

The fate of nutrients and heavy metals in energy crop plantations amended with organic by-products

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Galbally, P., Finnan, J., Ryan, D., Fagan, C. C. ORCID: https://orcid.org/0000-0002-2101-8694 and McDonnell, K. (2019) The fate of nutrients and heavy metals in energy crop plantations amended with organic by-products. Environmental Technology & Innovation, 15. 100434. ISSN 2352-1864 doi: 10.1016/j.eti.2019.100434 Available at https://centaur.reading.ac.uk/85174/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1016/j.eti.2019.100434

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading Reading's research outputs online

Accepted Manuscript

The fate of nutrients and heavy metals in energy crop plantations amended with organic by-products

Paul Galbally, John Finnan, Declan Ryan, Colette C. Fagan, Kevin McDonnell

PII: S2352-1864(18)30421-8

DOI: https://doi.org/10.1016/j.eti.2019.100434

Article number: 100434 Reference: ETI 100434

To appear in: Environmental Technology & Innovation

Received date: 11 September 2018

Revised date: 11 July 2019 Accepted date: 17 July 2019

Please cite this article as: P. Galbally, J. Finnan, D. Ryan et al., The fate of nutrients and heavy metals in energy crop plantations amended with organic by-products. *Environmental Technology & Innovation* (2019), https://doi.org/10.1016/j.eti.2019.100434

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	The fate of nutrients and heavy metals in energy crop plantations amended with reganic
3	by-products
4	
5	Paul Galbally ^{a,b} , John Finnan*a, Declan Ryana, Colette C. Fagan ^b Ke vin McDonnell ^{bc.}
6	^a Teagasc, Crops Environment and Land Use Programme, Cak Park Crops Research,
7	Carlow.
8	b Biosystems Engineering, School of Agriculture, Food Science and Veterinary
9	Medicine, University College Dublin, Belfield, Dub'in 4, Irei nd.
10	^c Biosystems Engineering Ltd, NovaUCD, Belfield
11 12	^d Department of Food and Nutritional Sciences, University of Reading, PO Box 226,
13	Whiteknights, Reading RG6 6AP
14	
15 16	
17	
18	*Corresponding author. 7:1: 1035, 59 9170253; Fax: 00353 (59) 9142423. Email
19	address: john.finnan@te/ qasc.ie
20	
21	
2223	
24	
25	
26	
27	
28	

1	
2	Keywords: Mass-balance; overland flow; groundwater quality; soil quality; circlosolids;
3	distillery effluent; Miscanthus x giganteus; short rotation coppied willo v.
4	
5	
6	
7	
8	Abstract
9	Organic by-products (OB) can provide nutrition to energy rops out there is a potential
10	risk of pollution to soil, groundwater (GW) and surface w ter (SW). A mass-balance
11	inventory for two energy crops spread with biosolia (BS) and distillery effluent (DE)
12	was created in order to study the fate of nutrients. Posolids and distillery effluent (DE)
13	were spread on both Miscanthus x gigan, "s and short rotation coppice willow
14	(SRCW). Applications were conducted at rates of 100%, 50% and 0% (control) of
15	permissible P loads. Losses of nutrients (P) and heavy metals (Cd, Cu, Cr, Pb, Ni,
16	and Zn) to groundwater and o'erland low (OLF), and crop uptake were determined.
17	Total inputs (from soil, OB .mendme.it and atmospheric deposition) and losses were
18	calculated and compared The gardest input was from the soil, the smallest input was
19	atmospheric deposition. The regest output was crop off-take; the smallest was loss to
20	OLF. Elemental up to by Miscanthus was lower than that of willow but losses to
21	groundwater ar 1 ov rlar 1 flow was similar for both crops. This study has shown that
22	organic by r.oducta can be used to enhance the nutrition of energy crops without
23	deleterious en virramental consequences.
24	
25	
26	

1	
2	
3	
4	
5	
6	1. Introduction
7	Energy crops provide a fast growing supply of renewation energy which can replace
8	fossil fuels and mitigate emissions of greenhouse grees (Fin an et al., 2012; Murphy et
9	al., 2014). However, energy crop plantations can also offer other services to society
10	such as the treatment of organic wastes and was awaters (Dimitriou et al., 2006;
11	Rosenqvist et al., 1997; Figala et al., 2015).
12	
13	Willow (genus Salix, family Salicaceae) (Argus 1997) is a native plant in Ireland. The
14	high transpiration and low r trient equirements of willow (Hasselgren, 1998)
15	facilitates disposal of large volumes of watery waste (Guidi et al., 2008). Short rotation
16	coppice willow (SRCW) / xhibits 5 ood juvenile growth with yields of 7-12 t DM ha ⁻¹ yr
17	¹ in Ireland when grown as short rotation coppice (Caslin et al., 2015b; Dieterich et al.,
18	2008). It is also the ht that the high transpiration rate and composition of willow
19	allow it to phyte 'em diat' soils receiving OBs (Hasselgren 1998; Dimitriou, 2005).
20	
21	Miscant ¹ (Muscanthus × giganteus Greef J. M., Deuter ex Hodk. and Renvoize) is a
22	perennia.' Sour least Asian C4-grass which is established by planting rhizomes from
23	existing plants (Jones and Walsh, 2001). The crop can be used for bioremediation
24	(Figala et al., 2015) and can produce yields of up to 12 t ha ⁻¹ in Irish conditions; the

1	crop's useful lifetime is approximately 20 years (Caslin et al., 2015a). Both
2	Miscanthus and SRCW are leading candidates for commercial energy ir Ireand and
3	elsewhere (Caslin 2015a; 2015b; Rosenqvist et al., 1997; Clifton-Brow 1 et 1., 2007).
4	
5	Energy crops, as non-food crops offer a means of disposing of (B c 1 tai mland as the
6	risk of direct contamination to the food chain is minimal (Dimiriou et al., 2006).
7	Energy crops are usually resilient and can often remove beavy manage (HMs) and other
8	toxins from soil with minimal effects on themselves (Britt and Carstang 2002; Figala et
9	al., 2015). Tsadilas (2005) claims that OB amendment aids crop nutrition and
10	improves soil quality via increased organic matter content, water retention, improved
11	soil structure and better infiltration. Energy crops . ilise nutrients to maximise yield
12	although nutrient requirements are low compa. d to other crops (Caslin et al., 2015a;
13	2015b). The use of sewage sludge and westewater to fertilize SRCW offers both
14	environmental and economic benefits through decreased fertilization costs and
15	increased biomass production (vimitrio) and Rosenqvist, 2011). Additionally, the use
16	of SRCW for the bioremed; ation of effluent from rural waste water treatment plants
17	offers an effective and proctical usatment for wastewater management (McCracken and
18	Johnston 2015).
19	
20	However, there are converns that applications of OBs may result in the leaching of
21	pollutants to ground waters (GWs) or runoff to surface waters (SWs) (Merrington
22	2002). Puld-up of both nutrients and HMs in soil receiving BS amendment is of
23	particula. concern (McBride, 1995; 2003). Incorrect application of fertilizer can result
24	in exc 's' nutrients in soil (Addiscott, 2005) which also applies to OBs (though nutrient
25	content and release profiles differ). Links between OB-amendment and SW pollution

1	have already been identified (Epstein 2003; Korboulewsky et al. 2002); however,
2	studies with wastes such as distillery effluent are limited. Additionally, links in tween
3	OB amendment to energy crops and GW pollution have also beer estrolished by
4	Curley (2009) and Dimitriou and Aronsson (2004).
5	
6	Increases in nutrients and HMs in soil have been noted following application of OBs in
7	several studies (Haynes, 2009). Incorect amendment of OBs therefore result in
8	build-ups of HMs. Tian (2006) identified OB constituents the contaminate soil and
9	result in loss of NO ₃ -, PO ₄ ³ -, HMs and organic metter to S V. The presence of these
10	constituents in DE and BS raises concerns regarding impacts from OB application
11	(Haynes, 2009; Merrington 2002). However, build-up of HMs in soil after OB
12	application may be mitigated by the bioreme, ation capacity of energy crops which
13	have been reported to have good ability to about HMs from soil (Dimitriou et al., 2012;
14	Figala et al., 2015).
15	
16	In previous decades, untreat d o ganic wastes were spread to Irish farmland used for
17	food production; this reactice vas banned in the early 1990s (McGrath and
18	McCormack, 1999). Following this, land filling and sea dumping were used before
19	these routes were ren. ed by European Commission (EC) directive (1999/31/EC) on
20	land filling of veste and EC directive (91/271/EEC) on sea-dumping in the late 1990s.
21	The regulations we e introduced to improve treatment of OBs at source, and stimulate
22	sustainah', solutions to disposal (EPA, 2008). There is relatively limited information
23	on the envirormental impact of OB amendment to Irish SRCW and Miscanthus.
24	Experiments were therefore conducted between 2007 and 2009 to assess such impacts
25	and compare results obtained to those from other studies (Galbally et al., 2012; 2013;

