by Source Bioscience was performed using P. 

tolaasii PMS117 as a reference genome, CONTIGuator 2.7.4 [251] was unable to return any 

results and mapping was instead performed using MeDuSa v1.6 [252].  

 

Pseudomonas sp. NS1 

Mapping of Pseudomonas sp NS1 contigs provided by Source Bioscience was performed using 

the Pseudomonas strain that had been identified as sharing the highest nucleotide identity by 

BLASTN [253] analysis of all provided contigs, Pseudomonas azotoformans S4 

(GCA_001579805.1), as a reference sequence using CONTIGuator 2.7.4 [251].  

 

2.5.2      Phage phylogeny  

For analysis of phage phylogeny of NV1 and ϕNV3, the evolutionary history was inferred 

using the Maximum Parsimony method over the entire genome sequence [254]. For NV1 a 
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total of 19 genomic sequences were analysed, which are shown in Table 2.12, based on analysis 

previously performed by Monique Eller et al. [108].  

 

The phage genomic sequences were first aligned using ClustalW [255], then the Maximum 

Parsimony tree was calculated using Mega6.06 [256] with 500 Bootstrap Test replicates [257] 

, the MP tree was obtained using the Subtree-Pruning-Regrafting algorithm [258] with search 

level 1 in which the initial trees were obtained by the random addition of sequences (10 

replicates), all codon positions were included (1st, 2nd,3rd and Noncoding) and all positions 

containing gaps and missing data were eliminated. The final tree was rooted to Enterobacteria 

phage T7. 

 

 

Table 2.12. Phage strain sequences used in NV1 phylogenetic relationship analysis.  

 

Strain:  Accession: 

Enterobacteria phage T7 NC_001604.1 

Pseudomonas aeruginosa phage PaP3 NC_004466.2 

Pseudomonas phage DL54 KR054029.1 

Pseudomonas phage gh-1 NC_004665.1 

Pseudomonas phage LUZ7  NC_013691.1 

Pseudomonas phage LUZ24 NC_010325.1 

Pseudomonas phage MR299-2 JN254801.1 

Pseudomonas phage PaP4 KC294142.1 

Pseudomonas phage phi-2 NC_013638.1 

Pseudomonas phage PhiCHU KP233880.1 

Pseudomonas phage phiIBB-PAA2 KF856712.1 

Pseudomonas phage phiIBB-PF7A NC_015264.1 

Pseudomonas phage ϕKMV NC_005045.1 

Pseudomonas phage tf NC_017971.2 

Pseudomonas phage TL  HG518155.1 

Pseudomonas phage UFV-P2 JX863101.2 

Pseudomonas phage vB PaeP C1-14 Or HE983844.1 

Pseudomonas phage vB PaeP p2-10 Or1 HF543949.1 
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The same method of Maximum Parsimony analysis was performed on ϕNV3 using 18 phage 

genomic sequences of Autographivirinae and Podoviridae members, shown in Table 2.13, 

including NV1 and ϕNV3 (not included in Table 2.13). The final tree was rooted to 

Enterobacteria phage K1E.  

 

Table 2.13. Phage strain sequences used in ϕNV3 phylogenetic relationship analysis. 

Strain:  Accession: 

Enterobacteria phage K1-5 AY370674.1 

Enterobacteria phage K1E NC_007637.1 

Enterobacteria phage SP6 AY370673.1 

Erwinia amylovora phage Era103 NC_009014.1 

Kluyvera phage Kvp1 NC_011534.1 

Pseudomonas phage ϕKMV NC_005045.1 

Pseudomonas phage DL62 KR054031.1 

Pseudomonas phage gh-1 NC_004665.1 

Pseudomonas phage LKA1 NC_009936.1 

Pseudomonas phage LKD16 NC_009935.1 

Pseudomonas phage LUZ19 AM910651.1 

Pseudomonas phage MPK7 JX501340.1 

Pseudomonas phage phikF77 FN263372.1 

Pseudomonas phage phiNFS KU743887.1 

Pseudomonas phage PT2 NC_011107.1 

Pseudomonas phage UFV-P2 JX863101.2 

 

 

2.5.3     Bacterial phylogeny 

 

Bacterial phylogeny was inferred using multi locus sequence analysis (MLSA) of 5 genes, 23s 

rlmJ, 16s rDNA fragments, rpoD, gyrB, rpoB. 

The 16S Fragment were generated by identifying the region of DNA between the pseudomonas 

specific primers PA-GS-F and PA-GS-R [259] PA-GS-F (5′-

GACGGGTGAGTAATGCCTA3-′) and PA-GS-R (5′-CACTGGTGTTCCTTCCTATA-3′) in 

silico with Artemis v16.0.0.1 genome browser.  

All genes were aligned individually for all bacterial strains using MUSCLE [260] and the 

alignments then transferred to Mega6.06 [256], where the gaps were removed and the 
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alignments for all the genes were then concatenated into a single alignment session for 

phylogenetic analysis.  

 

 

Table 2.14. Pseudomonas strain sequences used for phylogenetic relationship analysis.  

 

Strain: Accession: 

P. azotoformans LMG 21611 NZ_LT629702.1 

P. azotoformans F77 NZ_CP019856.1 

P. azotoformans S4 NZ_CP014546.1 

P. fluorescens F113 NC_016830.1 

P. fluorescens L228 NZ_CP015639.1 

P. tolaasii 2192T NZ_CP020369.1 

P. tolaasii PMS117 NZ_AJXG01000263.1 

P. tolaasii 6264 NZ_AKYY00000000.1 

P. protegens CHA0 NC_021237.1 

P. cedrina BS2981 LT629753.1 

P. fulva 12-X NC_015556.1 

P. putida KT2440 NC_007005.1 

P. syringae B728a NC_002516.2 

P. aeruginosa PA01 NC_002516.2 

P. chloroaphis PA23 NZ_CP008696.1 

P. agarici NCPPB 2472 NZ_CP014135.1 

P. agarici NCPPB 2289 NZ_JH730872.1 

P. agarici LMG2112 NZ_FOAR01000001.1 

E. coli K-12 subset MG1655 NC_000913.3 

 

 

Phylogenetic relationships between 15 of the strains in Table 2.14, chosen to most accurately 

place each of P. agarici NCPPB 2472, P. tolaasii NCPPB 2192T and P. sp NS1, were 

calculated using the Maximum Likelihood method based on the Tamura-Nei model [261]. The 

initial tree for the heuristic search was obtained automatically by applying Neighbor-Join and 

BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood approach and then selecting the topology with superior log likelihood value.  
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2.5.4      Bacterial secondary metabolite and NRPS prediction 

 

Putative biosynthetic gene clusters were predicted from the full genomic sequence files of P. 

tolaasii, P. agarici and Pseudomonas sp. NS1 using antiSMASH 3.0 [262]. These putative 

clusters were then checked manually using both BLASTN and BLASTP [253] and checked for 

predicted function.  

 

In order to identify ORF’s potentially encoding large NRPS’s all ORF’s over 1000 aa in length 

were identified in Artemis and analysed with BLASTP [253]. ORFs identified as potentially 

encoding NRPSs were then analysed using InterPro v65.0 [263] for the presence of 

condensation, adenylation and thiolation domains.  

 

 

 

2.5.5      RNA sequencing analysis  

 

The returned RNA sequencing reads of P. agarici samples were aligned to the partially 

assembled P. agarici NCPPB 7472 genome sequence using Burrows-Wheeler Aligner 

(Illumina Basespace). The resulting alignment files in BAM format were imported into the 

Bioconductor v3.6 [264, 265] package in RStudio (Version 1.0.143) running R version 3.4.0, 

for further analysis. The gene annotation model (gff) used for read counting was created from 

genomic feature file (gff3) produced by the NCBI Prokaryotic Pipeline for P. agarici NCPPB 

2472. 

 

Read counting in Bioconductor v3.6 [264, 265] was performed using the summarizeOverlaps 

function of the GenomicAlignments package [266], reads were only counted once to each gene 

with settings for paired-end reads and non-strand specific reads. Non-phage treated samples 

(P4, P5, P6) were used as the reference level in DESeq2 [267]. The count matrix was filtered 

to remove results with counts <10.  
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Scatterplots were created using log2, regularized-logarithm transformation (rlog) [267] and the 

variance stabilizing transformation (vst) for negative binomial data with a dispersion-mean 

trend [267]. Euclidean distances were created using the rlog-transformed values to ensure equal 

contribution from all genes. Distances were visualised in a heat map created with the 

‘pheatmap’ package, colour was added using the RColorBrewer package. Poisson Distance 

was calculated with the PoiClaClu package [268] to take in to account the variance structure 

of counts using the non-normalized count matrix, and imaged again with pheatmap and 

RColorBrewer. The PCA plot data was generated for the rlog-transformed values using 

plotPCA function in the DESeq2 package and plotted using the ggplot2 package [269]. 

 

 

 

2.5.6      Phage terminal repeat identification 

 

Identification and analysis of putative phage terminal repeats was performed using PhageTerm 

v1.0.11  [270] on the Galaxy web platform [271]. The seed length was set as 20, the peak 

surrounding region as 20 and the coverage limit as 250.  
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Chapter 3:  

Comparative genomics of Agaricus bisporus 
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3.1      Introduction 

Agaricus bisporus are an important agricultural crop, with 8-9x105 tonnes are cultivated in 

Europe alone, worth an approximate 2 billion Euros annually [1]. In this study I will be 

isolating, characterising and comparing the genomes of two Agaricus bisporus pathogenic 

Pseudomonas species, Pseudomonas tolaasii NCPPB 2192T, Pseudomonas agarici NCPPB 

2472 and a third non-pathogenic species recently identified which I have provisionally named 

Pseudomonas sp. NS1(2017); with the aim of identifying potential virulence factors and phage 

resistance/susceptibility factors.  

 

P. tolaasii is the causal organism of the mushroom blotch disease “brown blotch disease”, the 

symptoms of which commence as small (1-4 mm) brown or cream lesions on the pileus and 

stipe of the mushroom that become darker and more sunken as the damage progresses [1]. 

Mushroom loss due to brown blotch disease caused by P. tolaasii is economically significant 

as it has been estimated to be responsible for a 5-10% crop loss in the U.K and a further 

downgrading of 10% of mushrooms produced [11]. 

 

P. agarici is the causal agent of the disease ‘drippy gill’ in A. bisporus mushrooms, a disease 

characterised by cloudy white droplets of bacteria on the gill tissue of mushrooms, that can 

progress to cause total destruction of the affected tissue [24]. The majority of the large U.K 

based outbreaks were reported before 1980, although outbreaks of P. agarici have also been 

reported in New Zealand in 1991 [26] and in Serbia as recently as 2008 [32], which indicates 

that P. agarici has the potential to cause economic loss to cultivated mushroom farmers.  

 

While other members of the P. fluorescens group have been well characterised at the genome 

level, such as the type strains P. fluorescens and P. tolaasii; P. agarici has not been the subject 
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of in depth characterisation and analysis, with only two partial genomes published (P. agarici 

strain NCPPB 2289 and P. agarici strain LMG2112). To date no scientific literature has 

described the genome of P. agarici NCPPB 2472 and this study aims to address this shortfall. 
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3.2      Pseudomonas tolaasii 2192T 

3.2.1   Proof of pathogenicity  

In order to determine whether the provided P. tolaasii 2192T strain was capable of producing 

brown blotch disease symptoms on the host A. bisporus cap surface, a pathogenicity assay was 

performed. After 72 hours, the mushrooms infected with P. tolaasii 2192T begun to display 

darkening of the tissue and pitting of the surface, as shown in Figure 3.1 confirming the ability 

of the P. tolaasii strain to cause brown blotch disease.  

 

 
Figure 3.1. A. bisporus mushroom cap showing brown discolouration and pitting associated 

with brown blotch disease caused by P. tolaasii infection.  

 

3.2.2      Phylogeny  

 

To infer the phylogenetic relationship of P. tolaasii NCPPB 2192T among the fluorescent 

Pseudomonads a Maximum-Likelihood analysis was performed on the DNA sequence returned 

from whole-genome sequencing using 5 housekeeping genes (RlmJ, rrs, RpoD, GyrB and 

RpoB) using the Tamura-Nei model [261].  
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Figure 3.2. Molecular phylogenetic analysis of P. tolaasii 2192T (highlighted) by Maximum 

Likelihood method. The tree is drawn to scale, with branch lengths measured in the number 

of substitutions per site. The analysis involved 15 nucleotide sequences. Codon positions 

included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were 

eliminated. There were a total of 8768 positions in the final dataset. Evolutionary analyses 

were conducted in MEGA6.06 

 

The results of this analysis shown in Figure 3.2 agree with the phylogeny reported by 

Yamamoto et al. [272]; with P. tolaasii 2192T clustering with the closely related P. 

azotoformans and P. fluorescens which are all members of the Pseudomonas intragenic cluster 

II,  P. fluorescens complex, P. fluorescens lineage. However, it is unusual that P. tolaasii 

2192T is located on a separate branch to P. tolaasii 6264 and PMS117, indicating that it may 

have diverged from the other members of the P. tolaasii species.  
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3.2.3      Sequencing and genome organisation  

 

For the whole-genome sequencing of P. tolaasii, a total of 150 µl of genomic DNA at a 

concentration of 79 ng/µl (11.85 µg total) was sent to Source Bioscience, who prepared a 

whole-genome sequencing library using an Illumina TruSeq Nano kit, before paired end 

sequencing was performed on an Illumina MiSeq with a read length of 50 bp. 

 

In total, the sequencing run returned 536.3 Mbases of sequence, with an average coverage of 

approximately 40-fold. The reads were initially assembled in to 262 contigs by Source 

Bioscience, with a total sequence length of 6,808,027 bp. These contigs were then aligned to 

Pseudomonas tolaasii PMS117 with the MeDuSa v1.6 software, which returned a single 

scaffold, and the resulting sequence was annotated using the NCBI Prokaryotic Genome 

Annotation Pipeline. The full genome is available under the accession code NZ_CP020369. 

 

Of the 6,286 ORFs identified, of which 6,065 were identified as being protein coding sequences 

and 63 RNA encoding genes were identified including 56 tRNAs, 3 complete rRNAs (5S, 16S, 

23S) and 4 ncRNAs. The total gene count is lower than that of the closely related P. tolaasii 

PMS117 which is predicted to encode 6,482 genes, but higher than P. tolaasii 6264 which is 

predicted to encode 6,093 genes; a full comparison is shown in Table 3.1. 

 

Table 3.1. Comparison of the genomes and predicted genes of P. tolaasii strains 2192T, 

PMS117 and 6264.  

 

Strain  Total 

(bp) 

ORFs Encoding Genes 

(RNA) 

tRNA rRNA ncRNA GC 

(%) 

2192T 6,856,683 6,286 6,065 63 56 3 4 60.5 

PMS117 7,007,821 6,482 6,011 60 53 3 4 60.2 

6264 6,233,813 6,093 5,265 63 54 5 4 61 

 

A full circular map illustrating the genome of P. tolaasii 2192T including G+C content, 

location of the tRNA genes and gene orientation is shown in Figure 3.3. 
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Figure 3.3. Circular map of the P. tolaasii NCPPB 2192T genome with the genes encoded on 

the positive strand in the first lane (grey), the negative strand in the second lane (blue) and the 

tRNA genes in the third lane (green). The deviation in GC content from the total average is 

illustrated in the centre circle with yellow bars denoting an above average content and purple 

bars, a below average GC content. Figure generated using DNAPlotter function of the Artemis 

v16.0.0.1 genome browser. 

 

 

3.2.4      Secondary metabolites and NRPSs  

The genome of P. tolaasii NCPPB 2192T was mined for potential biosynthetic gene clusters, 

which revealed a total of 17 complete and incomplete putative NRPS encoding ORFs. These 

ranged from 21,173 bp to 675 bp in length. Six putative NRPSs were identified that showed 

both amino acid and nucleotide similarity to a reported tolaasin biosynthetic cluster of P. 

costantinii [50] as shown in Table 3.2. The ORF RS02650 predicted by the NCBI prokaryotic 

pipeline to encode a frameshifted single protein was identified as to be comprised of the C-

terminus of a NRPS, between bases 531441 and 534953 on the leading strand, with amino acid 
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and nucleotide similarity to the P. costantinii taaC gene and associated protein product; and a 

complete ORF between bases 535013 and 545227 on the leading strand, with amino acid and 

nucleotide similarity to the P. costantinii taaD gene and associated protein product.   

 

Table 3.2.  Predicted NRPS of P. tolaasii 2192T with similarity to the tolaasin biosynthesis 

cluster of P. costantinii as identified by BLASTP [253], Predicted function of the gene product 

in P. tolaasii 2192T and the associated protein in P. costantinii, including the locus tag of the 

encoding gene are shown.  

 

Locus 

Tag:  

Predicted 

Function:  

P. costantinii 

Protein Locus Tag: Cover: Ident: 

RS30620 NRPS TaaA CCJ67636.1 97% 85% 

RS22935 NRPS TaaB CCJ67637.1 99% 72% 

RS23980 NRPS TaaC (N) CCJ67638.1 99% 86% 

RS02650 NRPS TaaC (C) CCJ67638.1 87% 82% 

RS02650 NRPS TaaD CCJ67639.1 98% 77% 

RS24725 NRPS TaaE CCJ67640.1 100% 85% 

 

 

Within the tolaasin biosynthetic cluster of P. costantinii that the gene encoding the protein 

TaaE is upstream of genes encoding two further proteins, a macrolide-specific efflux protein 

MacA and macrolide export ATP-binding/permease protein MacB (CCJ67641.1 and 

CCJ67642.1), it was observed that the gene encoding the predicted protein in P. tolaasii 2192T 

with amino acid identity to TaaE (RS24725) was likewise upstream of genes predicted to 

encode both a macrolide-specific efflux protein macA and macrolide export ATP-

binding/permease protein MacB (RS24720 and RS24715). Similarly, the gene encoding the 

protein TaaA in P. costantinii was found to be preceded by a cyclic peptide transporter family 

protein (CCJ67635.1), it was also observed that the gene encoding the predicted protein in P. 

tolaasii 2192T with amino acid identity to TaaA (RS30620) was likewise preceded by a gene 

predicted to encode a cyclic peptide export ABC transporter (RS30625).  

 

Two of the further NRPSs identified in silico were also predicted to be incorrectly separated 

parts of a single large NRPS, with similarity to a known biosynthesis gene, these were RS16165 
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and RS16170 (1527 aa and 224 aa in size respectively), which were found to show moderate 

amino acid identity by BLASTP [253] to the known pyoverdine synthesis genes PvdI of 

Pseudomonas syringae pv. daphniphylli (57% identity) Accession: KPX09284.1 and the 

pyoverdine sidechain peptide synthetase of P. fluorescens (68% identity) Accession: 

WP_003191936.1, respectively. These genes were also found to be upstream of a further 

incomplete NRPS, RS16160, that showed 63% amino acid identity to pyoverdine synthesis 

protein PvdJ of P. aeruginosa 62 (Accession: ERX81199.1) and downstream of a TonB-

dependent siderophore receptor (RS16175). 

 

Similarly, a 1948 aa NRPS was identified (RS12420) that is also hypothesised to be involved 

in siderophore synthesis, due to its location downstream of a gene predicted to encode a 

siderophore synthetase (RS12390), MFS transporter (RS12395) and TonB-dependent receptor 

(RS12400); as well as being located upstream from a TonB-dependent siderophore receptor 

(RS12430). 

 

Phage tail-like bacteriocin 

A biosynthetic gene cluster hypothesised to be involved in the synthesis of a phage tail-like 

bacteriocin (PTLB) was identified, shown in Table 3.3.  

 

Table 3.3. Predicted PTLB gene cluster of P. tolaasii 2192T. 

 

Predicted Function: Start: End: Locus Tag: Protein Id: 

pyocin R2, holin 3523422 3523766 RS16310 WP_016970764.1 

hypothetical protein 3523787 3524302 RS16315 WP_016970765.1 

phage baseplate 
assembly protein V 3524306 3524914 RS16320 WP_016970766.1 

phage baseplate 
protein 3524927 3525259 RS16325 WP_016970767.1 

baseplate J protein 3525256 3526251 RS16330 WP_016970768.1 

phage tail protein I 3526248 3526976 RS16335 WP_016970769.1 
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tail fiber protein 3526973 3527506 RS16340 WP_016970770.1 

hypothetical protein 3527533 3528171 RS16345 WP_016970771.1 

hypothetical protein 3528233 3528439 RS16350 WP_020372583.1 

tail protein 3528700 3529866 RS16355 WP_016970774.1 

phage tail protein 3529866 3530372 RS16360 WP_016970775.1 

 

Downstream of the predicted PTLB gene cluster, a further protein (RS16305) was later 

identified, which was initially classified as an XRE family transcriptional regulator, however 

it was then noted that it showed 100% amino acid identity to the repressor protein PrtR of P. 

fluorescens Strain: PCL1751 and is therefore likely to be involved in transcriptional regulation 

of the above identified PTLB in tandem with another protein, the pyocin activator protein PrtN 

(RS06590), identified in the genome of P. tolaasii 2192T. 

 

3.2.5      Phage resistance systems  

 

No CRISPR-associated repeats or proteins were identified in the P. tolaasii 2192T genome or 

within those of P. tolaasii PMS117 or 6264. However, multiple restriction endonuclease 

proteins, another well documented system by which bacteria are able to resist phage infection 

[203], were identified within the genome of P. tolaasii 2192T, shown in Table 3.4.  

 

The first predicted ‘restriction endonuclease’ (RS17360) contains an McrB conserved domain, 

which is associated with the GTP-binding regulatory subunit [273]. The RS17360 predicted 

restriction endonuclease gene is upstream of a ‘hypothetical protein’ (RS17355) that contains 

a PDDEXK_7 conserved domain, which is a domain of the PD-(D/E)XK nuclease family and 

it is speculated that it could function as a methylation-dependent restriction enzyme [274]; 

therefore it is likely that both RS17360 and RS17355 are two subunits of a single 

uncharacterised Type IV methylation-dependent restriction endonuclease system. 
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Table 3.4. Predicted restriction endonuclease proteins of P. tolaasii 2192T. 

 

Protein: Start: End: Locus Tag: 

Restriction endonuclease 3766583 3768847 RS17360 

Restriction endonuclease subunit R 3783281 3786340 RS17410 

Restriction endonuclease subunit M <5750878 5751093 RS26390 

Restriction endonuclease subunit M  <6602607 6602822 RS30090 

Restriction endonuclease subunit M 6602929 >6603507 RS30095 

 

 

The second predicted restriction endonuclease (RS17410) is predicted to be a Type III 

restriction endonuclease and is directly downstream of a site-specific DNA-methyltransferase 

(RS17420), with a second site-specific DNA-methyltransferase (RS17440) approximately 

7,700 bp upstream of the first.  

The incomplete methyltransferase encoded by RS26390, predicted as a ‘restriction 

endonuclease subunit M’ shows significant amino acid identity to a known prophage (Prophage 

PSPPH02) adenine modification methyltransferase and therefore has no associated restriction 

endonuclease. Likewise, the incomplete methyltransferases encoded by RS30090 and 

RS30095 are likely to be of phage origin; the protein encoded by RS30090 shows 100% amino 

acid identity to a protein of the prophage PSPPHO2 (as predicted by BLASTP [253]) and the 

protein encoded by RS30095 shows a high degree of similarity to prophage PSPPH06 (95% 

Ident as predicted by BLASTP [253]). Furthermore, there are several ORFs downstream of 

both these genes that encode phage related proteins, including RS30070 (baseplate assembly 

protein) and RS30080 (microvirus H family protein).  

 

A biosynthetic operon comprised of 15 genes (Table 3.5) was identified in the genome of P. 

tolaasii 2192T, hypothesised to be involved in the production of alginate due to the presence 

of a gene encoding the alginate biosynthesis protein Alg44 (RS11530), which has been 

demonstrated to be required for alginate biosynthesis in Pseudomonas aeruginosa [275] and 

AlgE, also reported to be involved alginate biosynthesis in Pseudomonas [276]. 
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Table 3.5. Predicted alginate biosynthesis proteins of P. tolaasii 2192T 

.  

Predicted Protein Function  Locus Tag: 

Nucleotide sugar dehydrogenase RS11545 

Glycosyl transferase RS11540 

Alginate biosynthesis protein Alg44 RS11530 

Sel1 repeat family protein RS11525 

Alginate biosynthesis protein AlgE RS11520 

Right-handed parallel beta-helix repeat-containing protein RS11515 

Alginate O-acetyltransferase RS11510 

Mannuronate-specific alginate lyase RS11505 

MBOAT family protein RS11500 

Alginate O-acetyltransferase RS11495 

Alginate O-acetyltransferase RS11490 

Mannose-1-phosphate guanylyltransferase/mannose-6-
Phosphate isomerase RS11485 

DUF3077 domain-containing protein RS11480 

Hypothetical protein RS11475 

Short-chain dehydrogenase RS11470 
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3.3      Pseudomonas agarici NCPPB 2472 

3.3.1   Proof of pathogenicity 

 

In order to determine the pathogenicity of P. agarici NCPPB 2472, the gill tissue of previously 

un-opened and disease-free Agaricus bisporus was inoculated with bacterial culture.  

 

 
Figure 3.4. Gill tissue of Agaricus bisporus inoculated with P. agarici NCPPB 2472 showing 

characteristic symptoms of ‘drippy gill’ disease.  

 

After 72 hours of incubation at 28°C, cloudy-white bacterial droplets appeared on the 

mushroom gill tissue, as shown in Figure 3.4. This shows that P. agarici NCPPB 2472 is 

capable of infecting and causing drippy gill disease symptoms on Agaricus bisporus mushroom 

gill tissue.  

 

3.3.2      Phylogeny  

 

To infer the phylogenetic relationship of P. agarici NCPPB 2472 among the fluorescent 

Pseudomonads a Maximum-Likelihood analysis was performed on the DNA sequence returned 

from whole-genome sequencing using 5 housekeeping genes ( RlmJ, rrs, RpoD, GyrB and 

RpoB) using the Tamura-Nei model [261].  
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Figure 3.5. Molecular phylogenetic analysis of P. agarici NCPPB 2472 (highlighted) by 

Maximum Likelihood method. The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site. The analysis involved 15 nucleotide sequences. Codon 

positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing 

data were eliminated. There were a total of 9117 positions in the final dataset. Evolutionary 

analyses were conducted in MEGA6.06. 

 

The results in Figure 3.5 show that P. agarici 2472 clusters significantly in a tight 

monophyletic branch with other strains of P. agarici, which indicates that they are likely to be 

closely related. This confirms the results reported by Yamamoto et al.[272] who also reported 

that the P. agarici strains used in their study formed a tight monophyletic branch. Similarly, 

the results in Figure 3.5 show that the P. agarici branch is closer to the branch containing P. 

chloroaphis than to that containing P. fluorescens, which again is similar to the results reported 

by Yamamoto et al. [272], who suggest that P. agarici forms part of the P. chloroaphis lineage 

within the P. fluorescens complex of the Pseudomonas intrageneric cluster II, while P. tolaasii 

forms part of the P. fluorescens lineage. 
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3.3.3      Sequencing and genome organisation 

 

Sequencing of the genome of P. agarici by Source Bioscience returned 5,618,560 bp in a total 

of 232 contigs with an average contig length of 24,218 bp, a maximum contig length of 607,529 

bp and a minimum of 211 bp. These contigs were then mapped to two related Pseudomonas 

strains, Pseudomonas fluorescens A506 and Pseudomonas agarici NCPPB 2289 using 

CONTIGuator 2.7.4 [251], in order to orient the returned contigs correctly and allow a genome 

scaffold to be created that would minimise the number of contig junctions that require stitching. 

Mapping of the contigs to P. fluorescens A506 reduced the number of contigs from 232 to 32 

and the total sequence length to 5,314,908 bp. Primers were then created for each contig 

junction to allow PCR amplification of the unknown region between them. The ACT 

comparison of the genome of P. fluorescens A506 and the 32 aligned contigs of the sequenced 

P. agarici is shown in Figure 3.6, the total degree of nucleotide similarity between the two is 

not high however there are several large regions of similarity that allow a confident prediction 

of contig orientation and ordering.  

 
 

Figure 3.6. Alignment map of P. agarici NCPPB 2472 contigs (B.) mapped against the genome 

of P. fluorescens A506 (A.) generated using WebACT. Red bars indicate collinear regions of 

similarity between the mapped sequences.  

 

The returned P. agarici NCPPB 2472 contigs were also mapped to the genome sequence of P. 

agarici NCPPB 2289 and this reduced the number of contigs from 232 to 48 and the total 

sequence to 5,501,881 bp. The ACT comparison of the genome of P. agarici NCPPB 2289 and 

the 48 aligned contigs is shown in Figure 3.7, the total degree of nucleotide between the two is 

very high, with large regions of collinear similarity that would indicate a very confident 

prediction of contig orientation and ordering.  

A.

B.
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Figure 3.7. Alignment map of P. agarici NCPPB 2472 contigs (B.) mapped against the genome 

of P. agarici NCPPB 2289 (A.) generated using WebACT. Red bars indicate collinear regions 

of similarity between the mapped sequences.   

 

The P. agarici NCPPB 2472 contigs mapped to the genome sequence of P. agarici NCPPB 

2289 were then annotated using the NCBI Prokaryotic Genome Annotation Pipeline, the results 

are available with the accession code NZ_CP014135.  

Of the 4,901 ORFs identified, 4,673 were identified as being protein coding and 67 RNA 

encoding genes; including 59 tRNAs, 4 complete rRNAs (5S, 16S, 23S) and 4 ncRNAs. The 

total gene count is lower than the counts for both the closely related strains P. agarici NCPPB 

2289 and LMG 2112, a full comparison is shown in Table 3.6. 

 

Table 3.6. Comparison of the genomes and predicted genes of P. agarici strains NCPPB 2472, 

2289 and LMG 2112.  

 

Strain  Total 

(bp) 

ORFs Encoding Genes 

(RNA) 

tRNA rRNA ncRNA GC 

(%) 

2472 5,502,003 4,901 4,673 67 59 4 4 58.89 

2289 5,511,390 5,009 4,414 62 54 4 4 59 

LMG 

2112 5,508,100 5,002 4,738 68 58 6 4 59 

 

A full circular genome map was created using the DNAPlotter function of Artemis v16.0.0.1 

in order to visualise the returned data and is shown in Figure 3.8. 

A.

B.
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Figure 3.8. Circular map of the P. agarici NCPPB 2472 genome with the genes encoded on 

the positive strand in the first lane (grey), the negative strand in the second lane (blue) and the 

tRNA genes in the third lane (green). The deviation in GC content from the total average is 

illustrated in the centre circle with yellow bars denoting an above average content and purple 

bars, a below average GC content. Figure generated using DNAPlotter function of the Artemis 

v16.0.0.1 genome browser. 

