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Abstract 

     The effects of turbulence on the evolution of convective clouds remains uncertain both 

in observations and in numerical weather prediction (NWP) models. Turbulent processes 

remain parametrised in convection-permitting models (CPMs), and simulated clouds remain 

highly sensitive to the configuration of sub-filter turbulence schemes. It remains unclear 

whether assumptions implicit in these schemes are valid for CPMs, indicating the need for 

thorough evaluation of their performance using observations; the primary aim of this thesis. 

     Eddy dissipation rates ε, are retrieved in radar data by applying a comprehensive method 

to infer the turbulent component of the Doppler spectrum variance. Hydrometeor fall-speed 

variances are shown to be negligible when sampling at elevations lower than 11.5°. Shear is 

calculated directly by applying a linear velocity model to Doppler velocities. New equations 

are presented to account for variance from azimuthal shear – an unseen dimension in range-

height scans. Resulting values of ε are insensitive to the scale over which shear is calculated. 

     A thorough statistical analysis of ε in observed clouds suitable for model evaluation is 

presented for the first time. Retrievals of ε were analysed for two contrasting case studies; 

shallow “shower” clouds and more vigorous “deep” clouds. Values of ε range from 10−3 −

10−1 m2 s−3 in shower clouds and from 10−3 − 1 m2 s−3 in deep clouds. Turbulent 

intensity increases with height in deep clouds while remaining constant in shower clouds. In 

both cases, significant positive correlations are demonstrated between ε and many cloud 

characteristics. The strongest correlations are found between the velocity and horizontal 

shear in updrafts. Coherent features of ε are found to have typical spatial scales of 0.5 – 1 

km. 

     Results are compared with equivalent statistics derived in 100-m and 55-m grid-length 

Met Office Unified Model simulations of the observed cases to evaluate the Smagorinsky-

Lilly sub-grid mixing scheme. Simulated turbulence is characterised by small, intense 

regions of ε more strongly co-located with shear around updrafts than observed. The 95th 
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and 99th percentiles of model ε are one and two orders of magnitude larger than 

observations, respectively, with similar median values. Values of ε increase consistently 

with the mixing length and appear insensitive to grid-length suggesting 100-m was sufficient 

to resolve an inertial sub-range. 
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Chapter 1 

Introduction 

     The effects of turbulence on the structure and evolution of convective clouds remain 

unclear in observations and numerical weather prediction (NWP) models. The turbulent 

entrainment of dry environmental air into cumulus clouds has long been known to play an 

important role in their growth and decay (Blyth, 1993). The specific location of entrained air 

can have a varied and substantial impact on resulting air motions within the cloud (Blyth et 

al., 1988). Turbulent mixing within clouds significantly impacts the microphysical processes 

governing the initiation of convective precipitation; turbulence can accelerate cloud drop 

growth through increased rates of collision and coalescence (Vohl et al., 1999). Although 

there is much evidence for the effects of turbulence on cloud processes, there remains 

uncertainty in their precise nature, and the implications for cloud evolution. This is 

compounded by difficulty collecting observations of turbulence over the range of scales that 

impact complex cloud processes.  

     In recent years, regional numerical weather prediction (NWP) has improved to sufficient 

resolution that it is worthwhile abandoning the parametrisation of deep convective clouds, 

and, instead, allowing the unstable growth of explicit convective clouds. However, it is not 

feasible to forecast using resolutions sufficient to properly resolve all of the important 

features of the flow. Hence such models are known as 'convection-permitting’ models 

(CPMs; Clark et al. 2016). The formal treatment of turbulent flow in numerical simulation 

remains an unsolved problem. Therefore, physical processes occurring on scales below those 

resolved in CPMs, such as turbulence, remain parametrised. Model simulations show that 

assumptions made regarding parametrised turbulence in clouds have a profound effect on 

the characteristics of simulated clouds (e.g. Hanley et al., 2015). To test the assumptions 
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made in these parametrisations, the characteristics of turbulence in simulated clouds must be 

evaluated using corresponding observations in real clouds. Until understanding of the effects 

of turbulence in observed clouds is advanced, justifiable attempts to improve turbulence 

parametrisations are difficult to make. 

     To improve both understanding of turbulence in observed clouds and guide the 

development of turbulence parametrisation in NWP, high-resolution observations of 

convective cloud turbulence are required. By scanning clouds with high-resolution Doppler 

weather radar, near-instantaneous observations of turbulence can be made across large 

swathes of atmosphere. This has clear benefits over using methods such as aircraft or 

radiosonde ascent measurements which can only collect time-series information from single 

points in space. Doppler-capable radars measure the variability in the component of the wind 

along the line-of-sight; which is increased by turbulence. Previous studies have estimated 

turbulence, expressed in terms of the dissipation rate of turbulent kinetic energy, ε, from the 

width of the Doppler velocity spectrum (Frisch and Clifford, 1974; Istok and Doviak, 1986; 

Chapman and Browning, 2001; Meischner et al., 2001).  

     Although the general theoretical approach to retrieving ε from the Doppler spectrum 

width is well established, past turbulence retrieval studies generally focus only on single 

storm cases. Often, the contributions to the Doppler velocity spectrum from processes aside 

from turbulence are either purely assumed to be negligible or are shown to be negligible only 

for the purpose of the application. As a result, a comprehensive method to retrieve ε from 

radar fields under a wide range of conditions has not been presented. By developing such a 

method, consistent retrievals of turbulence can be made across many cloud cases allowing 

for a statistical assessment of turbulence in convective clouds; which has also not been 

presented. This approach allows for more reliable relationships to be determined between 

turbulence and cloud processes than those which can be identified in individual case studies, 

providing the robust framework of turbulence statistics required for the evaluation of 

turbulence parametrisation methods in NWP. 
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     In this thesis, a comprehensive method to retrieve ε using high-resolution Doppler 

weather radar is presented and compared to the more limited approaches that have appeared 

in the literature. This retrieval algorithm is applied to radar data collected with the Chilbolton 

Advanced Meteorological Radar (CAMRa); the highest resolution weather radar in the 

world. A large dataset of radar observations collected on two contrasting case days is used 

to conduct a detailed statistical assessment of turbulence in convective clouds. These 

statistics are then used to evaluate the parametrisation of turbulence in Met Office Unified 

Model (MetUM) simulations that have been performed for the corresponding case days. 

 

1.1   Turbulence 

1.1.1   What is turbulence? 

     If the kinetic energy in a fluid flow is large enough to locally exceed the damping effects 

of the viscosity of the fluid, the flow can become turbulent, resulting in chaotic fluctuations 

in flow velocity. In this sense, turbulence describes the resulting irregularities in the flow, 

and is easier to induce in flows with low kinematic viscosity, 𝜈. Turbulent flows are complex 

and unpredictable; the precise impact of turbulence on the evolution of clouds remains 

unclear, and the formal treatment of turbulent flow in numerical simulation remains an 

unsolved problem. 

     Described by Reynolds (1883), the potential for turbulence in a fluid can be predicted 

using the dimensionless Reynolds number, Re. This is the ratio of the inertial and viscous 

force terms in the incompressible Navier-Stokes equation. For a non-rotating (omitting 

Coriolis acceleration), incompressible fluid, the acceleration of a fluid parcel is given by: 

𝜕u

𝜕t
+ (u ∙ ∇)u +

1

𝜌
∇𝑝 + 𝑔𝐤 = 𝜈∇2u                                           (1.1) 
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Where u is the flow velocity, 𝜌 is the fluid density, 𝑝 is the pressure and 𝑔 is the gravitational 

acceleration. From left to right, the terms in (1.1) describe the acceleration of a fluid parcel 

due to: the local time derivative of u; advection (inertial forces); pressure gradients; gravity 

(where 𝐤 is a unit vector parallel to the gravitational acceleration); and fluid viscosity. The 

ratio of (u ∙ ∇)u and 𝜈∇2u therefore provides Re, which can then be simplified using 

dimensional analysis: 

Re =
inertial forces

viscous forces
 =   

(u ∙ ∇)u

ν∇2u
  ~  

(𝑈 ∙
1
𝐿) ∙ 𝑈

𝜈 ∙
1
𝐿2 ∙ 𝑈

 ~  
𝑈𝐿

𝜈
                          (1.2) 

Where 𝑈 and 𝐿 are the characteristic velocity and length scales of a fluid, respectively. If the 

Reynolds number of a fluid flow exceeds a critical value Rec, then the flow can become 

turbulent. Although the value of Rec depends on the geometry of the flow (Potter et al., 

2012), values of Rec > 5 × 103 generally correspond to fully turbulent flow, e.g. for air flow 

in a pipe, Rec ~ 4 × 103 Holman (2002)). In the atmospheric boundary layer, 𝑈 ~ 10 m s−1, 

𝐿 ~ 103 m (boundary layer depth) and ν ~ 10−5 m2 s−1, so (1.2) can be used to find 

Re ~ 109 > Rec, far exceeding the typical values of Rec. Values of Re in convective clouds 

(as is appropriate for this project) can be even larger than for the boundary layer. In deep, 

convective clouds, 𝑈 and 𝐿 can range from 10 − 50 m s−1 and 5 – 15 km, respectively. If 

ν ~ 10−5 m2 s−1, values of Re can range from 109 − 1011 which, again, far exceeds typical 

threshold values for fully turbulent flow. 

     Once turbulence can be initiated, flows are characterised by instabilities called eddies, 

which are roughly defined as coherent, swirling structures in the flow velocity. A turbulent 

flow may contain eddies on a spectrum of spatial scales (or wavelengths). Figure 1.1 

illustrates the change in transverse velocity 𝑣, during the passage of a turbulent eddy, where 

∆𝑡 represents the timescale of eddy advection. The length scale (or wavelength) of the eddy 

is given by 𝑣∆𝑡. Fluctuations in velocity such as this can be seen in time series of turbulent 
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wind flows, indicating the presence of turbulent eddies of varying scale embedded in the 

mean flow. 

 

 

 

 

 

 

 

 

 

Figure 1.1:   Illustration of the variation in velocity perpendicular to the flow 𝑣, during the 

complete passage of an eddy over a fixed location. 

 

 

1.1.2   Turbulent kinetic energy 

     The separation of turbulent velocity fluctuations from the mean velocity allows closer 

examination of the properties of turbulence in a flow; this is achieved using the Reynolds 

decomposition technique. For a given point in a flow with a velocity of 𝑢 at time 𝑡, the 

velocity can be decomposed into a mean and fluctuating component: 

𝑢(𝑡) = 𝑢(𝑡)̅̅ ̅̅ ̅̅ + 𝑢′(𝑡)                                                         (1.3) 

Where 𝑢(𝑡)̅̅ ̅̅ ̅̅  is the mean velocity obtained by sampling 𝑢(𝑡) over a time period, 𝑇, 

𝑢(𝑡)̅̅ ̅̅ ̅̅ =
1

𝑇
∫ 𝑢(𝑡′) 𝑑𝑡′

𝑡

𝑡−𝑇

                                                         (1.4) 
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and 𝑢′(𝑡) is the deviation from 𝑢(𝑡)̅̅ ̅̅ ̅̅  owing to turbulence in the flow. The turbulent properties 

of a flow can be found by analysing the statistics of 𝑢′(𝑡). 

     The kinetic energy associated with the flow can too be decomposed into mean and 

turbulent components. Expressed per unit mass, the total kinetic energy 𝑒𝑇, associated with 

a 3-dimensional flow is given by: 

  𝑒𝑇 =
1

2
(𝑢̅2 + 𝑣̅2 + 𝑤̅2) +

1

2
(𝑢′2

+ 𝑣′2
+ 𝑤′2

) + (𝑢̅𝑢′ + 𝑣̅𝑣′ + 𝑤̅𝑤′)                (1.5) 

The right-hand terms describe (from left to right) the kinetic energy in the mean flow, the 

kinetic energy in the turbulent flow, and so-called “cross terms”. Averaging (1.5) leaves the 

kinetic energy in the mean flow the same (𝑋̅̅ = 𝑋̅), the “cross terms” equal to zero (𝑋′̅̅ ̅ = 0) 

and turbulent kinetic energy (TKE) 𝑒, is given by: 

𝑒 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅)                                                     (1.6) 

Where the factor 
1

2
 in (1.6) is often omitted. 

     Under the assumption of horizontal homogeneity, the change in 𝑒 in a fluid flow is 

governed by the TKE equation (1.7), which can be obtained by multiplying the 

incompressible Navier-Stokes equations by u and using Reynolds-averaging. 

𝐷𝑒

𝐷𝑡
= −𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑢̅

𝜕𝑧
− 𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑣̅

𝜕𝑧
+

𝑔

𝜃0
𝑤′𝜃′̅̅ ̅̅ ̅̅ −

1

𝜌

𝜕

𝜕𝑧
𝑤′𝑝′̅̅ ̅̅ ̅̅ −

𝜕

𝜕𝑧
𝑤′𝑒′̅̅ ̅̅ ̅̅ − ν (

𝜕𝑤′

𝜕𝑧
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
       (1.7) 

Where 𝜃 is the potential temperature and 𝑔 is the gravitational acceleration.  The rate of 

viscous TKE dissipation (referred to as the eddy dissipation rate, ε) is given by the final term 

on the RHS of (1.7): 

ε = ν (
𝜕𝑤′

𝜕𝑧
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

The expanded form of the LHS of (1.7) is given by:  
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𝐷𝑒

𝐷𝑡
=

𝜕𝑒

𝜕𝑡
+ 𝑢̅

𝜕𝑒

𝜕𝑥
+ 𝑣̅

𝜕𝑒

𝜕𝑦
+ 𝑤̅

𝜕𝑒

𝜕𝑧
                                             (1.8) 

The 
𝜕

𝜕𝑥
 and 

𝜕

𝜕𝑦
 terms on the RHS of (1.8) are zero under the assumption of horizontal 

homogeneity and the vertical advection term is generally ignored; it is small when averaged 

over a large area. The first four terms on the RHS of (1.7) describe the sources of TKE from 

shear, buoyancy and pressure perturbations. This is followed by a turbulent transport term 

which accounts for the movement of TKE by turbulent eddies. This process alters the 

magnitude of TKE at fixed locations but has no net effect on total TKE. Under the 

assumption of homogenous, steady-state turbulence in a co-ordinate system aligned with the 

flow (the 𝑣′𝑤′̅̅ ̅̅ ̅̅  term is removed), the production of TKE by shear and buoyancy is balanced 

by viscous dissipation: 

ε = −𝑢′𝑤′̅̅ ̅̅ ̅̅
𝜕𝑢̅

𝜕𝑧
+

𝑔

𝜃0
𝑤′𝜃′̅̅ ̅̅ ̅̅                                                        (1.9) 

 

1.1.3   Turbulence spectra 

     The largest (integral) length scale ɅL, of eddies in a fluid flow is determined by the spatial 

constraints of the system. For example, the largest eddy scale in a flow through a pipe is 

equal to the pipe diameter, whereas for convective circulations in the atmosphere, this scale 

can be 10 km. Eddies on this input scale degrade into smaller and smaller eddy circulations 

in the Richardson energy cascade – the downscale transfer of TKE from the integral length 

scale to dissipation scales, where eddy energy is converted to heat by viscous forces. 

     Kolmogorov (1941) proposed, through dimensional analysis, that the dissipation of 

turbulent eddies began at a length scale ɅD (the Kolmogorov microscale), that was a function 

only of the fluid viscosity ν, and the rate of eddy energy dissipation, ε (m2 s−3): 
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ɅD = (
ν3

ε
)

1
4

                                                            (1.10) 

Kolmogorov further proposed that for a fluid with very high Re, the anisotropy of large scale 

eddies was lost in the Richardson energy cascade. This leads to a range of isotropic eddy 

scales called the “inertial sub-range”, the largest scale of which (the outer scale, Ʌ0), exists 

between ɅL and ɅD (see Figure 1.2). Within this range, there are no mechanisms generating 

new eddy energy, nor is eddy energy dissipated, it is merely transferred downscale at a rate 

equal to ε. As a result, the energy spectrum of the inertial sub-range could be characterised 

through dimensional analysis of ε and the wavenumber 𝑘, where 𝑘 =  
2𝜋

Ʌ0
. To achieve this, 

the energy associated with eddies of a given wavenumber 𝐸(𝑘), which has units of m3 s−2, 

is expressed as: 

𝐸(𝑘) = 𝐴ε𝑎𝑘𝑏                                                          (1.11) 

 Where 𝐴 is a constant, and 𝑎 and 𝑏 can be determined. In dimensional terms, 𝐸(𝑘) =  
𝐿3

𝑇2, 

ε =
𝐿2

𝑇3, and 𝑘 =
1

𝐿
. Substituting these into (1.11) provides: 

𝐿3

𝑇2
= 𝐴 (

𝐿2𝑎

𝑇3𝑎
) (

1

𝐿𝑏
)                                                     (1.12) 

Solving for 𝑎 and 𝑏 provides values of 𝑎 =
2

3
, and 𝑏 = −

5

3
, which leaves the final form of 

the energy spectrum of the inertial sub-range as: 

𝐸(𝑘) = 𝐴ε2/3𝑘−5/3                                                     (1.13) 

Where 𝐴 is the universal constant of isotropic turbulence with values ranging from 1.53 to 

1.68 (Gossard and Strauch, 1983).  
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Figure 1.2:   Under the assumptions of Kolmogorov (1941), the energy spectrum of 

turbulence includes an “inertial sub-range” between wavenumbers Ʌ0 and ɅD which has an 

energy spectrum proportional to 𝑘−5/3 given by (1.13). 

      

     The value of Ʌ0 is not fixed but can depend on the characteristic scales of the system. For 

a convective cloud, the largest eddies are mainly produced by buoyant updraft circulations. 

These so-called energy-containing eddies can have wavelengths of ɅL = 5 − 10 km and are 

anisotropic. Isotropy is attained at scales smaller than ɅL during the down-scale Richardson 

cascade. Values of Ʌ0 can therefore vary significantly depending on the scales of cloud 

processes. In cumulus clouds of 1 – 4.5 km depth, MacPherson and Isaac (1977) found values 

of Ʌ0 up to 400 m. In severe convective storms, Sinclair (1974) reported the inertial sub-

range extending to Ʌ0 = 1 km, Rhyne and Steiner (1964) reported Ʌ0 = 1.2 km, Battan 

(1975) observed turbulence on scales up to 2 km, Brewster and Zrnic (1986) reported values 

from Ʌ0 = 2.4 − 3 km and Foote and Fankhauser (1973) found Ʌ0 to be as large as 4 km in 

a Colorado hailstorm. In addition, Ʌ0 can vary spatially within clouds; Sinclair (1974) found 

that Ʌ0 was largest in the upper half of the cloud where updraft velocity and turbulence was 

most intense. The degree to which precise measurements of Ʌ0 are required when attempting 

to estimate ε from clouds sampled with Doppler radar is discussed in Chapter 3. 
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1.2   Turbulence and cloud processes 

     Clouds in the atmosphere are characterised by a Reynolds number (Re ~ 109; see Section 

1.1.1) that exceeds the critical value of Rec ~ 3 × 103 for associated fluid flows to become 

turbulent. Turbulence is important in the formation of clouds and precipitation, however, its 

precise role in small-scale cloud processes remains unclear (a detailed summary is given by 

Devenish et al., 2012). Turbulence remains just one of many physical processes (such as dry 

air entrainment and microphysical processes) that affect the evolution of clouds and 

precipitation. The effects of turbulence occur on a wide range of spatial scales within clouds 

making an assessment of its importance relative to other cloud processes a significant 

challenge. This is compounded by difficulty in collecting precise observations of turbulence 

simultaneously with other cloud processes, and across a wide range of scales. This section 

summarises the importance and uncertainty associated with turbulence in cloud and 

precipitation processes. 

 

1.2.1   Turbulent entrainment 

     The density of air within clouds is different to that of the surrounding environmental air. 

The process by which environmental air mixes into the cloud is called entrainment; a process 

which can significantly influence cloud evolution, first described by Stommel (1947). The 

entrainment of dry unsaturated air locally reduces cloud liquid water content through 

evaporation of cloud droplets. In cumulus clouds, this effect has been shown to occur 

through the full cloud depth (Warner, 1955; Blyth and Latham, 1990; Blyth, 1993) and is 

independent of cloud width except in very small clouds (Warner, 1955). Among the 

conclusions of Blyth (1993) was that vertical mixing, i.e. the downward mixing of 

environmental air into the tops of cumulus updrafts, leading to penetrative downdrafts, were 

more responsible for diluting cumulus clouds than mixing through horizontal entrainment. 

However, Heus et al., (2008) used large-eddy simulations to demonstrate that almost all 
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entrainment occurs laterally in shallow cumulus cloud. Characteristics of entrainment have 

previously depended on whether updrafts are considered as either “plume-type” and 

“thermal-type”. Thermal-type and plume-type updrafts are described in Blyth (1993) as 

“instantaneous” and “maintained” regions of vertical velocity, respectively. In thermal-type 

updrafts, Blyth et al. (1988) proposed that entrained parcels enter near the cloud top and 

descend around the updraft producing a turbulent wake region; a process which is far less 

applicable to plume-type updrafts. The exact processes by which environmental air is 

entrained into (and mixes with) convective clouds remains unclear. 

 

1.2.2   Turbulence and cloud microphysics 

     The growth of water droplets in clouds depends on the supersaturation and small-scale 

dynamics of the cloud environment, which can be modulated by turbulence. As a result, 

turbulence has long been considered to impact the growth of raindrops and the initiation of 

precipitation in convective clouds. The interaction of turbulence on cloud droplets takes 

place on the smallest scales within the cloud. More specifically, the fluid motions that affect 

droplet collisions, coalescence and collection efficiency occur on spatial scales below 1 mm 

(Shaw, 2003). This indicates that turbulent motion on dissipative scales is more important 

for cloud droplets, rather than turbulence on inertial sub-range scales which is more 

important for entrainment processes (Devenish et al., 2012).  

     Turbulence of the scale of individual cloud droplets can impact the rate of droplet growth 

via condensation. In modelling experiments, Khvorostyanov and Curry (1999) identified that 

small-scale turbulence can lead to fluctuations in supersaturation that increase cloud droplet 

growth independent of drop radius; this process has also been shown to broaden the drop-

size distribution (Pinksy et al., 1999; Sidin et al., 2009). Further complexity associated with 

this process is identified by Shaw et al. (1998) who propose that the fluctuations in droplet 
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concentration from small-scale turbulence alter the supersaturation such that droplet growth 

rates vary considerably over small distances.  

     Droplet collision and coalescence is a key process by which cloud droplets grow. 

Although the collection efficiency of droplets remains dependent on multiple factors (such 

as relative droplet sizes), the presence of turbulence can accelerate cloud drop growth 

through increased rates of collision and coalescence (Grover and Pruppacher, 1985; Khain 

and Pinsky, 1995; Vohl et al., 1999). Turbulent motion in clouds has also been shown to 

increase the rate of large droplet formation in shallow cumulus (Pinksy and Khain, 2002; 

Falkovich et al., 2002); a key step in the initiation of precipitation. Through numerical 

simulation of mixed-phase deep clouds, Benmoshe et al. (2012) identified that the initial 

rain-drops developed in regions of the strongest turbulence near the tops of updrafts, and 

that these developed earlier and at a lower altitude in turbulent conditions. Research into the 

effects of turbulence into ice nucleation and ice particle growth is less extensive than for 

liquid water droplets. However, similar impacts of turbulence on ice particles were identified 

by Benmoshe et al. (2014) who showed (for mixed-phase deep clouds simulated in a 50-m 

grid-scale numerical model) that turbulence increases the collision rates of ice-ice and ice-

water particles and accelerates the growth of ice aggregates and graupel by riming.  

 

1.2.3   Summary and discussion 

     It is clear from this brief section that turbulence has a complex and profound impact on 

the evolution of convective clouds over a range of scales. The entrainment of dry 

environmental air by inertial sub-range scale turbulent eddies dilutes cumulus clouds, 

evaporating cloud droplets and affecting vertical motion within the cloud. Cloud 

microphysical processes are modulated by turbulence on dissipative scales, with impacts on 

the condensational growth of cloud droplets, growth by collision and coalescence, the drop-

size distribution, the formation of large droplets and the timing and location of rain-drop 
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development. Although the research in this area of cloud physics is extensive, significant 

uncertainty remains in the precise role of turbulence in clouds processes. Perhaps the most 

significant challenge is to reconcile the many theoretical, observational and numerical 

approaches used to investigate turbulence in clouds. Owing to the difficulty observing 

characteristics of turbulence simultaneously with the thermodynamic and microphysical 

properties of clouds, many of the developments included in this section have been made 

using numerical models, often through Direct Numerical Simulation (DNS). However, the 

development of these models, and more importantly, those that approximate the effects of 

turbulence through parametrisation, must be guided by precise observations of turbulence in 

clouds. 

 

1.3   Turbulence in NWP models 

1.3.1   Characteristics of convection-permitting models (CPMs) 

     Precise forecasts of convective precipitation remain an ongoing challenge for numerical 

weather prediction (NWP) models. The increasing frequency of extreme precipitation events 

predicted with climate change (Meehl et al., 2000) emphasises the need for short-range, 

high-resolution forecasts of precipitation. Until only recently, operational NWP models have 

used horizontal grid-lengths larger than 10 km. Such grid-lengths are insufficient to resolve 

details of convection so these processes must be approximated using parametrisations. In 

recent years, improvements to computing power has enabled operational models to forecast 

with horizontal grid-lengths well below 5 km. For example, the Met Office operational 

forecast model (UKV) is a variable-resolution configuration of the Unified Model (MetUM) 

which uses a horizontal grid-length of 1.5 km (see Section 2.3). With models using grid-

lengths lower than ~ 4 km it is possible to switch off the parametrisation for convection, 

allowing the processes to occur explicitly (e.g. Tang et al., 2013). Numerical models in 
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which convective parametrisations are turned off to allow the unstable growth of convective 

clouds are referred to as convection-permitting models (CPMs; Clark et al., 2016).  

     Although CPMs are often referred to as cloud-resolving models (CRMs), there is 

uncertainty in the precise distinction between models that allow for explicit convective 

processes (CPMs) and those that can resolve the convective processes (CRMs). Depending 

on the spatial scales of convection and degree of organisation, a number of grid points will 

be required to resolve the basic structure of a convective cloud feature in a CPM. More 

generally in CPMs, a 3-D convective process may require at least 5-8 grid points in each 

direction to be considered resolved. This can be considered synonymous with the ‘effective’ 

model resolution described by Skamarock (2004), which was shown to be modified by sub-

grid mixing and diffusion processes. It is not clear for which grid-length simulated 

convective processes can be considered well resolved. A grid-length of 1 km may be 

sufficient to resolve the general structure a deep convective cloud with width and height 

scales of 10 km, while a 4-km grid-length may only be sufficient to resolve some features of 

large-scale, organised convection (such as squall lines; Weisman et al., 1997; Weisman et 

al., 2008). Lean et al. (2008) found that explicit clouds simulated in the MetUM using a 4-

km grid-length were “seriously” under-resolved compared to those using a 1-km grid-length. 

CPMs that forecast with grid-lengths that can only resolve some scales of convective 

processes are often referred to as performing simulations in the “grey zone” of convection; 

a significant challenge for current CPMs. It seems intuitive to assume that forecasts of 

convection improve as the model grid-length is decreased, as more scales of convective 

motion are resolved. However, researchers have widely reported a high degree of sensitivity 

of simulated convection to changes in grid-length, ranging from scales of 4 km down to 100 

m (Weisman et al., 1997; Petch and Gray, 2001; Petch et al., 2002; Adlerman and 

Droegemeier, 2002; Stein et al., 2015). As demonstrated by Hanley et al. (2015), the 

characteristics of explicit convection using grid-lengths below 1 km remain highly sensitive 
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to the configuration of parametrisations used to approximate the effects of sub-grid turbulent 

mixing. 

 

1.3.2   Turbulence in CPMs 

     As summarised by Bryan et al. (2003), the current computing power available to CPMs 

is not sufficient to simulate all scales of motion governed by the Navier-Stokes equation 

(1.1). To resolve all scales of motion down to the dissipative length scale of turbulent eddies 

(~ 1 mm) would require grid-lengths close to 0.1 mm. As a result, spatial filtering is applied 

to (1.1) (Lilly, 1967) such that physical processes occurring below those which can be 

resolved by the model are not included in the solution. This introduces a distinction between 

processes that are resolved by the model grid and those that occur below resolved scales, 

which require a form of parametrisation.  

     Terms in the filtered Navier-Stokes equation governing the effects of turbulence are often 

parametrised using the Smagorinsky-Lille sub-grid mixing scheme (Smagorinsky, 1963; 

Lilly, 1967) (See Section 2.3.2). Schemes such as this are required to approximate the effects 

of sub-grid mixing processes on the resolved components of the flow. Therefore, ‘sub-filter’ 

is more appropriate than ‘sub-grid’ when referring to such schemes, though ‘sub-grid’ 

remains widely used to imply ‘sub-filter’. As noted by Bryan et al. (2003) and Mason and 

Brown (1999), the Smagorinsky-Lille scheme is employed by most conventional large-eddy 

simulation (LES) models (as well as in the MetUM). LES aims to resolve the large-scale, 

energy-containing eddies (hence large-eddy simulation) while parametrising the downscale 

transfer of TKE to sub-grid scales. Correct implementation of a sub-grid turbulence 

parametrisation for LES therefore requires that the grid-length is much larger than the 

dissipative length scales of eddies but is considerably smaller than the scale of energy-

containing eddies, i.e. the grid-length is well within the inertial sub-range. 
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     Sub-grid turbulence schemes from LES are often adopted for use in CPMs. For example, 

the Smagorinsky-Lilly scheme is used in the operational UKV model and in higher-

resolution MetUM models used for research purposes. However, to be consistent with the 

assumptions required for their use in LES, CPMs must forecast with grid-lengths that are 

well within the inertial sub-range. As noted in Section 1.1.3, the largest scale of the inertial 

sub-range Ʌ0, is not clearly defined in deep clouds. Observed values can range from 0.4 – 4 

km and vary throughout individual clouds. Most operational forecast models use grid-

lengths larger than 1 km so it is unlikely that the inertial sub-range requirement is met for 

such models (as highlighted by Klemp and Wilhelmson (1978)). In CPM simulations of deep 

convective clouds, the mere existence of an inertial sub-range is not always demonstrated. 

In simulations of supercell thunderstorms using grid-lengths as low as 250 m, Droegemeier 

et al. (1994, 1997) found no clear evidence of an inertial sub-range, suggesting that even 

higher resolutions need to be investigated. Bryan et al. (2003) demonstrated that 250-m and 

125 m grid-length models resolve an inertial sub-range but conclude that CPMs used to 

simulate deep convection require grid-lengths of 100 m or smaller to satisfy the assumptions 

of turbulence schemes taken from LES models. 

     Smagorinsky-type sub-grid turbulence schemes are characterised by a length scale 𝜆0, 

referred to as the ‘mixing length’, which controls the degree of turbulent mixing. For a given 

model, this length scale can be prescribed by changing the mixing length constant 𝐶𝑠 – the 

ratio of the mixing length and the model grid-length (see Section 2.3.2). The value for 𝐶𝑠 is 

selected to change 𝜆0 (and therefore the eddy viscosity – see (2.14)) so that the effects of 

sub-grid mixing occur close to the grid-scale. A 𝐶𝑠 of 0.2 (Lilly, 1967) is widely used as a 

suitable value for this; Mason (1994) concluded that simulated eddies were well resolved 

when using a 𝐶𝑠 of 0.2. However, Canuto and Cheng (1997) have shown the value of 𝐶𝑠 is a 

function of physical processes that differ depending on the characteristics of the flow, 

suggesting that 𝐶𝑠 should be treated as a dynamical variable. Mason and Brown (1999) 
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conclude that the value of 𝐶𝑠 (and therefore 𝜆0) is more important than the grid-length in 

determining the scales that are resolved by the model. 

     Given the uncertainty associated with the correct implementation and suitability of using 

LES-based sub-grid schemes in CPMs, combined with the impact they have on the resolved 

scales of the model, it is perhaps unsurprising that the characteristics of convection in CPMs 

are found to be highly sensitive to the configuration of sub-grid turbulence schemes. Verrelle 

et al. (2014) applied 1-D (vertical) and 3-D configurations of a mixing-length-based, TKE 

closure scheme to a simulation of a deep convective cell. The 3-D configuration provided 

more mixing than the 1-D scheme, enhancing microphysical processes and leading to larger 

amounts of precipitation. Using the Smagorinsky-Lilly scheme in LES, Mason and Callen 

(1986) demonstrated that, when the grid-length is held constant, larger values of 𝐶𝑠 provided 

smooth flow features while using smaller values of 𝐶𝑠 resulted in simulations with noise at 

the grid-scale. Similar results were produced by Takemi and Rotunno (2003) in a 1-km grid-

length CPM simulation of a squall line. They found overly smoothed cloud features when 

𝐶𝑠 was large and grid-scale noise when 𝐶𝑠 was small, concluding that a value of 𝐶𝑠 = 0.25 −

0.3 was suitable for their simulation.  

     Hanley et al. (2015) tested the sensitivity of convective clouds simulated in 1500-m, 500-

m and 200-m grid-length configurations of the MetUM to 𝜆0. They found that as 𝜆0 is 

decreased, the number of small clouds with intense precipitation increased and convective 

initiation occurred earlier in each model. By changing the mixing length in the 200-m model, 

it was possible to produce similar cloud features to those in the 500-m model. This appears 

to reflect the effects of sub-grid turbulence schemes on model resolution noted earlier in this 

section. Further to this, Hanley et al. noted that when changes to the mixing length were 

made consistently across each model, some models were improved and others were 

worsened. For example, reducing the mixing length improved the timing of convective 

initiation in the UKV, but worsened the timing (relative to observations) in the 200-m model. 
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This suggested that there is no single value of 𝐶𝑠 that provided the most accurate simulation 

for each model.  

     Stein et al. (2015) used cloud characteristics observed with the Chilbolton Advanced 

Meteorological Radar (CAMRa) (see Section 2.1) to evaluate the morphology and evolution 

of convective clouds simulated in MetUM. This study used the modelling suites from Hanley 

et al. (2015) to run simulations using grid-lengths of 1500 m, 500 m, 200 m and 100 m for 

the same case studies. They concluded that the 200-m model using 𝜆0 = 40 m (𝐶𝑠 of 0.2) 

provided simulations that were most consistent with observations. The 100-m model 

produced convective clouds and updrafts that were too short-lived and narrow compared 

with observations. They found that shallower clouds were better represented using smaller 

values of 𝜆0, whereas deeper clouds were better represented when 𝜆0 values were large. This 

suggests that no fixed value of 𝜆0 is suitable to accurately represent all scales of convective 

clouds in a simulation, providing further evidence that 𝜆0 (or 𝐶𝑠) should be treated as a 

dynamical variable. 

 

1.3.3   Summary and discussion 

     This section has outlined the current limitations of CPMs and the ongoing requirement to 

parametrise the effects of sub-grid turbulent mixing. In LES, these parametrisations 

conventionally take the form of mixing-length-based TKE closure schemes – such as the 

Smagorinsky-Lilly scheme – which have been widely implemented into high-resolution 

CPMs. It is not often clear that the assumptions implicit in these schemes are valid for CPMs, 

especially for grid-lengths larger than 100 m, indicating the need for evaluation.  

     Previous studies have focused on identifying the sensitivity of simulated convection (e.g. 

cloud size, precipitation) to the sub-grid turbulence scheme configuration. Although such 

investigations are very useful to quantify the (varied) sensitivity of simulated convection and 

to identify the tuning necessary to improve a forecast, they can only provide limited insight 
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into the validity and overall suitability of the chosen turbulence scheme. Of primary 

importance is to demonstrate that a turbulence scheme is able to perform consistently with 

its design when adopted for use in a CPM. To accomplish this, turbulence diagnostics in 

clouds simulated in CPMs should be directly evaluated using observations of turbulence in 

real clouds – an investigation which has yet to be presented. 

     The following section (1.4) details methods to estimate the eddy dissipation rate ε, in 

convective clouds using a high-resolution Doppler weather radar capable of sampling within 

the inertial sub-range. Section 2.3.2 outlines the necessary steps to determine ε from the 

Smagorinsky-Lilly scheme used in the MetUM. Detailed comparisons of ε between model 

simulations and observations of mutual case studies (presented in Chapter 5) can be used to 

determine whether the scheme is dissipating realistic amounts of TKE, while providing 

insight into whether the resolved scales of the model are within the inertial sub-range; as 

assumed by the scheme. 

 

1.4   Turbulence retrieval with radar 

1.4.1   Velocity measurements with Doppler radar 

     When sampling a meteorological target (i.e. a hydrometeor) with a Doppler radar, 

comparison of the phase 𝜃 (in radians), of the returned signal from a pair of transmitted 

electromagnetic pulses (pulse-pair processing) can provide information about the component 

of the target’s velocity that is parallel to the radar beam axis (in the radial direction).  

     If a stationary target exists at a distance 𝑟, from the radar, transmitted pulses of 

wavelength, 𝜆 will travel a two-way distance (2𝑟) comprised of 2𝑟/𝜆 wavelengths. Since 

one wavelength is equivalent to 2𝜋 radians, the phase delay of the returned pulse (in radians) 

𝐷, can be given by:  

𝐷 = (
2𝑟

𝜆
) 2𝜋                                                           (1.14) 
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If the phase of the transmitted pulse is given by 𝜃0, and the phase of the received pulse by 

𝜃1: 

𝜃1 = 𝜃0 + 𝐷                                                            (1.15) 

This states that the transmitted and returned pulses are in phase if 𝐷 is a multiple of 2𝜋. 

When sampling a stationary target, the transmitted and received pulses remain in phase as 

they travel the same number of complete wavelengths. This is demonstrated by 

differentiating (1.15) with respect to time, 𝑡: 

𝑑𝜃

𝑑𝑡
=

4𝜋

𝜆

𝑑𝑟

𝑑𝑡
                                                            (1.16) 

Equation (1.16) states that there is no change in the phase of the transmitted and returned 

pulses if the radial velocity of the target (given by 
𝑑𝑟

𝑑𝑡
) is zero. If the target is moving with a 

component of velocity either towards or away from the radar, a phase shift will be detected. 

Pulse-pair processing involves comparing the phase of the returned signal from two 

transmitted pulses separated by a very small time difference (one divided by the pulse-

repetition frequency (PRF)). From this, the target (Doppler) velocity 𝑣, can be found from 

re-arranging (1.16): 

𝑣 =
𝜆

4𝜋

𝑑𝜃

𝑑𝑡
                                                               (1.17) 

     If only a single meteorological target is present within a radar resolution volume (the 

volume of atmosphere sampled by a single pulse, 𝑉6), 𝑣 can be measured from a single pair 

of pulses. When observing clouds and precipitation however, there are many targets within 

𝑉6, with different backscatter cross sections, and individual velocities that are variable in 

space and time. In these circumstances, the mean Doppler velocity 𝑣̅, is estimated as the 

mean of 𝑣 returned from many successive pairs of radar pulses. In this sense, 𝑣̅ represents a 

weighted average of point velocities within 𝑉6.  
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     When scanning through clouds with Doppler radar, fields of 𝑣̅ provide information 

regarding the features of the flow on scales larger than 𝑉6. Details of velocity scales within 

𝑉6 are not directly measurable but characteristics can be estimated by examining the 

variability of 𝑣 over many pulse-pairs. Doppler radars often use 32 or 64 pulse-pairs at a 

prescribed PRF to sample a 𝑉6. The time duration over which 𝑉6 is sampled can be calculated 

as the number of pulses divided by the PRF, commonly referred to as the dwell time. The 

variability in 𝑣 throughout the dwell time reflects the variability of target velocities within 

𝑉6. This is quantified in the variance of the Doppler velocity spectrum 𝜎𝑣
2 (m2 s−2). For the 

observations with CAMRa used in this thesis, 𝜎𝑣
2 is estimated by measuring the rate of 

decorrelation of 𝑣 in 32 adjacent pairs of pulses throughout the dwell time; this is explained 

in more detail in Section 2.1.2. The contribution to 𝜎𝑣
2 from turbulence has been shown to 

be independent of the sampling direction when viewed by radar in the horizontal plane (Lee 

and Thomas, 1989; Nastrom et al., 2004). This is important to note for scanning radar such 

as CAMRa which collects observations from a range of azimuths. 

 

1.4.2   Turbulence from Doppler velocity variance 

     The presence of turbulence on spatial scales within 𝑉6 will cause fluctuations in the 

velocity of meteorological targets that contribute to 𝜎𝑣
2. If the spatial scales of 𝑉6 are smaller 

than the largest scale of the inertial sub-range Ʌ0, then 𝜎𝑣
2 will include velocity variance from 

isotropic turbulence with a known energy spectrum (1.11). Under the assumptions of 

Kolmogorov (1941), this range of turbulence scales are characterised by a constant 

downscale transfer of TKE – the eddy dissipation rate, ε.  

     Similar theoretical approaches to infer ε from 𝜎𝑣
2 using the same key assumptions are 

presented by Frisch and Clifford (1974) and Labitt (1981). They derive the same 

relationships between ε and 𝜎𝑣
2 but differ slightly on the simplification of the final 

expression. This application follows the derivation of Frisch and Clifford (1974) to the point 
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where full expressions relating ε to 𝜎𝑣
2 are presented ((1.24a) and (1.24b)). The simplification 

of these is instead performed based on the specifications of CAMRa, to determine the final 

expression used in this thesis (1.25). 

     They begin with an expression for the spatial spectrum of velocities sampled by 𝑉6, Φ𝑉̅, 

taken from Srivastava and Atlas (1974): 

Φ𝑉̅(𝐤) = (2𝜋)6 Φ𝑉(𝐤) |𝐹𝑃(𝐤)|2                                          (1.18) 

Where Φ𝑉(𝐤) is the spectral density (in terms of spatial wavenumber, 𝐤) of point-velocities 

within 𝑉6, and 𝐹𝑃(𝐤) represents the Fourier transform of the 3-D beam pattern, 𝑃. In (1.18), 

reflectivity is assumed to be constant across 𝑉6 so that Φ𝑉̅ is determined purely by the 

weighting of 𝑃 on the spatial spectrum of point-velocities. Following these conventions, 𝜎𝑣
2 

is then described as the difference between the variance of point-velocities that exist within 

𝑉6 (𝜎𝑉
2), and the variance of these velocities once weighted by the beam pattern (𝜎𝑉̅

2): 

𝜎𝑣
2 = 𝜎𝑉

2 − 𝜎𝑉̅
2                                                           (1.19) 

     If the beam is suitably narrow, Φ𝑉(𝐤) is assumed to be approximately equal to the spatial 

spectrum of radial (Doppler) point-velocities within 𝑉6, Φ𝑣(𝐤). This assumption is 

especially appropriate for CAMRa given the extremely narrow one-way half-power beam 

width of 0.28° (see Section 2.1.1). Expressed in spectral terms, (1.19) is given as: 

𝜎𝑣
2 = ∫ Φ𝑣(𝐤)(1 − (2𝜋)6 |𝐹𝑃(𝐤)|2) 𝑑3𝐤                                   (1.20)  

where 𝑑3𝐤 represents an integral with respect to 𝐤 over the volume of 𝑉6. 

     The beam profile (including that of CAMRa) is assumed to be well approximated by a 3-

D Gaussian distribution (Doviak and Zrnic, 1984). Frisch and Clifford (1974) apply the 

following 3-D Gaussian beam pattern: 
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𝑃(𝑥, 𝑦, 𝑧) =
exp {− [

𝑦2 + 𝑧2

2𝛼2 +
𝑥2

2𝛽2]}

(2𝜋)
3
2𝛽𝛼2

                                       (1.21) 

Where 𝑥, 𝑦 and 𝑧 are directions parallel to, horizontally across, and vertically across the 

beam axis, respectively, and 𝛼 and 𝛽 refer to the standard deviation of the transverse and 

radial beam profile, respectively. The beam weighting function |𝐹𝑃(𝐤)|2, is then derived 

from (1.21) as: 

|𝐹𝑃(𝐤)|2 = (2𝜋)−6 exp{−[(𝑘2 − 𝑘𝑥
2)𝛼2 + 𝑘𝑥

2𝛽2]}                          (1.22) 

Where 𝑘 is the 3-D wavenumber with subscripts referring to directional wavenumbers. 