1 2014a; 2014b). The work was carried out with two energy crops (Miscanthus and

2	willow) and involved two different waste products (distillery effluent and rewage
3	sludge). The results showed that there was little risk to surface '/ate' from OB
4	amendment on suitable sites (Galbally et al., 2014a&b) although it vas round that
5	amendment could lead to groundwater contamination in certain instruces (Galbally et
6	al., 2012;2013).
7	
8	The objective of this present study was to study the fact of the nutrients and heavy
9	metals applied to energy crops in OB amendmen's in the context of all inputs and
10	outputs of nutrients and heavy metals to the soil-crop- rater system. In order to achieve
11	this objective, a mass-balance approach was used to create a complete inventory of
12	nutrient and heavy metals entering and leaving i'e system.
13	
14	
14 15	2. Materials and Metho s
15	2. Materials and Metho 's2.1 Study Area
15 16	
15 16 17	2.1 Study Area
15 16 17 18	2.1 Study Area The experiments were controlled at Oak Park Research Centre, Carlow, Ireland. The
15 16 17 18	2.1 Study Area The experiments were confucted at Oak Park Research Centre, Carlow, Ireland. The facility (52°51'55" N 1at 7°54'43" W long) occupies 350 ha and is situated 55.8 meters
15 16 17 18 19 20	2.1 Study Area The experiments were conducted at Oak Park Research Centre, Carlow, Ireland. The facility (52°51'55" N 1at 7°54'43" W long) occupies 350 ha and is situated 55.8 meters above mean sea level (Alv. SL).
15 16 17 18 19 20 21	2.1 Study Area The experiments were confincted at Oak Park Research Centre, Carlow, Ireland. The facility (52°51'55" N 1at '°54'43" W long) occupies 350 ha and is situated 55.8 meters above mean sea level (ANISL). All experiments were conducted on a soil type known as the Athy Complex (Conry and
15 16 17 18 19 20 21 22	2.1 Study Area The experiments were conducted at Oak Park Research Centre, Carlow, Ireland. The facility (52°51'55" N 1at '054'43" W long) occupies 350 ha and is situated 55.8 meters above mean sea level (Anciscl). All experiments were conducted on a soil type known as the Athy Complex (Conry and Ryan, 1968). The prent material of this soil are calcareous, fluvio-glacial gravels of

cm described as a gravelly sandy loam and a third horizon below 85 cm consisting

1

2

mainly of coarse sand.

3	
4	2.2 Plot establishment
5	Twelve plots were laid out in total. In 2006, six plots were laid out in plantations of
6	Miscanthus (established in 1993), three plots in the Barley Field (FF) (52°51'47.9" N
7	lat 6°90'86.6" W long) for application of DE and three in the Mar Avenue Meadow
8	(NAM) (52°51'31.7" N lat 6°90'77" W long) for BS. Alt Aisco thus plots had an area
9	of 0.1174 ha (42 m x 28 m). In 2007, a plantation of mi. ed S. Viminalis L. and S.
10	Schwerinii L. willow hybrids was established in the 1. * Avenue Meadow (FAM). All
11	SRCW plots were 0.0588 ha (14 m x 42 m) in dimension. Six plots were established in
12	this plantation (arranged in two sets of three); the ee at 52°51'29.83" N lat 6°54'19.94" W
13	long for DE and three at 52°51'31.7" N lat 6°54'14.15" W long for BS. The SRCW
14	plots were spaced with 5 meters between meir facing edges, to minimize interaction
15	across plot surfaces.
16	
17	Plots were labelled according to reatment; i.e. plots subject to DE applications are
18	denoted DE _x and BS are denoted BS _x , the subscript x denotes treatment application level
19	(0, 50, 100%). Codes : preceded by an "M" or "W" to indicate Miscanthus or SRCW,
20	respectively (e.g. M- $3S_x$).
21	
22	2.3 Clime Conattions
23	Ireland has a temperate climate dominated by Atlantic weather systems and typified by
24	mild, 'e' r-round precipitation. This results in soils that rarely dry out and are saturated
25	where drainage is poor (Keane and Collins 2004). Precipitation is low intensity; most

1	agricultural soils drain well and do not become waterlogged. A summary of conditions
2	during experiments is presented in Table 1. Climate conditions were slig'.tly Cifferent
3	for the crops because of start times and durations of experiments; how ever prevailing
4	conditions were the same. Data was obtained from Met Eire, nn's synoptic
5	meteorological station in Oak Park. Temperature and rainfal we e above 30-year
6	averages (1960-1990) during the 30 month experiment, period. Atmospheric
7	deposition rates were obtained from the literature (Aherne and Falla, 2002; Jennings et
8	al., 2003; Nicholson et al., 2003). Average deposition rates are presented in Table 2.
9	
10	
11	
12	2.4 Organic waste application
13	The OBs were obtained from a commercial waste-management company, Ormonde
14	Organics (Co. Kilkenny, Ireland). All BS were sourced from municipal waste-water
15	treatment plants in Ireland. Distillery ffluent was sourced from First Spirits Ireland
16	Ltd (Co. Laois, Ireland). A.1 O'3s applied underwent analysis for nutrient- and HM-
17	concentrations at FBA Laborate es, Co. Waterford, Ireland, prior to spreading; to
18	ensure that all OBs complied with Irish Regulation SI. No.148/1998. The OBs were
19	applied at treatment . 's of 100% (W-BS ₁₀₀ , W-DE ₁₀₀), 50% (W-BS ₅₀ , W-DE ₅₀) and
20	0% (W-BS0, W DF) or the basis on permissible P application (Caslin et al. 2015a and
21	2015b).
22	Biosolid (Tabics 4&6) were spread by a disc-spreader during the experimental-period.
23	Annual "eatm' nt-rates varied due to variation in P-content and dry matter content of
24	each 'va'ch. The spreading duration differed between Miscanthus (30 months) and
25	willow plantations, the duration being lower for willow plantations (20 months).

1	The DE was spread during the September-October period (DE materials was not
2	available prior to this period) using an irrigation system. The total DE-am and a
3	breakdown of constituents) are provided in Tables 3&5. Further details are vailable in
4	Galbally et al. (2012, 2013, 2014 a&b).
5	
6 7	
8	2.5 Monitoring of Losses
9	The quantities of nutrients (N&P) and HMs (Cu, Cr, 7b, Ni and Zn) lost to GW
10	(Galbally et al., 2012 and 2013) and SW via OLF (Gathally et al., 2014a and 2014b)
11	was quantified. Concurrent with monitoring G v and SW, crop and soil samples were
12	obtained from each treatment prior to (and fo.'ow, 15) OB applications.
13	
14	2.5.1 Groundwater Sampling
15	A series of three wells were drille in sach plot to obtain groundwater samples, samples
16	were extracted once per month and very bulked, further details are provided in Galbally
17	et al., (2012).
18	
19	Volumes of water ngressing to groundwater were calculated by first calculating
20	effective rainfall'y subtracting overland flow and evaporation from precipitation. In the
21	case of treatments a or ded with distillery effluent, volumes of DE added were added to
22	precipitation amoun s. Curneen and Gill (2016) reported that evapotranspiration from
23	willow systems in Ireland substantially exceeded reference evapotranspiration during
24	sum remonths. On the basis of their figures, it was conservatively assumed that
25	reference evapotranspiration values for both crops doubled during the months of
26	August, September and October but were equal to reference evapotranspiration figures

1	for the remaining months of the year. Effective rainfall was then multiplied by a
2	recharge coefficient which reflects the permeability of the subsoil. It was .ssu. ad that
3	the subsoils under the study area had a high permeability corresponding to Irish soils
4	with a recharge coefficient of 0.81-0.85.
5	
6	
7	2.5.2. Over Land Flow (OLF) Samples and Data
8	The occurrence and duration of overland flow events were confected to data loggers
9	fitted to sensors designs to record OLF events. Both basic ' rab' samples and samples
10	which were proportionally accurate representations of OLF were obtained. Further
11	details are provided in Galbally et al., 2014a; 2014b).
12	
13	2.5.3. Soil and Crop Sampling
14	Topsoil samples were taken from each plot to a depth of 10 cm; each topsoil sample
15	was a bulked-composite of 6 st o-samples. To obtain four complete bulk-samples per
16	plot, 24 sub-samples were token using a "W" pattern; this sampling-scheme was used
17	for all plots.
18	Crop samples were obtained annually at the end of each growing season by sampling
19	the above ground part of at least five plants per plot. Plants were cut into small pieces
20	and mixed to cosure a epresentative bulk samples before being weighed and dried.
21	Dried samp'es were sent for elemental analysis.
22	
23	2.6 Mass Balar ce
24	To as ers all inputs and outputs (and compare treatment effects), all results were
25	compiled into a useful whole value and therefore, a mass-balance budget was created.

1	Analysis involved creating an inventory of the available mass of each nutrient (kg) or
2	HM (g) (different units were used for reasons of utility) and determining availability
3	loss during the course of the experiment. A mass balance of nutrient and I eavy metal
4	inputs and losses was constructed for each plot. The mass balance of nuclient and heavy
5	metal availability included deposition by atmosphere, nutrient at 4 he avy anetals added
6	by OB amendment together with quantities of HMs and n crients in soil. The mass
7	balance of nutrient and heavy metal loss included losses to G. and SW (via OLF)
8	together with crop uptake. Mass in crop was determined by consideration of
9	concentration in crop samples by yield. Volatilize+ion of r strients and HMs was not
10	considered. Comparison of all plots was equalized in some of duration and plot areas.
11	
12	
13	
14	
15	3. Results
16	
17	3.1 Introduction
18	Mass balance results a e p. sented in several sections. The first section deals with
19	available nutrients 2 Id I Ms; values for nutrients are in kilos and HMs in grams (as
20	values for nutrier is were an order of magnitude greater than HMs). The second section
21	looks at individual en ment losses to GW, OLF and crop uptake. Loss via volatilization
22	was not considered and total losses will be greater for volatilizable species (such as N).
23	Results for nutr. ents and HMs are presented in separate figures (for clarity).
24	
25 26	
27 28	3.2 Available nutrients and total metals present on plots