 

 

 

3.3.4      Contig stitching 

 

Contig stitching using PCR amplification of the regions between contigs was performed in 

order to both confirm the bioinformatic predictions of genome organisation and to identify and 

sequence any regions not covered by the initial sequencing run. 125 PCRs were performed 

corresponding to the reactions previously outlined in Table 2.6 and Table 2.7. Of the 30 

reactions that were performed based on the alignment of P. agarici and P. fluorescens A506 

that are shown in the agarose gel image of Figure 3.9, 8 returned products that were 
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successfully sequenced and allowed stitching of their associated contigs (Figure 3.9, lanes 1, 

2, 18, 19, 23, 26, 28 and 30). These successful reactions varied considerably in number of bases 

they added, from a maximum of 5366 bp, to a minimum of 737 bp, the full results are outlined 

in Table 3.7 and the returned sequences are available in Appendix 1.  

 

 
Figure 3.9. Agarose gel image of all PCR products from Table 2.6 from contig junctions 

generated from mapping of P. agarici NCPPB 2472 with P. fluorescens A506, lane numbers 

(1-30) correspond to respective reaction numbers (R1-R30).  

 

Of the 46 reactions that were performed based on the alignment of P. agarici 2472 and P. 

agarici 2289 shown in Table 2.7, only 3 returned products that were successfully sequenced 

and allowed stitching of their associated contigs, Rb13, Rb19, Rb40, lanes 13,19 and 40 of 

Figure 3.10 respectively. Of these three products, two corresponded to regions of overlap 

between the contigs and only one product returned novel sequence.  
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Figure 3.10. Gel image of all PCRs from Table 2.7 from contig junctions generated from 

mapping of P. agarici NCPPB 2472 with P. agarici NCPPB 2289, lane numbers (1-50) 

correspond to the respective reaction numbers (Rb1-Rb50). 

 

The large discrepancy in reactions that returned products from which sequence data was 

obtained would appear to show that the genome organisation of P. agarici NCPPB 2472 is 

more similar to that of P. fluorescens A506 than P. agarici NCPPB 2289, despite the 

significantly larger degree of collinear similarity between the genomes of P. agarici NCPPB 

2472 and P. agarici NCPPB 2289. However due to limitations of Sanger sequencing several 

of the products returned from the PCRs of contig alignments of P. agarici NCPPB 2472 and 

P. agarici NCPPB 2289 were not able to be successfully sequenced and with other methods 

may in fact contain valid sequence. 
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Table 3.7. Table of all completed contig junction stitches and associated sequence additions 

or overlaps.  

 

Reaction: Contig 1: Contig 2: Bp Added: Overlap: GC% 

R1 3 21 5366 No 52 

R2 21 38 847 No 58 

R18 11 9 737 No 63 

R19 9 42 3203 No 64 

R23 29 6 983 No 60 

R26 24 15 849 No 58 

R28 13 46 882 No 57 

R30 12 23 1597 No 59 

Rb13 22 35 N/A Yes N/A 

Rb19 15 24 848 No 58 

Rb40 61 39 N/A Yes N/A 

 

 

3.3.5      Secondary metabolites and NRPSs  

 

The genome of P. agarici was mined for potential biosynthetic gene clusters and NRPSs. 

In total 10 NRPS/PKSs were predicted in three distinct biosynthetic clusters; however, it was 

identified that two of these identified (RS0070/RS10745) were in fact part of larger NRPSs 

(RS12925 and RS00065 respectively) that had been split due to assembly errors of the full 

genome sequence data. The first cluster is comprised of 5 NRPS proteins, as shown in Table 

3.8.  

 

Table 3.8. Predicted NRPS proteins of P. agarici NCPPB 2472. 

 

No. Predicted Function: Locus: Tag 

1 non-ribosomal peptide synthetase RS12910 

2 non-ribosomal peptide synthetase RS12915 

3 non-ribosomal peptide synthetase RS12920 

4 non-ribosomal peptide synthetase RS12925 

5 non-ribosomal peptide synthetase  RS00065 

6 non-ribosomal peptide synthetase (part of RS12925) RS00070 

7 non-ribosomal peptide synthetase (part of RS00065) RS10745 
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The second is comprised of a single NRPS (RS20800) and a polyketide synthase (RS20810); 

the final biosynthetic cluster appears to possess only a single NRPS (RS10630). While all the 

NRPS showed a high degree of conservation with other NRPSs of the Pseudomonas, it was not 

possible to predict the function of the three biosynthetic clusters from in silico analysis.  

 

Phage tail-like bacteriocin 

A biosynthetic gene cluster hypothesised to be involved in the synthesis of a phage tail-like 

bacteriocin was identified, shown in Table 3.9.  

 

Table 3.9. Predicted potential pyocin proteins of P. agarici NCPPB 2472. 

 

Predicted Function: Start: End: Locus Tag: Protein Id: 

pyocin R2, holin 2500773 2501108 AWM79_10925 WP_060782816.1 

hypothetical protein 2501271 2501855 AWM79_10930 WP_060782817.1 

DUF2635 domain-containing 
protein 2501852 2502034 AWM79_10935 WP_060782818.1 

phage tail protein 2502034 2503530 AWM79_10940 WP_060782819.1 

tail protein 2503597 2503944 AWM79_10945 WP_017131070.1 

hypothetical protein 2503941 2504237 AWM79_10950 WP_017131069.1 

phage tail protein 2504368 2505999 AWM79_10955 N/A 

hydroxyacid dehydrogenase 2505980 2507245 AWM79_10960 WP_060782820.1 

baseplate protein 2507249 2508295 AWM79_10965 WP_060782821.1 

hypothetical protein 2508348 2508857 AWM79_10970 WP_060782822.1 

hypothetical protein 2508857 2509255 AWM79_10975 WP_060782823.1 

baseplate J protein 2509245 2510285 AWM79_10980 WP_017131062.1 

phage tail protein 2510273 2510872 AWM79_10985 WP_017131061.1 

hypothetical protein 2510884 2512029 AWM79_10990 WP_017131060.1 

acyltransferase 2512800 2514725 AWM79_10995 WP_060782824.1 

pyocin R, lytic enzyme 2515164 2515727 AWM79_11000 WP_017131058.1 

lysozyme 2515709 2516245 AWM79_11005 WP_017131057.1 

 

Similar to the PTLB cluster identified in P. tolaasii 2192T an XRE family transcriptional 

regulator was identified downstream of the PTLB gene cluster (AWM79_10920) which may 

function in a role similar to the PrtR protein as well as an incomplete gene predicted to encode 

the pyocin activator protein PrtN (AWM79_18570) which may be involved in transcriptional 

regulation of the PTLB cluster.  
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Siderophore Biosynthesis  

 

A biosynthetic cluster was identified that is predicted to produce the siderophore 

achromobactin, shown in Table 3.10.  

 

Table 3.10. Predicted achromobactin biosynthesis proteins of P. agarici NCPPB 2472.  

 

No. Predicted Function  Locus Tag: 

1 RNA polymerase sigma factor RS04660 

2 sugar ABC transporter substrate-binding protein RS04665 

3 TonB-dependent siderophore receptor RS04670 

4 aspartate aminotransferase family protein RS04675 

5 AcsD protein RS04680 

6 diaminopimelate decarboxylase RS04685 

7 MFS transporter RS04690 

8 AcsC protein RS04695 

9 siderophore biosynthesis protein SbnG RS04700 

10 AcsA protein RS04705 

 

Three proteins (RS04680, RS04695 and RS04705) showed high amino acid identity to the 

proteins AcsD, AcsC and AcsA respectively, which have been demonstrated by Berti and 

Thomas [61] to be involved in the biosynthesis of achromobactin by P. syringae pv. syringae 

B728a. A fourth protein (RS04685), which is predicted to function as a diaminopimelate 

decarboxylase, I hypothesise to perform the function of the P. syringae pv. syringae B728a 

protein AcsE.  

The gene cluster also shows significant similarities in ORF organisation to the achromobactin 

biosynthesis cluster of P. syringae pv. syringae B728a, as is illustrated in Figure 3.11. All 

ORFs show high (72-91%) amino acid identity to the corresponding ORFSs of P. syringae pv. 

syringae B728a, a full table of results including BLASTP [253] amino acid identity is available 

in Appendix 4, Table Ap4.5. The predicted function of this cluster in the production of a 

siderophore is further confirmed by the presence of a predicted TonB-dependent siderophore 

receptor (RS04670) and predicted siderophore biosynthesis protein SbnG (RS04700). 
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Figure 3.11. Comparison of the achromobactin biosynthetic cluster of (A) P. syringae pv. 

syringae B728a, including gene nomenclature proposed by Berti and Thomas [61] and (B) 

putative achromobactin biosynthetic cluster of P. agarici NCPPB 2472. Gene labels are 

adjacent to their respective ORFs. Figure generated using Microsoft PowerPoint.  

 

 

3.3.6      Phage resistance systems  

 

The genome of P. agarici was found to contain a single CRISPR-associated repeat region, 

between 1180063-1181413 bp on the positive strand. The P. agarici CRISPR/Cas system was 

identified as comprising of a cluster of 6 Type I-F CRISPR-associated proteins located 

downstream of the repeat region, outlined in Table 3.11.  
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Table 3.11. Predicted CRISPR-associated proteins of P. agarici NCPPB 2472. 

 

Location: Locus Tag: Gene:  Protein ID: 

1171497-1172474 RS05180 Type I-F CRISPR-associated 

endonuclease Cas1 

WP_060782314.1 

 

1172471-1175881 RS05185 

 

Type I-F CRISPR-associated 

helicase Cas3 

WP_060782315.1 

 

1175960-1177330 

 

RS05190 

 

Type I-F CRISPR-associated 

protein Csy1 

WP_060782316.1 

 

1177323-1178306 

 

RS05195 

 

Type I-F CRISPR-associated 

protein Csy2 

WP_060782317.1 

 

1178340-1179365 

 

RS05200 

 

Type I-F CRISPR-associated 

protein Cas7f/Csy3 

WP_060782318.1 

 

1179369-1179932 

 

RS05205 

 

Type I-F CRISPR-associated 

endoribonuclease Cas6/Csy4 

WP_060782319.1 

 

 

 

The Cas proteins identified in Table 3.11 are characteristic of a Type 1 Subtype I-F CRISPR 

system, similar to that reported in Pseudomonas aeruginosa PA14 by Rollins et al. [239], 

which require a CRISPR RNA-guided surveillance complex (also known as a Csy complex), 

in this case formed of the proteins RS05190-RS05205, to recruit the Cas2/3 (RS05185) trans-

acting nuclease for degradation of the target DNA.  

 

The repeat consensus sequence associated with the CRISPR region was identified as being 

28bp in length composed of the sequence: GTTCACTGCCGTATAGGCAGCTCAGAAA.  
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In total 34 spacer regions were identified of 32bp in length which are shown in Table 3.12.   

 

Table 3.12. CRISPR-associated repeat region spacer sequences of P. agarici NCPPB 2472. 

 

No (5’-3’): Sequence 

1 TCGCGGATTGGATGGATTAGCGGTAGACGCCC 

2 TGCCGTCAGCGCTAACACCATTCAGAACGCGT 

3 ACTTGAGCCCGGCGAAATTGTGCACCACAAAA 

4 ATGCCGCGGTCTGAACCAGCGTTGCTTGAAGG 

5 TGCCAGTAATCGGCTAAGCGGTAGTGCATCGG 

6 TACTACCGGCGACCCAGTAACCGATGGTATCC 

7 GGTTAAAAGGATGATCCTTTTGATCTTGGTAT 

8 TCCTTGCGAATCGCGGGTTGGAGTACCACACG 

9 ATAAATCCAGCAACACCAGAAGGCCCGGCTCT 

10 TATCTGCGCGAGGAAAGCAGCTATACGCAGCC 

11 TGCTGGAGATTAAATAATGACTGGTAATAACT 

12 TCAACGTCGCCGGCTTCTTCATGAATGCCGAC 

13 TTGGTGGTGTCCAGTGGGATGCGCAACTGTTG 

14 TTCAGGCGGGGCGCCAAACGCTGACGCCCTAC 

15 GCATCGCCTACTTTGCGCACGGCGGTCAATAC 

16 ACCACGTTCAAGAGCTGTTGCAGGGCGTCTCG 

17 TTGTCGACGAACCACATTTGCCCCCACAGATC 

18 ATACGGCGGACTTCGCTGCCCATTCCGGTTGC 

19 GCCGAGAGCATCGACATTATTGAAGCACTGGG 

20 TGAACGCCGCAGCCAAGTCGATGAAGCTCATG 

21 GCGAAGGCCGCAGGCGAGATAGTCATGTGGCAT 

22 TTTGCACTGGCTTGAGATACTCCTGCCAAACC 

23 GGAGTACACGCAGGACGCTGTGGTCACGACTGA 

24 TTCACCTCAAACTCGCCCTGGATCTCATCCAT 

25 TTCCGTCGGCTCCGGACATCCCTACGGACTCGA 

26 TTCACCGCTCAGTCGGTCAAGGCTCTGACCAA 

27 TGGCCGACGGCTCGTCATCGTCGCCTGGAAGG 

28 AGGCCATGAACAAGAAAAACGTTCAACTCAAG 

29 AAGAAAGGCAAGAAGGGCAAGAAGGGTGGACG 

30 GTCGGGCTCAGCGATCAAAACAACTTCAGGAC 

31 TGGGATCGCGAGATTGAAGCGCACGCCTTCAC 

32 GAAACGAAGCGCGATTTGTCTGGCATGAGCCT 

33 GTGATGGTTGAGCCGGCACGACCGCGCTGACC 

34 TCGGGTGCGCGGGGTGGTGAAGCTACCCCACA 

 

 

Only one spacer sequence, No. 34, showed any nucleotide identity to a known sequence as 

identified by BLASTN [253], although a single base substitution was present of the first G to 
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an A in the matched sequences. Three matches were found corresponding to plasmid 

sequences; a plasmid present in P. frederiksbergensis strain AS1, P. fluorescens strain PC20 

(plasmid pNAH20) and P. putida NCIB 9816-4 (plasmid pDTG1) and the single base pair 

substitution was conserved in all matches. These plasmids were found to encode naphthalene 

degrading enzymes, including the plasmid originating from P. frederiksbergensis strain AS1 

which has been demonstrated to be a naphthalene-degrading bacterium [277]. None of the 

spacer regions showed similarity to the sequences of the phage identified during this study.  

 

Restriction Endonuclease Systems  

 

In total 7 ORFs that were predicted to encode restriction endonucleases were identified within 

the P. agarici 2472 genome. These are outlined in Table 3.13.  

 

Table 3.13. Predicted restriction endonuclease proteins of P. agarici NCPPB 2472.  

 

Protein:  Start: End: Locus Tag: 

Restriction endonuclease <1266141 

 

1266375 

 

RS05570 

 

Restriction endonuclease subunit R 1277574 

 

1280486 

 

RS05645 

 

Restriction endonuclease 4212986 

 

4213897 

 

RS18565 

 

Type I restriction endonuclease subunit R 4213907 

 

4217116 

 

RS18570 

 

Restriction endonuclease subunit S 4217117 

 

4217992 

 

RS24540 

 

Restriction endonuclease subunit S 4239877 

 

4241145 

 

RS18660 

 

Type I restriction endonuclease subunit R 4242778 

 

4245888 

 

RS18670 

 

 

 

Of these 7 ORFs, 3 were predicted to encode the restriction (R) subunits (RS05645, RS18570, 

RS18670) and 2 to encode the specificity (S) subunits (RS24540, RS18670).  

Two SAM-dependent DNA methyltransferase encoding ORFs were identified that are 

associated with 4 of the restriction endonuclease ORFs identified, one (RS18580) which is 
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associated with the restriction endonuclease subunits RS18565 and RS18570, and a second 

(RS18665) which is located between the S and R restriction endonuclease subunits RS18660 

and RS18670.  

 

 

Alginate 

 

I have identified an operon comprised of 12 genes within the genome of P. agarici 2472, shown 

in Table 3.14, hypothesised to be involved in the production of alginate.  

All 12 ORFS within this operon are orthologous to the 12 proteins (AlgD, Alg8, Alg44, AlgK, 

AlgE, AlgG, AlgX, AlgL, AlgI, AlgJ, AlgF, and AlgA) required for alginate production and 

export in Pseudomonas [276].  

 

Table 3.14. Predicted alginate biosynthesis proteins of P. agarici NCPPB 2472. 

 

ORF 

No. 

Predicted Function: Locus Tag: Ortholog: 

1 GDP-mannose 6-dehydrogenase RS03600 AlgD 

2 glycosyl transferase RS03595 Alg8 

3 alginate biosynthesis protein Alg44 RS03590 Alg44 

4 alginate biosynthesis protein RS03585 AlgK 

5 alginate biosynthesis protein AlgE RS03580 AlgE 

6 poly(beta-D-mannuronate) C5 epimerase RS03575 AlgG 

7 alginate O-acetyltransferase RS03570 AlgX 

8 mannuronate-specific alginate lyase RS03565 algL 

9 poly(beta-D-mannuronate) O-acetylase RS03560 AlgI 
10 alginate O-acetyltransferase RS03555 AlgJ 
11 alginate O-acetyltransferase RS03550 AlgF 

12 

mannose-1-phosphate guanylyltransferase/mannose-
6-phosphate isomerase RS03545 AlgA 
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3.4      Pseudomonas sp. NS1(2017)  

 

The strain that I have provisionally named ‘Pseudomonas sp. NS1(2017)’ was first identified 

from plate counts of P. tolaasii washed from the surface of Agaricus bisporus mushrooms 

showing no previous symptoms of disease, where it was found to both bear a strikingly similar 

colony morphology to P. tolaasii and to rapidly outgrow P. tolaasii NCPPB 2192T cultures on 

KB agar, further analysis revealed it to also be Gram negative.   

 

 
Figure 3.12. Streak plate of Pseudomonas sp. NS1 on KB agar after 72 hours at 28C.  

 

 

Pseudomonas sp. NS1 was observed to produce a fluorescent pigment on KB agar similar to 

that of P. tolaasii, as shown in Figure 3.12. It was hypothesised from the plaque morphology 

and Gram staining results that P. sp NS1 may be a member of the fluorescent Pseudomonads 

or potentially a faster growing strain of P. tolaasii and so further investigation was undertaken.  

 

3.4.1      Phylogeny  

 

To infer the phylogenetic relationship of Pseudomonas sp. NS1 among the Pseudomonas genus 

and assist in taxonomic placement, a Maximum-Likelihood analysis was performed on the 

DNA sequence returned from whole-genome sequencing using 5 housekeeping genes (23s 

rlmJ, 16S rrs, rpoD, gyrB and rpoB) of 14 Pseudomonas strains, as well as E. coli K12 for 
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rooting the phylogenetic tree, using the Tamura-Nei model [261]. The final tree with the 

highest log likelihood (-55462.6960) is shown in Figure 3.13.  

 

 
Figure 3.13. Molecular phylogenetic analysis of Pseudomonas sp. NS1 (highlighted) by 

Maximum Likelihood method. The percentage of trees in which the associated taxa clustered 

together is shown next to the branches. The tree is drawn to scale, with branch lengths measured 

in the number of substitutions per site. The analysis involved 15 nucleotide sequences. Codon 

positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing 

data were eliminated. There were a total of 9210 positions in the final dataset. Evolutionary 

analyses were conducted in MEGA6.06. 

 

As shown in Figure 3.13, Pseudomonas sp. NS1 is clustered among members Pseudomonas 

azotoformans species, however it is on a separate branch to the closely related P. azotoformans 

S4. It is therefore likely that P. sp NS1 forms part of the P. fluorescens lineage of the P. 

fluorescens complex of the Pseudomonas intrageneric cluster II as reported by Yamamoto et 

al. [272]. 
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3.4.2      Sequencing and genome organisation 

 

In total, the Illumina MiSeq full genome sequencing run performed by Source Bioscience of 

P. sp NS1 returned 527.6 Mbases with a coverage of approximately 75 fold. The reads were 

assembled in to 546 contigs by Source Bioscience, with a total sequence length of 7,069,489 

bp. The contigs returned by Source Bioscience were mapped to the genome of Pseudomonas 

azotoformans S4 using CONTIGuator 2.7.4 [251] which returned 83 contigs, containing a total 

of 6,702,516 bp. The final mapped contigs were aligned to the genome using ACT, the results 

are shown in Figure 3.14.  

 
 

Figure 3.14. Alignment of Pseudomonas sp NS1 contigs (B.) to the genomic sequence of 

Pseudomonas azotoformans S4 (A.), figure generated by CONTIGuator 2.7.4 [251]. 

 

 

As is evident in Figure 3.14, the mapped contigs of P. sp NS1 and P. azotoformans S4 show 

large areas of collinear similarity, as indicated by red bars, this is borne out by the total 

nucleotide identity as determined by BLASTN [253] of 98% over 84% of the total assembled 

genome.  

 

The returned contigs, in a single scaffold, were annotated using the NCBI Prokaryotic Genome 

Annotation Pipeline, the full results are available under the accession code CP022960.  

Of the 6,241 ORFs identified, 6,073 were identified as being protein coding and 72 RNA 

encoding genes were identified; including 60 tRNAs, 8 complete rRNAs (5S, 16S, 23S) and 4 

ncRNAs. The total gene count is lower than the count of the closely related P. azotoformans 

S4 (6,241 vs. 6,324) and P. fluorescens LMG 5329 (6,241 vs. 6,429), correlating with the lower 

overall genome size.  

A.

B.
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Table 3.15. Comparison of the genomes and predicted genes of P. sp NS1, P. azotoformans 

S4 and P. fluorescens LMG 5329. 

 

Strain  Total 

(bp) 

ORFs Encoding Genes 

(RNA) 

tRNA rRNA ncRNA GC 

(%) 

NS1(2017)  6,702,516 6,241 6,073 72 60 8 4 61.08 

S4 6,859,618 6,324 5,991 94 70 19 5 60 

LMG 5329 6,870,020 6,429 6,216 63 57 2 4 60.5 

 

 

A full circular genome map was created using the DNAPlotter function of Artemis v16.0.0.1 

in order to visualise the returned data and is shown in Figure 3.15. 

 

To further aid in taxonomic classification and to calculate the probability that P. sp NS1 was a 

strain of either P. azotoformans or P. fluorescens the full draft genome was analysed using the 

JSpecies [278] work package. The results of the pairwise comparison of the draft genome of 

P. sp NS1 using average nucleotide identity showed that it was most closely related to P. 

fluorescens LMG 5329 and P. azotoformans S4 with scores of 93.43% and 93.32% respectively 

(TETRA score 0.99858 and 0.99892 respectively). Full results of all analysis conducted are 

available in Appendix 4 Tables Ap4.2 and Ap4.3.  
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Figure 3.15. Circular map of the Pseudomonas sp. NS1 genome with the genes encoded on 

the positive strand in the first lane (grey), the negative strand in the second lane (blue) and the 

tRNA genes in the third lane (green). The deviation in GC content from the total average is 

illustrated in the centre circle with yellow bars denoting an above average content and purple 

bars, a below average GC content. Figure generated using DNAPlotter function of the Artemis 

v16.0.0.1 genome browser. 
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3.4.3      Secondary metabolites and NRPSs 

 

In total 10 complete or partial NRPSs were identified within the genome of P. sp NS1, with 8 

of these located in two distinct clusters. A NRPS containing biosynthetic gene cluster 

containing 6 whole and partial NRPSs as shown in Table 3.16, was predicted by antiSMASH 

v3.0 [262] to potentially produce the lipopeptide poaeamide. 

 

Table 3.16. Predicted proteins of the WLIP production cluster 2 of P. sp. NS1.  

 

ORF 

No. Predicted Function:  Locus Tag: 

1 MATE family efflux transporter CI807_19185 

2 TetR/AcrR family transcriptional regulator CI807_19190 

3 MFS transporter CI807_19195 

4 toxin-antitoxin system HicB family antitoxin CI807_19200 

5 type II toxin-antitoxin system HicA family toxin CI807_19205 

6 non-ribosomal peptide synthetase CI807_19210 

7 peptide synthase CI807_19215 

8 non-ribosomal peptide synthetase CI807_19220 

9 non-ribosomal peptide synthetase CI807_19225 

10 non-ribosomal peptide synthetase CI807_19230 

11 TonB-dependent siderophore receptor CI807_19235 

12 cyclic peptide transporter CI807_19240 

13 N(5)-hydroxyornithine transformylase PvdF CI807_19245 

14 chromophore maturation protein PvdO CI807_19250 

15 aminotransferase CI807_19255 

16 peptidase M19 CI807_19260 

17 PvdJ/PvdD/PvdP-like protein CI807_19265 

18 non-ribosomal peptide synthetase CI807_19270 

19 non-ribosomal peptide synthetase CI807_19275 

20 macrolide transporter subunit MacA CI807_19280 

21 MacB family efflux pump subunit CI807_19285 

22 LuxR family transcriptional regulator CI807_19290 

23 methionine gamma-lyase CI807_19295 

24 Lrp/AsnC family transcriptional regulator CI807_19300 

 

However, BLASTN [253] analysis of the NRPSs within the cluster showed that it has a 

significantly higher nucleotide identity to the lipopeptide production system gene cluster for 

white line-inducing principle (WLIP) of Pseudomonas fluorescens strain LMG 5329 cluster 2. 
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This would indicate that it is more likely this gene cluster encodes the WLIP, a lipopeptide of 

the viscosin group, than poaeamide [279].  

 

A second NRPS (CI807_26350) similarly identified by antiSMASH v3.0, when analysed by 

BLASTN [253] showed significant nucleotide identity to the WLIP production cluster 1 of 

Pseudomonas fluorescens LMG 5329. However, small amino acid differences in the sequence 

of the NRPSs can confer significant changes in function of the final peptide, therefore sequence 

alone is not enough to conclude that these NRPS clusters produce WLIP [279].  

 

Further in silico analysis showed that the NRPSs in the initial cluster, as shown in Table 3.16, 

not only showed nucleotide identity, but also a conserved pattern of gene encoding ORFS when 

compared to the WLIP production cluster 2 of Pseudomonas fluorescens strain LMG 5329. A 

direct visual comparison of gene organisation in the identified cluster of Pseudomonas sp. NS1 

and the WLIP production cluster 2 of Pseudomonas fluorescens strain LMG 5329 is shown in 

Figure 3.16. 

 

 
 

Figure 3.16. Diagram of gene organisation of WLIP production cluster 2 of A) Pseudomonas 

sp. NS1 and B) Pseudomonas fluorescens strain LMG 5329; NRPSs illustrated in grey, 

‘Nx100’ regions illustrated in red, ORFS 1-5 of P. sp NS1 illustrated in green, ORFS 11-17  of 

P. sp NS1 in blue and ORFS 20-24 of P. sp NS1 in orange with their corresponding orthologs 

in B) highlighted using the same colour scheme. Figure generated using Microsoft PowerPoint.  

 

The first NRPSs within the cluster (ORFS 6-10) are incomplete due to regions of 100 N’s 

inserted during the assembly of the contigs are shown in Figure 3.16, line A. as red bars and 

appear to be fragmented parts of the 3 large NRPSs found in P. fluorescens LMG5329 in Figure 

3.16 B.  

A.

B.
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The ORFS 18 and 19 in Table 3.16, was predicted to putatively encode the WLIP synthetase 

B and C respectively. ORF 18 (CI807_19270) shows 97% amino acid identity to the WLIP 

synthetase B NRPS of P. fluorescens LMG 5329 and ORF 19 (CI807_19275) shows 96% 

amino acid identity to WLIP synthetase C NRPS of P. fluorescens LMG 5329. As shown in, 

Figure 3.16, ORFS 18 and 19 are flanked by pyoverdine synthesis genes upstream (illustrated 

in blue) and macrolide transporters downstream (illustrated in orange) an organisation pattern 

which has been identified by Rokni-Zadeh et al. [279] to be conserved in both the WLIP NRPS 

system of P. fluorescens strain LMG 5329 and the viscosin system of Pseudomonas fluorescens 

SBW25. 

 

In order to determine if Pseudomonas sp. NS1 produced WLIP, P. sp NS1 was cultured 

alongside P. tolaasii 2192T; a distinct white precipitate formed within the agar, shown in 

Figure 3.17, which confirms that the biosynthetic gene clusters identified most likely encode 

the NRPS system for WLIP production rather than any other of the viscosin-related 

nonapeptides.  

 
Figure 3.17. Co-culturing of P. tolaasii NCPPB 2192T, left of image, and Pseudomonas sp. 

NS1, right of image, on KB agar after 72 hours showing white co-precipitate of tolaasin and 

WLIP. 
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3.4.4      Phage resistance systems 

 

Alginate  

 

Similar to both P. tolaasii 2192T and P. agarici 2472, an operon predicted to encode the genes 

required for alginate biosynthesis was identified within the genome of P. sp. NS1 that could 

possibly act to mask cell surface receptors from phage. In comparison to the operon in P. 

agarici which contained predicted proteins orthologous to the 12 proteins required for alginate 

synthesis, the operon in P. sp. NS1 contains 13 predicted proteins, shown in Table 3.17, and 

lacks a protein orthologous to AlgE but also contains an additional hypothetical protein in ORF 

position 12.  

 

Table 3.17. Predicted alginate biosynthesis proteins of P. sp. NS1. 

 

ORF 

No. 

Predicted Function: Locus Tag: Ortholog: 

1 nucleotide sugar dehydrogenase CI807_11825 AlgD 

2 glycosyl transferase CI807_11820 Alg8 

3 hemolysin D CI807_11810 Alg44 

4 alginate biosynthesis protein CI807_11805 AlgK 

5 transcriptional regulator CI807_11800 / 

6 poly(beta-D-mannuronate) C5 epimerase CI807_11795 AlgG 

7 alginate O-acetyltransferase CI807_11790 AlgX 

8 mannuronate-specific alginate lyase CI807_11785 AlgL 

9 MBOAT family protein CI807_11780 AlgI 
10 alginate O-acetyltransferase CI807_11775 AlgJ 
11 alginate O-acetyltransferase CI807_11770 AlgF 

12 hypothetical protein CI807_11765 / 

13 mannose-1-phosphate 
guanylyltransferase/mannose-6-phosphate 
isomerase CI807_11760 AlgA 

 

 

 

Restriction Endonuclease Systems  

 

No CRISPR-associated repeats or proteins were identified in within the genome of P. sp. NS1, 

however 4 predicted restriction endonuclease proteins were identified, as shown in Table 3.18. 
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Table 3.18.  Predicted restriction endonuclease proteins of P. sp. NS1.  

 

Protein:  Start: End: Locus Tag: 

restriction endonuclease subunit M 3169222 3170016 CI807_15035 

restriction endonuclease subunit S 4531120 4531992 CI807_21265 

restriction endonuclease (McrC) 5903408 5904724 CI807_27500 

restriction endonuclease (McrB) 5904721 5906754 CI807_27505 

 

The third and fourth proteins (CI807_27500 and CI807_27505) contain McrC and McrB 

conserved domains respectively, the McrB conserved domain is associated with the GTP-

binding regulatory subunit of the methylcytosine specific McrBC restriction endonuclease of 

E. coli K-12 [273]. As the McrBC restriction endonuclease cleaves foreign methylated DNA, 

it does not possess an associated methyltransferase [280].  
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3.5      Discussion 

 

The Pseudomonas genus is large, complex, and rapidly expanding, with a current total of 238 

species and 18 subspecies recognised and published in the List of Prokaryotic Names with 

Standing in Nomenclature [281]; a significant increase from 144 species and 10 subspecies 

recognised in 2014 [282]. Since the genus was first described in 1894 [283] based on 

morphology and metabolism, the taxonomic status has undergone many revisions with the 

advent of new technologies, such as the use of nucleic acid homologies [284] and 16S rRNA 

gene sequences [13, 23].  