     Under the assumption the velocity fluctuations within 𝑉6 are due solely to isotropic, 

inertial sub-range turbulence, and turbulence is homogeneous, Φ𝑣(𝐤) is stated as (Panchev, 

1971): 

Φ𝑣(𝐤) =
𝐸(𝑘)

4𝜋𝑘2
(

𝑘𝑥
2

𝑘2
− 1)                                               (1.23) 

Where 𝐸(𝑘) is the energy spectrum of inertial sub-range turbulence (1.13) derived in Section 

1.1.3. By substituting (1.23) and (1.22) into (1.20), performing the integral, converting from 

a Cartesian to a polar co-ordinate system and re-arranging for ε: 

ε =
1

𝛼
[

𝜎𝑣
2

1.35𝐴 (1 −
𝛾2

15
−

𝛾4

105
)

]

3
2

 ;     where   𝛾2 = 1 − (
𝛽

𝛼
)

2

                  (1.24a) 

And: 

ε =
1

𝛽
[

𝜎𝑣
2

1.35𝐴 (1 +
𝜉2

15
+

𝜉4

105
)

]

3
2

 ;      where   𝜉2 = 1 − (
𝛼

𝛽
)

2

                (1.24b) 
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Where (1.24a) applies only when 𝛼 > 𝛽, and (1.24b) only when 𝛼 < 𝛽. The constant 𝐴 is 

the universal constant of isotropic turbulence stated in Frisch and Clifford (1974) as 0.47, 

however, a more recent and widely-used value of 1.6 is selected from Gossard and Strauch 

(1983). 

     For a radar with the specifications of CAMRa (Section 2.1.1), 𝛼 > 𝛽 at distances further 

than 17.9 km from the radar. Given that the cloud observations used for turbulence retrieval 

in this thesis were almost always collected between 30 and 150 km from the radar (see 

Section 2.2.4), only (1.24a) is required. As an additional simplification, 
𝛾4

105
 remains less than 

15% of 
𝛾2

15
 between 30 and 150 km range, so 

𝛾4

105
 is omitted from (1.24a). For conditions 

typically observed (a Doppler variance of 𝜎𝑣
2 = 4 m2 s−2 observed at 60 km range), the 

omission of the 𝛾4 term in (1.24a) results in ~ 1% difference in ε, suggesting the effect on 

the retrieval is negligible. 

     Although the high resolution of CAMRa means that variance from inertial sub-range 

turbulence will be included in 𝜎𝑣
2 (see Section 2.1.2), this is not the only process that can 

contribute to Doppler variance. Values of 𝜎𝑣
2 can have contributions from radial wind shear 

(Atlas et al., 1969; Battan and Theiss, 1973), the distribution of target fall-velocities (Atlas 

et al., 1973), antenna rotation (Doviak and Zrnic, 1984), hydrometeor oscillations (Oguchi 

1983; Zrnic and Doviak, 1989), beam broadening (Nathanson, 1969) and the effects of 

hydrometeor rotation (Meyer and Jank, 1989), break-up and coalescence. A thorough 

investigation into the removal of variance contributions to 𝜎𝑣
2 from these mechanisms is 

presented and applied to CAMRa in Chapter 3. By assuming each contribution to 𝜎𝑣
2 is 

statistically independent (Doviak and Zrnic, 1984), 𝜎𝑣
2 is described as a sum of each variance 

contribution (3.1) so that variances from mechanisms aside from turbulence can be 

subtracted from 𝜎𝑣
2, leaving the turbulent contribution 𝜎t

2, to be converted to ε using: 
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ε =
1

𝛼
[

𝜎t
2

1.35𝐴 (1 −
𝛾2

15
)

]

3
2

 ;     where   𝛾2 = 1 − (
𝛽

𝛼
)

2

                         (1.25) 

     In summary, the variance of the Doppler velocity spectrum due to turbulence can be 

related to the dissipation rate of turbulent kinetic energy using the theoretical approach 

described in this section. However, this approach is applicable only under a set of 

assumptions (summarised by Labitt, 1981). The key assumptions are now listed and 

discussed in the context of CAMRa. These include that: 

1) Reflectivity is uniform throughout 𝑉6. 

2) Turbulence is homogeneous within 𝑉6.  

3) The largest scale of 𝑉6 is smaller than Ʌ0. 

4) The effect of turbulence is reflected in the motions of hydrometeors within 𝑉6. 

Assumptions (1), (2) and (3) become increasingly likely when 𝑉6 is small and so are 

considered especially safe assumptions for a radar with such a narrow beam as CAMRa. As 

highlighted in Labitt (1981), the horizontal motions of hydrometeors are expected to reflect 

the effects of turbulence more so than the vertical motions. By scanning with CAMRa at low 

elevation angles (less than 15°; see Section 2.2.1), horizontal velocity fluctuations will 

dominate the radial velocity spectrum, so assumption (4) is considered to be suitable for this 

application. 

 

1.4.3   Benefits and evaluation of the Doppler variance method 

     Observations of turbulence in the atmospheric boundary layer can be collected using a 

variety of in situ or remote measurements aside from Doppler radar. Turbulence probes can 

be attached to aircraft to analyse the fluctuations in wind along the flight vector (e.g. 

MacCready, 1962; Grandia and Marwitz, 1975; Sand, 1976; Meischner et al., 2001). Similar 

measurements can be collected by turbulence probes attached to a radiosonde in atmospheric 
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ascent experiments (e.g. Harrison and Hogan, 2006; Martini et al., 2017). Fluctuations in 

refractive index caused by turbulence can be measured using scintillometers (e.g. Chonacky 

and Deuel, 1988).  

     In situ methods using aircraft and radiosonde ascents are of particular benefit when 

collecting simultaneous observations of many small-scale microphysical and 

thermodynamic processes alongside turbulence. However, such methods can only collect 

time-series observations from single points in space. To estimate ε using these methods, the 

distance over which the fluctuating wind is measured (often referred to as the analysis 

length) must be smaller than Ʌ0, limiting the spatial extent of data collection. In contrast to 

in situ methods, Doppler radar is used to estimate ε from velocity variance on spatial scales 

within 𝑉6. As long as the largest dimension of 𝑉6 is less than Ʌ0, ε can be retrieved from any 

𝑉6 with a reliable value of 𝜎𝑣
2 (i.e. suitably high signal-to-noise ratio). This means that 

scanning with Doppler radar can retrieve turbulence across large swathes of atmosphere over 

short timescales. Simultaneous measurements of microphysical and thermodynamic 

processes are, however, not practically attainable with Doppler radar without the use of other 

instruments. Therefore, in isolation, the Doppler variance method is not currently suited to 

the investigation of turbulence in relation to cloud processes on very small scales (e.g. 

microphysics and entrainment) but is of particular benefit to studies (such as this thesis) 

aiming to investigate turbulence in the context of larger scale cloud processes (e.g. cloud 

dimensions and updraft characteristics) for model evaluation.  

     The approach to retrieving ε with Doppler radar requires numerous assumptions 

regarding the properties of turbulence, the motions of scatterers and the relationship between 

𝑉6 and the range of length scales associated with the isotropic inertial sub-range. Further to 

this, details of turbulent motion are not measured directly; the accuracy by which turbulent 

velocity variance (and therefore ε) is inferred from the Doppler spectrum depends on the 

accurate removal of variance from all other contributors. Given the potential limitations to 
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accuracy, validation of ε from the Doppler variance method has previously been required 

through direct comparison with other methods.  

     Comparison of ε from Doppler radar with in situ measurements is particularly difficult. 

For example, simultaneous measurements of ε by aircraft and Doppler radar cannot be made 

without returning a very strong echo from the aircraft in the sampled 𝑉6. Even so, such 

verification experiments have been attempted by Labitt (1981) and Meischner et al. (2001). 

Labitt (1981) made measurements of ε in a severe storm with a ground-based S-band 

Doppler radar using the Doppler variance approach and co-ordinated these with aircraft 

measurements. By scanning across the flight path and ignoring data where the aircraft was 

sampled in 𝑉6, they found strong agreement between radar and aircraft ε indicated by a 

correlation coefficient of 0.81. Meischner et al. (2001) performed a more accurate 

comparison of ε estimated with C-band Doppler radar and aircraft measurements in 

thunderstorm anvils. There were time differences of up to 5 minutes between aircraft and 

radar measurements of particular cloud regions.  By assuming that the characteristics of the 

cloud did not change during these time intervals, but were simply advected by the mean 

flow, the location of the aircraft measurements were moved to the location predicted by the 

mean horizontal velocity measured in the time between radar and aircraft measurements. 

Although they identified significant differences in ε between aircraft and radar over small 

distances, this was attributed to the uncertainty of simply advecting aircraft measurements. 

They found values of ε sampled by radar broadly agreed with those measured by aircraft, 

albeit with a general over-estimation of ε (and Doppler variance) using the radar method; 

median values were larger by a factor of 1 – 4 when observed with radar. However, this 

study employed a radar with a 1° one-way half-power beam-width and involved cloud 

observations out to typical distances of 80 km. The largest dimension of 𝑉6 at 80 km range 

is 1400 m and no estimation of Ʌ0 is presented for comparison. Although steps have been 

taken to filter out variance from shear on scales outside 𝑉6, it appears at least possible that 
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the over-estimation of ε results from the inclusion of variance in 𝑉6 from turbulent eddies on 

scales outside the inertial sub-range. 

     Values of ε retrieved under the Doppler variance method have also been tested against 

other Doppler radar techniques, namely, the spatial spectra method. This method entails 

taking the Fourier transform of a dataset of Doppler velocity measurements sampled along 

a single ray. If this dataset of 𝑉6 comprises an analysis length that is within the inertial sub-

range, the Fourier transform can be approximated by the 𝑘−
5

3 spectrum using the 

Kolmogorov assumption, and ε can be estimated. The spatial spectra method is synonymous 

with in situ measurements in that it involves analysing the spectrum of velocity fluctuations 

in one dimension along a fixed distance. However, Doppler velocity observations along a 

ray are collected near-instantaneously. The benefit of this, as highlighted by Brewster and 

Zrnic (1986), is that the assumption of Taylor’s frozen turbulence (that turbulence is 

advected only by the mean flow) necessary for in situ measurements, is not required.  

     Brewster and Zrnic (1986) compared estimates of ε in a severe thunderstorm from the 

spatial spectra and Doppler variance methods. Based on the 10-km scale of the main updraft 

they initially estimated Ʌ0 to be about 5 km. The spatial spectra method was applied to 32 

Doppler velocities collected along a ray, separated by 150 m, constituting an analysis length 

of 4.8 km. They found good agreement with the 𝑘−
5

3 spectrum close to the radar, concluding 

that the estimates of ε were reliable. Values of ε were found to be largely consistent between 

the two methods. Median values of ε estimated from Doppler variance were approximately 

10% larger than those estimated from spatial spectra which was attributed to small variance 

contributors to 𝜎𝑣
2 that were neglected; such as beam broadening and hydrometeor 

oscillations (see Section 3.2). The difference in ε between the two methods increased with 

range from the radar. This was attributed to the filtering of mean Doppler velocities by 𝑉6; 

which has dimensions that increase with range. They conclude, given that the filtering by 𝑉6 

(i.e. the weighting of the beam pattern) is implicit in the Doppler variance approach, that it 
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is increasingly better to use ε from Doppler variance the further from the radar observations 

are collected. Bouniol et al. (2003) performed a similar evaluation of the Doppler variance 

method using the spatial spectra method with a vertically-pointing 95 GHz Doppler cloud 

radar. The spectrum found by applying a Fourier transform to a sample of 30 Doppler 

velocities along a ray was again well approximated by the  𝑘−
5

3 spectrum, giving credibility 

to retrieved ε. Point-for-point comparison with ε from Doppler variance showed a high level 

of agreement, especially for larger values. They conclude that the Doppler variance provides 

a reliable estimate of ε. 

     No such validation methods have been applied directly to retrievals of ε with CAMRa as 

part of this thesis (although the sensitivity of retrievals is tested – see Section 3.5.1). 

However, the Doppler variance method is widely used, and has been shown to give very 

reliable estimates of ε when compared with in situ and spatial spectra methods, as discussed 

in this section. Of key importance is that the assumptions made in the theoretical approach 

apply well to CAMRa; which was discussed at the end of Section 1.4.2. The suitability of 

CAMRa to retrieve ε is examined in more detail in relation to the dataset of radar 

observations used in this thesis in Section 2.1.2.  

 

1.5   Characteristics of ε in clouds 

1.5.1   Wider context for ε values 

     Conventions for the severity of atmospheric turbulence are desired to establish context 

for the discussion of ε retrieved in observed clouds for this thesis. Generally, and particularly 

in aviation, turbulence is classified into three categories: “light”, “moderate” and “severe”. 

However, these are often defined from fluctuations in aircraft velocity resulting from flight 

through turbulent air (e.g. Federal Aviation Administration, 2012). The classification of 

turbulent intensity by this method is subjective in that these fluctuations are dependent on 
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the characteristics of the aircraft. The severity of turbulence expressed purely in terms of ε 

is not clearly defined in the literature. To address this, Sharman et al., (2014) collected over 

137 million values of ε sampled at cruising altitude by ~ 200 commercial aircraft and 

analysed these together with the subjective reports of turbulent intensity. They established 

that ε corresponding to light, moderate and severe turbulence had median values of 10−6, 

10−2 and 10−1 m2 s−3, respectively. These classifications were made predominantly from 

clear-air measurements of ε, however, they are adopted for this thesis to provide context for 

the severity of ε values in convective clouds. By loosely applying this classification to clouds 

observed with CAMRa, values of ε are considered to represent weak turbulence when ε <

10−2 m2 s−3 and strong turbulence when ε > 10−1 m2 s−3.  

 

1.5.2   Values of ε in clouds 

     Values of ε can vary by many orders of magnitude in different cloud types, but also within 

individual clouds. For example, Bouniol et al. (2003) used a 94 GHz cloud radar to retrieve 

values ranging from 10−8 − 10−4 m2 s−3 in cirrus clouds and 10−4 − 10−2 m2 s−3 in 

stratocumulus clouds. Kollias et al., (2001) measured, again with a 94 GHz cloud radar, 

values of 10−3 −  10−2 m2 s−3 in fair weather cumulus clouds. Values of ε in 

cumulonimbus clouds were found to range from as low as 10−6 m2 s−3 (aircraft 

measurements) to 0.05 m2 s−3 (Doppler radar measurements) in anvil regions by Meischner 

et al. (2001). Sand (1976) found values of ε to vary from 0.006 − 0.4 m2 s−3 in hailstorms 

observed by aircraft. Using Doppler radar, Frisch and Strauch (1976) found ε values to range 

from 0.003 − 0.06 m2 s−3 in a Colorado thunderstorm (revised using an updated 𝐴 = 1.6 

instead of 𝐴 = 0.53), Knupp and Cotton (1982) found values as large as 0.15 m2 s−3 in a 

quasi-steady mountain thunderstorm, and Istok and Doviak (1986) found values as large as 

3 m2 s−3 in an Oklahoma supercell. In this particular supercell storm, 50% of ε values 

exceeded 0.1 m2 s−3, indicating that strong turbulence was widely distributed. 
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     The lowest values of ε that can be sampled in clouds depends on the sensitivity of the 

instrumentation. This is highlighted in particular by Meischner et al. (2001) who compared 

aircraft and radar measurements of ε in individual storm anvils. Values of ε estimated by 

aircraft were as low as 10−6 m2 s−3, while co-ordinated radar estimates fell no lower that 

~ 10−3 m2 s−3, leading to the conclusion that Doppler weather radar is suitable for 

estimating ε above a threshold value. For CAMRa (see Section 2.1.2), the lowest ε that can 

be sampled at the typical 60-km range of observations is also ~ 10−3 m2 s−3. The similarity 

in this value with Meischner et al. (2001) appears to be that 32 pulse-pairs were used in both 

cases to sample each 𝑉6. In Section 6.2.3, the sensitivity of CAMRa to small values of ε is 

shown to improve by increasing the number of pulse-pairs. Chapman and Browning (2001) 

used CAMRa to retrieve values of ε closer to 10−4 m2 s−3 by sampling with 128 pulse-

pairs. 

 

1.5.3   Features of ε in relation to cloud characteristics 

     Mature cumulonimbus clouds can reach heights that can exceed typical cruising altitudes 

of commercial flight aircraft (~ 12 km). Owing to the danger posed to aviation by severe 

turbulence, deep convective clouds have provided the focus for many previous turbulence 

retrieval studies. These often take the form of detailed examinations of the turbulent 

properties of individual clouds in relation to broad cloud characteristics. In this thesis, the 

retrieval of ε is performed in precipitating convective clouds over the south of England to 

assess statistics of ε for model evaluation. Although this focus differs from the majority of 

previous applications, it is the relationships between ε and the characteristics of deep 

convective clouds that are appropriate for discussion in this section.  

     The production of TKE in convective clouds is primarily from the shear and buoyancy 

associated with vertical motion. It could therefore be expected that the largest values of ε in 

the cloud are located within updrafts. For individual cloud cases, the largest values of ε have 
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been identified within the region of the main updraft (Sand, 1976; Istok and Doviak, 1986; 

Kollias et al., 2001; Meischner et al., 2001) and around the edges of updrafts (Grandia and 

Marwitz, 1975). Strong turbulence was also indicated by high Doppler variance around the 

periphery of updrafts by Donaldson and Wexler (1969). The highest values of ε have also 

been found between the main updraft and downdraft (Frisch and Strauch, 1976; Knupp and 

Cotton, 1982). Both Knupp and Cotton (1982) and Istok and Doviak (1986) note that strong 

turbulence exists immediately downstream of the main updraft. Measurements of ε using 

aircraft in flights directly through updrafts have shown that only weak turbulence can exist 

in close proximity to vertical velocity maxima (Grandia and Marwitz, 1975). It is clear from 

these independent studies that the strongest turbulence in convective clouds is often 

associated with updrafts. However, the specific location of ε maxima can vary from within 

and around the edges of updrafts to regions immediately downstream of the updraft core. 

 

 

 

 

 

      

 

 

 

 

 

 

Table 1.1:   Comparison of maxima in ε and updraft velocity for a selection of independent 

studies. Values of ε from Grandia and Marwitz (1975) and Sand (1976) have been converted 

to m2 s−3 units and the value from Frisch and Strauch (1976) has been revised using an 

updated value for universal constant of isotropic turbulence 𝐴, of 1.6 instead of 0.53. 

Study Maxima in updraft 

velocity (𝐦 𝐬−𝟏) 

Maxima in 𝛆 

(𝐦𝟐 𝐬−𝟑) 

Istok and Doviak (1986) 50 3 

Knupp and Cotton (1982) 25 0.15 

Meischner et al. (2001) 17 0.1 

Sand (1976) 14 0.3 

Frisch and Strauch (1976) 12 0.06 

Grandia and Marwitz (1975) 7 0.006 

Kollias et al. (2001) 6 0.004 
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     As suggested by (1.7), the TKE in a cloud increases through the buoyancy term when the 

vertical velocity is positive. Values of ε could therefore be expected to increase with updraft 

strength. For the studies discussed so far in this section that report ε values in updrafts, Table 

1.1 lists the maxima in ε together with the maximum updraft velocity. Values of ε from Sand 

(1976) and Grandia and Marwitz (1975) have been converted to m2 s−3. Aside from Sand 

(1976), Table 1.1 shows a consistent increase in reported ε maxima with updraft strength. 

However, this appears to be nonlinear; an approximate factor-of-10 increase in updraft 

velocity corresponds to an increase in ε by ~ 103.  

     Further suggested by (1.7) is the production of TKE from gradients in velocity. The 

largest value of ε found by Frisch and Strauch (1976) was located in a region of strong 

horizontal shear in the vertical velocity (0.03 s−1). Istok and Doviak (1986) note large 

velocity gradients towards the upper levels of the cloud which are spatially correlated with 

large ε, with lower values of ε found where shear is weaker. Knupp and Cotton (1982) 

attributed the lower values of ε found later in the storm life-cycle to reduced shear in the 

magnitude of horizontal and vertical shear in the Doppler velocity. A loose association 

between ε and the magnitude of the vertical shear of the Doppler velocity was also identified 

by Donaldson and Wexler (1969). 

     There are consistent indications in these individual cloud case studies that the intensity 

of turbulence is not distributed linearly in the vertical. In measurements with aircraft, the 

intensity of turbulence at the base of clouds has been shown to be weak (Sand, 1976), while 

turbulence has been shown to increase with height from the cloud base to the level of free 

convection by Grandia and Marwitz (1975). They suggested that this resulted from the 

interaction between the updraft and entrained environmental air, noting that turbulence 

decreased again above the level of free convection. With Doppler radar, Knupp and Cotton 

(1982) found weak turbulence in the lower levels of the updraft which increased with height. 

Donaldson and Wexler (1969) found an increase in values of Doppler variance within the 
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cloud, implying a vertical gradient in turbulent intensity. Larger values of ε have also been 

identified in the upper regions of the cloud by Frisch and Strauch (1976). Istok and Doviak 

(1986) found that the spatial coverage of large ε also increases with height in the cloud. 

     The advection of turbulence throughout the cloud has been speculated to affect its spatial 

distribution by Istok and Doviak (1986). They noticed that regions of strong shear over small 

scales (less than 3 km) were not always accompanied by high ε. This was also observed in 

some cases by Knupp and Cotton (1982). Istok and Doviak (1986) speculated that some 

turbulent eddies produced by shear will not yet have attained the scales within 𝑉6 that 

contribute to ε, i.e. the Richardson cascade has not fully developed. In other cases, regions 

of high dissipation could be advected away from the region where turbulence was produced. 

This could serve to explain why the location immediately downstream of updrafts has been 

reported to include strong turbulence; turbulent eddies generated by the updraft are advected 

downwind before reaching dissipation length scales. 

 

1.5.4   Summary and discussion 

     In summary, measurements of turbulence in convective clouds by aircraft and Doppler 

radar have revealed that ε can vary by many orders of magnitude in individual clouds. 

Turbulence is strongly associated with regions of shear and buoyancy, as expected from 

(1.7). The strongest turbulence is often found within close proximity of updrafts and appears 

to scale in intensity with the updraft strength (Table 1.1). There is a consistent trend across 

many of these studies that the intensity of turbulence increases with height in the cloud. The 

precise location of high ε does not always correspond spatially with production mechanisms 

owing to the combination of cascade timescales and eddy advection. 

     Broad, qualitative relationships between ε and cloud characteristics have been identified 

in individual case studies in the literature. The degree to which these findings can be 

compared and analysed together is substantially limited by the diversity of instruments, radar 
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specifications and methods used to estimate ε in clouds. The current state of research is 

therefore not sufficient to provide the quantitative relationships between ε and cloud 

characteristics required to reliably evaluate the use of turbulence parametrisations in CPMs. 

New research is required to derive quantified relationships (through statistical assessment) 

between ε and observed cloud characteristics such as shear, updraft strength, updraft size, 

cloud region and cloud depth. A reliable statistical analysis will require measurements of ε 

to be performed consistently across many cloud cases. As discussed in Section 1.4, scanning 

Doppler weather radar is well suited to this application. If it can be demonstrated that the 

assumptions required for accurate turbulence retrieval are valid given the radar 

specifications, such instruments can be used to retrieve ε across large swathes of atmosphere 

over short timescales. Consistent retrieval of ε over many radar scans requires the 

development of a comprehensive turbulence retrieval algorithm to estimate ε from Doppler 

variance under a wide range of conditions. The statistical features of ε can then be reliably 

examined across many cloud cases. Such an approach will provide deeper insights into the 

characteristics of turbulence in convective clouds while providing turbulence statistics with 

a suitable level of detail and reliability to test against those identified in CPMs. 

 

1.6   Thesis outline 

     This thesis aims to address the current short-comings in observations of turbulence in 

convective clouds which, until now, have been insufficient to conduct a thorough evaluation 

of the parametrisation of turbulence in CPMs. A comprehensive turbulence retrieval 

algorithm is developed and applied to radar observations of convective clouds. These were 

collected during the Dynamical and Microphysical Evolution of Convective Storms 

(DYMECS) project, using the Chilbolton Advanced Meteorological Radar (CAMRa). By 

examining many cloud cases together, a detailed statistical assessment of turbulence in 

convective clouds is presented for two contrasting case studies. Statistical relationships are 
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compared with equivalent turbulence statistics from high-resolution simulations of observed 

case days, performed in the Met Office Unified Model (MetUM) to evaluate the 

Smagorinsky-Lilly sub-grid turbulence scheme.  

     This thesis is organised as follows: Chapter 2 provides descriptions of CAMRa and its 

suitability to turbulence retrieval, the DYMECS radar observations used for analysis, and 

the simulations performed in the MetUM. Chapter 3 details a comprehensive approach to 

the retrieval of ε using Doppler weather radar; ultimately discussed in the context of 

CAMRa. Chapter 4 presents retrievals of ε for cloud cases observed with CAMRa in two 

contrasting case days of observations. A thorough statistical assessment of the relationships 

between ε and cloud characteristics is presented. In Chapter 5, details of the MetUM 

simulations of the observed cases are presented. A statistical assessment of ε in simulated 

clouds (using methods consistent with those used in observations) is performed to evaluate 

the parametrisation of turbulence using the Smagorinsky-Lilly sub-grid scheme. Lastly, the 

results and conclusions are summarised and future work is proposed in Chapter 6.  
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Chapter 2 

Data and Methods 

2.1   Observing turbulence with CAMRa 

     This section details the specifications of the Chilbolton Advanced Meteorological Radar 

(CAMRa), which was used to collect the observations analysed in this thesis (Section 2.1.1). 

This is followed by a description of how the Doppler velocity spectrum is estimated by 

CAMRa, and why this can be used to quantify characteristics of turbulence in clouds 

(Section 2.1.2). 

 

2.1.1   CAMRa overview and specifications 

     Radar observations used in this project were collected with CAMRa, the 3 GHz (S-Band) 

weather radar located at the Chilbolton Observatory in Hampshire, UK (see Figure 2.1). 

CAMRa has dual-polarisation capability allowing the alternate transmission of horizontally 

and vertically polarised pulses, receiving co-polar and cross-polar signals simultaneously. It 

is also Doppler-capable, permitting measurements of the radial velocity component of a wind 

field. The sensitivity of CAMRa is -37 dBZ at 1 km range, and the far-field begins at a range 

of 12.5 km. The large diameter antenna (25 m) makes CAMRa the largest fully steerable 

meteorological radar in the world. The antenna can be used to scan with maximum rotation 

speeds of 3° s−1 in the azimuthal direction, and 1° s−1 in elevation. Such a large antenna 

permits very high-resolution measurements; the one-way half-power beam width of 0.28° 

provides transverse (and elevation) resolutions of 100 m at 20 km range, and 500 m at 100 

km range. A detailed overview of the radar hardware and signal processing scheme for 
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CAMRa is summarised in Goddard et al. (1994), and a summary of radar specifications is 

provided in Table 2.1. 

 

 

 

Figure 2.1:   The 25-m antenna of the 3 GHz Chilbolton Advanced Meteorological Radar 

(CAMRa) located at the Chilbolton Observatory, Hampshire, UK. 
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Table 2.1:   Technical specifications of CAMRa. 

 

2.1.2   Measurements of turbulence from CAMRa 

     To enable the estimation of turbulent intensity (expressed as the eddy dissipation rate, ε), 

the Doppler velocity spectrum variance 𝜎𝑣
2, must include velocity variances from turbulent 

eddies of spatial scales within the inertial sub-range. As detailed in Section 1.1.3, the inertial 

sub-range has a characteristic largest scale Λ0, whereby turbulence on smaller scales than 

Λ0 is isotropic and transfers energy downscale to dissipation scales. The spectral form of 

turbulent energy associated with eddy wavelengths larger than Λ0 is not known. Therefore, 

variance contributions to 𝜎𝑣
2 from turbulence that is outside the inertial sub-range of scales 

Specification Value 

Frequency 3.0765 GHz 

Peak power 600 kW 

Pulse repetition frequency 610 Hz 

Pulse duration 0.5 μs 

Wavelength 9.75 cm 

Antenna diameter 25 m 

Half-power beam width 0.28° 

Range resolution 75 m 

Maximum unambiguous velocity 14.9 m s−1 

Maximum unambiguous range  246 km 
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cannot be converted to ε. Such variances are removed from 𝜎𝑣
2 as a correction for shear, 𝜎𝑠

2. 

As long as the largest dimension of the radar resolution volume 𝑉6, is less than Λ0, 𝜎𝑣
2 will 

contain velocity variance from inertial sub-range turbulence, 𝜎𝑡
2 (Frisch and Clifford, 1974), 

which can then be isolated from 𝜎𝑣
2 and converted to ε (see Chapter 3). 

     The suitability of CAMRa for the retrieval of turbulence can be determined by comparing 

Λ0 to the spatial dimensions of 𝑉6. The range resolution of CAMRa (75 m, see Table 2.1) is 

constant owing to the fixed pulse length; however, the transverse dimension increases with 

range due to the angular beam-width of 0.28°. Section 2.2.1 summarises the scanning 

strategy used to collect the dataset of observations with CAMRa, and Section 2.2.4 details 

the subset of these observations selected as cases for turbulence retrieval. As stated in 

Section 2.2.4, clouds were rarely closer than 30 km from CAMRa, or at ranges further than 

150 km. Between 30 – 150 km, the beam broadens from 147 - 733 m. In Section 3.4, Ʌ0 is 

estimated to be ~ 1 km for the cloud observations selected for turbulence retrieval, 

suggesting that Doppler velocity spectra from CAMRa will almost always include details of 

inertial sub-range turbulence, and can be used to estimate ε. 

     As described in Section 1.1.4, turbulence, expressed as ε, can be derived from the Doppler 

velocity spectrum width, 𝜎𝑣. Although 𝜎𝑣 represents the standard deviation in target 

velocities within 𝑉6, the individual velocities of hydrometeors within 𝑉6 are not measured 

directly. In the case of CAMRa, 𝜎𝑣 is estimated through the analysis of the phase of the radar 

echo over successive radar pulses used to sample 𝑉6. For the observations selected for 

turbulence retrieval, 32 pairs of pulses (64 individual pulses) were used to sample each 𝑉6 at 

a PRF of 610 Hz (see Table 2.1), which corresponds to an integration time of 0.1 s for each 

𝑉6. 

     Methods to estimate 𝜎𝑣 for CAMRa (Goddard et al., 1994), involve recording the 

amplitude 𝐴, and phase 𝜃, of each pulse. Using this information, 𝜎𝑣 is estimated through the 
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rate of decorrelation of 𝜃 during the period of sampling. Assuming the Doppler spectrum is 

Gaussian, the correlation 𝜌, between pairs of pulses tends to: 

𝜌(𝑡) = exp [−8 (
𝜎𝑣𝜋𝑡

𝜆
)

2

]                                                    (2.1) 

In (2.1), 𝜆 is the radar wavelength, and 𝜌(𝑡) is the correlation coefficient between 𝑒𝑖𝜃 of a 

given radar pulse, and that of a pulse after time, 𝑡. Pulses decorrelate with exp (−𝑡2), and at 

a rate that increases with 𝜎𝑣
2. Re-arranging (2.1) provides the expression that is used to 

determine 𝜎𝑣. 

𝜎𝑣 =
𝜆

2√2𝜋𝑡 
[− ln(𝜌)]1 2⁄                                                     (2.2) 

     The range of 𝜎𝑣 observable for a given radar is determined by the maximum unambiguous 

velocity interval (Nyquist velocity). Keeler and Passarelli (1990) state that reliable 

measurements of the Doppler spectrum width can only be made between 0.02 − 0.2 of the 

Nyquist interval. CAMRa has a Nyquist interval of 30 m s−1, so 𝜎𝑣 can only be reliably 

observed between 0.6 − 6 m s−1, corresponding to a range in Doppler spectrum variance 

𝜎𝑣
2, of 0.36 –  36 m2 s−2. In the extreme case where this variance is due only to inertial sub-

range turbulence (𝜎𝑣
2 =  𝜎𝑡

2), such a range in 𝜎𝑡
2, observed at a range of 60 km (the typical 

range of observed clouds), would correspond to a maximum detectable range in ε of 10−3 −

1 m2 s−3 (using (1.25)). Only in the most turbulent of the observed clouds are values of 𝜎𝑣 

close to 6 m s−1. In these cases, however, there is no evidence that values of 𝜎𝑣 would be 

larger than 6 m s−1 if observed using a larger Nyquist interval (widespread areas of 𝜎𝑣 equal 

to 6 m s−1 would suggest values were capped). Although an observable limit to 𝜎𝑣 exists, it 

is not suppressing values of ε that may otherwise be larger than 1 m2 s−3. For turbulence 

retrieval in clouds that are significantly more turbulent than those observed in DYMECS, 
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using a radar with the Nyquist velocity of CAMRa may not be suitable to detect the full 

range of ε in the cloud.  

     The Nyquist interval (given by ±
1

4
𝜆 ∙ PRF) can be extended by increasing the PRF. 

However, by doing this, both the upper and lower limits to reliable values of 𝜎𝑣 increase. 

For example, doubling the PRF of CAMRa from 610 Hz to 1220 Hz would double the 

Nyquist interval to 60 m s−1, and alter the range of reliable 𝜎𝑣 to 1.2 − 12 m s−1. This 

suggests that an increased PRF would have to be accompanied by other methods to improve 

reliable detection of small 𝜎𝑣, e.g. increasing the number of pulses (see Section 6.2.3). Large 

increases to the PRF would also decrease the maximum unambiguous range. Doubling the 

PRF of CAMRa would halve the maximum unambiguous range to only 123 km. With high-

resolution measurements desirable for turbulence retrieval (improved chance to sample 

within the inertial sub-range), this is not a significant disadvantage when collecting 

observations. Another method includes using two staggered PRFs with a small separation in 

the time between pulses, as outlined in Section 7.4.3 of Doviak and Zrnic (1984). No 

experiments have been performed with CAMRa to extend the Nyquist interval for this thesis. 

However, due to the confidence that CAMRa is reliably sampling the range of 𝜎𝑣 (with the 

exception of 𝜎𝑣 < 0.6 m s−1) within the observed clouds, these should not be essential. 

 

2.2   Data 

2.2.1   Data collection in DYMECS 

     The radar observations used for turbulence retrieval were collected during the Dynamical 

and Microphysical Evolution of Convective Storms (DYMECS) project (Stein et al., 2014; 

Stein et al., 2015). The primary objective of DYMECS is to apply a statistical approach to 

investigate the dynamics, morphology and evolution of convective storms over southern 
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England, both in radar observations and in high-resolution Met Office Unified Model 

(MetUM) simulations.  

     During DYMECS, an automated scanning procedure was used to obtain radar 

observations with CAMRa of hundreds of convective storms in 2011-2012. Initially, this 

involved running an algorithm to detect and track rainfall features over southern England, 

based on a threshold rainfall rate of 4 mm hr−1. These were identified in radar fields of 

rainfall provided every 5 minutes by the UK Met Office network of C-band radars (Harrison 

et al., 2011). This algorithm recorded details of the detected rainfall features, collecting 

information regarding storm size, velocity vectors, rainfall intensity and location every 5 

minutes. A second “scan scheduler” algorithm was then applied; this used rainfall intensity 

and size information to prioritise storms for scanning with CAMRa. Sets of four Range-

Height Indicator (RHI) scans (elevation scanning at fixed azimuth yielding vertical cross-

sections through the atmosphere) were performed for the three most intense storms 

diagnosed by the tracking software. This was achieved by performing RHIs along azimuths 

that bisected rainfall rate maxima, taking into account the advection of storms between the 

times of detection and scanning. This was followed by volume scanning using a sequence of 

Plan-Position Indicator (PPI) scans (azimuthal scanning at fixed elevation) at a variety of 

elevations separated by 0.5°. This procedure was carried out on 40 non-consecutive days 

between July 2011 and August 2012, building a dataset of over 1000 convective storm 

observations. RHIs were collected with an elevation scanning speed of 0.4° s−1, with an 

azimuthal scanning speed of 2° s−1 for PPIs. Although the largest elevation of individual 

RHIs varied (intentionally overshooting storms to ensure full coverage by the scan), the 

typical maximum elevation is 15°. For further details regarding the scanning strategy used 

during DYMECS, see Stein et al. (2014). 

 

 



44 
 

2.2.2   Case studies: Overview 

     Two particular case days have provided the focus for investigation in DYMECS research 

both before and during this project, owing to the contrast in the characteristics of observed 

convection. These are the 20 April and 25 August 2012, hereafter referred to as the shallow 

“showers”, and “deep convection” cases, respectively. 

 

 

 

 

      

 

 

 

 

 

Figure 2.2a:   Met Office 12 UTC synoptic chart for 20 April 2012. 

 

 

 

 

 

 

 

 

 

Figure 2.2b:   Met Office 12 UTC synoptic chart for 25 August 2012. 
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Figure 2.3:   Chilbolton Observatory rainfall radar observations for 1100 UTC, 1300 UTC, 

and 1500 UTC on 20 April 2012 (left) and 25 August 2012 (right), showing the evolution of 

convective precipitation throughout the day. 



46 
 

     The Met Office synoptic scale chart for 1200 UTC on 20 April 2012 is shown in Figure 

2.2a. An area of low pressure was centred on the east coast of the UK, with a shortwave 

trough oriented roughly north-south across central areas. Convective showers developed in 

response to surface heating through the late morning hours, becoming widespread across 

central and southern UK by 1100 UTC (see Figure 2.3), and moving northeast throughout 

the day. By 1300 UTC, convection had begun to grow upscale into small clusters, becoming 

more isolated from the west. Using the methodology summarised in Section 2.2.1, CAMRa 

was used to perform 149 RHIs and 269 PPIs of convection between 1030 and 1600 UTC. 

An example RHI scan performed at 238° azimuth at 1252 UTC is presented in Figure 2.4, 

showing the radar reflectivity and vertical velocity retrieval (Nicol et al., 2015, see Section 

2.2.3 for details of these retrievals). These fields (and those in Figure 2.5 for deep 

convection) are selected to be representative of the typical strength and depth of convection 

on the respective days. Figure 2.4a shows that shower clouds grew to a maximum height of 

5.5 – 6 km, with observed radar reflectivity generally no larger than 35 dBZ. Maximum 

updraft velocities (Figure 2.4b) generally ranged from 2 – 4 m s−1, with a largest recorded 

value of 6.5 m s−1. 

     25 August 2012 was characterised by the strongest and deepest convection of any day 

observed during the DYMECS project. The 1200 UTC synoptic chart (Figure 2.2b) shows a 

weakening low-pressure system, with associated occlusion, moving east across the UK. 

During the late morning hours, breaks in cloud cover led to the initiation of scattered 

convective storms. By 1300 UTC (see Figure 2.3), storms had become much more 

widespread over central and southern England, organising into lines and clusters. 

Thunderstorms were reported widely across southern England by 1500 UTC, as upscale 

growth of convection continued through to early evening. Between 0900 and 1700 UTC, 

CAMRa was used to perform 263 RHIs and 339 PPIs through convective clouds. Figure 2.5 

displays the marked differences in the characteristics of convection from the shower case. 

The example RHI presented was performed at 1250 UTC at 262° azimuth, through a line of 
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convection located 50 – 100 km west of Chilbolton (see Figure 2.3 at 1300 UTC). Clouds 

grew to over 10 km in depth, with reflectivity in excess of 50 dBZ common in stronger cells. 

Updrafts were far stronger on this day; vertical velocity maxima typically ranged from 6 – 

10 m s−1, with a largest recorded value of 14.9 m s−1 (Nicol et al., 2015). 

 

Figure 2.4:   (a): (Top panel) Example radar reflectivity and (b): (Bottom panel) Vertical 

velocity retrieval (Nicol et al., 2015), for an RHI scan through convection on 20 April 2012, 

performed at 1252 UTC at an azimuth of 238°. 

 

 

Figure 2.5:   (a): (Top panel) Example radar reflectivity and (b): (Bottom panel) Vertical 

velocity retrieval (Nicol et al., 2015), for an RHI scan through convection on 25 August 

2012, performed at 1250 UTC at an azimuth of 262°. 
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2.2.3   Case studies: Analysis of cases in previous DYMECS research 

     As mentioned, these two case days have formed the focus for other research in DYMECS. 

Hanley et al. (2015) used high-resolution Met Office Unified Model (MetUM) simulations 

of these two cases to investigate the sensitivity of storm morphology to changes in the 

Smagorinsky-Lilly turbulence parametrisation (see Section 1.3.2 for details of this paper and 

Section 2.3.2 for details of the Smagorinsky-Lilly scheme). The model suites used to perform 

these simulations were also used by Stein et al. (2015) to evaluate the evolution and 

morphology of simulated clouds with observations collected with CAMRa for both cases. 

For both case days, Hanley et al. (2015) demonstrated that the UKV, 500-m and, in 

particular, 200-m models do a good job of simulating the correct amount of domain-averaged 

rainfall when compared to Met Office network radar composite data. The number and 

intensity of convective cells improved towards that observed with radar as the resolution was 

increased. In both cases, there was also good agreement between cell equivalent diameter in 

the 200-m model and radar observations. These studies show that the models provide good 

quality forecasts of both cases, albeit with some variability in the timing of convective 

initiation, cloud characteristics and precipitation with model grid-length and the 

configuration of the turbulence parametrisation. In both studies, the 200-m models produced 

simulated convection with characteristics that were in strongest agreement with 

observations. For this thesis, the same model suites are used to perform new simulations for 

both cases with a focus on comparing turbulence diagnostics in 100-m and 55-m simulations 

with observations. The 100-m and 55-m models are nested within the 200-m model and, as 

such, derive lateral boundary conditions from an accurate simulation that has been tested 

against observations. The details of these suites and the selected modelling framework for 

this project are summarised in Section 2.3.1. 

     In this thesis, retrievals of vertical velocity (as shown in Figures 2.4 and 2.5) are used for 

analysis with ε, which have been produced for all RHI scans on both case days by Nicol et 
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al. (2015). These velocities were estimated from the Doppler velocity by vertically 

integrating local changes in horizontal convergence, under the assumption of flow 

continuity, accounting for the changes in density with height. The method required a zero-

velocity boundary condition, either at the surface or cloud echo top. A weighted combination 

of velocity derived under both conditions was developed to minimise the vertical 

propagation of errors. In using only single-Doppler measurements, these errors were found 

both in the initial convergence estimation, and in using convergence measured in only one 

plane (the plane of the scan). The omission of convergence in the direction perpendicular to 

the scanning plane would lead to a consistent under-estimation of the vertical velocity. To 

correct for this under-estimation, the suitable scaling for the vertical velocity was estimated 

from correspondingly high-resolution simulations of the MetUM for each case. These were 

made under assumptions that the simulated three-dimensional wind flows were suitably 

realistic, and that the range of observed vertical velocities was represented in the model. 

After model-guided rescaling of the single-Doppler retrievals, vertical velocities remained 

under-estimated, and to a degree that increased with the retrieved velocity (15% when 

vertical velocity was 10 m s−1). In the circumstance that updrafts were symmetrical and 

were sampled directly through the centre by the radar, the two orthogonal components of 

convergence would be the same. In this sense, a simple doubling of retrieved velocities was 

proposed, which would not require corresponding model simulations for each case. 

However, it was concluded that the correction by mapping the observed retrievals to model 

simulations produced a result with a lower error.  

     The analysis of these two case studies summarised above offers both the means to 

perform well-initialised MetUM simulations for each case, and vertical velocities for 

analysis with fields of turbulence, as tools to improve the investigations in this project. 

Vertical velocity retrievals for other DYMECS days were not available at the start of this 

project. Due to the questionable reliability of simply doubling vertical velocities derived 

from single-Doppler measurements, accurate retrievals for other DYMECS days are not 
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possible without the laborious step of running MetUM simulations for each case to obtain 

the correct scaling functions. Instead, the same two case studies provide the focus for 

analysis in this thesis, benefitting from the tools and insights provided through the depth of 

the preceding analysis. 