1	Tables 3 to 6 show total available (and unavailable) nutrients and HMs for all plots,
2	including existing soil nutrient pools, the amount applied in OB and deposited paterial
3	from the atmosphere. Distillery effluent application (Table 3 a.d ') made a
4	considerable contribution to available nutrients. Atmospheric deposition of P was
5	minimal but N deposition was significant compared to N application. The contribution
6	of DE to total nutrients was important; increasing DE mendment increased the
7	quantity of nutrients available. Background levels of P in roil with high (see Tables 3
8	to 6).
9	
10	Table 3 shows HMs in Miscanthus plots treated with Cotillery effluent; the largest pool
11	of HMs was in soil, HMs from OB application were small; the exception was Zn and
12	Cu. Atmospheric deposition provided highly stubised metals to Miscanthus plots. In
13	general, quantities of metals from atmosphoric deposition were considerably smaller
14	than the quantities of metal applied through DE amendment although concentrations of
15	Zn deposited through atmospher c depos tion were significant and comparable with DE
16	amendment.
17	
18	Table 4 shows sources of nutrients and heavy metals in Miscanthus plots treated with
19	biosolids, as with the iscanthus plots treated with distillery effluent, OB application
20	made a large ontribution to the available nutrients (particularly P). Atmospheric
21	deposition of P was minimal. Deposition of N was significant in relation to BS
22	application (570 of all OB amendment N). Variability in soil HM was observed
23	between individual plots (and between Miscanthus sites receiving either biosolids or
24	distin r effluent). Metals deposited through atmospheric deposition were
25	considerably smaller than the quantities of metal applied through BS amendment

1	although concentrations of Zn deposited through atmospheric deposition were
2	significant and comparable with BS amendment. Atmospheric depositio 1 o1 7n was
3	12% of that supplied by BS amendment (at the 50 % treatment rate).
4	
5	Table 5 shows sources of nutrients and heavy metals on SR(W) lots treated with
6	distillery effluent; it can be seen that P added to the soil-plant system through DE
7	amendment was comparable to the P concentrations in sold when as P deposition was
8	low. The quantity of nutrients supplied by DE to SRCW Prots v as lower than supplied
9	to Miscanthus plots receiving distillery effluent (Table 3 Rates of deposition were
10	lower (due to slight scale differences). Background soil nutrients varied between sites
11	(Tables 3-6) demonstrating variability in soil conducts at field scales.
12 13	Soil HMs in SRCW plots receiving distance were a much greater potential
14	source of metals than amendment or deposition (Table 5). Ratios of individual HMs in
15	willow soils was approximately e unablent to Miscanthus plots.
16	
17	Table 6 shows available nurients and heavy metals for SRCW plots receiving BS;
18	quantities of P in soil were similar to quantities of P added through BS amendment but
19	much higher than quant ies added through atmospheric deposition. In terms of OB
20	application, rates of N were higher for SRCW plots receiving BS compared to SRCW
21	plots receiving DE
22	were approx. nately equivalent. The largest source of potentially available heavy metals
23	was fro 1 the sc l. In comparison, the quantities of potentially available heavy metals in
24	BS condment were small.

1	Table 6 also shows sources of input metals to SRCW plots receiving BS; and the large
2	pool of HMs bound in the soil organic matter is again evident. The concentrations of
3	metals in these plots were smaller than in the corresponding Miscar hus plots or in
4	SRCW plots receiving DE (despite the latter's proximity) again demonstrating
5	variability in soil HMs over very short ranges. However, the amount of HMs
6	introduced to these plots via BS was greater than HMs ir roduc d to SRCW plots
7	receiving DE via DE application.
8	
9 10	3.3 Nutrient and heavy metal losses
11	In this section, losses of nutrients and HMs from plots . To broken down by fractions lost
12	to crop uptake, leaching to GW and loss to OLF. Ture 1(a) shows fractions (loss to
13	GW, OLF and crop uptake) of nutrient loss fix n Miscanthus plots receiving DE. The
14	role of crop uptake and positive correlations between DE treatment rate and loss of P
15	and N are evident. Crop uptake increased with DE amendment rates. High rates of N
16	were lost to drainage relative to P and 1 sses of N to drainage were influenced by DE
17	application rate. Crop uptak of ? was lower than that of N but P losses to drainage
18	were lower than those o' N but i creased with application rates. Losses of N and P
19	through OLF were very small but there was a relation between application rate and loss.
20	
21	Figure 1(b) sho's less of nutrients from Miscanthus plots receiving BS; loss of nutrient
22	from Miscai thus p. its spread with BS were greater than from plots to which DE had
23	been app'i.d. This correlates with the greater quantities of nutrients supplied by BS
24	compare. to D'2 (Tables 3 and 4). Losses of N to GW increased with BS application
25	rate. I'm ever, losses of P to GW were lower than those of N and were unrelated to BS

1	application rate. However, nutrient loss in OLF, although very small, was significant but
2	unrelated to application rate.
3	
4	
5	Figure 1(c) shows loss of HMs from Miscanthus plots recei ing DE, Zn had the
6	greatest loss rate of all metals and losses of Zn were dominated by crop uptake. Losses
7	of all metals generally increased with DE application. For metals, losses to
8	groundwater were greater than losses to crop uptake. The 2n po il in soil (Table 3) was
9	considerably smaller than the Ni pool although quartities of Ni in DE were smaller than
10	quantities of Zn. However, loss of Ni was low comparate Zn. The patterns of loss for
11	Zn, Ni and Cu corresponded with OB amendment races rather than soil pools (Table 3).
12	Results suggested that this was also the case who Cu and Pb. Losses to OLF were very
13	small, with the exception of Cu and Zn where losses to OLF increased with application
14	rate. The results showed that almost all F.M losses occur through leaching or crop
15	uptake up, OLF was not a major loss pa 'nway for metals. indicating OLF is not a major
16	issue for metals (even for mere r sbile species such as Zn).
17	
18	Figure 1(d) shows the loss of HMs to crop, GW and OLF from Miscanthus plots
19	amended with bioson. A high uptake of Zn and Cu is evident (as with Miscanthus DE
20	plots plots) which vas related to the level of BS amendment. Results from Figures 1c
21	and 1d show commonalities in how HMs are mobilized, regardless of OB type. Losses
22	of Zn ar 'Cu unued to be dominated by crop uptake. Losses of Cd, Cr, Pb and Ni
23	tended i be lominated by drainage losses. Losses to OLF were very small in
24	comp. ris on to losses to drainage and crop uptake.

1	Figure 2(a) shows nutrient losses from SRCW plots amended with DE by crop uptake,
2	leaching to GW and surface OLF loss. Comparison with Figure 1 shows tax up of
3	nutrients by SRCW was greater than take up by Miscanthus. Nutrient 13sses were
4	dominated by crop uptake although there were drainage losses in the case of N but not
5	P. In contrast, losses to OLF were very small. Figure 2(b) shows the loss of nutrients
6	from willow plots amended with BS and their breakdown into creep uptake, leaching
7	through profile and loss to OLF. Again, crop uptake was greater than loss to either GW
8	or OLF. Losses via the OLF pathway were very small. The uptake of nutrients by
9	SRCW on BS plots was comparable to DE plots Figure ? (a), though rates do not
10	correlate with rates of BS applied. Nutrient loss to CLF was similar for DE and BS
11	plots, Leaching of nutrients to GW were comparable between both types of waste.
12	
13	Figure 2(c) shows loss of HMs from W-DE, plots; when compared to Figure 1, results
14	show the higher uptake up of Zn by SRCW compared to Miscanthus for both DE and
15	BS. Crop uptake of Ni and Cr v as com _j arable but low, possibly because of the smaller
16	levels of these metals in DF Su face loss of HMs via OLF from SRCW DE plots was
17	low. Differences in HM losses 1. OLF (between Miscanthus and SRCW plots) were
18	similar to patterns of putrient loss. Leaching of HMs to GW from SRCW DE plots
19	(Figure 2) was lower an leaching from Miscanthus DE plots (Figure 1). Figure 2(d)
20	shows total HN losses from SRCW BS plots. Metal uptake by crop, leaching to GW
21	and loss to OLF vere similar to patterns of loss for SRCW DE treatments, with
22	signification take up of Zn. Soil HM pools and HMs derived from OB application were
23	higher 1, * SRC W BS plots (deposition from the atmosphere was equivalent); however,
24	HM . vs es were lower (or equivalent) for SRCW BS plots compared to SRCW DE
25	plots , indicating lower HM mobility in BS. Based on these results, greater

1	concentrations of HMs in BS did not automatically equate to greater HM losses from
2	plots spread with BS materials.
3	
4	
5	
6	4. Discussion
7	By far the largest pool of (potentially available) nutrients and met is is from the soil
8	which far exceeds the quantities of nutrients and heavy . als '1 OB amendment and
9	atmospheric deposition pools. However, the vast majority o. soil HMs will be bound in
10	the soil (Haynes et al. 2009) and only a very sman recentage becomes bioavailable
11	(Alloway & Jackson 1991; McGrath et al. 2008). Come OB borne nutrients and HMs
12	will also be immobile; however, a substant, 1 quantity of elements in OB will be
13	available immediately while more becomes available over time (Haynes et al. 2009).
14	This is particularly true of HMs, organic by roducts contain a very high percentage of
15	bioavailable metals (Pacyna and Ottar, 989). Although the availability of soil HMs is
16	lower than from OB or deposition (Alloway & Jackson 1991), the size of this (soil) pool
17	will result in large losses if a sm. 'I' fraction becomes available. Metals introduced via
18	amendment were greater from SS applications than DE agreeing with previous reports
19	of the composition of these materials (Carton, 2007) although concentrations of Zn in
20	both materials w ere ' ρproximately equivalent.
21	
22	Nutriepte and That from atmospheric deposition will be very bioavailable as solutes
23	within r. infall ('acyna & Ottar, 1989). Deposition also occurs directly on plot surfaces
24	giving this vector a disproportionately important impact on OLF. The relatively large
25	quantities of HMs deposited on plots by the atmosphere over the experimental period,