 

The use of 16S rDNA (rrs gene) alone to resolve phylogenetic relationships, however, is 

limited for a variety of reasons. These include the intraspecies heterogeneity of rrs sequences 

frequently resulting from multiple copies of the rrs gene within a genome [285], which can 

impact the accuracy of sequencing; and also the lack of rrs sequence diversity within closely 

related strains or even species due to the slow evolution of the rrs gene [286].  

 

Instead, a multilocus sequence analysis (MLSA) method using several genes of varying rates 

of evolution, including protein encoding genes that are reported to evolve faster than rRNA 

[287], can be used to infer phylogeny. It has previously been demonstrated that the 

housekeeping genes rrs, gyrB and rpoD are suitable candidates for accurate phylogenetic and 

taxonomic analysis for both Pseudomonads and other bacterial genus [272, 288, 289].  

 

For this study, a single concatenated sequence comprised of a single rRNA gene, rrs, as well 

as the rpoD, rpoB, RlmJ and gyrB genes was used to provide both a slow-evolving rDNA 

sequence and fast-evolving protein-encoding DNA sequence to most accurately analyse the 
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phylogenetic relationship of P. tolaasii 2192T both among the Pseudomonas genus and within 

other closely related P. tolaasii strains. 

 

The gyrB gene encodes one of two subunits (gyrA/gyrB) of the prokaryotic DNA gyrase 

protein, which is responsible for general DNA supercoiling as well as chromosome partitioning 

and is ubiquitous among bacteria [290]. The rpoD gene encodes the RNA polymerase σ70 

factor, that allows promoter-specific transcription initiation of RNA polymerase [291]. The 

rpoB gene encodes the β-subunit of the DNA dependent RNA polymerase [292]. The RlmJ 

gene encodes the methyltransferase RlmJ which catalyses the methylation of 23S rRNA during 

ribosome biogenesis and is ubiquitous among bacteria [293].  

 

In the case of P. tolaasii 2192T, the results of the phylogenetic analysis shown in Figure 3.2 

agree with the phylogeny reported by Yamamoto et al. [272] which utilised a more limited 

gene selection (gyrB and rpoD alone); with P. tolaasii 2192T clustering with the closely related 

P. azotoformans and P. fluorescens which are all members of the Pseudomonas intragenic 

cluster II,  P. fluorescens complex, P. fluorescens lineage. However, it is unusual that P. 

tolaasii 2192T is located on a separate branch to P. tolaasii 6264 and PMS117 indicating, as 

previously mentioned, that it may have diverged earlier from the other members of the P. 

tolaasii species. Likewise, with P. agarici NCPPB 2472 the phylogenetic results attained in 

this study, shown in Figure 3.5, confirm the previous work on phylogenetic relationships of P. 

agarici strains by Yamamoto et al. [272]; with P. agarici NCPPB 2472 showing tight 

clustering with P. agarici strains NCPPB 2280 and LMG 2112 in a monophyletic branch within 

the P. chloroaphis lineage, itself within the P. fluorescens complex of the Pseudomonas 

intrageneric cluster II. 
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The agreement of the results of the phylogenetic analysis in this study of both P. tolaasii 2192T 

and P. agarici NCPPB 2472 with the results previously published by Yamamoto et al. [272] 

increases confidence in the results of the analysis performed on P. sp. NS1, shown in Figure 

3.13, which show that P. sp. NS1 clusters with members of the P. azotoformans species, within 

part of the P. fluorescens lineage of the P. fluorescens complex of the Pseudomonas 

intrageneric cluster II as reported by Yamamoto et al. [272]. To further aid in taxonomic 

classification and to calculate the probability that P. sp. NS1 was a strain of either P. 

azotoformans or P. fluorescens the full draft genome was analysed using the JSpecies [278] 

work package, a form of in silico DNA-DNA hybridisation, which identified that P. sp. NS1 

was most closely related to P. fluorescens LMG 5329 and P. azotoformans S4, with scores of 

93.43% and 93.32% respectively (TETRA score 0.99858 and 0.99892 respectively). From this 

we can deduce that it is likely that P. sp. NS1 is a novel strain of either the P. azotoformans or 

P. fluorescens species.  

 

In order to fully characterise the Pseudomonas species used in this study at the genetic level, 

full genome sequencing was performed, and the returned sequences assembled in to scaffolds 

based on mapping of the contigs returned by Source Bioscience to closely related species. In 

the case of P. agarici NCPPB 2472, contig mapping was performed utilising both P. agarici 

NCPPB 2289 and P. fluorescens A506, to provide two data sets from which to design PCRs in 

order to confirm contig ordering and ‘stitch’ the remaining contig junctions with sequence from 

amplified inter-contig regions. The initial contig mapping to both P. fluorescens A506 and P. 

agarici NCPPB 2289, illustrated in Figures 3.6 and 3.7 shows that P. agarici NCPPB 2472 

shares significantly larger areas of collinear similarity with P. agarici NCPPB 2289. However, 

during the process of stitching these contigs via PCR and Sanger sequencing the resultant 

products, the results of which are shown in Figures 3.9 and 3.10, it was clear that the reactions 
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based on contig mapping to P. fluorescens A506 returned a larger number of significantly 

clearer bands on agarose gel than the reactions based on the contig mapping to P. agarici 

NCPPB 2289. This is further evident in the number of the reactions that returned valid 

sequencing data, with the reactions based on mapping to P. fluorescens A506 returning 8 

sequenced products from 30 reactions (26%), compared to 3 sequenced products from the 46 

reactions based on alignment to P. agarici NCPPB 2289 (7%). Difficulties were encountered 

due to a large number of self-priming primers during the contig stitching PCRs, possibly due 

to the presence of inverted repeats within the contig junction sequence. The results of the contig 

stitching PCRs would appear to show that the genome arrangement of P. agarici NCPPB 2472 

is more similar to that of P. fluorescens A506 than to the closely related strain P. agarici 

NCPPB 2289, despite the larger regions of collinear similarity.  

 

The assembled genomic sequences of P. tolaasii 2192T, P. agarici NCPPB 2472 and P. sp. 

NS1 were then mined for potential biosynthetic gene clusters involved in the production of 

virulence factors, including toxins such as tolaasin [44], or siderophores such as pyoverdines 

[33]. Likewise, the genomic sequences were analysed for phage resistance mechanisms that 

may impede the use of bacteriophage as a potential treatment of infections of Agaricus bisporus 

mushrooms caused by either P. tolaasii or P. agarici.   

 

Within the genome of P. tolaasii NCPPB 2192T I identified 6 ORFS, shown in Table 3.2, with 

significant amino acid identity (72-86%) to the proteins TaaA-TaaE of P. costantinii which 

have been demonstrated by Scherlach et al. [50] to be involved in the production of Tolaasin 

I. P. tolaasii NCPPB 2192T has been reported to produce Tol I Tol II and Tol A-E by Bassalero 

et al. [47], therefore we can conclude that based on the amino acid identity and the similarities 

in gene organisation outlined that is likely the NRPSs identified in Table 3.2 are involved in 
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the production of Tolaasin I. However, the biosynthetic cluster identified by Scherlach et al. 

[50] occurs as a single cluster whereas the NRPSs identified in this study are located 

sporadically throughout the genome of P. tolaasii 2192T and also include at least one NRPS 

that has been incorrectly assembled (RS02650); it is likely that this is due to errors in the initial 

contig assembly stage of the full genome sequencing caused by the repetitive nature of NRPS 

sequence and that the NRPSs identified should occur as a single cluster.  

Similarly, two of the further NRPSs identified within the genome of P. tolaasii 2192T, 

RS16165 and RS16170 were initially split during in silico assembly of the returned contigs but 

were found to be likely to instead consist of a single large NRPS. This larger NRPS of 

approximately 1751 aa in total showed amino acid identity, as identified by BLASTP [253], to 

the known pyoverdine biosynthesis genes PvdJ of Pseudomonas syringae pv. daphniphylli and 

the pyoverdine sidechain peptide synthetase of P. fluorescens. Likewise, an ORF downstream 

of these NRPSs was also found to show amino acid identity to the PvdJ protein of P. aeruginosa 

62. Pyoverdines are fluorescent siderophores that are important virulence factors in many 

fluorescent Pseudomonas species [33, 294]. The presence of a TonB-dependent siderophore 

upstream of these putative NRPSs and their similarity to known pyoverdine synthesis proteins 

indicates this cluster is likely to be involved in the synthesis of pyoverdine or related 

chromophore.  

 

Within the genome of P. agarici NCPPB 2472 I identified the presence of multiple clusters of 

NRPSs, including a single large cluster comprised of 5 NRPSs outlined in Table 3.8, as well 

as two smaller clusters composed of a single NRPS each. However, it was not possible to 

predict the function of the NRPS containing biosynthetic gene clusters via in silico analysis of 

the nucleotide or amino acid composition, although it is likely that they produce a siderophore. 

However, a large biosynthetic cluster was identified within the genome of P. agarici NCPPB 
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2472, shown in Table 3.10, that is predicted to encode the proteins involved in the synthesis of 

the siderophore achromobactin. Achromobactin production was first identified by Munzinger 

et al. [295] in the bacterium formally known as Erwinia chrysanthemi (now Dickeya dadantii 

[296]), as a siderophore derived from the precursor citrate. Berti and Thomas [61] reported in 

2009 that P. syringae pv. syringae B728a is capable of achromobactin synthesis and that it is 

produced via NRPS-independent synthetases; demonstrating that the enzymes AcsD, AcsA and 

AcsC are capable of converting citrate to achromobactin. They have likewise demonstrated 

that a 12 ORF region of the P. syringae pv. syringae B728a genome is responsible for the 

biosynthesis of achromobactin [61]. I have identified a biosynthetic gene cluster in P. agarici 

NCPPR 2472, as shown in Table 3.10, that is predicted to encode the enzymes required for 

achromobactin synthesis (AcsD, AcsA and AcsC). This gene cluster shows striking similarity 

in ORF organisation to the cluster of P. syringae pv. syringae B728a, as shown in Figure 3.11, 

as well as a high degree of amino acid identity between the predicted gene products, ranging 

from 72-91% (by comparison the amino acid identity between the achromobactin synthesis 

proteins of P. syringae pv. syringae B728a and Dickeya dadantii is reported as between 64-

72% [61]). I therefore suggest that P. agarici NCPPB is likely to produce the siderophore 

achromobactin under iron-limited conditions. Both Dickeya dadantii and P. syringae pv. 

syringae B728a produce a second siderophore in addition to achromobactin, in the case of 

Dickeya dadantii this is chrysobactin and for P. syringae pv. syringae B728a it is pyoverdine 

[61, 295, 297]. It has been suggested that in both cases that the primary siderophore, 

achromobactin, is required for epiphytical growth and that their secondary siderophores are 

reserved for active infection [61, 298, 299]. It is therefore possible that one of the identified 

NRPS clusters of P. agarici NCPPB 2472 is involved in production of a siderophore, such as 

pyoverdine, utilised in active infection of Agaricus bisporus and that the predicted 

achromobactin siderophore is utilised during non-infective growth in the environment.  
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Within the genome of P. sp NS1 I identified 10 complete or partial NRPSs, 8 of which reside 

in two distinct clusters. A single cluster containing 6 NRPSs was identified, shown in Table 

3.16, which showed nucleotide identity to the WLIP production cluster 2 of Pseudomonas 

fluorescens strain LMG 5329. WLIP, a subtype of the viscosin-related nonapeptides [41], 

produces a precipitate in agar medium when a WLIP producing Pseudomonas strain is co-

cultured alongside a strain of tolaasin producing Pseudomonas tolaasii; however minor 

differences in amino acid sequence can confer significantly differing biological properties, for 

example viscosin, which differs from WLIP in only one amino acid residue fails to produce a 

precipitate when co-cultured alongside P. tolaasii [42].  

A second, ORFan, NRPS (CI807_26350) was identified that showed nucleotide identity to 

WLIP production cluster 1 of Pseudomonas fluorescens LMG 5329. It was then further 

identified that the 6 NRPS containing cluster with similarity to the WLIP production cluster 2 

of Pseudomonas fluorescens strain LMG 5329 also shared a conserved gene organisation, as 

illustrated in Figure 3.16, which has been identified by Rokni-Zadeh et al. [279] to be 

conserved in both the WLIP NRPS system of P. fluorescens strain LMG 5329 and the viscosin 

system of Pseudomonas fluorescens SBW25. 

 

The conserved gene organisation and further amino acid identity analysis which identified high 

levels of similarity between the NRPSs within the P. sp. NS1 cluster and the WLIP synthetases 

of P. fluorescens LMG 5329 led to the hypothesis that the identified gene cluster was likely to 

encode the proteins required for WLIP synthesis. This hypothesis was tested by co-culturing 

P. sp. NS1 alongside P. tolaasii 2192T, revealing a white precipitate as illustrated in Figure 

3.17, confirming that P. sp. NS1 is capable of WLIP production and that is most likely 

produced by the NRPSs and associated proteins identified in Table 3.16.  
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Although a wide variety of secondary metabolites involved in host colonisation and invasion 

by Pseudomonas species are produced by NRPS’s, many are produced by more traditional 

assembly routes; therefore, further biosynthetic clusters that may confer advantages on the host 

surface were identified and characterised, including putative phage tail-like bacteriocin (PTLB) 

encoding genes. PTLBs are bacteriocins of which there are three broad types, F, R and S [68]. 

Both the F and R type PTLBs resemble bacteriophage tail proteins, with the R type being most 

similar to contractile phage tails [300, 301] and the F type being flexible non-contractile rods 

similar to flexible phage tails [302] and are likely both of phage origin [303]. PTLBs are very 

common in Pseudomonas strains, with 90% P. aeruginosa strains being reported to produce 

either the F or R type [304]. Putative PTLB encoding operons were identified in both P. tolaasii 

2192T and P. agarici NCPPB 2472, shown in Table 3.3 and 3.9 respectively, with the operon 

for P. agarici NCPPB 2472 consisting of a total of 19 ORFs and the smaller operon for P. 

tolaasii NCPPB 2192T consisting of only 13 ORFs in comparison.  

 

As previously mentioned the genomes of P. tolaasii NCPPB 2192T, P. agarici NCPPB 2472 

and P. sp. NS1 were also mined for the presence of phage resistance genes that may prevent or 

hinder the possible use of bacteriophage in the treatment of Agaricus bisporus mushrooms.  

 

Within the genome of P. agarici NCPPB 2472 I have identified multiple phage resistance 

systems, including a complete CRISPR/Cas system. No confirmed CRISPRs or CRISPR-

associated proteins were identified in the genomes of the closely related P. agarici NCPPB 

2289, P. agarici LMG 2112 or within either of the genome sequences of P. tolaasii NCPPB 

2192T or P. sp. NS1. The Cas proteins of P. agarici NCPPB 2472 are characteristic of a Type 

1 Subtype I-F CRISPR system, Subtype I-F CRISPR systems have also been documented in 
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Pseudomonas aeruginosa PA14 [239], Pseudomonas aeruginosa strain UCBPP-PA14 [305], 

Pectobacterium atrosepticum [237] as well as certain strains of E. coli, where it was reported 

to be more frequently found in strains susceptible to antimicrobials, possibly due to interference 

in resistance plasmid acquisition [306]. The repeat consensus identified in P. agarici NCPPB 

2472 was 28bp in length and a total of 33 spacer regions were associated with the identified 

repeats. Of the 34 spacer sequences, only a single sequence showed any similarity to known 

sequence, as identified by BLASTN [253], with a single base pair substitution. This sequence 

corresponded to 3 plasmid sequences present in the Pseudomonas strains: P. frederiksbergensis 

strain AS1, P. fluorescens strain PC20 (plasmid pNAH20) and P. putida NCIB 9816-4 

(plasmid pDTG1). The identified plasmid sequences were found to encode naphthalene 

degrading enzymes, including the plasmid that was identified from P. frederiksbergensis strain 

AS1, which been demonstrated to be a naphthalene-degrading bacterium [277]. None of the 

spacer regions showed any nucleotide identity to the genomic sequences of any of the phage 

used in the course of our study.  

 

While only P. agarici NCPPB 2472 was identified as possessing a CRISPR/Cas system, all of 

the Pseudomonas strains I have sequenced and mined possessed restriction endonuclease 

systems, which are a well-documented method by which bacteria are able to resist phage 

infection [203].  

Within the genome of P. tolaasii 2192T several resistance endonucleases were identified, as 

shown in Table 3.4. The restriction endonucleases identified included a probable methylation-

dependent restriction endonuclease, RS17360, and a Type III restriction endonuclease, 

RS17410. This shows that P. tolaasii 2192T possesses defence mechanisms against phage 

infection, including by phages with previously methylated nucleotides. Similarly, within the 

genome of P. sp. NS1, two restriction endonuclease proteins (CI807_27500 and 
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CI807_27505), shown in Figure 3.18, were identified as containing McrC and McrB conserved 

domains respectively which are associated with the methylcytosine specific McrBC restriction 

endonuclease of E. coli K-12 [273]; indicating that similar to P. tolaasii NCPPB 2192T, P. sp 

NS1 is capable of cleaving previously methylated nucleotides. In comparison while multiple 

restriction endonucleases were identified within the genome of P. agarici NCPPB 2472, shown 

in Table 3.13, including two Type I restriction endonuclease R subunits (RS18570 and 

RS18670), no methylation-dependent restriction endonucleases were identified.  

 

A second potential phage resistance system was likewise identified in all three Pseudomonas 

species in this study, alginate. As previously mentioned, while not a specific phage resistance 

system, alginate can act to mask host receptors from phage and therefore can offer an advantage 

to the producing bacterium [200]. For P. tolaasii NCPPB 2192T a complete operon of 15 genes, 

shown in Table 3.5, was identified that was predicted to be involved in the production of 

alginate due to the presence of a gene encoding the alginate biosynthesis protein Alg44 

(RS11530), which has been demonstrated to be required for alginate biosynthesis in 

Pseudomonas aeruginosa [275] and AlgE, also reported to be involved alginate biosynthesis 

in Pseudomonas [276]. Within the genome of P. agarici NCPPB 2472 I have identified a 12 

ORF operon which is comprised of proteins orthologous to the 12 proteins (AlgD, Alg8, Alg44, 

AlgK, AlgE, AlgG, AlgX, AlgL, AlgI, AlgJ, AlgF, and AlgA) required for alginate production 

and export in Pseudomonas [276]. Therefore, it is highly likely that P. agarici NCPPB 2472 is 

capable of producing alginate. Similar to the operon of P. agarici NCPPB 2472, a cluster of 

13 genes was identified in the genome of P. sp NS1 that contains proteins orthologous to AlgD, 

Alg8, Alg44, AlgK, AlgG, AlgX, AlgL, AlgI, AlgJ, AlgF and AlgA, which are required for 

alginate production and export in Pseudomonas [276]; although unlike the operon identified in 

P. agarici NCPPB 2472, it lacks a protein orthologous to AlgE and also contains an additional 
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hypothetical protein in ORF position 12. However, the presence of 11 out of the 12 genes 

required for alginate production and export indicates this cluster is highly likely to be involved 

in the production of alginate in P. sp. NS1. 
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4.1      Introduction 

 

While the previous chapter has characterised the P. tolaasii NCPPB 2192T and P. agarici 

NCPPB 2472 genomes, including the presence of multiple phage resistance mechanisms, this 

chapter will focus on the identification and characterisation of bacteriophage capable of 

overcoming these resistance factors and utilising the bacteria as hosts; with the aim of 

elucidating the genetic and molecular basis of phage and host interaction and the possible use 

of the whole phage or phage proteins in the treatment of Pseudomonas infections of Agaricus 

bisporus mushrooms.  

 

While the majority of phage research involving Pseudomonas species revolves around the 

human pathogen P. aeruginosa [34], some research has been performed on bacteriophage 

capable of infecting P. tolaasii, for example recently Kim et al. have isolated 21 environmental 

phage of P. tolaasii of varying lytic ability [74] . To date no research has been published on 

phage capable of infection P. agarici.  

 

To enable the characterisation of the interaction of the phage-host relationship it was first 

necessary to isolate phage capable of infecting the host bacterium from environmental sources. 

Water samples were taken from the River Thames at select locations, as well as environmental 

samples from locations within the University of Reading campus and untreated sewage water 

samples. From these samples, two bacteriophages capable of causing lysis on P. tolaasii 

NCPPB 2192T and P. agarici NCPPB 2472 plates were identified; the first, named 

Pseudomonas phage NV1 was capable of infecting P. tolaasii 2192T and the second, named 

Pseudomonas phage ϕNV3, was capable of infecting P. agarici NCPPB 2472.  
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4.2      Isolation and characterisation of Pseudomonas phage NV1  

 

4.2.1   Phage morphology 

 

To aid in initial phage classification and guide future characterisation of phage NV1, a phage 

isolated from River Thames water, TEM imaging was performed, the resultant electron 

micrograph is shown below in Figure 4.1. TEM was performed on clarified phage lysates with 

negative staining using uranyl acetate. 

 

 
Figure 4.1. Electron micrograph at 80 kV of phage NV1 virion morphology, showing the 

icosahedral head and short tail (arrow) characteristic of the Podoviridae.  

 

TEM was performed on clarified phage lysates with negative staining using uranyl acetate. 

From the presence of a tail in Figure 4.1 we can confidently identify phage NV1 as a member 

of the Caudovirales. The head of NV1 is approximately 58 nm (  0.76 SD) in diameter and 

the short tail is approximately 26 nm (2.6 SD) in length, no tail fibers were visible on any TEM 

images returned. The presence of the short stubby tail and icosahedral head suggest that phage 

NV1 is a member of the Podoviridae family of the Caudovirales order. 
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Phage NV1 plaque morphology on P. tolaasii plaque assay plates show very small zones of 

lysis (< 2 mm) with a hazy appearance. The host range of NV1 is narrow, as shown in Table 

4.1, being capable of only infecting P. tolaasii NCPPB 2192T of the 8 Pseudomonas strains 

tested.  

 

Table 4.1. Host range assay results of phage NV1. 

 

Strain:  NV1 

Infection 

P. tolaasii NCPPB 2192T + 

P. agarici NCPPB 2472 / 

P. sp NS1 / 

P. syringae pv. morsprunorum R1 5244 / 

P. syringae pv. syringae 9097 / 

P. syringae pv. morsprunorum R2 5255 / 

P. fluorescens Pfo-1 / 

P. aeruginosa 14207 / 

 

 

4.2.2      Sequencing and genome organisation 

 

The results of the TEM imaging of phage NV1 indicated that it belonged to the Podoviridae, 

a family of phage within Group I of the Baltimore classification scheme, and therefore most 

likely possessed a dsDNA genome. The genetic material of phage NV1 was extracted using a 

Norgen Biotek Phage DNA Isolation Kit, returning 75 l of DNA at a concentration 128.9 

ng/l as determined by NanoDrop 2000. The genomic DNA was sent for sequencing by 

Source Bioscience on an Illumina MiSeq, with paired-end reads of 300 bp. The returned 

sequence for NV1 was a single contig of 45,059 bp in length, with a coverage of 55.8x, 

BLASTN [253] analysis of the returned sequence showed NV1 was closely related to the 

Pseudomonas fluorescens phage UFV-P2 (84% Identity across 86% of the genome), which is 

illustrated in the dot matrix shown in Figure 4.2, and so the genome of NV1 was oriented to 

be collinear to that of UFV-P2. The complete genome of phage NV1 is available on GenBank 

with the accession code: MG845684.1. 
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Figure 4.2. Dot matrix view identifying regions of similarity based upon the BLASTN [253] 

alignment. Phage NV1 sequence is represented on the X-axis and the numbers represent the 

bases of the genome sequence. Phage UFV-P2 is represented on the Y-axis. Alignments are 

shown in the plot as lines. Positive strand and protein matches are slanted from the bottom left 

to the upper right corner, negative strand matches are slanted from the upper left to the lower 

right. The number of lines shown in the plot is the same as the number of alignments identified 

by BLASTN[253]. 

 

The dsDNA genome of NV1 is approximately 45,059 bp in length, which is slightly smaller 

than that of the closely related UFV-P2, at 45,517 bp, consequently NV1 encodes 64 predicted 

ORFs compared to the larger 75 of UFV-P2 [108]. 57 of the 64 encoding ORFs (89%) found 

in NV1 show significant amino acid identity to encoding ORFs identified in UFV-P2. The 

genome of NV1 has a slightly higher GC content at 52.87% than is reported for UFV-P2 at 

51.5% [108], however it shares a similar bidirectional organization, illustrated graphically in 

Figure 4.3 with the early host conversion genes as well as the viral DNA replication genes 

being located within the positive strand, with the exception of the putative phage holin. The 

putative late stage genes encoding proteins involved in virion structure and assembly are 

encoded in the negative strand. 
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Figure 4.3. Graphical plot of the genome structure of Pseudomonas phage NV1, with the early 

host conversion genes in green, the DNA replication genes in light blue, the virion structure 

genes in dark blue, hypothetical proteins in grey and the cell lysis proteins in purple. The 

deviation in GC content from the total average is illustrated in the centre circle with yellow 

bars denoting an above average content and purple bars illustrating a below average GC 

content. Figure generated using DNAPlotter function of the Artemis v16.0.0.1 genome 

browser. 

 

 

Of the 64 predicted ORF’s, only 25 showed amino acid similarity to proteins of known or 

predicted function as identified by BLASTP [253], these are shown in Table 4.2. The majority 

of those with predicted functions are those that are involved in virion structure, assembly and 

DNA packaging which show high levels of amino acid sequence conservation among other 

closely related phage.  

 

Similarly, the ORF’s encoding for the replication genes at NV1_p21, p24, p25, p29 and p33 

putatively encoding an ATP-grasp enzyme, DNA primase/helicase, holin and two exons of the 

phage DNA polymerase respectively show, not only a high degree of amino acid sequence 
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conservation among closely related phage strains, but a very high nucleotide identity to UFV-

P2 (78-88% Ident) and unusual organisation of a putative holin located between the exons of 

the DNA polymerase [108]. 

 

The early host conversion genes, however, show the least conservation both among closely 

related phage strains and between phage NV1 and UFV-P2; consequently, the function of most 

is not deducible from the amino acid sequences, a full table of predicted NV1 ORF’S is 

available in Appendix 3, Table Ap3.1.  

 

Table 4.2. ORFs of phage NV1 with BLASTP [253] similarity to proteins of known or  

predicted function. 

 

Locus 

Tag 

Start 

Position 

Size 

(aa) 

Total 

GC (%) 

Predicted Function (putative): 

NV1_p11 5060 276 57.04 SPFH domain-containing protein 

NV1_p18 9913 384 54.46 Amidoligase 

NV1_p19 11098 489 53.5 Glutamine amidotransferase 

NV1_p21 12926 291 54.45 ATP-grasp enzyme 

NV1_p24 14445 584 51.51 DNA primase/helicase 

NV1_p25 16138 183 49.28 DNA polymerase part I 

NV1_p29 17588 85 51.4 Holin 

NV1_p33 18725 546 53.12 DNA polymerase Family A  

NV1_p38 22125 294 52.84 5’-3’ exonuclease 

NV1_p40 23888 120 52.06 Endonuclease 

NV1_p44 25881 295 53.48 Phage structural protein 

NV1_p45 26779 1057 53.64 Phage structural protein 

NV1_p46 29959 571 54.21 Phage structural protein 

NV1_p47 31676 134 52.08 Phage structural protein 

NV1_p48 32077 366 53.17 Phage particle protein  

NV1_p49 32699 93 54.6 Phage particle protein  

NV1_p52 34147 514 50.29 Phage particle protein  

NV1_p53 35699 211 51.41 Tail fiber protein 

NV1_p56 36755 209 50.32 Phage structural protein 

NV1_p58 37759 317 52.2 Major capsid protein 

NV1_p59 38730 333 51.7 Scaffolding protein 

NV1_p61 39969 712 50.16 Phage portal protein 

NV1_p62 42086 481 50.76 Terminase large subunit  

NV1_p63 43535 179 50.56 Lysozyme 

NV1_p64 43962 157 47.05 Phage structural protein 
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A common feature of the Luz24likeviruses is the reported presence of localized single-stranded 

breaks associated with the consensus sequence 5’-TACT/RTGMC-3’, for example the genome 

of Pseudomonas putida Phage tf contains 14 single-strand interruptions in the positive strand 

[307] and the genome of phage UFV-P2 contains 15 on the positive strand  [108]. 

In total, 13 potential single-strand nick sequences were identified in NV1, all in positive strand, 

with consensus sequence 5’-TACTRTGAC-3’; therefore, it is likely that the genome of NV1 

contains single-stranded nicks similar to other Luz24likeviruses.  

 

 

4.2.3      Phylogeny 

 

To analyse the phylogenetic clustering of NV1 within the LUZ24likevirus genus, the entire 

genomic nucleotide sequence was aligned by MUSCLE [260] and all gaps were removed from 

the sequence. A maximum parsimony analysis was chosen to predict evolutionary history due 

to the small number of sequences and likelihood of nucleotide conservation between them and 

run using Mega6.06. The resulting phylogenetic tree is shown in Figure 4.4.  
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Figure 4.4. Maximum parsimony analysis of Pseudomonas phage NV1 (•). The most parsimonious tree with length = 105449 is shown. The 

consistency index is (0.561417) the retention index is (0.693657), and the composite index is 0.392642 (0.389431) for all sites and parsimony-

informative (in parentheses). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 

replicates) are shown next to the branches [257]. The MP tree was obtained using the Subtree-Pruning-Regrafting (SPR) algorithm [258] with 

search level 1 in which the initial trees were obtained by the random addition of sequences (10 replicates). The tree is drawn to scale, with 

branch lengths calculated using the average pathway method [258]and are in the units of the number of changes over the whole sequence. The 

analysis involved 19 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing 

data were eliminated. There were a total of 24899 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.06 [256].
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The phylogenetic tree in Figure 4.4 confirms that NV1 and UFV-P2 are closely related and 

possibly of the same species, clustered together on an off-shoot of the branch most closely 

related to other phage of the Luz24likevirus genus of the Podoviridae family. Two 

phiKMVvirus phage were included in the analysis, Pseudomonas phage phi-2 and 

Pseudomonas phage phiKMV, which are located in a branch separate from the Luz24viruses 

towards the lower end of the tree. Likewise, the T7virus phages, Pseudomonas phage gh-1, 

Pseudomonas phage philBB-PF7A are located in a single branch closest to Enterobacteria 

phage T7 which was used to root the phylogenetic tree. A further phylogenetic analysis 

utilising only the large terminase subunit gene is available in Appendix 4, Figure Ap4.6, which 

confirms the results shown in Figure 4.4, with NV1 clustering closely with UFV-P2 and other 

Luz24likevirus members.  

 

4.2.4      Growth characteristics  

To characterise the ability of phage NV1 to lyse P. tolaasii a variety of kill curves were 

performed at different starting MOIs and over either 150 minutes, as shown in Figure 4.5, or 

700 minutes, as shown in Figure 4.6.  
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Figure 4.5. Growth curve of P. tolaasii infected with NV1 at a starting bacterial concentration 

of ~1x108 cfu/ml, incubated at 28C. Phage NV1 was added to the cultures at T=0 at an MOI 

of 1, 0.1, 0.01. Mean values of 10 replicates, error bars = +/- SEM.  