 

2.2.4   Details of RHI subsets 

     For the analysis of turbulence in convective clouds included in this thesis, a subset of RHI 

scans was drawn from the case study observations. As described in Section 2.2.1, sequential 

RHIs were quickly performed in sets of at least 4 for a given target storm. For example, 

scanning from 0° to 15° to 0° twice took only 150 seconds, and provides 4 RHIs over such 

a time resolution that the internal structure of storms changes only slightly. As the data in 

these scans are very similar (e.g. see Figure 2.6), biases are possible in statistical analyses 

by including observations that are correlated. To demonstrate the consistency in sequential 

RHIs, Figure 2.6 displays fields of retrieved turbulence for two RHIs (from the surface) 

performed 75 seconds apart for a storm case on 25 August 2012. On the scale of individual 

data points, there is variability in values of ε between the two scans, though they remain 

positively correlated (r =  0.41). However, the broad-scale values and general distribution 

of ε remain very similar; the mean and standard deviation of ε in both scans is 0.018 m2 s−3 

and 0.022 m2 s−3, respectively. To ensure this subset consists only of statistically 

independent cloud observations, only one RHI from each sequential set is included. 
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Figure 2.6:   Comparison of ε retrieved in two RHIs performed 75 seconds apart for the 

same storm case on 25 August 2012. The grey contour is the boundary of detected 

reflectivity, dissipation rates are expressed as log10 ε. 

 

 

     During certain time periods during the case days (especially in the morning hours), the 

coverage of convection in scanning range of Chilbolton was sparse. Observations were still 

collected by the automated detection and scanning algorithm, however, the prioritised storms 

at these times were often insignificant, and in some cases, very little cloud was observed. 

Such RHI sets were qualitatively removed from consideration, ensuring only high-quality 

cloud observations were included in RHI subsets for both cases. The scanning algorithm 

prioritises storms with more intense rainfall, as a result CAMRa was often directed back to 

perform a set of RHIs for storms that had been scanned a period of time before. However, 

the motion of the target clouds relative to the radar in this time period means the incident 

angle of the RHI changes, potentially scanning through the same precipitation cores, but 

sampling different areas of the surrounding cloud. Together with the general evolution of 

the clouds in the time period, these scan sets are treated as new cloud observations, as 
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opposed to repeated, and considered for the subset. From each RHI set, the selection of a 

scan to include in the subset is made through qualitative inspection of fields of radar 

reflectivity and Doppler velocity (independent of the Doppler spectrum width to avoid 

selection biases). For example, scans that displayed evidence of skipped rays, or any other 

irregularities, were omitted to ensure only the scans with the highest data quality were 

included.  

     Based on the above considerations, the final subset of observations for the deep 

convection case includes 44 RHIs performed between 1030 and 1630 UTC. For the shower 

case, this includes 33 RHIs performed between 1030 and 1550 UTC. In these RHIs, clouds 

were rarely observed closer than 30 km from CAMRa, or at ranges further than 150 km. 

Although the range resolution of CAMRa is 75 m, the radial resolution of data collected in 

DYMECS was subsequently averaged to 300 m. 

 

2.3   Met Office Unified Model (MetUM) 

2.3.1   The MetUM: Overview and selected modelling framework 

     The Unified Model is the operational weather forecast model based at the Met Office in 

Exeter, United Kingdom. The MetUM is used internationally to perform deterministic and 

ensemble simulations ranging from short-range regional scales to global climate scales. As 

summarised in Davies et al. (2005), the MetUM dynamical core (introduced in 2002) solves 

the compressible, non-hydrostatic, deep-atmosphere equations of motion. In the vertical, the 

model uses a vertically-staggered Charney-Phillips grid (Charney and Phillips, 1953), with 

a terrain-following height coordinate. In the horizontal, the model employs Arakawa C 

staggering on a regular latitude-longitude grid system which, for limited domain simulations, 

is rotated so the domain is centred on the equator to ensure a consistent grid-length. Semi-

Lagrangian advection is used for all prognostic variables aside from density, with semi-

implicit time-stepping. The model uses the radiation scheme from Edwards and Slingo 
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(1996), the microphysics scheme developed by Wilson and Ballard (1999), the Joint UK 

Land Environment Simulator (JULES) surface exchange scheme (Best et al., 2011), and a 

non-local boundary layer mixing scheme developed by Lock et al. (2000). 

     From 2009, the Met Office has run a convection-permitting operational configuration of 

the MetUM for weather forecasting for the UK at 1.5 km grid-length, called the UK variable-

resolution model (UKV). At the time of DYMECS, the UKV derived boundary conditions 

from the 12-km North Atlantic and Europe (NAE) model and used 3-hourly 3D-Var data 

assimilation of observations. However, the UKV currently derives boundary conditions from 

the 10-km global model and uses hourly 4D-Var data assimilation. The model uses 70 

vertical levels with a quadratic increase in level spacing with height throughout the 40-km 

depth of the model. As noted in Section 1.3.1, for MetUM models with a grid-length equal 

to or lower than the UKV, the convection scheme otherwise used in the MetUM (Gregory 

and Rowntree, 1990) is switched off, allowing convection to take place explicitly.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7:   The UK variable-resolution (UKV) model domain, indicating the resolution 

transition to distance the forecast area (green) from the boundaries (UK Met Office). 
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     The full domain of the UKV is presented in Figure 2.7, which displays the forecast area 

of 1.5 x 1.5 km grid-length (green dashed line) covering the whole of the UK. The large 

increase in resolution from the 10-km global model to the 1.5-km model can have substantial 

impacts on the resulting high-resolution forecast. The transition from parametrised 

convection in the global model, to resolved convection in the UKV takes a finite amount of 

time and can lead to poor representation of convection near the boundaries. To help 

ameliorate this issue, the central 1.5 km domain is surrounded by a zone of variable 

resolution (hence UK variable-resolution), where the grid-length increases smoothly up to 4 

km (between green and red dashed lines). This increase occurs independently in the 𝑥 and 𝑦 

directions, leading to regions with grid-length of 1.5 x 4 km above and below the domain, 4 

x 1.5 km to the sides, and 4 x 4 km in the corners. By using this approach, the boundaries 

with the surrounding global model are shifted away from the forecast area, ultimately 

improving the quality of the simulation over the UK. 

     To make reliable comparisons between turbulence in clouds observed with CAMRa for 

the two case studies, and those simulated in the MetUM, simulations with a similar 

resolution to CAMRa are preferred. The spatial resolution of CAMRa changes as the beam 

broadens with range from the radar. Clouds were typically observed between 30 and 100 km 

from the radar; between these ranges, the width of the beam increases from ~ 150 – 500 m. 

Comparable features in the model are resolved by a number of grid points (see Section 1.3.1). 

Therefore, to resolve features of similar spatial scale to those observed by CAMRa, radar 

observations are compared with simulations using grid-lengths of 50 – 100 m. Following the 

summary in Section 1.3.2, models using grid-lengths of 100 m or smaller should satisfy the 

assumptions made in the implementation of the sub-grid turbulence scheme. This should 

allow for a more reliable comparison of turbulence diagnostics with observations. 

     As mentioned in Section 2.2.3, a suitable modelling suite developed previously in the 

DYMECS project is used in this project to perform MetUM simulations at varying 

resolutions for the chosen case studies (this model is described in detail in Section 2 of 
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Hanley et al., 2015). For this application, the model setup is edited in a Rose suite which 

runs version 10.1 of the MetUM, using the ENDGame dynamical core, and submits jobs to 

the shared partition of the Met Office supercomputing node (MONSooN2). The suite will 

first run a 1.5 km UKV forecast for the selected case, followed by a series of nested models 

over the south of the UK. The sequential simulations are run with a grid-length from 1.5 km 

(UKV), downscale to 500 m, 200 m, 100 m, and 55 m, with each nested simulation run over 

an increasingly smaller domain. Initial and boundary conditions for each of the nested 

models is sourced from the forecast of the preceding resolution. Although observations are 

only compared to turbulence generated by the 100-m and 55-m models, all preceding model 

steps (UKV, 500 m and 200 m) need to be performed to provide the correct initial and 

boundary conditions for the 100-m, and then 55-m models. Figure 2.8 shows the location 

and relative size of the nested domains compared to the UKV (full figure), indicating the 

location of CAMRa. The Chilbolton Observatory is located approximately 40 km north-east 

of the centre of the 100-m domain; situated just outside the north-east corner of the 55-m 

domain. Both 100-m and 55-m domains lie within scanning range of CAMRa. All models 

nested within the UKV run with 140 vertical levels, instead of 70. This change is stated in 

Hanley et al. (2015) as to remove excessive small-scale structure in precipitation generated 

in the 200-m model when 70 vertical levels were used; the change having little effect on 

precipitation in the 500-m model. Table 2.2 lists the number of vertical levels used for each 

model, and the domain size described in terms of grid points and spatial extent. 
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Figure 2.8:   Comparison of the size of the domains in the nested suite with the UKV domain 

(full map). The location of the CAMRa at the Chilbolton Observatory is indicated by the 

purple dot. Original map is from Hanley et al. (2015) with the addition of the 100- and 55-

m domains. 

 

 

 

 

 

 

 

 

 

 

Table 2.2:   Overview of the vertical levels and domain sizes for the model domains 

displayed in Figure 2.8. 

Model Vertical Levels 

(up to 40 km) 

Latitude-longitude grid points 

(domain size) 

UKV 1.5 km (inner) 70 622 × 810      (933 × 1215 km) 

500 m 140  1000 × 850    (500 × 425 km) 

200 m 140 1500 × 1125  (300 × 225 km) 

100 m 140 1750 × 1500  (175 × 150 km) 

55 m 140 1500 × 1364  (82.5 × 75 km) 
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     High resolution (grid-length ~ 1 km) versions of the MetUM employ a sub-grid 

turbulence scheme to account for turbulent mixing occurring on scales below the grid-length. 

Convection-permitting configurations of the MetUM use the Smagorinsky-Lilly sub-grid 

scheme. The details of this parametrisation and how turbulence diagnostics are derived are 

summarised in Section 2.3.2. In operational versions of the UKV, for example, the sub-grid 

turbulence scheme is only used to parametrise horizontal mixing, with the vertical mixing 

handled by the 1-D non-local boundary layer scheme. For this thesis, modelling experiments 

are conducted to directly evaluate the characteristics of turbulence from Smagorinsky-Lilly 

sub-grid scheme using radar observations. The model runs performed to accomplish this are 

therefore configured to allow Smagorinsky mixing in both horizontal and vertical directions 

(3-D Smagorinsky mixing), with the non-local boundary layer scheme switched off. For 

consistency, 3-D Smagorinsky mixing is turned on for each model, including the UKV. 

 

2.3.2   The Smagorinsky-Lilly sub-grid turbulence scheme 

     To account for turbulent mixing on spatial scales smaller than the model grid-length, the 

MetUM employs the Smagorinsky-Lilly sub-grid mixing scheme; based on Smagorinsky 

(1963). This section includes the derivation of this scheme and a summary of the available 

outputs and how these are used to compute ε for comparison with observations. 

     As described in Section 1.1.2, under the assumption of homogenous, steady-state 

turbulence in co-ordinates aligned with the flow, the TKE equation (1.7) reduces to a balance 

between the sum of the TKE production from shear and production/destruction from 

buoyancy, and the viscous dissipation given by ε (1.9). The Smagorinsky-Lilly scheme is 

derived from this formulation by first expressing (1.9) as:  

𝜏𝑖𝑘
𝑑 𝑠𝑖𝑘

𝑟 + 𝑠(𝑤, 𝑏) = ε                                                         (2.3) 
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Where 𝑠(𝑤, 𝑏) is the buoyancy term, ε is the eddy dissipation rate, 𝜏𝑖𝑘
𝑑  is the deviatoric stress 

and 𝑠𝑖𝑘
𝑟  is a resolved (indicated by superscript 𝑟) shear term is given by: 

𝑠𝑖𝑘
𝑟 =

1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

r

=
1

2
𝑆𝑖𝑘

𝑟                                                 (2.4) 

The subscripts 𝑖 and 𝑗 refer to the horizontal dimensions of the model grid, and 𝑘 refers to 

the vertical dimension. 

     Assuming a homogeneous diffusivity, 𝜏𝑖𝑘
𝑑  is expressed as: 

𝜏𝑖𝑘
𝑑 = 𝑎𝑚𝑒

1
2𝜆2𝑠𝑖𝑘

𝑟 = 𝜈𝑚𝑆𝑖𝑘
𝑟                                                    (2.5) 

And 𝑠(𝑤, 𝑏) as: 

𝑠(𝑤, 𝑏) = −
𝑔

𝜃𝑣𝐵
𝑎ℎ𝑒

1
2𝜆

𝜕𝜃𝑣
𝑟

𝜕𝑧
= −

𝑔

𝜃𝑣𝐵
𝜈ℎ

𝜕𝜃𝑣
𝑟

𝜕𝑧
                                    (2.6) 

In (2.5) and (2.6), TKE is given by 𝑒, the terms 𝑎𝑚 and 𝑎ℎ include stability dependence, 𝑔 

is the acceleration due to gravity, 𝜃𝑣 is the virtual potential temperature and 𝜆 is the mixing 

length. In physical terms, 𝜆  (in m), can be described as the distance an eddy can travel while 

retaining its characteristics before they blend with the surrounding flow, i.e. a mean free path 

for a turbulent eddy. In (2.5) and (2.6), the kinematic viscosity 𝜈𝑚, and molecular diffusivity 

𝜈ℎ, have also been defined. 

     Substituting (2.5) and (2.6) into (2.3) provides the TKE equation, assuming steady state 

and homogenous diffusivity, in gradient diffusion form: 

𝑎𝑚𝑒
1
2𝜆2𝑠𝑖𝑘

𝑟 𝑠𝑖𝑘
𝑟 −

𝑔

𝜃𝑣𝐵
𝑎ℎ𝑒

1
2𝜆

𝜃𝑣
𝑟

𝜕𝑧
= ε                                          (2.7) 

The eddy dissipation rate ε can be expressed as TKE over a dissipation timescale, 𝜏𝑑: 

ε =  
𝑒

𝜏𝑑
                                                                   (2.8) 
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Where 𝜏𝑑 describes the time taken for a turbulent eddy with a velocity scale 𝑒
1

2, to travel the 

mixing length before it is dissipated, such that: 

𝜏𝑑 =  
𝜆

𝑒
1
2

                                                                  (2.9) 

Substituting (2.9) into (2.8), then substituting this into (2.7) and re-arranging for 𝑒 provides: 

𝑒 = 𝑎𝑚𝜆22𝑠𝑖𝑘
𝑟 𝑠𝑖𝑘

𝑟 −
𝑔

𝜃𝑣𝐵
𝑎ℎ𝜆2

𝜃𝑣
𝑟

𝜕𝑧
= 𝑎𝑚𝜆2 (2𝑠𝑖𝑘

𝑟 𝑠𝑖𝑘
𝑟 −

𝑎ℎ

𝑎𝑚

𝑔

𝜃𝑣𝐵

𝜃𝑣
𝑟

𝜕𝑧
)              (2.10) 

Which can be simplified further to: 

𝑒 = 𝑎𝑚𝜆22𝑠𝑖𝑘
𝑟 𝑠𝑖𝑘

𝑟 (1 −
Ri

Pr
)                                                (2.11) 

Where Ri is the shear gradient Richardson number: 

Ri =

𝑔
𝜃𝑣𝐵

𝜃𝑣
𝑟

𝜕𝑧

2𝑠𝑖𝑘
𝑟 𝑠𝑖𝑘

𝑟                                                               (2.12) 

And Pr is the turbulent Prandtl number given by: 

Pr =
𝜈𝑚

𝜈ℎ
=

𝑎𝑚

𝑎ℎ
                                                           (2.13) 

     In the Smagorinsky-Lilly scheme in the MetUM, 𝜈𝑚 and 𝜈ℎ are given by:  

𝜈𝑚 = 𝜆UM
2 𝑆𝑓𝑚(Ri)                                                        (2.14) 

𝜈ℎ = 𝜆UM
2 𝑆𝑓ℎ(Ri)                                                         (2.15) 

where 𝑓𝑚 and 𝑓ℎ are Richardson number dependent stability functions. When Ri < 0, the 

‘LEM Conventional’ unstable functions are used for 𝑓𝑚 and 𝑓ℎ: 

𝑓𝑚 = (1 − 𝑐Ri)
1
2                                                          (2.16) 
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𝑓ℎ = 𝑎(1 − 𝑏Ri)
1
2                                                         (2.17) 

Where 𝑎 = 1/PrN, PrN is the neutral Prandtl number of 0.7, and 𝑏 = 𝑐 = 1.43. When Ri >

0, the ‘Sharpest’ stable functions are used: 

𝑓𝑚 = (1 − 0.5𝑔0Ri)2         for  0 < Ri <
1

𝑔0
              (2.18) 

𝑓𝑚 = (
1

2𝑔0Ri
)

2

                   for  Ri ≥
1

𝑔0
                (2.19) 

𝑓ℎ = 𝑎𝑓𝑚                                                                 (2.20) 

Where 𝑔0 = 10 and 𝑎 = 1/PrN. The shear term 𝑆, is given by: 

𝑆 =
|𝑆𝑖𝑗|

√2
= (

1

2
𝑆𝑖𝑗𝑆𝑖𝑗)

1
2

= (2𝑠𝑖𝑗
𝑟 𝑠𝑖𝑗

𝑟 )
1
2                                       (2.21) 

In the MetUM, 𝜆0 is defined only as a function of the model horizontal grid-length ∆𝑥, by: 

𝜆0 = 𝐶𝑠∆𝑥                                                              (2.22) 

where 𝐶𝑠 is a constant that typically ranges from 0.2 – 0.3 and has a default value of 0.2 in 

the MetUM. It is often more suitable to determine 𝜆0 instead from the geometric mean of 

∆𝑥, ∆𝑦 and ∆𝑧. Experiments in the MetUM that define 𝜆0 using the geometric mean 

approach have shown only small differences to using ∆𝑥 alone. If ∆𝑥 ≫ ∆𝑧 for the majority 

of the vertical profile, very little difference would be seen between the two methods. 

However, for 100-m resolution simulations, ∆𝑧 exceeds ∆𝑥 above 3.7 km, suggesting for 

very high-resolution simulations, the geometric mean approach may be more suitable. 

     The mixing length used in (2.14) and (2.15) is reduced near the surface so that: 

1

𝜆UM
2 =

1

𝜆0
2 +

1

[𝜅(𝑧 + 𝑧0)]2
                                                (2.23) 
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By first re-arranging (2.11) for 𝑎𝑚, and substituting this into (2.5), and then substituting 

(2.14) into (2.5) gives: 

𝑒
3
2 = 𝜆UM

3 𝑆𝑓𝑚(𝑅𝑖)𝑆𝑖𝑘
𝑟 2𝑠𝑖𝑘

𝑟 (1 −
Ri

Pr
)                                      (2.24) 

Which can be simplified further using (2.4) and (2.21) to provide: 

𝑒 = 𝜆UM
2 𝑆2𝑓𝑚

2
3 (1 −

Ri

Pr
)

2
3

                                                 (2.25) 

Using (2.8) and (2.9), ε is then given by: 

ε = 𝜆UM
2 𝑆3𝑓𝑚 (1 −

Ri

Pr
)                                                  (2.26) 

For each of the model simulations performed, the Smagorinsky-Lilly scheme outputs 

diagnostics consisting of 𝜈𝑚, 𝜈ℎ, 𝑆 and 𝜆UM, that are defined for each grid point. To compute 

ε from (2.26), Ri, Pr and the stability function 𝑓𝑚, remain to be determined. Equations (2.14) 

and (2.15) can be used to calculate 𝑓𝑚 and 𝑓ℎ directly. The Prandtl number is stated as the 

ratio of 𝜈𝑚 and 𝜈ℎ in (2.13), which itself equates to the ratio of 𝑓𝑚 and 𝑓ℎ. The Richardson 

number is determined by inverting the stability functions for 𝑓𝑚 given by (2.16), (2.18) and 

(2.19):  

Ri =
1 − 𝑓𝑚

2

𝑐
                  for   𝑓𝑚 > 1                       (2.27) 

Ri =
2(1 − 𝑓𝑚

0.5)

𝑔0
         for  0.5 < 𝑓𝑚

0.5 < 1              (2.28) 

Ri =
1

2𝑔0𝑓𝑚
0.5                 for   𝑓𝑚

0.5 ≤ 0.5                 (2.29) 
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2.3.3   Experiments using the MetUM  

     In Chapter 5, a thorough evaluation of ε produced by the MetUM is performed using 

radar observations for the shower and deep convection case studies described in Section 

2.2.2. The majority of this evaluation involves two simulations (one for each case study) 

performed with a horizontal grid-length that is most similar to the resolution of CAMRa 

(∆𝑥 = 100 m) and the default value for 𝐶𝑠 (0.2). The representation and evolution of 

convection in the MetUM has been shown to be sensitive to changes in 𝜆0 and ∆𝑥 for 

DYMECS case studies in Hanley et al. (2015). To test the sensitivity of ε to 𝜆0 and ∆𝑥 

(Section 5.6), three additional simulations are performed for each case study. The sensitivity 

of ε to 𝜆0 is investigated by repeating the control simulations after doubling the prescribed 

value of 𝐶𝑠 (see (2.22)) from 0.2 to 0.4 (and hence doubling 𝜆0 with respect to ∆𝑥). 

Simulations using 𝐶𝑠 of 0.2 and 0.4 are then performed at ∆𝑥 = 55 m to test the sensitivity 

of ε to model grid-length. The 8 simulations are summarised in Table 2.3 where 1 and 5 are 

referred to as “control” simulations and the remainder as “sensitivity” simulations in Chapter 

5. Figure 2.9 outlines the procedure to perform simulations 1 – 8. All models in the suite use 

3-D Smagorinsky mixing (1-D boundary layer scheme switched off), and each 100-m 

simulation derives initial and boundary conditions from a 200-m forecast performed with a 

𝐶𝑠 of 0.2. 

     In analysing observations of ε in Chapter 4, comparisons are made between ε in clouds 

(defined by the spatial extent of the radar reflectivity, 𝑍) with convective updraft 

characteristics detected in retrievals of vertical velocity, 𝑤. To perform an analysis 

consistent with this in MetUM simulations, 3-D fields of corresponding variables are 

required from each of the 8 simulations. In terms of diagnostics, these are 𝜈𝑚, 𝜈ℎ, 𝑆 and 𝜆UM 

from the Smagorinsky-Lilly scheme used to derive ε using (2.26)), 𝑤 to detect updrafts, and 

the total (all hydrometeor types) radar reflectivity 𝑍T, to detect clouds. Fields of 𝑍T are 

produced by a forward model developed from the MetUM microphysics scheme outlined in 
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Appendix A of Stein et al. (2014). For both case studies, 3-D fields of 𝜈𝑚, 𝜈ℎ, 𝑆, 𝜆UM, 𝑤 and 

𝑍T are output hourly in each model from 0900 to 1900 UTC in the 100-m model, and from 

1000 to 1900 UTC in the 55-m model. These time-frames comfortably overlap the periods 

of data collection using CAMRa over both case days. 

 

 

 

Table 2.3:   Summary of the simulations performed for both case days. Control simulations 

(1 and 5) are performed using grid-lengths of 100 m and a 𝐶𝑠 of 0.2. Sensitivity simulations 

(remaining numbers) involve various combinations of doubling 𝐶𝑠 and reducing the grid-

length to 55 m. 

 

 

 

 

 

Simulation 

Number 

Case Study Model grid-

spacing, ∆𝒙 (m) 

Mixing length 

constant, 𝑪𝒔 

Mixing 

length, 𝝀𝟎 (m) 

1 20 April 2012 100 0.2 20 

2 - 55 0.2 11 

3 - 100 0.4 40 

4 - 55 0.4 22 

5 25 August 2012 100 0.2 20 

6 - 55 0.2 11 

7 - 100 0.4 40 

8 - 55 0.4 22 
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Figure 2.9:   Flow diagram illustrating the modelling experiments performed for each case 

study, indicating where changes to 𝐶𝑠 occur for each nested model. Each link between 

models can be read as “…derives boundary and initial conditions from…”. 
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Chapter 3 

Turbulence retrieval with CAMRa 

3.1   Introduction and aims of method 

     This section provides a summary of the characteristics and assumptions associated with 

turbulence and weather radar that permit methods to retrieve turbulence accurately with 

CAMRa, together with the main aims of the retrieval method (Section 3.1.1). Section 3.1.2 

provides an outline of the radar fields involved in the retrieval and methods used in data 

preparation. In Section 3.1.3, a threshold value of Doppler velocity variance is introduced to 

justify neglecting small variance contributions, and to estimate the potential size of resulting 

errors in ε. 

 

3.1.1   Overview and aims 

In previous sections of this thesis, the following points have been established: 

• The Doppler spectrum variance 𝜎𝑣
2, can only be used to accurately estimate 

dissipation rates ε, if the largest dimension of the radar resolution volume 𝑉6, is 

smaller than the largest scale of the inertial sub-range Λ0, i.e. the radar only samples 

variance due to inertial sub-range eddies. 

• Under assumptions of Λ0 ~ 1 km, CAMRa has suitably high resolution to sample 

velocity variance from inertial sub-range turbulence 𝜎t
2, over the typical distances of 

cloud observations collected in DYMECS (30 – 150 km). 
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• The range of 𝜎𝑣
2 values that are detectable based on the Nyquist velocity of CAMRa 

appears to be sufficiently broad to provide an accurate representation of ε in the 

observed clouds. 

     Together, these statements justify the suitability of CAMRa to retrieve accurate estimates 

of ε throughout case study observations.  

     As described in Section 1.4.2, in a given 𝑉6, 𝜎𝑣
2 is comprised of velocity variances 

associated with various physical processes, as well as factors intrinsic to radar sampling. By 

assuming these variances are statistically independent (Doviak and Zrnic, 1984), 𝜎𝑣
2 can be 

described as a linear sum of each contribution: 

𝜎𝑣
2 =  𝜎𝑠

2 +  𝜎t
2 +  𝜎TV

2 +  𝜎𝛼
2 +  𝜎o

2 + 𝜎B
2 + 𝜎H

2                                (3.1) 

Where 𝜎𝑣
2 has contributions from radial wind shear across 𝑉6, 𝜎𝑠

2; turbulence, 𝜎t
2; the 

distribution of hydrometeor fall-velocities, 𝜎TV
2 ; antenna rotation, 𝜎𝛼

2; hydrometeor 

oscillations, 𝜎o
2; beam broadening, 𝜎B

2; and the combined effects of hydrometeor rotation, 

break-up and coalescence, 𝜎H
2. As the details of turbulent motion cannot be found directly 

from 𝜎𝑣
2, 𝜎t

2 is inferred from 𝜎𝑣
2 by accounting for all other variance contributions in (3.1). 

This is accomplished either by measuring and subtracting the variance contributions from 

𝜎𝑣
2, or by demonstrating that they are negligibly small compared to 𝜎t

2.  

     The primary aim of this chapter is to detail the considerations made for each term in (3.1), 

to develop an algorithm that can be performed consistently across all RHIs in the 

observations, to isolate 𝜎t
2 from 𝜎𝑣

2, and convert to ε. To accomplish this, the value of terms 

in (3.1) have been investigated thoroughly under a broad range of conditions, with an 

eventual focus on the scanning strategy and specifications of CAMRa. In doing this, the 

algorithm can be applied without change to future observations collected by CAMRa. By 

evaluating the terms in (3.1) in a sufficiently broad context, a further aim of this chapter is 
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to provide a reliable framework for turbulence retrieval with other high-resolution radars 

capable of sampling inertial sub-range turbulence.  

 

3.1.2   Data preparation 

     To perform the retrieval of ε, only fields of radar reflectivity 𝑍, the mean Doppler velocity 

𝑣̅, and Doppler variance 𝜎𝑣
2, are required for each storm case. When selecting the subset of 

RHIs for statistical analysis of ε (see Section 2.2.4), a degree of initial data quality has been 

ensured through the qualitative selection of these fields. In a quantitative sense, it is 

necessary to remove data in regions where the ratio of returned signal to noise level is low; 

high values of 𝜎𝑣
2 can result from signal noise rather than true variability in 𝑣̅. To accomplish 

this, the ratio of the noise level of CAMRa (𝑍N = −37 dBZ at a range of 1 km), to the 

returned signal 𝑍, is determined for each 𝑉6. Fields of reflectivity are converted into linear 

units 𝑍lin, and then to 𝑃 (a quantity proportional to echo power), using the following: 

𝑍lin [mm6 m−3] = 10
𝑍

10    ;    𝑃 =
𝑍lin

𝑅2                                         (3.2)  

Where 𝑅 is the range of the reflectivity observation in m. The noise power, 𝑃N is constant at 

all points and determined in (3.2) using 𝑍 =  −37 dBZ and 𝑅 = 103 m. The ratio of signal 

to noise (SNR) is then determined at all points from: 

SNR = log10 (
𝑃 − 𝑃N

𝑃N
)                                                     (3.3) 

Values in 𝑍, 𝑣̅ and 𝜎𝑣
2 that are co-located with SNR < 0 are removed, i.e. where 𝑃 ≤ 2𝑃N. 

This is performed identically for each storm case before turbulence retrieval methods are 

applied. 

     Figure 3.1 provides an example of this correction to RHIs of 𝑍 and 𝜎𝑣
2 for observations 

through a line of convective cloud observed on 25 August 2012. Figure 3.1a displays 𝑍 

before SNR correction with a contour overlay for SNR = 0. The field of 𝑍 after thresholding 
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by SNR is shown in Figure 3.1b. The equivalent for 𝜎𝑣
2 is presented in Figure 3.1c and 3.1d, 

showing the location of values removed corresponding to regions of low SNR. In Figure 

3.1c, high values of 𝜎𝑣
2 are found around the edge of clouds where signal is weak, but also 

in low-SNR regions within and between clouds. Some examples of this are apparent between 

115 and 135 km in range, and 2 – 6 km in height, where regions of high 𝜎𝑣
2 due to weak 

signal have been removed, which would have otherwise appeared genuine in Figure 3.1c. If 

thresholding by SNR was not performed, 𝜎𝑣
2 due to weak signal would be included as 

turbulence, ultimately leading to biases in the statistics of ε. 

     During RHI data collection, CAMRa’s slow scan rate, combined with short integration 

times, led to an angular resolution in the elevation direction that is approximately one sixth 

of the beam-width. To reduce the resulting noise in 𝜎𝑣
2, data is smoothed in the elevation 

direction using a 6-point moving average. By doing this, 𝜎𝑣
2 becomes correlated over a 

spatial scale similar to the true width of the beam, without re-gridding the data. 

 

 

Figure 3.1:   Effects of thresholding by signal-to-noise ratio on the radar reflectivity ((a) and 

(b)), and the Doppler variance ((c) and (d)), for an RHI performed on 25 August 2012. High 

Doppler variance in areas of low signal is removed. 
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3.1.3   Negligibility thresholds and biases in ε 

     Observed values of 𝜎𝑣
2 generally range from 1 – 25 m2 s−2. In reality, the negligibility of 

terms in (3.1) depends on their value relative to 𝜎t
2, and as a result, no fixed variance value 

will always be negligibly small. Assuming that turbulence is only significant when 𝜎t
2 >

 5 m2 s−2 (this translates to ε > 0.04 m2 s−3 at 60 km from the radar; the typical range of 

cloud observations), a negligibility threshold 𝜎neg
2 , of 0.5 m2 s−2 is selected for the purpose 

of this application. Whereby, variance contributions that are less than 𝜎neg
2  can be neglected.  

     By considering the maximum combined variance from terms that may be neglected, the 

potential errors in ε can be estimated. The variance contributions from 𝜎𝛼
2 and 𝜎B

2 are small 

enough to be ignored completely (𝜎𝛼
2 and 𝜎B

2 contribute less than 10−2 m2 s−2, see Section 

3.2). No element of 𝜎𝑠
2 is neglected, regardless of value compared to 𝜎neg

2 , as this 

contribution can be measured directly (Section 3.4). However, contributions from 𝜎TV
2 , 𝜎o

2 

and 𝜎H
2 are not simple to measure directly. Contributions from 𝜎TV

2  can be larger than 𝜎neg
2  

for rain and hail (Section 3.3), while 𝜎o
2 and 𝜎H

2 are both expected to contribute less than 

0.25 m2 s−2 (Section 3.2). The potential error in 𝜎t
2 that is incurred when neglecting 𝜎TV

2 , 

𝜎o
2 and 𝜎H

2 is therefore limited to 1 m2 s−2. If 𝜎t
2 = 5 m2 s−2, this would translate to a 28.4% 

positive error in ε (See Figure 3.2). The error then decreases to only 5.9% when 𝜎t
2 =

25 m2 s−2, and is independent of the range of the 𝜎t
2 observation from the radar. Figure 3.2 

shows how the error in ε changes as a function of 𝜎t
2 when the error in 𝜎t

2 is 1, 0.75 and 0.5 

m2 s−2. Importantly, the percentage error in ε is inversely proportional to 𝜎t
2, meaning large 

errors are only found when turbulence is not significant. 

     The maximum potential error of 1 m2 s−2 considers the largest contributions from each 

term, which may result in a significant over-estimation in ε when 𝜎t
2 < 5 m2 s−2. However, 

the true error in ε is expected to be considerably lower than this. In the case of 𝜎TV
2 , under 

the assumption that rain and hail only exist below 3 km, 𝜎TV
2  will not exceed 𝜎neg

2  when 
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scanning at any elevation for storms located further than 15 km from the radar. Given that 

the minimum distance of observed storms was 30 km, with a more typical distance of 50 – 

80 km, the true contribution from 𝜎TV
2  is likely to be far less than 0.5 m2 s−2. The continuous 

processes involved in 𝜎o
2 and 𝜎H

2 are assumed to provide a contribution to Doppler variance 

that is consistent in time and space when scanning through cloud and precipitation, and 

independent of scanning angle. Therefore, the lowest variances observable by CAMRa may 

provide an indication of the size of these contributions. When scanning through ice cloud 

and rain drops with 128 pulse-pairs (see Figure 6.1), CAMRa detects the Doppler spectrum 

width as low as 0.6 m s−1, corresponding to a variance of 0.36 m2 s−2. In the case where 

variance due to shear and turbulence is zero, the combined contribution from 𝜎o
2 and 𝜎H

2 (and 

𝜎TV
2 ) could only be 0.36 m2 s−2. The true error in 𝜎t

2 is therefore expected to be closer to 0.5 

m2 s−2, indicated by the red line in Figure 3.2. In this case, the positive bias in ε will only 

be 15% when 𝜎t
2 =  5 m2 s−2, and decrease as turbulence becomes more intense. 

 

Figure 3.2:   Positive errors in ε resulting from neglected terms that contribute to 𝜎𝑣
2. The 

maximum incurred error as a function of 𝜎t
2 is shown in black, with more realistic errors in 

blue and red. 
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3.2   Beam broadening, antenna rotation and 

hydrometeor oscillation 

     This section includes the estimation and discussion of contributions to Doppler velocity 

variance 𝜎𝑣
2, from mechanisms that are intrinsic to either scanning weather radar or falling 

hydrometeors when scanning through clouds or precipitation. The continuous movements of 

a radar during data collection, a finite beam-width, and the small-scale movements of falling 

hydrometeors can all contribute to 𝜎𝑣
2.  The aim of this section is to detail these mechanisms 

and assess them for significance for applications with CAMRa. 

 

3.2.1   Doppler variance due to beam broadening 

     If the angular width of a radar beam is not infinitesimally small, radiation will propagate 

at a range of angles relative to the beam axis in a radar resolution volume, 𝑉6. As noted in 

Gossard (1990), this effect (referred to as “beam broadening”) will result in the sampling of 

a distribution of radial velocities even when the wind across 𝑉6 is uniform; which contributes 

a variance (given by 𝜎B
2) to 𝜎𝑣

2. To isolate this contribution, the horizontal plane of 𝑉6 is 

analysed under specific conditions. Constant reflectivity and uniform wind is assumed across 

𝑉6, with a non-zero, transverse velocity vector 𝑣T, that is perpendicular to the central beam 

axis, i.e. the radial velocity 𝑣𝑟, along the beam axis is zero. Contributions to 𝜎𝑣
2 from shear, 

turbulence, antenna rotation or hydrometeor fall-speed distribution are assumed to be zero, 

i.e. 𝜎𝑣
2 = 0 in the absence of beam broadening. Within a given 𝑉6, radiation propagating 

from the radar will be incident to 𝑣T at a range of angles determined by the one-way half-

power beam-width, 𝜃1. This is illustrated in the schematic of the horizontal plane of 𝑉6 

presented in Figure 3.3. In the absence of variance contributions from all other mechanisms, 

a range of 𝑣𝑟 will be observed, weighted by the Gaussian beam pattern between half-power 
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points. The resulting contribution to 𝜎𝑣
2 is dependent only on 𝜃1 and 𝑣T, and does not vary 

with range from the radar.  

 

Figure 3.3:   Horizontal plane of a resolution volume illustrating the change in sampling of 

a transverse velocity 𝑣T, across a beam of one-way half-power beam-width of 𝜃1. 

 

     An equation to calculate the variance contribution due to beam broadening is stated in 

Gossard (1990): 

𝜎B
2 =  

𝑣T
2𝜃2

2.76
                                                               (3.4a) 

In (3.4a), 𝑣T is the uniform velocity perpendicular to the beam axis in m s−1, and 𝜃 =
1

2
𝜃1, 

measured in radians. However, (3.4b) is used as an equivalent expression to (3.4a) that is 

more consistent with the conventions used in this chapter: 

𝜎B
2 =  

𝑣T
2𝜃1

2

16 ln 2 
                                                          (3.4b) 
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In (3.4b), 𝜃 has been replaced with 
1

2
𝜃1, and the factor 2.76 is assumed to be an 

approximation of 4 ln 2. The resulting equation describes a velocity variance that arises due 

to the weighting of 𝑣T
2 by 

𝜃1
2

16 ln 2
; which is the variance of the Gaussian two-way beam pattern 

(see (3.25) in Section 3.4.1).  

     Observed radial velocity was no larger than 15 m s−1 in observations with CAMRa (𝜃1 =

4.9 × 10−3 rad). Assuming a similar maximum applies to velocities perpendicular to the 

beam, this would result in a variance contribution of only 4.9 × 10−4 m2 s−2, which is far 

below the threshold for negligibility (𝜎neg
2 = 0.5 m2 s−2). To observe 𝜎B

2 > 𝜎neg
2  with a 

radar with such a narrow beam as CAMRa would require an extreme transverse velocity of 

481 m s−1, which was not observed. Contributions from 𝜎B
2 are therefore neglected when 

retrieving turbulence with CAMRa. If using a radar with a 1° beam-width, 𝑣T would have to 

be 135 m s−1 for 𝜎B
2 to contribute more than 0.5 m2 s−2. This indicates that 𝜎B

2 is always 

negligible for radar capable of sampling within the inertial sub-range for turbulence retrieval. 

 

3.2.2   Doppler variance due to antenna rotation  

     The movements of the radar antenna while scanning will broaden the Doppler velocity 

spectrum. Assuming a constant antenna scan rate α, in rad s−1, the variance contribution 

due to antenna rotation 𝜎𝛼
2, is provided by Doviak and Zrnic (1984): 

𝜎𝛼
2 =  (

𝛼𝜆 cos 𝜃el √ln (2)

2𝜋𝜃1
)

2

                                                (3.5) 

Where λ is the wavelength of the radar in metres, 𝜃el is the elevation angle from the surface, 

and 𝜃1 is the one-way half-power beam width in radians.  

     For CAMRa, 𝜆 = 0.0975 m and 𝜃1 = 5 × 10−3 rad. During DYMECS, RHI and PPI 

observations were made using scan speeds of 𝛼RHI = 7 × 10−3 rad s−1 and 𝛼PPI =
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35 × 10−3 rad s−1. The contribution from 𝜎𝛼
2 is largest when scanning horizontally 

(cos(𝜃el = 0) = 1); in this case 𝜎𝛼
2 < 0.01 m2 s−2 for both RHI and PPI observations, 

making a negligible (𝜎𝛼
2 < 𝜎neg

2 ) contribution to 𝜎𝑣
2. Observations collected at non-zero 

elevations (up to 15° in DYMECS) would only reduce the value of 𝜎𝛼
2, therefore 

contributions from 𝜎𝛼
2 are neglected in this application. For lower resolution radar (where 𝜃1 

is larger), 𝜎𝛼
2 decreases further still, suggesting that contributions from this term are only 

significant in cases of extreme scanning speed (for CAMRa, 𝜎𝛼
2 > 𝜎neg

2  only when 𝛼 >

4.1 rad s−1; close to one revolution per second). 

 

3.2.3   Doppler variance due to hydrometeor oscillations  

     By simulating the oscillations of falling hydrometeors in a perturbation model, Zrnic and 

Doviak (1989) investigated the axisymmetric oscillations of raindrops, and the resulting 

effects on 𝜎𝑣
2 among other Doppler radar parameters. The choice of axisymmetric 

oscillations is important; the spectral broadening due to drop oscillations will be the same 

independent of the angle of observation by the radar. In the case of raindrops with a 

normalised r.m.s axial ratio (ratio of the standard deviation in axial ratio due to oscillations, 

with the reference axial ratio on a non-oscillating raindrop) of 0.1, they find 𝜎o
2 < 𝜎neg

2  for 

all rain-rates larger than 5 mm hr−1, while more generally 𝜎o
2 is less than 0.25 m2 s−2. 

Variance contributions from 𝜎o
2 are small enough to be neglected when retrieving turbulence, 

but an assumed maximum value of 𝜎o
2 = 0.25 m2 s−2 is included when estimating the 

potential biases in ε due to neglected terms (Section 3.1). 

     The rotation of hydrometeors and the break-up and coalescence of rain-drops, are thought 

to further contribute to 𝜎𝑣
2 (Zrnic and Doviak, 1989). These effects are poorly understood, 

and the combined variance contribution (𝜎H
2) has yet to be quantified in the literature. Zrnic 

and Doviak (1989) speculate that contributions will be similar in value to 𝜎o
2; therefore, 𝜎H

2 
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is assumed to be no larger than 0.25 m2 s−2. An investigation into quantifying these effects 

is not included as part of this thesis, however, as for 𝜎o
2, a maximum value of 𝜎H

2 =

0.25 m2 s−2 is included when estimating potential biases in ε in Section 3.1. Until the 

variance contribution from 𝜎H
2 is understood in more detail, estimated values should always 

be included to assess potential errors in ε. 

 

3.3   Doppler variance due to a distribution of 

hydrometeor fall-speeds 

3.3.1   Introduction and aims 

          When scanning through cloud and precipitation, hydrometeors of various size may fill 

a radar resolution volume, 𝑉6. The presence of a distribution of hydrometeor diameters will 

lead to a distribution of hydrometeor fall velocities. In the circumstance where the radar 

beam is not perpendicular to hydrometeor velocity, this contributes to the variance of the 

Doppler velocity spectrum. The observed variance contribution (𝜎TV
2  in (3.1)) is largest for 

a vertically pointing radar beam and decreases with angle from zenith. 

     Previous studies to estimate turbulence characteristics from Doppler velocity spectra 

typically assume 𝜎TV
2  to be negligible (e.g. Frisch and Clifford, 1974; Chapman and 

Browning, 2001; Meischner et al., 2001) unless observations were made at vertical incidence 

(Brewster and Zrnic, 1986). The expected variance due to 𝜎TV
2  is reduced significantly by 

scanning at lower elevations (often the reason 𝜎TV
2  is assumed negligible), however, this does 

not ensure the contribution is always negligibly small. Some attempts at quantifying the 

effects of falling hydrometeors on Doppler spectra exist in the literature. In the case of falling 

rain-drops, Martner and Battan (1976) present an equation (without derivation) to determine 

𝜎TV from the radar reflectivity, 𝑍 (in linear units) alone: 
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𝜎TVrain
= 0.79 𝑍0.07                                                       (3.6) 

However, without the details of its derivation, or equivalent expressions governing effects 

from other hydrometeor types under mutual assumptions, this section approaches the 

problem of quantifying 𝜎TV
2  directly, under consistent assumptions, for application in 

turbulence retrieval. 

     The primary aim of this section is to determine specific conditions under which 𝜎TV
2  is 

negligibly small (less than 𝜎neg
2 ), for three common hydrometeor types. This includes the 

derivation of Doppler velocity variance equations for each hydrometeor classification as a 

function only of the reflectivity in 𝑉6, and the elevation angle of the radar. Doing this 

provides: (1) a means to estimate 𝜎TV
2  when necessary; (2) justification when neglecting 𝜎TV

2 ; 

and (3) suggestions for how future scanning strategies for turbulence retrieval can be tailored 

to ensure 𝜎TV
2  is always negligible. 