1	puts the potential impact of BS and DE amendments into perspective. That said, the
2	quantities of HMs derived from OB amendments (even DE) were larger than from
3	atmospheric deposition (despite increases in atmospheric metals such as F3 in recent
4	years) (EPA 2008). Most metals had low deposition rates compared to DE or BS
5	amendments; however, this was not true of all metals, particularly thore present in small
6	concentrations (such as Cd). Deposition of some HMs v as comparable (or even
7	greater) than from DE amendment (Zn supplied by DE to W DE as a tenth of the Zn
8	introduced via the atmosphere). For Cu, this was more pronour sed (with Cu from DE
9	being 5% of deposition to SRCW DE plots) implying 1 E application would not
10	contribute significantly to risks of quality degradation from HM losses (at these
11	amendment rates).
12	
13	Due to HM immobility in soil (Alloway and Jackson, 1991), soil pools do not
14	significantly influence short-term metal losses, although long-term impact on crop
15	uptake and GW is importar. Surface flows of HMs are strongly affected by
16	atmospheric deposition and OB spplications relative to soil pools. This is less true of
17	nutrients, as nutrient pool, in hear y soil usually provide significant amounts of N and
18	P in bioavailable form (Merrington 2002). In terms of the nutrient mass balance, the
19	total input of available \infty in this work does not include available soil-N (as there is no
20	reliable Irish tech: the soil-N status of the soils was typical for Irish grasslands (based
21	on the Indescale system) (Coulter and Lawlor 2008). Existing soil-N is likely to
22	contribute to tomi-1 budgets for each crop. In terms of deposition of nutrients, there is a
23	small th ugh inportant contribution (given almost all deposited nutrients will be
24	bioav. ils sle and remain on the surface) (Aherne and Farrell 2001); they will therefore
25	have a disproportionate impact on OLF and uptake (relative to the other sources).

1	
2	Previous results show that OB applications can result in nutrient loss (Galbacky et al
3	2012; 2013; 2014a; 2014b). It is likely that deposition of nutrients is also a factor in
4	losses to OLF; however, this is equivalent across plots and difficunt to actect. The
5	greater uptake of nutrients by SRCW was noticeable, though ler hin, to GW was low
6	(and similar for both crops). Additionally, there was not a ways clear relationship
7	between OB application and nutrient drainage loss suggesting unit nutrient losses were
8	influenced as much by background soil nutrient levels as by nutrients in OE
9	applications as reported previously by Galbally et al (201.). Losses of nutrients to
10	drainage differed between the two crops as Miscu thus had greater losses of N
11	compared to willow. Dimitriou et al., (2012) pre iously reported high P losses to
12	leaching under willow crops. Nutrient losses v. the OLF pathway were influenced by
13	OB application but losses were very small in comparison to losses to drainage and crop
14	uptake as reported previously by Galbally et al. 2014a &b. Losses of HMs to OLF were
15	influenced by OB application ar 1 were 1 mall in relation to drainage losses. For willow
16	HM losses were dominated by cosp uptake. Cadmium, considered the most hazardous
17	element in the food chair, is read'y taken up by SRCW (Dimitriou et al., 2006; 2012)
18	and this research foun that losses to drainage and OLF were miniscule in relation to
19	crop uptake. In contract offtakes of Cd by Miscanthus were much lower, comparable to
20	drainage losses, po sibly attributable to greater concentrations of Cd in roots and
21	rhizomes co aparec to shoots (Fernando & Oliveira, 2004). Zn was the element which
22	was mostadıry taken up by both crops, crop uptake increasing with OB application
23	Dos Sa. tos temazian and Wenzel (2004) previously reported much higher

conce. tr.tions of Zn compared to Cd in willow grown on contaminated soils. Similarly,

Kocon and Matyka (2012) reported much higher concentrations of Zn compared to Pb

24

1 in Miscanthus grown on contaminated soils even though the concentrations of both

2 these elements in soil were equivalent.

3

25

4 Crop uptake was the largest nutrient output pathway for both crops a hough willow 5 took up approximately three times the quantity of nutrients and 'eav / me als taken up by Miscanthus, thus the superior phytoextraction performa ce of willow is evident. 6 7 Dimitriou (2005) previously reported that willow could by used in phytoremediation 8 systems. Lower uptake of nutrients, and perhaps heav, met ils, by Miscanthus is 9 possibly related to the greater nutrient use efficiency of Misconthus which is attributable to its C4 photosynthetic system (Naidu and Long, 2004) whereas willow has a C3 10 11 photosynthetic system with lower nutrient use efficiency. Willow, typically, has higher 12 nutrient requirements compared to Miscanth. (Caslin et al., 2015 a&b) while N 13 fertilization experiments which were conducted close to the experimental sites in this 14 study have demonstrated that willow crops have higher N requirements compared to 15 Miscanthus (Finnan and Burke 2014; Finnan et al., 2014). Crop uptake involves 16 absorption through roots and requires soluble elemental forms being accessible to root 17 systems. The depth of b th crop, roots was >1.5 m (Finch et al. 2004); however the 18 topsoil in which HMs 'end to be present does not extend below 25 cm. This mass 19 balance does not account for nutrients and heavy metals which are absorbed by and 20 remain concent ater in the root and rhizomes systems of both energy crops. For 21 example, Ko con an 1 Matyka (2012) found that Zn was concentrated in the aerial parts 22 of Miscar Lus whereas Pb was concentrated in the roots. Miscanthus and willow have 23 extensive rooting systems (Finnan and Burke, 2014; Matthews and Grogan, 2001; 24 Cunn f t al., 2015) which can potentially store significant quantities of nutrients and

heavy metals. Miscanthus has an extensive rhizome system just under the surface of the

1	soil, the weight of the underground part of the crop can exceed that of the aerial parts of
2	the crop (Finnan and Burke, 2014). Willow plants also have an exter ive hallow
3	rooting system which is concentrated in the 0-25 cm depth, the preportion of
4	underground biomass is lower for willow than Miscanthus althou, underground
5	biomass under willow plantations can still be significant (~10 t)M/\a; cunniff et al.,
6	2015). However, given that underground biomass is greater for N'iscanthus than for
7	willow, it is possible that the Miscanthus rhizomes system may the greater quantities
8	of nutrients and heavy metals than for willow. For both species, nutrients and heavy
9	metals retained by roots remain on the soil-plant sixtem, at least temporarily, and are
10	not lost from the system unless translocated to aer. oarts of the plant. This study
11	quantified losses from the system, including losses 1.7m harvesting but harvest offtakes
12	underestimate the quantity of nutrients and heav metals absorbed by the crop.
13	
14	The greatest source component are the soil pools (demonstrating the influence of
15	background soil conditions); ar 1 the lat gest output is crop uptake. The smallest input
16	is (often) atmospheric deporation, and the smallest losses are from OLF. Atmospheric
17	deposition has a dispro ortiona. impact on OLF loss due to mobility of species
18	introduced by this pathway. Input from OB application is considerable for nutrients and
19	less so for metals (the 1th Zn and Cu are supplied in large quantities by both OBs). In
20	some instances, HM's applied via amendment are lower than deposition, suggesting low
21	risks of qua'ity deg adation from OB-derived metals.
22	
23	Leaching of nurient and HMs to GW make up a substantial fraction of the total losses,
24	greate finan comparative loss to OLF (though risk profiles for GW and OLF are
25	different and needs to be considered). Loss of individual species to GW are relatively

1 large for nutrients but much less so for metals (with exception of Zn). There is some 2 correlation between the loss of (some) nutrients and HMs and the rate and explication of 3 BS and DE, implying both forms of OB application can impact losses. 7 nis elationship 4 is most evident for loss to OLF and the most serious potential risk in m such losses 5 arises from loss of P to OLF (there was also evidence of loss of ' to 'JW). The uptake of nutrient and HMs by both types of crop was strongly influenced by existing levels in 6 7 soil and the soil conditions; this was particularly the case for all u. I.Ms. 8 In this study, nutrient removal at harvest (crop uptake) was the largest loss pathway. 9 Loss of nutrients at harvest, unless replaced will lead to a reluction in soil fertility and 10 ultimately in yield and nutrient off-takes are the be is for calculating the fertilizer 11 requirements of both *Miscanthus* and willow (Casi., et al., 2015a, 2015b). Thus, the 12 replacement of nutrient off-takes is the primary cason for the application of organic by-13 products to energy crops. Energy crop fertilization may be accompanied by increases in 14 growth and productivity, nitrogen fertilization of willow crops grown on this site 15 increased yield by 35% (Finna et al., 2014) while nitrogen fertilization of recently sown Miscanthus crops increas d yield by 35 - 43% (Finnan and Burke 2016)... 16 17 However, on the same si'e, nitro, n fertilization of a mature Miscanthus crop did not 18 stimulate spring harvested yields (Finnan and Burke, 2014). Similarly, Adegbidi et al., 19 (2003) found that the oplication of organic amendments increased yield of willow 20 crops by 30-38 \(\) v nere is other studies have not found any yield benefit from the 21 application of organic wastes to willow (Quaye et al., 2011; Quaye and Volk, 2013). 22 Irrespection of whether willow yields are stimulated by the application of organic 23 amendm nts, the primary purpose of organic fertilization is the replacement of nutrient 24 offtak's and the prevention of any loss of soil fertility and subsequent yield reduction. 25 Secondary advantages of organic amendment to energy crops, however, arise from the