 

 

At an MOI of 1 after 50 minutes the OD dropped from 0.018 Abs to 0.011 Abs at 70-75 

minutes, a difference of 0.007 Abs, in comparison across the same time points at a MOI of 0.1 

there is a drop in OD of only 0.003 Abs. However, at a MOI of 0.01 the OD increases by a 

total of 0.007 Abs between 50 and 75 minutes. 

By 150 minutes the OD data in Figure 4.5 shows little change across all MOIs, however the 

final ODs vary greatly, at an MOI of 1 the final OD is 0.014 Abs, at an MOI of 0.1 the final 

OD is 0.025 Abs and at a MOI of 0.01 the final OD is 0.035 Abs; in comparison, the control 

OD at the final time point is significantly higher at 0.123 Abs. As OD is correlated with total 

bacterial cell count it is clear that the largest drop in bacterial cell count occurs at the highest 

MOI of 1 and that initial MOI correlates with the cell count at the final time point, with the 

largest MOIs demonstrating the lowest final ODs.  
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Figure 4.6. Growth curve of P. tolaasii infected with NV1 at a starting bacterial concentration 

of ~1x108 cfu/ml, incubated at 28C for 2 hours with a MOI of either 0.1, 0.001 or 0.001. OD 

at 595 nm was read every 5 minutes. Mean values of 10 replicates, error bars = +/- SEM. 

In order to determine the effectiveness of phage at lower MOI’s that would more accurately 

represent the conditions likely to occur on the surface of A. bisporus or within the casing soil 

layer a further set of kill curve experiments were performed as shown in Figure 4.6.  

At t=90 minutes the OD data for the MOI of 0.1 begins to deviate from the MOI of 0.001 which 

more closely matches the uninfected control in rate of OD increase. The rate of increase in OD 

of MOI of 0.1 begins to flatten at t=140 minutes at an OD of approximately 0.02 Abs, indicating 

that the rate of cell lysis is matching the rate of cell replication; the OD begins to once again 

rise beyond the t=250 minutes point and continues to rise before stabilising once again at 

around t=600 minutes, ending at an OD of approximately 0.18 Abs.  

The MOI of 0.01 roughly follows the rate of increase in OD of the control until t=160 minutes 

where it begins to flatten at an OD of approximately 0.03 Abs; similar to the MOI of 0.1, past 

t=250 minutes the OD begins to rise again, although it does not plateau towards the final time 
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point, it does however show a slowing in the rate of OD increase, ending at a final OD of 

approximately 0.35Abs.  

The lowest MOI of 0.001 only begins to flatten at t=195 minutes at an OD of approximately 

0.04 Abs, the largest OD of all MOI’s tested. However, past the t=250 time point, similar to 

both MOIs of 0.1 and 0.01 the OD begins to increase again across the remainder of the 

experiment, ending at a final OD of approximately 0.48 Abs.  

The uninfected control in contrast shows a steady rate of increase in OD until t=400 minutes 

where the rate of increase in OD begins to slow, ending at a final OD of 0.91 Abs. 

 

No single step growth curves or adsorption assays were performed with phage NV1 because 

of difficulties in getting accurate plaque counts due to the small size and hazy appearance of 

NV1 plaques.  
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4.3     Isolation and characterisation of Pseudomonas phage ϕNV3  

 

4.3.1   Phage morphology 

Pseudomonas phage ϕNV3 was initially identified from samples of untreated sewage where it 

was identified as causing plaques on plates of P. agarici NCPPB 2472 and was then imaged 

by TEM. TEM imaging of phage virion particles allows for a broad classification of the phage 

based on morphology. TEM was performed on clarified phage lysates with negative staining 

using uranyl acetate. From the presence of an extremely short tail in the electron micrograph 

in Figure 4.7, we can tentatively identify phage ϕNV3 as a member of the Caudovirales, similar 

to phage NV1. 

 

 
Figure 4.7. Electron micrograph at 80 kV, illustrating the virion morphology of ϕNV3, clearly 

visible are the icosahedral head and short tail characteristic of the Podoviridae. 

 

 

The head of ϕNV3 is approximately 43nm (1.5 SD) in diameter and an extremely short tail that 

is approximately 10 nm (3 SD) in length, with no tail fibers visible on any TEM images, similar 

to phage NV1. The presence of the short stubby tail and icosahedral head suggest that phage 

ϕNV3 is a member of the Podoviridae.  
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Figure 4.8. Plaque assay plate of phage ϕNV3 and P. agarici NCPPB 247 showing near-

confluent lysis. 

 

Phage ϕNV3 has a narrow host range, only infecting P. agarici NCPPB 2472, of all the 

Pseudomonas species tested, as shown in Table 4.4; on plaque assays of P. agarici, ϕNV3 

plaques show large clear plaques of approximately 3-5 mm in diameter, illustrated in Figure 

4.8.  

 

Table 4.4. Host range assay results of phage ϕNV3. 

 

Strain:  ΦNV3 

Infection 

P. tolaasii NCPPB 2192T - 

P. agarici NCPPB 2472 + 

P. sp NS1 - 

P. syringae pv. morsprunorum R1 5244 - 

P. syringae pv. syringae 9097 - 

P. syringae pv. morsprunorum R2 5255 - 

P. fluorescens Pfo-1 - 

P. aeruginosa 14207 - 
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4.3.2      Sequencing and genome organisation 

The results of the TEM imaging of phage ϕNV3 indicated that it belonged to the Podoviridae, 

a family of phage within Group I of the Baltimore classification scheme, and therefore most 

likely possessed a dsDNA genome. The genetic material of phage ϕNV3 was extracted using 

a Norgen Biotek Phage DNA Isolation Kit, returning 75 l of DNA at a concentration 126.4 

ng/l as determined by NanoDrop 2000. The genomic DNA was sent for sequencing by 

Source Bioscience on an Illumina MiSeq, with paired-end reads of 300 bp. Full genome 

sequencing of ϕNV3 returned a single contig of 43,184 bp in length with a coverage of 9.2x 

and an average GC content of 58.29%, which was confirmed with extensive primer walking 

combined with Sanger Sequencing. The complete genome of ϕNV3 was analysed by 

PhageTerm [270] for the presence of direct terminal repeats (DTRs), which identified a T7-

like packaging scheme with DTRs of 693bp in length. The completed sequence was uploaded 

to GenBank (Accession code: MG845683).  

 

ORFs over 100 bp in length were considered as potential genes and 49 ORFs were identified 

and predicted to encode proteins, all of the ORFs reside on the positive strand and the 

organisation of the genes shows significant similarities to that reported for ϕKMV [100] and is 

illustrated graphically in Figure 4.9; however the total nucleotide identity to any known phage 

is extremely low, with the largest as identified by BLASTN [253] to be 77% identity with only 

3% cover of the genome to phage ϕKMV. Of the 49 identified ORFs, 25 showed amino acid 

identity to phage proteins of known or predicted function as identified by BLASTP [253], these 

are shown in Table 4.5. A full table of all ORFs identified is available in Appendix 3, Table 

Ap3.2.  
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Figure 4.9. ϕNV3 genome organisation, green early host preparation genes, light blue is mid, 

dark blue late and structural, purple is lysis cassette, hypothetical proteins in grey, inner circle 

denotes GC usage with yellow being above average and purple being below average, genome 

is shown circular for illustrative purposes only. Figure generated using DNAPlotter function 

of the Artemis v16.0.0.1 genome browser. 

 

 

 

Similar to phage NV1 the majority of genes with identified functions in Table 4.5 are phage 

structural proteins and those involved in DNA replication. Notably, ϕNV3 encodes a single 

subunit RNA polymerase upstream of DNA replication genes, adjacent to the structural protein 

region of the genome. 
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Table 4.5. ORFS of phage ϕNV3 with BLASTP [253] similarity to proteins of known or 

predicted function.  

 

Locus Tag 
Start 

Position 

Size 

(aa) 

Total GC 

(%) 

Predicted Function (putative): 

phiNV3_p13 7159 278 57.46 DNA primase  

phiNV3_p14 8047 436 58.81 DNA helicase  

phiNV3_p16  9913 299 60.11 ATP-dependent DNA ligase 

phiNV3_p19  11583 786 58.83 DNA polymerase I  

phiNV3_p21 15008 319 58.64 Integrase 

phiNV3_p22 15948 158 54.92 DNA endonuclease VII  

phiNV3_p23 16432 406 59.04 DNA exonuclease 

phiNV3_p26  18414 818 58.4 RNA polymerase 

phiNV3_p29  21679 156 57.53 DNA endonuclease 

phiNV3_p30 22363 45 60.86 Virion structural protein 

phiNV3_p31 22510 512 57.24 Head-tail connector protein  

phiNV3_p32 24048 321 61.9 Scaffolding protein  

phiNV3_p33 25069 330 60.12 Capsid protein  

phiNV3_p34 26161 184 56.75 Tail tubular protein A 

phiNV3_p35 26712 823 59.54 Tail tubular protein B  

phiNV3_p36  29183 181 59.7 Internal virion protein A 

phiNV3_p37  
29721 886 59.9 

Baseplate hub subunit and tail 

lysozyme 

phiNV3_p38 32390 1310 60.56 Internal core protein  

phiNV3_p39  36323 788 54.79 T7-like tail protein  

phiNV3_p41 39215 110 57.7 DNA maturase A 

phiNV3_p42 39529 590 57.13 DNA maturase B 

phiNV3_p43 41303 79 60.41 Pinholin 

phiNV3_p44 41526 166 58.48 Lysozyme 

phiNV3_p45 41975 110 60.96 Rz-like protein 

phiNV3_p46 42165 81 62.6 Rzl-like protein 

 

 

phiNV3_p37, a protein composed of 886 amino acids, is predicted to encode the baseplate hub 

subunit and tail lysozyme. A 122 aa T4-like lysozyme conserved domain is located at the C-

terminus of the protein between residues 738-860. This C-terminus lysozyme domain is 

characteristic of the Autographivirinae including phage ϕKMV and SP6, the T7-like phage of 

the Podoviridae instead have this domain at the N-terminus [100, 308].  
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4.3.3      Phylogeny  

 

To analyse the phylogenetic clustering of ϕNV3 the entire genomic sequence was aligned by 

MUSCLE [260] to other members of the Autographivirinae and all gaps were removed from 

the sequence. A maximum parsimony analysis was chosen to predict and evolutionary history 

due to the small number of sequences and likelihood of nucleotide conservation between them 

and run using Mega6.06. The resulting phylogenetic tree is shown in Figure 4.10.  

 

 
Figure 4.10: Maximum Parsimony analysis of taxa: The evolutionary history of 

Pseudomonas phage ϕNV3 (•), was inferred using the Maximum Parsimony method. The 

most parsimonious tree with length = 95095 is shown. The consistency index is (0.613301), 

the retention index is 0.422029 (0.417186) for all sites and parsimony-informative sites (in 

parentheses). The percentage of replicate trees in which the associated taxa clustered together 

in the bootstrap test (500 replicates) are shown next to the branches [257]. The MP tree was 

obtained using the Subtree-Pruning-Regrafting algorithm [258] with search level 1 in which 

the initial trees were obtained by the random addition of sequences (10 replicates). The tree is 

drawn to scale, with branch lengths calculated using the average pathway method [258] and 

are in the units of the number of changes over the whole sequence. The analysis involved 18 
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nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions 

containing gaps and missing data were eliminated. There were a total of 26547 positions in 

the final dataset. Evolutionary analyses were conducted in MEGA6 [256].  

 

 

The results in Figure 4.10 show that phage ϕNV3 clusters with other members of the 

phiKMVviruses, although on a separate branch to the majority, indicating that it may have 

diverged earlier than other members, similar to phage LKA1. A further phylogenetic analysis 

utilising only the large terminase subunit gene is available in Appendix 4, Figure Ap4.6, which 

confirms the results shown in Figure 4.10, with ϕNV3 clustering with other members of the 

phiKMVviruses and other members of the Autographivirinae. 

 

 

4.3.4      Growth characteristics 

 

In order to further characterise the ϕNV3 life cycle several studies were performed. As the first 

stage of a phage life cycle is finding and adhering to its host, an adsorption assay was performed 

for ϕNV3, corresponding to typical growth parameters in vitro. The results of this adsorption 

(Figure 4.11), were used to calculate the adsorption constant of ϕNV3, which was found to be 

approximately ka=3.5x10-9 ml min-1 demonstrating ϕNV3 efficiently adsorbs to P. agarici 

cells.  

 
Figure 4.11. Adsorption curve at 28°C with 200 rpm shaking (dotted line is linear regression) 

Adsorption constant: 3.501x10-9 phage/cell/ml/min, error bars = +/- SEM.  
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Following adsorption, the phage genome must enter the host cell and undergo replication and 

transcription/translation to produce progeny phages. A single step growth curve was performed 

to determine duration of the phases of phage replication and burst size (defined as the number 

of progeny phage release after a single phage has infected a single bacterium) for ϕNV3. The 

results (Figure 4.12) show the latent period of phage ϕNV3 is approximately 45 minutes in 

length, followed by a steep rise period of approximately 10 minutes due to the lysis of infected 

cells and release of progeny phage, the calculated burst size was approximately 55 phage per 

cell for ϕNV3. This stage was rapidly followed by a sharp decrease in phage titre, which can 

be attributed to the attachment of progeny phages to new host cells.  

 

 
Figure 4.12. Single step growth curve of ϕNV3 with P. agarici NCPPB 2472. Latent period 

and rise periods are indicated with lines labelled L. and R. respectively. Mean values of 3 

replicates are plotted, error bars = +/- SEM. 

 

 

 

In order to characterise the ability of ϕNV3 to effectively control bacterial populations, kill 

curve assays were performed at high phage titres with MOIs of between 0.1 and 10, the results 

are shown in Figure 4.13.  
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Figure 4.13. High titre kill curves with ϕNV3 and P. agarici NCPPB 2472 at a starting 

bacterial concentration of 1x108cfu/ml at 28°C, mean values of 10 replicates are plotted, error 

bars = +/- SEM. 

 

 

With a high MOI of 10 there is a rapid drop in OD commencing at 25 minutes and stabilising 

at approximately 60 minutes. This would appear to correspond to a single infective cycle where 

all bacterial cells have been successfully infected with ϕNV3 resulting in total lysis of all 

bacterial cells within 60 minutes, which matches the infection cycle characterised in the single 

step growth curve in Figure 4.12. The total lysis of all cells is illustrated by the lack of any rise 

in the OD of the culture over the remaining duration of the experiment.  

 

However, when the MOI is 1 the time required for a similar drop in OD to commence increases 

over two times to approximately 65 minutes with the total lysis as indicated by a stabilising of 

OD at 110 minutes. Once again, the drop in OD appears to correspond to complete lysis of all 

the bacterial cells as no increase in OD is observed in the culture of the remaining duration of 
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the experiment after the initial drop in OD between 65-110 minutes. The time required for this 

drop in OD would be equivalent to two cycles of phage replication.  

 

 

 
Figure 4.14. Low MOI kill curves kill curves with ϕNV3 at a starting bacterial concentration 

of 1x108cfu/ml at 28°C. Mean values of 10 simultaneous replicates are plotted, error bars= +/-

SEM. 

 

 

In order to determine the effectiveness of phage at lower MOI’s that would more accurately 

represent the conditions likely to occur on the surface of A. bisporus or within the casing soil 

layer a further set of kill curve experiments were performed as shown in Figure 4.14. 

 

At higher MOIs the drop in OD occurs more rapidly than at lower MOIs, for example the drop 

in OD at an MOI of 0.1 occurs at t=140 (0.009 Abs) and reaches a minimum at t=240 (0.004 

Abs), whereas at an MOI of 0.01 the drop does not occur until t=185 (0.016 Abs) and reaches 

a minimum at t=250 (0.006 Abs). Likewise, the drop in OD for the lowest MOI of 0.001 does 

not occur until t=210 (0.023 Abs) and reaches a minimum at t=285 (0.006 Abs).  
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Interestingly the drop in OD expressed as a percentage of the maximum peak in OD shows that 

the largest percentage drop is at the lowest MOIs, at an MOI of 0.1 the drop in OD corresponds 

to a 55.6% drop, at an MOI of 0.01 it corresponds to a 62.5% drop and at the lowest MOI of 

0.001 the drop corresponds to 74% of the peak OD value.  

 

 

4.3.5      Phage/host co-evolution 

 

In order to investigate the effects of antagonistic co-evolution on the bacterial host a co-

evolution study was performed. This was performed using sequential transfers of 100 µl of 

phage/bacteria in 6 ml of KB followed by overnight incubation at 27°C. From this, samples of 

purified phage and bacteria were taken, before phage infection capacity was measured by 

streaking on plates of bacterial colonies of each transfer. The graphical results are shown in 

Figure 4.14 and full results are available in Appendix 4, Table Ap4.4.  

 
 

Figure 4.15. Results of co-evolution study between phage ϕNV3 and P. agarici NCPPB 2472. 

Percentage resistant bacteria was determined using 16 arbitrarily sampled bacterial colonies 

from streak plates of each bacterial transfer to which 5µl of either past/present/future phage 

was added, each point is the mean value of 5 replicates, error bars= +/- SEM. x axis labels 

indicate phage transfer number, each bacterial transfer number is illustrated by data point shape 

and outlined in the key.  
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From the results shown in Figure 4.15 there is evidence of a high degree of co-evolution 

between the phage and host. For bacterial Transfers 1, 3, 5 it is evident that ‘future phage’ from 

the next sequential transfer is more effective; however, at bacterial transfer 8 the ‘future phage’ 

is less effective and by bacterial Transfer 9 all bacteria are resistant to all phage tested.   

Over the course of the experiment escalatory evolution of bacterial resistance is evident in the 

gradual increase in percentage bacteria resistant across all past, present and future phage, 

resulting in the final total resistance of the bacteria to all phage and eventual phage extinction.  

The initial bacterial transfer (Transfer 1) shows that the ‘future phage’ (T2) are capable of 

overcoming the initial bacterial resistance mechanisms, a similar result is shown in transfers 4 

and 6.  
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4.3.6      Lysis cassette 

In order to characterise the process by which phage ϕNV3 is able to cause lysis of P. agarici 

NCPPB 2472, the lysis cassette was identified and investigated. 

The bacteriophage lysis cassette, which is comprised of the phage encoded proteins involved 

in lysing the host cell to allow progeny phage escape at the end of the phage replication cycle, 

such as the lysin and holin (S) [109], or in the case of SAR-endolysins, the pinholin, lysin and 

Rzl/Rz1-like proteins [102].  

 

 
Figure 4.16. Diagram representing the lysis cassette of ϕNV3, showing the ORF’s encoding 

the putative pinholin, endolysin, Rz and Rz1-like proteins and the high degree of overlap 

between each ORF’s. 

 

 

The lysis cassette of ϕNV3 comprises of four proteins, as shown in Figure 4.16. The presence 

of a predicted pinholin and Rz-like and Rz1-like proteins as well as the order of these genes 

indicate that ϕNV3 possesses a SAR-endolysin system conserved in all phiKMVviruses [102], 

rather than a canonical system such as that found in NV1 that is comprised of solely a holin 

and endolysin proteins.  

 

 

N-Region        H-Region                      Catalytic domain 
1  + +  9 10           23 24             39 

MNLRNKALA GTALSLALGGLVGL EGMSLPAYRDIAGVPT ϕNV3 

---MNKPLR GAALAAALAGLVAL EGSETTAYRDIAGVPT ϕKMV 
+  + 

 

Figure 4.17. Direct comparison of the N-terminal signal-arrest-release domains of ϕNV3 and 

ϕKMV. The positively charged N-region, the hydrophobic H-region and the catalytic domain 

are indicated with the conserved catalytic domains underlined, based on work published by 

Briers et al. [102]. 

 

Analysis of the amino acid terminal sequence of phiNV3_p44, a putative endolysin, shows that 

it is almost identical to that of ϕKMV. That is, the ϕNV3 N-region of 9 amino acid residues, 
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which is 3 residues longer than that of ϕKMV, has a net positive charge (identified in Figure 

4.17 by the + symbol), and thus acts as a positive anchor to the negatively charged inner site 

of the cytoplasmic membrane.  

 

The H-region shows a large degree of conservation with that of ϕKMV and is composed of 

hydrophobic residues, which tend to form an alpha α-helix, as tentatively confirmed by 

PSIPRED Figure 4.18). 

 

 

Figure 4.18. PSIPRED results of the H-region of the ϕNV3 signal-arrest-release domain 

illustrating the predictedα-helix. 

 

 

This α-helix enhances insertion of the signal peptide into the phospholipid double layer. The 

catalytic domain shows again a high degree of amino acid sequence conservation between 

ϕNV3 and ϕKMV with the catalytic residues (E24, D33, T39) being identical [102]. 
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4.3.7      Lysis cassette expression 

 

To confirm the function and lytic activity of the predicted lysis cassette, the three genes that 

encode pinholin, endolysin and Rzl/Rz1-like of ϕNV3 were cloned individually in to the 

pEXP5-CT/TOPO® vector containing a T7 promotor and transformed in to BL21-AI 

competent cells, which carry the T7 polymerase gene under control of an arabinose induced 

promotor (araBAD) allowing for control over T7 RNA polymerase expression. The effect of 

expression was tested by inducing expression in exponential phase cells at a starting OD of 0.4 

Abs by adding L-arabinose to a final concentration of 0.2% at T=0 in Figure 4.19. 

 

 
Figure 4.19. Effect of expression of individual lysis protein constructs containing either the 

ϕNV3 endolysin, pinholin or Rz/Rz1-like encoding genes on optical density of BL21-AI E. 

coli following induction with 0.2% L-arabinose at T=0. The control comprised of an uninduced 

BL21-AI containing the Rzl/Rz1-like construct. Mean values of 6 replicates are plotted, error 

bars= +/- SEM. 

 

 

The results of the expression assays in Figure 4.19 show the strongest decrease in optical 

density, corresponding to a drop in bacterial cell numbers, is with expression of the BL21-AI 

E. coli containing the endolysin construct. The OD of the BL21-AI containing the endolysin 

construct begins to decrease rapidly at t=50 minutes from a peak of 0.108 Abs to 0.062 Abs at 
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t=80 minutes, a 43% reduction; after t=80 minutes the OD continues to gradually decrease over 

the remaining 120 minutes at a reduced rate, ending on a final OD of 0.032 Abs, a total decrease 

of approximately 70% from the peak OD at 50 minutes.  

 

The OD of the pinholin expression assay continues to rise at a similar rate to the control until 

80 minutes, at an OD of 0.187 Abs, where the increase in OD stalls until 115 minutes post 

induction at an OD of 0.197 Abs (an increase of 0.01 Abs, compared to a difference of 0.08 

between 45 minutes and 80 minutes), it begins to rise after 115 minutes again, however at a 

lower rate; the final OD at 200 minutes is significantly higher than the endolysin expression, 

at 0.28 Abs.  

 

The Rz/Rzl-like expression OD follows the control almost exactly until 75 minutes, where it 

begins to deviate, rising at a reduced rate in comparison to the control ending at a final OD of 

0.305 Abs, higher than the 0.28 Abs of the pinholin expression, although significantly (P(T<=t) 

one-tail=2.9E-05) lower than the control which has a final OD at 200 minutes of 0.411 Abs.  

 

To determine the effects of pinholin and Rz/Rz1-like protein complementation on the ability 

of the endolysin protein to lyse the host cells, a further two constructs were created containing 

either the pinholin and endolysin or the full lysis cassette (pinholin, endolysin and Rzl/Rzl-like 

protein) and expressed in BL21-AI, the results are shown in Figure 4.20.  
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Figure 4.20. Complementation assay of lysis cassette proteins of ϕNV3 by expression of 

constructs containing either the ϕNV3 endolysin gene, pinholin and endolysin genes or the 

complete lysis cassette in BL21-AI E. coli following induction with 0.2% L-arabinose at T=0. 

The control comprised of an uninduced BL21-AI containing the Pin+Endolysin construct. 

Mean values of 6 replicates are plotted, error bars= +/- SEM. 

 

 

 

The endolysin alone expression shows the most rapid increase in OD across all induced 

constructs as illustrated in Figure 4.20. The increase in OD continues to a peak at t=50 minutes 

of 0.108 Abs followed by a rapid drop, indicative of cell lysis, that continues to t=75 minutes 

when it is at an OD of 0.064 Abs, a decrease of 41%; after this time point, the decrease in OD 

continues over the time course of the experiment, albeit at a reduced rate similar to the results 

in Figure 4.19.  

 

In contrast, the complete lysis cassette construct expression OD matches the rate of increase as 

the uninduced control until t=40 minutes, where the increase in OD is markedly more rapid 

than the control. The rapid increase continues to a peak at 85 minutes at an OD of 0.119 Abs, 

where it begins a rapid decrease to a minimum of 0.041 Abs at t=120 minutes, which 

corresponds to a decrease of ~66% compared to the maximum peak at 85 minutes. After this 

rapid decrease, the OD begins to rise slowly over the remaining time course of the experiment.   
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The construct containing both the pinholin and endolysin however matches the rate of increase 

in OD of the control up until t=105 minutes, where it begins to deviate with the OD showing 

no decrease, but instead a slower rate of increase, when compared to the uninduced control 

rate. By t=135 minutes the control OD is at 0.2005 Abs compared to 0.1598 Abs in the 

pinholin/endolysin expression. The pinholin/endolysin construct expression shows the largest 

standard error of the mean (SEM) of all constructs as indicated by the size of the SEM bars in 

Figure 4.20.  

 

4.3.8     P. agarici Type IV pili knockout  

 

Previous work by Chibeu et al. with the bacteriophage PhiKMV and its host Pseudomonas 

aeruginosa has demonstrated that the adsorption of PhiKMV requires Type IV pili [101]. 

Therefore, it was hypothesised that, as a member of the phiKMVlikeviruses it was possible 

phage ϕNV3 utilised Type IV pili as a binding receptor and to test this hypothesis it would be 

necessary to create a knockout of P. agarici NCPPB 2472 that was incapable of expressing the 

Type IV pili on its surface. It has been reported that mutations in the PilB gene results in 

nonpiliated cells [309], therefore it was chosen as the knockout gene to prevent Type IV pilus 

assembly in P. agarici. Two methods of generating competent P. agarici cells were attempted, 

chemical competency and electrocompetency.  

 

For chemically competent P. agarici reactions no colonies were observed on any plates, 

including on both the positive and negative controls.  

 

For the electrocompetent P. agarici cells no colonies were observed on any of the pCR2.1-

TOPO construct transformation plates, however multiple colonies were visible on the 

pBBR1MCS-2 positive control transformation plates. Six of these colonies were chosen to be 
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analysed using PCR for the presence of the M13-F and M13-R regions, all 6 colonies returned 

positive results indicating the presence of the pBBR1MCS-2 vector.  
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4.4      Phage NV6 

4.4.1   Host range 

  

Phage NV6 was isolated simultaneously with ϕNV3 from the same untreated sewage sample 

and was identified as being able to form plaques on plates of both P. tolaasii NCPPB 2192T 

and P. agarici NCPPB 2472, however the plaques formed on P. tolaasii plates were 

significantly smaller (~1mm) and cloudy compared to the larger and clear plaques it formed 

on P. agarici. Phage NV6 did not infect any other Pseudomonas strain tested, as shown in 

Table 4.7. 

 

Table 4.7. Host range assay of phage NV6. 

 

Strain:  NV6 

Infection 

P. tolaasii NCPPB 2192T + 

P. agarici NCPPB 2472 + 

P. sp NS1 - 

P. syringae pv. morsprunorum R1 5244 - 

P. syringae pv. syringae 9097 - 

P. syringae pv. morsprunorum R2 5255 - 

P. fluorescens Pfo-1 - 

P. aeruginosa 14207 - 

 

 

4.4.2      Growth characteristics  

 

As shown in Figure 4.21, the kill curve characteristics of phage NV6 are almost 

indistinguishable from those of ϕNV3 under similar conditions (See Figure 4.14 in Section 

4.2.4). At higher MOIs the drop in OD occurs faster, at an MOI of 0.1 the drop in OD begins 

at approximately t=150 minutes (approximately 3 standard phage replication cycles), 

decreasing from 0.007Abs to 0.003Abs by t=200 minutes. The corresponding drop in OD at 

the lower MOI’s occurs at 180 minutes (0.017 Abs at t=180 to 0.006 Abs at t=240) at an MOI 

of 0.01 and 210 minutes (0.02 Abs at t=210 to 0.005 Abs at t=275 minutes) at an MOI of 0.001.  
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Figure 4.21. Kill curves of NV6 with A., P. agarici 2472 and B. P. tolaasii 2192T, at a starting 

bacterial concentration of ~1x108 cfu/ml, incubated at 28°C for 12 hours with a MOI of either 

0.1, 0.01 or 0.001. OD at 595nm was read every 5 minutes. Mean values of 10 simultaneous 

replicates are plotted, error bars= +/-SEM. 

 

 

However, the kill curve of NV6 with P. tolaasii is considerably different from that of NV6 

with P. agarici, with only a small drop or stall in OD across all MOIs. At an MOI of 0.1there 

is a slight drop in OD between t=30 and t=45 minutes (0.012 Abs to 0.011 Abs), likewise at an 

MOI of 0.01 at t=50 to t=55 minutes, approximately equal to a single cycle of phage replication, 

there is a small drop in OD (0.014 Abs to 0.0138 Abs). However, the OD of all phage infected 

samples, independent of MOI are consistently lower across the entirety of the experiment than 

the uninfected control; with the final ODs correlating to the MOIs, with MOI of 0.1 final OD 

of 0.419 Abs, MOI of 0.01 final OD of 0.576 Abs, MOI of 0.001 final OD of 0.724 Abs and 

the uninfected control final OD of 0.805 Abs.  

 

4.4.3      Sequencing 

 

Initial PCR amplification identified NV6 to show striking resemblance genetically to ϕNV3 

and it was hypothesised that NV6 was either closely related to ϕNV3 or had acquired a mutation 

that allowed it to infect a broader host range. To identify the any nucleotide changes between 

ϕNV3 and NV6 the genomic DNA was extracted and purified, returning a concentration of 201 

ng/µl which was then sent for paired-end sequencing performed by Source Bioscience.  
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The sequencing results returned a single contig of 43,217 bp for NV6, with a coverage of 54.4x, 

when compared to the figure of 43,184 bp for ϕNV3, there was an addition of 33 bases. 

Alignment of the returned NV6 sequence to the genome of ϕNV3 by BLASTn [253] indicated 

that these 33 bases were in a single large addition. This 33 bp addition was identified to be 

within phiNV3_p40, a 2,367 bp gene predicted to encode a putative T7-like tail protein, an 

alignment of the nucleotide sequence is shown in Figure 4.22.  

 
1635 TAAAAACTTGCA----------------------------G-----GGGCATGCCTTTGGGCC 1664 

1635 TAAAAACTTGCATGGGCATGCCTTTGGGCCGGGCGTACGTGATATCGGGCATGCCTTTGGGCC 1697 

Figure 4.22. DNA sequence comparison of a section of the T7-like Tail Fiber Protein gene of 

top, ϕNV3 and below, NV6, showing the base additions highlighted in grey. 