 

3.3.2   Formulation and derivation of σTV
2  equations 

     For application to RHI radar observations, two hydrometeor types are classified based on 

the height of the 0°C isotherm, 𝑧0°C, which is estimated from the location of bright-band 

radar reflectivity in the observations. Though 𝑧0°C varies for different DYMECS case days, 

the average height is ~ 1.5 km. For simplicity, any reflectivity returned from below this level 

is assumed to be due to liquid rain-drops, and any reflectivity from above is due to ice 

aggregates. By making this simple distinction, 𝜎TV
2  can be estimated in all areas of an RHI 

scanning domain.  Owing to the potential for significant localised spectral broadening from 

large hydrometeors falling at high terminal velocity, considerations for hail are included. 

     The reflectivity in a given 𝑉6 is assumed to be dominated by a single hydrometeor type, 

and hydrometeors are assumed to be falling vertically downwards at terminal velocity. 
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Hailstones are assumed to be dry and to consist of solid ice with homogeneous density. For 

hydrometeor mass calculations, raindrops and hailstones are assumed to be spherical. 

     To estimate the relative size of 𝜎TV
2  when compared to 𝜎𝑣

2, 𝜎TV
2   is characterised as the 

variance of the reflectivity-weighted mean fall velocity in 𝑉6. For a vertically-pointing radar 

beam: 

𝜎TV𝑗

2  =  𝑊𝑗
2̅̅ ̅̅̅ −  𝑊̅𝑗

2                                                          (3.7) 

Where 𝜎TV𝑗

2  has units m2 s−2, 𝑊 is the reflectivity-weighted hydrometeor fall velocity, and 

𝑗 refers to the hydrometeor type. 𝑊𝑗
2̅̅ ̅̅̅ and 𝑊̅𝑗

2  are estimated by evaluating the following 

integrals: 

𝑊𝑗
2̅̅ ̅̅̅ =

∫  𝑉𝑗(𝐷)2 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷)
∞

0
𝑑𝐷

∫  𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0

                                           (3.8) 

𝑊̅𝑗
2 = (

∫  𝑉𝑗(𝐷) 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷)
∞

0
𝑑𝐷

∫  𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0

)

2

                                      (3.9) 

Where  𝑉𝑗(𝐷), 𝑀𝑗(𝐷) and 𝑛𝑗(𝐷) are terminal velocity-diameter, mass-diameter and particle-

size distribution (PSD) relationships for hydrometeor 𝑗, respectively, and 𝐷 is the 

hydrometeor diameter in metres.  

     In (3.8) and (3.9), particle reflectivity is assumed to be proportional to 𝑀𝑗(𝐷)2. This is a 

reasonable assumption if in the Rayleigh scattering regime, which is almost always the case 

for a 3 GHz radar. For hydrometeor 𝑗, the radar reflectivity 𝑍𝑗, is determined in linear units 

of mm6 m−3 from the integral 𝑍𝑗 = 𝑅𝑗 ∫ 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0
. The variable 𝑅𝑗 (which is 

cancelled out in (3.8) and (3.9)) is a function of constants given by: 

𝑅𝑗 = 1018
|𝐾𝑗|

2

|𝐾water|2
(

6

𝜋𝜌𝑗
)

2

                                            (3.10) 
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Where |𝐾𝑗|
2
 and 𝜌𝑗 are the dielectric factor and density of hydrometeor 𝑗. 

     Terminal velocity-diameter relationships are commonly expressed as simple power laws: 

𝑉𝑗(𝐷) = 𝑝𝑗𝐷𝑞𝑗                                                         (3.11) 

Where 𝑉 is the fall velocity and 𝐷 is the drop diameter. For ice aggregates, 𝐷 is the melted 

diameter. Values of 𝑝 and 𝑞 for raindrops, ice aggregates and hailstones are taken from Atlas 

and Ulbrich (1977), Gunn and Marshall (1958) and Cheng and English (1982), respectively. 

These have been converted into S.I. units (See Table 3.1). 

     The hydrometeor mass 𝑀, as a function of particle diameter 𝐷, can be expressed in the 

form: 

𝑀𝑗(𝐷) = 𝑎𝑗𝐷𝑏𝑗                                                          (3.12) 

Where 𝑀 and 𝐷 are in S.I. units.      

     The PSD of each hydrometeor class is assumed to be well approximated by an 

exponential distribution of form given by Marshall and Palmer (1948): 

𝑛𝑗(𝐷) =  𝑁0𝑗
exp(−𝜆𝑗𝐷)                                                (3.13) 

Where 𝑁0𝑗
 and 𝜆𝑗 are the intercept (𝑛𝑗(𝐷 = 0)) and slope parameters, respectively, for 

hydrometeor type 𝑗. This is considered a suitable approximation; spectral broadening owing 

to a distribution in fall velocity has been shown to be nearly independent of the functional 

form of the hydrometeor PSD (Lhermitte, 1963).  

     For rain and ice aggregates, values of 𝜌, |𝐾|2, 𝑎, 𝑏 and 𝑁0, are sourced from the UK Met 

Office Unified Model microphysics scheme, as summarised in Stein et al. (2014) (See Table 

3.1). For hail, an intercept parameter of 𝑁0 = 1.2 ×  104 m−4 is taken from Waldvogel et 

al. (1978). As there is variability in values of 𝑁0𝑗
 presented in the literature, the sensitivity 

of 𝜎TV𝑗

2  to 𝑁0𝑗
 is tested in Section 3.3.4. 



79 
 

 

Table 3.1:   Parameter values used in 𝜎TV𝑗

2  calculations. The value of 𝑁0 was calculated for 

aggregates using 𝑁0 = 2 × 106𝑒(−0.1222𝑇max) from Cox (1988), assuming  𝑇max = −10°C. 

The variable 𝜌𝑗 = 917 kg m−3 is the density of solid ice, as assumed density for hail and ice 

aggregates. 

 

     To evaluate (3.7), (3.11) – (3.13) is first substituted into (3.8) and (3.9) using values from 

Table 3.1. By using a gamma function solution for the integrals resulting after substitution 

of this into (3.7), expressions are derived for the Doppler spectral variance contribution from 

the three hydrometeor types. At this point, they are functions only of PSD parameter, 𝜆𝑗. An 

expression for 𝜆𝑗 is determined as a function of 𝑍𝑗 by evaluating 𝑍𝑗 =

𝑅𝑗 ∫ 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0
 using (3.12) and (3.13), and rearranging for 𝜆𝑗: 

𝜆𝑗 =  (
𝑅𝑗𝑎𝑗

2𝑁0𝑗
Γ(1 + 2𝑏𝑗)

𝑍𝑗
)

1
1+2𝑏𝑗

                                      (3.14) 

Variable Units Rain Aggregates Hail 

𝝆 kg m−3 1000 917 917 

|𝑲𝟐| kg2 m−6 0.930 0.174 0.174 

𝒑 m1−q s−1 386.6 8.34 142.6 

𝒒 - 0.67 0.31 0.50 

𝒂 kg m−b 523.6 0.0444 480.1 

𝒃 - 3 2.1 3 

𝑵𝟎 m−4 8×10⁶ 6.8×10⁶ 1.2×10⁴ 

𝑹 kg2 m−6 3.65×10¹² 8.12×10¹¹ 8.12×10¹¹ 



80 
 

     Substituting (3.14) into the 𝜎TV𝑗

2 (𝜆𝑗) expressions and simplifying using values from Table 

3.1, produces spectral variance equations for rain, ice aggregates and hail: 

𝜎TVrain

2 = 0.62 𝑍0.191 sin2 𝜃el                                           (3.15) 

𝜎TVagg

2 = 0.029 𝑍0.119 sin2 𝜃el                                         (3.16) 

𝜎TVhail

2 = 1.7 𝑍0.143 sin2 𝜃el                                             (3.17) 

Where 𝑍 is in mm6 m−3, 𝜎TV𝑗

2  has units of m2 s−2 and 𝜃el is the elevation angle of the 

reflectivity observation measured from the surface. Together, these expressions can be used 

to estimate the Doppler variance contribution due to the distribution of hydrometeor fall 

speeds in 𝑉6. 

 

3.3.3   Analysis of σTV𝑗

2  

     Reflectivity measurements in the observations with CAMRa are generally no less than -

20 dBZ, and no more than 60 dBZ. In this application, the minimum and maximum potential 

variances considered are 𝜎TV𝑗

2 (𝑍𝑗 = −20 dBZ) and 𝜎TV𝑗

2 (𝑍𝑗 = 60 dBZ). 

     Equations (3.15) – (3.17) show that 𝜎TV𝑗

2  increases with radar reflectivity and elevation 

angle of observation. For a vertically pointing radar beam, and given 𝑍𝑗 in the range of -20 

dBZ to 60 dBZ, 𝜎TVrain

2  increases from 0.26 to 8.62 m2 s−2,  𝜎TVagg

2  from 0.02 to 0.15 m2 s−2 

and 𝜎TVhail

2  from 0.90 to 12.53 m2 s−2. In the DYMECS observations, RHIs scanned at a 

maximum elevation angle of 15°. Figure 3.4 displays (3.15) – (3.17) for a vertically pointing 

beam (solid lines) and corresponding values at 15° elevation (‘+’ lines). Compared with a 

vertically pointing beam, if 𝑍𝑗 is sampled at 15° elevation, values of 𝜎TV𝑗

2  are respectively 

reduced by a factor of 14.  
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Figure 3.4:   Change in 𝜎TV𝑗

2  for rain, ice aggregates and hail, with radar reflectivity and 

elevation angle of observation. Solid lines refer to observations made at vertical incidence; 

‘+’ lines represent corresponding values when sampled at 𝜃el = 15°.  

 

     A maximum 𝜎TVagg

2  of 0.15 m2 s−2 suggests that the contribution from ice aggregates is 

always less than 𝜎neg
2 . Assuming that ice aggregates constitute all hydrometeors above 𝑧0°C, 

then 𝜎TV
2  is negligible for all observations made above this level. For rain, which is assumed 

to be limited to below 𝑧0°C, the equivalent maximum of 8.62 m2 s−2 is comparably large, 

and so 𝜎TVrain

2  cannot always be neglected. Equation (3.15) shows 𝜎TVrain

2 (60 dBZ) < 𝜎neg
2  

for all rain observed at 𝜃el < 13.9°.  

     Under the circumstances that: 𝜎TVagg

2  is always negligible, 𝜎TVrain

2 is negligible when 𝜃el <

13.9°, 𝑧0°C can be estimated, and hail is not present, the negligibility of 𝜎TV
2  can be described 

purely in terms of distance from the radar. A minimum distance from the radar 𝑅min, is 

estimated whereby if the range of a reflectivity observation is larger than 𝑅min, 𝜎TV
2  can be 

assumed negligible. This is a simple function of 𝑧0°C such that: 

𝑅min =
𝑧0°C

tan (13.9°)
                                                    (3.18) 
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Where both 𝑅min and 𝑧0°C are in kilometres. In the case of the DYMECS RHI observations 

(𝑧0°C ~ 1.5 km),  𝜎TV
2  is negligibly small everywhere at ranges further than 6.1 km from the 

radar. Due to rain occurring nearer than 𝑅min, but below 𝑧0°C, 𝜎TV
2  can still be significant due 

to rain occurring nearer than 𝑅min, below 𝑧0°C, but remains conditional on both 𝑍rain and 

𝜃el. The minimum range of observed clouds in DYMECS was approximately 30 km from 

the radar, and so 𝜎TV
2  contributions from rain and ice aggregates are neglected under the 

assumption that liquid raindrops exist only below 𝑧0°C.  

     Supercooled liquid raindrops can exist above 𝑧0°C, especially in vigorous convective 

clouds. However, when scanning at 𝜃el = 13.9°, the beam reaches a height of 7.4 km at 30 

km range from the radar (the nearest observations), and 10 km (the approximate maximum 

observed cloud height) at 40 km range. This suggests that supercooled liquid raindrops 

would need to be observed with 𝑍 = 60 dBZ at least 7.4 km above the surface, and only 

between 30 – 40 km from the radar, for 𝜎TVrain

2  to exceed 𝜎neg
2 . This suggests that it is 

extremely likely that 𝜎TVrain

2  can always be neglected in the DYMECS observations. 

     According to (3.17), hail can contribute more to 𝜎𝑣
2 than rain. However, hail is generally 

a much less common, more localised occurrence than rain. As a result, the detection of hail 

using retrieved radar parameters (e.g. hail differential reflectivity 𝐻DR, Depue et al. (2007)) 

is necessary before (3.17) can be reliably applied. If observations do indeed include hail, 

(3.17) suggests that 𝜎TVhail

2 (60 dBZ) falls below 𝜎neg
2  for all hail observations made at 𝜃el <

11.5°. Due to the potential for hail presence both above and below 𝑧0°C, negligibility based 

on range from radar is not stated. However, as the minimum range of observations was 30 

km, hail would need to be observed at 6 km altitude for 𝜎TVhail

2  to exceed 𝜎neg
2 , which is 

unlikely to have occurred.  

     Based on the threshold for negligibility 𝜎neg
2 , the estimation of 𝑧0°C, and the assumptions 

made in the derivation of (3.15) – (3.17), variance contributions from 𝜎TV
2  are neglected in 

the DYMECS observations. 
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3.3.4   Sensitivity of σTVrain

2  and σTVhail

2  to assumptions 

     This section summarises the sensitivity testing of (3.15) and (3.17) to some of the 

assumptions made in their derivation. For ice aggregates, no reasonable sensitivity testing 

(an order of magnitude increase and decrease in 𝑁0agg
, and reducing density to 500 kg m−3) 

has resulted in the factor three increase in 𝜎TVagg

2  required to even conditionally exceed 𝜎neg
2 . 

As a result, sensitivity tests involving ice aggregates have been omitted from this discussion, 

concluding that 𝜎TVagg

2  is always negligible. 

     For rain and hail, little uncertainty is expected in the majority of values in Table 3.1. The 

first potential source of uncertainty lies with the treatment of hail as dry with the density of 

solid ice. Sensitivity to this assumption is tested by comparing 𝜎TVhail

2  when hailstones are 

dry with the density of solid ice (as assumed in the derivation of (3.17)), to 𝜎TVhail

2  from low-

density and melting hailstones. Melting hailstones will possess a thin outer layer of liquid 

water, appearing to the radar as large raindrops. To simulate this effect, the dielectric factor 

|𝐾hail|
2, in (3.10) is changed from 0.174 to 0.93. Resulting variance contributions are 21% 

lower than for dry hailstones for any given reflectivity. Assuming all hailstones below 𝑧0°C 

have a liquid water layer, this reduction leads to 𝜎TVhail

2 (60 dBZ) ≈ 𝜎TVrain

2 (60 dBZ) below 

𝑧0°C.  For observations made below 𝑧0°C = 1.5 km, (3.18) can be used to show that 𝜎TV
2 <

𝜎neg
2  at all ranges further than 6.5 km from the radar, regardless of hydrometeor type. If 

further considering melting hailstones consisting of low-density ice (𝜌hail = 500 kg m−3), 

this leads to a combined reduction in 𝜎TVhail

2  of 34%, at which point 𝜎TVhail

2 (60 dBZ) <

𝜎TVrain

2 (60 dBZ). 

     A second source of uncertainty lies with the chosen values of 𝑁0; with respective values 

for rain and hail assumed constant. For rain, 𝑁0rain
= 8 × 106 m−4 is taken from Marshall 

and Palmer (1948), who demonstrate its independence of rainfall intensity. The assumption 
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of a constant 𝑁0hail
 is not as safe as for raindrops as it depends on the largest hail diameter, 

𝐷max, and has been shown to vary from 10³ –  10⁵ m−4 (Ulbrich, 1974). The value of 

𝑁0hail
= 1.2 × 104 m−4 selected from Waldvogel et al. (1978) is roughly in the centre of 

this range and is very similar to values of 1.1 − 1.4 × 104 m−4 presented by Ulbrich 

(1977). To test the sensitivity of results to 𝑁0, respective values for rain and hail are reduced 

by an order of magnitude. This decrease is chosen to be large enough to roughly account for 

the maximum potential variability in 𝑁0. The result is a 55% increase in 𝜎TVrain

2  and a 39% 

increase in 𝜎TVhail

2 . Such a large increase in 𝜎TVrain

2  is unlikely given the confidence in the 

selection of 𝑁0rain
 (Marshall and Palmer, 1948). However, the corresponding increase for 

𝜎TVhail

2  is more likely realised given the stated uncertainty in 𝑁0hail
. Such an increase would 

imply that 𝜎TVhail

2 (60 dBZ) < 𝜎neg
2  only if observed at 𝜃el < 9.8°. By instead increasing 

values of 𝑁0 by an order of magnitude (not shown), 𝜎TVhail

2  and 𝜎TVrain

2  are respectively 

reduced by 36% and 28%. In summary, only decreasing 𝑁0 by an order of magnitude has 

resulted in larger variance contributions from rain and hail. The resulting percentage increase 

in 𝜎TVhail

2  is not large enough to significantly change the criteria for negligibility, and for 

rain, the percentage increase is likely to be unrealistic given the confidence in the selected 

value of 𝑁0rain
. 

     A final source of uncertainty lies with the selected velocity-diameter relationship for hail, 

𝑉hail(𝐷). There is broader diversity in 𝑉hail(𝐷) in the literature than for rain; the 𝑉rain(D) 

power law provided by Atlas and Ulbrich (1977) is assumed to be accurate. Figure 3.5 

compares 𝜎TVhail

2  derived using 𝑉hail(𝐷) from Cheng and English (1982), Ulbrich (1977), 

and Pruppacher and Klett (1978). As the 𝑉hail(𝐷) relationship provided by Ulbrich (1977) 

involves the same exponent (𝑞 =  0.5) as that used for (3.17), the resulting effect is a 29% 

increase in 𝜎TVhail

2  for all reflectivity owing to the different values of 𝑝. The 𝑉hail(𝐷) 

relationship from Pruppacher and Klett (1978) however, involves 𝑞 =  0.8. This leads to a 
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change in exponent in (3.17), causing a decrease in 𝜎TVhail

2 (𝑍 < 40 dBZ) and an increase for 

𝜎TVhail

2 (𝑍 > 40 dBZ). 𝜎𝑇𝑉hail

2 (60 dBZ) is increased by 43%. Figure 3.5 suggests that the 

selection of 𝑉hail(𝐷) can have a substantial and varied effect on 𝜎TVhail

2 , which limits the 

precision of conditions under which 𝜎TVhail

2  is negligible. 

     Listed among the four key assumptions required for the retrieval of ε using radar (see 

Section 1.4.2; assumption 4), the effects of turbulence must be reflected in the velocity of 

hydrometeors sampled within the beam. Hailstones falling at terminal velocity are the least 

likely hydrometeor type to satisfy this assumption, indicating that the retrieval of turbulence 

in falls of hail may be unreliable. Combining this with the discussed sources of uncertainty 

and the potential for high values of 𝜎TVhail

2 , sufficient care should be taken to identify the 

presence of hail in scanned clouds to ensure reliable retrievals of ε. 

 

 

 

Figure 3.5:   The impact on 𝜎TVhail

2  of using different 𝑉hail(𝐷) relationships in the derivation 

of (3.17); (1) 𝑝 = 142.6, 𝑞 = 0.5; (2) 𝑝 = 162.0, 𝑞 = 0.5; (3) 𝑝 = 359.0, 𝑞 = 0.8. All 

plotted lines correspond to values of 𝜎TVhail

2  sampled at vertical incidence (𝜃el = 90°). 
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3.3.5   Conclusions 

     Equations (3.15) – (3.17) suggest that at vertical incidence, 𝜎TV
2  can constitute a large 

proportion of 𝜎𝑣
2, especially when sampling through heavy rain and hail. However, the 

contribution falls sharply with reflectivity and sin2 𝜃el. Although a considered approach has 

been taken to ensure values stated in Table 3.1 are suitable, 𝜎TVhail

2  is sensitive to 𝑁0 and 

𝑉(𝐷). Variation in these can lead to a 39%, and more than a 29% increase in 𝜎TVhail

2 , 

respectively. 

     Under the assumptions made in the derivation of (3.15) – (3.17): 

• The variance contribution from ice aggregates is always negligibly small. 

• In the absence of hail, 𝜎TV
2  is negligible if observations are made at 𝜃el < 13.9°. If 

𝑧0°C < 1.5 km, 𝜎TV
2  is negligible at ranges further than 6.1 km from the radar. 

Equation (3.18) can be used to revise this distance for different values of 𝑧0°C. 

• If wet hail is present but confined to below 𝑧0°C = 1.5 km, 𝜎TV
2  is negligible at ranges 

further than 6.5 km from the radar. 

• If dry hail is present (not confined to below 𝑧0°C), 𝜎TV
2  is negligible if 𝜃el < 11.5°. If 

observations of dry hail are made at 𝜃el > 11.5°, (3.17) can be used to determine the 

variance contribution as a correction to 𝜎𝑣
2 will be required. 

• The negligibility of 𝜎TV
2  is considerably simpler to declare in the absence of hail. If 

there is potential for hail in observations, measures should be taken to identify its 

presence, especially in regions of high 𝜎𝑣
2.  

     For DYMECS observations, clouds were rarely observed closer than 30 km from the 

radar, so contributions from 𝜎TV
2  are neglected. 
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3.4   Doppler variance from shear of the radial wind 

     This section outlines methods to calculate the velocity variance due to shear of the radial 

wind across the radar beam, 𝜎𝑠
2. This involves: (1) establishing the correct equations to 

calculate 𝜎𝑠
2; (2) developing methods to calculate shear across a fixed scale throughout all 

observations; and (3) deriving statistical relationships between shear along the beam and 

shear in the azimuthal (transverse across the beam) direction – a dimension not sampled 

using RHIs, but that contributes to 𝜎𝑣
2. 

 

3.4.1   Equations for 𝜎𝑠
2 

     So far in this chapter, variance terms 𝜎TV
2 , 𝜎𝛼

2, 𝜎o
2, 𝜎B

2 and 𝜎H
2 have been examined for 

significance relative to 𝜎t
2. When applied to observations collected with CAMRa, these 

terms individually provide a negligible variance in 𝜎𝑣
2. When the effects are combined, the 

variance potentially included in 𝜎t
2 is expected to result in an over-estimation of ε by no 

more than 15% when 𝜎t
2 = 5 m2 s−2, with the error decreasing as turbulence becomes more 

significant (red line in Figure 3.2). The remaining task, which is detailed in this section, is 

to separate the contributions to 𝜎𝑣
2 from shear and turbulence, so that 𝜎t

2 can be found from: 

𝜎t
2 ≃ 𝜎𝑣

2 − 𝜎𝑠
2                                                           (3.19) 

and used in (1.25) to calculate ε. 

     In (3.19), 𝜎𝑠
2 represents the sum of variance contributions from the shear of the mean 

Doppler velocity 𝑣̅, in the elevation 𝜃, azimuthal 𝜑, and radial 𝑟, directions. Similar to 𝜎𝑣
2, 

𝜎𝑠
2 can be decomposed into a sum of statistically independent variances from shear in each 

direction: 

𝜎𝑠
2 = 𝜎𝑠𝜃

2 + 𝜎𝑠𝜑
2 +  𝜎𝑠𝑟

2                                                    (3.20) 
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     Various equations have been used in past literature to calculate 𝜎𝑠𝜃
2  and 𝜎𝑠𝜑

2  that are not 

mutually consistent (e.g. Chapman and Browning, 2001). Due to the uncertainty in the 

literature, these equations are derived and presented here. 

     In the elevation, 𝜃 and azimuthal, 𝜑 dimensions of the beam, the Doppler variance 

contribution from shear, 𝜎𝜃,𝜑
2 , can be calculated from: 

𝜎𝜃,𝜑
2 =  (𝑅𝑆𝜎2)2                                                        (3.21) 

Where 𝑆 is the shear of 𝑣̅ in the respective dimension, with units s−1, 𝑅 is the distance from 

the radar in metres, and 𝜎2 is the standard deviation of the two-way beam profile. 

     Assuming a circularly symmetric Gaussian beam pattern, the beam profile can be 

considered the same in both elevation and azimuthal dimensions. The one-way beam pattern, 

𝐵 can be described as, 

𝐵 =  𝑒
−(

𝜃2

2𝜎1
2)

                                                            (3.22) 

Where 𝜃 is the angle away from the beam axis, and 𝜎1 is the standard deviation of 𝐵. The 

two-way beam pattern is therefore simply: 

𝐵2 =  𝑒
−(

2𝜃2

2𝜎1
2)

= 𝑒
−(

𝜃2

2𝜎2
2)

                                                 (3.23) 

Where it can be seen that 𝜎2 =
𝜎1

√2
. 

     The one-way and two-way half-power beam widths are defined as 𝜃1 and 𝜃2, respectively, 

so that when 𝜃 = ±
𝜃1

2
, 𝐵 =  

1

2
. By substituting these values into (3.22) and rearranging, the 

variance of the one-way beam pattern is found in terms of 𝜃1: 

𝜎1
2 =

𝜃1
2

8 ln 2
                                                             (3.24) 
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Since 𝜎2 =
𝜎1

√2
, the variance of the two-way beam pattern, again in terms of 𝜃1, is found to 

be: 

𝜎2
2 =

𝜃1
2

16 ln 2
                                                            (3.25) 

Which agrees with that stated in Doviak and Zrnic (1984; page 118, Equation 5.75). 

Substituting (3.25) into (3.21) provides equations to calculate Doppler variance due to shear 

of 𝑣̅ in the elevation 𝜎𝑠𝜃, and azimuthal 𝜎𝑠𝜑, directions: 

𝜎𝑠𝜃
2 =

(|𝑆𝜃|𝑅𝜃1)2

16 ln 2
                                                        (3.26) 

𝜎𝑠𝜑
2 =

(|𝑆𝜑|𝑅𝜃1)
2

16 ln 2
                                                       (3.27) 

An expression for variance due to shear along the beam 𝜎𝑠𝑟
2 , is also taken from Doviak and 

Zrnic (1984), which assumes a rectangular transmitted pulse: 

𝜎𝑠𝑟
2 = (

0.35|𝑆𝑟|𝑐𝜏

2
)

2

                                                    (3.28) 

As the beam profile is the same in the 𝜃 and 𝜑 planes, (3.26) and (3.27) differ only by the 

observed shear. In (3.28), 𝑐 is the speed of light in m s−1, and 𝜏 is the pulse duration in 

seconds (for CAMRa, 𝜏 = 0.5 μs). The shears 𝑆𝜃, 𝑆𝜑 and 𝑆𝑟 are found by differentiating 𝑣̅ 

in the respective planes (
𝑑𝑣̅

𝑑𝜃
,

𝑑𝑣̅

𝑑𝜑
,

𝑑𝑣̅

𝑑𝑟
), and have units of s−1. For shear to be measured 

consistently along each plane, the length of 𝑑𝜃, 𝑑𝜑 and 𝑑𝑟 is held to one constant, and each 

plane is centred on the beam axis. As the variance contribution is independent of the sign of 

𝑆, magnitudes are used in (3.26) – (3.28). In each 𝑉6, velocity gradients are assumed to be 

linear, and reflectivity is assumed to be uniform. 
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     The variability of each component of 𝜎𝑠
2 with |𝑆| is plotted in Figure 3.6, with a 

comparison made with 𝜎neg
2 . In the case of 𝜎𝑠(𝜃,𝜑)

2 , the curves are identical and are plotted 

corresponding to |𝑆| observed at 30 km and 150 km, which is the approximate minimum and 

maximum range of observed clouds. Variance from 𝜎𝑠𝑟
2  is independent of range owing to the 

fixed pulse length. For |𝑆𝑟| in the range of 0 to 0.02 s−1, 𝜎𝑠𝑟
2  increases with |𝑆𝑟|2 from 0 to 

0.28 m2 s−2. If |𝑆𝑟| < 0.027 s−1 then 𝜎𝑠𝑟
2 < 𝜎neg

2 , indicating that for observations with 

CAMRa, 𝜎𝑠𝑟
2  is negligibly small except in cases of extreme shear. Although 𝜎𝑠𝑟

2  is generally 

small enough to neglect, the chosen method of calculating shear (Section 3.4.3) allows the 

direct measurement of |𝑆𝑟| to be made simply. Contributions from 𝜎𝑠𝑟
2  are therefore included 

in 𝜎𝑠
2, and removed from 𝜎𝑣

2. 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6:   Doppler variance contribution from components of 𝜎𝑠
2 as a function of observed 

shear magnitude |𝑆|. For a given shear, 𝜎𝑠𝜃
2  and 𝜎𝑠𝜑

2  are identical, and are plotted at the 

approximate minimum and maximum range of observations. The threshold of negligibility 

𝜎neg
2 , is plotted as a dashed line at 0.5 m2 s−2 for comparison. 
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     For shear observed in 𝜃 and 𝜑 directions at 30 km range, 𝜎𝑠(𝜃,𝜑)
2  increases from 0 to 0.75 

m2 s−2 for |𝑆𝜃,𝜑| in the range of 0 to 0.02 s−1. At 150 km range, 𝜎𝑠(𝜃,𝜑)
2  increases to as much 

as 18.7 m2 s−2 when |𝑆𝜃,𝜑| is 0.02 s−1. This suggests that, even at the minimum range of 30 

km, if |𝑆𝜃,𝜑| > 0.016 s−1, then 𝜎𝑠(𝜃,𝜑)
2  is always greater than 𝜎neg

2  for observations with 

CAMRa. Given that shears of this magnitude are quite possible (especially in the elevation 

direction), 𝜎𝑠(𝜃,𝜑)
2  will be considered for all of observations.  

     The high resolution of CAMRa means that radial velocity shears are often measured over 

small distances, and result in negligible contributions to 𝜎𝑣
2, however, as shown, this is not 

true for shear of sufficient values. To ensure accuracy in point-to-point values of ε, and 

consistency in application across full RHI scans, 𝜎𝑠
2 is measured and removed for every 𝑉6 

in the observations. 

 

3.4.2   The separation of shear and turbulence - theory 

     The separation of shear and turbulence is a significant challenge. The high resolution of 

CAMRa means that the spatial scales of 𝑉6 are likely to be within the inertial sub-range of 

turbulence. The calculation of 𝜎𝑠
2 is necessary to remove velocity variance contributions to 

𝜎𝑣
2 from outside the range of scales sampled by the radar. This section aims to determine a 

suitable scale over which to calculate shear for DYMECS observations.       

     Methods to distinguish 𝜎𝑠
2 from 𝜎t

2 are guided by the framework employed to derive ε 

from 𝜎𝑣
2 summarised in Section 1.1.4. The scale over which to calculate shear in (3.26) – 

(3.28) (hereafter referred to as Ʌ𝑠), must be larger than the dimensions of 𝑉6. If Ʌ𝑠 is similar 

to the outer scale of the inertial sub-range Ʌ0, then shear will largely arise from features in 

the flow that have scales outside the inertial sub-range. Variance due to these gradients are 

then removed from 𝜎𝑣
2 using (3.26) – (3.28). However, Ʌ𝑠 should not be larger than Ʌ0, 
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otherwise variance from outside the inertial sub-range may be included in 𝜎t
2, leading to an 

over-estimation of ε. 

     Without the means to routinely determine Ʌ0 for each of the convective storm 

observations collected in DYMECS, an estimation is made based on past literature. As 

summarised in Section 1.1.3, Ʌ0 can vary from 0.4 – 3 km in storms of different scale and 

intensity and vary spatially within the cloud. The larger estimates of Ʌ0 were made in severe 

thunderstorms/hailstorms with strong, large-scale circulations. In comparison, the 

convective storms constituting the DYMECS dataset are generally much weaker, which may 

limit how applicable these values are to these observations. An assumption is made that Ʌ0 

scales with the size of the largest eddy-generating mechanisms in a convective cloud, i.e. the 

main updraft circulation. If this circulation is shallow, Ʌ0 is expected to be small as the 

downscale cascade to isotropic turbulence begins at a smaller eddy scale. As updraft heights 

on DYMECS case days generally ranged from 3 – 8 km (Nicol et al., 2015), Ʌ0 is assumed 

to be ~ 1 km for this application. This includes a further assumption that Ʌ0 remains constant 

throughout individual clouds. Chapman and Browning (2001) found a factor two change in 

Ʌ0 to have very little effect on their resultant values of ε. However, this involved assuming 

a Ʌ0 of only 200 m for shallow shear layers, so the sensitivity of retrieved ε to Ʌ𝑠 is tested 

in Section 3.5.1. 

 

3.4.3   The separation of shear and turbulence – velocity surface 

model 

     The application of methods to distinguish 𝜎𝑠
2 from 𝜎t

2 will depend on the relationship 

between the spatial dimensions of 𝑉6, and Ʌ0. For CAMRa, the largest dimension of 𝑉6 is 

less than the estimate of Ʌ0, therefore 𝜎𝑠
2 must be determined from gradients in 𝑣̅ calculated 

in each plane over enough contiguous 𝑉6 volumes to constitute a spatial scale of Ʌ0. In RHI 
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data, only 𝑆𝜃 and 𝑆𝑟 can be calculated directly, although variance due to 𝑆𝜑 will still 

contribute to 𝜎𝑣
2. This section outlines methods to directly measure 𝑆𝜃 and 𝑆𝑟 from RHI 

fields of 𝑣̅, to determine 𝜎𝑠𝜃
2  and 𝜎𝑠𝑟

2 . The variance from 𝜎𝑠𝜑
2  is estimated through 

investigating a statistical relationship between 𝑆𝜑 and 𝑆𝑟 in PPI observations; this is covered 

in Section 3.4.4. 

     To evaluate shear over a constant spatial scale in data with polar co-ordinates is not 

straight-forward. With two-dimensional radar data, the most effective way to achieve this is 

to use least-squares regression to fit a velocity surface to Doppler velocity data. A suitable 

framework for this velocity surface is taken from Neter and Wasserman (1974) and has been 

applied in previous turbulence retrieval studies (Istok and Doviak 1986, Meischner et al., 

2001). When applied to RHIs, the velocity surface is given by: 

𝑣𝑖 = 𝑣0 + 𝑆𝜃 𝑙𝜃𝑖
+ 𝑆𝑟𝑙𝑟𝑖

+ 𝐸𝑖                                              (3.29) 

Where 𝑙𝜃𝑖
 and  𝑙𝑟𝑖

 are the elevation and radial distances between 𝑣𝑖 and 𝑣0, given by: 

𝑙𝜃𝑖
= 𝑅0(𝜃𝑖 − 𝜃0)    ;     𝑙𝑟𝑖

= 𝑅𝑖 − 𝑅0                                                   

In (3.29), 𝑅 is the range from the radar, and 𝜃 is the elevation angle in radians, and 𝑆𝜃 and 

𝑆𝑟 are linear shears found by the model. This velocity model is applied individually to each 

𝑉6 in the RHI. Centred to best approximation on a selected Doppler velocity point, 

neighbouring data points are used to constitute (as closely as is possible) a Ʌ𝑠 – by – Ʌ𝑠 grid 

of data, 𝐺. Approximation is required in cases where 𝐺 is not symmetrical about the central 

𝑉6, e.g. using Ʌ𝑠 = 1200 m would require one extra 300-m radial cell on one side of the 

central point. In these cases, the bias is directed in the positive radial and elevation directions. 

The velocity found at the central point of 𝐺, 𝑣0, is located at (𝜃0, 𝑅0), and 𝑣𝑖 is the Doppler 

velocity at the point (𝜃𝑖 , 𝑅𝑖). 
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     This formulation aims to find 𝑆𝜃, 𝑆𝑟 and 𝑣0 (hereafter referred to as output parameters) 

such that the error in velocity between 𝐺 and the model, given at each data point by 𝐸𝑖, is 

minimised. The total square error is given by: 

𝑇 =  ∑ 𝐸𝑖
2

𝑖

                                                              (3.30) 

Where (3.29) is re-arranged to find: 

𝐸𝑖 = 𝑣𝑖 − 𝑣0 − 𝑆𝜃 𝑙𝜃𝑖
− 𝑆𝑟𝑙𝑟𝑖

                                               (3.31) 

To minimise the total square error, 𝑇 is differentiated with respect to the output parameters 

using (3.30) and (3.31) and set to zero: 

𝜕𝑇

𝜕𝑣0
= ∑ 2𝐸𝑖

𝜕𝐸𝑖

𝜕𝑣0
𝑖

= ∑ −2𝐸𝑖

𝑖

= 0                                           (3.32) 

𝜕𝑇

𝜕𝑆𝜃
= ∑ 2𝐸𝑖

𝜕𝐸𝑖

𝜕𝑆𝜃
𝑖

= ∑ −2𝑙𝜃𝑖
𝐸𝑖

𝑖

= 0                                      (3.33) 

𝜕𝑇

𝜕𝑆𝑟
= ∑ 2𝐸𝑖

𝜕𝐸𝑖

𝜕𝑆𝑟
𝑖

= ∑ −2𝑙𝑟𝑖
𝐸𝑖

𝑖

= 0                                      (3.34) 

Applying the result of (3.32) – (3.34) to (3.31), produces three simultaneous equations that 

are most conveniently represented in the following matrix operation, where the constant 

factor of 2 cancels:  

(

∑ 1𝑖 ∑ 𝑙𝜃𝑖𝑖 ∑ 𝑙𝑟𝑖𝑖

∑ 𝑙𝜃𝑖𝑖 ∑ 𝑙𝜃𝑖

2
𝑖 ∑ 𝑙𝑟𝑖

𝑙𝜃𝑖𝑖

∑ 𝑙𝑟𝑖𝑖 ∑ 𝑙𝜃𝑖
𝑙𝑟𝑖𝑖 ∑ 𝑙𝑟𝑖

2
𝑖

) (

𝑣0

𝑆𝜃

𝑆𝑟

) = (

∑ 𝑣𝑖

∑ 𝑣𝑖𝑙𝜃𝑖

∑ 𝑣𝑖𝑙𝑟𝑖

)                         (3.35)      

The output parameters are then found from: 
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(

𝑣0

𝑆𝜃

𝑆𝑟

) = (

𝑛 ∑ 𝑙𝜃𝑖
∑ 𝑙𝑟𝑖

∑ 𝑙𝜃𝑖
∑ 𝑙𝜃𝑖

2 ∑ 𝑙𝑟𝑖
𝑙𝜃𝑖

∑ 𝑙𝑟𝑖
∑ 𝑙𝜃𝑖

𝑙𝑟𝑖
∑ 𝑙𝑟𝑖

2

)

−1

(

∑ 𝑣𝑖

∑ 𝑣𝑖𝑙𝜃𝑖

∑ 𝑣𝑖𝑙𝑟𝑖

)                         (3.36)      

Where 𝑛 is the number of data points in 𝐺.  

     Each component on the right of (3.36) can be calculated directly from 𝐺, meaning the 

only prescribed variable for this model is the spatial scale over which it is applied, Ʌ𝑠. The 

lengths 𝑙𝜃𝑖
 and 𝑙𝑟𝑖

 are calculated as absolute distances between the central points of 𝑣0 and 

𝑣𝑖. The output parameters are then attributed to the data point at the centre of 𝐺. By 

completing this process for all points in a scan, fields of 𝑆𝜃 and 𝑆𝑟 are obtained for each 𝑉6 

in an RHI, which represent shear over a fixed spatial scale, Ʌ𝑠. 

 

      

Figure 3.7:   Application of velocity surface to determine shear in Doppler velocity over a 

scale of 900 m. (a) The mean Doppler velocity 𝑣̅, from CAMRa, (b) the Doppler velocity 𝑣0 

from the velocity model synonymous with applying a 2-D smoothing to 𝑣̅ over 900 m scale, 

(c) and (d) 𝑆𝜃 and 𝑆𝑟 evaluated over 900 m scale in 𝑣̅. The grey contour outlines the 

reflectivity returns to CAMRa for this case, data loss in (a) is due to removal by SNR, 

additional data loss in (b) – (d) is due to incomplete surface fitting at cloud edges. 
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     Figure 3.7 shows an application of this model to a wind field observed on 25 August 

2012, where Ʌ𝑠 is set to 900 m. The Doppler velocity from CAMRa is shown in Figure 3.7a, 

and model outputs 𝑣0, 𝑆𝜃 and 𝑆𝑟 are shown in subplots (b), (c) and (d), respectively. In (b), 

𝑣0 is a comparable Doppler velocity to (a), however, it has been reconstructed using the 

gradients in the surrounding velocity. As a result, 𝑣0 essentially results from smoothing (a) 

over 900 m in range and elevation, strongly attenuating velocity gradients on the scale of 𝑉6.  

The shears in (c) and (d) represent the gradients in the smoothed velocity field that, if 

Ʌ𝑠 ~ Ʌ0, are associated with velocity scales outside the inertial sub-range of turbulence. The 

magnitude of these shears can therefore be used in (3.26) and (3.28) to remove Doppler 

variance due to shear. In applying this method, 𝑆𝜃 and 𝑆𝑟 are defined for each data point in 

(a), this enables the point-for-point calculation, and removal, of shear-induced Doppler 

variance. 

     In applying (3.29) to observations, 𝐺 will only be partially filled with data for those 𝑣 

located on the periphery of reflectivity echoes, meaning (3.36) cannot be performed. Data 

located less than ~ 
Ʌ𝑠

2
 from the edge of observed clouds is lost, therefore the degree of data 

loss increases with Ʌ𝑠. In Figure 3.7, the grey contour outlines the full extent of reflectivity 

returns before removal of data by signal-to-noise ratio (SNR). In (a), the Doppler velocity 

has been corrected by SNR, however, the additional loss in data found in the fields from the 

velocity model result from application of (3.29) within ~ 
Ʌ𝑠

2
 of the cloud edge. As 𝜎𝑠

2 can 

only be accounted for where shear can be measured, this data loss is carried through to fields 

of ε.  

     The 300-m range resolution of the observations collected during DYMECS restricts 

values of Ʌ𝑠 to multiples of 300 m in order to include whole radial cells, and a minimum of 

600 m to include at least two radial cells for the calculation of shear. Under these restrictions, 

assuming Ʌ0 ~ 1 km, a value of Ʌ𝑠 = 900 m is applied to DYMECS observations.  
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3.4.4   Doppler variance from shear in the azimuthal direction, 𝜎𝑠𝜑
2  

     When RHI or PPI scans are performed, the radial velocity field is observed in two 

dimensions, the radial direction and the scanning direction. Although displayed in two 

dimensions, these fields include data from three-dimensional sample volumes. In terms of 

RHIs, Doppler variances from azimuthal velocity gradients 𝜎𝑠𝜑
2 , will contribute to 𝜎𝑣

2, but 

direct estimation is not possible due to scanning in the elevation direction. Unless an adjacent 

RHI is performed, separated from the first scan by an angular distance comparable to the 

width of the beam, 𝑆𝜑 cannot be determined directly. As shown in Section 3.4.1, variance 

contributions from 𝜎𝑠𝜑
2  cannot be ignored for this application. To account for 𝜎𝑠𝜑

2  in 

circumstances where it cannot be measured directly, statistical relationships are sought 

between |𝑆𝜑| and |𝑆𝑟| using PPI radar observations. 

     PPI scans were performed alongside RHIs scans on DYMECS case days. Doppler 

velocity fields from PPI scans can be differentiated in the radial and azimuthal directions to 

determine fields of |𝑆𝜑| and |𝑆𝑟|. By collecting many co-located pairs of |𝑆𝜑| and |𝑆𝑟| from 

these fields, |𝑆𝜑| can be parametrised as a function of |𝑆𝑟|. Applying the result to RHIs, each 

|𝑆𝑟| can be used to estimate a corresponding value of |𝑆𝜑|, and its uncertainty. This accounts 

for all components of 𝜎𝑠
2, removing variance that would otherwise have been included in 𝜎t

2. 

     In order for relationships derived between |𝑆𝜑| and |𝑆𝑟| to be of most benefit, shear must 

be calculated over a mutual spatial scale. This must also be consistent with that used to 

calculate |𝑆𝜃| and |𝑆𝑟| in RHIs, i.e. Ʌ𝑠 = 900 m. To achieve this, a version of (3.29) tailored 

to PPI scans is used, where 𝑆𝜃𝑙𝜃𝑖
 is replaced by 𝑆𝜑𝑙𝜑𝑖

, and 𝑙𝜑𝑖
 is the azimuthal distance 

between 𝑣𝑖 and 𝑣0. By generating pairs of |𝑆𝜑| and |𝑆𝑟| values for each 𝑉6 across many PPIs, 

a dataset of co-located values of |𝑆𝜑| and |𝑆𝑟| was produced for statistical assessment. 