I	disposal of potentially difficult wastes in a manner which does not contaminate the food
2	chain and in this study we have demonstrated that organic byproducts can be used to
3	enhance the nutrition of energy crops without deleterious environmental consequences.
4	
5	Conclusions
6	The quantities of nutrients and heavy metals supplied to soil/plent systems in OB
7	amendments are often substantially smaller than the quantities of such elements in soil
8	or even the quantities supplied to the system by atmosphe ic deposition, this is
9	particularly the case for heavy metals. Losses of nutricats and heavy metals to
10	groundwater and surface water can increase with $C^{\mathfrak{P}}$ amendment but the principal
11	component of such loss pathways is often made no of elements lost from soil or
12	atmospheric deposition. Losses to ground ater and surface water are often
13	substantially lower than crop uptake, the main loss pathway. Willow had much greater
14	phytoremediation potential compared to Miscanthus although nutrient losses to
15	groundwater and surface wate did not increase as a result of reduced uptake by
16	Miscanthus.
17	
18	Organic wastes can be applied to energy crops without causing significant increases in
19	the quantities of numerats and heavy metals entering groundwater and surface water
20	bodies. The quartities of environmentally sensitive elements supplied in organic wastes
21	are typically small r than corresponding elemental pools in soil, particularly for heavy
22	metals. Thus, the dominant influence on the quantities of elements entering
23	groundwater and surface waters are the concentrations of such elements in soil,

element deposited from the atmosphere can also have an important influence on

elemental flows to surface waters. Crop offtake is the principal output pathway from

24

1	the system although elemental removal varies with crop type. This study has shown that
2	organic byproducts can be used to enhance the nutrition of energy c ops vithout
3	deleterious environmental consequences.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	Acknowledgements
15	The authors would gratefully "to acknowledge the help of Teagasc (The Irish
16	Agricultural Research Authorn;) and University College Dublin as well as the financial
17	assistance provided by the Irish Department of Agriculture through the Research
18	Stimulus fund.
19	Researchers raul Gawally and Declan Ryan sadly passed away during 2017. Their
20	contribution we this work was highly significant and their presence is very much missed.
21	May they rest in peace.
22	
23	References

1	
2	Addiscott, T.M., Whitmore, A.P., Powlson, D.S., 1991. Farming, Fertilizers and the
3	Nitrate Problem. pp.170. CAB International. Wallingford. Oxfordshire. England.
4	
5	Addiscott, T.M., Gold, A.J., Oviatt, C.A., Benjamin, N., Gille D., 2005. Nitrate,
6	agriculture, and the environment. CABI. UK.
7	
8	Adegbidi, H.G., Briggs, R.D., Volk, T.A., White, E.H. Acraham son, L.P., 2003. Effect
9	of organic amendments and slow-release nitrogen fertilizer on willow biomass
10	production and soil chemical characteristics. Biomass Pioenerg. 25(4), 389-398.
11	
12	
13	Aherne, J., Farrell, E.P., 2002. Deposition of sulphur nitrogen and acidity in
14	precipitation over Ireland: Chemistry, spatial distribution and long-term trends. Atmos.
15	Environ. 36, 1379-1389
16	
17	Alloway, B.J., Jackson, A.P., 1921. The behaviour of heavy metals in sewage sludge-
18	amended soils. Sci. Total Environ. 100, 151-176.
19	
20	
21	Argus, G.W, 1997. Infrageneric classification of Salix (Salicacaceae) in the new world.
22	System. P.J. Mono. 52, 1-121.
23	

1	Britt, C., Garstang, J., 2002. Bioenergy Crops and Bioremediation - A Review. ADAS
2	Report. 119pp. http://ienica.csl.gov.uk/usefulreports/adasbioenergy.pdf
3	1/5/2013
4	
5	Carton, O., 2007. Investigation into the application and 'ong-erm impacts of
6	landspreading industrial Organic Wastes in Ireland. (V rsion 1). Teagasc/EPA.
7	Johnstown Castle, Wexford, Ireland.
8	
9	Caslin, B, Finnan J, Johnson, C., 2015a. Misconthus - Best Practice Guidelines.
10	Teagasc/AFBI. Oak Park Crops Research Centre. Carlow. pp.46.
11	https://www.teagasc.ie/search/?q=MISCANTHUS+L~ST+PRACTISE+GUIDELINES
12	Accessed 1/5/2017.
13	
14	Caslin, B, Finnan, J., Johnson, C., McCracken, A., Walsh, L., 2015b. Short rotation
15	coppice willow - Best Practice Guideli es. Teagasc/AFBI. Oak Park Crops Research
16	Centre. Carlow.
17	https://www.teagasc.ie/m/dia/webte/publications/2011/Short_Rotation_Coppice_Best
18	_Practice_Guidelines.rdf. Accessed 1/5/2017.
19	
20	Clifton-Brown, C Bre 1er, J., Jones M.B., 2007. Carbon mitigation by the energy
21	crop, Misca thus. Clobal Change Biol. 13.11, 2296-2307.
22	
23	
24	

1 1968. Carlow. Talúntais. Conry, M.J, Ryan, P., Soils Co. Foras 2 https://www.teagasc.ie/media/website/environment/soil/Carlow.pdf (Accessed 7/2 2019). 3 4 5 Coulter, B.S., Lalor, S., 2008. Major and Micro Nutrient A vic Tr Productive 6 Agricultural Crops - 3rd Ed. pp.116. Teagasc. Johns Jwn Castle, Wexford. 7 http://www.agresearch.teagasc.ie/johnstown/Nutrient%20Advic %20gdition.pdf 8 . Accessed 1/5/2013 9 10 Cunniff, J., Purdy, S.J., Barraclough, T.J., Castle, M., Maddison, A.L., Jones, L.E., 11 Shield, I.F., Gregory, A.S. and Karp, A., 2015. High vielding biomass genotypes of 12 willow (Salix spp.) show differences in below yound biomass allocation. Biomass 13 Bioenerg. 80, 114-127. 14 15 Curley, E., O'Flynn, M.G., McDonn II, K.P. 2009. Nitrate leaching losses from 16 Miscanthus x giganteus – Impact on groundwater quality. J. Agron. 8, 107-112. 17 18 Curneen, S., Gill, L.W., 2010 Willow-based evapotranspiration systems for on-site 19 wastewater effluent . ar as of low permeability subsoils. Ecol. Eng. 92, 199-209. 20 21 Dietrich, B., Jinnar, J., Hochstrasser, T., Hepp, S., Augustenborg, C. Muller, C., 2008. 22 State and develorment of bioenergy in the Republic of Ireland. Aspects Appl. Biol. 90, 23 27-34.

1	Dimitriou, I., Aronsson, P., 2004. Nitrogen leaching from short-rotation willow coppice
2	after intensive irrigation with wastewater. Biomass Bioenerg. 26.5, 433-441.
3	
4	
5	
6	Dimitriou, I., 2005. Performance and sustainability of short-rotation energy crops
7	treated with municipal and industrial wastes. PhD Thesis. University of Uppsala,
8	Sweden.
9	Dimitriou, I., Eriksson, J., Adler, A., Aronsson, P., Verwijs, T., 2006. Fate of heavy
10	metals after application of sewage sludge and wood-a.' mixtures to short-rotation
11	willow coppice. Environ. Pollut. 142(1), .160-169.
12	
13	
14	Dimitriou, I., and H. Rosenqvist. 2011. Sewage sludge and wastewater fertilisation of
15	Short Rotation Coppice (SRC) for increased bioenergy production—biological and
16	economic potential. Biomas ^c Bi ^c energ. 35(2), 835-842.
17	
18	Dimitriou, I., Mola-Yudego, B., Aronsson, P., Eriksson, J., 2012. Changes in organic
19	carbon and trace elen. s in the soil of willow short-rotation coppice plantations.
20	Bioenerg. Res. (3) 563 572.
21	
22	Dimitrio , I., Mola-Yudego, B., Aronsson, P., 2012. Impact of willow short rotation
23	coppice 'n wat et quality. Bioenerg. Res. 5(3),.537-545.
24	
25	

1	
2	Dos Santos Utmazian M.N., Wenzel, W.W., 2007. Cadmium and zinc accomunation in
3	willow and poplar species grown on polluted soils. J. Plant Nutr. Soil S i. 1 0.2, 265-
4	272.
5	
6	
7	EPA (Irish Environmental Protection Agency), 2008. Ireland's Taylornment (State of
8	the Environment Report). pp.273. EPA Johnstonn, Co.Wexford, Ireland
9	http://www.epa.ie/pubs/reports/indicators/irlenv/ Accessed 7 5/2013.
10	
11	Epstein, E., 2003. Land application of sewage sluce. Lewis Publishers. Boca Raton
12	FL.
13	
14	
15	Fernando, A., Oliveira, J.S., 2004. Effects on Growth, Productivity and Biomass
16	Quality of Miscanthus x gigr nter's of soils contaminated with heavy metals. In.
17	Biomass for Energy, Industry and Climate Protection: Proceedings of the 2nd World
18	Biomass Conference, Pome (Italy).
19	
20	Figala, J., Vran vá. J., F.ejšek, K., Formánek, P., 2015. Giant miscanthus (Miscantus×
21	Giganteus Creef E. Deu.)-A Promising Plant for Soil Remediation: A Mini Review.
22	Acta Un: Agriculturae et Silviculturae Mendelianae Brunensis, 63, p.245.
22	

1 Finch, J.W., Hall, R.L., Rosier, P.T.W., Clark, D.B., Stratford, C., Davies, H.N., Marsh, 2 T.J., Roberts, J.M., Riche, A., Christian, D., 2004. The hydrological impacts of mergy 3 crop production in the UK. Final report. 4 5 Finnan, J., Styles, D., Fitzgerald, J., Connolly, J., Donnelly, A., 2 12. Using a Strategic 6 Environmental Assessment framework to quantify the enviror menta' impact of 7 bioenergy plans. Glob. Change Biol. Bioenerg. 4, 311–320 8 9 Finnan, J., Burke, B., 2014. Nitrogen dynamics in a mature A 'iscanthus x giganteus 10 crop fertilized with nitrogen over a five year period. 11. h J. Agric. Food Res.53(2), 11 171-188. 12 13 Finnan, J., Burke, B., Carroll, J., 2014. A sho. communication on the effect of nitrogen 14 fertilization of willow on yield, combustion emissions and greenhouse gas balance. 15 Nut. Cyc. Agroecosyst. 98.1, 1 7-112. 16 17 Finnan, J. and Burke, B.. 2016. N. Jogen fertilization of Miscanthus x giganteus: effects 18 on nitrogen uptake, growth, yield and emissions from biomass combustion. Nut. Cyc. 19 20 21 Galbally, P. Fagan, C., Finnan, J., Ryan, D., Grant, J. McDonnell, K., 2012. Biosolids 22 and distiling enturent amendment to Irish Miscanthus X giganteus plantations: impacts 23 on groun 'water and soil. J. Env. Qual. 41(1),114-23. 24