 

 

The 33 bp addition maintained the single reading frame of the phiNV3_p40 tail protein and 

when the amino acid sequence was analysed in Jalview 2.9.0b2 it was shown to have added a 

sequence of 11 aa (-PGVRDIGHAFG-) towards the C-terminal, and two amino acid 

substitutions upstream and downstream of the addition region, which is illustrated in the amino 

acid alignment in Figure 4.23.   

 

 
Figure 4.23. Amino acid sequence comparison of a section of the T7-like tail fiber protein 

gene of top, ϕNV3 and below, NV6. 

 

 

4.5      Discussion 

The phage Pseudomonas phage NV1 was initially isolated from water samples taken from the 

River Thames and was identified as forming very small hazy plaques on lawns of lawns of P. 

tolaasii 2192T. Hazy plaque morphology is often associated either with temperate phage or 

with inefficient phage adsorption to the host[310], however it is worth noting that no genes 

associated with lysogeny were identified within the NV1 genome. NV1 was identified as 
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having a narrow host range after failing to show evidence of plaques on any further 

Pseudomonas strains tested. From the virion morphology, shown in Figure 4.1 I was able to 

identify NV1 as belonging to the Podoviridae family of the Caudovirales order, a large order 

to which ~96% of all phage examined by electron microscopy occupy [311].  

The genome of NV1 was isolated and sequenced by Source Bioscience, which comprised of 

45,059 bp containing 64 identified ORFS, of which only 25 (~40%) showed amino acid identity 

to proteins of known or predicted function. Analysis of the returned contig revealed a high 

degree of nucleotide identity with the Pseudomonas fluorescens phage UFV-P2 (84% Ident 

over 86% of the genome). The genome of NV1 was then oriented to be collinear with that of 

phage UFV-P2, annotated and submitted to GenBank (Accession code pending). The 

International Committee on Taxonomy of Viruses (ICTV) guidelines recommend DNA 

sequence identity of 95% as a threshold for species delineation, with phage NV1 showing a 

maximum nucleotide identity of 84%, it is below the species delineation threshold[312].  

The differing host specificity, GC content (52.87% NV1 to 51.5% UFV-P2) and genome size 

would indicate that phage NV1 is a new species, albeit with significant similarities in gene 

synteny and significant amino acid and nucleotide similarity of several predicted genes.  

 

Likewise, with full genome phylogenetic analysis as shown in Figure 4.4, phage NV1 shows 

tight clustering with the closely related UFV-P2, therefore I suggest that NV1 is a new species 

of “UFV-P2” like virus and that the genome and results of this study provide evidence for the 

potential creation of a “UFV-P2virus” genus, distinct from the Luz24likevirus genus to which 

UFV-P2 has previously been attributed [108].  

The results of the kill curve experiments in Figure 4.5 and 4.6 show that phage NV1 is capable 

of lysis of P. tolaasii 2192T in vitro, however the minimum MOI needed to cause a decrease 

in OD that would correspond to a decrease in total bacterial numbers in vitro is 1, which would 



 176 

be difficult to achieve in a real-world setting. While at lower MOIs the time required to show 

a slowing in bacterial growth is increased and a drop in OD that would correspond to a drop in 

total bacterial cell counts is never observed, illustrating that lower MOIs of phage treatment 

may not suitable for use in phage therapy. 

As is also shown in the low MOI kill curve results, illustrated in Figure 4.6, P. tolaasii appears 

to be able to rapidly develop resistance to phage NV1 and it is possible this ability of P. tolaasii 

to gain resistance is related to a shift in phenotype (smooth/rough) [14]. Many phages, such as 

the phage LKA1 of P. aeruginosa, are dependent on the expression of particular LPS receptors 

that are related to phenotype [155] and it is possible that phage NV1 infection is dependent on 

a specific LPS phenotype. However, this change in phenotype can result in P. tolaasii shifting 

from pathogenic to non-pathogenic [21] and therefore the pressure of developing phage 

resistance may reduce its infective potential.  

Further tests in vivo would be required to determine if phage infection and subsequent P. 

tolaasii resistance development would reduce or prevent disease symptoms on Agaricus 

bisporus; similar to those performed by Kim et al. with phage hb1a, where they were able to 

suppress blotch formation on P. ostreatus, with the addition of phage simultaneously with P. 

tolaasii [74]. 

 

Pseudomonas phage ϕNV3 was initially isolated from untreated sewage water samples and 

identified as capable of forming large (5 mm), clear plaques on lawns of P. agarici NCPPB 

2472. It was identified as having a narrow host range after failing to show evidence of plaques 

on any further Pseudomonas strains tested. TEM imaging of the virion morphology, shown in 

Figure 4.7 allowed us to identify ϕNV3 as belonging to the Podoviridae family of the 

Caudovirales order, similar to phage NV1.  
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The genome of ϕNV3 was isolated and sequenced by Source Bioscience, and identified to be 

43,184bp in length; the genome of ϕNV3 was also identified as showing genome organisation 

similarities with the reported organisation of Pseudomonas phage ϕKMV [100], which was 

then used to orient the genome of ϕNV3 correctly. The genome sequence and orientation was 

then confirmed with extensive primer walking and Sanger Sequencing. The genome of ϕNV3 

has an average GC content of 58.29% which is significantly lower than ϕKMV (62.3%) [100], 

but closer to Pseudomonas phage LKA1 (60.9%) [308] and close to the host P. agarici NCPPB 

2472 GC content (60.55%). 

 

In total 50 potential gene encoding ORFs were identified in the genome of ϕNV3, of these only 

25 showed amino acid identity to phage proteins of known or predicted functions as identified 

by BLASTP [253], shown in Table 4.5, consequently 50% of the ORFs have no known or 

predicted function, 29 ORFs (58%) have orthologs found in phage ϕKMV; however, the 

genome of ϕNV3 shows very little nucleotide similarity to any known phage with a very low 

similarity to ϕKMV with a nucleotide identity of 77% over only 3% of the entire genome.  

 

Similar to phage NV1 the majority of genes with identified functions are phage structural 

proteins and those involved in DNA replication, such as the single subunit RNA polymerase 

upstream of DNA replication genes, adjacent to the structural protein region of the genome, 

which is characteristic of the Autographivirinae subfamily of bacteriophage and similar to 

phage ϕKMV and other ϕKMV-like phages [100, 308]. 

 

The results of the full genome phylogenetic analysis likewise show that ϕNV3 clusters with 

other members of other members of the phiKMVvirus genus, although on a separate branch to 
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the majority, indicating that it may have diverged earlier than other members, similar to phage 

LKA1.  

Current phage classification guidelines based on nucleotide identity state that the species 

demarcation is set at 95% identity and genus at >50% identity [312]. From the genome 

sequencing results including the apparent lack of nucleotide identity (77% identity over 3% of 

the genome to phage ϕKMV), the similarities of genome organisation to ϕKMV [100] and the 

results of the phylogenetic analysis I propose that ϕNV3 is most likely a new species of the 

phiKMVvirus genus, however it is possible due to the extremely low nucleotide identity that 

ϕNV3 represents a new bacteriophage genus within the Autographivirinae, closely related to 

the phiKMVviruses. 

 

The life cycle of phage ϕNV3 was characterised in order to identify whether it would represent 

a possible candidate for biocontrol applications and to understand its interactions with the host 

P. agarici NCPPB 2472. It was identified via adsorption assay that ϕNV3 is capable of efficient 

adsorption to host P. agarici NCPPB 2472 cells with an adsorption constant of ka=3.5x10-9 ml 

min-1. This adsorption rate is similar to that of the P. aeruginosa phage LKA1 (ka=3.9x10-9 ml 

min-1) although less than half of the value for Pantoea virus LIMEzero (8.29x10-9 ml min-1), 

while it has been reported that both phage LKD16 and ϕKMV failed to produce clear 

adsorption curves due to their inefficient adsorption [103, 308].   

 

Likewise, it was identified via single step growth profile that the latent period of ϕNV3 is 

approximately 45 minutes, with a rise period of 10 minutes. The lysis of host cells after 45 

minutes post infection is longer than the time required for cell lysis of other members of the 

ϕKMV-like phage such as LKD16, ϕKMV and LKA1 (25, 35 and 40 minutes respectively 
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[308]). The calculated burst size of approximately 55 phage per cell for ϕNV3, is identical to 

that of ϕKMV although lower than LKD16 and LKA1 (120 and 255 respectively) [308].  

 

The results of the kill curve assays in Figure 4.12 and 4.13 show that at high MOIs such as a 

MOI of 10 the total lysis of all host cells is rapid, occurring between 25 and 60 minutes, and 

that at MOI of 1 the time required for total cell lysis increases to 110 minutes. However, at 

MOIs lower than 1 total bacterial cell lysis is not seen and the emergence of resistance to ϕNV3 

is rapid indicating that for the use of ϕNV3 in biocontrol applications, a high phage titre would 

need to be used.  

 

This emergence of resistance is similarly displayed in the results of the co-evolution study 

illustrated in Figure 4.15, with up to 51% of bacteria resistant to the ‘current’ phage transfer 

within one 24-hour cycle. However, they appear to be less resistant to ‘future’ phage for 

bacterial transfer numbers 1, 3 and 5 which may indicate that the development of phage 

resistance by P. agarici at this stage comes at cost and may be due to phase variation, similar 

to C. jejuni which can alter the expression of the polysaccharide receptor required by phage 

F336, or a change in bacterial phenotype similar to that of P. tolaasii [14]. The resistance to 

‘present’ phage increases to 79% by Transfer 5 and by Transfer 9 the bacteria are resistant to 

all ‘past’ ‘present’ and ‘future’ phage; this complete resistance to all phage assayed in transfer 

9 may be due to the CRISPR/Cas system of P. agarici NCPPB 2472 identified in Section 3.3.6 

and the acquisition of a spacer region associated with ϕNV3. This hypothesis could be tested 

by PCR amplification of the CRISPR repeat region and sequencing of the resulting product to 

identify any newly acquired spacer regions.  
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While whole phage treatments of bacterial infections have been well documented in literature, 

phage lysis proteins have also been studied intensively, as potential enzybiotics treatments of 

bacterial infections [111, 112, 134] and have shown promise in vivo [135]. For this reason, the 

lysis cassette of ϕNV3 was characterised in detail.  

 

ϕNV3 possesses a SAR-endolysin system comprised of 4 proteins, the pinholin, endolysin, Rz 

and Rzl-like proteins, a system that is conserved in all phiKMVviruses [102] and differing from 

the canonical system putatively identified in phage NV1. As outlined in Section 4.3.6 the SAR-

endolysin system of ϕNV3 shows a great deal of conservation with that of ϕKMV, especially 

within the N-terminal signal-arrest-release domain of the endolysin protein as illustrated in 

Figure 4.16, as well as sharing conserved catalytic residues within the catalytic domain. This 

would indicate that the lysis cassette of ϕNV3 likely operates with a similar mechanism as that 

reported for ϕKMV by Briers et al. [102]. 

 

In order to confirm the predicted function of the endolysin proteins and associated proteins of 

the lysis cassette the proteins were cloned into the pEXP5-CT/TOPO® vector and transformed 

in to BL21-AI cells for expression. The results of these expression assays are shown in 

Figures 4.18 and 4.19 and confirm the lytic ability of the ϕNV3 endolysin protein, even without 

the presence of the pinholin and Rz/Rzl-like proteins, although the greatest drop in bacterial 

cell numbers is correlated with the full lysis cassette protein expression although the time 

required for this drop is longer in comparison to the endolysin protein expressed alone, 

however this may be attributed to the metabolic pressure of expressing multiple proteins 

simultaneously compared to a single endolysin protein.  
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Expression of the lysis proteins of NV1 were also performed, the results of which are available 

in Appendix 4, Figures Ap4.7 and Ap4.8; however, the results demonstrated limited differences 

in optical density between the induced and uninduced controls. This limited differences in 

induced versus uninduced in comparison to the distinct differences seen in the expression of 

the ϕNV3 lysis proteins may be due to the different lysis systems involved (canonical NV1 

system versus the SAR-endolysin system of ϕNV3) where we would expect the lysozyme of 

NV1 to accumulate in the cytosol as it would lack access to the cell wall, although noticeable 

differences would be expected with the holin protein expression due to the large pores formed 

in the cell membrane. The lack of OD reduction, especially in Figure Ap4.7 would appear to 

indicate that the proteins had not been expressed at all, as a small reduction due to the metabolic 

stress of protein production would be expected, which may account for the slight differences 

in OD visible towards the end of the experiment in Figure Ap4.8. However, further experiments 

would be required to confirm protein expression or the lack thereof in both construct 

expressions. 

 

The final phage characterised, NV6, was initially identified on mixed culture plates of P. 

tolaasii 2192T from untreated sewage and was originally thought to be a unique phage; 

however, it was swiftly noted to possess the ability to cause plaques on both P. tolaasii NCPPB 

2192T and P. agarici NCPPB 2472 and to bear striking similarities to phage ϕNV3. Kill curve 

assays, as illustrated in Figure 4.21 demonstrated that NV6 possessed a significantly greater 

ability to lyse host cells of P. agarici NCPPB 2472 than P. tolaasii 2192T, with only minimal 

changes in growth demonstrated with P. tolaasii. 

 

Consequently, the full genome of phage NV6 was isolated and sent for sequencing by Source 

Bioscience in order to determine if phage NV6 was a mutant of ϕNV3 and if so, whether there 
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was a genetic difference that may account for the broader host range. It was identified that the 

only difference between the genomes of NV6 and phiNV3 is a single addition of 33 bases, 

within phiNV3_p40, which encodes a putative T7 tail protein. It is therefore likely that this 

region within the T7-like tail protein of ϕNV3 is a determinant of host specificity potentially 

involved in receptor binding, as demonstrated by the broader host range of phiNV6. 

 

Interestingly while the full genome molecular phylogenetic analysis of phylogeny of both 

phage appears to correctly place both NV1 and ϕNV3 with members of the same phage 

families, similar to the further analysis performed using only the large terminase subunit gene, 

available in Appendix 4 Figure Ap4.6; the analysis only utilising the large terminase places 

members of the Myoviridae and Siphoviridae on branches alongside members of the 

Podoviridae. This may indicate that in future studies the approach of full genome phylogenetic 

analysis, while computationally heavy may yield significant increases in accuracy due to the 

much larger number of sites used for the analysis, 26,547 and 24,899 sites used to produce 

Figures 4.10 and 4.4 respectively in comparison to 804 sites used in Figure Ap4.6. 

 

Finally, while the attempts to create a P. agarici NCPPB 2472 Type-IV pili knockout using the 

pCR2.1-TOPO vector were unsuccessful, possibly be due to degradation by the identified 

Type 1 CRISPR system previously identified. It was however demonstrated that the method 

utilised in creating the electrocompetent cells was successful using the pBBR1MCS-2 vector, 

and so this cell preparation method could be used in further studies utilising other vectors. 
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Chapter 5: 

 RNA Sequencing of P. agarici and ϕNV3 infected P. 

agarici 
 

  



 184 

5.1      Introduction 

Having successfully sequenced and assembled both the phage, ϕNV3 and the host, P. agarici 

NCPPB 2472 genomes, the next step was to analyse their interactions on a transcriptional level 

with the aim of potentially elucidating the mechanisms involved in developing phage 

resistance. In order to do this RNA sequencing and differential gene expression profiling was 

chosen in order to maximise the number of genes that could be analysed simultaneously.  

 

P. agarici NCPPB 2472 cells infected with phage ϕNV3 at an initial MOI of 1 to ensure that 

the majority of cells were infected to allow for the largest change in RNA transcription, while 

avoiding potential lysis from without that can occur at higher MOIs.  
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5.2      RNA isolation and purification 

 

In total 6 total RNA samples were prepared, 3 non-phage infected controls (P4-P6) and 3 phage 

infected samples (PN4-PN6). The RNA was extracted from homogenised cell cultures at 45 

minutes post phage infection, to correspond with mid to late log-phase phage growth (see single 

step growth curve, Section 4.3.4, Figure 4.12), which would allow the maximum bacterial 

response to infection at a transcriptional level.  

 

The RNA was then concentrated to a level appropriate for RNA sequencing and the resulting 

concentrations varied from a low of 96 ng/µl (P6) to a high of 358 ng/µl (P4) as ascertained by 

an Agilent 2100 Bioanalyzer, the full results including RNA Integrity Scores (RIN) are shown 

in Table 5.1. In addition to the RNA integrity scores, the bioanalyzer returned gel 

electrophoresis images of the RNA samples, which allowed visual interpretation of the RNA 

integrity as determined by the clarity of the 16S and 23S rRNA bands in the resulting gel image. 

The gel images are shown below in Figure 5.1.  

 
Figure 5.1. Gel images of RNA samples used for RNA sequencing.  
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As is shown in Figure 5.1 above, the samples with the darkest and most clear 16S and 23S 

bands, the dark bars located towards the top of the gel image, are samples PN5 and PN6. Both 

these samples also show minimal low molecular weight smearing which is most evident in 

sample P6. This is further confirmed by the RIN scores or 7.2 and 7 for PN5 and PN6 

respectively, in Table 5.1.  

 

Table 5.1: RNA sample concentration, RIN and total mapped reads for uninfected P. agarici 

NCPPB 2472 (P4,P5,P6) and ϕNV3 infected (PN4, PN5, PN6).  

 

Sample Concentration 

(ng/ul) 

RIN Aligned Reads 

P4 358 5.4 68734869 

P5 296 6.2 51438405 

P6 235 5.1 61971656 

PN4 242 5.9 60307697 

PN5 96 7.2 50277057 

PN6 194 7 70485550 

 

 

All passed quality control with FastQC, however both P5 and PN5 had a 50 bp sequence of 

‘G’ which accounted for 0.172% and 0.137% of the total reads respectively. The FastQ 

sequencing read files returned by Source Bioscience were aligned to a Fasta sequence file 

containing the concatenated genomes of P. agarici NCPPB 2472 and phage ϕNV3, the total 

number of aligned reads per sample is also shown in Table 5.1.  

 

The aligned read file was then used to create counts for each gene of P. agarici NCPPB 2472 

identified via the NCBI Prokaryotic Genome Annotation Pipeline, the total counts are 

illustrated in Table 5.2.  
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Table 5.2: Mean read counts for uninfected P. agarici NCPPB 2472 (P4,P5,P6) and ϕNV3 

infected (PN4, PN5, PN6).  

 

Sample   Read Count 

P4  30264541 

P5 21693870 

P6 27264739 

PN4 11884370 

PN5 10384432 

PN6 11550021 

 

 

The mean counts for the uninfected samples (P4-P6) in Table 5.2 is 26,407,717 however, for 

the phage infected (PN4-PN6) the mean counts is 57% lower at 11,272,941.  

 

A principal components analysis (PCA) plot was constructed from the regularized-logarithm 

transformed (rld) results in order to identify any clustering based on phage infection or bacterial 

cell line, the results are shown in Figure 5.2.  

 

 
Figure 5.2. PCA plot generated for the rlog-transformed values of mapped reads, using 

plotPCA function in the DESeq2 [267] package and plotted using the ggplot2 package [269]. 
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From the plot in Figure 5.2 we can see that while there is significant clustering of the untreated 

(uninfected) samples (P4-P6) in both the x and y axis; there is no apparent clustering of the 

infected samples which are spread across both axes, with both samples PN5 and PN4 located 

close to the untreated in the y axis and PN4 clustering with the uninfected samples both in the 

x and y axes.  

 

5.3      Phage gene expression  

To determine the level of phage infection per sample, as determined by the highest total level 

of phage gene transcription, the RPKM values were obtained for each phage gene per sample 

then a total calculated, as shown in Table 5.2. 

 

Table 5.2. Total RPKM values of phage infected P. agarici NCPPB 2472 samples. 

 

Sample: Total (RPKM): 

PN4  747046.571 

PN5 684582.436 

PN6 859655.397 

 

 

Total RPKM value for each sample, shown in Table 5.2 shows that the highest levels of phage 

gene transcription are in sample PN6 followed by sample PN4, then PN5.  

 

To analyse the phage genes with the highest levels of transcription a bar graph of the mean 

RPKM values per gene and the standard deviation was plotted, shown in Figure 5.3.  

 



 189 

 
Figure 5.3. Mean RPKM values and STDev of reads per putative gene encoding ORF of 

phage ϕNV3 as calculated using Artemis v16.0.0.1 genome browser.  

 

 

 

 

 

As shown in Figure 5.3, the genes with the largest levels of transcription (Gp28-34 and Gp42-

50) are clustered towards the right of the graph, corresponding to the mid to late genes of the 

phage genome. The two genes with the highest level of expression are Gp33 and 34, encoding 

a putative capsid protein and scaffolding protein respectively.  

 

 

 

5.4      Differential gene expression  

 

In total, the expression of 4895 P. agarici NCPPB 2472 genes were analysed, 9 returned padj 

of below 0.01 (0.18%), 24 with a padj of less than 0.05 (0.49%) and 39 with a padj of less than 

0.1. Of the 39 genes with a padj of less than 0.1, 26 were up-regulated and 13 were down 

regulated, the full differential gene expression results are visualised in an MA-plot in Figure 

5.4.  Full results of all genes with a padj of <0.1 is available in Appendix 4, Table Ap4.1 
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Figure 5.4. MA-plot of DEseq2 [267] comparison results of phage treated vs. untreated 

samples, genes with an padj value below the threshold of 0.1 are indicated in red.  
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Further analysis of the differential gene expression data revealed an operon of four genes that 

showed a mean log2 fold increase of 1.15 between the control and infected samples, with padj 

values of below 0.05. The genes in this operon and their precise log2 fold changes are outlined 

below in Table 5.3.  

 

Table 5.3. Differential gene expression data of an unidentified operon of P. agarici NCPPB 

2472. 

 

Locus Tag Predicted Function Log2Fold Change Padj 

RS16090 DUF3050 domain-containing 

protein 

1.159423991 0.0216997 

RS16095 P-aminobenzoate N-oxygenase 

AurF 

1.002180797 0.0280734 

RS16100 peptide transporter 1.239879524 0.0003224 

RS16105 SRPBCC family protein 1.202543288 8.38E-06 

 

 

The normalised count data for the differentially expressed operon outlined in Table 5.3 is 

visualised graphically in Figure 5.5.  

 
Figure 5.5. Mean normalized count data and SEM+ for gene cluster.  

 

 

A large number of the differentially expressed genes were identified as hypothetical proteins, 

however the host DNA polymerase II (RS18970) showed a log2fold increase of 0.694 in 

expression in phage treated samples.  
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The tmRNA encoding gene ssrA shows significantly increased expression in phage treated 

samples with a log2fold increase of 1.64 and a padj of 8.67E-15. However, the gene encoding 

the associated ATP-dependent zinc protease HflB is under-expressed with a log2fold decrease 

of 0.77 and a padj of 0.019. A Clp protease ATP-binding subunit (RS14345) also shows similar 

levels of under-expression with log2fold decrease of 0.75 and a padj of 0.02.  

 

 

5.5      Discussion 

 

The RNA of phage infected and non-infected P. agarici NCPPB 2472 was isolated with a wide 

variation of final concentrations and RIN scores. However, all samples were successfully 

sequenced by Source Bioscience, with the resulting FastQ files being aligned to a concatenated 

sequence of the phage ϕNV3 and P. agarici, with the number of aligned reads varying between 

50.2-70.4 million, shown in Figure 5.1.  

 

These aligned reads were then counted by gene for P. agarici NCPPB 2472 as previously 

identified by the NCBI Prokaryotic Genome Annotation Pipeline (as described in Section 

3.3.3), using the summarizeOverlaps function of the GenomicAlignments package of 

Bioconductor. The number of reads counted are shown in Table 5.2, with a significantly 

(p=0.018) lower number of counts for P. agarici genes in the phage infected than in the 

uninfected samples, with a 57% reduction in mean reads mapped to the bacterial genome. This 

reduction is likely due to the high levels of phage gene transcripts present in the infected 

samples and host RNA degradation at this particular timepoint, as has been previously reported 

by Lavigne et al. [313] with phage LUZ19  and P. aeruginosa PAO1 where it was observed 

that the total proportion of phage RNA to bacterial RNA increased from 23.6% to 60.2% 
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between 5 to 15 minutes after infection, which corresponds to early to mid/late stages of 

infection of the LUZ19 replication cycle.  

 

A PCA plot was constructed from the rld results in order to results in order to identify any 

initial clustering based on phage infection or bacterial cell line, shown in Figure 5.2, from 

which it is apparent that the phage infected sample PN4 cluster heavily with the non-infected 

samples, likewise PN5 is remarkably close to the non-infected cluster. Also evident is that the 

phage infected sample PN6 is the furthest outlier of the infected samples in both the x and y 

axes. This may broadly indicate that phage treatment does not have a significant effect on 

bacterial transcription levels at this time point of the phage lifecycle, however it is also likely 

due to the MOI of phage used. At a MOI of 1, which was the MOI used in this study, the total 

percentage of infected cells would be approximately 63.2% and the percentage uninfected 

approximately 36.8%, this would indicate that over a third of the returned RNA would be from 

uninfected P. agarici which when combined with the high levels of phage transcription and 

normalisation process could obscure or reduce differences in gene expression in the infected 

samples; in future studies a higher MOI of between 5 (99.3% infected) to 10 (100% infected) 

would prevent this source of error.  

 

Phage gene expression was analysed using the RPKM values calculated using Artemis 

v16.0.0.1 genome browser, due to difficulties in constructing a functioning feature file 

containing both bacterial and phage genes. Total RPKM values of all putative genes identified 

in Section 4.2.2, illustrated in Table 5.2, which shows that the highest levels of phage gene 

transcription are in sample PN6 followed by sample PN4, then PN5.  

This appears to contradict the data shown in the PCA plot in Figure 5.2, which shows that 

sample PN4 clusters more closely with the uninfected samples. If the clustering was due to 
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level of phage gene transcription and thereby the level of phage infection we would instead 

expect to see sample PN5 to be clustered more with the uninfected than PN4.  

 

The mean RPKM values for each putative phage gene of ϕNV3 are shown graphically in Figure 

5.3 which shows that the genes with the highest level of transcription at this time point of phage 

infection are between Gp28-34 and Gp42-50, which correspond to the mid to late genes of the 

ϕNV3 genome. The genes with the highest levels of transcription are Gp34 (36,736), Gp48 

(26,452), Gp33 (24,757) and Gp42 (21,263) which correspond to the capsid protein, Rzl-like 

protein, scaffolding protein and a novel hypothetical protein respectively. The sampling time 

point chosen of 45 minutes for our samples corresponds to the beginning of the rise period of 

phage ϕNV3, as demonstrated in the single step growth assay previously performed (Figure 

4.12) in Section 4.2.4, therefore we would expect to see the highest level of transcription in 

genes involved with progeny virion production and host cell lysis as observed. Likewise, the 

lowest levels of transcription observed were in the early, host preparation, and mid genes 

(ORFs Gp 1-30).  

These results are similar to those reported by Zhao et al. [314] in their transcriptomic analysis 

of the interaction between P. aeruginosa and the temperate phage PaP3, where they 

demonstrated that the late genes of PaP3 were expressed beginning at 30 minutes, the 

beginning of the rise period in the single step growth curve of PaP3 and the ‘early’ and ‘middle’ 

genes peaking in expression between 5-10 minutes and 10-30 minutes respectively. Likewise, 

these phage expression results are similar to those also reported by Lavigne et al. [313] with 

phage LUZ19, where at the mid/late timepoint the highest levels of gene transcription was 

observed in ORFs corresponding to capsid and head decoration proteins.  
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Differential gene expression analysis of phage infected P. agarici and non-infected P. agarici 

samples was performed using DESeq2, in order to potentially identify expression changes in 

genes previously identified in the P. agarici genome associated with phage resistance. Of the 

4,895 genes analysed only 39 (0.79%) differentially expressed genes had a padj of <0.1. Of 

these 39 genes, 26 were upregulated and 13 downregulated in the infected verses non-infected 

samples. This is in sharp contrast to the previously mentioned study by Zhao et al. [314], who 

reported a figure of 38% of the 5633 assayed genes of P. aeruginosa being differentially 

expressed in PaP3 infected versus non-infected cells with 98% of the differentially expressed 

genes being down regulated in the infected cells; as well as the previously mentioned study by 

Lavigne et al. [313] who identified 220 genes in P. aeruginosa PAO1 that were up-regulated 

and 13 operons that were downregulated during LUZ19 infection.  

 

Analysis of the differential gene expression data revealed the presence of a single four gene 

operon, the precise function of which is unknown, which showed a log2 fold increase in 

expression of approximately 1.15 between the control and the infected samples, as shown in 

Table 5.3. While the majority of genes identified to be differentially expressed were predicted 

to be hypothetical proteins the host DNA polymerase II (RS18970) showed a small log2fold 

increase (0.694) with a padj of 0.017.  

 

The tmRNA encoding gene ssrA shows significantly increased expression in phage treated 

samples with a log2fold increase of 1.64 and a padj of 8.67E-15. tmRNA is involved in trans-

translation and the release of all the components of a translation complex which has stalled 

during protein synthesis and tagging the unfinished peptide for degradation and facilitates the 

degradation of the malfunctioning mRNA [315]. However, the gene encoding the associated 
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ATP-dependent zinc protease HflB is under-expressed with a log2fold decrease of 0.77 and a 

padj of 0.019.  

 

No statistically significant gene expression was identified in any of the phage resistance 

systems previously identified in the P. agarici NCPPB 2472 genome in Section 3.2.6.  

This included in any of the identified CRISPR-associated proteins, with padj values varying 

between 0.99 and 0.97; it has been reported that cas1 and cas2 expression is required for new 

spacer region acquisition [244], we would therefore expect to see an increase in the expression 

of the cas1 and cas3 genes (RS05180, RS05185) if the cells were undergoing the acquisition 

of phage spacers at this time point.  

 

It is likely that the differential gene expression data is not statistically valid when taking into 

consideration the extremely low percentage of differentially expressed genes (0.79%) and that 

this was due to the large difference in reads attributed to bacterial genes compared to 

bacteriophage genes caused by the extremely high levels of phage gene transcription and 

possible host RNA degradation. The consequent high degree of normalisation required would 

then most likely mask any true differentially expressed genes.  

 

In any future work, as previously mentioned, a significantly higher MOI of between 5-10 would 

be needed in order to ensure all cells were infected with phage, as well as using a timepoint 

earlier in the phage replication cycle in order to reduce the imbalance in phage to bacterial 

transcripts; furthermore using RT-qPCR for identifying differential transcription in bacterial 

genes would by-pass the issue of large numbers of phage transcripts, however this approach 

would be impractical for large numbers of bacterial genes, therefore sequencing to a higher 

depth may increase the likelihood of changes in bacterial transcription being observed.  
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The purpose of this study has been to elucidate the genetics of the phage-bacterium-host 

interactions of mushroom pathogenic Pseudomonas species.  

 

I have successfully isolated and sequenced the genome of the mushroom pathogen P. tolaasii 

2192T, which is available under the accession code NZ_CP020369, including the identification 

of a total of 6,286 putative gene encoding ORFs. Six NRPS proteins were identified within the 

P. tolaasii 2192T genome that are orthologous to those required for tolaasin biosynthesis, 

although further work would be needed to confirm these predicted functions.  