     Figure 3.8a shows the combined two-dimensional distribution of approximately 10⁶ pairs 

of 𝑆𝜑 and 𝑆𝑟 sourced from 31 PPIs performed on 20 April 2012, at angles of elevation 
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ranging from 𝜃el = 0.5 − 5°. The distribution is approximately 2-D Gaussian in shape, and 

roughly centred on 𝑆𝑟 = 𝑆𝜑 = 0. The circular, symmetrical shape reveals that there is little 

correlation between the sign and magnitude of 𝑆𝜑 and 𝑆𝑟. However, it does suggest that the 

same range of shear values are observed in each direction, which appear normally distributed 

around 𝑆𝑟 = 𝑆𝜑 = 0. This further suggests that there is little discernible bias in the data. 

Which indicates that, together, the PPIs include observations of wind vectors made at a full 

range of sampling angles. Figure 3.9a displays an equivalent 2-D histogram for 5 × 105 

pairs of 𝑆𝜑 and 𝑆𝑟 sourced from 31 PPIs performed on 25 August 2012. The resulting 

distribution is very similar in shape to Figure 3.8a (albeit with fewer data points), indicating 

that the shear statistics are consistent between the two cases. As a result, statistical 

relationships between |𝑆𝜑| and |𝑆𝑟| derived from the shower cloud data later in this section 

can be reliably applied to retrievals for both cases. 

     The independent distributions of 𝑆𝜑 and 𝑆𝑟 in the shower cloud, shown in Figure 3.8b, 

were produced by integrating the 2-D distribution along lines of 𝑆𝑟 = 0 and 𝑆𝜑 = 0, 

respectively. Both 𝑆𝜑 and 𝑆𝑟 are approximately normally distributed, however, a small 

positive bias is evident in 𝑆𝑟. Closer inspection reveals that 52.7% of 𝑆𝑟 values are positive, 

compared to only 50.4% of 𝑆𝜑 values. This is a notable bias considering the sample size 

(5.4 × 104 more positive values, than negative), and one that primarily seems to affect 𝑆𝑟. 

To investigate this, any inconsistencies between the sampling of 𝑆𝑟 and 𝑆𝜑 were considered. 
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Figure 3.8:   (a) 2-D histogram comprised of ~ 106 pairs of 𝑆𝜑 and 𝑆𝑟 from 31 PPIs 

performed on 20 April 2012. A bin-width of 10−4 s−1 is used, and counts are expressed in 

log10 units. (b) The independent distributions of 𝑆𝜑 and 𝑆𝑟. 

Figure 3.9:   Equivalent to Figure 3.8 for deep cloud 𝑆𝜑 and 𝑆𝑟. 

 

     A likely reason for the 2.7% positive bias in 𝑆𝑟 (hereafter referred to as ∆𝑆𝑟) appears to 

be contamination of radial gradients in 𝑣 by a positive background vertical shear, owing to 

scanning at non-zero elevation. Figure 3.10 provides a simplified plan view of a 90° PPI 

sector scan performed at a non-zero elevation, with the radar located in the bottom-left. For 

a given 𝑉6 (shown in purple), the gradient in velocity between 𝑣1 and 𝑣2 (𝑆𝑟) will sample 

any vertical shear that exists between 𝑧2 and 𝑧3, at an angle of 𝜃el. However, the gradient in 

velocity between 𝑣3 and 𝑣4 (𝑆𝜑) will not be affected due to its measurement along an arc of 

equal height. If the background vertical shear is non-zero, a bias will result in 𝑆𝑟 that is not 

seen in 𝑆𝜑. 
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Figure 3.10:   A plan view of a 90° PPI sector scan performed at non-zero elevation. Radial 

gradients in velocity 𝑆𝑟, (𝑣1 to 𝑣2) are made over an increase in height (𝑍3 − 𝑍2), whereas 

azimuthal gradients are not. If environmental vertical shear is non-zero, this introduces 

biases in 𝑆𝑟. 

 

      

 

 

 

 

 

 

 

 

 

Figure 3.11:   Significant positive correlation between the degree of positive bias in radial 

shear 𝑆𝑟, and elevation angle, 𝜃el. 
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     Any 𝑆𝑟 observed at non-zero elevation will be a function of horizontal shear 𝑆𝑥, vertical 

shear, 𝑆𝑧 and 𝜃el: 

𝑆𝑟 =  𝑆𝑥 cos(𝜃el) + 𝑆𝑧 sin(𝜃el)                                          (3.37)   

The degree to which 𝑆𝑧 is responsible for ∆𝑆𝑟 can be estimated using (3.37) for 𝜃el = 1.95° 

– the average elevation of the 31 PPIs. The observed bias only results when 𝑆𝑥 is negative, 

and 𝑆𝑟 is turned positive by the influence of 𝑆𝑧. The distribution of 𝑆𝑥 is unknown, but due 

to low elevation scanning, it is assumed to be very similar to that of 𝑆𝑟. By setting 𝑆𝑟 = 0 in 

(3.37) and setting 𝑆𝑥 to the 47.3th percentile of 𝑆𝑟, the 𝑆𝑧 required to result in ∆𝑆𝑟 = 2.7%, 

is estimated to be a realistic value of 1.4 × 10−3 s−1. As 𝜃el increases, a larger component 

of 𝑆𝑧 would be sampled. Therefore, ∆𝑆𝑟 would be expected to increase with 𝜃el. Figure 3.11 

displays a scatter plot of ∆𝑆𝑟 and 𝜃el from each of the 31 PPIs. The result is a statistically 

significant positive correlation (r = 0.77; p < 10−6), which strongly suggests ∆𝑆𝑟 results 

from contamination by 𝑆𝑧. It is worth noting that when sampling clouds against the mean 

flow, the radar will observe a negative elevation shear in Doppler velocity when 𝑆𝑧 is 

positive. On 20 April 2012, the mean flow was south-westerly. For the 31 PPIs considered 

in this analysis, the mean azimuthal scanning angle weighted by the data counts contained 

in each scan was 3.5° (approximately northerly). Therefore, on average, scans were collected 

in the direction of the flow (albeit at an angle of 40°), providing further evidence that the 

observed positive bias in 𝑆𝑟 has resulted from contamination from positive background 

vertical shear. Interestingly, a 2.7° positive bias in 𝑆𝑟 was also found in the deep cloud 

analysis (see Figure 3.9b). In this case, the weighted mean azimuthal scanning angle (119.4°) 

was at a similar angle (30°) to the eastward cloud motion. 

     Once the magnitude of 𝑆𝜑 and 𝑆𝑟 is taken, which is the quantity relevant to 𝜎𝑠
2,  ∆𝑆𝑟 will 

translate to a small positive bias in |𝑆𝑟| that varies with the sampling elevation. Statistical 

relationships between |𝑆𝜑| and |𝑆𝑟| will reflect this bias for an average 𝜃el of 1.95°. 
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However, because the bias is small, and |𝑆𝑟| is sampled at a range of elevations in RHIs, 

these relationships are expected to remain accurate. 

     To derive statistical relationships between |𝑆𝜑| and |𝑆𝑟|, |𝑆𝑟| is first divided into 

contiguous intervals of width 1 × 10−4 s−1. For each of these intervals, the associated 

dataset of |𝑆𝜑| is extracted, and its probability density function (PDF) in generated. Figure 

3.12 demonstrates that the resulting PDFs are very well approximated by the gamma 

distribution, given for a random variable 𝑥, by: 

𝛾(𝑥|𝑘, 𝑙) =
𝑥𝑘−1𝑒−

𝑥
𝑙

Γ(𝑘)𝑙𝑘
                                                              (3.38) 

      

 

Figure 3.12:   Change in the PDFs of observed |𝑆𝜑| for three selected intervals of |𝑆𝑟| (solid 

black lines). Distributions of |𝑆𝜑| are well approximated by Gamma PDFs (3.38). The width 

of each |𝑆𝑟| interval is 1 × 10−4 s−1, and the interval of |𝑆𝑟| for each distribution is 

displayed in the figure titles. 
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Figure 3.13: (Left) Quadratic (|𝑆𝑟| < 0.0017 s−1) and linear (|𝑆𝑟| > 0.0017 s−1) functions 

fit to 𝑘 (3.39). (Right) Linear function fit to 𝑙 (3.40). 

 

     Figure 3.12 further illustrates that the change in the distribution of |𝑆𝜑| with |𝑆𝑟| can be 

accurately simulated using (3.38). For each |𝑆𝑟| interval, the gamma distribution parameters 

𝑘 (shape) and 𝑙 (scale) are extracted from the corresponding distribution of |𝑆𝜑|. Figure 3.13 

displays the change in these distribution parameters with |𝑆𝑟|. By numerically fitting 

functions to relationships between (𝑘, 𝑙) and |𝑆𝑟|, 𝑘 and 𝑙 are defined in terms of |𝑆𝑟|. A 

quadratic function is used to model 𝑘 for |𝑆𝑟| < 0.0017 s−1, with a linear function fit to 𝑘 

for |𝑆𝑟| < 0.0017 s−1. The quadratic function is chosen to more closely model 𝑘 for small 

values of |𝑆𝑟|, which are far more frequently encountered (88% of |𝑆𝑟| values). A linear 

function is applied to approximate 𝑘 for |𝑆𝑟| > 0.0017 s−1, where 𝑘 is variable owing to 

corresponding |𝑆𝜑| data becoming increasingly sparse. A linear function accurately models 

𝑙 throughout all values of |𝑆𝑟|. The resulting quadratic and linear expressions are a function 

only of |𝑆𝑟|, with coefficient values included in Table 3.2: 

𝑘 = {
|𝑆𝑟|(𝐴1|𝑆𝑟| + 𝐴2) + 𝐴3,    if |𝑆𝑟| ≤ 0.0017 s−1

𝐵1|𝑆𝑟| + 𝐵2,                         otherwise                 
                        (3.39) 

𝑙 = 𝐶1|𝑆𝑟| + 𝐶2                                                          (3.40) 
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Table 3.2:   Coefficient values A – C used in (3.39) and (3.40) to determine |𝑆𝜑| distribution 

parameters from |𝑆𝑟|. Coefficient values D – E used in (3.41) and (3.42), respectively, to 

calculate mean and median values of |𝑆𝜑| from |𝑆𝑟|. 

 

     For a given value of |𝑆𝑟|, (3.39) and (3.40) are used to produce a corresponding PDF of 

|𝑆𝜑|. An estimate of |𝑆𝜑| is then derived as the mean of this PDF, where the mean of the 

gamma distribution is simply the product of 𝑘 and 𝑙. The median, and 25th and 75th 

percentiles of the distribution are also determined. By recording these statistics from 

distributions corresponding to a spectrum of |𝑆𝑟| values, and least-squares fitting quadratic 

functions to the result, (3.39) and (3.40) can be refined into expressions relating the mean, 

|𝑆𝜑|
mn

, and median, |𝑆𝜑|
md

, with |𝑆𝑟|: 

|𝑆𝜑|
mn

= |𝑆𝑟|(𝐷1|𝑆𝑟| + D2) + 𝐷3                                        (3.41)  

|𝑆𝜑|
md

= |𝑆𝑟|(𝐸1|𝑆𝑟| + E2) + 𝐸3                                        (3.42) 

where coefficient values are again provided in Table 3.2. 

Coefficient Value Coefficient Value 

𝑨𝟏 40212.80 𝐷1 5.77 

𝑨𝟐 -7.91 𝐷2 0.39 

𝑨𝟑 1.15 𝐷3 0.00057 

𝑩𝟏 18.65 𝐸1 5.73 

𝑩𝟐 1.22 𝐸2 0.29 

𝑪𝟏 0.31 𝐸3 0.00043 

𝑪𝟐 0.00048 - - 
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Figure 3.14:   The change median (3.41), mean (3.42) and inter-quartile range values of |𝑆𝜑| 

with |𝑆𝑟|. 

 

     Figure 3.14 shows the change in mean, median and inter-quartile range (IQR) percentiles 

of |𝑆𝜑| with |𝑆𝑟|. Distributions of |𝑆𝜑| get broader with |𝑆𝑟| (as displayed in Figure 3.12), 

and as a result, the size of the IQR increases with |𝑆𝑟|. Values of |𝑆𝜑|
md

 increase with |𝑆𝑟| 

according to (3.42), with |𝑆𝜑|
mn

 values approximately 25% larger than |𝑆𝜑|
md

. The skew 

of the gamma distribution towards small values results in mean and median values that are 

lower than the |𝑆𝑟| used to generate the |𝑆𝜑| distribution. This effect is illustrated in Figure 

3.14, where |𝑆𝜑|
mn

 and |𝑆𝜑|
md

 values are roughly half of |𝑆𝑟|, becoming ~ 0.01 s−1 for the 

largest observed values of |𝑆𝑟| = 0.02 s−1. This apparent limit to |𝑆𝜑| is likely to lead to 

under-estimation of |𝑆𝜑| in cases where |𝑆𝜑| is otherwise larger than 0.01 s−1. Due to the 

increased potential for including biases in ε when shear correction has been significantly 
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under-estimated, |𝑆𝜑|
mn

 is chosen to estimate |𝑆𝜑|, due to the capacity of (3.41) to predict 

larger shear values. 

     The standard deviation of |𝑆𝜑|
mn

 (given by |𝑆𝜑|
SD

) provides an indication to the degree 

of uncertainty in |𝑆𝜑|
mn

 and can be determined by using (3.39) and (3.40) to compute 𝑙√𝑘. 

Figure 3.15 displays the ratio of |𝑆𝜑|
SD

 to |𝑆𝜑|
mn

, expressed as a function of |𝑆𝜑|
mn

. The 

ratio decreases from 0.93 – 0.79 for |𝑆𝜑|
mn

 in the range of 0 – 0.02 s−1. This indicates that 

the uncertainty in |𝑆𝜑|
mn

 is large, reflecting the apparent lack of correlation in 𝑆𝜑 and 𝑆𝑟 

illustrated in the 2-D distribution displayed in Figure 3.8a.  

     To estimate the error in 𝜎𝑠
2 resulting from this uncertainty, typical shear values are 

selected for |𝑆𝑟| and |𝑆𝜃|, observed at the typical 60-km range of observations. In the case 

where |𝑆𝑟|= |𝑆𝜃| = 5 × 10−3 s−1, |𝑆𝜑| is determined from (3.41) to be 2.7 × 10−3 s−1, 

with an error of 89% from Figure 3.15. Substituting these shears into (3.26) – (3.28), (3.20) 

is then used to determine the change in 𝜎𝑠
2 when |𝑆𝜑| is both 89% larger and smaller than 

2.7 × 10−3 s−1. When 89% larger, 𝜎𝑠
2 increases by 54%, and when 89% smaller, 𝜎𝑠

2 

decreases by 21%. This suggests that 𝜎𝑠
2 is sensitive to the uncertainty in |𝑆𝜑| when 

|𝑆𝑟| ~ |𝑆𝜃|. However, |𝑆𝑟| is typically much smaller than |𝑆𝜃| in observations. By repeating 

this procedure for |𝑆𝜃| = 5 × 10−3 s−1 and |𝑆𝑟| = 1 × 10−3 s−1, an 89% increase in |𝑆𝜑| 

only results in a 9% increase in 𝜎𝑠
2, and a 4% decrease when |𝑆𝜑| reduced by 89%. This 

indicates that 𝜎𝑠
2 is insensitive to the uncertainty in |𝑆𝜑| when |𝑆𝑟| ≪ |𝑆𝜃|; which is typical 

for these observations. 

     Using (3.41), |𝑆𝜑|
mn

 can be determined from |𝑆𝑟| alone, which is then used in (3.27) to 

calculate its variance contribution, 𝜎𝑠𝜑
2 . All components of 𝜎𝑠

2 in (3.20) can be accounted for 

and subtracted from 𝜎𝑣
2 to find 𝜎t

2 using (3.19), which in turn is applied in (1.25) to find ε. 
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Figure 3.15:   The standard deviation |𝑆𝜑|
SD

, normalised by the mean shear value, |𝑆𝜑|
mn

, 

and expressed as a function of |𝑆𝜑|
mn

. The ratio decreases with |𝑆𝜑|
mn

 from 0.93 – 0.79 for 

|𝑆𝜑|
mn

 of 0 – 0.02 s−1. 

 

3.5   Eddy dissipation rates 

     Based on the uncertainty in the scale over which to calculate shear Λ𝑠 in Section 3.4, this 

brief section examines the sensitivity of retrievals of ε to Λ𝑠. 

 

3.5.1   Sensitivity of ε to Λ𝑠 

     The selection of the scale over which to calculate shear Λ𝑠, was made through estimation 

of the outer-scale of the inertial sub-range Λ0, for the DYMECS observations (see Section 

3.4.2). This considered reference values for Λ0 determined for various convective scenarios 

from the literature. By assuming Λ0 scales with the depth of convective motions, and under 
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limitations from data resolution, an estimation of Λ0 = 900 m was made for DYMECS 

observations, which was then selected for Λ𝑠. Due to the uncertainty in this value, and the 

assumption that Λ0 is the same throughout all observed clouds, the sensitivity of retrieved ε 

to Λ𝑠 is investigated. 

     To perform this sensitivity test, ε is determined in RHI scans of convective clouds using 

different values of Λ𝑠 in methods to calculate 𝜎𝑠
2. This analysis involves 44 RHI scans 

performed on 25 August 2012 which provide 3.5 × 105 comparable values of ε for each Λ𝑠 

applied. For each RHI, ε(Λ𝑠) is determined where Λ𝑠 is 600 m, 900 m, 1500 m, 2100 m, and 

2700 m, where ε(Λ𝑠 = 900 m) is chosen as a control εc, to assess the impact of changing 

Λ𝑠 on the retrievals of ε. As described in Section 3.4.3, the degree of data loss on the 

periphery of reflectivity echoes increases with Λ𝑠 when fitting the velocity surface. To ensure 

the comparison of ε is consistent across different Λ𝑠, the largest data loss (when Λ𝑠 =

2700 m) is imposed on all ε(Λ𝑠) for each RHI scan. 

     Figure 3.16 displays the PDFs of ε(Λ𝑠) using the combined data from all RHIs. It shows 

that the distribution of ε is largely insensitive to Λ𝑠, though there is a small reduction in the 

likelihood of low values of ε (less than 0.01 m2 s−3) with decreases in Λ𝑠. When calculating 

shear over a smaller Λ𝑠, the shear magnitude, and therefore 𝜎𝑠
2, is likely to be higher. This 

means more of 𝜎𝑣
2 is removed due to shear, and the derived ε is subsequently lower, with the 

converse true if Λ𝑠 is large. To quantify the sensitivity of εc to this effect beyond the 

qualitative interpretation of PDFs, the ratio of ε(Λ𝑠) to εc is recorded for each individual 

data point. Through determining the mean of this ratio for data points falling in intervals of 

εc, the effect is further expressed as a function of εc. 
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Figure 3.16:   The insensitivity of probability density distributions of ε to the scale Λ𝑠, over 

which shear is calculated for 𝜎𝑠
2. 

 

     Figure 3.17 and Figure 3.18 show the change in the mean and standard deviation, 

respectively, of ε(Λ𝑠)/εc with εc for different values of Λ𝑠. When Λ𝑠 < 900 m, the resulting 

mean ε is smaller than εc. This results from the removal of more variance from 𝜎𝑣
2 when 

shear is calculated over a finer scale, i.e. 𝜎𝑠
2 is larger due to stronger velocity gradients 

measured over smaller scales, meaning 𝜎t
2, and therefore ε, is reduced. Conversely, when 

Λ𝑠 > 900 m, mean ε is larger than εc due to weaker shears observed over larger scales, 

leading to smaller corrections to 𝜎𝑣
2 from 𝜎𝑠

2, and therefore larger ε. 
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Figure 3.17:   The sensitivity of εc to Λ𝑠 determined by calculating the mean ratio of ε(Λ𝑠) 

to εc for different intervals of εc. Each interval has a width of 0.01 m2 s−3. 

 

 

 

 

 

 

 

 

 

 

 

      

Figure 3.18:   The standard deviation of the mean ratio of ε(Λ𝑠) to εc for different intervals 

of εc. Each interval has a width of 0.01 m2 s−3. 
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     For εc < 0.1 m2 s−3 (which contains 98.7% of εc observations), mean ε(Λ𝑠) differs from 

εc by less than 5%, with a near-constant standard deviation of 10% (shown in Figure 3.18). 

This suggests that when εc < 0.1 m2 s−3, εc is insensitive to any change in Λ𝑠. For εc >

0.1 m2 s−3 however, mean ε(Λ𝑠) differs from εc by an increasing, and then decreasing 

amount with εc. For Λ𝑠 > 900 m, ε(Λ𝑠) does not differ from εc by any more than 8% for all 

values of εc, and does not change by more than 2 – 3% when Λ𝑠 is increased from 1500 m 

to 2700 m. This suggest that εc is always insensitive to increases in Λ𝑠, regardless of the 

value of εc. When Λ𝑠 = 600 m, mean ε can be 15 – 25% less than εc for εc > 0.1 m2 s−3, 

with a standard deviation of up to 30%. This indicates that large values of εc can be sensitive 

to decreases in Λ𝑠. The higher sensitivity to Λs in regions of high εc may reflect the 

importance of local shear in generating strong turbulence on length scales within 𝑉6.  

     In summary, εc only appears sensitive to changes in Λ𝑠 when  εc > 0.1 m2 s−3, and then 

only to decreases in Λ𝑠. This demonstrates that the crude estimate of Ʌ0 (and therefore Ʌ𝑠), 

made in the absence of direction measurements, does not lead to large errors in ε. However, 

assumptions of small Λ𝑠 should not be made without suitable justification (e.g. 

measurements of Λ0) to avoid under-estimating large values of ε. 

 

3.6   Summary and Conclusions 

     A comprehensive analysis of processes contributing to the variance of the Doppler 

velocity spectrum 𝜎𝑣
2, has been performed, with the objective of developing a rigorous 

algorithm to estimate turbulence intensity expressed as eddy dissipation rate, ε. To perform 

this retrieval method, only three simple radar fields are required, these are the radar 

reflectivity, the mean Doppler velocity, and the Doppler spectrum variance. The method 

involves quantifying, or demonstrating the negligibility of, terms in (3.1), where a threshold 

for negligibility of 0.5 m2 s−2 has been established in Section 3.1. Combining the realistic 
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contributions to 𝜎𝑣
2 from terms that are neglected results in a maximum positive bias in ε of 

15% when 𝜎t
2 = 5 m2 s−2; this bias decreases as 𝜎t

2 becomes larger. 

     New equations to quantify the Doppler variance due to a distribution of hydrometeor fall-

speeds (𝜎TV
2 ) have been presented for ice aggregates, raindrops and hail. Contributions from 

ice aggregates 𝜎TVagg

2 , are concluded as negligibly small in all circumstances. Variance due 

to rain and hail (𝜎TVrain

2  and 𝜎TVhail

2 ) are negligible when observed at elevations lower than 

13.9° and 11.5°, respectively. When assuming the height of the melting layer is 1.5 km, 𝜎TV
2  

is negligible at distances further than 6.5 km from the radar. If scanning vertically through 

heavy rain or hail, 𝜎TV
2  can be larger than 8 m2 s−2. High-elevation scanning is therefore not 

recommended when attempting to retrieve turbulence from 𝜎𝑣
2, though (3.15) – (3.17) can 

be used to correct for 𝜎TV
2  if necessary. In DYMECS, observations were rarely made closer 

than 30 km from the radar, so 𝜎TV
2  was neglected for this application. 

     Methods have been presented to remove contributions to 𝜎𝑣
2 from shear over scales larger 

than those sampled by the radar. This was achieved through computing shear over a constant 

spatial scale (Ʌ𝑠), using linear velocity surface fitting techniques, as employed in past 

studies. Resulting values of ε have been found to be largely insensitive to Ʌ𝑠. To permit the 

estimation of ε from 𝜎t
2, it is of key importance that the largest dimension of 𝑉6 is lower than 

Ʌ0. To account for contributions to 𝜎𝑣
2 from shear in the azimuthal dimension of the radar 

beam, 𝜎𝜑
2, new equations have been presented for the mean and median azimuthal shear as 

a function of radial shear alone. This can be used to account for 3-D shear-induced Doppler 

variance in 2-D radar scans, and can be used simply to further improve the accuracy of 

retrieved ε. After noting inconsistency in the equations for the calculation of 𝜎(𝜃,𝜑)
2  in the 

literature, a full derivation has been presented in Section 3.4.1. 

     The method presented in this chapter has sourced, developed, and added to many decades 

of turbulence retrieval research to form the most comprehensive approach to date. Though 

ultimately applied to a specific radar and observational dataset, the considerations made are 
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suitably general to form a reliable framework for turbulence retrieval with other high-

resolution Doppler weather radars capable of sampling within the inertial sub-range. The 

results of this chapter have been used to guide changes to the scanning strategy and radar 

configuration used for collecting observations with CAMRa for turbulence retrieval (see 

Section 6.2.3). 
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Chapter 4 

Turbulence in observed clouds 

4.1   Introduction, aims and overview 

     Following from the development of a method to retrieve turbulence characteristics, 

expressed in terms of the dissipation rate ε, in radar observations in Chapter 3, this section 

introduces and motivates methods to investigate turbulence in convective clouds (Section 

4.1.1). An overview of the analysis methods used in subsequent sections is then provided in 

Section 4.1.2. 

 

4.1.1   Introduction and aims 

     The method to retrieve ε in Chapter 3 was developed so that it could be applied identically 

across many RHIs, independent of the day of observation. This consistency allows the 

variation in ε between different scans to be more reliably attributed to the characteristics and 

physical processes of each cloud. Although the retrieved ε refers to the dissipation of 

turbulence, it acts as a proxy for turbulent intensity under the assumption that turbulence is 

locally dissipated, i.e. intense turbulence is expected in regions of high ε. On this foundation, 

the strength of in-cloud turbulence can be reliably compared between observed clouds; 

ranging from individual cloud cases to datasets of observations for different DYMECS case 

days. As outlined in Section 2.2, the analysis of ε in observations (and MetUM in Section 

2.3) is focused on two case studies: 20 April 2012 “showers” case, and 25 August 2012 

“deep cloud” case. Any mention of radar observations hereafter refers to those collected for 

these case studies. 
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     The DYMECS RHIs provide only snapshot vertical cross-sections of radar fields, so it is 

not possible to analyse ε in the context of the three-dimensional circulations and processes 

within the cloud. The retrieved turbulence in a specific RHI might be influenced by features 

of the flow which are out of the plane of the scan, and hence not observed. A comprehensive 

explanation for ε observed in each RHI is therefore difficult to make. However, more general 

relationships between ε and cloud characteristics are expected to be represented within the 

RHI data. Given these factors, and the breadth of the RHI datasets available, a statistical 

approach is chosen to relate ε to the characteristics of observed clouds. Such an approach 

provides an assessment of observed turbulence that is representative of all observations for 

both case studies, providing relationships that can be tested against corresponding 

simulations in the MetUM. 

     This chapter has two primary aims: (1) to apply the turbulence retrieval detailed in 

Chapter 3 throughout large datasets of radar observations to investigate the characteristics 

of turbulence in observed clouds, and (2) to ensure that analyses can be performed 

consistently with MetUM data to evaluate turbulence from the Smagorinsky-Lilly scheme 

in Chapter 5. Under these primary aims, this chapter intends to address to following 

questions as part of a statistical investigation: 

• What are the typical values of eddy dissipation rate in observed clouds? 

• How does the intensity of turbulence change with height in observed clouds? How 

does this vertical distribution differ between shower and deep clouds? 

• How is turbulence spatially distributed in clouds with a single convective circulation? 

Which cloud features control this distribution?  

• What is the relative impact of different cloud characteristics on turbulent intensity? 

How is the intensity of turbulence related to the strength of convective updrafts? 

• What are the spatial scales of turbulent features in observed clouds? Do these scales 

differ in shower and deep clouds? 
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4.1.2   Chapter overview 

     This chapter includes the detailed statistical analysis of ε in observed clouds to improve 

understanding of how turbulence is related to the characteristics of convection, and to 

provide a reliable framework to evaluate the parametrisation of turbulence in the MetUM. 

     In Section 4.2, retrievals of ε are presented for individual shower and deep clouds. A 

detailed comparison is made to identify the features of ε in observed clouds, how these relate 

to other retrieved radar fields, and how they differ between the two cases. This comparison 

is extended to all observed clouds on both days, to investigate differences in the vertical 

distribution of ε. 

     To begin to relate ε to the characteristics of observed clouds, Section 4.3 outlines an 

investigation into turbulence in single-cell convective clouds, i.e. those that exhibit a single 

updraft-downdraft circulation. The simple motions in this variant of convective storm 

(compared to those in multicell or linear convection) offer the best opportunity to attribute ε 

to specific cloud processes. The spatial distribution of ε in individual clouds is presented, 

together with statistical relationships between ε and cloud characteristics, e.g. updraft 

strength and cloud size. 

     Owing to the importance of convective motion in generating turbulence, Section 4.4 

presents a more focused analysis of ε associated with convective updrafts. This section 

includes details of the automated detection of updrafts, and a statistical examination of ε 

found within many of these regions over both case days. 

     The spatial characteristics of coherent ε features are presented in Section 4.5. This 

involves the automated detection of ε features at varying threshold values to examine the 

change in their spatial scales with intensity, and how features of similar intensity vary 

between shower and deep clouds. 
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4.2   General features of ε in observed clouds 

     This section commences the analysis of ε in convective clouds observed with CAMRa. 

This is achieved through applying the retrieval method to radar observations collected for 

the two contrasting case studies summarised in Section 2.2. More specifically, this section 

provides an overview of the general features of retrieved ε. This includes a detailed 

comparison of ε in two contrasting cloud cases (Section 4.2.1), and the change in the vertical 

distribution of ε between the datasets of shower and deep convective clouds (Section 4.2.2). 

 

4.2.1   Analysis of retrievals for single cloud cases 

     For a given cloud observation, vertical velocities (see Section 2.2.3) together with radar 

fields measured directly with CAMRa provide a detailed picture of each case. When 

combined with fields of ε, the turbulence within each cloud can be analysed in the context 

of many storm characteristics. This section provides a detailed comparison of two observed 

clouds; a typical example from both cases days. The example from shower case day will be 

referred to as the “shower cloud”, and the example from the deep convection case day as the 

“deep cloud”. 

     Figures 4.1 and 4.2 compare retrieved ε to various radar fields for the shower and deep 

clouds, respectively. These examples have been selected to reflect the typical size and 

strength of convective storms observed on both days. Both figures include panels of (a) radar 

reflectivity 𝑍, (b) mean Doppler velocity 𝑣̅, (c) vertical velocity 𝑤, (d) Doppler velocity 

variance 𝜎𝑣
2, (e) Doppler variance due to shear 𝜎𝑠

2, and (f) ε expressed in log10 units. Table 

4.1 lists the mean and 99.9th percentile values (99th for 𝑤) of each field except 𝑣̅, as well as 

for shear magnitudes |𝑆𝜃|, |𝑆𝜑| and |𝑆𝑟|. High percentiles are chosen to represent the largest 

value of each field instead of the maximum observed value, which is susceptible to error 

from noise. The data counts of each field are included in Table 4.1 to illustrate the suitability 
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of the chosen percentiles to approximate the largest values for each parameter. The data 

counts for 𝑤 are roughly a factor of 10 lower than for other parameters, due to the coarser 

grid of the retrieval. As a result, the 99th percentile is selected to represent the largest value 

of 𝑤, instead of the 99.9th percentile. 

 

 

Table 4.1:   Mean and 99.9th percentile values (99th for 𝑤) of various retrieved parameters 

for the examples of shower cloud, and deep convective cloud shown in Figure 4.1 and Figure 

4.2, respectively. Data counts are listed to provide context for percentiles, and to illustrate 

the data loss through signal-to-noise thresholding and velocity surface fitting, as well as the 

coarser resolution of 𝑤. 

 

 

 

 

 

  Data Counts Mean  99.9th pctl. (99th 

for 𝒘) 

Parameter Unit Shower Deep Shower  Deep  Shower  Deep  

𝒁 𝐝𝐁𝐙 4754 16528 25.7 25.2 49.6 57.2 

𝒘 𝐦 𝐬−𝟏 513 1197 0.7 0.4 3.6 12.1 

𝝈𝒗
𝟐 𝐦𝟐 𝐬−𝟐 4731 16476 2.30 3.15 8.43 20.30 

𝝈𝒔
𝟐 𝐦𝟐 𝐬−𝟐 3700 14129 0.04 0.05 0.26 0.65 

𝛆 𝐦𝟐 𝐬−𝟑 3700 14129 0.02 0.04 0.09 0.61 

|𝑺𝜽| 𝐬−𝟏 3700 14129 0.0017 0.0027 0.0063 0.0155 

|𝑺𝝋| 𝐬−𝟏 3700 14129 0.0010 0.0013 0.0026 0.0045 

|𝑺𝒓| 𝐬−𝟏 3700 14129 0.0011 0.0017 0.0048 0.0089 
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Figure 4.1:   Example ε retrieval for an RHI scan of a convective storm performed on the 

20 April 2012 (showers). Included is (a) radar reflectivity, (b) Doppler velocity, (c) vertical 

velocity, (d) total Doppler variance, (e) Doppler variance due to shear, and (f) eddy 

dissipation rate displayed in log10 units. The grey contour outlines reflectivity returns before 

correction by SNR. 

 

     In Figure 4.1, the observed shower cloud is approximately 10 km wide at the base, and 6 

km in height. As shown in Figure 4.1c, the main updraft region is located between ranges 

𝑅 = 53 km and 𝑅 = 57 km, and spans the surface to 5 km in height. Within the updraft 

region, 𝑤 generally ranges from 1 – 3 m s−1, with a largest value of 3.6 m s−1. The highest 

reflectivity (see Figure 4.1a) is observed in and below the location of the main updraft, where 

𝑍 is as large as 50 dBZ, indicating heavy precipitation at the surface. A second region of 

positive 𝑤 is found at an approximate range of 𝑅 = 52 km, between 2 – 4 km from the 

surface. A column of enhanced reflectivity (~ 40 dBZ) is again found in and below the 



120 
 

feature, indicating a second, weaker core of precipitation within the cloud. The majority of 

the observed central area of the cloud is dominated by rising motion, which leads to 

divergence at the top of the cloud indicated in 𝑣̅ (Figure 4.1b).  

     The Doppler velocity variance shown in Figure 4.1d has a mean of 2.30 m2 s−2, with 

values up to 8.43 m2 s−2. A correction is made to 𝜎𝑣
2 due to the effects of shear (Figure 4.1e) 

before the residual 𝜎𝑡
2 is converted to ε using in (1.25). In this case, all corrections are 

negligibly small (less than 𝜎neg
2 = 0.5 m2 s−2), generally amounting to less than 10% of 𝜎𝑣

2. 

The largest values of 𝜎𝑠
2 are mostly associated with regions of vertical shear resulting from 

the divergence in 𝑣̅ above 4 km.  

     Figure 4.1f displays ε within the cloud, which has a mean value of 0.02 m2 s−3, and a 

largest value of 0.09 m2 s−3. Of particular interest is the spatial distribution of turbulence 

within the cloud; a large proportion of the cloud area is only weakly turbulent (ε ≤

0.01 m2 s−3), with stronger turbulence localised to specific cloud regions. The strongest, 

and most spatially consistent region of turbulence is found in a 2-km wide, 4-km deep 

column roughly co-located with the main updraft region between 𝑅 = 55 km and 𝑅 =

57 km. Strong turbulence could generally be expected here due to the shear and buoyancy 

associated with vertical motion. However, the intensity of turbulence is still varied within 

this region and does not strictly scale with the strongest 𝑤. For example, insignificant 

turbulence is associated with the region of 𝑤 ~ 2 m s−1 located between 𝑅 = 54 km and 

𝑅 = 55 km, in the lowest 3 km of the cloud. This serves to highlight the limitations of the 

data discussed in Section 4.1.1; a comprehensive explanation of observed ε cannot be made 

from vertical cross-sections alone. Instead, patterns in ε can be identified over many of these 

cases to form a statistical assessment.  

     A corresponding set of retrieved fields for the deep cloud is displayed in Figure 4.2. The 

cloud is considerably larger than the shower cloud in Figure 4.1; approximately 15 km wide 

at the base, extending to 10 km in height. Updrafts are taller than in the shower cloud, 
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displaying multi-cell characteristics with numerous updraft-downdraft circulations present 

in Figure 4.2c. The dominant updraft region is located approximately between 𝑅 = 33 km 

and 𝑅 = 34 km, and is narrower, deeper and much stronger than the main updraft of the 

shower cloud. The updraft extends to nearly 9 km in height, with 𝑤 generally ranging from 

5 – 10 m s−1, and as large as 12.1 m s−1 in the lowest 2 km of the cloud. Reflectivity exceeds 

50 dBZ in the region associated with the main updraft, increasing to 57 dBZ in the lowest 3 

km indicating the likelihood of intense precipitation to the surface. 

 

 

Figure 4.2:   Equivalent to Figure 4.1; an example retrieval of ε for an RHI scan of a 

convective storm performed on the 25 August 2012 (deep cloud case). 
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     The mean values of 𝜎𝑠
2 are similarly small in both cases (~ 0.05 m2 s−2), suggesting the 

average correction to 𝜎𝑣
2 is much less than 𝜎neg

2 . However, the largest 𝜎𝑠
2 in Figure 4.2e is 

0.65 m2 s−2, which is more than twice the largest observed in the shower cloud, and not a 

negligible correction. At small distances from the radar, 𝜎𝑠
2 is more likely to be negligibly 

small due to its scaling with 𝑅2 (see (3.26) and (3.27)). For example, if |𝑆𝜃| = |𝑆𝜑| = |𝑆𝑟|, 

𝜎𝑠
2 will be a factor of 2.5 smaller at 35 km range than at 55 km (range of shower cloud). 

Figure 4.2e suggests that even when observed at 35 km from the radar (one of the closest 

observed clouds in the DYMCES data), values of 𝜎𝑠
2 can still exceed 𝜎neg

2 . This provides a 

practical example of the need to consider shear corrections for all cases, as outlined in 

Section 3.4.1. 

     Although observed closer to the radar than the shower cloud, higher values of 𝜎𝑠
2 are 

found in the deep cloud; this results from the presence of stronger gradients in 𝑣̅. Table 4.1 

displays the average and largest values of the three components of shear magnitude used in 

the calculation of 𝜎𝑠
2. Both the mean and largest values of each shear component are higher 

in the deep cloud, with the largest values of |𝑆𝜃| a factor of 2.5 higher than in the shower 

cloud. In Figure 4.2e, the location of 𝜎𝑠
2 = 0.65 m2 s−2 (~ 𝑅 = 33 km at a height 8 km) is 

characterised by high spatial variability in 𝑣̅. This appears to be associated with the 

interaction of the top of the main updraft with the air in the surrounding environment, 

generating strong local shear.  

     The mean value of 𝜎𝑣
2 in Figure 4.2d is larger than in the shower cloud at 3.15 m2 s−2. 

The largest value of 20.3 m2 s−2 is more than twice that observed in the shower cloud. As 

for the shower cloud in Figure 4.1, 𝜎𝑠
2 is subtracted from 𝜎𝑣

2, before the residual 𝜎t
2 is used 

in (1.25) to determine ε; which is displayed in Figure 4.2f. Qualitative inspection of Figure 

4.2f indicates that turbulence is more intense and widespread within the deep cloud when 

compared to Figure 4.1f. The mean ε is 0.04 m2 s−3, which is twice as large as in the shower 

cloud, with values as large as 0.61 m2 s−3; more than a factor of six larger than in Figure 
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4.1d. Similar to Figure 4.1, strong turbulence in the deep cloud is associated with the main 

updraft region, with the largest values of ε found at the top of the updraft. However, in this 

case, strong turbulence is also more widely distributed in and around the updraft region. 

Figure 4.3 displays the probability density function (PDF) of ε for both clouds. In the deep 

cloud, low values of ε (less than 0.01 m2 s−3) appear to be much less common than in the 

shower cloud. The probability of values of ε greater than 0.02 m2 s−3 is higher in the deep 

cloud, with values extending far above the largest observed in the shower cloud. The higher 

values of ε within the deep cloud suggest that turbulence is more intense due to the much 

stronger updraft, and the broader PDF of ε suggests that more turbulent energy is being 

dissipated within the cloud as a result.  

     This detailed comparison between two contrasting cloud cases has highlighted the 

following: 

• A retrieval of ε can be analysed together with other available radar fields to begin to 

explain the strength and spatial distribution of turbulence within observed clouds. 

• Vertical cross-sections alone are insufficient to comprehensively explain all the features 

of ε, indicating a statistical assessment of ε across many cases is the optimal approach 

with this data. 

• Turbulence within the two cloud cases appears to be spatially correlated with the main 

updraft region and appears to increase in intensity with the updraft strength. Strong 

turbulence is more widely distributed within deep convective cloud. 

• The largest values of ε appear more likely to be located towards the top of the cloud, 

especially in the upper regions of the main updraft. 

     These findings suggest that relationships between ε and cloud characteristics can be 

identified in the DYMECS data, providing indications of the cloud features most important 

in generating turbulence. The depth of the available dataset suggests that methods can be 

applied to represent these relationships statistically to investigate the features of ε in 
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observed clouds. This will ultimately provide a framework of results that can be replicated 

in data from MetUM simulations to test ε produced by the Smagorinsky-Lilly sub-grid 

turbulence scheme in Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:   Comparison of the probability distribution of ε displayed in Figure 2.1f and 

Figure 2.2f for shower and deep cloud cases. 

 

4.2.2   Vertical distribution of ε in observed clouds 

     In Section 4.2.1, the analysis of ε in single cloud cases suggests that the strength and 

depth of convective updrafts may impact the vertical distribution of turbulence within the 

cloud. This is highlighted especially in the deep cloud case, where large ε is more widely 

distributed towards the top of the cloud, and in particular above the main updraft. To 

investigate this observation in more detail, the vertical distribution of ε has been determined 

from all clouds observed on the two case days. In doing this, location of the strongest 

turbulence can be determined in the context of cloud depth and compared for clouds with 

different updraft strength. 
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     This analysis uses the subset of RHI scans described in Section 2.2.4, which was derived 

from the full DYMECS observations to consist only of high quality, statistically independent 

scans for both case days. This subset includes 44 RHI scans of deep cloud and 33 scans of 

shower cloud. For each RHI, retrievals of ε are separated into vertical levels of 1-km depth 

up to the maximum cloud height; 0 – 6 km in the shower clouds, and 0 – 10 km in the deep 

clouds. For each vertical level, values of ε are collected together from each RHI (separately 

for shower and deep cloud). The 25th, 50th, 75th and 95th percentiles of ε are then 

determined from the ε associated with each vertical level to observe how the average and 

largest values of ε vary with height, and how this differs between the two case studies. These 

statistics are plotted at the midpoint of each vertical level and compared in Figure 4.4.  

 

 

Figure 4.4:   Comparison of the vertical distribution of various percentiles of ε in convective 

clouds observed on 20 April (showers) and 25 August (deep cloud), 2012. Percentiles are 

determined for each 1-km vertical layer and then plotted at the midpoint of each layer. 
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     The 95th percentiles of ε (hereafter ε95) between 0 – 1 km are approximately the same in 

shower and deep clouds, at ~ 0.025 m2 s−3. In shower clouds, ε95 remains approximately 

constant with height, varying only between 0.02 – 0.035 m2 s−3, and peaking slightly 

between 4 – 5 km, near the cloud top. In deep clouds, ε95 increases by an approximate factor 

of four from the surface to the cloud top, where ε95 approaches 0.1 m2 s−3, however, the 

increase is not linear. From 0 – 4 km in deep cloud, ε95 doubles to 0.05 m2 s−3; a factor of 

2 larger than for shower cloud at 4 km. In the central regions of deep cloud from 4 – 7 km, 

ε95 remains approximately constant with height, before increasing by a further factor of 2 

from 7 – 10 km to 0.1 m2 s−3. This indicates significant differences in the vertical profile of 

ε95 between shower and deep cloud. The updrafts in shower cloud produce turbulence with 

intensity that is approximately constant with height. However, the stronger, deeper updrafts 

in the deep clouds generate more intense turbulence and introduce a positive vertical gradient 

in ε95. 