1	
2	Galbally, P., Fagan, C., Ryan, D., Finnan, J., Grant, J. McDonnell, K., 2013. Piosolid
3	and distillery effluent amendments to Irish short rotation coppied will ow plantations:
4	Impacts on groundwater quality and soil. Agric. Water Man. 116, 193-22
5	
6	Galbally, P., Fagan, C., Ryan, D.,. Finnan, J., Grant, J. McDonnell, K., 2014a.
7	Biosolids and distillery effluent amendments to Irish short roution coppied willow
8	plantations: Impacts on overland flow and surface water quality. Agric. Water Man. 146
9	, 173–184
10	
11	
12	Galbally, P., Fagan, C., Ryan, D., Finnan, J., Grat, J., McDonnell, K., 2014b. Biosolids
13	and distillery effluent amendments to Jrish Miscanthus plantations: Impacts on overland
14	flow and surface water quality. Sus. Water Qual. Ecol. 3, 77-89.
15	
16	Guidi W, Picciono, E., Bor ri, L., 2008. Evapotranspiration and crop co-efficient of
17	poplar and willow shor rotation coppice used as a vegetation filter. Bioresource
18	Technol. 99, 4832-4840
19	
20	Hasselgren, K., 99°. Us: of Municipal Waste Products in Energy Forestry: Highlights
21	from Fifteen Years Experience. Biomass Bioenerg. 15, 71-74.
22	
23	Haynes, J., Jurtaza, G., Naidu, R., 2009. Inorganic and Organic Constituents and
24	Conta ni ants of Biosolids: Implications for Land Application. Adv. Agron. Chapter 4,
25	165-267.

1	
2	
3	Jennings, E., Mills, P., Jordan, P., Jensen, J.P., Søndergaard, M., Barr, A., Clasgow, J.,
4	Irvine, K., 2003. Eutrophication from Agricultural Sources - Seaso, 1 Erfects and
5	Effects of Phosphorus. pp.61. EPA. Johnstown Crstle. Wexford.
6	http://www.epa.ie/pubs/reports/research/water/eutrophicationf omagriculturesourcessea
7	sonalpatternseffectsofphosphorus.html. Accessed 1/5/2013
8	
9 10	Jones, M.B. and Walsh, M. 2001. Miscanthus for erergy and fibre. Earthscan.
11	
12	Keane, T., Collins, J.F., 2004. Climate Weat et al. Irish Agriculture - 2nd Ed. pp.395.
13	AGMET, Dublin, Ireland.
14	
15	Kocon, A., Matyka, M., 2012. Ph. actractive potential of Miscanthus giganteus and
16	Sida hermaphrodita growing under roderate pollution of soil with Zn and Pb. J. Food
17	Agric. Env. 10.2, 1253-1250.
18	
19	Korboulewsky, N, Γ upo lyet, S., Bonin, G., 2002. Environmental Risks of applying
20	sewage sludge or inpost to vinyards - Carbon, heavy metals, nitrogen and phosphorous
21	accumulation. I En ir n. Qual. 31, 1522-1527.
22	
23	
24	Marthaws, R. B., Grogan, P., 2001. Potential C-sequestration rates under short-rotation
25	coppice 1 willow and Miscanthus biomass crops: a modelling study. Aspects Appl. Biol.
26	65 303-312

1	
2	McBride, M.B., 1995. Toxic metal accumulation from agricultural use of slucge: Are
3	USEPA regulations protective? J. Env. Qual. 24, 5-18.
4	
5	McBride, M.B., 2003. Toxic Metals in sewage-sludge amended vils nas promotion of
6	beneficial use discounted the risks? Adv Environ. Res. 8: 5-1°.
7	
8	McCracken, A.R., Johnston, C.R., 2015. Potential for was water management using
9	energy crops. Scientific Papers Series-Management Econon c Engineering in
10	Agriculture and Rural Development 15.1: 275-284.
11	
12	McGrath, D., Fleming, G.A., Culleton, N . 200°. Trace Elements and Heavy Metals in
13	Irish Soils. pp210. Teagasc, Johnsown Castle, Co. Wexford, Ireland.
14	http://www.teagasc.ie/publications/2011/825/Trace_Elements.pdf. Accessed 1/5/2013.
15	
16	McGrath, D., McCormack, J.J. 1999. The significance of heavy metals and organic
17	micropollutants in soils Project Report No.4268. pp.34. Teagasc. Johnstown, Co
18	Wexford. http://www.teagasc.ie/research/reports/environment/4268/eopr-4268.pdf .
19	Accessed 1/5/2013
20	
21	Merrington, J., W. der, L., Parkinson, R., Redman, M., 2002. Agricultural Pollution:
22	Environmental moblems and Practical Solutions. Chapter 3 –Phosphorus. pp.43-73.
23	Spon Pre 's. Lo' don, U.K.
24	

1	
2	Murphy, F., Devlin, G., McDonnell, K., 2014. Energy requirements and e viro mental
3	impacts associated with the production of short rotation willow (Sc ix s).) chip in
4	Ireland. Glob. Chang. Biol. Bioenerg. 6, 727–739.
5	
6	Naidu, S.L., Long, S.P., 2004. Potential mechanisms of low-t mperature tolerance of
7	C4 photosynthesis in Miscanthus× giganteus: an in vivo aralysis. Lanta 220.1, 145-
8	155.
9	
10	
11	Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Tmith, C., Chambers, B.J., 2003.
12	An inventory of heavy metal inputs to agricultu. 1 soils in England and Wales. Sci. of
13	Tot. Environ. 311, 205-219.
14	
15	Pacyna, J.M., Ottar, B., 1989. Control and Fate of Atmospheric Trace Metals (NATO
16	Science Series) pp.408 pages Springer. USA
17	
18	
19	Quaye, A.K., Volk, 1. 1. 1, Hafner, S., Leopold, D.J. and Schirmer, C., 2011. Impacts of
20	paper sludge ar. 'm' nure on soil and biomass production of willow. Biomass Bioenerg.
21	35(7), 2796 2806.
22	
23	Quaye, A. K. ar d Volk, T.A., 2013. Biomass production and soil nutrients in organic
24	and 1. or game fertilized willow biomass production systems. Biomass Bioenerg. 57,
25	113-125.

1	
2	
3	Rosenqvist, H., Aronsson., P., Hasselgren, K., Perttu, K., 1997. Economics Chusing
4	municipal wastewater irrigation of willow coppice crops. Biomass Biocerg. 12(1), 1-
5	8.
6	
7	
8	Tian, G, Granato, T.C., Pietz, R.I., Carlson, C.R., Abedin, L., 20 /6. Effect of long-term
9	application of biosolid for land reclamation on surface water chemistry. J. Environ.
10	Quality 35 (1), 101-113.
11	
12	Tsadilas, C.D., Karaivazoglou, N.A., Tsotsolis, `.C., Stamatiadis, S., Samaras, V., 2005.
13	Cadmium take up by tobacco as affected by liming, N form, and year of cultivation.
14	Environ. Pollut. 134, 239–246.
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2 3	Figure Captions:
3	
5 6 7	Figure 1: Pathways of loss of nutrients and heavy metals from <i>Miscanthus</i> plots applied with distillery effluent (graphs a and c) and biosolid (grap's b d), loss of nutrients given in kilograms and metals in grams for convenience. O months.
8 9 10 11 12	Figure 2: Pathways of loss of nutrients and heavy metals from short potation coppice willow plots applied with distillery effluent (graphs a and c) and biosolid (graphs b and d), loss of nutrients given in kilograms and metals in grants for convenience. 20 months.
13	

1	
2	
3	
4	
5	

Table 1: Climate con-	ditions† during	the exp	erimental	perio	d

Start Date	17/03/2007
End Date	31/12/2009
Total days, d.	1019
Total Rain, mm	265
Rainfall during experiment (as % of 30 year mean)	115%
Total evaporation, mm	.724
Net rain (total for 1019 d.)	'638
Mean daily evaporation (1019 days), mm	1.67
Mean daily rainfall (1019 days), mm	2.01
Mean net rainfall, mm	0.62
Evaporation (mean for January), mm	11.3
Evaporation (Mean for June), mm	108.7
Rainfall, mean (January), mm	109.4
Rainfall, mean (June), mm	87.3
Net rain (Jan), mm	98.0
Net rain (Jun), mm	-21.5

†: Climate figures are for 25 month period of he rapariment.