A putative pyocin encoding gene cluster was likewise identified within the genome that is 

likely of phage origin, that will also need further work to confirm.  

No CRISPR elements were identified in the genome of P. tolaasii 2192T. However, I have 

identified a biosynthetic gene cluster with predicted proteins orthologous to those required for 

alginate biosynthesis as well as multiple restriction endonuclease enzymes that can potentially 

act as phage resistance systems.  

 

I have likewise successfully isolated and sequenced the genome of the mushroom pathogen P. 

agarici NCPPB 2472, which is available under the accession code NZ_CP014135, including 

the construction of a scaffold genome and made significant progress in finalising the genome 

via stitching of the remaining contig sequences. However, future work would involve 

completing the sequencing of the remaining junctions and assembly of the sequences into a 

complete genome sequence. I have identified 4,901 putative gene encoding ORFs within the 

P. agarici 2472 genome including 10 NRPS/polyketide synthase proteins, although it has not 

been possible to identify their products and further work could address this shortcoming.  

Similar to the work performed on P. tolaasii 2192T I have identified a putative pyocin encoding 

biosynthetic gene cluster within the P. agarici 2472 genome. I have also identified a 
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biosynthetic gene cluster with significant similarities in amino acid identify and gene 

organisation to the achromobactin biosynthesis cluster of P. syringae pv. syringae B728a, 

which I hypothesise to be involved in the production of achromobactin in P. agarici NCPPB 

2472, further work would be needed to confirm this prediction however. Most notably I have 

identified a complete Type I-F CRISPR/Cas system within the genome of P. agarici NCPPB 

2472, including the identification of 34 spacer regions, of which one showed similarity to a 

known plasmid sequence involved in the production of naphthalene degrading enzymes. I have 

also identified multiple restriction endonuclease enzymes and their associated 

methyltransferase enzymes as well as a complete biosynthetic cluster with proteins orthologous 

to those required for alginate production, however further work would be needed to confirm 

the function of this cluster. 

 

During my investigations of P. tolaasii 2192T and P. agarici NCPPB 2472 I have identified a 

potentially new species, Pseudomonas sp. NS1, which shows significant genomic similarities 

with both the P. azotoformans species and P. fluorescens species. I have isolated and sequenced 

the full genome of P. sp. NS1 and made it publicly available under the accession code 

CP022960. I have identified a large biosynthetic gene cluster containing multiple NRPSs that 

shows significant nucleotide and amino acid similarity as well as gene organisation to the 

known WLIP production cluster 2 of Pseudomonas fluorescens strain LMG 5329; I have also 

demonstrated that P. sp. NS1 is capable of WLIP production and therefore provided strong 

evidence that this biosynthetic cluster does produce the WLIP.  

Similar to both P. agarici NCPPB 2472 and P. tolaasii 2192T I have also identified a 

biosynthetic gene cluster predicted to produce alginate and multiple putative restriction 

endonuclease enzymes, although both would require further work to confirm these predictions.  
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I have identified two new potential new species of bacteriophage capable of infecting either P. 

tolaasii 2192T or P. agarici NCPPB 2472.  

The first, Pseudomonas phage NV1, which is a narrow host range phage having only been 

demonstrated to be capable of infecting and lysis of P. tolaasii 2192T cells. I have isolated and 

sequenced the full genome of this phage, identifying that it shares significant nucleotide 

identity and genome organisation to the Pseudomonas fluorescens phage UFV-P2. However, 

the identity is below the DNA sequence identity threshold of 95% guideline set by the ICTV 

for delineation of a new phage species, and thus with the full genome sequence differences and 

differing host range I suggest that Pseudomonas phage NV1 is a new species of Luz24likevirus.  

Further work involving phage NV1 would be needed to further characterise the growth and 

lifecycle, as well as identifying the host cell surface receptor and identifying whether resistance 

of P. tolaasii NCPPB 2192T to phage NV1 is acquired through a change in P. tolaasii 

phenotype. 

 

The second phage identified, Pseudomonas phage ϕNV3, is likewise a narrow host range 

phage, having only been demonstrated to be capable of infecting and lysing P. agarici NCPPB 

2472 cells. I have extensively characterised the growth and replication of phage ϕNV3 

including the adsorption constant and single step growth profile and co-evolution with the host 

P. agarici NCPPB 2472.  

I have also isolated and sequenced the full genome of phage ϕNV3, including confirmation via 

extensive primer waling. I have identified that phage ϕNV3 shares significant genome 

organisation similarities with Pseudomonas phage ϕKMV as well as identifying a single 

subunit RNA polymerase which is characteristic of the Autographivirinae subfamily of 

bacteriophage. Likewise, I have also identified conserved features between the lysis cassette 

of phage ϕNV3 and ϕKMV, indicating that they share a conserved mechanism of action. I have 
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also confirmed the lytic ability of the endolysin protein of ϕNV3 as well as the complementary 

actions of the associated lysis cassette proteins and via the identification and characterisation 

of a spontaneous mutant of phage ϕNV3, phage NV6, identified the T7-like tail protein as the 

host-specificity determinant of phage ϕNV3. On the basis of the results presented in this study 

I conclude that ϕNV3 is a new species of phiKMVlikevirus within the Autographivirinae 

subfamily.  

 

While I have identified that P. agarici NCPPB 2472 rapidly develops resistance to phage ϕNV3 

I have not been able to identify the exact mechanism underlying this resistance. I believe that 

it is likely to be due to the acquisition of a phage DNA spacer within the CRISPR repeat region, 

which could be tested easily in future work by PCR of the CRISPR repeat region and 

sequencing of the resulting product, followed by screening for the acquisition of an additional 

spacer region with nucleotide identity to the genomic sequence of ϕNV3.  

 

While the attempts to create a Type IV knockout of P. agarici NCPPB 2472 to identify the 

binding receptor of ϕNV3 were unsuccessful, I have demonstrated that the technique used for 

electrocompetent cells was successful and this information could be used in further studies.  

 

 

The attempts to elucidate the changes in transcription associated with phage ϕNV3 infection 

of P. agarici NCPPB 2472 via RNA sequencing did not yield statistically significant results. 

This is most likely due to the significantly reduced read counts associated with bacterial genes 

in the phage infected samples caused by the high levels of phage RNA transcription and host 

RNA degradation. Future work on this would include the use of higher MOIs to ensure all host 

bacteria are infected with phage, an earlier timepoint in the phage infective cycle to ensure a 
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more even ratio of phage to bacterial RNA and potentially sequencing to a higher depth in 

order to identify changes in gene expression. 
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Appendix 1: Additional P. agarici NCPPB 2472 Contig Sequencing Data 

 

Reaction 1 Sequence: 

Contig 3 End -

TGTAACGCTGTAGAATTCGCCTCCCGCTGTCGATAGGTCGACAGCGCAAGTGGTT

GAAGTTGAAGCGTTTTTTGAACGAAAAGCCTTGAAAACTTCTCAAATAATCACTT

GACAGCAACTGGCGCTGCTGTAGAATGCGCGCCTCGGTTCAGCGAACAGCTCAA

CCCACCGCTCTTTAACAACTGAATCAAGCAATTCGTGTGGGTGCTTGTGGAGTCA

GACTGAATAGTCACTAGATTATCAGCATCACAAGTTACTCCGCGAGAAATCAAA

GATGTAACCAACGATTGCTGAGCCAAGTTTAGGGTTTTCTCAAAACCCAAAGATG

TTTGAACTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAAC

ACATGCAAGTCGAGCGGATGAAGAGAGCTTGCTCCCGGATTCAGCGGCGGACGG

GTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAGGAA

CGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG

CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAAAGGCTCACCAA

GGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGAC

ACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAA

AGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACT

TTAAGTTGGGAGGAAGGGCATTAACCTAATACGTTAGTGTTTTGACGTTACCGAC

AGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCA

AGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTGGTTAAGTTG

GATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGGCCAGCTAG

AGTAGGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATA

GGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTCATACTGACACTGAGGT

GCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAA

CGATGTCAACTAGCCGTTGGGAACCTTGAGTTCTTAGTGGCGCAGCTAACGCATT

AAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACG

GGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAAC

CTTACCAGGCCTTGACATCCAATGAATCTTCCAGAGATGGAGGAGTGCCTTCGGG

AACATTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGG

TTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTGATGGTGG

GCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCA

AGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTACAATGGTCGGTACAA

AGGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCATAAAACCGATCGTAGTCCGG

ATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGAATC

AGAATGTCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAT

GGGAGTGGGTTGCACCAGAAGTAGCTAGTCTAACCTTCGGGAGGACGGTTACCA

CGGTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAGGGGAACCT

GCGGCTGGATCACCTCCTTAATCGACGACATCAGCTGCTGCATAAGTACCCACAC

GAATTGCTTGATTCATTGAAGAAGACGATAGAAGCAGCTCCAGGCTCTGTGATA

AAGAGCAAGGTAAAGTCCGCTTGTTACACCCAGATTCTGGGTCTGTAGCTCAGTT

GGTTAGAGCGCACCCCTGATAAGGGTGAGGTCGGCAGTTCGAATCTGCCCAGAC

CCACCAGTTACTTGGTGAGGGACTTGGCAAGAGCGCACCCCCGCCTCTGAGGTA

AAGAGCGGTGAGGTCAGGGTTTTTTGCAGTTCGAATCTGCCCAGACCCACCAGTT

TGTGTGGGAAGTGTGGTAGGAACCTGTAGATATACGGGGCCATAGCTCAGCTGG

GAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCAC

CATTAACTGCTTCTGATGTTAGAGCTTAGAAATGAATATTCACACACGAATATTG

ATTTCTAGTCTTTGATTAGATCGTTCTTTAAAAATTTGGGTATGTGATAGAAAGAT

AGACTGAACGTTACTTTCACTGGTAACGGATCAGGCTAAGGTAAAATTTGTGAGT

TATCTTACAGATTTTCGGCGAATGTCGTCTTCATACTGTAACCAGATTGCTTGGG
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GTTATAGGGTCAAGTGAAGAAGCGCATACGGTGGATGCCTTGGCAGTCAGAGGC

GATGAAAGACGTGGTAGCCTGCGAAAAGCTTCGGGGAGTCGGCAAACAGACTGT

GATCCGGAGATGTCTGAATGGGGGAACCCAGCCATCATAAGATGGTTATCTTGT

ACTGAATACATAGGTGCAAGAGGCGAACCAGGGGAACTGAAACATCTAAGTACC

CTGAGGAAAAGAAATCAACCGAGATTCCCTTAGTAGTGGCGAGCGAACGGGGAC

TAGCCCTTAAGTGGCTTTGAGATTAGCGGAACGCTCTGGAAAGTGCGGCCATAGT

GGGTGATAGCCCTGTACGCGAAAATCTCTTAGTCATGAAATCGAGTAGGACGGG

GCACGAGAAACCTTGTCTGAATATGGGGGGACCATCCTCCAAGGCTAAATACTA

CTGACTGACCGATAGTGAACTAGTACCGTGAGGGAAAGGCGAAAAGAACCCCGG

AGAGGGGAGTGAAATAGATCCTGAAACCGTCTGCGTACAAGCAGTGGGAGCCCA

CTTGTTGGGTGACTGCGTACCTTTTGTATAATGGGTCAGCGACTTATTTTCAGTGG

CAAGCTTAACCGAATAGGGGAGGCGTAGCGAAAGCGAGTCTTAATAGGGCGTCT

AGTCGCTGGGAATAGACCCGAAACCGGGCGATCTATCCATGGGCAGGTTGAAGG

TTGGGTAACACTAACTGGAGGACCGAACCGACTACCGTTGAAAAGTTAGCGGAT

GACCTGTGGATCGGAGTGAAAGGCTAATCAAGCTCGGAGATAGCTGGTTCTCCT

CGAAAGCTATTTAGGTAGCGCCTCATGTATCACTGTAGGGGGTAGAGCACTGTTT

CGGCTAGGGGGTCATCCCGACTTACCAAACCGATGCAAACTCCGAATACCTACA

AGTGCCGAGCATGGGAGACACACGGCGGGTGCTAACGTCCGTCGTGAAAAGGGA

AACAACCCAGACCGTCAGCTAAGGTCCCAAAGTCATGGTTAAGTGGGAAACGAT

GTGGGAAGGCTTAGACAGCTAGGAGGTTGGCTTAGAAGCAGCCACCCTTTAAAG

AAAGCGTAATAGCTCACTAGTCGAGTCGGCCTGCGCGGAAGATGTAACGGGGCT

CAAACCATGCACCGAAGCTACGGGTATCACTTAGGTGATGCGGTAGAGGAGCGT

TCTGTAAGCCTGTGAAGGTGAGTTGAGAAGCTTGCTGGAGGTATCAGAAGTGCG

AATGCTGACATGAGTAACGACAATGGGTGTGAAAAACACCCACGCCGAAAGACC

AAGGTTTCCTGCGCAACGTTAATCGACGCAGGGTGAGTCGGTCCCTAAGGCGAG

GCTGAAAAGCGTAGTCGATGGAAAACAGGTTAATATTCCTGTACTTCTGGTTATT

GCGATGGAGGGACGGAGAAGGCTAGGCCAGCTTGGCGTTGGTTGTCCAAGTTTA

AGGTGGTAGGCTGGAATCTTAGGTAAATCCGGGGTTTCAAGGCCGAGAGCTGAT

GACGAGTTACCCTTTAGGGTGACGAAGTGGTTGATGCCATGCTTCCAAGAAAAG

CTTCTAAGCTTCAGATAACCAGGAACCGTACCCCAAACCGACACAGGTGGTTGG

GTAGAGAATACCAAGGCGCTTGAGAGAACTCGGGTGAAGGAACTAGGCAAAAT

GGCACCGTAACTTCGGGAGAAGGTGCGCCGGTGAGGGTGAAGGACTTGCTCCGT

AAGCTCATGCCGGTCGAAGATACCAGGCCGCTGCGACTGTTTATTAAAAACACA

GCACTCTGCAAACACGAAAGTGGACGTATAGGGTGTGACGCCTGCCCGGTGCCG

GAAGGTTAATTGATGGGGTTAGCTCACGCGAAGCTCTTGATCGAAGCCCCGGTA

AACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAA

GTTCCGACCTGCACGAATGGCGTAACGATGGCGGCGCTGTCTCCACCCGAGACTC

AGTGAAATTGAAATCGCTGTGAAGATGCAGTGTATCCGCGGCTAGACGGAAAGA

CCCCGTGAACCTTTACTATAGCTTTGCACTGGACTTTGAATTTGCTTGTGTAGGAT

AGGTGGGAGGCTTTGAAGCGTGGACGCCAGTTCGCGTGGAGCCAACCTTGAAAT

ACCACCCTGGCAACTTTGAGGTTCTAACTCAGGTCCGTTATCCGGATCGAGGACA

GTGTATGGTGGGTAGTTTGACTGGGGCGGTCTCCTCCTAAAGAGTAACGGAGGA

GTACGAAGGTGCGCTCAGACCGGTCGGAAATCGGTCGTAGAGTATAAAGGCAAA

AGCGCGCTTGACTGCGAGACAGACACGTCGAGCAGGTACGAAAGTAGGTCTTAG

TGATCCGGTGGTTCTGTATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCC

GGGGATAACAGGCTGATACCGCCCAAGAGTTCATATCGACGGCGGTGTTTGGCA

CCTCGATGTCGGCTCATCACATCCTGGGGCTGAAGCCGGTCCCAAGGGTATGGCT

GTTCGCCATTTAAAGTGGTACGCGAGCTGGGTTTAGAACGTCGTGAGACAGTTCG

GTCCCTATCTGCCGTGGACGTTTGAGATTTGAGAGGGGCTGCTCCTAGTACGAGA

GGACCGGAGTGGACGAACCTCTGGTGTTCCGGTTGTCACGCCAGTGGCATTGCCG
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GGTAGCTATGTTCGGGAAAGATAACCGCTGAAAGCATCTAAGCGGGAAACTTGC

CTCAAGATGAGATCTCACTGGAACCTTGAGTTCCCTGAAGGGCCGTCGAAGACT

ACGACGTTGATAGGTGGGGTGTGTAAGCGCTGTGAGGCGTTGAGCTAACCCATA

CTAATTGCCCGTGAGGCTTGACCCTATAACACCCAAGCAATTTGTGAACTTGAGC

CTGAAGGCCAGAGAGCAGATTGCGGGGTGTGAAGACGAAACGAACCGAAAGTT

TGTGCTGAC - Contig 21 Start  

 

Reaction 2 Sequence:  

Contig 21 End -  

ATACCCACCGAGTCTCTTCTGAGCTTCTCCACACTTTGGGCAAATGGCCTTTATCT

CGGGCAGCCGCTTGCCGATTGCGAACAGCCTGCCTGACAGCTTTTCACTAATAGC

GGGCTTAGCTTAAAGCTCACTCGCCCATCGCTATGTATCGCGTGATCGTCGAAGT

GGAGAAAAACTAAATGAGTGATGGTTATTTTATCGGCCTGGGTGACAAAACCAC

CTGCGGCGGGGAAGTTCTGGATGGTGACGAGAGAATCAATATGTTTGGCGTCCT

GCATGCCTGAGAAGGTGATCGGGTCTCATGTGGAAGGACGGAAAGACTTATCGG

ATCGTCGGTGGCGTTTCCCATATGAATAGCCATGATCGGCTGATGGCTGGCACGC

TGGATAGCCACAGCGATTGCCCCTGCAAAGCCAAACTGGTCCCCTCGGTTCTGAC

GGCTTGCTATCGTAATGGCCCCGCAACCAGCCGAGTCGCCGAGCAACCGGCCTCT

TCAGCAGCTACCAGCCGCTCGCCAGCGCCGCTTAAATCTGTTTTCTCTCCTCCAA

GCCCTCCAGCCCCAGGGATATTCAGCCGCGTGGAGCCCCAGGAGCCGGGTTTCC

ATGTAGTGCCCAAAAGCATGACCCGCGAGGCACTGGAGGCCACGCTGTTCCCCA

CGCCCGACTCGGCGGTGATGCGCAAGTTCCGGGCGCTCAACCCTTATCGTGGCGA

CGTCAAGGCCGGATCGCTGATCGTCCTTGGCGATCCGAACAACCTGCTCTGTACC

CGCGAAGAGGCGCAGTTGATGGCGGCGGCGCAAGCGGTGCATGCCGAGCTGGA

ACCCCTGACACCGGAACAAGCCGACTTCATGCAGCGCCACAGTGTCGAAATTGC

CAGTTTTGCCGGCCATGCTTNCAATCT - Contig 38 Start 

 

Reaction 18 Sequence 

Contig 11 End - 

CAAAGAAGAAGGCGAAGTAACGGTCAAGGGCGCCAACGCCGGCCATGCCACCG

AAGCCAACATGGACCGCCTGGACAACGCCGGCGGTGCCGCCGCCCTCGAAGCCC

GTGCCGTGACCGCCAACGACTCCGCCGCGATCATCCGCGCCAAGGCCGCTCTCG

ACGCCCTCGATGTCGCCGAAGGCCTGGCCGAACTCGAAGGCGCCTCGGCTCGGG

TCGCCGTCGATGAAAAGCGCATGATCAACTGCCGCGCCGACCTCAACCAGCTCG

TCCCCTTCAAGTACGACTGGGCCTGGCAGAAGTACCTCGACGGCTGCGCCAACC

ACTGGATGCCGCAAGAGGTCAACATGACCGCCGACATCGCCCTGTGGAAAAACC

CCGAAGGCCTGACCGACGACGAGCGCCGCATCGTCATGCGCAACCTCGGCTTCTT

CTCCACCGCCGACTCCCTGGTGGCCAACAACCTGGTACTGGCCGTCTACCGCCTG

ATCACCAACCCCGAGTGCCGCCAGTACATCCTGCGCCAGGCCTTCGAAGAGGCC

ATCCACACCCACGCCTATCAGTACTGCATCGAATCGCTGGCCATGGATGAAGGC

GAAATCTTCAACATGTACCACGAGATTCCTTCGGTGGCGAAAAAGGCCGCCTGG

GGCCTGAAGTACACCCGTTCGATCTCCGATCCGAAGTTCGAGACCGGTACCGTCG

ACACCGACAAGGAACTGCTGCGCAACCTGATCGCCTACTACTGCGTGCTCGAAG

GTATCTTCTTCTACTGTGGCTTCACCCAGATCCTGTCCATGGGCCGGCGCAACAA

GATGACC - Contig 9 Start 

 

Reaction 19 Sequence  

Contig 9 End - 

CATCGTAGGCGAAGGTTTCGCTATGGCCCCGTGGGTTCTCCTGGGTGGCGATGAT

TCGGTCGGTGGCGTCGTAGTGCAGGTGTTGACGCTGGTCGCGGCGGGCGGGGTT



 224 

ATCGCGTTCGTCACGCTCGATCAGGTTGTCGAGGACATCGTATTCGAAGTATTTA

TTCCGGGCGGCAGATAGCATTTCCGGCTGGTTGTTCGGGCGGCGCACCCGTGAGC

GCAGGCGTCCGCACCGGTCATACTCGCTGCGGGTGTTGAGTTGTCCCTGGGTGCG

CGAGAGTTCGCGGTGCAGGCGGTCGCGTTCGAAGTCGCTGATGACCTCGCCGTC

GAGGTTGAGCTGATGCAGGTGGCCACTGCCGTAATACAGCCGATTGAGCCAGCG

CCCATCGGGTAGCTGCGTCTGGCTCAGGTTGCCCAGTTCGTCGTAGTGATGCTGC

AAGCTGCCGGCTGCGCTCTGTTCTTCCAGCAACCGGCCGAGGGCGTCATAGGCG

AAGTTGAGTGTTTGTTCATTACCGTCATGGTCGGTAAAGGTGATGGCGGTCACTT

GGTCCAGCCGGTCGTAGCTGTAGGTGGTGCGGCCATCGGCGGTGATCTTGGCGAT

CAGGCGACCCAGTGCATCGCGTTCCAATTGATGGACGATAGGAGCCGGAGTCGG

GCTTCCATCCTCTTGAGGCGCTGGCAAGTGTTCAATGGCGACTACGTTGTCGTGC

GTGTCATAGCTGTACTGCCGGGCGCTGCCGTCCAGATCCTGTTGGCGGATCCGGC

GGTCGTTGGCATCCCAGGCAAAGCGGTAACTTTCCCCGTTCTCGTTGGTCAGTGC

CTGCAAGCGGCCATAGGCGTCGTAGTGGTATTCGATCTGTCGGCCAAGGGCGTC

GGTGCGTTGGCGTACCTGGCCGCGTCGGTTGTACTGGTAGCGCGTGCTGCCGCCA

GCGGCGTCGATATGGGCGATCAGTTGGCCGTGGGCGTCGCGCTGGTAGTGGTCG

AAGCGGTCCACGGGCCGTTCGGTTTGCAGCAGTCGGCCTTGAGCATCGCGTTGGT

AGTGCACCCGTTCGCCAAAGGCATCGGCCACCGTACACAGGTGGCCGCGTCGGT

CGTAGTAAAAGTCCGTGGGATAGTCGGAGCAATCGGCGTGGTAGGTCAGTTGCC

CGCATTCGTTCCAGCGCAAGGTTCGGCTTTTGCCCGTGGCATCGATGATTTCCAC

CACCTGGCCGAAGGCATCGTAGCGATAGGTGGTGGTGTGCCCCAGCGGGTCGGT

TTCGCTGAGGCAGTTGCCGCGTTGGTCGTAGCGGTACTGCCAGGCCTGGCCGGCG

GCATCGGTTTGCACTTGGGGCAGCGACCAGTGTTCCAGCCACAGGGTGGAGTCG

ATACGGCCCAATGGGTCTTCGCTGGTGGACAGGTTGCCGGAGGCGTCGTAGCTG

AAGCGCCAGTGTCCGTCCTGCGGATCAATGGCGCCGAGTAGCTGGCGTTCGTCGT

TCCACTGAAATTGCCAGGTATGGCCGAGGGGGTCGGTGTAGGCGGTGATCTGGT

ACTGGCGGTTCCACTGGAGGGTGCTGACACGCCGTAAACCATCGGTAATACGTG

TGATGCCAGCCTCCAGGTCGTAGTCGAACTGGTAGTCATCGCCGTCATCGGTCCA

GTGCCGGGTGACGCGCCATTCCTGTGTTTTTTGTGTTTTCTGTGTTTCTTGTGTTTC

CTGTGTTTCGATCAGCGCCCATTGATAGAAACAACGCAGGCCGCTGGGCAATTG

GTGTTCGACCAGGCGCCGGTGTTCGTCATAGGCAAAACGCCGCTGAACTTGCCCT

GTGGCATCGCGAACTTCACTCAGGTCGCCCGCCGCATCGTAGTCATAGCTGACCA

GCACTTCGCGGGTTTGATCGGGGTACAGGCGTTCGATCTGGCCGATACGCCGAG

GCCCTTGGGGGCTGTGGTAGATCAGTTCCACCTGGACTTGGTCGAAGGTGTCACG

CAAGCGAATCAGCGTGCCCGACTTGCTGTAGTCGAGGTAGAGCCGGTTGTCGTTG

CGGTCGCCCAACTGGCTCAGGCGCAGTCGCGAGGGATCGGCGAGGGTCGGTTCA

AACAGCCGGTACAGCCCGTCCTCGCTCTCGATCAGCAACTGCCCGTTGTCGTGGC

GCCGCACGCTCAAGCCTTCGCCGGCACTGAACACCGCATGGCCCAGCGGGATTG

AGCCCATATCGATCTGTCGGGCCTGCTCGTCGGTGTAGATCAGCCGTTCGCCGCC

TTCGGGACGGGCTTCGAGGCGCACGTTGATTTCATACGGCAGGCTCCAGCCCTGG

CCGAGCAAACTGTCGTGGCGTTCATCGCGGCTGTTGTAGAAGCGTTGCCAGTCGA

GGGGCAGCAAACCGGGCAAGGCGAAATCGAGCTCGTCCTCGCCGCCCAGCACCT

TGGCACCAGTGGCGGCGTGGACCGGGTTAGGCGAGCCGGACATCGCCGCGCTCA

GGGCGTTGCTGACCTGGCCGGTGCCCCATGACGTCAGTCCGCCGACCAGCATGC

AGGGCAATTGGCTGAAAAACTTCGCGCCGCCACCGCGCAACATCAACAAGGTGC

CCACCGCCAGGCCCACGCCGGGGGGCTTGCCGCTGCGGATTTCGCGTATCACCAC

GGGCGCGCCACCGATGCGCACATTGGGTGAAATCAGCCCGTTGACCGCACCGAC

CCGAGCCTCGCAGGTGCTGCGATCACCCGTGCGCACGGCGGGCTGGCCGTTGAT

GGTGACTTTGCTGGAGCCTTCGGCGAGATAGACCTGGGGCATCGGCGGGTGTTTG

TCGCAGGCCACGCGATCATAAGGGCTGGGAATGGCGCCGGGCGCGGGGGTGGCG
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ACGGTGGGCCGCCATAGCTGGGAAAAGAAGCCCTGGGCGATATCCAGGTAGCCA

GCGGACTCGCCGGCCAGTACCGGGCCGATCCTGCCAGCGGCGCGGGCGGCGGGC

TTGCCGTTGATAAAGGTGTCGGGCGAGCCGGTGGTGATATGGGCCTGGACCGTG

GGCGGAAACAGCGCATTGCTTAGCCAGTCGCAGAGCTGTTTCACCTCCTCGTCGG

TGCCGGTCTGGTTCATGCCGACGCCGACCGCAATGCCCACCGCGCTCCCGAGTAC

GAGGCAGCCCAGCCCACCGGTGGCGACGGTGATACCCGTTGCCGCGACAACCGC

CGTGGTGGCCAGTGCGCCGACCGCGACAGAGGCGGCGATTTCCAGGACTCCGCC

CAGGAGGTCGGCCATCGGCGCGGTGTGCAGCAGGGCATCGCCTTCGC - Contig 42 

Start 

 

Reaction 23 Sequence  

Contig 29 End - 

ACCACCTACAGCTACGACCGGCTGGACCAAGTGACCGCCATCACCTTTACCGACC

ATGACGGTAATGAACAAACACTCAACTTCGCCTATGACGCCCTCGGCCGGTTGCT

GGAAGAACAGAGTGCAGCGGGTAGCTTGCAGCATCACTACGACGAACTGGGCAA

CCTGAGCCAGACGCAGCTACCCGATGGTCGCTGGCTCAATCGGCTGTATTACGGC

AGTGGCCACCTGCACCAGCTCAACCTCGACGGCGAGGTCATCAGCGACTTCGAA

CGCGACCGCCTGCACCGCGAACTCTCGCGCACCCAGGGACAACTCAACACCCGC

AGCGAGTATGACCGGTGCGGACGCCTGCGCTCACGGGTGCGCCGCCCGAACAAC

CAGCCGGAAATGCTATCTGCCGCCCGGAATAAATACTTCGAATACGATGTCCTCG

ACAACCTGATCGAGCGTGACGAACGCGATAACCCCGCCCGCCGCGACCAGCGTC

AACACCTGCACTACGACGCCACNGACCGAATCATCGCCACCCAGGAGAACCCAC

GGGGCCATAGCGAAACCTTCGCCTACGATGCCGCCGCCAACCTGCTCAACGGCC

AGCAACAAAACGCGGNACGGGTGCTGCACAACAAGCTGCTGACCTATCAGGACA

AACGCTATCGCTACGATGGCTTTGGCCGCATGATCGAAAAACGCAGCGCCAGCC

ATCGGGTACAACGTTTTGCCTATGACGCCGAACACCGCCTGATCGAAGTCCACAA

CCAGGACGGCGTCCGCGAAACCGTGGTGCGCATGACCTACGACCCGCTGGGCCG

GCGCATCGGCAAAACCGAACACAACCACAACGGCTATTTGCTGGGCGAAACCCG

TTTTACCTGGGACGGTTTGCGGCTGTTGCAGGAACACAAGAACACCCAAACCAG

CCTCTACCTGTATGTCGACGANAGCTATGAACCGTTGGCGCGGGTCGATGGCCTC

GGCGACGTGCAGAAAATCCGCTACTACCACACCGACCCCAACGGCCTGCCCGAG

CAACTGACGGAGGCCGAT Contig 6 Start 

 