     Median ε values are approximately constant at 0.01 m2 s−3 throughout the 6-km depth 

of shower cloud. In the same depth of deep cloud, the median is almost identical to this, but 

then increases by a factor of three from 0.01 – 0.03  m2 s−3 from 6 – 10 km. The 25th and 

75th percentiles of ε (which indicate the typical values of ε within the cloud) follow a very 

similar pattern to this, indicating that from 0 – 6 km the average intensity of turbulence is 

very similar for both cases. A reason for this is suggested in Figures 4.1f and 4.2f; turbulence 

is locally strong, but a large proportion of the cloud area is only weakly turbulent in both 

cases (ε ≤  0.01 m2 s−3). This was often the case throughout observed clouds on both days, 

which serves to explain why the bulk of ε values are so similar. The strong turbulence in the 

upper regions of deep cloud is represented similarly in the lower percentiles of ε, indicating 

a broad increase in the spatial distribution of strong turbulence in this location of deep cloud.  

     Figure 4.4 provides a convenient way to simultaneously compare the differences in 

turbulent intensity and distribution with height between the two cloud types, building on 
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features identified in Section 4.2.1. Further to this, a comparison can be made simply to the 

vertical distribution of ε in MetUM simulations for the corresponding days in Chapter 5. 

However, this analysis is limited to a broad comparison, and does not provide statistical 

relationships between ε and the characteristics of individual clouds, which forms the focus 

of the remainder of this chapter.  

 

4.3   Turbulence in single-cell convective clouds 

(SCCCs) 

     This section summarises initial attempts to explore the potential for statistical 

relationships between ε and cloud characteristics in DYMECS observations. More 

specifically, to determine whether it is possible to explain the intensity and spatial 

distribution of ε in terms of in-cloud convective circulations, and more general cloud 

characteristics.  

     The DYMECS observations are comprised of many cloud varieties, including discrete 

single-cells (one dominant updraft-downdraft circulation), multi-cell clusters, and linear 

convective features. The direct attribution of ε to specific cloud characteristics is made 

difficult in cloud cases with complex interior circulations, or where otherwise separate 

clouds are clustered together, appearing as a single cloud mass to radar. For example, the 

small spacing of multiple updraft circulations observed in multi-cell clouds (e.g. Figure 4.2) 

would lead to difficulty in relating ε to specific updraft features. Furthermore, observing 

multiple clouds as a single cloud area would bias any relationships between ε and cloud size. 

Given the limitations of using only vertical cross-sections of cloud to explain features of 

turbulence (see Section 4.2.1), a perfect analysis of ε for each cloud is not possible. However, 

the discussed problems are reduced, and the ability to explain ε is improved, by initially 

limiting the analysis of ε to more simple, discrete clouds with a single, dominant updraft-



128 
 

downdraft circulation. For the remainder of this section, these are referred to as single-cell 

convective clouds (SCCCs).  

     Details of the SCCC dataset are summarised in Section 4.3.1, and the spatial distribution 

of ε relative to the main updraft is investigated for SCCCs in Section 4.3.2. Potential 

relationships between ε in various cloud regions, and cloud characteristics, are then 

determined using correlation techniques in Section 4.3.3. 

 

4.3.1   Subset of SCCCs 

     A subset of SCCCs are derived from the dataset of shower and deep cloud RHIs 

summarised in Section 2.2.4. SCCCs are determined qualitatively in these scans by 

identifying discrete clouds that exhibit a single, dominant updraft. Discrete clouds that 

contain more than one updraft of similar strength are omitted, as are clouds that possess 

single updrafts, but have edges that are not clearly defined due to close proximity to other 

clouds. Under these constraints, 25 SCCC cases have been extracted from the full dataset; 8 

shower clouds and 17 deep clouds. As only a small proportion of the total observed clouds, 

the size of the dataset reflects the rarity of SCCCs on the case days relative to more complex 

and clustered cloud varieties. The combined 25-case dataset is suitably large to investigate 

the potential for relationships between ε and cloud characteristics. However, with only 8 

shower clouds included, reliable comparisons between the two case days are difficult to 

make. Examples of SCCCs for shower and deep cloud are shown in Figure 4.5 and Figure 

4.6, respectively. In both cases, the cloud possesses one main updraft, with cloud boundaries 

that are suitably well defined. This allows the analysis of observed ε (right panel) to be made 

in the context of a discrete cloud environment, with measurable characteristics. 
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Figure 4.5:   Example single-cell shower cloud characterised by a single, dominant updraft 

(left panel). In the right panel, ε has units of m2s−3 but is expressed on a log10 scale. The 

overlaid black lines indicate the separation of the cloud into regions (for Section 4.3.2) based 

on the updraft location. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6:   An example single-cell deep cloud; equivalent to Figure 4.5. 
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4.3.2   Spatial distribution of ε in SCCCs 

     The analysis of ε in SCCCs begins by assessing the spatial distribution of turbulence 

within the cloud, with the aim of revealing the locations that are typically most turbulent. 

This is achieved by dividing SCCCs into different cloud regions based on the location of the 

main updraft, and comparing mean values of ε observed in each region.  

 

 

Figure 4.7:    Schematic showing the separation of single-cell clouds into regions based on 

the location of the updraft. The “near” and “far” regions are named relative to the location 

of the radar during data collection. 

 

     Figure 4.7 provides a schematic representation of the separation of SCCCs into four 

regions based on the location of the main updraft. This schematic has been applied to the 

SCCC examples shown in Figure 4.5 and Figure 4.6, indicating the location of each region, 

and the corresponding values of ε. For consistency across all cases, regions are determined 

by simply placing three lines of division approximately around the main updraft. Line (a) 

(see Figure 4.7) is placed horizontally at the top of the updraft, with lines (b) and (c) placed 

from this height down to the surface on either side of the updraft. The area enclosed by (a), 

(b) and (c) is named the “updraft” region, and the area above (a) is named the “above-

updraft” region, which spans the horizontal extent of the cloud. In the case where the updraft 
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reaches the cloud top, the upper 1-km of the cloud is named the above-updraft region. Two 

more regions are defined either side of the updraft, below (a), which are named the “near” 

and “far” regions, based on the location of the radar during data collection. Due to the range 

of sampling directions during the DYMECS data collection, these regions have no specific 

definition aside from being nearer to, or further from, the radar. Any observed differences in 

turbulent intensity between these regions cannot be reliably attributed to cloud 

characteristics. Therefore, the comparison of turbulence statistics in these areas is not of 

immediate interest. However, they are analysed in the context of the main downdraft location 

later in this section.  

      

 

Figure 4.8:   (Dashed lines) Mean ε in the “near”, “far”, “updraft” and “above updraft” 

regions normalised by the cloud-average (εav) for each of the 25 cloud cases (1 – 8 refers to 

shower clouds; 9 – 25 refers to deep clouds). The solid lines represent the mean of the dashed 

lines, indicating the regions of largest ε relative to the cloud-average. 
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     For each SCCC, mean values of ε are determined in each of the four regions. These values 

are then normalised by the mean of all ε observed in each cloud, εav. Values expressed as 

factors of εav better represent the spatial distribution of ε, and can be compared between 

different clouds. Figure 4.8 compares the normalised means for each of the SCCC cases (1 

– 8 refers to shower clouds; 9 – 25 refers to deep clouds). The mean of each dashed line is 

indicated by solid lines, revealing the region of the largest ε relative to εav. 

     Although values in individual clouds appear to vary substantially, turbulence in the 

updraft, and above-updraft regions, are on average 21% and 12% higher than εav, 

respectively. In 17 of the 25 SCCCs, turbulence is strongest in either the updraft or above-

updraft region. In both shower and deep clouds, turbulence in the updraft region is 21% 

larger than εav. In only deep cloud examples, turbulence above the updraft is 20% larger 

than εav, however, corresponding values in shower clouds are 3% lower than εav. This 

suggests that although ε/εav is similar in the updraft regions of both cloud types, the stronger 

updrafts in deep clouds are more effective at producing (or possibly re-distributing) strong 

turbulence towards the cloud top. The small number of cases in the dataset limit the 

reliability of this observation, however, it is highly consistent with results comparing the 

vertical distribution of ε in both cloud types in Figure 4.4. 

     Turbulence in the near and far regions are approximately the same; lower than εav by 2% 

and 4%, respectively. In defining these regions based on the location of the radar, this 

similarity could be expected as there was no preferred scanning direction when collecting 

data with CAMRa. However, these cloud regions can be used to investigate the turbulence 

associated with convective downdrafts. For the SCCCs where the main downdraft is clearly 

defined (20 out of 25 cases), the near and far regions can be redefined to those with and 

without the main downdraft – for this analysis, these regions are referred to as A and B, 

respectively. Figure 4.5 provides an example of a cloud case where the downdraft is clearly 



133 
 

defined in the near region. In Figure 4.6 however, the main downdraft is not clearly defined, 

so the cloud is not included in this analysis.  

     Figure 4.9 compares ε/εav between regions A and B in the 20 observed SCCCs. Results 

indicate that in region A, ε is 17% lower than the cloud average, while values are 17% higher 

in region B. Turbulence in region A is only larger than εav in 3 out of 20 cloud cases, 

compared to 11 out of 20 for region B. This may suggest that downdrafts are significantly 

less important in generating turbulence than updrafts. Figure 4.5 (cloud case 2 in Figure 4.9), 

provides an example that is consistent with this result; turbulence is far weaker in the 

downdraft than in the updraft, even though the magnitude of the vertical velocity is 

approximately the same. However, the reliability of this result is limited by the smaller 

number of cloud cases analysed, the limitations of vertical cross-section data, and the lack 

of a clear explanation for the corresponding positive bias to ε in region B. 

 

 

Figure 4.9:   (Dashed lines) The mean ε (normalised by the cloud-average, εav) within the 

cloud region containing the main downdraft (region A), compared to the region without 

(region B). (Solid lines) Mean of dashed lines. This is only assessed for cloud cases where 

the main downdraft is clearly defined (20 out of 25 cases). 
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     To summarise, the spatial distribution of ε in observed clouds has been investigated in a 

subset of 25 SCCCs. When compared to the average ε in each cloud εav, turbulence is 

strongest in the updraft region, with mean values that are 21% larger than εav. Values of 

turbulence above the updraft are 12% larger than εav, however, positive biases are mostly 

found in the deep cloud examples, indicating the importance of strong updrafts in 

distributing large ε near the cloud top. Turbulence associated with the downdraft region of 

the cloud is lower than εav by 17%, suggesting (with limitations to reliability) significant 

differences between the turbulence associated with updrafts and downdrafts. 

      

4.3.3   Relationships between ε and cloud characteristics in SCCCs 

     The analysis in Section 4.3.2 has indicated how the intensity of turbulence varies spatially 

within SCCCs, with the largest ε found in and above convective updrafts. This section aims 

to investigate the degree to which the spatial distribution and intensity of ε can be explained 

in terms of the vertical motion and spatial characteristics of SCCCs. 

     To perform this investigation, 10 variables are recorded from each SCCC; these are listed 

in Table 4.2 together with a description of how each is determined. The mean values of ε in 

all four cloud regions are included together with εav, as well as five cloud characteristics. 

The cloud area 𝐴c, and updraft area 𝐴u, are selected to determine whether turbulence is 

stronger in larger clouds, and/or in cases with larger scale vertical motion. The maximum 

(95th percentile) updraft velocity 𝑤95, is selected to compare turbulence in different cloud 

regions to the updraft strength. The mean magnitude of vertical motion |𝑤|̅̅ ̅̅ , is calculated 

from all 𝑤 in each cloud to determine the combined effect of updraft-downdraft circulations 

on ε. Lastly, |𝑆el|̅̅ ̅̅ ̅̅  is calculated by differentiating the Doppler velocity in the elevation 

direction in each cloud, and calculating the mean magnitude of the resulting shear. This is 

used to assess whether the average strength of velocity gradients have a significant impact 

on ε. 
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Table 4.2:   Details of the variables used for the correlations presented in Figure 4.10, 

together with a description of how they were determined for in a given SCCC. 

 

     The values collected for each variable are correlated with all other variables to detect 

significant relationships. The resulting correlation coefficients 𝑟, are presented in Figure 

4.10. Values of 𝑟 have been filtered out by significance where the corresponding 𝑝-value is 

larger than 0.05, i.e. where the probability of obtaining the observed 𝑟 by random chance is 

less than 0.05. The final result is set of significant positive correlations between many of the 

variables. By relating the data in this format, Figure 4.10 includes significant correlations 

between the cloud characteristics (variables 1 – 5), e.g. 𝐴c is related to 𝐴u, and between ε in 

different cloud regions (variables 6 – 10), e.g. updraft ε is related to εav. These are often 

intuitive, and offer little direct value to the analysis of turbulence.  

Variable 

number 

Variable name Description for a given cloud 

1 Updraft size The product of the updraft width and height (km2) 

2 Max. updraft 

velocity 

The 95th percentile of vertical velocity in the updraft 

region 

3 Mean magnitude of 

vertical velocity 

Determined from all vertical velocity associated with a 

given cloud 

4 Mean magnitude of 

vertical shear 

Vertical shear is determined by differentiating the 

Doppler velocity in the elevation direction  

5 Cloud size The product of approximate cloud width and depth 

(km2) 

6 Cloud-averaged ε Mean of ε measured in all regions combined 

7 Updraft region ε Mean of ε measured within the updraft region 

8 Near region ε Mean of ε measured within the “near” region 

9 Far region ε Mean of ε measured within the “far” region 

10 Above-updraft 

region ε 

Mean of ε measured above the updraft region 
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Figure 4.10:   Correlation coefficients between cloud characteristics and ε in different 

regions of SCCCs. Correlations have been filtered out where the corresponding 𝑝-value is 

larger than 0.05, i.e. where the probability of obtaining the observed correlation by random 

chance is greater than 0.05. Details of how variables were determined are summarised in 

Table 4.2. Correlations below the diagonal have been removed to avoid duplication of 

results. 

 

Therefore, these inter-correlations will not provide the focus for this discussion. However, 

when trying to determine causative factors for ε, it remains useful to know which cloud 

characteristics are inter-correlated. 

     The spatial area of both cloud and updraft (𝐴c and 𝐴u) have no significant correlation 

with ε in any cloud region. This indicates that cloud area, and perhaps more importantly, 

updraft area, has no significant effect on the intensity of turbulence within the cloud. The 

updraft strength 𝑤95, has significant positive correlation with ε in the updraft and above-

updraft cloud regions. This is consistent with the result suggested in Section 4.3.2, which 
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indicated the effects of updraft strength in generating turbulence within the updraft, but also 

near the top of the cloud when updrafts were stronger. Unsurprisingly, turbulence in these 

two regions is strongly correlated with εav, which explains the significant, but weaker, 

correlation between 𝑤95 and εav. Due to the strong relationship between |𝑤|̅̅ ̅̅  and 𝑤95, |𝑤|̅̅ ̅̅  is 

correlated to ε in similar cloud regions, however, these correlations are stronger in each case. 

This would suggest that the degree of vertical motion throughout the cloud (which includes 

the downdraft) is more important in generating turbulence than the strength of the main 

updraft alone. The final cloud characteristic |𝑆el|̅̅ ̅̅ ̅̅ , is only correlated with ε above the updraft, 

however, this is assumed to be indirect due to the inter-correlation of |𝑆el|̅̅ ̅̅ ̅̅  with both 𝑤95 and 

|𝑤|̅̅ ̅̅ . 

     In summary, by recording and comparing various statistics of SCCCs, it has been possible 

to demonstrate that significant statistical relationships exist between turbulence and cloud 

features. Correlations suggest that the vertical velocity characteristics |𝑤|̅̅ ̅̅  and 𝑤95 are the 

most important in generating strong turbulence. These correlations are generally strongest 

with ε in the updraft and above-updraft regions of the cloud. These are areas commonly 

associated with strong buoyancy and velocity gradients which are important in the 

production of turbulent kinetic energy. The spatial characteristics of the cloud and main 

updraft, and the effects of vertical shear, appear to have little effect on values of ε. There are 

indications that turbulent production in downdraft regions is significantly less than in updraft 

regions of similar |𝑤|. Although using a correlation-based approach has proved useful in 

identifying which dependencies exist for ε, further quantitative detail is required to examine 

these dependencies using methods that are more easily applied to data from MetUM model 

simulations; this is addressed in Section 4.4.  
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4.4   Turbulence in convective updrafts 

     Recalling the two primary aims of this chapter, methods developed to analyse turbulence 

in observed clouds should not only aim to improve understanding of turbulence in 

observations but should ideally be developed to allow for a consistent application with model 

data from the MetUM.  

     The results of Section 4.3 provide useful insights into the relative importance of various 

cloud features in controlling the intensity and distribution of turbulence in observed clouds. 

Such an analysis was made possible by subsampling a dataset of clouds that conformed to a 

qualitative framework for single-cell convection. The framework of a discrete cloud with 

clearly defined features allowed the attribution of ε to cloud characteristics to be made with 

improved reliably. However, the resulting dataset consisted of only 25 cloud cases, which 

represents a small proportion of the combined observations collected over the two case days. 

Both this, and adopting a specific framework for clouds, limits the potential for comparison 

with clouds simulated in the MetUM. A new approach is therefore required to derive 

statistics that are more representative of the full dataset of observations and can be derived 

consistently in MetUM data.  

     By focusing only on turbulence associated with convective updraft regions, the rigid 

single-cell structure for clouds can be abandoned, while allowing a more detailed 

examination of the features found (in Section 4.3) to be most important in generating 

turbulence. The approach considers all updrafts observed in the DYMECS data (selecting 

those that exceed certain thresholds, see Section 4.4.1), providing a much larger, more 

representative dataset for both case days. By using automated methods to detect updrafts, 

data can be collected consistently in observations and in data from MetUM simulations.  

     Section 4.4.1 outlines the application of an algorithm used to detect updraft regions, 

building a dataset of updrafts with associated statistics. In Section 4.4.2, the statistics of 

turbulence in updraft regions is compared between shower and deep clouds. 
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4.4.1   Detection of updraft regions 

     In Section 4.3, updraft regions were identified through qualitative inspection of fields of 

vertical velocity, 𝑤. This approach was sufficient to roughly separate different cloud regions 

in a small dataset of observations. However, a more precise and consistent method is 

designed to improve the comparison of observations between case days, and in Chapter 5, 

between observations and model.  

     To detect coherent updraft regions, a connected-component algorithm (Haralick and 

Shapiro, 2002) is applied to each vertical cross-section of 𝑤 associated with the RHI dataset 

summarised in Section 2.2.4. This is used to automatically detect the co-ordinates of regions 

of (at least four) values of 𝑤 that exceed a specified velocity threshold, where pixels can be 

connected either by edges or corners. By recording the four spatial extremes of these co-

ordinates, a box is placed around an updraft – defined as the updraft region. This is similar 

to the definition of an updraft region demonstrated in Figure 4.7, except in this case, the 

spatial extremes of the updraft are numerically defined based on prescribed velocity 

thresholds. Observed updrafts are often irregular in shape, so this approach leads to the 

inclusion of some data surrounding the updraft in the defined region. As a result, updraft 

regions include information about turbulence along the periphery of an updraft, without it 

having to be co-located with specific values of 𝑤. As discussed in Section 1.5.3, previous 

studies have found the largest values of ε both within and along the edges of updrafts. By 

using this method to define updraft regions, any important features in ε along updraft edges 

are likely to be included. Therefore, the analyses in this section can be described more 

loosely in terms of the turbulence associated with convective updrafts, rather than turbulence 

precisely co-located with vertical motion within clouds.  

     The primary aim when applying the detection algorithm is to extract two separate datasets 

of updraft regions that are representative of the significant updrafts for each day. From this 

point, features initially detected by the connected-component algorithm will be referred to 
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as ‘objects’, while ‘updraft regions’ (or just ‘updrafts’) will be used to refer to detected 

objects that exceed prescribed size and velocity thresholds. These thresholds are applied to 

distinguish between all detected objects and the more substantial convective updrafts 

observed on each day. Owing to the marked differences in updraft strength and cloud depth 

between the two days, slightly different thresholds are used to identify significant updrafts. 

The first of these thresholds is applied to 𝑤, and represents the minimum vertical velocity 

the algorithm initially detects, 𝑤min. For deep clouds, 𝑤min is selected to be 1.5 m s−1. The 

updrafts are generally much weaker in shower cloud observations (2 – 4 m s−1), compared 

to deep clouds (6 – 10 m s−1). As a result, a lower 𝑤min of 1 m s−1 is applied to better 

represent the smaller observed range in updraft velocity.  

     The algorithm identifies an object where at least four connected values of 𝑤 exceed 𝑤min. 

The resolution of each RHI of 𝑤 is 500 m in the horizontal direction, and 250 m in the 

vertical. This means that four connected values can represent very small features in 𝑤. As a 

result, detected objects are filtered by width and depth to remove small, insignificant areas 

of 𝑤 from the dataset of updraft regions. This can be described in the context of the vertical 

velocity field presented in Figure 4.6 (in Section 4.3). Small areas of 𝑤 > 1.5 m s−1 are 

located within the cloud, which are separate from the main updraft. These are too small to 

be defined as substantial convective updrafts, but which will still be detected by the 

algorithm. To account for this, objects detected in shower cloud with a depth less than 2 km 

are filtered out, while in deep clouds this threshold is 3 km. These values allow for the 

removal of objects that are less than approximately one third of the average cloud depth for 

both cases. Further to filtering by object depth, a threshold width of 1.5 km was introduced 

for both case days to remove objects that were less than three pixels wide.  

     When applied, the connected-component algorithm will sometimes resolve what is 

qualitatively one updraft region into many separate objects. This can occur in more diffuse 

updraft regions that are interspersed with areas of 𝑤 < 𝑤min, which can lead to small objects 
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being recorded within, or on the periphery of, the main updraft region. By detecting several 

objects in a small spatial area, the associated updraft regions often overlap. This would lead 

to repeated sampling of the same ε when statistics are collected, potentially introducing 

biases to the resulting turbulence statistics. The combined effect of applying depth and width 

thresholds appears to be effective in removing any overlapping updraft regions. 

     Using this approach, 77 updraft regions were detected in shower cloud observations, and 

101 regions for deep cloud. Although the fields of 𝑤 exist on a Cartesian grid, the four spatial 

co-ordinates of each updraft region are defined in terms of range and height in the RHI 

domain. These co-ordinates can therefore be used to overlay the updraft region onto any 

other radar field in the DYMECS data, including retrievals of ε. This enables a statistical 

analysis of the turbulence associated with updrafts with different characteristics. 

 

4.4.2   Statistics of updraft turbulence 

     By using automated procedures during data collection, a more detailed and quantified 

approach can be applied to investigate ε in observations. This section focuses on assessing 

statistical relationships between ε, and the spatial and velocity characteristics of updraft 

regions. These involve correlations of variables associated with individual updrafts (Section 

4.4.2.2), but also investigates the change in the probability distribution of ε within updrafts 

of different strength (Section 4.4.2.3). This analysis begins with a broad comparison between 

the characteristics of updrafts observed in shower and deep cloud (Section 4.4.2.1) 

 

4.4.2.1   Comparison of updrafts and turbulence in shower and deep clouds 

     In Figure 4.11a, the cumulative density function (CDF) of updraft area is compared for 

shower and deep clouds. Each area is the product of the width and depth of the rectangular 

updraft region placed around the co-ordinate extremes of 𝑤 > 𝑤min. Due to the different 
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spatial thresholds used to detect updraft regions in the two cases, the minimum area of deep 

updrafts (4.5 km2) is slightly different from that of shower updrafts (3 km2). To provide a 

fair comparison of probability in Figure 4.11a, shower updrafts with an area less than 4.5 

km2 are not considered; this refers to 25 of the 77 shower updrafts. The median area of deep 

updrafts (12 km2) is 60% larger than for shower updrafts (7.5 km2). The proportion of deep 

updrafts larger than 10 km2 (63%) is approximately double that for shower updrafts (29%), 

while the same is true for the largest observed updrafts (30 km2 for showers; 58 km2 for 

deep cloud). The spatial scale of vertical motion is much larger in the case of deep cloud, 

and the relationship between ε and updraft dimensions will be presented later in this section. 

 

 

Figure 4.11:   Comparison of the cumulative density functions (CDFs) of characteristics of 

convective updrafts between shower and deep clouds. These include: (a) Updraft area; (b) 

eddy dissipation rate ε; (c) vertical velocity 𝑤; (d) the magnitude of the horizontal shear in 

𝑤, |
d𝑤

d𝑥
|. CDFs include values found in all updraft regions on each day. In (a), only shower 

cloud updrafts of area ≥ 4.5 km2 are plotted for fair comparison with deep cloud updrafts. 

In (b) – (d), CDFs consist of 15334 deep updraft values and 4507 values for shower updrafts. 

 



143 
 

     The turbulence associated with updrafts has been identified by overlaying the co-

ordinates of each updraft region onto retrievals of ε. Figure 4.11b compares the CDF of all 

values of ε located within every updraft region in shower and deep clouds. Median values of 

ε are 60% larger in deep updrafts (0.016 m2 s−3) than in shower updrafts (0.010 m2 s−3). 

However, in terms of the range of ε values that are observed in these radar observations 

(typically 10−3 − 1 m2 s−3), these values are similar, and relatively small. This indicates 

that a large proportion of the spatial area within updrafts on both days is only weakly 

turbulent. However, the proportion of values in deep updrafts that are considered weakly 

turbulent (ε ≤ 0.01 m2 s−3) is only 29%, compared to 49% of values in shower updrafts. 

This is consistent with results from Section 4.2.2 which examined the vertical distribution 

of ε in all observed cloud over both days. This suggested that although the majority of the 

cloud area was weakly turbulent in both cases, significant turbulence was more widely 

distributed in deep clouds; this appears to hold true even for turbulence located within the 

cloud region most associated with turbulent production. There are significant differences 

between turbulence in shower and deep updrafts when inspecting values of ε ≥ 0.05 m2 s−3. 

Only 0.4% of ε values in shower updrafts (corresponding to only 18 values across all 

updrafts) are larger than 0.05 m2 s−3, while in deep updrafts this corresponds to 10% of all 

values. The largest observed value of ε in shower updrafts (0.08 m2 s−3) is approximately 

one sixth of the corresponding maximum in deep updrafts (0.48 m2 s−3, not shown in Figure 

4.11b). 

     Figure 4.11c compares CDFs of 𝑤, indicating the distribution of vertical velocity within 

the updraft regions. As described in Section 4.4.1, the method used to define updraft regions 

leads to the inclusion of some peripheral data around the co-ordinates of 𝑤 > 𝑤min. As a 

result, the CDFs in Figure 4.11c include some negative values of 𝑤, which are likely 

included in instances where regions of 𝑤 > 𝑤min are irregular in shape, and the updraft-

downdraft separation distance is small. Negative values of 𝑤 constitute very similar 
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proportions of the distribution in both shower updrafts (11%) and deep updrafts (12.5%), 

suggesting this effect is consistent across both datasets. The largest observed 𝑤 in deep 

updrafts (14.9 m s−1) is more than twice that observed in shower updrafts (6.5 m s−1). The 

median updraft velocity (considering positive 𝑤 only) is 2.6 m s−1 in deep updrafts, which 

is twice as large as for shower updrafts (1.3 m s−1). This factor of two difference extends to 

good approximation (1.7 – 2.10) between the 20th and 80th percentiles of the CDFs, 

indicating that updraft strength is more generally twice as large in deep clouds. For the 

corresponding percentiles in Figure 4.11b, ε is larger in deep updrafts by a factor varying 

from 1.4 to 2.4, indicating a nonlinear relationship between turbulent intensity and updraft 

strength in these clouds. This was first evidenced in Section 4.2.2, where ε95 gained a 

positive vertical gradient with height in deep clouds while remaining constant with height in 

shower clouds. This resulted in deep cloud ε95 increasing nonlinearly with height from 

approximately equal to shower cloud ε95 near the surface, to a factor of four larger when 

comparing ε95 at the respective cloud top heights. The nonlinear relationship between ε and 

updraft strength was also evidenced in the literature by comparing values in independent 

studies in Section 1.5.3 (see Table 1.1). 

     Owing to the importance of shear in the production of turbulence, the horizontal gradient 

in the updraft velocity 
𝑑𝑤

𝑑𝑥
, is also considered. This is determined by differentiating 𝑤 in the 

positive 𝑥-direction (to the right as it appears in an RHI – away from the radar), over a 

consistent distance of 500 m; the horizontal resolution of 𝑤. To accomplish this for a data 

point at a distance of 𝑥 from the radar 𝑤𝑥, the velocity difference between 𝑤𝑥 and the data 

point immediately to the right 𝑤𝑥+1, is divided by 500 m. This shear is then attributed to the 

data point co-located with 𝑤𝑥. For values of 𝑤𝑥 that lie along the right-hand edge of an 

updraft region, a single vector of 𝑤 values (one pixel wide, extending to the depth of the 

updraft region) that lies adjacent to the right-hand edge (but outside) of the updraft region is 

used to compute shear. As any associated turbulence will be independent of the sign of the 
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shear, the magnitude of each value is taken to define |
𝑑𝑤

𝑑𝑥
| for each point. This method is 

repeated for each updraft region to determine a value of |
𝑑𝑤

𝑑𝑥
| for all data points in all updraft 

regions. 

     Figure 4.11d compares the CDF of all observed |
𝑑𝑤

𝑑𝑥
| from shower and deep updraft 

regions. The median value of |
𝑑𝑤

𝑑𝑥
| in deep updrafts is 0.0026 s−1, which is more than twice 

the median of 0.0012 s−1 observed in shower updrafts. In deep updrafts, the largest shear 

observed (0.029 s−1) corresponds to a change in 𝑤 of 14.5 m s−1 over 500 m. This shear is 

therefore likely to be associated with the strongest 𝑤 observed on the day (up to 14.9 m s−1). 

The largest shear in shower updrafts of 0.014 s−1 is smaller in comparison, corresponding 

to a change in 𝑤 of 7 m s−1 over 500 m, which is more consistent with the weaker shower 

updrafts observed. Only 0.3% of |
𝑑𝑤

𝑑𝑥
| values in shower updrafts (13 values) are larger than 

0.01 s−1, whereas in deep updrafts, this corresponds to 5.3% of observed shears (813 values). 

For percentiles between the 20th and 80th, |
𝑑𝑤

𝑑𝑥
| in deep updrafts varies from a factor of 2.2 

to 4.3 larger than in shower updrafts. Although 𝑤 in deep updrafts is more consistently a 

factor of two larger than in shower updrafts, the horizontal gradients in 𝑤 can be stronger by 

a factor of more than four. This suggests that the increase in 𝑤 is not accompanied by a 

corresponding increase in the updraft width; resulting in much stronger horizontal gradients. 

Evidence for this suggestion is found by correlating the 95th percentile of 𝑤 with updraft 

width for the 101 deep cloud updrafts, which produces a correlation coefficient r, of only 

0.24 (r = 0.31 for shower updrafts). This result is consistent with Anderson et al. (2005), 

who report r2 values lower than 0.2 (r < 0.44) between updraft speed and width for updrafts 

in the tropics. The impact of the observed relationship between 𝑤 and |
𝑑𝑤

𝑑𝑥
| in these 

observations is investigated through correlation with ε in the next section. 
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4.4.2.2   Correlations of turbulence within updrafts 

     Following from the overview presented in the previous section, statistical relationships 

between turbulence and updraft characteristics are now examined. Initially, correlations are 

assessed between the features of updraft velocity (𝑤 and |
𝑑𝑤

𝑑𝑥
|), updraft width and depth, and 

ε. To accomplish this, the 95th percentile values of 𝑤, |
𝑑𝑤

𝑑𝑥
|, and ε, are recorded in each 

updraft region, to represent the largest values of each variable, together with the updraft 

dimensions. For the remainder of this section, the 95th percentile of 𝑤, |
𝑑𝑤

𝑑𝑥
|, and ε will be 

indicated through use of subscripts as 𝑤95, |
𝑑𝑤

𝑑𝑥
|

95
 and ε95. 

 

Figure 4.12:   Scatter plots comparing the 95th percentile of ε for each updraft region ε95, 

on the shower and deep cloud cases, to the following corresponding statistics: (a) the 95th 

percentile of vertical velocity 𝑤95, (b) the 95th percentile of the magnitude of the horizontal 

gradient in vertical velocity |
𝑑𝑤

𝑑𝑥
|

95
, (c) the updraft width, and (d) the updraft depth. 
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     Figure 4.12 presents four scatter plots relating ε95 to, (a) 𝑤95, (b) |
𝑑𝑤

𝑑𝑥
|

95
, (c) updraft 

width, and (d) updraft depth, where each point plotted represents the statistics for one updraft 

region. Overlaid onto each plot are the correlation coefficient r, and significance statistic p, 

for both cases, indicating the degree of correlation and significance level between the two 

variables separately for both days. Figure 4.12a shows that ε95 has a significant (p < 10−3) 

positive correlation with 𝑤95 in both shower updrafts (r = 0.425) and deep updrafts (r =

0.594). These are considerable correlations that suggest the strongest vertical velocity within 

convective updraft regions has a significant, and potentially predictable, impact on the peak 

intensity of turbulence. The correlation in deep updrafts is stronger, likely due to the smaller 

observed range in 𝑤95 for shower updrafts, where 72% of 𝑤95 values lie within a small 

interval of 𝑤 (1 – 3 m s−1). In comparison, only 5% of 𝑤95 values in deep updrafts lie within 

this velocity range. When the data from both days is considered together, in this case 

representing a broader range in 𝑤95, the correlation improves further (r = 0.718;  p ≪

10−3). This suggests that ε95 relates to 𝑤95 in a way that is consistent across the range of 

𝑤95 observed on individual case days and remains consistent between different days of 

observation. This could indicate that an increasingly stronger correlation may exist if further 

observations were included to reflect the turbulence associated with an even broader range 

in 𝑤95. If true, this could allow for the parametrisation of ε95 in terms of variables associated 

with convective updrafts. 

     Figure 4.12b provides an equivalent scatter plot to Figure 4.12a, but for correlations with 

|
𝑑𝑤

𝑑𝑥
|

95
. The resulting correlations with ε95 are positive and significant (p < 10−3), but also 

stronger than those with 𝑤95 (r = 0.517 for shower updrafts, r = 0.671 for deep updrafts). 

Turbulence observed within convective updrafts appears to be more sensitive to gradients in 

𝑤, than to 𝑤 alone, although 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
 themselves are very strongly correlated (r =

0.868). The correlation with |
𝑑𝑤

𝑑𝑥
|

95
 is again weaker in the case of shower updrafts, reflecting 
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the smaller range in observed shear; 80% of |
𝑑𝑤

𝑑𝑥
|

95
 are smaller than 0.005 s−1, compared 

with only 22% in deep updrafts. When |
𝑑𝑤

𝑑𝑥
|

95
 values from both days are combined, r 

increases to 0.755, which represents the strongest observed correlation between ε95 and any 

characteristic of convective updrafts. This provides further evidence that it may be possible 

to parametrise ε95 as a function of updraft characteristics if, in this case, additional 

observations were collected to include ε95 from a broader range in |
𝑑𝑤

𝑑𝑥
|

95
. 

     Weaker positive correlations exist between ε95 and the width and depth of updrafts for 

both showers (r = 0.295 for width, and r = 0.314 for depth), and deep cloud (r = 0.309 

for width, and r = 0.390 for depth). When the data from both days is combined, the 

correlation with updraft width is not improved (r = 0.281). The correlation with updraft 

depth is improved to r = 0.609, however, this is assumed to be indirect due to the stronger 

correlation between updraft depth and 𝑤95 (r = 0.678). This suggests that the intensity of 

turbulence is not highly sensitive to the spatial dimensions of the updraft. This is consistent 

with results from Section 4.3, which performed a more limited and imprecise investigation 

into the relationship between ε and updraft dimensions in SCCCs. 

 

4.4.2.3   Change in the distribution of ε with updraft strength 

     Correlation techniques are useful to identify the most important features of convective 

updrafts in generating strong turbulence, and to quantify the degree of sensitivity in a way 

that can be tested against both new observations, and MetUM simulations. However, there 

are limitations to the insights that can be provided by comparing one statistic from each 

updraft region. To further substantiate these results, the distribution of ε is compared within 

updraft regions of different strength. To accomplish this, all ε values within a given updraft 

region are added to a CDF based on its value of 𝑤95. CDFs of ε are then combined for updraft 

regions with 𝑤95 falling in 2 m s−1 velocity intervals. This interval was selected to be large 
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enough to cover the range of 𝑤95 observed on both days, and to ensure a sufficient number 

of ε values constitute each CDF. By doing this, the full distribution of ε can be tested against 

𝑤95, instead of just the largest values. Figure 4.13 and Figure 4.14 shows the change in the 

CDF of ε with 𝑤95 in shower and deep updraft regions, respectively. The intervals of 𝑤95 

are consistent between the two cases to aid comparison, although only the 2 – 4 m s−1 and 

4 – 6 m s−1 intervals are represented by both cases. There were no deep updrafts with 𝑤95 

less than 2 m s−1, and no shower updrafts with 𝑤95 larger than 6 m s−1.  

     In both shower and deep updrafts, there is a trend towards a lower probability of small ε, 

and a higher probability of large ε, with increasing 𝑤95. For shower updrafts (Figure 4.13), 

the median value of ε increase from 0.009 m2 s−3 when 𝑤95 = 0 − 2 m s−1, to 0.015 

m2 s−3 when 𝑤95 = 4 − 6 m s−1. The two CDFs associated with 𝑤95 between 0 – 4 m s−1 

are very similar, while the difference between these distributions when 𝑤95 is 4 – 6 m s−1 

is more considerable. This is particularly evident for small values of ε (less than 0.01 

m2 s−3). For the two smallest intervals of 𝑤95, 61% (0 – 2 m s−1) and 47% (2 – 4 m s−1) of 

ε values are less than 0.01 m2 s−3, whereas this falls to only 27% of values in updrafts of 4 

– 6 m s−1. The proportion of ε values that are larger than 0.03 m2 s−3 is small for all shower 

updrafts but are more than twice as frequent when 𝑤95 is 4 – 6 m s−1 (9%), than when 𝑤95 

is 2 – 4 m s−1 (4%). Together, these results suggest that when 𝑤95 < 4 m s−1, the 

distribution of ε is largely insensitive to the updraft strength. However, a significant change 

in the distribution of ε is observed for updrafts of more than 4 m s−1, which is characterised 

by an approximate factor two decrease in the proportion of ε < 0.01 m2 s−3, and a factor 

two increase in the proportion of ε > 0.03 m2 s−3. 
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Figure 4.13:   The change in the cumulative density function (CDF) of ε in updraft regions 

with different 95th percentile values of 𝑤 (𝑤95), for shower clouds. Values of 𝑤95 did not 

exceed 6 m s−1 in any updraft region considered on this day, however these intervals are 

retained for comparison with Figure 4.14. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14:   The change in the cumulative density function (CDF) of ε in updraft regions 

with different 95th percentile values of 𝑤 (𝑤95), for deep clouds. Values of 𝑤95 smaller than 

2 m s−1 were not found in any updraft regions on this day. 
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     For deep updrafts (Figure 4.14), similarly to shower updrafts, median values of ε increase 

with 𝑤95, with this trend extending 𝑤95 > 8 m s−1. However, key differences exist for 

values of ε larger than 0.05 m2 s−3. These are very uncommon in shower updrafts, 

constituting only 0.5% of all observations, whereas in deep updrafts, this proportion 

increases from 1.7% in the weakest updrafts (𝑤95 = 2 − 4 m s−1), to as high as 24% of 

values in the strongest updrafts (𝑤95 > 8 m s−1). For the two intervals of 𝑤95 for which a 

distribution of ε is available over both days (between 2 – 6 m s−1), the median values of ε 

are very similar. For updrafts of 2 – 4 m s−1, median values of ε in both cases are 

approximately 0.01 m2 s−3, and for updrafts of 4 – 6 m s−1, distributions of ε in both cases 

have median values of 0.015 m2 s−3. For updrafts of 2 – 4 m s−1, 54% of ε values in deep 

updrafts are less than 0.01 m2 s−3, comparable to 47% for the same strength of shower 

updraft. A similar consistency is found for updrafts of 4 – 6 m s−1, where the proportion of 

ε < 0.01 m2 s−3 is 27% and 29% in shower and deep updrafts, respectively. This provides 

further evidence that the intensity of turbulence may be related to the specific characteristics 

of convection in a way that independent of the day of observation, or general convective 

scenario. However, the similarities for the average and low values of ε are not as clear for 

the larger ε in the distributions. In deep updrafts of 4 – 6 m s−1, 7% of observed ε is larger 

than 0.05 m2 s−3, while, as mentioned, these values are very rare in shower updrafts (only 

0.5% of values). This would suggest instead that turbulence is more intense in deep updrafts 

than in shower updrafts of the same strength, and not dependent solely on the updraft 

features. 

     These results raise an important question: is turbulent energy generated and dissipated on 

timescales that are small compared to the evolution of convective updrafts? Using only 

snapshot observations to investigate turbulence relies on the assumption that the observed 

turbulence is in response to the cloud characteristics observed simultaneously. In the case 

where a convective updraft is the production mechanism, the initial turbulent eddies, 
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generated on the scale of the updraft circulation, will require time in the downscale energy 

cascade to reach scales where turbulence is dissipated. However, during this time, the 

features of the updraft may have changed considerably. The rate of turbulent energy 

dissipation (given by ε) will be related to the strength of the updraft at the time of production. 

Therefore, turbulence will not always be observed together with the exact processes 

responsible for its production. Further to this, there are limitations associated with using only 

vertical cross-sections to investigate turbulence. The effects of advection within the cloud 

may introduce turbulence into a vertical cross-section from processes that are not observed. 

For example, in cases where an RHI was not performed directly through the centre of updraft 

(this is possible, scans were only guided by rainfall rates), turbulence may be observed that 

was associated with stronger 𝑤 immediately adjacent to the scan. The strength of the 

correlations presented in Section 4.4.2.2 would suggest that the overall impacts of these 

effects is small; the observed turbulence is significantly related to the updraft features 

observed simultaneously. However, they may explain the more subtle difference in the 

distributions of ε in updrafts of the same strength, but observed on different days (Figure 

4.13 and 4.14). Updrafts with 𝑤95 of 4 – 6 m s−1 (and higher) were much more common in 

deep clouds than shower clouds. It therefore becomes more likely that the effects of eddy 

timescales and advection introduce turbulence that is not entirely consistent with the updraft 

strength. 

 

4.5   Spatial characteristics of coherent ε features 

     So far in this chapter, analyses of turbulence in observed clouds has included the vertical 

distribution of ε, the spatial distribution of ε relative to convective updrafts, and the statistical 

relationships between ε and characteristics within updraft regions. A final investigation is 

now performed into the appearance of turbulent structures within clouds. This is achieved 
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by applying the same connected-component algorithm as used to detect updraft regions, to 

retrievals of ε. By doing this, the size and shape of coherent features in ε can be found as a 

function of turbulent intensity and compared between shower clouds and deep clouds. By 

using automated detection methods, spatial characteristics of ε can be determined 

consistently between the two days of observations, and also in MetUM model simulations. 

The primary aim of this section is to determine the typical spatial scales of turbulent 

dissipation in observed clouds as a function of turbulent intensity. The spatial extent of 

dissipation features may reflect the typical scales of turbulent production within the clouds 

and provide a useful characterisation of the appearance of dissipation features to compare 

with parametrised turbulence in the MetUM (Chapter 5). 

     Section 4.5.1 outlines the data sources, methods used in data collection, and methods to 

determine spatial scales of turbulent features. Section 4.5.2 then presents and discusses the 

spatial scales of turbulent structures as a function of ε, and compares this across the two 

cloud types. The sensitivity of results to methods used to determine average size and shape 

is then examined. 

 

4.5.1   Methods and data collection 

     The same connected-component algorithm used in Section 4.4.1 to detect updrafts is 

applied to fields of ε retrieved for the RHI subset described in Section 2.2.4. Objects of ε are 

detected from anywhere in the RHI domain between 30 – 170 km in range, where at least 

four connected values of ε exceed a prescribed threshold (referred to as εthld). Pixels can 

only be connected by edges; this is chosen (instead of both edges and corners, as for updraft 

detection) in an attempt to maximise the fill-fraction of ε > εthld within the area defined by 

the spatial extremes of the object. A range of values for εthld are selected to enable the 

comparison of spatial scales as a function of turbulent intensity. In shower cloud, three 

thresholds of 0.01, 0.03 and 0.05 m2 s−3 were selected to represent the range of ε observed. 



154 
 

For deep clouds, two additional thresholds of 0.1 and 0.2 m2 s−3 were included to reflect 

the larger values of ε. Objects detected at εthld = 0.03 m2 s−3, for example, will 

automatically include any regions of ε > 0.03 m2 s−3 within its defined area. Objects are 

therefore referred to as including ε > εthld, rather than ε = εthld, in later analysis. 