13 14

18

1 2

Table 2: Atmospheric deposition during the experimental period

Type	Species	Units	Values
	N	kg ha ⁻¹ yr ⁻¹	12
Nutrients	P	kg ha ⁻¹ yr ⁻¹	0.4
	Cd	g ha ⁻¹ yr ⁻¹	0.6
	Cr	g ha ⁻¹ yr ⁻¹	0.7
Heavy	Cu	g ha ⁻¹ yr ⁻¹	13
Metals	Pb	g ha ⁻¹ yr ⁻¹	13.3
	Ni	P kg ha ⁻¹ yr ⁻¹ Cd g ha ⁻¹ yr ⁻¹ Cr g ha ⁻¹ yr ⁻¹ Cu g ha ⁻¹ yr ⁻¹ Pb g ha ⁻¹ yr ⁻¹ Ni g ha ⁻¹ yr ⁻¹	1.6
	Zn	g ha ⁻¹ yr ⁻¹	235

Table 3: Sou	rces of nutrie	nts and heavy m	etals in <i>Miscanth</i>	us plots treated	with distillery 6	Table 3: Sources of nutrients and heavy metals in <i>Miscanthus</i> plots treated with distillery effluent (DE), all figures per ha	figures per ha	
Plot	Nation of	Background nutrients in topsoil	Nutrients in DE amendment	Nutrients in atmospheric deposition	Heavy metal	Background metals in topsoil	Metals in DE amendment	Metals in atmospheric deposition
$\mathrm{M} ext{-}\mathrm{DE}_{100}$	N. sna	6, 4	82.6	30.0	Cd, g ha ⁻¹	593	2.7	1.5
$\mathrm{M} ext{-}\mathrm{DE}_{50}$	N kg ha	e/.	40.0	30.0	Cd, g ha ⁻¹	445	1.3	1.5
Control	${ m N~kg~ha^{-1}}$	n/a	0.0	30.0	Cd, g ha ⁻¹	371	0	1.5
$\mathrm{M} ext{-}\mathrm{DE}_{100}$	P kg ha ⁻¹	64.2	78.0	1.0	Cu, g ha ⁻¹	41510	5894	32.4
$M ext{-}DE_{50}$	P kg ha ⁻¹	88.7	46.0	1.0	Cu, g ha ⁻¹	37063	2939	32.4
Control	P kg ha ⁻¹	9.62	0	1.0	Cu, g ha ⁻¹	38545	0.0	32.4
$\mathbf{M\text{-}DE}_{100}$					Cr, g ha ⁻¹	25203	138.0	1.79
$M ext{-}DE_{50}$., g ha ⁻¹	22238	0.69	1.79
Control					$\int \Gamma, r = 1^{-1}$	22238	0.0	1.79
$\mathbf{M\text{-}DE}_{100}$					r 0, € la-1	29650	235.9	33.2
M-DE_{50}					Pb, g ne	58997	118.4	33.2
Control					Pb, g ha ⁻¹	2665 3	0.0	33.2
$\mathbf{M\text{-}DE}_{100}$					Ni, g ha ⁻¹	107 037	128.6	4.0
M-DE_{50}					${ m Ni~g~ha^{-1}}$	9636.	63)	4.0
Control					$\mathrm{Ni},\mathrm{g}\mathrm{ha}^{-1}$	93398	0.0	4.0
$\mathbf{M\text{-}DE}_{100}$					Zn, g ha ⁻¹	40028	48′ 0	88.
M-DE_{50}					Zn , $g ha^{-1}$	34098	2399	885
Control					$Zn, g ha^{-1}$	34098	0.0	587.7

Table 4: Segrates of nutrients and heavy metals in Miscanthus plots treated with biosolid (BS), all figures per ha

		name of many arms of		see a mord at		arrad and array (a a) arragan		
		Mutrients in	Nutrients in	Nutrients in		Background	Metals in BS	Metals in
Plot	Nutric_1t	topsoil	BS amendment	atmospheric deposition	Heavy Metal	metals in topsoil	amendment	atmospheric deposition
$M ext{-}BS_{100}$	N, kg h -1	n/.	336.5	30.0	Cd, g ha ⁻¹	2162	0.5	1.5
$ ext{M-BS}_{50}$	N, kg ha-1	, 'a	184.0	30.0	Cd, g ha ⁻¹	2328	0.3	1.5
Control	$N, kg ha^{-1}$	e/u	0	30.0	Cd, g ha ⁻¹	2162	0	1.5
$\mathbf{M\text{-}BS}_{100}$	P, kg ha ⁻¹	79.5	155.C	1.0	Cu, g ha ⁻¹	51547	1405	32.4
$\mathrm{M ext{-}BS}_{50}$	P, kg ha ⁻¹	26.3	83 3	1.0	Cu, g ha ⁻¹	44896	167	32.4
Control	P, kg ha ⁻¹	10.6	0.,	1.0	Cu, g ha ⁻¹	56536	0	32
$\mathrm{M ext{-}BS}_{100}$					Cr, g ha ⁻¹	34919	250	1.79
$ ext{M-BS}_{50}$					C⁺, g ha¹¹	36582	136	1.79
Control					(r, g h-1-1	33256	0	1.79
$\mathbf{M\text{-}BS}_{100}$					Ph g 1 1-1	49884	544	33.2
$ ext{M-BS}_{50}$					Pb, g a-1	58198	324	33.2
Control					Pb, g ne	58198	0	33.2
$\mathbf{M\text{-}BS}_{100}$					Ni, g ha ⁻¹	1917 23	135	4.0
$ ext{M-BS}_{50}$					Ni g ha ⁻¹	157537	74	4.0
Control					$Ni, g ha^{-1}$	2078.1	0	4.0
$\mathbf{M\text{-}BS}_{100}$					Zn, g ha ⁻¹	66512	2378	588
$ ext{M-BS}_{50}$					Zn, g ha-1	69838	1263	885
Control					Zn, g ha ⁻¹	59861	0	$\frac{588}{}$

Table 5: Sources of nutrients and heavy metals in short rotation coppice willow plots treated with distillery effluent (DE), all figures per ha	Metals in atmospheric deposition	1.0	1.0	1.0		20.6	20.6	1.19	1.19	1.19	21.09	21.09	21.09	2.55	2.55	2.55	572.4	37.74	572.4
llery effluen	Metals in DE amendment	1.2	0.5	0	1.19	0.51	0.0	13.6	5.10	0.0	3.40	1.70	0.0	3.40	1.70	0.0	95.2	40.8	0.0
eated with dist	Background metals in topsoil	1876	3248	2156	14725	26505	21877	8975	11920	10378	17670	25′44	2 1596	,or:-9	122006	85825	16127	25523	19773
willow plots ta	Heavy Metal	Cd, g ha ⁻¹	Cd, g ha ⁻¹	Cd, g ha ⁻¹	Cu, g ha ⁻¹	Cu, g ha ⁻¹	Cu, g ha ⁻¹	Cr, g ha ⁻¹	$C_{,}$ g ha ⁻¹	(T, g'a!	P', g. 1 -1	Pb, g l.a ⁻¹	Pb, g ha ⁻¹	Ni, g ha ⁻¹	${ m Ni~g~ha^{-1}}$	Ni , $g ha^{-1}$	Zn, g ha ⁻¹	Zn , $g ha^{-1}$	Zn, g ha ⁻¹
otation coppice	Nutrients in atmospheric deposition	19.0	19.0	19.0	89.0	89.0	80												
metals in short r	Nutrients in DE amendment	45.4	22.8	c	3.0	17.0	0.0												
rients and heavy	Background nutrients in topsoil		U.	B/.	84.0	84.0	84.0												
ources of nut	Nraien	N kga ⁻¹	N kg ha ⁻¹	N kg ha ⁻¹	P kg ha ⁻¹	$P kg ha^{-1}$	P kg ha ⁻¹												
Table 5: Sc	Plo⁴	W -DE $_{100}$	W -DE $_{50}$	Control	W - DE_{100}	W - DE_{50}	Control	W-DE_{100}	W -DE $_{50}$	Control	W-DE_{100}	W -DE $_{50}$	Control	W-DE_{100}	W - DE_{50}	Control	W-DE_{100}	W - DE_{50}	Control