Reaction 26 Sequence  

Contig 24 End -  

TGTATACCCACCGAGTCTCTTCTGAGCTTCTCCACACTTTGGGCAAATGGCCTTTA

TCTCGGGCAGCCGCTTGCCGATTGCGAACAGCCTGCCTGACAGCTTTTCACTAAT

AGCGGGCTTAGCTTAAAGCTCACTCGCCCATCGCTATGTATCGCGTGATCGTCGA

AGTGGAGAAAAACTAAATGAGTGATGGTTATTTTATCGGCCTGGGTGACAAAAC

CACCTGCGGCGGGGAAGTTCTGGATGGTGACGAGAGAATCAATATGTTTGGCGT

CCTGCATGCCTGCGAAGGTGATCGGGTCTCATGTGGAAAAGGACGGAAAGACTT

ATCGGATCGTCGGTGGCGTTTCTCATATGAATAGCCATGGTCGGCTGATGGCTGG

CACGCTGGATAGCCACAGCGATTGCCCCTGCAAAGCCAAACTGGTCCCCTCGGTT

CTGACGGCTTGCTATCGTAATGGACCCGCAACCAGCCGAGTCGCCGAGCAACCG

GCCTCTTCAGCAGCTACCAGCCGCTCGCCAGCGCCGCTTAAATCTGTTTTCTCTCC

TCCAAGCCCTCCAGCCCCAGGGATATTCAGCCGCGTGGAGCCCCAGGAGCCGGG

TTTCCATGTAGTGCCCAAAAGCATGACCCGCGAGGCACTGGAGGCCACGCTGTTC

CCCACGCCCGACTCGGCGGTGATGCGCAAGTTCCGGGCGCTCAACCCTTATCGTG

GCGACGTCAAGGCCGGATCGCTGATCGTCCTTGGCGATCCGAACAACCTGCTCTG

TACCCGCGAAGAGGCGCAGTTGATGGCGGCGGCGCAAGCGGTGCATGCCGAGCT
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GGAACCCCTGACACCGGAACAAGCCGACTTCATGCAGCGCCACAGTGTCGAAAT

TGCCAGTTTTGCCGGCCATGCCTCAA - Contig 15 Start  

 

Reaction 28 Sequence  

Contig 13 End - 

GCTACGACGCCAGCGCCGACGGTACGACCGCCTTCACGAATAGCGAAACGCAGG

CCGTCTTCCATCGCGATGGTCTTGATCAGCGTGACAGTCATCTGAATATTGTCAC

CTGGCATCACCATTTCAACGCCTTCTGGCAGTTCGCAGTTACCGGTCACGTCAGT

TGTACGGAAGTAGAACTGTGGACGGTAGCCTTTGAAGAACGGCGTGTGACGACC

GCCTTCTTCCTTGCTCAGAACATAGACTTCTGCAGTGAACTTGGTGTGCGGCTTG

ACCGAACCTGGCTTGACCAGAACCTGGCCACGCTCCACGTCGTCACGCTTGGTAC

CACGCAGCAGCACGCCGCAGTTCTCGCCGGCACGACCTTCGTCGAGCAGCTTGC

GGAACATTTCAACACCGGTGCAGGTGGTGGTGGTGGTATCACGCAGACCAACGA

TTTCCAGTGGATCCTGAACACGAACGATACCACGCTCGATACGACCGGTTACCAC

AGTGCCGCGACCGGAGATCGAGAACACGTCTTCGATTGGCATCAGGAACGGCTT

GTCGATAGCGCGCTCTGGCTCTGGAATGTAGCTGTCCAGAGTTTCCACCAACTTC

TTGACGGCGGTGGTGCCCATCTCGTTGTCGTCTTTACCCTCCAGCGCCATACGGG

CCGAACCGATGATGATCGGAGTGTCATCACCTGGGAAGTCGTAGGTGCTCAGCA

GGTCGCGAACTTCCATCTCAACCAGTTCCAGCAGCTCTGCGTCGTCTACCAGGTC

AGCCTTGTTCAGGAAAACCACGATGTACGGAACGCCTACCTGACGGGACAGCAG

GATGTGCTCACGGGTTTGCGGCATCGGACCATCGGCGGCCGAGCAAACCAGGAT

CGCGCCGTCCATCTGCGCAGCACCGGTGATCATGTTCTTCACGTAGTCGGCGTG -

Contig 46 Start  

 

 

 

Reaction 30 Sequence 

Contig 12 End -  

CCCGATCACCGCGTCCTGTACGCCGCGGGGATAAGCCCAATCAGTGACCCGGAA

GGGAAAACCTCATGACCGACCCTGACATCGTTGTCCCCGTTGCCCTGAAACACTC

CCAACAAGTGACCTGCAGCGCGCCCTGGTACGTGCAGAGGAGTGAATATCACCC

CATGGAGGCCACCTATCAGCCGTTGATCAACGGCGAAGAAACCTTCAAGGCCGT

GCATCTGGCGATTGCCCGAGCCACTAAAACCATCGACATCATCTGTTGGGGCTTT

CAGCCGTCGATGTATTTCATTCGCGACGGTAAAGCCCCGAGTATCGGCGAACTGC

TCAAGGCCAAGGCTCGGGAGGGAGTCAAGGTGCGCGTATTGGGATGGGAAATGC

CGCTCAACCTCGCGGGTTTCGCCGGTGAGGCGAACCTGCCCGGTAAAGGTACGG

TTCGCCTCAAGGACCGAGCCATGCAACGTTCTACTCAGGCGCAATACGACGAGG

ACCGCCGGTGGTTTGCCGAATGTGCGGTCGCGGACGACAAGGCGGCTCAGCAGG

GAGCGAGTGGGCTTCCGGTGTTTGTCAGTCGCGGTTTCGACCTGAATGAAAGAGC

CAAAATTGCCCATGAGGTGAAATACGAAGGCCTCGATCGCGAGATCAGTGACAA

GATGCGTCACACACTGAGGTGGACAGCCACCCATCACCAAAAGAGTGTGCTGGT

CGACTATGGCCTGCCGGATTGCGCCGTCGGTTTCGTCATGGGCCACAACATGCTC

GACGAATACTGGGACACCAACGCGCACTCGGCGCTGAACCGCTCCGAGGATAGT

AAGCCTGCCCCCAATAGCGGCCCGCGTGGCAATACCCCACGCCAGGATATTTCC

AGCCAGATCAGCGGGCCGATTCTGGAACACCTGCACCATAACTTCGCCAGCGCC

TGGCGTAAGGAAACCGGCGAGGACCTGCTCATTTCTCGCCAGGCCAAACAGGTG

GGACCGCACCTGAAATGCACCCCCGGTGCCACTCGCCAACTGGCCCAACTGCTA

CGCACCCAGGCGCAGTCGGGCAAGCGCGATATCGAAAGGGCTTACCTGAAAGCG

GTCAACAACGCGACCCAGTTCATCTACATCGAGAACCAGTACTTTCGCTGGCCAC

CGCTGGCCGAAGCCATCAAAAAGGCCGCGGCCGACCAGACCGGCGCGGGACGC
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GATCCCGGCTTGCATGGCGCCTTACACCTGTTCGTGATCACCAATGCCACGGACG

ATGGCATTGGCGCGGGCACGGTGAACACCCAGCGCATGCTCGACAGCCTTGGAC

GCGCCGAGACCATTCCCGAGGTCACCAAGCTGCGGCTGATCAAAAAGATCAAAA

AAGATGCCCCACCCCAACCGCAACCTGATCTGCGTGATCACGCAGGGAAGAGGG

AATTGGCTAACTGGCAGGCCGAACTTGATCGGCAAATCGAGGACGTCCAGAACA

GCACAATCGTGCCGCAGAAGGTACCGGGCCTGAAAATCCACGTGTGCTCGCTGG

TTGCGCCCGATTCACCGGCTGGGAAACCGTGGATGCCGGTCTATATCCACTCCAA

GCTGATGATCGTCAATGACNTGTTCACCACCCACGGTTCGGCCAACATCAACACC

CGCAGCATGCAGGTGG - Contig 23 Start 

 

Reaction Rb 14 Sequence  

 

AAATGCGCCTGCTCTCCTGGCCGTTGATTGCCGCAGGACAAAAAGTCTGGCTGCG

GCTGGAGGGACTGAACGCCAACAACGCGCCGCACAATCACACCCTGTGGGAAGC

CGCCACGGTTTCATCGACGTGGGTCAGCGACGGCCATGCGGAGATATTGGTACC

GGCCAGCTACCTGAGTGGATTGGGCCATGGAACTTCCCTGTCGGCGACGTTCAAG

GCGACGTTTGATCGCAGCAGCGTCGAGGCCAATGCGCTGACGTTCCCGGCGCAC

GGATTGAGGGTGGAAAACAACCCGCGCA - Contig 22/Contig 35 Overlap (Contig 22 

in Pink)  

 

Reaction Rb20 Sequence  

Contig 15 End -  

TTGAGGCATGGCCGGCAAAACTGGCAATTTCGACACTGTGGCGCTGCATGAAGT

CGGCTTGTTCCGGTGTCAGGGGTTCCAGCTCGGCATGCACCGCTTGCGCCGCCGC

CATCAACTGCGCCTCTTCGCGGGTACAGAGCAGGTTGTTCGGATCGCCAAGGAC

GATCAGCGATCCGGCCTTGACGTCGCCACGATAAGGGTTGAGCGCCCGGAACTT

GCGCATCACCGCCGAGTCGGGCGTGGGGAACAGCGTGGCCTCCAGTGCCTCGCG

GGTCATGCTTTTGGGCACTACATGGAAACCCGGCTCCTGGGGCTCCACGCGGCTG

AATATCCCTGGGGCTGGAGGGCTTGGAGGAGAGAAAACAGATTTAAGCGGCGCT

GGCGAGCGGCTGGTAGCTGCTGAAGAGGCCGGTTGCTCGGCGACTCGGCTGGTT

GCGGGTCCATTACGATAGCAAGCCGTCAGAACCGAGGGGACCAGTTTGGCTTTG

CAGGGGCAATCGCTGTGGCTATCCAGCGTGCCAGCCATCAGCCGACCATGGCTA

TTCATATGAGAAACGCCACCGACGATCCGATAAGTCTTTCCGTCCTTTCCACATG

AGACCCGATCACCTTCGCAGGCATGCAGGACGCCAAACATATTGATTCTCTCGTC

ACCATCCAGAACTTCCCCGCCGCAGGTGGTTTTGTCACCCAGGCCGATAAAATAA

CCATCACTCATTTAGTTTTTCTCCACTTCGACGATCACGCGATACATAGCGATGG

GCGAGTGAGCTTTAAGCTAAGCCCGCTATTAGTGAAAAGCTGTCAGGCAGGCTG

TTCGCAATCGGCAAGCGGCTGCCCGAGATAAAGGCCATTTGCCCAAAGTGTGGA

GAAGCTCAGAAGAGACTCGGTGGGTATGC - Contig 24 Start 

 

Reaction Rb42 Sequence  

 

ACGGGTCCGCAGCTTCCCCTGGGTCAAGTTTTTTGACGGGGACTTAGCCTCCNAA

AAGCCAGCGACCACTGTCCAGAAATGTAAGTGTAGTACGTAGTGTTTCTAGCCA

AATGGGCCGCGGAGTGCCGGGGAGGCGGTTTTTTAGGACATCGTTGTCCATCTTG

AGCTGCCGGTTCTCTTGCTCCAACTGCCGAATACGCTGCTGCTCAGGTGTCAACG

GCTTACCGATC Contig61/39 Overlap (61 End in Pink) 
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Reaction 8 (Incomplete) 

 

Contig 59 end- 

TCTGTAAGGGGCCGGGGAACACACCTTCCGAGCCCGAGCAATAAGGACGATTGT

GTCCGCGTATTTTTAAGCGGACGCAATTACCCTTAATGCCAGGATCGTCATGCGC

CAACGTAAGTCATACCCGAAATCCTTCAAGACCCAAGTCGTTCAAGAGTGCGAG

CAGCCCGGTGTTTCCGTGGCAGCTATTGCGATGAGTCACGGGATTAATGCCAATG

TCGTTCGCCGGTGGATACCGCTTTACCGTGATCAGCAGACAGTCGCGCTGCCAGC

TTTCATTCCTTTGAAAGTCGCGCCGGCTGAACCAAAACATAAGACCGAAGCGTCG

GCGATCATTGAGCTGCCGCTTGGCGAGCAATCACTCATCGTGAAATGGCCAACTT

CCGACCCTGACGGGTGCGCCCGCTTTGTCCGAGGGCTTGTCCTTTGATCCGCATC

GATGCCATCTGGCTCGCCACCGAGCCGATGGACATGCGCGCCGGTACCGAGACG

GCATTGGCCAGGGTGATCGCGGTGTTCGGTGCGGCGAGGCCGCACTGCGCTTATC

TGTTCGCCAACCGCCGCGCCACACGCATGAAAGTTTTGGTGCATGACGGCTTCGG

TATCTGGCTGGCGGCTCGCCGATTGAACCAAGGCAAGTTCCACTGGCCAGGTATT

CGCCAAGGCTCTGAATTGGAGTTGGCTCCCGAGCAACTTCAGGCTTTAGTACTGG

GCCTGCCATGGCAACGCGTATGTTCCGGCGGCTCGATCACACTGCTTTAACGGCT

GCCATTAGCCTATCGGTCTATCGCCGCGAACTGCTTGCTCTGGCAAAATCGGCGC

CTTGACTTCGCAACCCAATCTCGATCACCTGACCCCTGAACAACTGCGCGCCTGG

CGGCGCAGTTGATGCAGCGTGTCGAAGACGCTCGACCACCAGGTCGACACGCTG

GGCAAGACGGTCGAAACGATGGGCAAGAAGATCAACCGCGATCAGACGGTGAT

CGAAAAGCTGACCCACGAGATTGCACAGCTCAAGCGTTGAAGTTGCCAAGCGCA

GGAGCAGATGAATCATGAGCAGGCGAGCCTGCTTGAGACCTGATCGATACCGAT

ATCGCGGCGATGAGGCCGAGCTTCAGGCCTGCAAATAGCCCCAGCGGCGACCGA

GAAAAAGCAAACGCCCAAGCGCACGTCGTTGCCGGCAGAGTTTCCACGCACCTT

GATCCATCACGAACCGGACAACACCCACTGCCCGTGCGGCTGCGCGCTCAAGCG

CATCGGTGAAGATGTCAGCGAAAAGCTGGATTACATGCCGGGCGTGTTTACCGTT

GAACGCCATGTTCGTGGCAAGTGGGTTTGCGATAACTGCGAAACGATGATCCAG

GCACCCGTTCCAGCGCAGGTTATTGATAAGGGCATTCCGACTGCGGGCCTACTTG

CCCACGTCATGATCGCCAAGTTTGCCGACCATCTGCCGCTTTACCGTCAGGAATC

GATATTCGGTCGAGCGGGCCTGGCGATTCCACGCTCAACCTTGGCTCAATGGGTT

GGCGTGACTGGGGTTCAGTTGCAGCCGCTGGTCCTGCTTGCGCGAGAACCCCTTC

AAACAAAACCATTT 
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Appendix 2- Complete list of Primers. 

 

Table Ap2.1: Primers derived from mapping sequencing data of P. agarici NCPPB 2472 to 

P. fluorescens A506, used for contig stitching.  

 

Primer:  Length:  Tm:  Sequence: 

Seq 1  26 61 GGCTTTTTCCAACAACCGAATCAGAC  

Seq 2  21 61 TCCACGCGCCTTAATGTCAGC  

Seq 3  28 61 GCTAAAGGTCATTGCCGAACATTCCTAG  

Seq 4  21 61 CTGTCGATAGGTCGACAGCGC  

Seq 6 21 61 CTGTCGATAGGTCGACAGCGC  

Seq 7  27 60 GGATTCGGCGCATACTGATAAAGATTG  

Seq 8  35 60 CTGACAATGCCTTTGTAGTTCTTAATCTC AAAATC  

Seq 9  25 62 GCCGAAATTCAGGTGCATGGATTCG  

Seq 10  25 61 GTCGGTGTGGTAGTAGCGGATTTTC  

Seq 11 32 61 GCAAGAGCAATCTATTCAGATGTATGTATGCG  

Seq 12  22 62 CGCACTTCTTCCAGGGTGTTGC  

Seq 13  26 60 GTGGAGTCAGGCTGAATAGTCACTAG  

Seq 14  25 60 GTGTTTTCACACGGACGACAGGC  

Seq 15  29 62 GCATATTTCAACCTCTCCAATTCCGATGC  

Seq 16  23 62 GCTGGGTGCTACCCATGTTTGTC  

Seq 17  25 60 CTCATGTAAGGCATAGGCTTGCAAC  

Seq 18  28 60 CGTTAAAAGGAGGCGCAATTCTATAGAC  

Seq 19  26 61 GAGGGTGAGAGCATGGAATTGTAAGG  

Seq 20  23 61 CTTCCAGCCAGCCTTGTTGAGAG  

Seq 21  22 61 GCGCGTTACTGAAGAGCGAGAC  

Seq 22  26 62 CTGACGATAGCTTTGCTGATGCAAGC  

Seq 23  23 62 GAAAGCAGACCGGTGGTTTCTCG  

Seq 24  22 61 CGAAGCCGACATCAGTGTGGTC  

Seq 25  24 62 GCATCGATCAACTGGCGAATCAGG  

Seq 26  25 61 CCGTTGCTCTTGCCTCTATAAGGTC  

Seq 27  25 60 GCTCGAGATCTTCCGACATCAAGAG  

Seq 28  27 61 GCTGTATTGCACATGCACAATGATGTC  

Seq 33  23 61 CAATCTGCTCTCTGGCCTTCAGG  

Seq 34  24 61 CTTGTTGCATACCCACCGAGTCTC  

Seq 38  24 61 CGTCACACTCATCCACTCATGAGC  

Seq 39  29 62 CTTGTTGTATACCCACCGAGTCTCTTCTG  

Seq 40  22 62 CCACTGTCACCATCACCGATGC  

Seq 41  28 60 CCAGCAAGTTGTAAGTTGTTGTTCTACG  

Seq 42  20 60 GCTGGAAGCCCGAATTGCTC  

Seq 43  26 61 CGATGTGGTCTTCAGTTCATCGAAGC  

Seq 44  20 60 GCTGGAAGCCCGAATTGCTC  

Seq 45  20 60 CGGGCAAAGAAGGCTGTAGC  

Seq 46  21 61 CACGTCAGGTTCAGGCCATCG  

Seq 47  24 62 GTAACTGGCGCTGCTGTAGAATGC  

Seq 48  22 61 CAGGCACTGACCAACGAGAACG  

Seq 49  23 61 GCTCACTGTCTACCTGCATGCTG  

Seq 50  23 61 GGCCCAGGTCATTCAAGAGTGTG  

Seq 53  18 61 CAACCCCGCAACGCCAAG  

Seq 54  24 61 CAGTTCTTCAGGGCTGTTGCTCTG  
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Seq 55  20 60 GCATAAGTGTGGCCGTCTGC  

Seq 56  21 60 GCAGGATCGAACAGCGCAATG  

Seq 57  22 60 GCAATTTCGCCTCTACCAGCAC  

Seq 58  17 60 CGTGCTTGGCGCACGTC  

Seq 59  25 61 TCAGCAGATCACACTCATGACAAGC  

Seq 60  24 61 CCAGACCATTGTGATCTGGTCCTG  

Seq 65  25 61 CGTCAGCATGTTCCGATAATCCGTG  

Seq 66  20 62 GGTGGCCGTGCTGATGTAGC  

Seq 67  20 60 TCGAGTCCAGGTTGTGGAGC  

Seq 68  22 60 GATCGGTAAGCCGTTGACACCT  

Seq 73  25 60 GTATCGTCAATCGCTGGAAGCAAAT  

Seq 74  22 60 CGGTGCATCAGTCAGCCATTTC  

Seq 81  20 61 CAGGTCACGCCGACTACGTG  

Seq 82  24 61 GTCGCTCTGCCAATTGAGCTACTG  

Seq 97  26 60 GTGTCTCAGAGGCGTACTCATAGATC  

Seq 98  22 60 GAAGAAGGCGAAGTAGCGGTCA  

 

Table Ap2.2: Primers derived from mapping sequencing data of P. agarici NCPPB 2472 to 

P. agarici NCPPB 2289, used for contig stitching.  

 

Primer:  Length:  Tm:  Sequence 

Seq 1  26 61 GGCTTTTTCCAACAACCGAATCAGAC  

Seq 2  21 61 TCCACGCGCCTTAATGTCAGC  

Seq 3  28 61 GCTAAAGGTCATTGCCGAACATTCCTA G  

Seq 4  25 61 CAGCCTCTATGTATTGGACGACAGC  

Seq 5  20 62 GATTGAGCCAGCGGCCATCG  

Seq 6  21 61 CTGTCGATAGGTCGACAGCGC  

Seq 7  27 60 GGATTCGGCGCATACTGATAAAGATTG  

Seq 8  35 60 CTGACAATGCCTTTGTAGTTCTTAATCT CAAAATC  

Seq 9  25 62 GCCGAAATTCAGGTGCATGGATTCG  

Seq 10 25 61 GTCGGTGTGGTAGTAGCGGATTTTC  

Seq 11  32 61 GCAAGAGCAATCTATTCAGATGTATGTA TGCG  

Seq 12  22 62 CGCACTTCTTCCAGGGTGTTGC  

Seq 13  26 60 GTGGAGTCAGGCTGAATAGTCACTAG  

Seq 14  25 60 GTGTTTTCACACGGACGACAGGC  

Seq 15  29 62 GCATATTTCAACCTCTCCAATTCCGATG C  

Seq 16  23 62 GCTGGGTGCTACCCATGTTTGTC  

Seq 17  25 60 CTCATGTAAGGCATAGGCTTGCAAC  

Seq 18  28 60 CGTTAAAAGGAGGCGCAATTCTATAGA C  

Seq 19  26 61 GAGGGTGAGAGCATGGAATTGTAAGG  

Seq 20  23 61 CTTCCAGCCAGCCTTGTTGAGAG  

Seq 21  22 61 GCGCGTTACTGAAGAGCGAGAC  

Seq 22  26 62 CTGACGATAGCTTTGCTGATGCAAGC  

Seq 23  23 62 GAAAGCAGACCGGTGGTTTCTCG  

Seq 24  22 61 CGAAGCCGACATCAGTGTGGTC  

Seq 25  24 62 GCATCGATCAACTGGCGAATCAGG  

Seq 25  24 62 GCATCGATCAACTGGCGAATCAGG  

Seq 26  25 61 CCGTTGCTCTTGCCTCTATAAGGTC  

Seq 26  25 61 CCGTTGCTCTTGCCTCTATAAGGTC  

Seq 26  25 61 CCGTTGCTCTTGCCTCTATAAGGTC  
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Seq 27  25 60 GCTCGAGATCTTCCGACATCAAGAG  

Seq 28  27 61 GCTGTATTGCACATGCACAATGATGTC  

Seq 29  20 62 GGGCTTTAGGCGGCACTCAG  

Seq 30  22 62 CACGTCGATGGGTTTCAGGCAC  

Seq 31  22 61 CACTTCCGACGCGGTCTAAACG  

Seq 32  23 62 GCAGGCCTATGCCTTACATGAGC  

Seq 33  23 61 CAATCTGCTCTCTGGCCTTCAGG  

Seq 34  24 61 CTTGTTGCATACCCACCGAGTCTC  

Seq 35  24 60 GTCTGCCAATGCCCAAATTCTACG  

Seq 36  24 60 CTCTATCTCCGCGGCGTTATAGAC  

Seq 37  23 61 GAGGTGAAGCAGTTCTGCGACTG  

Seq 38  24 61 CGTCACACTCATCCACTCATGAGC  

Seq 39  29 62 CTTGTTGTATACCCACCGAGTCTCTTCT G  

Seq 40  22 62 CCACTGTCACCATCACCGATGC  

Seq 41  28 60 CCAGCAAGTTGTAAGTTGTTGTTCTAC G  

Seq 42  20 60 GCTGGAAGCCCGAATTGCTC  

Seq 43  26 61 CGATGTGGTCTTCAGTTCATCGAAGC  

Seq 44  23 61 GGCCGCTGTCGTCCAATACATAG  

Seq 45  20 60 CGGGCAAAGAAGGCTGTAGC  

Seq 46  21 61 CACGTCAGGTTCAGGCCATCG  

Seq 47  24 62 GTAACTGGCGCTGCTGTAGAATGC  

Seq 48  22 61 CAGGCACTGACCAACGAGAACG  

Seq 49  23 61 GCTCACTGTCTACCTGCATGCTG  

Seq 50  23 61 GGCCCAGGTCATTCAAGAGTGTG  

Seq 52  25 61 GCCATGAATGCTTGATCAAACCCAG  

Seq 53  18 61 CAACCCCGCAACGCCAAG  

Seq 54  24 61 CAGTTCTTCAGGGCTGTTGCTCTG  

Seq 54  24 61 CAGTTCTTCAGGGCTGTTGCTCTG  

Seq 55  20 60 GCATAAGTGTGGCCGTCTGC  

Seq 56  21 60 GCAGGATCGAACAGCGCAATG  

Seq 57  22 60 GCAATTTCGCCTCTACCAGCAC  

Seq 58  17 60 CGTGCTTGGCGCACGTC  

Seq 59  25 61 TCAGCAGATCACACTCATGACAAGC  

Seq 60  24 61 CCAGACCATTGTGATCTGGTCCTG  

Seq 62  25 60 CCATCAGCAAAGCACTCGATTACAG  

Seq 63  20 60 GTCTTGGCTTTGCGGGACTG  

Seq 65  25 61 CGTCAGCATGTTCCGATAATCCGTG  

Seq 66  20 62 GGTGGCCGTGCTGATGTAGC  

Seq 67  20 60 TCGAGTCCAGGTTGTGGAGC  

Seq 68  22 60 GATCGGTAAGCCGTTGACACCT  

Seq 73  25 60 GTATCGTCAATCGCTGGAAGCAAAT  

Seq 74  22 60 CGGTGCATCAGTCAGCCATTTC  

Seq 77  22 61 GCAAGCTCTCTTCATCCGCTCG  

Seq 78  20 60 GTGTGTAAGCGCTGTGAGGC  

Seq 82  24 61 GTCGCTCTGCCAATTGAGCTACTG  

Seq 83  21 60 AATGGCTTGCTCGAACCGTTG  

Seq 83  21 60 AATGGCTTGCTCGAACCGTTG  

Seq 83  21 60 AATGGCTTGCTCGAACCGTTG  

Seq 84  19 60 CGTGCCTGATTCGATGCCG  

Seq 84  19 60 CGTGCCTGATTCGATGCCG  
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Seq 86  23 61 GACTTGCCACGGCTGATTTACGT 

Seq 87  20 60 TGCCATTTATGCGGCAGCAA  

Seq 91  21 60 GGTGTAGTCACCTACCGTGCC  

Seq 92  20 60 ACCGTGGATGTGCTCGATCA  

Seq 93  22 60 TCGAACAGGAAGCGGACTTTGT  

Seq 94  20 61 AACATGACTGGCCGCTGGTC  

Seq 95  22 60 TGCCAGCCATGGAAGATCTGTA  

Seq 95  22 60 TGCCAGCCATGGAAGATCTGTA  

Seq 97  26 60 GTGTCTCAGAGGCGTACTCATAGATC  

Seq 98  22 60 GAAGAAGGCGAAGTAGCGGTCA  

Seq 99  24 60 CGGAGCAGACCAGTATGAACAGAG  

Seq 100  23 60 GTCATGAAAGCGCCACCACTAAC  

Seq 101  21 61 ACGGTTCGGCCAACATCAACA  

Seq 102  20 61 GCTTATCACCGCGGCGTACA  

Seq 103  21 61 GCTCCTTCAGCAGGTGGTTGT  

Seq 104  21 61 AGCTATCTCAAAGCGCGAGGC  

Seq 107  22 60 CGAATTGATCCAGCAGCAAGCC  

Seq 108  20 61 GCTGACCGCTGTCGTCCAAT  

Seq 113  22 60 GCTGGCGAACGACAGCAATAAC  

Seq 114  20 60 TGGTGCAAACCACGTTCACC  

 

Table Ap2.3: Bacteriophage ϕNV3 forward primers, used for primer walking.  

 

Name: Start (bp) : Length:  Tm: Sequence:  

Nv3a-F1 1 19 62 TCCCGACCCCTAGCAGCTC 

Nv3a-F2 1420 19 60 CAGCAAGGCAGCACAGGAC 

Nv3a-F3 2788 19 59 CACGCAGCGACTAGATGGG 

Nv3a-F4 4151 19 60 CGCTACATGCATCGCCAGC 

Nv3a-F5 5488 20 59 CCCAAGCTCAAACCGCTACC 

Nv3a-F6 6827 18 62 GCGGGTGCCTTCGGTACC 

Nv3a-F7 8212 21 60 CCACAGGAGACTGAGGTGGAC 

Nv3a-F8 9619 19 59 CGATGGCGGTGATGATCGC 

Nv3a-F9 10958 19 61 GCTGGCTGACCGACTCAGC 

Nv3a-F10 12,291 20 61 CTGGTGCCCACAGATCTGCC 

Nv3a-F11 13,646 19 59 CTGGAACCAAGGTGAGGCC 

Nv3a-F12 14,992 20 60 CTGCCGGCTCTGTAACATGC 

Nv3a-F13 16,348 20 61 CCCGAGCTAAGGCCAACACC 

Nv3a-F14 17,700 20 62 CCGTTCTGAAGGGCACCTGC 

Nv3a-F15 19,053 21 59 CGAACGTTCCTGCATGAGTCC 

Nv3a-F16 20,401 20 59 CGCTAGTGCGCAAGGTAGAC 

Nv3a-F17 21,753 19 60 AGGAGTACTGGTGCTGGGC 

Nv3a-F18 23,121 21 61 CATTAAGCGCTCGCAAGGTGC 

Nv3a-F19 24,468 20 61 ATTGCGTACCTCGAAGCCGC 

Nv3a-F20 25,817 20 61 CTCGTAAGGCGATCACCGGC 

Nv3a-F21 27,185 21 60 CGCCAAAGACTTCACCGTGAC 

Nv3a-F22 28,528 21 61 CCGGGCAGGTTATCCTGATGC 

Nv3a-F23 29,875 20 62 CTAGCGGTATCGTGCAGCGC 

Nv3a-F24 31,224 25 61 GACTTCCAGAAGTTCCAGAACAGCC 

Nv3a-F25 32,561 22 61 CTTGCTGCAATCAAGCAGGAGC 

Nv3a-F26 33,936 21 62 CAGCGCTGTCCAACGTACTGC 
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Nv3a-F27 35,278 20 61 GGCAACCATTATGCACCGGC 

Nv3a-F28 36,618 21 60 CCTTGCAGGAGGGTCTACTCC 

Nv3a-F29 37,984 20 61 GCCGGGCGTACGTGATATCC 

Nv3a-F30 39,313 21 61 GGGTATACCTGTTCCTGCGGC 

Nv3a-F31 40,659 20 61 CGGTAACGGTGGTGACGAGC 

Nv3a-F32 42,017 21 61 GCTGGATTAAGCTCCTGGGGC 

Nv3a-F33 42,678 19 62 CTAACGGCGCCATCACCGC 

 

Table Ap2.4: Bacteriophage ϕNV3 reverse primers, used for primer walking.  