     Using a similar method to that applied to updraft regions in Section 4.4, the object width 

𝑊, and depth 𝐷, are determined from the four co-ordinates of the spatial extremes of each 

object. To find the average size and shape of ε objects, the median area and axial ratio (𝐴m 

and 𝑅m) are first computed from all objects 𝑖, detected at a given εthld: 

𝐴m = Median(𝑊𝑖 ∙ 𝐷𝑖)   ;    𝑅m = Median (
𝑊𝑖

𝐷𝑖
)                               (4.1) 

These values are then used to estimate the average width and depth of objects for plotting 

purposes (referred to as 𝑊m and 𝐷m, although they are not strictly median values). 

𝑊m =  √𝐴m ∙ 𝑅m   ;    𝐷m =  √
𝐴m

𝑅m
                                           (4.2) 

This approach was chosen instead of simply calculating the median of 𝑊 and 𝐷 

independently in an attempt to pair the width and depth of each individual object when 

finding the average shape. If only 𝑊 and 𝐷 were used, the precision of the median width 

would be limited to multiples of 300 m due to the fixed radial resolution of the DYMECS 

data. This is avoided by allowing 𝑊m (and 𝐷m) to be found indirectly as a function of 𝐴m 

and 𝑅m. However, due to the numerous possible methods to determine the size and shape of 

ε objects, the sensitivity of results to other methods is in investigated in Section 4.5.3.  

     Two filters have been applied to the resulting dataset of objects to remove biases and 

improve data quality. The combined effects on the object counts for each εthld is summarised 

in Table 4.3. The first of these introduces a minimum threshold to 𝐴m. The resolution of 

RHIs in the elevation direction becomes increasingly high at smaller distances from the radar 

due to the finite beam-width.  
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Table 4.3:   Final object counts for each threshold of ε in shower and deep clouds. Counts 

before filtering by area and location are indicated in parentheses. 

 

Combining this with the effects of over-sampling described in Section 2.2.1, which results 

in an angular resolution a factor of six higher than the beam-width, four data points (the 

minimum for object detection) can constitute a very small spatial area. To remove the 

exceedingly small objects, a minimum threshold of 0.1 km2 is applied to 𝐴m. This results in 

a 38% and 31% reduction in the total object counts detected in deep and shower cloud, 

respectively. These are both large proportions of total objects, indicating that biases in the 

median object size would have resulted if a threshold to 𝐴m was not applied.  

     The second filter refers to ε objects detected near the top and base of observed clouds. 

The spatial extent of objects in these regions is often curtailed by the edges of the data and 

are therefore susceptible to biases in shape. This is illustrated in Figure 4.15, which shows 

the change in 𝑅m with height for objects detected in deep clouds. Objects detected in the top 

and bottom 1 km of cloud display a much higher 𝑅m than for the rest of the vertical profile, 

for each εthld shown. This demonstrates that the ratio of width to depth is increased due to 

Deep Cloud Shower Cloud 

𝛆𝐭𝐡𝐥𝐝 (𝐦𝟐 𝐬−𝟑) Object counts 

(before filtering) 

𝛆𝐭𝐡𝐥𝐝 (𝐦𝟐 𝐬−𝟑) Object counts 

(before filtering)  

0.01 1400 (2159) 0.01 618 (1061) 

0.03 644 (1299) 0.03 150 (332) 

0.05 391 (898) 0.05 34 (92) 

0.1 125 (342) - - 

0.2 11 (64) - - 
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incomplete vertical dimensions of objects near the cloud edge. Including objects from these 

locations would introduce biases to the average shape of objects. In shower clouds, the cloud 

top is generally no higher than 6 km, and 10 km for deep clouds. However, there is variability 

in the cloud tops of individual clouds, and also in the cloud base with range due to scanning 

at non-zero elevations. To account for this variability, objects are removed if detected within 

1 km of the respective cloud tops for both days (5 – 6 km in shower cloud; 9 – 10 km in deep 

cloud), or within 1 km of the surface in both cases. This corresponds to a further reduction 

in total object counts of 13% and 19% in shower and deep clouds, respectively. No methods 

have been applied to remove objects located near the sides of clouds, or other cloud 

boundaries. The final data counts for each εthld, together with those before any filtering was 

applied, are listed in Table 4.3. Following from these methods to improve data quality, 

detected objects will be referred to as spatially coherent ‘features’ of turbulent dissipation. 

 

Figure 4.15:   The change in the axial ratio (width to depth) of deep cloud objects with 

height, showing the bias to high axial ratio near the cloud top and base due to the suppressed 

vertical dimension. 
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4.5.2   Spatial characteristics of ε features 

     To better reflect the range of features sizes observed on both days, and to allow 

comparisons between average and large, the full dataset had been split into three, by terciles 

of area. For each εthld, average features are defined as those falling between the 33rd and 66th 

percentiles of area, and large features are those larger than the 66th percentile of area. 

Equations (4.1) and (4.2) are then applied separately to these, to determine 𝑊m and 𝐷m at 

each εthld. As 𝑊m and 𝐷m are the largest dimensions of (often irregularly shaped) features 

in ε, simply using a rectangular region defined by these scales would overstate the true spatial 

coverage of ε > εthld. The appearance is instead approximated by ellipses of width 𝑊m, and 

depth 𝐷m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16:   Median size of average and large ε objects in shower cloud ((a) and (b)), and 

deep cloud ((c) and (d)). Objects have been approximated by ellipses using 𝑊m and 𝐷m 

calculated from objects at each εthld, using (4.1) and (4.2). 



158 
 

     Figure 4.16 compares the spatial characteristics of the average and large turbulent 

features, as a function of εthld, between shower and deep cloud. When comparing the 

average features (Figures 4.16a and 4.16c), the spatial scales of the weakest turbulence (ε >

0.01 m2 s−3) are approximately the same in both shower and deep cloud; 𝑊m ~ 0.85 km 

and 𝐷m ~ 0.45 km. Turbulence has been shown to be more widely distributed in deep 

clouds, suggesting that the spatial area of turbulent dissipation would be larger than in 

shower clouds. However, this result suggests that, for weak turbulence at least, the size and 

shape of discrete features in ε may be independent of cloud characteristics. The average 

spatial area of ε > 0.03 m2 s−3 is approximately the same in shower (0.21 km2) and deep 

clouds (0.26 km2). However, the features in deep cloud are approximately circular with 

𝑊m ~ 𝐷m ~ 0.5 km, while features in shower cloud retain the same 𝑅m ~ 1.75 as for those 

with ε > 0.01 m2 s−3. The axial ratio of features of ε > 0.05 m2 s−3 is the same in both 

shower and deep clouds (𝑅m ~ 0.85), although 𝐴m is more than a factor of two larger in 

deep clouds. This suggests that for features of average size, only small differences exist 

between shower and deep clouds, and only when ε > 0.01 m2 s−3. The most significant 

difference appears to exist in the size of stronger dissipation features (ε > 0.05 m2 s−3), 

where 𝑊m and 𝐷m are both 50% larger in deep clouds. The spatial characteristics of 

turbulence stronger than 0.05 m2 s−3 in deep clouds will be examined in the context of the 

largest features (Figure 4.16d). 

     When comparing the large dissipation features (Figures 4.16b and 4.16d), the difference 

in spatial characteristics between the cloud types becomes clearer as ε increases. The spatial 

scales of ε > 0.01 m2 s−3 are again very similar between shower and deep clouds 

(𝑊m ~ 2.25 km and 𝐷m ~ 1 km), again suggesting that scales of turbulent dissipation may 

only become dependent on cloud characteristics when ε > 0.01 m2 s−3. The high 𝑅m and 

large 𝐴m of these weak dissipation features when compared to any other threshold of ε may 

reflect the effects of diffusion and horizontal advection of decaying turbulent features within 
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the cloud. In deep clouds, features of ε > 0.03 m2 s−3 and ε > 0.05 m2 s−3 have 

approximately the same characteristics (𝑊m ~ 𝐷m =  1.1 − 1.3 km), with 𝐴m only 15% 

smaller for ε > 0.05 m2 s−3. For the same features in shower cloud, 𝐴m is a factor of two 

smaller for features of ε > 0.03 m2 s−3, and a factor of three smaller for ε > 0.05 m2 s−3. 

This suggests that the scales of large dissipation features are considerably smaller in shower 

cloud, except for weak turbulence (ε > 0.01 m2 s−3), which are almost identical in shape 

and size. When comparing Figures 4.16b and 4.16d, a key difference exists in the axial ratio 

of features; 𝑅m > 1.25 for all ε in shower cloud, while in deep cloud 𝑅m decreases 

consistently with ε, from 𝑅m = 1.9 to 𝑅m < 1 when ε > 0.1 m2 s−3 and ε > 0.2 m2 s−3. 

Although data counts are significantly lower for these features, the vertical orientation of 

strong turbulent features may result from the stronger buoyant motion within the deep 

clouds. 

 

4.5.3   Sensitivity to methods, and summary 

     As mentioned in Section 4.5.1, other methods exist to determine the average spatial 

scales of dissipation features. The selected method in Section 4.5.1 involved using the 

median area 𝐴m, and median axial ratio 𝑅m, of ε objects, to determine the median size and 

shape. This is now compared to two other methods: (1) computing the median width and 

depth scales independently, and (2) defining 𝐴m in terms of the true spatial area of ε > εthld 

within each object. Method (1) involves simply calculating the median of 𝑊 and 𝐷 

separately from a dataset of objects and using these values to define the shape of an ellipse. 

     For each object detected by the connected-component algorithm, 𝐴m was determined 

from the median product of 𝑊 and 𝐷, which represent the largest scales of each object. In 

cases where objects are not perfect squares of data, this approximation for area will include 

some values of ε < εthld. This approximation is suitable only if the average proportion of 

ε > εthld is consistent for objects detected at different εthld. If this is not true, 𝐴m will 
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represent more of an over-estimation of the true spatial area of ε > εthld for objects detected 

at particular εthld, introducing biases to Figure 4.16. To test the sensitivity of results to this 

effect, 𝐴m is redefined to the median of the spatial area of ε > εthld for each object.  For 

each object 𝑖, the detection algorithm records the number of data points 𝑁, where ε > εthld, 

which are converted to a spatial area using the following expression: 

𝐴𝑖 = 𝑁 ∙ 𝐴av = 𝑁 ∙ 300 m ∙ (
(𝑟max − 𝑟min)

2
∙ (𝐹os ∙ 𝜃1))                     (4.3) 

Where 𝐴𝑖 is the area of object 𝑖, and 𝐴av is the average area of pixels within 𝑖. 𝐴av is 

determined as the product of pixel width (the range resolution of CAMRa, 300 m), and 

average pixel depth. The product of the average range of pixels in 𝑖 (given by 

1

2
(𝑟max − 𝑟min)), and the one-way half-power beam-width, 𝜃1, provides the depth of the 

beam. This is then weighted by a factor 𝐹os = 0.174, to account for the average 

oversampling of the radar in the elevation direction due to slow scan speeds. The median 

area of objects is then determined simply as the median of 𝐴𝑖, which then replaces 𝐴m in 

(4.2) to determine the equivalent width and depth of ellipses for plotting. 

 

 

 

Figure 4.17:   Comparison of median object sizes using three different methods for 

calculation. (a) Chosen method – as used in to produce Figure 4.16. (b) The median width 

and depth of all objects calculated independently. (c) Width and depth reconstructed from 

the spatial coverage of ε > εthld within each object and the axial ratio of width to depth. 
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     Figure 4.17 compares the median spatial scales derived from all deep cloud objects using 

the method described in Section 4.5.2, with those from methods (1) and (2). Figure 4.17b 

shows that simply calculating the median of 𝑊 and 𝐷 independently provides a very similar 

result to the chosen method. The depth of features is almost identical for all εthld, but the 

widths are restricted to multiples of 300 m (the radial resolution of the data). When using 

𝐴m derived from only ε > εthld (Figure 4.17c), the resulting features are almost unchanged 

from the chosen method. The area of features in Figure 4.17c should be smaller than those 

in Figure 4.17a, as the area of ε > εthld will be less than the product of 𝑊 and 𝐷. Instead 

these appear very slightly larger in some cases (e.g. ε > 0.2 m2 s−3), which results from 

variability in the elevation resolution of the data. In some cases, where the over-sampling 

factor is much smaller than 𝐹os = 0.174, the area of individual pixels will be over-estimated 

by (4.3). However, the purpose of this comparison is to test the consistency of the effect for 

features detected at different values of εthld. Features are almost identical in size, with no 

significant differences for any particular εthld, suggesting that the average proportion of ε >

εthld within the original features is consistent across all εthld. Therefore, Figure 4.16 

provides accurate representations of the spatial characteristics of dissipation features, that 

are insensitive to other methods of approximation.  

     In summary, the analysis in this section (4.5) provides useful insights into the typical 

spatial characteristics of dissipation features, relative to turbulent intensity. Features plotted 

in Figure 4.16 have been shown to be insensitive to different methods used to approximate 

size and shape. However, there are limitations to how these features can be analysed in the 

context of cloud characteristics. The differences between dissipation features in shower and 

deep cloud have been related to the main differences between the two cloud types. Although, 

without supporting evidence that relationships exist between turbulent production 

mechanisms, and the size of dissipation features, these conclusions remain speculative. 

Characterising the appearance of observed turbulence is perhaps more beneficial to the 
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evaluation of parametrised turbulence in Chapter 5, than to understand turbulent production 

processes in observations. 

 

4.6   Summary and conclusions 

     By applying the turbulence retrieval method developed in Chapter 3 to radar observations 

collected with CAMRa, this chapter includes a thorough investigation into the characteristics 

of convective cloud turbulence. The analysis of ε was focused on vertical cross-section 

datasets collected for two contrasting cloud types; shallow shower cloud, and deep cloud 

with stronger updrafts. The breadth of the datasets available for both days, combined with 

the limitations of vertical cross-section data, suggested a statistical assessment of ε was the 

optimal approach. The methods used in this chapter have been developed to enable 

consistent application to clouds simulated in the MetUM. 

     Retrievals of ε for both days were presented and discussed in detail with several other 

radar fields in Section 4.2. Although only two individual clouds were compared, there were 

indications that the spatial distribution and intensity of observed turbulence could be related 

to the cloud characteristics. Mean values of ε were twice as large in the deep cloud (0.04 

m2 s−3) than in shower cloud. Values of ε up to 0.61 m2 s−3 were observed in the deep 

cloud, more than a factor of six larger than the corresponding value in shower cloud 0.09 

m2 s−3. These values are within the range reported previously from observations of deep 

convective clouds (see Section 1.5.3 and Table 1.1). Turbulence was spatially correlated 

with the main updraft in both cases, however, strong turbulence appeared to be more widely 

distributed in the upper regions of deep cloud. This observation is consistent with results 

from Knupp and Cotton (1982) and Istok and Doviak (1986) (see Section 1.5.3) and was 

reflected in the analysis of the vertical distribution of ε in all clouds observed on both days. 

Turbulent intensity in shower clouds remained approximately constant with height, whereas 
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in deep clouds, 95th percentile values of ε increased by a factor of four with height 

throughout the 10-km cloud depth. Median ε in both cloud types were similarly small (~ 

0.01 m2 s−3), suggesting a large proportion of the spatial area of observed clouds is only 

weakly turbulent. An increase in ε with height was reported by numerous previous studies 

in Section 1.5.3; this has been quantified for shower and deep clouds with results that suggest 

the positive vertical gradient in ε increases with updraft strength.  

     Significant positive correlations were identified between ε and the characteristics of 

single-cell convective clouds (SCCCs) in Section 4.3. Features of vertical velocity (mean 

magnitude and 95th percentile) were found to be the most important in generating strong 

turbulence. No significant correlation was found between ε and the spatial dimensions of the 

cloud or updraft. Turbulence was strongest within the main updraft and above-updraft cloud 

regions; locations associated with strong buoyancy and velocity gradients. However, 

turbulence in cloud regions containing the downdraft was found to be significantly lower 

(17%) than the cloud-average, suggesting downdrafts are considerably less important than 

updrafts in producing turbulence within convective clouds. The SCCC framework restricted 

the dataset to only 25 cloud cases, which were determined qualitatively. Significant 

correlations could still be identified in this dataset; however, these limitations rendered the 

results insufficient for a reliable and detailed comparison with MetUM data. 

     By identifying the cloud characteristics that are most important in producing strong 

turbulence in SCCCs, a refined investigation into ε in convective updraft regions was 

performed in Section 4.4. Automated updraft detection methods were used examine updraft 

turbulence to improve the quantitative detail of the correlations identified in Section 4.3, and 

to enable a consistent application to MetUM data. Strong positive correlations were 

identified between ε95, 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
 in updrafts of both cloud types, with weaker positive 

correlations with updraft dimensions. This is in agreement with both the positive correlation 

implied by maxima in ε and 𝑤 from previous studies presented in Table 1.1, and the spatial 
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correlation between ε with regions of strong shear (Section 1.5.3). Correlations were 

strongest with |
𝑑𝑤

𝑑𝑥
|

95
 suggesting the gradients in vertical velocity were more important in 

generating strong turbulence than 𝑤 alone. Correlations identified from the combined 

updrafts of both days were stronger than for individual days (r = 0.718 for 𝑤95; r = 0.755 

for |
𝑑𝑤

𝑑𝑥
|

95
). This suggests that consistent relationships may exist between ε and updraft 

characteristics that are independent of the day of observation. By examining probability 

distributions of ε, a consistent trend towards a lower probability of small ε, and higher 

probability of larger ε, was found with increasing 𝑤95. In shower updrafts where 𝑤95 <

4 m s−1, the distribution of ε was found to be largely insensitive to updraft strength, with 

more significant differences when 𝑤95 > 4 m s−1 for both cloud types. Approximately half 

of ε values were lower than 0.01 m2 s−3 in updrafts of 2 – 4 m s−1 for both days. While this 

proportion fell consistently to 27% and 29% in shower and deep updrafts, respectively, when 

𝑤95 = 4 − 6 m s−1. This provided further evidence that ε may be function of cloud 

characteristics independent of the day of observation. If true, by including observations to 

reflect turbulence associated with a spectrum of cloud types, attempts could be made to 

parametrise ε as a function of updraft characteristics. This would help to isolate relationships 

from individual days of observation, removing the need to simulate corresponding days 

when evaluating turbulence in numerical models.  

     In Section 4.5, the spatial characteristics of coherent dissipation features in clouds were 

investigated as a function of turbulent intensity. For large features of ε in deep clouds, the 

median width doubles from 1.12 – 2.25 km when εthld decreases from 0.05 – 0.01 m2 s−3. 

For the same range of εthld in shower cloud, median width increases by a factor of three 

from 0.75 – 2.25 km. In deep clouds, when εthld increases from 0.1 – 0.2 m2 s−3, features 

become more deep than wide, with spatial scales less than 1 km. Without identifying that 

relationships exist between the spatial scales of turbulent features and cloud characteristics, 

comparisons between features and cloud processes are difficult to make. However, results 
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can used to identify the differences in the appearance of turbulence in the MetUM, as a 

function of turbulent intensity. 

     In this chapter, a rigorously derived turbulence retrieval method has been applied to 

improve understanding of turbulence in observed clouds, and to perform a statistical 

assessment of turbulence for model evaluation (in Chapter 5). In accomplishing this, results 

must be evaluated in the context of the limitations of the RHI dataset; vertical cross-sections 

taken from one instance. As discussed in Section 4.4.2.3, relationships between ε and cloud 

processes rely on the assumption that the turbulent energy cascade to dissipation scales 

occurs on timescales that are small compared to the evolution of convective processes. 

Further to this, it is assumed that the effects of eddy advection are small, i.e. ε can be 

attributed to the cloud processes observed simultaneously. Significant statistical 

relationships have been clearly identified in this chapter, suggesting the impact from these 

effects has been small. However, these effects will limit the precision to which ε can be 

explained in data of this type.  

     The results of this chapter suggest numerous improvements can be made to study 

turbulence in convective clouds for model evaluation. These should include using multiple 

high-resolution radars to observe the three-dimensional structures of turbulence, and utilise 

the turbulence retrieval method in Chapter 3, together with the improvements to scanning 

strategy suggested in Section 6.2.3. In doing this, turbulence can be investigated to higher 

precision in the context of three-dimensional cloud processes. Ultimately providing deeper 

insights into observed turbulence, together with improved tools for model evaluation. 
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Chapter 5 

Evaluation of turbulence in simulated 

clouds 

5.1   Introduction, aims and overview 

5.1.1   Introduction and aims      

     In Chapter 4, a statistical assessment of turbulence, expressed in terms of the eddy 

dissipation rate ε, was performed in clouds observed in two contrasting case studies; a 

shallow shower cloud case and a deep cloud case. Chapter 4 had two primary aims; to 

investigate the statistical characteristics of turbulence in observed clouds, and to build a 

framework of results which can be used to reliably evaluate turbulence in clouds simulated 

for corresponding cases in the Met Office Unified Model (MetUM). To achieve the second 

of these aims, the methods used to analyse turbulence in observations were carefully chosen 

to enable a consistent application to data from the MetUM. Of the analyses in Chapter 4, the 

methods selected to investigate the vertical distribution of ε, the spatial characteristics of ε, 

and the statistics of ε in convective updrafts, can all be applied consistently to MetUM data. 

These tools for analysis will form the basis for a reliable comparison between parametrised 

and observed turbulence in this chapter. 

     Table 2.3 lists the MetUM simulations for the 20 April 2012 shower cloud and 25 August 

2012 deep cloud cases. These have been performed to compare the statistical properties of 

turbulence in simulated clouds with observations (simulations 1 and 5), and to test the 

sensitivity of turbulence in the MetUM to grid-length ∆𝑥, and mixing length constant, 𝐶s 
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(remaining 6 simulations). Simulations 1 and 5 use a horizontal grid-length of ∆𝑥 = 100 m 

(similar to typical beam widths in CAMRa observations) and a mixing length constant of 

𝐶s = 0.2 (the default value used in the MetUM). As a result, these are referred to as the 

“control” simulations, which provide the focus for a detailed comparison with observed 

turbulence statistics in Sections 5.2 – 5.5. The remaining simulations (referred to as 

“sensitivity” simulations) are performed to test the change in the characteristics of ε with ∆𝑥 

and 𝐶s; which is included in Section 5.6. 

     There are key differences between the characteristics of data collected with CAMRa, and 

data fields from MetUM simulations. For example, observations consist only of vertical 

cross-sections through clouds, compared with the three-dimensional data fields from the 

MetUM. Further to this, observations collected with radar are limited to clouds regions that 

exceed a threshold reflectivity, whereas data is defined at all points in the model domain. 

Due to such differences, a perfect comparison between turbulence in observed clouds and 

clouds simulated in the MetUM is difficult to perform. However, in Section 5.2.1, suitable 

constraints on the sampling of model data, prior to the application of analysis methods, are 

determined to ensure that the comparison between model and observations is as fair as 

possible. This improves the ability to distinguish true differences in turbulence 

characteristics between observations and model from those resulting from an imperfect 

comparison. 

     The primary aim of this chapter is to investigate how ε from the Smagorinsky-Lilly 

parametrisation differs from observed ε. Although explanations for precisely why 

characteristics of ε differ in the model are attempted, this does not provide the focus for this 

chapter. To accomplish the primary aim, this chapter includes four secondary aims: (1) to 

establish suitable constraints to model data sampling to ensure a fair comparison can be made 

with observations; (2) to perform a statistical analysis of parametrised turbulence in 

simulated shower and deep clouds using methods consistent with those applied to 
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observations in Chapter 4; (3) to discuss the resulting comparison with observations in the 

context of the limitations of both model and radar data to determine how turbulence differs 

in the MetUM; (4) to test the effect of changing model resolution and mixing length on ε in 

the MetUM. 

     Under these aims, this chapter intends to address the following research questions: 

• What is the typical range of ε in the MetUM? How do these compare to the range of 

ε observed by radar? 

• Do ε features appear in similar regions of model clouds? Where is the largest ε found 

in the MetUM? Is this similar to observations? 

• Does ε have the same distribution with height as in observations? 

• Does ε have a similar distribution within model updraft regions compared to 

observations? Do distributions change similarly with updraft strength? How does the 

strength of correlation between ε and model updraft characteristics differ from 

observations?  

• Are the spatial scales of discrete ε features different from observations? Are there 

any differences between showers and deep cloud? 

• What is the impact of model grid-length on values of ε? What is the impact of 

changing the model mixing length? Which model configuration produces ε most 

similar to those observed? 

 

5.1.2   Chapter overview 

     This chapter details the evaluation of turbulence in the MetUM using the framework for 

statistical analysis of observed turbulence used in Chapter 4.  

     In Section 5.2, model data from the control simulations is presented in the form of vertical 

cross-sections and domain plots. These are used to identify and discuss the constraints to 

model data sampling that are necessary to ensure a fair comparison can be made with 
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observations. These include numerical thresholds such as those applied to ε and the 

simulated radar reflectivity to account for the limitations of sampling turbulence with radar. 

     In Section 5.3, a detailed comparison is made between single cases of simulated and 

observed clouds. The general characteristics of ε are compared with observations, including 

the appearance of ε features, typical values and spatial distribution. A broader evaluation of 

the range of ε values found in the control simulations is then conducted by comparing the 

vertical distribution of ε, determined from large datasets of simulated clouds, with 

observations. 

     In Section 5.4, an evaluation of ε in simulated updrafts is performed using the updraft 

detection and analysis methods from Section 4.4 to compare directly with observations. The 

general characteristics of simulated and observed updrafts are compared, together with 

correlations between ε and updraft characteristics, and the change in the distribution of ε 

with updraft strength.  

     In Section 5.5, the size and shape of coherent features of ε in simulated clouds are 

compared with those presented for observations in Section 4.5. The same automated 

detection technique as applied to observations is used to evaluate the change in the spatial 

characteristics of ε with turbulent intensity in the model. 

     To investigate the impact of assumptions made in model and sub-grid scheme 

configuration, the sensitivity of ε to the model grid-length ∆𝑥, and mixing length 𝜆0, is tested 

in Section 5.6. Values of ε in the control simulations are compared with those in a set of 

sensitivity simulations (see Section 2.3.3) with respect to updraft regions and vertical 

distribution. 
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5.2   Fair model evaluation  

     This section introduces data from the control simulations performed for the 20 April 2012 

shower cloud case, and 25 August 2012 deep cloud case (see Section 5.1.1). In Section 5.2.1, 

these simulations are used to highlight the key differences between MetUM data and radar 

observations. From this, a series of constraints on the sampling of simulated clouds are 

developed to ensure a fair comparison can be made with observations in later sections of this 

chapter.  

 

5.2.1   Conditions for fair model evaluation 

     Before any of the methods used in Chapter 4 can be applied to data from the control 

simulations, it is important to identify and account for both the intrinsic and meteorological 

differences between the characteristics of the model data, and radar observations. More 

specifically, this involves deciding on suitable methods to sample model data for appropriate 

comparison with observations, accounting for any simulated meteorological features that 

were not observed and applying numerical thresholds to model data to ensure a consistent 

comparison can be made with clouds observed by radar. These steps are necessary to ensure 

a fair evaluation of turbulence in the MetUM. The constraints and thresholds identified in 

this section are applied consistently to the sensitivity simulations in Section 5.6.  

     Initially, a constraint is applied to the model fields used for comparison to observations 

for practicality. As described in Section 2.3.3, the eddy viscosity 𝜈𝑚, and mixing length 𝜆, 

are output hourly from the Smagorinsky-Lilly scheme. This means that 3-D fields of ε (found 

from 𝜈𝑚, 𝜈ℎ, 𝑆, 𝜆UM using (2.26)) are available every hour between 0900 – 1900 UTC. For 

the purpose of making comparisons with observations, it has been both unnecessary and 

impractical to perform an analysis of 3-D fields of model data for each of the time-steps. 

Instead, the 1100, 1300 and 1500 UTC time-steps have been selected for analysis. These are 
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chosen to span a time period during which the majority of RHI observations were collected. 

Of the RHI datasets described in Section 2.2.4, 68% of deep cloud RHIs, and 76% of shower 

cloud RHIs were collected between 1100 and 1500 UTC. RHIs within this time interval 

contained 82% and 70% of updraft regions for deep and shower cloud, respectively.  

     At this point, an assumption is made that sampling many simulated clouds throughout the 

model domain every two hours can be considered comparable to observing fewer clouds 

with radar, but more regularly throughout the observation period. For the RHIs used for 

analysis in Chapter 4, clouds were observed, on average, every 9 minutes. If the broad 

characteristics of observed convection did not change considerably on hourly time-scales, 

this is considered a safe assumption. 

     The remaining constraints on model data sampling are discussed in the context of clouds 

sampled from the control simulations; both throughout the model domain, and in vertical 

cross-sections. Figure 5.1 displays the simulated total radar reflectivity 𝑍T, observed at a 

height of 𝑧 = 150 m throughout the full model domain of both cloud cases at 1100 UTC 

and 1500 UTC. Towards the western boundary (left-hand in plot) of domains in Figure 5.1, 

reflectivity features are present with distinctly different characteristics to those in the 

remainder of the 100-m domain; appearing to be smoother and aligned with the mean wind. 

These are also found near southern boundaries in cases where the wind is from the south-

west (e.g. Figure 5.1b), or near northern boundaries when the wind is from the north-west 

(e.g. Figure 5.1d). The 100-m model is nested within a 200-m model (see Section 2.3). In 

cases where clouds simulated in the 200-m model lie along the boundary of the 100-m 

domain at the beginning of the time-step, these can be advected into the 100-m domain. 

These features are more characteristic of the 200-m model, than for the clouds that were 

simulated in the remainder of the 100-m domain during the time-step. Therefore, data located 

in regions containing advected features are omitted from any analysis of ε. Variability in the 

strength and direction of the mean wind leads to variation in the location of advected features 

in different models and time-steps. For example, in Figure 5.1c, advected features are 
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roughly east-west oriented and extend approximately 20 km into the domain from the 

western boundary, also appearing close to the southern boundary. By 1500 UTC (Figure 

5.1d), features are again located within 20 km of the western boundary, but now appear close 

to the northern boundary due an apparent change in the mean wind direction to a north-

westerly, as indicated by the change in orientation of the advected features. Due to this 

variability, the domains at each time-step have been inspected individually to determine the 

regions with advected features, for both case studies. For example, in Figure 5.1b, no data 

was considered closer than 20 km to the western boundary, or closer than 10 km to the 

southern boundary. 

 

Figure 5.1:   Total radar reflectivity 𝑍T, at 150 m height throughout the 100-m domain over 

southern England for: (a) shower cloud at 1100 UTC; (b) shower cloud at 1500 UTC; (c) 

deep cloud at 1100 UTC; (d) deep cloud at 1500 UTC. Dashed black lines in (b) and (d) 

indicate the location of vertical profiles in Figure 5.2. Values of 𝑍T lower than -20 dBZ are 

removed. 
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Figure 5.2:   Vertical profiles of total radar reflectivity 𝑍T, vertical velocity 𝑤, and ε through 

simulated shower clouds (left) and deep clouds (right) at 1500 UTC. Location of vertical 

profiles are indicated by black dashed lines in Figure 5.1b and 5.1d. In (a) and (b) data has 

been removed where 𝑍T < −20 dBZ. In (e) and (f) data has been removed where ε <

10−5 m2 s−3. The black contour in (c) – (f) represents the location of 𝑍T = 20 dBZ to 

indicate the location of convective cloud relative to vertical motion and turbulence. 
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     A final constraint is applied to sample the 3-D model data in a way that is comparable to 

the observations with radar. Radar observations consist exclusively of RHIs, so vertical 

cross-sections through model data are collected for comparison. If the east-west direction is 

given by 𝑥, and the north-south direction by 𝑦, vertical cross-sections are sampled in 𝑥-𝑧 co-

ordinates at regular intervals of 𝑦. This method is not consistent with the scanning strategy 

used in DYMECS, which identified maxima in rainfall features to define the azimuth of the 

RHI scan. However, an RHI bisecting a single rainfall feature will also sample any clouds 

along this azimuth up to 200 km from the radar. Due to this effect, it was uncommon for 

RHIs in the dataset used for analysis in Chapter 4 to include the target cloud alone. This 

indicates that the majority of clouds observed in the RHIs were sampled with no directional 

preference. Therefore, sampling vertical cross-sections of model data at regular intervals of 

𝑦 (which does not preclude sampling some clouds directly through rainfall maxima) is not 

expected to significantly impact the comparison with observations. The size of the 𝑦-interval 

differs depending on the application (e.g. 3 km for updraft analysis in Section 5.4 to minimise 

the oversampling of updrafts), so these are specified at the beginning of the corresponding 

sections.  

     With the necessary constraints applied to model data sampling, fixed numerical 

thresholds are now established to account for the limitations of radar observations. By 

applying thresholds to fields in vertical cross-sections of model data, the aim is to maximise 

their comparability with the RHI observations collected with CAMRa. Figure 5.2 includes 

vertical cross-sections of 𝑍T, vertical velocity 𝑤, and ε, for simulated shower and deep 

clouds at 1500 UTC. The locations of these are indicated in Figure 5.1 by dashed lines at 

𝑦 = 50 km for shower cloud (Figure 5.1b) and at 𝑦 = 120 km for deep cloud (Figure 5.1d). 

In Figure 5.2a and 5.2b, values of 𝑍T < −20 dBZ have been removed to better represent the 

location of simulated clouds and precipitation. In Figure 5.2e and 5.2f, values of ε <

10−5 m2 s−3 have been removed to better indicate the location of significant dissipation 



175 
 

rates. In Figure 5.2c – 5.2f, the black contour outlines regions of 𝑍T = 20 dBZ to indicate 

the location of simulated convective clouds relative to turbulent dissipation and vertical 

motion. For the remainder of this section, Figure 5.2 is used for reference to discuss the 

application of numerical thresholds.  

     Retrievals of ε with CAMRa can only be made where reflectivity exceeds the minimum 

threshold for detection. At 1-km range this is -37 dBZ, although this increases with range 

from the radar. By inspecting RHIs that have been corrected by signal-to-noise ratio (using 

(3.3)) for the shower case, the smallest observed reflectivity increases from -4 dBZ to 3 dBZ 

between 30 km and 80 km (typical range of cloud distances). This suggests that applying a 

minimum threshold to 𝑍T in model data of 𝑍min = 0 dBZ, and overlaying this onto fields of 

ε, would be suitably consistent with observations. Imposing a minimum threshold to 𝑍T has 

additional benefits to the shower case. As shown in Figure 5.2a, between 3 – 6 km in height, 

there is a layer of low-reflectivity cloud ranging from 𝑍T = −20 dBZ to 𝑍T = 0 dBZ. This 

feature (likely cirrus cloud) extends throughout the majority of the domain and persists for 

each of the three time-steps considered. However, there is no evidence of this in the RHI 

observations due to 𝑍T being largely lower than 0 dBZ. Figure 5.3 includes observations 

throughout the shower case day from the 35 GHz Copernicus cloud radar located at the 

Chilbolton Observatory. As indicated by the black box, there is an elevated layer (albeit 

shallow compared to Figure 5.2a) of low-reflectivity cirrus cloud (𝑍T < −10 dBZ) 

throughout the late-morning and early-afternoon hours. This suggests that the model is 

representing a layer of cirrus cloud that existed on the day of observation but to a larger 

extent than is indicated in radar observations. Sampling ε from within this simulated cloud 

region would be highly inconsistent with RHI observations; a benefit of applying the 𝑍min =

0 dBZ threshold to model data. 
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Figure 5.3:   Radar reflectivity observations throughout the 20 April 2012 shower case day 

from the 35 GHz Copernicus cloud radar at the Chilbolton Observatory, indicating a shallow 

layer of low-reflectivity cirrus cloud (black box) not observed by the less sensitive CAMRa. 

 

     A second threshold is applied directly to model fields of ε due to the minimum ε 

observable with CAMRa. In Section 6.2.3, an apparent lower limit to observed values of 𝜎𝑣 

was noted, with an approximate value of 0.9 m s−1. Subsequent experiments using a larger 

number of pulse-pairs while scanning succeeded in reducing this detection limit, but only 

closer to 𝜎𝑣 = 0.6 m s−1; the lowest 𝜎𝑣 that can be reliably sampled due to the Nyquist 

velocity of CAMRa (see Section 2.1.2). A lower limit to 𝜎𝑣 of 0.9 m s−1 imposes a 

corresponding limit to ε (given by εlim). In the extreme case where observed 𝜎𝑣 results only 

from turbulence (𝜎𝑣 = 𝜎t = 0.9 m s−1), this translates to εlim = 2.9 × 10−3 m2 s−3 at a 

typical range of 60 km from the radar (using (1.25)). In the MetUM, ε has non-zero values 

defined for each grid point, which can fall to 10−10 m2 s−3 (at which point they are 

practically zero). In Figure 5.2e and 5.2f, data has been removed where ε < 10−5 m2 s−3 to 

improve the visual representation of regions of significant turbulence. However, without 

applying this threshold, values of ε < εlim constitute 88% of all grid-points where 𝑍T >

0 dBZ. Without applying a threshold to model data, the numerous values of ε ≪ εlim would 

bias statistics such as percentiles and probability distributions, affecting the quality and 

fairness of comparison with observations. A fair evaluation of ε in simulated clouds can only 

be made for the range of ε that is reliably observed with CAMRa, however, this does not 
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refer to all ε > εlim. Values lower than εlim in real clouds will be observed incorrectly as 

εlim with CAMRa. Therefore, observed values that are similar to εlim cannot be assumed to 

be reliable. Consequently, a threshold of εmin = 5 × 10−3 m2 s−3 is selected, whereby only 

values larger than this threshold, in both model and observations, are compared. Although 

there is a maximum ε that can be reliably sampled by CAMRa of ~ 1 m2 s−3 (see Section 

2.1.2), there was little evidence to suggest this had imposed a restriction on observed ε. 

Therefore, no maximum threshold is applied to ε in simulated clouds.  

     A final threshold is applied to ensure that ε located very close to the surface is not sampled 

in the model. In both Figure 5.2a and 5.2b (and more generally in the control simulations), 

large ε is widespread close to the surface. However, due to scanning at non-zero elevations 

with CAMRa, observations are generally not collected from very close to the surface. This 

minimum height increases with range, however, at the minimum 30-km range of sampled 

clouds, observations are not collected nearer than 150 m from the surface. Therefore, a 

minimum height threshold of 𝑧min = 150 m is applied to model data.  

     In summary, to following constraints and thresholds have been applied to model data to 

ensure a fair comparison of ε can be made with observations: 

• Model time-steps 1100, 1300 and 1500 UTC are selected for analysis to span the 

time period during which the majority of RHI observations were collected. 

• Locations within domains of the control (and sensitivity) simulations that include 

advected features from boundaries with the surrounding 200-m model are omitted 

from analysis. 

• Sampling model data by vertical cross-sections at regularly-spaced intervals is 

selected to provide the most suitable comparison with RHI observations. The interval 

size varies with analysis application and is prescribed at the start of each 

corresponding section. 
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• Only model data co-located with reflectivity larger than 𝑍min = 0 dBZ is compared 

with observations to ensure consistency with the minimum reflectivity sampled by 

CAMRa. 

• Due to the lower limit to ε observed with CAMRa, a minimum threshold of εmin =

5 × 10−3 m2 s−3 is applied to model data. 

• A minimum height of 𝑧min = 150 m is applied to model data to avoid sampling 

turbulence from regions that were not observed with CAMRa due to scanning at non-

zero elevation. 

 

5.3   General features of ε in simulated clouds 

     Thresholds and data sampling constraints were established in Section 5.2 to ensure a 

consistent comparison can be made between model and observations. This begins with a 

comparison of the general features of ε in cloud cases between the two control simulations, 

and between model and observations (Section 5.3.1). An approach is then taken to more 

broadly compare the values of ε in the control simulations with observations. This is 

achieved through examination of the vertical distribution of ε under the sampling constraints 

detailed in Section 5.2, affording a direct comparison with observations (Section 5.3.2). 

 

5.3.1   Characteristics of ε in simulated clouds 

     In this section, cloud cases from the vertical cross-sections through simulated clouds in 

Figure 5.2 are examined in more detail to identify the differences between the general 

characteristics of ε between the control simulations. The intensity and probability 

distribution of ε, together with its spatial distribution and relation to vertical velocity 𝑤 with 

the cloud, is then compared with corresponding examples of observed clouds for both case 

days. Simple cloud cases are used in this section to highlight the key differences between ε 
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in model and observations, which provide the focus for more detailed examination in later 

sections of this chapter. 

     To make these comparisons, the thresholds 𝑍min = 0 dBZ, εmin = 5 × 10−3 m2 s−3, and 

𝑧min = 150 m are first applied to Figure 5.2e and 5.2f. A simulated “cloud” is identified in 

both cases, defined by the contour of 𝑍min. These are then compared with examples of 

observed cloud with similar spatial scales and strength of vertical motion. These are 

presented in Figure 5.4 and Figure 5.5, which compare ε and 𝑤 for a shower cloud and deep 

cloud, respectively. To ensure a consistent comparison, εmin has also been applied to the 

observed clouds. For the remainder of this section, acronyms are used to differentiate simply 

between the simulated deep cloud (SDC), simulated shower cloud (SSC), observed deep 

cloud (ODC) and observed shower cloud (OSC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4:   Comparison of 𝑤 and ε in a single shower cloud in observations (a – b) and 

MetUM (c – d). Contours in (c) and (d) represent 0 dBZ (black) and 20 dBZ (red) reflectivity. 
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Figure 5.5:   Equivalent comparison to Figure 5.4 for an example of deep cloud. 

 

     Qualitatively, Figure 5.4d and 5.5d show that ε > εmin is far less widespread within the 

cloud than for the observed clouds, which is especially true for the SSC. In the simulated 

clouds, large ε appears to be more strictly co-located with gradients in 𝑤 than for observed 

clouds. This is most evident in the SDC, in which large ε (more than 0.1 m2 s−3) is found in 

small discrete features along sharp gradients in 𝑤 associated with the main updraft between 

42 – 45 km eastward distance. Such strong gradients in 𝑤 are not observed in the SSC and 

the resulting ε is weaker than less widespread. The strong association between ε and 

horizontal gradients in 𝑤 was noted in observations (Section 4.4.4.2), where |
𝑑𝑤

𝑑𝑥
|

95
 provided 

the strongest correlation with ε95 of any cloud characteristic. The statistical relationships 
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between ε and updraft characteristics in the control simulations are explored in more detail 

and compared with observations in Section 5.4. 

     In observed clouds, regions of ε are generally much more diffuse within the cloud (see 

Figure 5.5b); a clear difference to the localised, intense ε more strongly co-located with 

velocity gradients in the model. The Smagorinsky-Lilly scheme does not account for the 

advection of turbulence, rather ε is determined from shear and buoyancy processes occurring 

at the grid-scale. It would be reasonable to assume that the advection of turbulence within 

observed clouds results in a transition to broad, diffuse regions of weaker ε, occurring during 

the time-scale required to dissipate the turbulent kinetic energy (TKE) that has been 

produced in the cloud. This could explain the differences in spatial characteristics of ε in 

simulated clouds. The relationship between the spatial characteristics of ε, and the turbulent 

intensity, are explored in more detail and compared with observations in Section 5.5.  

     The larger intensity of ε features in Figure 5.5d combined with smaller spatial coverage 

might suggest that similar amounts of TKE are being dissipated, but over a much smaller 

spatial area. However, this makes the assumption that turbulent production mechanisms of 

a particular strength produce the same TKE in simulated and observed clouds. If this were 

the case, the mean TKE dissipated per second throughout a simulated cloud should be largely 

similar to that in an observed cloud if the strength of production mechanisms were 

approximately the same. The SDC and ODC are suitable for this comparison; they both 

contain a single main updraft region with 𝑤 up to 8 – 12 m s−1, and span approximately the 

same area (~ 150 km2). However, the mean ε throughout the SDC (0.56 m2 s−3; see Table 

5.1) is more than a factor of 10 larger than the mean ε in the ODC (0.041 m2 s−3). Such a 

result indicates that there may be significant differences in the production of TKE in the 

model, resulting in large differences found in the range of ε values between observed and 

simulated clouds that have similar characteristics; this will now be investigated in further 

quantitative detail. 
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Figure 5.6:   Comparison of the cumulative density function of ε as appears in Figures 5.4b 

(solid black), 5.4d (dotted black), 5.5b (solid red) and 5.5d (dotted red). 