2.55

11.9

108918.7

 ${
m Ni~g~ha^{-1}}$

 $W-BS_{50}$

W-BS₁₀₀

W-BS50

Control

Control

2.55

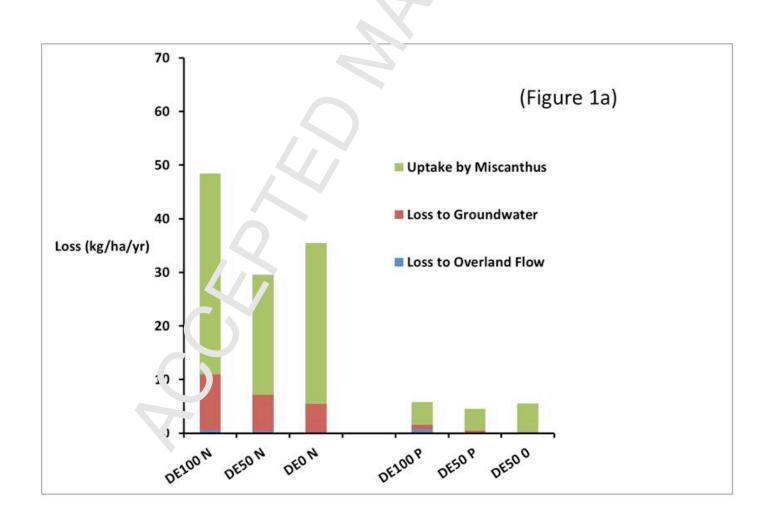
86518.9 20439.8

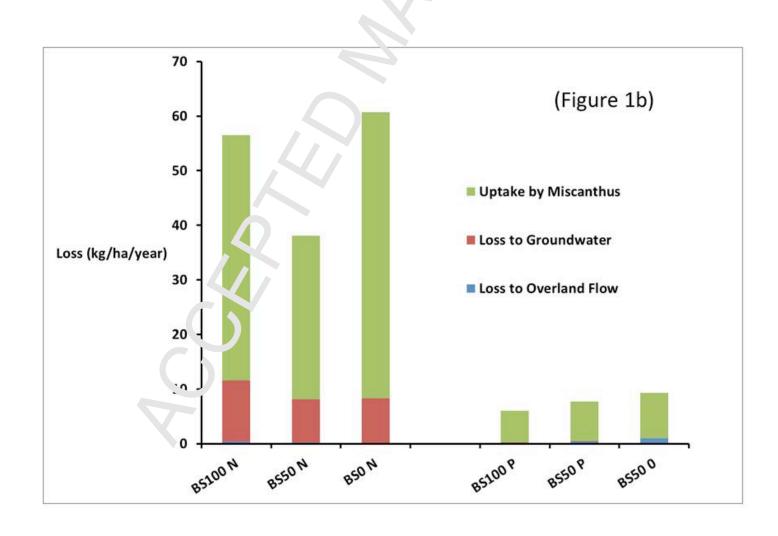
 $Ni, g ha^{-1}$

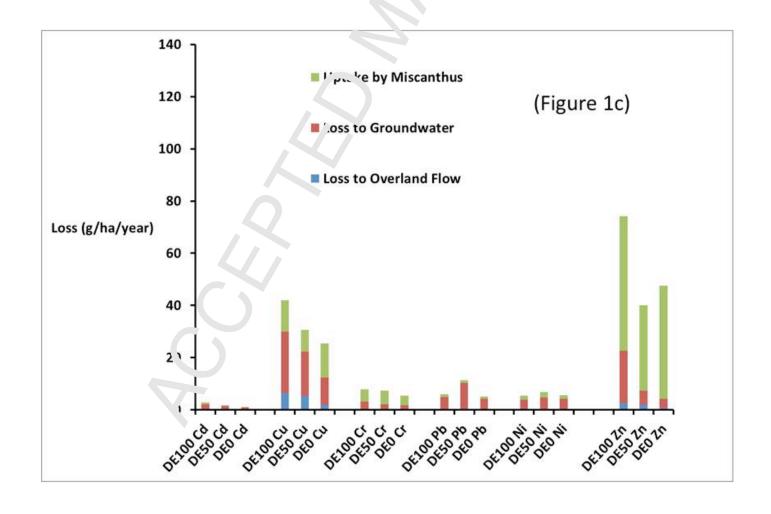
Zn, g ha⁻¹

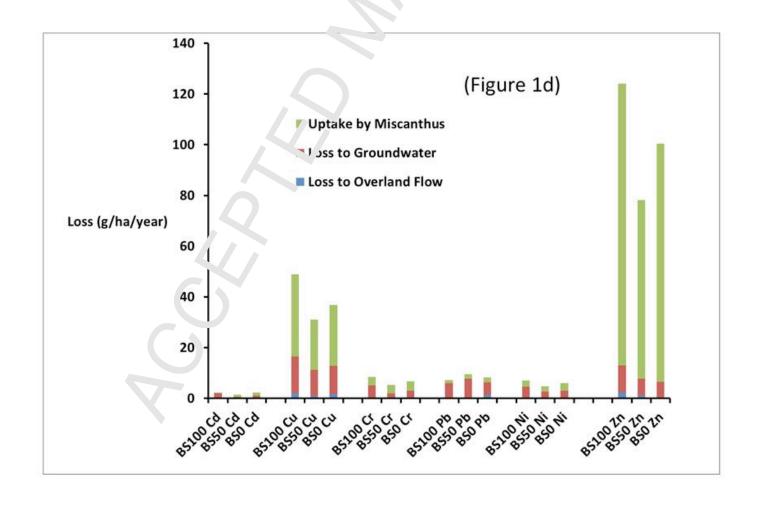
372.

716.0

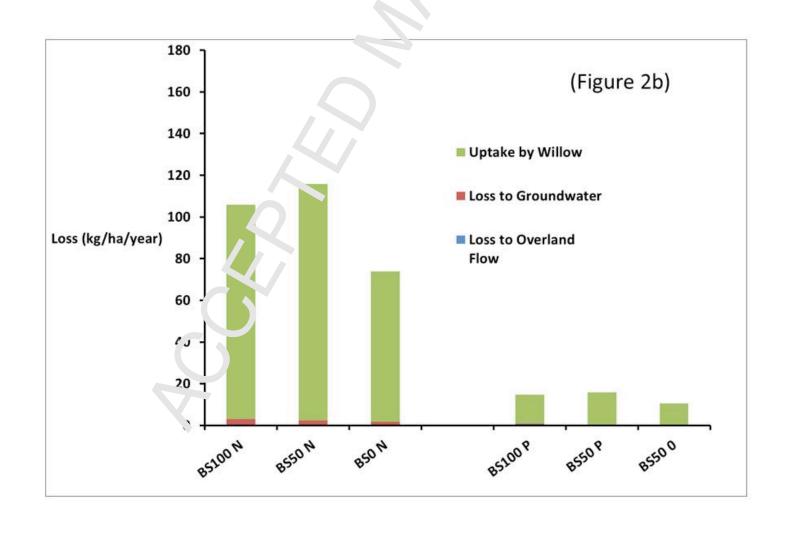

226.2

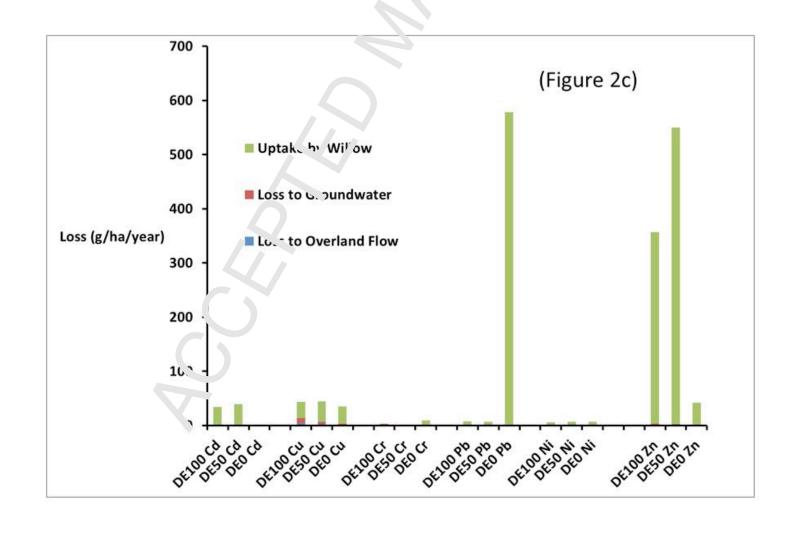

29959.6

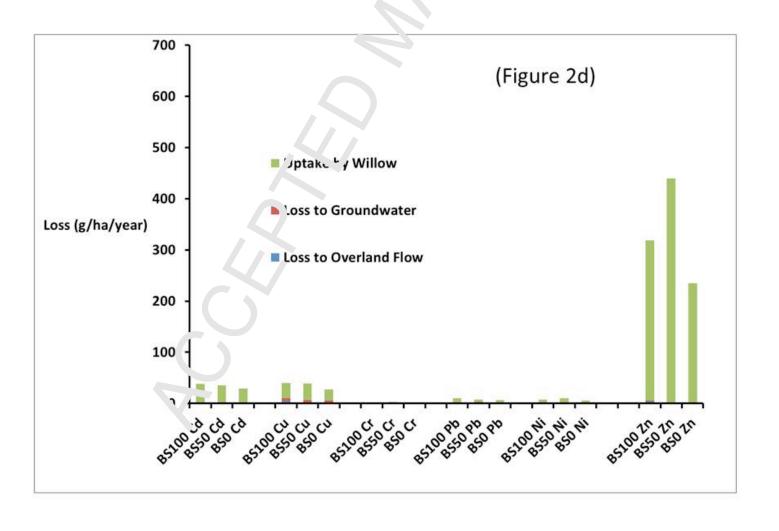

Zn, g ha⁻¹


Zn, g ha-1


atmospheric deposition Metals in 20.6 20.6 20.6 1.19 1.19 1.19 2.55 21.1 21.1 21.1 1.0 1.0 **Table 6:** Sources of nutrients and heavy metals in short rotation coppice willow plots treated with biosolid (BS), all figures per ha Metals in BS amendment 377.6 129.3 389.5 183.7 20.4 66.3 0.0 0.0 0.0 0.0 35.1 Background metals in 10919.8 10919.9 13719.8 21559.7 5 9701ء 0 52982 17639.8 26599.7 17919.8 topsoil 2407 3.7 1848 1176 1260 $\int r, g ha^{-1}$ Cr, g ha⁻¹ Cd, g ha⁻¹ Cd, g ha⁻¹ Cu, g ha⁻¹ Cu, g ha⁻¹ Cu, g ha⁻¹ C., g la-1 Ni, g ha⁻¹ Cd, g ha⁻¹ Pb, g ha⁻¹ Heavy Pb, § ha Pb, g ha⁻¹ Metal atmospheric Nutrients in deposition 19.0 19.0 19.0 0.7 0.7 0.7 Nutrients in amendment 71.4 6.87 221.1 10 9 Background nutrients in topsoil , 'a 26.0 P kg ha⁻¹ P kg ha⁻¹ P kg ha⁻¹ N kg ha⁻¹ Name. N kg ha⁻¹ N kg ha' W-BS₁₀₀ W-BS₁₀₀ $W-BS_{50}$ W-BS₁₀₀ $W-BS_{50}$ W-BS₁₀₀ $W-BS_{50}$ Control Control W-BS₁₀₀ W-BS50 Control Control Plc







The fate of nutrients and heavy metals in energy crop plantations amended with coranic byproducts

Highlights:

- The greatest inputs to the system came from the soil, the smr.liest input was from atmospheric deposition.
- The largest output from the system was crop take up; the small structure as loss to OLF.
- Organic byproducts can enhance energy crop nutrition with at deleterious environmental consequences.