 

Name: Start (bp):  Length: Tm: Location:  

Nv3a-R1 687 19 62 GCCAAGAGGTAAGGCGCGC 

Nv3a-R2 2025 19 61 GTCCGCCGGATCAGTGTGT 

Nv3a-R3 3301 19 60 CGCTTGGAAGTCGAACGCC 

Nv3a-R4 4649 20 60 GGATTCAACGTGGTCGCAGG 

Nv3a-R5 5965 19 61 CCTGCAATGCACCCGTTGC 

Nv3a-R6 7310 20 61 CCGGCAACTCTGGCAGTACG 

Nv3a-R7 8644 21 61 GCTCGTCTTACCCGCATCAGG 

Nv3a-R8 9996 19 61 GGTCGAAGCGAAGGCGGAT 

Nv3a-R9 11344 20 59 GTCCTCCTTGGTGACGTTGC 

Nv3a-R10 12689 19 62 CTGCTGGAACTCAGCCCGC 

Nv3a-R11 14041 19 60 CGGCAGCTTGGTTAGCTGC 

Nv3a-R12 15384 22 61 CAGTAGTGGTGTAGCTCCACGC 

Nv3a-R13 16746 20 62 CGTTATCGGTGCAGCCGGAC 

Nv3a-R14 18103 19 59 GACCAGCGGAACAGAGTGC 

Nv3a-R15 19442 20 62 CCAGTTCTTCTTCGGCGGCC 

Nv3a-R16 20793 23 61 GGACTTGACATGGAGCTACTGCC 

Nv3a-R17 22132 19 61 CTCACCTCCGGGCATACGC 

Nv3a-R18 23490 20 60 GCGATTGGTTCACTGCGACG 

Nv3a-R19 24842 19 62 AGTTTGAACCACGCCGCCG 

Nv3a-R20 26217 19 62 CGGCTCGTCAAGGGAGGGT 

Nv3a-R21 27571 20 61 CGTAGTGGGCAGACTCGCAG 

Nv3a-R22 28928 21 61 TACTCGAACTCCCCGGTGTCC 

Nv3a-R23 30268 20 62 AGCAAGGAAGGGCTTGGTGC 

Nv3a-R24 31620 21 61 CGGGTACTTGTCTGCCAGTGC 

Nv3a-R25 32966 20 61 CCGCCAACGAGAGCCATACC 

Nv3a-R26 34302 20 61 CCAACCTATACCCCGCTGGC 

Nv3a-R27 35655 21 61 CCCAGTCCACATCTTTGCCGT 

Nv3a-R28 37010 20 60 CCGAACTCCTCCGGGCATAG 

Nv3a-R29 38363 19 61 CAGGGGCGTAGTCGCTAGC 

Nv3a-R30 39786 20 61 CCTTGTCACCGGAGCCAGAG 

Nv3a-R31 41134 20 61 CCCTCAAGGGCGTCGATACG 

Nv3a-R32 42448 20 62 CCTTGGCCAAGTTCAGGCCG 

Nv3a-R33 43131 21 61 CACATAGAACGCGCACAGGGA 
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Appendix 3: Full Phage Genome Tables  

 

Table Ap3.1 All identified ORFs of phage NV1 including their function as predicted by BlastP, including Accession codes of homologous 

protein in phage UFV-P2 (if applicable) and Query Cover, E-value and Identity scores as identified by BlastP. 

 

Gp 

No:  Start:  End:  Strand:  Predicted Function: 

Homolog (UFV-

P2):  Cover:  Evalue:  Ident:  

1 980 1321 + Hypothetical Protein YP_006907083.2 80% 5.00E-27 67% 

2 1351 1836 + Hypothetical Protein YP_006907082.2 98% 4.00E-96 48% 

3 1709 2077 + Hypothetical Protein YP_007518458.1 45% 2.00E-21 71% 

4 2546 2776 + Hypothetical Protein YP_007518462.1 97% 5.00E-19 54% 

5 3279 3479 + Hypothetical Protein YP_007518465.1 100% 1.00E-35 89% 

6 3466 3795 + Hypothetical Protein YP_007518466.1 98% 9.00E-29 47% 

7 3792 4031 + Hypothetical Protein N/A N/A N/A N/A 

8 4031 4243 + Hypothetical Protein YP_007518467.1 85% 7.00E-30 83% 

9 4224 4628 + Hypothetical Protein YP_006907081.1 94% 3.00E-57 65% 

10 4712 4903 + Novel Hypothetical Protein N/A N/A N/A N/A 

11 5060 5890 + Putative Transposase  YP_006907080.2 100% 0.00E+00 99% 

12 6062 6400 + Hypothetical Protein YP_007518468.1 75% 5.00E-30 67% 

13 6541 6753 + Hypothetical Protein YP_007518470.1 100% 1.00E-31 76% 

14 6877 7689 + Hypothetical Protein YP_007518471.1 99% 7.00E-80 48% 

15 7693 8571 + Hypothetical Protein YP_006907079.1 100% 4.00E-109 55% 

16 8583 9380 + Hypothetical Protein YP_006907078.1 100% 3.00E-175 89% 

17 9377 9937 + Hypothetical Protein N/A N/A N/A N/A 

18 9913 11067 + Putative Amidoligase YP_006907076.1 100% 0.00E+00 78% 

19 11098 12567 + Putative Glutamine Amidotransferase YP_006907074.1 99% 0.00E+00 81% 

20 12570 12788 + Hypothetical Protein YP_007518472.1 100% 2.00E-42 94% 

21 12926 13801 + Putative ATP-grasp Enzyme YP_006907073.1  100% 2.00E-159 76% 

22 13794 14189 + Hypothetical Protein YP_006907072.2 99% 5.00E-78 84% 

23 14189 14485 + Hypothetical Protein YP_007518474.1 100% 4.00E-56 87% 

24 14445 16199 + Putative DNA Primase/Helicase YP_006907071.2 100% 0.00E+00 96% 
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25 16138 16689 + Putative DNA Polymerase Part I  YP_006907070.2 93% 1.00E-109 88% 

26 16646 16957 + Hypothetical Protein N/A N/A N/A N/A 

27 17121 17351 + Hypothetical Protein YP_007518477.1 100% 2.00E-34 75% 

28 17364 17567 + Hypothetical Protein YP_007518478.1 100% 3.00E-31 84% 

29 17588 17845 + Putative Holin YP_007518479.1 100% 5.00E-51 94% 

30 17827 18060 + Hypothetical Protein YP_007518480.1 93% 8.00E-12 40% 

31 18099 18527 + Hypothetical Protein N/A N/A N/A N/A 

32 18496 18717 + Hypothetical Protein N/A N/A N/A N/A 

33 18725 20365 + Putative DNA Polymerase Family A YP_006907069.2 100% 0.00E+00 95% 

34 20432 21028 + Hypothetical Protein YP_006907068.1 99% 1.00E-116 86% 

35 21006 21473 + Hypothetical Protein YP_006907067.2 74% 5.00E-66 83% 

36 21473 21733 + Hypothetical Protein YP_007518485.1 88% 2.00E-19 71% 

37 21751 22128 + Hypothetical Protein YP_007518486.1 69% 4.00E-18 47% 

38 22125 23009 + Putative 5'-3' Exonuclease YP_006907065.2 100% 0.00E+00 91% 

39 22984 23982 + Hypothetical Protein YP_006907064.1 100% 0.00E+00 74% 

40 23888 24250 + Putative Endonuclease YP_006907063.2 100% 2.00E-68 87% 

41 24216 24971 + Hypothetical Protein YP_006907062.1 100% 0.00E+00 97% 

42 25190 25396 + Hypothetical Protein YP_007518490.1 100% 1.00E-41 97% 

43 25525 25881 - Hypothetical Protein YP_006907061.1  100% 5.00E-60 75% 

44 25881 26768 - Putative Phage Structural Protein  YP_006907060.1 99% 0.00E+00 86% 

45 26779 29952 - Putative Phage Structural Protein  YP_006907059.1 100% 0.00E+00 90% 

46 29959 31674 - Putative Phage Structural Protein  YP_006907058.1 100% 0.00E+00 82% 

47 31676 32080 - Putative Phage Structural Protein  YP_006907057.1 100% 2.00E-84 97% 

48 32080 32607 - Putative Phage Particle Protein YP_006907056.1 100% 2.00E-113 99% 

49 32699 33022 - Putative Phage Particle Protein YP_006907056.1 90% 1.00E-41 85% 

50 33003 33437 - Hypothetical Protein YP_006907055.2 100% 1.00E-90 87% 

51 33434 34147 - Hypothetical Protein  YP_006907054.2 100% 3.00E-129 87% 

52 34147 35691 - Putative Phage Particle Protein YP_006907053.1 100% 0.00E+00 83% 

53 35699 36334 - Putative Tail Fiber Protein YP_006907052.1 100% 1.00E-134 88% 

54 36324 36575 - Hypothetical Protein N/A N/A N/A N/A 

55 36557 36751 - Hypothetical Protein YP_006907051.2 100% 3.00E-32 91% 
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56 36755 37384 - Putative Phage Structural Protein  YP_006907050.1 100% 3.00E-145 96% 

57 37388 37570 - Hypothetical Protein  YP_006907049.2 100% 3.00E-35 93% 

58 37759 38712 - Putative Major Capsid Protein YP_006907048.1 100% 0.00E+00 96% 

59 38730 39728 - Putative Scaffolding Protein  YP_006907047.1 99% 1.00E-168 75% 

60 39718 39969 - Hypothetical Protein YP_007641362.1 100% 5.00E-48 88% 

61 39969 42107 - Putative Portal Protein YP_006907046.2 97% 0.00E+00 95% 

62 42086 43531 - Putatitve Terminase Large Subunit YP_006907045.1 100% 0.00E+00 91% 

63 43535 44074 - Putative Lysozyme YP_006907044.2 93% 1.00E-111 93% 

64 43962 44435 - Putative Terminase Small Subunit YP_006907043.1 100% 4.00E-92 83% 
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Table Ap3.2 All identified ORFs of phage ϕNV3 including their function as predicted by BlastP, including closest amino acid homolog by 

species and Query Cover, E-value and Identity scores as identified by BlastP. 

 

 

Gp 

No:  Start:  End:  Predicted Function  Closest Similarity:  Cover:  E value:  Ident:  

1 2302 2688 Hypothetical protein Pseudomonas phage VSW-3 81% 2.00E-35 54% 

2 2900 3427 Hypothetical protein Pseudomonas phage phikF77 77% 3.00E-40 49% 

3 3424 3639 Novel Hypothetical protein N/A N/A N/A N/A 

4 3867 4079 Hypothetical protein Pseudomonas phage PAK_P5 98% 8.00E-08 41% 

5 4140 4499 Novel Hypothetical protein N/A N/A N/A N/A 

6 4489 4737 Novel Hypothetical protein N/A N/A N/A N/A 

7 4730 4918 Novel Hypothetical protein N/A N/A N/A N/A 

8 4915 5172 Novel Hypothetical protein  N/A N/A N/A N/A 

9 5218 5406 Hypothetical protein Pseudomonas phage phi-2 56% 7.00E-04 57% 

10 5436 5891 Hypothetical protein Pseudomonas phage phikF77 70% 3.00E-18 47% 

11 6014 6457 Novel Hypothetical protein N/A N/A N/A N/A 

12 6641 7135 Hypothetical protein Pseudomonas phage UNO-SLW4 91% 8.00E-25 37% 

13 7159 7995 Putative DNA primase Pseudomonas phage LUZ19 93% 8.00E-81 51% 

14 8047 9357 Putative DNA helicase Pseudomonas phage vB_Pae-TbilisiM32 97% 1.00E-160 55% 

15 9350 9913 Hypothetical protein 

Pseudomonas phage vB_PaeP_PPA-

ABTNL 88% 3.00E-10 29% 

16 9913 10812 Putative ATP-dependent DNA ligase Ralstonia phage RSB3 100% 1.00E-70 44% 

17 10897 11223 Novel Hypothetical protein  N/A N/A N/A N/A 

18 11322 11518 Novel Hypothetical protein N/A N/A N/A N/A 

19 11583 13943 Putative DNA polymerase I Pseudomonas phage phiNFS 99% 0 66% 

20 13990 15006 Hypothetical protein  Pseudomonas phage phi-2 92% 1.00E-93 51% 

21 15008 15967 Putative Integrase Pseudomonas phage phi-2 92% 5.00E-113 58% 

22 15948 16424 Putative DNA Endonuclease VII  Pseudomonas phage phiKMV 69% 1.00E-47 66% 

23 16432 17652 Putative DNA Exonuclease Pseudomonas phage phi-2 81% 3.00E-179 74% 
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24 17663 18091 Hypothetical protein Pseudomonas phage Andromeda 86% 1.00E-65 81% 

25 18088 18270 Novel Hypothetical protein N/A N/A N/A N/A 

26 18414 20870 Putative RNA Polymerase 

Pseudomonas phage vB_PaeP_PPA-

ABTNL 99% 0.00E+00 51% 

27 21028 21271 Hypothetical protein Pseudomonas phage phikF77 100% 8.00E-15 48% 

28 21270 21701 Hypothetical protein Pseudomonas phage LKD16 94% 5.00E-26 41% 

29 21679 22149 Putative DNA Endonuclease Pseudomonas phage phi-2 98% 2.00E-34 44% 

30 22363 22500 Putative virion structural protein Pseudomonas phage phikF77 97% 7.00E-12 66% 

31 22510 24048 Putative head-tail connector protein Pseudomonas phage vB_Pae-TbilisiM32 99% 0.00E+00 65% 

32 24048 25013 Putative scaffolding protein Pseudomonas phage LKD16 100% 6.00E-49 42% 

33 25069 26061 Putative capsid protein  Pseudomonas phage phikF77 100% 0.00E+00 74% 

34 26161 26715 Putative tail tubular protein A  

Pseudomonas phage vB_PaeP_PPA-

ABTNL 100% 2.00E-57 49% 

35 26712 29183 Putative tail tubular protein B  Pseudomonas phage LKD16 99% 0.00E+00 47% 

36 29183 29728 Putative internal virion protein A Pseudomonas phage LKD16 98% 2.00E-49 49% 

37 29721 32381 

Putative baseplate hub subunit and 

tail lysozyme Pseudomonas phage phiKMV 99% 0.00E+00 49% 

38 32390 36322 Putative internal core protein  Pseudomonas phage phiKMV 100% 0.00E+00 59% 

39 36323 38689 Putative T7-like tail protein Pseudomonas phage MPK7 17% 3.00E-19 43% 

40 38640 38936 Novel Hypothetical protein N/A N/A N/A N/A 

41 39005 39184 Novel Hypothetical protein N/A N/A N/A N/A 

42 39215 39532 Putative DNA Maturase A Pseudomonas phage LKA1 89% 3.00E-25 54% 

43 39529 41301 Putative DNA Maturase B Pseudomonas phage phiNFS 98% 0.00E+00 79% 

44 41303 41542 Putative pinholin Pseudomonas phage phiKMV 81% 2.00E-19 63% 

45 41526 42026 Putative lysozyme  Pseudomonas phage MPK7 83% 5.00E-72 75% 

46 41975 42307 Putative Rz-like protein Pseudomonas phage LUZ19 96% 2.00E-14 42% 

47 42165 42410 Putative Rzl-like protein Pseudomonas phage LKA1 46% 2.00E-06 55% 

48 42388 42715 Hypothetical protein Pseudomonas phage phi-2 51% 3.40E+00 46% 

49 42729 42911 Novel Hypothetical protein N/A N/A N/A N/A 
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Appendix 4: Supplementary Experimental Data 
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 baseMean 

log2Fold 
Change lfcSE stat pvalue padj P4 P5 P6 PN4 PN5 PN6 

RS24005 39706.802 -6.447 0.345 -18.688 6.21E-78 3.04E-74 950.17 661.59 1087.39 44007.70 102839.44 88694.52 

ssrA 1334955.215 -1.640 0.189 -8.692 3.55E-18 8.67E-15 598588.72 657415.73 690028.48 1703937.31 2098988.72 2260772.33 

RS16105 205.223 -1.198 0.206 -5.813 6.13E-09 9.99E-06 122.00 118.48 131.25 248.05 308.46 303.10 

RS04440 1485.348 -0.801 0.153 -5.231 1.69E-07 2.06E-04 1068.54 1122.80 1058.02 1788.77 1921.96 1952.01 

RS16100 840.808 -1.236 0.242 -5.110 3.23E-07 3.16E-04 522.35 454.84 523.56 853.63 1346.56 1343.91 

RS23260 21763.386 -0.875 0.193 -4.539 5.64E-06 4.60E-03 14391.96 17938.53 13756.57 25676.30 28013.68 30803.27 

RS24275 4935.152 -1.156 0.257 -4.491 7.09E-06 4.95E-03 3008.88 3014.54 3145.14 4575.57 7850.95 8015.83 

RS24525 19086.990 -1.213 0.279 -4.352 1.35E-05 8.23E-03 11756.36 10626.03 12136.14 16890.83 30608.92 32503.66 

RS13830 30.191 -1.514 0.354 -4.273 1.93E-05 9.45E-03 14.54 15.90 17.06 41.92 32.63 59.09 

RS17680 1552.339 -0.787 0.183 -4.293 1.77E-05 9.45E-03 1146.91 1118.03 1155.15 2290.70 1815.18 1788.07 

RS04410 416.473 -0.836 0.203 -4.121 3.78E-05 1.66E-02 282.39 306.15 310.82 621.88 522.01 455.60 

RS18970 1721.115 -0.694 0.169 -4.103 4.07E-05 1.66E-02 1260.43 1276.27 1404.84 1920.37 2289.74 2175.04 

RS06350 165.249 -0.953 0.233 -4.083 4.45E-05 1.67E-02 108.67 104.17 124.61 193.32 195.75 264.97 

RS16090 84.998 -1.155 0.285 -4.048 5.17E-05 1.73E-02 49.69 47.71 57.80 90.84 157.20 106.75 

RS23105 206.453 -0.938 0.233 -4.030 5.57E-05 1.73E-02 137.76 131.21 153.99 217.77 275.84 322.16 

RS07595 10603.102 0.990 0.246 4.027 5.65E-05 1.73E-02 14079.68 13790.06 14441.70 8113.52 8260.26 4933.40 

RS21855 407.818 -0.762 0.192 -3.965 7.34E-05 1.99E-02 263.40 325.23 320.29 499.60 489.39 549.00 

hflB 24881.951 0.773 0.195 3.971 7.17E-05 1.99E-02 29479.17 30576.37 34130.36 19544.87 20385.18 15175.74 

RS16095 97.522 -0.998 0.257 -3.880 1.05E-04 2.44E-02 66.66 57.25 70.12 108.30 124.57 158.22 

RS22880 836.743 0.753 0.193 3.900 9.63E-05 2.44E-02 962.70 1084.63 1098.76 567.14 729.63 577.60 

rnpB 1263911.359 -1.846 0.474 -3.891 1.00E-04 2.44E-02 482360.27 539283.38 629076.74 802993.51 3756891.67 1372862.58 

RS14345 28914.912 0.746 0.193 3.868 1.10E-04 2.44E-02 37033.69 35131.17 36517.88 23251.68 23988.85 17566.20 

RS15670 95.934 -0.968 0.253 -3.832 1.27E-04 2.70E-02 65.85 69.18 59.23 133.92 148.30 99.13 

RS18775 74.087 -1.211 0.329 -3.676 2.37E-04 4.63E-02 50.09 42.14 39.33 64.05 136.44 112.47 

RS12730 447.489 -0.641 0.174 -3.684 2.30E-04 4.63E-02 326.82 375.33 346.83 540.36 569.47 526.13 

RS22885 3586.449 0.623 0.173 3.612 3.04E-04 5.72E-02 4307.69 4443.48 4290.34 2474.70 3146.91 2855.58 

RS13280 3684.993 0.933 0.261 3.583 3.40E-04 6.15E-02 4888.22 4929.34 4694.03 3010.40 2906.66 1681.32 

RS07600 1026.488 0.890 0.250 3.556 3.76E-04 6.57E-02 1340.42 1318.41 1344.67 926.99 711.84 516.60 

RS19360 663.999 0.635 0.180 3.532 4.12E-04 6.95E-02 765.15 799.16 861.38 569.47 516.08 472.75 

RS12095 50.730 -1.059 0.301 -3.513 4.44E-04 7.23E-02 31.51 30.22 38.38 85.01 56.35 62.91 

RS18635 227.909 -0.705 0.201 -3.504 4.59E-04 7.23E-02 177.35 174.94 170.10 302.79 237.28 305.00 

RS02040 10435.994 0.669 0.191 3.493 4.78E-04 7.30E-02 13663.17 11026.80 13744.73 8260.25 8829.72 7091.29 

RS13245 18062.289 0.813 0.233 3.483 4.96E-04 7.35E-02 25366.61 19598.87 24086.08 13292.33 15829.44 10200.40 

RS10945 218.514 -0.862 0.249 -3.462 5.36E-04 7.70E-02 153.11 191.64 120.82 279.50 314.39 251.63 
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Table Ap4.1.   Complete RNA sequencing results of the differentially expressed genes as calculated by DESeq2 with a padj of <0.1.

RS12065 296.642 -0.610 0.177 -3.443 5.76E-04 7.82E-02 238.35 229.81 235.96 365.67 370.75 339.31 

RS03480 1493.979 0.688 0.199 3.450 5.60E-04 7.82E-02 2066.79 1646.82 1816.58 1262.39 1195.29 976.01 

RS22640 192.155 -0.655 0.194 -3.383 7.16E-04 8.97E-02 140.99 149.49 156.83 231.75 243.21 230.66 

RS22890 5980.916 0.536 0.158 3.386 7.09E-04 8.97E-02 6707.36 7671.13 6857.91 4950.56 5077.76 4620.78 

RS14695 10384.225 -1.278 0.377 -3.391 6.97E-04 8.97E-02 5266.75 7520.84 5403.79 11027.25 8957.26 24129.45 

RS20420 197.489 0.900 0.267 3.376 7.36E-04 8.99E-02 279.15 302.96 188.10 128.10 151.26 135.34 
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Table Ap4.2 Full results of the Jspecies AniB results for analysis of the Pseudomonas sp. NS1(2017) genome to closely related strains. 

 

 
P. sp 
NS1 

P. azotoformans 
S4 

P. 
azotoformans 
F77 

P. 
fluorescens 
PICF7 

P. 
fluorescens 
UK4 

P. fluorescens 
Pf0-1 

P.  fluorescens 
F113 

P. agarici 
2472 

P. fluorescens 
LMG 5329 

P. sp NS1 * 93.32 [82.22] 89.72 [77.57] 
90.72 
[76.13] 

83.25 
[60.78] 79.91 [58.72] 79.60 [54.86] 

78.19 
[46.79] 93.43 [81.97] 

P. azotoformans 
S4 

93.06 
[81.21] * 89.65 [75.97] 

90.47 
[73.73] 

83.57 
[61.20] 79.69 [59.23] 79.63 [54.00] 

78.05 
[47.28] 95.56 [84.83] 

P. azotoformans 
F77 

89.94 
[78.95] 90.02 [78.90] * 

89.61 
[77.35] 

83.43 
[61.92] 80.09 [59.55] 79.80 [56.25] 

78.47 
[47.21] 90.05 [78.22] 

P. fluorescens 
PICF7 

91.22 
[82.13] 91.08 [81.07] 89.86 [82.11] * 

83.41 
[65.95] 79.99 [62.37] 80.04 [60.05] 

78.66 
[49.01] 91.08 [80.02] 

P. fluorescens 
UK4 

83.67 
[66.72] 84.07 [67.42] 83.86 [66.70] 

83.58 
[66.42] * 80.10 [59.86] 80.36 [56.34] 

78.99 
[48.23] 83.74 [66.43] 

P. fluorescens 
Pf0-1 

80.16 
[61.13] 80.14 [62.15] 80.24 [60.29] 

79.89 
[59.64] 

79.95 
[56.98] * 81.53 [62.59] 

78.84 
[49.16] 80.19 [61.37] 

P. fluorescens 
F113 

79.73 
[53.93] 79.96 [53.55] 79.77 [54.37] 

79.61 
[54.51] 

79.96 
[50.76] 81.51 [58.31] * 

78.97 
[44.88] 79.95 [53.21] 

P. agarici 2472 
78.92 
[54.41] 78.89 [55.73] 79.09 [54.05] 

78.94 
[52.97] 

79.29 
[51.23] 79.28 [55.03] 79.55 [53.93] * 78.97 [55.54] 

P. fluorescens 
LMG 5329 

93.28 
[81.20] 95.59 [85.14] 89.68 [75.89] 

90.48 
[73.27] 

83.11 
[59.49] 79.79 [58.12] 79.62 [53.70] 

78.15 
[47.41] * 
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Table Ap4.3.  Full results of the Jspecies AniM results for analysis of the Pseudomonas sp. NS1(2017) genome to closely related strains. 

 P. sp NS1 

P. azotoformans 
S4 

P. azotoformans 
F77 

P. fluorescens 
PICF7 

P. fluorescens 
UK4 

P. fluorescens 
Pf0-1 

P.  fluorescens 
F113 

P. agarici 
2472 

P. fluorescens 
LMG 5329 

P. sp NS1 * 0.99858 0.99663 0.99819 0.97568 0.94809 0.96877 0.95169 0.99892 

P. azotoformans 
S4 0.99858 * 0.99625 0.99737 0.9718 0.94495 0.96403 0.94736 0.99941 

P. azotoformans 
F77 0.99663 0.99625 * 0.99739 0.97997 0.93905 0.97056 0.95052 0.9975 

P. fluorescens 
PICF7 0.99819 0.99737 0.99739 * 0.97987 0.94596 0.97197 0.95542 0.9981 

P. fluorescens 
UK4 0.97568 0.9718 0.97997 0.97987 * 0.93581 0.98022 0.97202 0.97537 

P. fluorescens 
Pf0-1 0.94809 0.94495 0.93905 0.94596 0.93581 * 0.94687 0.93481 0.94523 

P. fluorescens 
F113 0.96877 0.96403 0.97056 0.97197 0.98022 0.94687 * 0.97282 0.96802 

P. agarici 2472 0.95169 0.94736 0.95052 0.95542 0.97202 0.93481 0.97282 * 0.951 

P. fluorescens 
LMG 5329 0.99892 0.99941 0.9975 0.9981 0.97537 0.94523 0.96802 0.951 * 
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Table Ap4.4: Full results of Phage/Host Co-Evolution Study of ϕNV3 and P. agarici NCPPB 2472.  

 

 
 

 

 

 

 

 

 

 

 

 

Bacteria	Transfer	No.

Phage	Transfer	No. T0 T1 T2 T2 T3 T4 T4 T5 T6

Repeat	1	(%	resistant) 12.50 68.75 37.50 100.00 56.25 50.00 100.00 68.75 100.00

Repeat	2	(%	resistant) 6.25 62.50 37.50 43.75 37.50 31.25 75.00 75.00 50.00

Repeat	3	(%	resistant) 6.25 25.00 18.75 68.75 62.50 37.50 100.00 100.00 43.75

Repeat	4	(%	resistant) 12.50 56.25 25.00 37.50 37.50 31.25 87.50 50.00 37.50

Repeat	5	(%	resistant) 18.75 43.75 12.50 50.00 100.00 68.75 100.00 100.00 75.00

Mean	(%) 11 51 26 60 59 44 93 79 61

Transfer	1	 Transfer	3	 Transfer	5	

Bacteria	Transfer	No.

Phage	Transfer	No. T6 T7 T8 T8 T9 T10

Repeat	1	(%	resistant) 87.50 87.50 100.00 100.00 100.00 100

Repeat	2	(%	resistant) 100.00 43.75 100.00 100.00 100.00 100

Repeat	3	(%	resistant) 81.25 100.00 62.50 100.00 100.00 100

Repeat	4	(%	resistant) 50.00 43.75 56.25 100.00 100.00 100

Repeat	5	(%	resistant) 25.00 100.00 100.00 100.00 100.00 100

Mean	(%) 69 75 84 100 100 100

Transfer	7	 Transfer	9	
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Table Ap4.5: Complete table of results of the putative achromobactin biosynthesis cluster of P. agarici NCPPB 2472.  

 
P. agarici 

Locus 

Tag:  Predicted Function:  

Length 

(bp): Protein ID:  P. syringae Locus Tag:  

 Length 

(bp): Protein ID: 

Cover 

(%): 

Ident 

(%):  

RS04660 RNA polymerase sigma factor 509 WP_026013089.1 Psyr_2580 509 YP_235657.1 99 87 

RS04665 

sugar ABC transporter substrate-

binding protein 962 WP_060783937.1 Psyr_2581 965 YP_235658.1 99 73 

RS04670 

TonB-dependent siderophore 

receptor 2402 WP_060782254.1 Psyr_2582 2408 YP_235659.1 100 81 

RS04675 

aspartate aminotransferase family 

protein 1376 WP_017131159.1 Psyr_2583 1376 YP_235660.1 100 88 

RS04680 AcsD protein 1784 WP_060782255.1 Psyr_2584 1784 YP_235661.1 100 81 

RS04685 diaminopimelate decarboxylase 1223 WP_060782256.1 Psyr_2585 1208 YP_235662.1 98 80 

RS04690 MFS transporter 1394 WP_060783938.1 Psyr_2586 1406 YP_235663.1 100 86 

RS04695 AcsC protein 1865 WP_060782257.1 Psyr_2587 1859 YP_235664.1 96 82 

RS04700 

siderophore biosynthesis protein 

SbnG 773 WP_060782258.1 Psyr_2588 776 YP_235665.1 100 86 

RS04705 AcsA protein 1868 WP_060782259.1 Psyr_2589 1883 YP_235666.1 99 83 

RS04710 

iron ABC transporter substrate-

binding protein 896 WP_017131166.1 Psyr_2590 905 YP_235667.1 98 76 

RS04715 

siderophore ABC transporter 

permease 989 WP_017131167.1 Psyr_2591 989 YP_235668.1 100 80 

RS04720 iron ABC transporter permease 1031 WP_060782260.1 Psyr_2592 1031 YP_235669.1 100 85 

RS04725 

iron-enterobactin transporter 

ATP-binding protein 791 WP_017131169.1 Psyr_2593 791 YP_235670.1 100 91 

RS04730 

siderophore-iron reductase, Fe-S 

cluster protein 779 WP_060782261.1 Psyr_2594 779 YP_235671.1 100 75 

RS04735 

S-adenosylmethionine--2-

demethylmenaquinone 

methyltransferase 632 WP_060782262.1 Psyr_2595 644 YP_235672.1 96 72 
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Figure Ap4.6: Molecular phylogenetic analysis of bacteriophage large terminase subunit genes by Maximum Likelihood. The evolutionary 

history was inferred by using the maximum likelihood method based on the Tamura-Nei model. The tree with the highest log likelihood (-

19125.23) is shown (1000 bootstrap replicates) [257]. Initial tree for the heuristic search was obtained automatically by applying the Maximum 

Parsimony method [258]. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 

25 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were 

eliminated. There were a total of 804 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [256] and tree edited using 

iTOL v4 [316]. 
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Figure Ap4.7: Effect of expression of a lysis protein construct containing the NV1 putative 

lysozyme encoding gene on optical density of BL21-AI E. coli following induction with 0.2% 

L-arabinose at T=0. The control comprised of an uninduced BL21-AI containing the lyozyme 

construct. Mean values of 6 replicates are plotted, error bars= +/- SEM. 

 

 
Figure Ap4.8: Effect of expression of a lysis protein construct containing the NV1 putative 

holin encoding gene on optical density of BL21-AI E. coli following induction with 0.2% L-

arabinose at T=0. The control comprised of an uninduced BL21-AI containing the holin 

construct. Mean values of 6 replicates are plotted, error bars= +/- SEM. 
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