 

 

Table 5.1:   Statistics of ε for observed and simulated clouds in Figure 5.4 and 5.5. 

 

  Shower Cloud Deep Cloud  

Statistic Unit Obs MetUM Obs  MetUM  

Data count of  𝛆 > 𝛆𝐦𝐢𝐧 - 3569 530 13951 1991 

Mean 𝛆 m2 s−3 0.015 0.30 0.041 0.56 

Median 𝛆 m2 s−3 0.012 0.0087 0.023 0.014 

95th pctl. 𝛆 m2 s−3 0.035 0.14 0.13 0.46 

Maximum 𝛆 m2 s−3 0.097 110 1.0 317 

𝛆 < 𝟎. 𝟎𝟏 𝐦𝟐 𝐬−𝟑 (%) 37 58 19 36 

𝛆 > 𝟏 𝐦𝟐 𝐬−𝟑 (%) 0 1 0.007 4 
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     Figure 5.6 includes the cumulative density functions (CDFs) of ε in each of the 4 cloud 

cases in Figure 5.4 and 5.5. Each CDF consists of a number of ε data points from each cloud 

that is listed in Table 5.1, together with various statistics associated with each distribution 

that will be referred to in this discussion. Figure 5.6 shows that small values of ε (less than 

0.01 m2 s−3) constitute a large proportion of total values in the SSC (58%) and SDC (36%). 

Further to this, large values (ε > 0.1 m2 s−3) are twice as frequent in the SDC (14%) than 

in the SSC (7%). Therefore, a large proportion of the simulated cloud area in both cases is 

only weakly turbulent, and strong turbulence is more widespread in deep clouds. Both of 

these features are consistent with those identified in observed clouds (see Section 4.2.1). 

However, Figure 5.6 also indicates key differences in the distribution of ε between the 

simulated and observed clouds. The percentage of ε values that are less than 0.01 m2 s−3 is 

approximately twice as large in the SDC when compared to the ODC (36% for the SDC; 

19% for the ODC). Large values of ε (more than 0.1 m2 s−3) are also less common in the 

observed cases; most notably in the shower case where no ε larger than 0.1 m2 s−3 was 

found in the OSC, while 14% of values exceeded 0.1 m2 s−3 in the SSC. In summary, 

although the differences in the distribution of ε between the SDC and SSC are consistent 

with those between the OSC and ODC, the distribution of ε in the simulated clouds is far 

broader than in the observed clouds. 

     Interestingly, median values of ε are approximately 50% larger in the observed clouds, 

while mean values are substantially higher in the simulated clouds. The lower median values 

result from a larger proportion of small ε in the model, while the higher mean results from 

substantially larger ε produced in simulated clouds. The 95th percentile of ε is a factor of 

four larger in the SSC (0.14 m2 s−3) than in the OSC (0.035 m2 s−3), and more than a factor 

of three larger in the SDC (0.46 m2 s−3) than in the ODC (0.13 m2 s−3). Dissipation rates 

as large as 110 m2 s−3 and 317 m2 s−3 were found in the SSC and SDC, respectively. These 

are extremely large compared to the maximum ε found in the OSC (0.097 m2 s−3) and ODC 
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(1 m2 s−3). Importantly, these values are much larger than the maximum ε that can be 

reliably sampled by CAMRa of ~ 1 m2 s−3 (see Section 2.1.2). In the SSC, only 1% of ε (5 

values) were larger than 1 m2 s−3, although 4% (71 values) exceeded this threshold in the 

SDC. Due to confidence that CAMRa was reliably sampling the full range of ε in observed 

clouds (see Section 2.1.2), the largest ε found in the simulated clouds far exceeds the ε that 

was present in the observed clouds. 

     In summary, by comparing individual cloud cases in detail, key differences have been 

identified in ε between simulated and observed clouds. A large proportion of the cloud area 

is only weakly turbulent in simulated clouds, and deep clouds are more turbulent that shower 

clouds; this is consistent with observations. Dissipation rates in simulated clouds are 

spatially correlated with areas of vertical motion as observed, however, large ε is more 

strongly co-located with shear around updrafts, resulting in localised, intense regions of 

dissipation. Although turbulence has significant correlation with features of updraft in 

observations, turbulence is generally found in weaker diffuse regions, possibly due to the 

effects of advection within the cloud which is not accounted for by the Smagorinsky-Lilly 

scheme. Although the CDFs of ε in the selected cloud cases are similar in appearance, 

distributions of ε are broader in simulated clouds. Values of ε produced by the model can far 

exceed the largest ε observed, and the largest ε reliably observable with CAMRa. 

     This investigation has compared only individual clouds, and so these conclusions are used 

as guidance for more detailed analyses in the following sections of this chapter. To more 

thoroughly compare the values of ε in simulated and observed clouds, the vertical 

distributions of ε are determined from many vertical cross-section of model data; this is 

presented following this section in Section 5.3.2. These are then compared directly to the 

observed vertical distributions presented in Section 4.3. To investigate the relationship 

between ε and features of convective updrafts in the MetUM, the updraft analysis performed 

for observations in Section 4.4 is replicated with model data in Section 5.4. To better 
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understand the differences in the spatial characteristics of ε features identified between 

model and observations in this section, methods used to analyse the size and shape of 

observed coherent ε features in Section 4.5 are applied identically to model data for a direct 

comparison in Section 5.5. 

      

5.3.2   Vertical distribution of ε in simulated clouds 

     In Section 4.2.2, the vertical distribution of ε was investigated in observed clouds. This 

approach provided a convenient way to simultaneously compare intensity of ε and its 

distribution with height between the two cloud types. Such an approach is now applied to 

vertical cross-sections of model data to compare the change in various percentiles of ε with 

height, between the control simulations, and directly with observations. This will allow for 

a broader evaluation of the distribution of ε values in simulated clouds, building on the 

comparison of ε in individual clouds in Section 5.3.1. The acronyms established in Section 

5.3.1 (e.g. SDC: simulated deep cloud) are used in this section to refer to all clouds sampled 

for analysis for each cloud type. 

     Following the constraints to model data sampling established in Section 5.2, vertical 

cross-sections of model data are sampled in 𝑥-𝑧 co-ordinates at regular intervals of 𝑦. A 𝑦-

interval of 1 km is selected; however, the exact size of this interval is unimportant for purely 

sampling clouds as long as it is applied consistently throughout the model domain. This 

approach is applied throughout the three domains for both control simulations 

(corresponding to the 1100, 1300 and 1500 UTC timesteps), and 417 vertical cross-sections 

are collected through SDC, with 426 collected through SSC. The small difference results 

from differing constraints applied to the range of 𝑦 considered. This results from the 

omission of domain regions with advected features from the surrounding 200-m model 

domain (see Section 5.2), which differ between both model and time-step. The thresholds of 

𝑍min = 0 dBZ, εmin = 5 × 10−3 m2 s−3, and 𝑧min = 150 m are applied to each vertical 
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cross-section to sub-sampled the ε that is comparable with observations. Consistent with 

methods applied to observations, resulting values of ε are recorded in each 1-km vertical 

level up to the maximum cloud height; 0 – 6 km for SSC, and 0 – 10 km for SDC. The 25th, 

50th, 75th, 95th and 99th percentiles of ε are calculated for each vertical level and compared 

to corresponding values in observations; which have been re-calculated from the analysis in 

Section 4.2.2 to consider only ε > εmin. 

 

 

Figure 5.7:   (a) Comparison of the vertical distribution of the median, 25th and 75th 

percentiles of ε in simulated and observed deep clouds, (c) equivalent for shower clouds. (b) 

Comparison of 95th and 99th percentiles of ε for deep clouds, (d) equivalent for shower 

clouds. Values of ε recorded in all simulated clouds where 𝑍 > 0 dBZ. Only ε >

0.005 m2 s−3 considered in all clouds. 
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     Figure 5.7a compares the change in the 25th, 50th and 75th percentiles of ε with height 

between ODC and SDC. Together, the 25th and 75th percentiles are used to represent the 

range of typical values of ε within each cloud, although only the median values of ε (given 

by εmed) will be discussed. For SDC, the number of values of ε collected for the 9 -10 km 

vertical level (103) was too small to derive reliable statistics, so no comparison is made with 

observations in Figure 5.7a (or 5.7b). In SDC, εmed  ranges from 0.01 – 0.02 m2 s−3 in the 

vertical profile, compared with 0.01 – 0.03 m2 s−3 in ODC. This indicates that values of 

εmed are largely similar between model and observations. However, εmed is larger in SDC 

for all vertical levels except 8 – 9 km. This is associated with a significant difference in the 

vertical distribution of εmed between SDC and ODC; a general increase with height in 

observations compared with a general decrease with height in the model. An exception exists 

from 0 – 1 km in SDC, which contains the lowest εmed of 0.01 m2 s−3. This is likely to 

reflect the turbulence within precipitation near the surface of the model, which is almost 

identical in intensity to observed values. 

     An equivalent comparison for shower clouds is presented in Figure 5.7c, which compares 

the same percentiles of ε from the surface to the 6-km cloud top. In OSC, εmed is an 

approximately constant 0.01 m2 s−3 throughout the vertical profile, whereas for SSC, εmed 

ranges from 0.010 – 0.015 m2 s−3. Again, this indicates that typical values of ε in simulated 

clouds are similar to observations. However, consistent with SDC, εmed decreases with 

height from 1 km to the cloud top, and the lowest εmed of 0.01 m2 s−3 is again found from 

0 – 1 km. These results also indicate that the typical values of ε are very similar between the 

control simulations, both in value and in vertical gradient. 

     Although the typical values of ε are very similar between model and observations, 

significant differences exist in the largest values, as highlighted initially in the comparison 

of single cloud cases in Section 5.3.1. In Figure 5.7b, the change in the 95th and 99th 

percentiles of ε (referred to as ε95 and ε99, respectively) with height is compared between 
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ODC and SDC. In SDC, ε95 varies from 0.2 – 1.0 m2 s−3 in the vertical profile, compared 

with only 0.03 – 0.10 m2 s−3 in ODC. This shows that ε95 is generally an order of magnitude 

larger in SDC. This difference is even greater when examining ε99; values in SDC range 

from 2 – 11 m2 s−3, whereas observed values range only from 0.05 – 0.20 m2 s−3. This 

suggests that the largest ε is approximately two orders of magnitude greater in the model, 

far exceeding the values of ε that can be reliably sampled with CAMRa. Excluding values 

from 0 – 1 km, both ε95 and ε99 decrease more markedly with height than εmed in SDC. The 

differences in the gradient of ε with height between model and observations is more plainly 

seen for ε95 than for εmed. In ODC, ε95 increases with height by an order of magnitude, 

whereas in SDC, ε95 decreases by an order of magnitude.  

    The differences in ε95 and ε99 between model and observations are very similar for shower 

clouds (Figure 5.7d). Values of ε95 and ε99 in SSC are again one and two orders of magnitude 

larger, respectively, than corresponding values in OSC. Values of ε95 and ε99 decrease with 

height in SSC, but at a slower rate (factor of two) when compared with SDC (factor of ten). 

However, this remains inconsistent with OSC, where both ε95 and ε99 are approximately 

constant with height. 

 

 

 

 

 

 

 

 

 

Figure 5.8:   Comparison of the 99th percentile of vertical velocity through the simulated 

deep cloud (SDC – red line) and simulated shower cloud (SSC – black line). 
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     It is not clear exactly why the vertical gradient of ε in simulated clouds is inconsistent 

with observations. However, in Section 4.2.3, the correlation between updraft ε and above-

updraft ε in SCCCs was stronger in ODC, suggesting that deep updrafts were more effective 

at distributing strong turbulence towards the cloud top than the weaker updrafts in OSC. It 

is possible that the positive vertical gradient in ε in ODC results from the upward advection 

of turbulence in deep updrafts; a process that is not accounted for in the Smagorinsky-Lilly 

scheme. Instead, vertical gradients in ε will result solely from any vertical distribution in the 

strength of shear and buoyant production of TKE. Due to the strong TKE production 

associated with updrafts, vertical profiles of the 99th percentile of vertical velocity (𝑤99) in 

SDC and SSC are compared in Figure 5.8. Vertical profiles in both cloud types exhibit a 

decrease with height, primarily in the mid-upper levels of the cloud. This is consistent with 

the evaluation of updrafts performed for these cases by Nicol et al. (2015). In the case of 

SDC, the vertical profile of 𝑤99 has similar characteristics to that of ε99; lowest near the 

surface, decreasing between 4 – 8 km, and increasing again near the cloud top.  

     Although it is not the aim of this chapter to identify exactly why the characteristics of ε 

differ in the MetUM, this does provide evidence that the absence of advection in the 

Smagorinsky-Lilly scheme can lead to significant differences in the vertical distribution of 

ε between observed and simulated clouds. In the future, this should be investigated for 

potential impacts on the evolution of convection within the MetUM, especially with regards 

to the impact of turbulent mixing in the upper levels of the cloud. 

    In this section, hundreds of vertical cross-sections through control simulation data have 

been analysed to directly compare the vertical distribution of ε in simulated and observed 

clouds. Typical values of ε are very similar between simulated and observed clouds, and 

between simulations, ranging from 0.01 – 0.03 m2 s−3 in all cloud cases. However, the 

largest values of ε (ε95 and ε99) in the control simulations are very large compared with 

observations. In both the shower and deep clouds, ε95 and ε99 are one and two orders of 
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magnitude larger, respectively, in the MetUM. In both of the control simulations, ε decreases 

with height. This is inconsistent with observations where ε is constant with height in shower 

cloud and increases with height in deep cloud. The rate of decrease with height of ε95 and 

ε99 was smaller in SSC (factor of 2) compared with SDC (factor of ten). The disparity 

between simulated and observed vertical gradients of ε was discussed in the context of the 

upward transport of turbulence via advection in observed updrafts. Future research should 

consider the impact of the advection of turbulence by updrafts, and the resulting effect on 

the evolution of convective clouds.    

 

5.4   Evaluation of ε in simulated updrafts 

     Up until now, evaluation of the model has focused on the general intensity and 

distribution of ε. In Section 5.3, the general characteristics of ε were compared in simulated 

and observed clouds. This included a comparison of the appearance and spatial distribution 

of ε in individual cloud cases, the typical and large values of ε, and the distribution of ε with 

height in the cloud. Qualitatively, the characteristics of ε associated with simulated updrafts 

were found to differ significantly. Features of ε were smaller and more intense in the model 

and were more strongly co-located with gradients in vertical velocity 𝑤, than in observed 

clouds. By applying the same updraft detection methodology as applied to observed clouds 

(Section 4.4.1), the statistical relationships and probability distribution of ε in simulated 

updrafts of different strength can be evaluated through direct comparison with the updraft 

analysis presented for observations in Section 4.4. 

     For clarity of comparison, this section is structured identically to Section 4.4. Methods 

for model data sampling and updraft detection are summarised in Section 5.4.1, followed by 

the discussion and comparison of the statistics of updraft turbulence in simulated and 

observed clouds in Section 5.4.2. The broad characteristics of updrafts and associated 
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turbulence are compared between model and observations in Section 5.4.2.1, followed by a 

comparison of correlations between ε and updraft characteristics in Section 5.4.2.2. Finally, 

a comparison of the change in the probability distribution of ε within updrafts of different 

strength is presented in Section 5.4.2.3. 

 

5.4.1   Detection of simulated updrafts 

     In Section 4.4, a flood-fill algorithm was applied to observations to detect coherent 

objects of 𝑤 that exceeded a prescribed threshold. Updraft regions (or “updrafts”) were then 

approximated by rectangular regions defined by the spatial scales of the detected object. The 

coordinates of detected updrafts were then superimposed on retrievals of ε to investigate the 

statistical properties of turbulence associated with convective updrafts. This methodology 

(detailed in Section 4.4.1) is now applied consistently to vertical cross-sections of 𝑤 sampled 

from the control simulations. 

     For each of the three time-steps selected for analysis in the control simulations (see 

Section 5.2), vertical cross-sections were sampled throughout each domain at regular 𝑦-

intervals of 3 km. In Section 4.4, the RHI dataset used for the analysis of updraft turbulence 

was comprised of statistically independent cloud observations. To ensure the application to 

model data is consistent with this, the 𝑦-interval of 3 km was selected to be large enough to 

minimise the over-sampling of individual updrafts, while remaining small enough to build a 

dataset of updrafts large enough to be suitable for statistical assessment. If the majority of 

simulated updrafts are less than 3 km wide (results in Section 5.4.2 reveal this corresponds 

to ~75% of updrafts in both cases), the majority of vertical cross-sections will contain 

statistically independent updrafts. Using this sampling method, 139 vertical cross-sections 

are considered for SDC, and 142 for SSC. These are suitably large datasets for statistical 

assessment when compared with the 33 RHIs analysed for OSC, and 44 RHIs for ODC, from 

which significant statistical relationships could be derived. 
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     The threshold velocities (𝑤min) that were applied to OSC (1 m s−1) and ODC (1.5 m s−1)  

are applied identically to detect updrafts in the vertical cross-sections of SSC and SDC. The 

flood-fill algorithm detects an updraft where at least 4 pixels of 𝑤 are connected by their 

edges. Therefore, observed updrafts were filtered by width and depth thresholds to remove 

those that were small and insignificant. Depth thresholds were set to approximately one third 

of the cloud depth; 2 km in OSC and 3 km in ODC. Applying these thresholds to updrafts 

detected in model data resulted in 99% and 98% of updrafts being removed in SSC and SDC, 

respectively. This results from a key difference in the representation of updrafts between 

model and observations. Observed updrafts appear to more closely resemble “plumes” of 

large 𝑤 that extend for a significant proportion of the cloud depth, e.g. in Figure 5.4a. 

However, simulated updrafts more closely resemble “thermals”; shallower pockets of large 

𝑤, e.g. in Figure 5.4c. This characteristic difference means that applying the same depth 

thresholds would remove updrafts that are considered significant in the context of the model. 

To account for this, the depth threshold is relaxed to 1 km for model updrafts. The width 

threshold of 1.5 km is, however, applied consistently between model and observed updrafts.  

    Applying these filters leaves a dataset of 651 updrafts from SSC, and 386 updrafts from 

SDC. The coordinates of each of these are then overlaid onto corresponding fields of ε, 

where only ε > εmin is considered for analysis. The analysis of observed updrafts (Section 

4.4) has been reproduced to consider only ε > εmin within each updraft to allow for a direct 

comparison to be made. Due to the generally high intensity of turbulence in observed 

updrafts, especially in deep clouds, thresholding ε has had little effect on the correlations 

between ε95 and updraft characteristics in Section 5.4.2.2. 
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5.4.2   Statistics of ε in simulated updrafts 

     The following three sections include statistical analyses of ε within the datasets of 

simulated updrafts described in Section 5.4.1. Direct comparisons are made with 

corresponding statistics for turbulence in observed updrafts to evaluate the generation of 

turbulence in model updrafts. This begins with a broad comparison of model updraft 

characteristics, and associated ε, with observations in Section 5.4.2.1. This is followed by a 

comparison of the strength of correlations between ε and updraft characteristics in Section 

5.4.2.2, and a comparison of the probability distribution of ε in updrafts of different strength 

in Section 5.4.2.3.  

 

5.4.2.1   Updraft characteristics and ε in model and observations 

     Data in all updrafts regions are combined for each cloud case to produce cumulative 

density functions (CDFs) of updraft ε, updraft velocity 𝑤, the magnitude of the horizontal 

gradient in updraft velocity |
𝑑𝑤

𝑑𝑥
|, and updraft area. These characteristics (the same as those 

compared for observations in Figure 4.11) are compared between SSC and OSC in Figure 

5.9, and between SDC and ODC in Figure 5.10. 

     The CDFs of ε (Figure 5.9a and 5.10a) suggest turbulence is much stronger in simulated 

updrafts than those observed. This is consistent with the comparison of ε throughout all 

simulated and observed cloud, presented in terms of the vertical distribution of ε in Section 

5.3. In Figure 5.9a, small values of ε (less than 0.01 m2 s−3) comprise 45% of updraft values 

in OSC and 35% of values in SSC. This suggests that although a similar proportion of the 

spatial area within the updrafts is only weakly turbulent, weak turbulence is slightly more 

widespread in OSC updrafts. Significant differences then exist in the proportion of ε larger 

than 0.05 m2 s−3, which is only 1% in OSC compared with 20% in SSC. This shows that 

the significant turbulence in SSC updrafts is considerably more intense than in observed 
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updrafts. The 95th and 99th percentiles of ε (ε95 and ε99) in SSC updrafts (0.4 m2 s−3 and 

4 m2 s−3) are approximately one and two orders of magnitude larger than the corresponding 

values in observed updrafts (0.03 m2 s−3 and 0.04 m2 s−3), respectively. This is consistent 

with the comparison of the vertical distribution of these percentiles in Section 5.3.2. 

 

 

 

 

Figure 5.9:   Comparison of the cumulative density functions (CDFs) of updraft 

characteristics in simulated and observed shower clouds; (a) ε; (b) vertical velocity, 𝑤; (c) 

magnitude of shear in 𝑤; (d) updraft area. CDFs include all values located within all detected 

updraft regions. 
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Figure 5.10:   Comparison of the cumulative density functions (CDFs) of updraft 

characteristics in simulated and observed deep clouds; (a) ε; (b) vertical velocity, 𝑤; (c) 

magnitude of shear in 𝑤; (d) updraft area. CDFs include all values located within all detected 

updraft regions. 

 

     Similar comparisons can be made for deep clouds in Figure 5.10a. In both ODC and SDC, 

25% of all values of ε are less than 0.01 m2 s−3, suggesting the spatial extent of weak 

turbulence is the same in both cases, and more similar than for shower cloud updrafts. 

However, as for shower cloud updrafts, significant differences exist for larger values of ε. 

Only 2% of ε values in ODC updrafts are larger than 0.1 m2 s−3 compared with 20% of 

values in SDC updrafts. Values of ε95 and ε99 in SDC updrafts (0.8 m2 s−3 and 9 m2 s−3) 

are approximately double those stated for SSC updrafts and are similarly one and two orders 

of magnitude larger than the corresponding values in ODC updrafts (0.07 m2 s−3 and 0.1 



196 
 

m2 s−3). The clear differences in the distribution of ε for both updraft cases are now 

discussed in the context of other updraft characteristics to identify the potential causes. 

     Figure 5.9b and Figure 5.10b show that the distribution of updraft strength is very similar 

between model and observations for both cloud cases. Generally, values of 𝑤 are slightly 

larger in observed updrafts, however, this appears to result from a higher proportion of 

negative values in simulated updraft regions (21% for SSC; 26% for SDC) than in those 

observed (11% for OSC; 13% for ODC). This may result from thermal-type updrafts 

appearing more irregular in shape (a good example of this is shown in Figure 5.5c) than the 

plume-type updrafts found in observed clouds. If detected features of 𝑤 > 𝑤min are more 

irregular, the rectangular updraft regions defined by the spatial extremes of the feature are 

more likely to include values of 𝑤 < 𝑤min. When considering only 𝑤 > 0 (not shown), 

CDFs of 𝑤 are almost identical for both cloud types. This is an important clarification to 

make when attempting to explain the marked difference in the CDFs of ε. Differences in 

updraft strength between model and observations would have impacted the distribution of ε. 

This was demonstrated in observations where CDFs of ε in updrafts changed significantly 

with 𝑤95 (Figure 4.13 and 4.14). By verifying the consistency in 𝑤 between model and 

observations, characteristics aside from updraft strength must be responsible for the disparity 

in ε. 

     The CDFs in Figure 5.9d and Figure 5.10d compare updraft area between model and 

observations for shower and deep clouds, respectively. The depth and width thresholds 

impose a minimum area on observed updrafts of 3 km2 for OSC, and 4.5 km2 for ODC. Due 

to the lower depth threshold in the model, updraft area can be as low as 1.5 km2. To ensure 

a fair comparison of probability in these figures, SSC updrafts with an area lower than 3 

km2, and SDC updrafts with an area lower than 4.5 km2, have been removed. The resulting 

CDFs are very similar for shower clouds (Figure 5.9d). In deep clouds (Figure 5.10d), 

observed updrafts are generally larger, although not considerably, and the probability of 
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updrafts larger than 30 km2 is marginally higher in SDC. Although there are small 

differences in the CDFs of updraft area, observed and simulated updrafts are broadly very 

similar in size. Again, this is important to demonstrate as significant positive correlations 

(r = 0.3 − 0.4; p < 0.02) were identified between ε and the dimensions of updrafts in 

Section 4.4. The similarity in updraft sizes suggest that any impacts on the CDFs of updraft 

ε are small. 

     The consistency in updraft size and strength between model and observations makes it 

very unlikely that these factors are responsible for the disparity in ε. However, this 

consistency does not apply to CDFs of |
𝑑𝑤

𝑑𝑥
|, displayed for shower and deep cloud in Figure 

5.9c and Figure 5.10c, respectively. Shear was determined by differentiating model updraft 

𝑤 in the 𝑥-direction over every 100-m grid-point in each updraft.  

     A broader distribution of |
𝑑𝑤

𝑑𝑥
| values exist in simulated updrafts for both cloud types, 

although the differences in the CDFs are not as pronounced as for ε. For shower updrafts in 

Figure 5.9c, only 4% of values in SSC updrafts exceed the largest observed shear of 0.014 

s−1, increasing only to 0.04 s−1. The median, 95th and 99th percentiles of |
𝑑𝑤

𝑑𝑥
| in SSC 

updrafts are approximately double those in OSC updrafts, indicating that shears are more 

generally a factor of two larger in SSC updrafts. There are smaller differences between the 

CDFs of shear for deep updrafts (Figure 5.10c), where only 0.7% of |
𝑑𝑤

𝑑𝑥
| values in SDC 

updrafts exceed the largest in ODC updrafts of 0.03 s−1. The median value of |
𝑑𝑤

𝑑𝑥
| in SDC 

updrafts (3.2 × 10−3 s−1) is only 25% larger than in ODC updrafts (2.6 × 10−3 s−1), and 

the 95th and 99th percentiles of |
𝑑𝑤

𝑑𝑥
| are only 65% larger in the model. This indicates that 

shear is larger in simulated updrafts, however, not to the degree of ε. 

     The method used to calculate shear is not entirely consistent with methods applied to 

observations. The resolution of 𝑤-retrievals resulted in shear being calculated over 500 m, 

compared with 100 m in model data. In Chapter 3, shear was generally higher when 
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calculated over smaller distances in radar observations, owing to high variability in the 

Doppler velocity from pulse to pulse. However, model fields of 𝑤 are far smoother than 

radar retrievals of 𝑤 (e.g. compare Figure 5.4a and 5.4c). As a result, the higher resolution 

of the model data is not expected to impact |
𝑑𝑤

𝑑𝑥
|. The most likely reason for |

𝑑𝑤

𝑑𝑥
| to be larger 

in the model is illustrated in Figure 5.11, which includes the horizontal plane of 𝑤 and ε at 

2-km height for a limited area of the 1500 UTC domain of the deep cloud control simulation.  

 

Figure 5.11:   The horizontal plane of fields of 𝑤 (a) and ε (b) at a height of 2 km in a limited 

domain area of the 1500 UTC deep cloud control simulation. 

 

From this perspective, updrafts seen in Figure 5.11a are often closely encircled by 

compensating downdrafts. This results in strong velocity gradients around updraft edges that 

lead to ring-shaped features in ε shown in Figure 5.11b. Although updrafts and downdrafts 

have been seen in close proximity in some observed cases, compensating downdrafts are not 

always apparent (e.g. Figure 5.4a), and certainly not as consistently, or in such close 

proximity to updrafts, as those seen in the model. This provides a plausible explanation for 

the larger values of |
𝑑𝑤

𝑑𝑥
| in simulated updraft regions, and possibly also the larger values of 

ε, which are clearly seen to be strongly associated with these gradients in Figure 5.11b. 
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However, caution is taken in drawing this conclusion at this point, as it remains to be 

demonstrated that the differences seen in shear magnitudes can be responsible for the 

substantial differences in ε. To investigate this further, the sensitivity of ε to the 

characteristics of model updrafts is assessed through correlation and compared with 

observations in Section 5.4.2.2. 

 

5.4.2.2   Correlations of ε in model updrafts 

     By comparing correlations of ε within updrafts with observations, the sensitivity of model 

ε to the characteristics of individual updrafts is evaluated. For each updraft detected in the 

model, the 95th percentile of ε (ε95) is recorded from values of ε > 0.005 m2 s−3. The 95th 

percentiles of updraft velocity (𝑤95) and magnitude of horizontal shear in 𝑤 (|
𝑑𝑤

𝑑𝑥
|

95
) are 

recorded, together with the updraft width and depth. Corresponding statistics from observed 

clouds are reproduced to consider only ε > 0.005 m2 s−3 in each updraft. This has had very 

little effect on ε95 for each updraft, and therefore the scatter plots and correlations compared 

with the model in this section differ only slightly from those in Section 4.4.2.2.  

     Figure 5.12 and 5.13 display and compare correlations of ε95 with (a) 𝑤95; (b) |
𝑑𝑤

𝑑𝑥
|

95
; (c) 

updraft width; and (d) updraft depth, for shower and deep cloud, respectively. In both 

simulated cloud cases, there are no significant correlations (𝑝 > 0.1) between ε95 and any 

of the updraft characteristics considered. Qualitatively, the scatter plots for model updrafts 

appear quite similar to observations, with positive correlation evident especially when 

comparing ε95 with 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
. However, the lack of correlation (indicated by −0.1 <

𝑟 < 0.1) has likely resulted from a broad range in ε95 in the model. In both models, values 

of ε95 span three orders of magnitude from 10−2 − 10 m2 s−3 , compared to only 10−2 −

10−1 m2 s−3 typically found in observations. The data counts within individual updraft 

regions are small, especially when only considering ε > 0.005 m2 s−3.  
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Figure 5.12:   Scatter plots comparing correlations between the 95th percentile of ε in each 

simulated and observed shower updraft region, with (a) the 95th percentile of 𝑤; (b) 95th 

percentile of shear in 𝑤; (c) updraft width; (d) updraft depth. Each plotted point corresponds 

to one updraft region. Only ε > 0.005 m2 s−3 is considered in all updrafts. 

 

 

In model updraft regions, the median data count is 168 in SSC and 184 in SDC. Therefore, 

the 95th percentile is more likely to reflect the extremely large values of ε that have been 

identified in the MetUM. As illustrated in the SSC presented in Figure 5.4c, extreme values 

of ε (up to 110 m2 s−3 in this example) can be found even within simulated clouds with 

weak updrafts. If the largest values of ε are not statistically related to cloud characteristics, 

this is likely to affect correlations of ε95 due to the small data samples within updraft regions. 
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Figure 5.13:   As for Figure 5.12 but for deep cloud updraft regions. 

 

     To improve the comparison of correlations between model and observations, two upper 

limits have been applied to ε95, limiting the model updrafts that are considered for 

correlation. The first of these considers only model updrafts with ε95 < 1 m2 s−3, which 

represents the largest ε that can be reliably observed by CAMRa. The second considers only 

model updrafts with ε95 less than the maximum ε95 in observed updrafts for both cloud cases 

(0.05 m2 s−3 for OSC; 0.16 m2 s−3 for ODC). The resulting correlations are listed in Table 

5.2, together with the number of model updraft regions involved in correlations after the 

thresholds to ε95 have been applied. When only ε95 < 1 m2 s−3 is considered, updraft counts 

are reduced by 13% for SSC and 28% for SDC. Under this constraint, for both SSC and SDC 
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updrafts, statistically significant (𝑝 < 0.05) positive correlations are found between ε95 and 

𝑤95, and with |
𝑑𝑤

𝑑𝑥
|

95
. Correlations between ε95 and the spatial dimensions of model updrafts 

are weaker than with 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
, but are significant except between ε95 and updraft 

width in SSC. Each correlation is stronger in SDC updrafts, although the largest 𝑟 is only 

0.36 between ε95 and 𝑤95, indicating only weak positive correlation between ε95 <

1 m2 s−3 and updraft characteristics in the model. When considering only updrafts with ε95 

lower than the largest observed ε95 for both cases, updraft counts are reduced to only 35 for 

SSC, and 39 for SDC. Correlations between ε95 and updraft depth are insignificant in both 

SSC and SDC updrafts. There is a weak (significant) positive correlation between ε95 and 

updraft width for SDC (𝑟 = 0.33) that is very similar to that for ODC (𝑟 = 0.31). 

Correlations are improved with 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
 in both cloud cases, to as large as 𝑟 = 0.53  

between ε95 and |
𝑑𝑤

𝑑𝑥
|

95
 for SSC updrafts.  

 

Table 5.2:   Correlation coefficients 𝑟, between ε95 and updraft characteristics for SSC and 

SDC updraft regions. Correlations are performed for: all updrafts, only updrafts with ε95 

lower than the maximum ε reliably observable with CAMRa (1 m2 s−3), and updrafts with 

ε95 lower than the maximum observed ε95 (0.05 m2 s−3 for OSC; 0.16 m2 s−3 for ODC). 

Correlations with associated 𝑝-values lower than 0.05 are indicated in bold red. 

 All 𝛆𝟗𝟓 𝛆𝟗𝟓 < 𝟏 𝐦𝟐 𝐬−𝟑 𝛆𝟗𝟓 < 𝐦𝐚𝐱(𝛆𝟗𝟓𝐨𝐛𝐬
) 

 SSC SDC SSC SDC SSC SDC  

Number of updrafts 639 383 557 274 35 39 

𝒓(𝛆𝟗𝟓, 𝒘𝟗𝟓) -0.06 0.06 0.20 0.36 0.44 0.33 

𝒓 (𝛆𝟗𝟓, |
𝒅𝒘

𝒅𝒙
|

𝟗𝟓
) 

-0.04 0.04 0.27 0.29 0.53 0.34 

𝒓(𝛆𝟗𝟓, 𝐰𝐢𝐝𝐭𝐡) -0.06 -0.07 -0.02 0.21 -0.27 0.33 

𝒓(𝛆𝟗𝟓, 𝐝𝐞𝐩𝐭𝐡) -0.06 -0.05 0.14 0.26 0.15 0.30 
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Interestingly, correlations comparing ε95 with 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
 in shower clouds become 

almost identical in model and observations when considering only the range of ε95 observed. 

This is not true, however, for deep clouds, where correlations in simulated updrafts are 

approximately half those observed. Under this constraint to ε95, correlations in SDC updrafts 

are now weaker than for those in SSC, indicating that correlations are sensitive to data 

sampling, and inconsistent with observations, where correlations were stronger in deep 

updrafts for all characteristics considered. 

     In summary, no significant correlations have been found between ε95 and the 

characteristics of model updrafts when considering the full range of ε95. The far broader 

range of ε95 in model updrafts has made direct comparison with correlations in observed 

updrafts difficult to make. Correlations in model updrafts are improved when only 

considering ε95 < 1 m2 s−3, with significant but weak positive correlations between ε95 and 

most updraft characteristics. The strongest correlations are found with 𝑤95 and |
𝑑𝑤

𝑑𝑥
|

95
 in 

SDC updrafts. The strength of these correlations is improved again when only considering 

model updrafts with ε95 lower than the maximum ε95 in observed updrafts. In conclusion, 

significant correlations have been demonstrated for ε95 in model updrafts that are similar in 

strength to those observed. However, these remain generally weaker than in observed 

updrafts, indicating that ε95 is less sensitive to the selected updraft characteristics in the 

model. The variability of correlations with data sampling suggests these results may not 

reliable enough to compare critically with observations, but they are suitable to broadly 

compare the strength of relationships between ε and updraft characteristics. 

 

5.4.2.3   Change in distribution of ε with model updraft strength 

     The correlation approach used in Section 5.4.2.2 was useful to assess the relationships 

between updraft characteristics and the largest values of ε. As for observations (Section 
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4.4.2.3), this analysis is extended to evaluate the change in the distribution of ε within model 

updrafts of different strength. Identical methods as those applied to observed updrafts are 

applied to model updrafts. Updraft regions are sorted into sets based on 2 m s−1 velocity 

intervals of 𝑤95, e.g. all updraft regions with 0 < 𝑤95 < 2 m s−1 are grouped together. All 

values of ε that exceed 0.005 m2 s−3 within each updraft set are combined into a single 

dataset and presented in CDFs in Figure 5.14. These CDFs are produced for the intervals of 

𝑤95 that were observed, allowing for a direct comparison. For consistency, the observed 

CDFs of ε have been reproduced to only consider ε > 0.005 m2 s−3 in each updraft region, 

although this has had very little effect on their shape. Figure 5.14 contains the same 

information as the CDFs in Figure 5.9a and 5.10a, which include all ε in all updrafts, except 

in this case, CDFs are expressed as a function of 𝑤95. Due to this similarity, this section will 

not include a discussion of the differences in the distribution of ε values between model and 

observed updrafts, as this was given in detail in Section 5.4.2.1. Instead, this section focuses 

on the sensitivity of CDFs of model ε to 𝑤95, and comparing this with observations. 

 

Figure 5.14:   Comparison of the change in the cumulative density function (CDF) of ε in 

updraft regions with different 95th percentile values of 𝑤 (𝑤95), between (a) simulated and 

observed shower updrafts, and (b) deep updrafts. Only ε > 0.005 m2 s−3 is considered in 

all updrafts. 
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     Figure 5.14a compares CDFs of ε in SSC updrafts for the three observed intervals of 𝑤95 

in OSC updrafts; spanning 0 – 6 m s−1. A trend towards a lower probability of small ε, and 

a higher probability of large ε is seen with model updraft strength. This is consistent with 

the trend in observed updrafts, although the differences between CDFs are smaller in the 

model. Importantly, the probability of large ε (more than 0.1 m2 s−3) appears to change very 

little with model updraft strength. For ε larger than 0.1 m2 s−3 (not shown) the CDFs in 

Figure 5.14a gradually converge. These features are reflected in the comparison for deep 

cloud updrafts in Figure 5.14b. There is a more pronounced change in CDFs with 𝑤95 in 

ODC updrafts, than for OSC. However, CDFs in SDC updrafts remain similarly insensitive 

to updraft strength. The change in the probability of large values of ε is very small between 

model updrafts of 𝑤95 = 2 − 4 m s−1 and 𝑤95 > 8 m s−1. Although this is true for ODC 

updrafts as well, the change in CDF for ε < 0.1 m2 s−3 is far larger than for SDC updrafts, 

which remain very similar for all values of ε. 

     Presenting the distribution of ε as a function of updraft strength highlights potential 

reasons for the generally weaker correlations identified for model updrafts in Section 5.4.2.2. 

When considering model updrafts of all strength, there were no significant correlations with 

updraft characteristics. Constraints were applied to ε95 under the assumption that the large 

values of ε in the model were not correlated with updraft characteristics. The insensitivity of 

ε (including large values) to updraft strength shown in Figure 5.14 would suggest this 

assumption was correct, which likely explains why correlations are considerably weaker in 

the model. The improvement in the correlations when thresholding by lower ε95 would 

suggest smaller values of ε (those within the range observable by radar) are more sensitive 

to updraft characteristics than large values. 

     In Section 4.4.2.3, updrafts of similar strength observed in both clouds cases produced 

similar CDFs of ε, though with indications that turbulence was stronger in deep updrafts than 

in shower updrafts of the same strength, especially for the largest values of ε. By using only 
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snapshot vertical cross-sections through clouds, it appeared likely that the advection of 

turbulence within the cloud could easily lead to high ε being sampled from processes that 

were not directly observed. Interestingly, when comparing the CDFs of ε in similar strength 

updrafts between control simulations (Figure 5.15), ε is larger in deep updrafts. In fact, the 

distribution of ε in deep updrafts of 𝑤95 = 2 − 4 m s−1 is broader, albeit marginally, than 

the distribution of ε in stronger shower updrafts of 𝑤95 = 4 − 6 m s−1. Because ε is 

determined only from local shear and buoyancy, the Smagorinsky-Lilly scheme does not 

account for the advection of turbulence. This would suggest that another process may be 

responsible (both in model and observations) that leads to broader distributions of ε in deep 

updrafts, than for shower updrafts of similar strength. 

 

 

 

Figure 5.15:   A comparison of the CDFs of ε in simulated updraft regions for the two 

intervals of 𝑤95 in Figure 5.14 for which simulated shower and deep updrafts were recorded. 

Simulated deep updrafts are more turbulent than shower updrafts of similar strength. 
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     In summary, inspecting the change in the distribution of ε within updrafts of different 

strength has provided additional insight into the statistical relationships between ε and the 

characteristics of simulated updrafts. The CDFs of ε become broader with 𝑤95 as seen in 

observations, but the change between intervals of 𝑤95 is very small compared to observed 

updrafts. The probability of large ε (more than 0.1 m2 s−3) is largely insensitive to 𝑤95, 

providing an indication as to why there were no significant correlations between ε95 and 𝑤95 

when considering the full range of ε95 in simulated updrafts, and why correlations improved 

when considering a restricted range of ε95. This does, however, raise the question as to which 

processes are responsible for generating the large or extreme values of ε in the model, and 

why these are not necessarily statistically related to the characteristics of updrafts.  

 

5.5   Spatial characteristics of ε in simulated clouds 

     As initially identified in Section 5.3, the appearance of dissipation features differs 

significantly between simulated and observed clouds. Features of ε in model clouds (e.g. see 

Figure 5.5d) appear smaller and more intense when compared to the more diffuse regions of 

generally weaker ε in observed clouds (e.g. see Figure 5.5b). To examine this difference 

quantitatively, the methods used to characterise the spatial scales of turbulent features in 

observed clouds in Section 4.5 are applied identically to vertical cross-sections of ε in control 

simulation data (Section 5.5.1). This is used to investigate the change in the spatial scales of 

ε features with intensity in the model and draw direct comparisons with observed features of 

similar intensity. 

 

5.5.1   Detection of ε features in simulated clouds 

     Vertical cross-sections of ε in control simulation data are sampled throughout model 

domains with a 𝑦-interval of 3 km. This is performed for each of the three time-steps (1100, 
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1300 and 1500 UTC) for SSC and SDC. The 3-km spacing is chosen to be large enough to 

minimise the oversampling of features of ε. As in Section 5.4, where a 3-km spacing was 

selected to minimise the oversampling of updrafts, the resulting dataset is comprised of 142 

vertical cross-sections through SSC and 139 through SDC.  

     To ensure consistency with observations collected using CAMRa, the thresholds 𝑧min 

and 𝑍min are applied so that features of ε are sampled at least 150 m above the surface, and 

within cloud or precipitation that exceeds a reflectivity of 0 dBZ. It is unnecessary to apply 

the threshold εmin = 0.005 m2 s−3 to this data, as the lowest threshold used to detect ε 

features (εthld = 0.01 m2 s−3) exceeds this value. The flood-fill algorithm used to detect 

spatially coherent features in ε in observed clouds is applied identically to model data (the 

algorithm and methodology is described in detail in Section 4.5.1). Features in model data 

are detected using values of εthld of 0.01, 0.03, 0.05, 0.1, 0.2, 0.5 and 1.0 m2 s−3. These 

thresholds overlap those applied to observed clouds allowing for a direct comparison, while 

accounting for higher values of ε found in the model up to the limit for reliable observation 

with CAMRa. Equations (4.1) and (4.2) are used to determine the median width 𝑊m, and 

depth 𝐷m, of ε features detected at each εthld.  

     Two filters were applied to detected ε features in observations; a threshold minimum area 

of 0.1 km2 and a filter to remove features detected near the cloud top and base that are 

susceptible to biases in axial ratio (illustrated for observations in Figure 4.15). Both of these 

filters are applied identically to the model, where ε features are removed if detected within 

1 km of cloud tops (5 – 6 km in SSC; 9 – 10 km in SDC) or detected within 1 km of the 

surface. Table 5.3 lists the data counts of features detected at each εthld for SDC and SSC, 

with the data counts before these filters were applied indicated in parentheses. 
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Table 5.3:   Final object counts for each threshold of ε in SSCs and SDCs. Object counts 

before filtering by area and location are indicated in parentheses. Due to low data counts, 

objects detected in SSC at εthld of 0.5 m2 s−3 and 1.0 m2 s−3 are omitted from Figure 5.16. 

 

5.5.2   Evaluation of the spatial characteristics of model ε 

     Consistent with methods used in Section 4.5.2, each dataset listed in Table 5.3 is split 

into three by terciles of area to compare the average and large features separately. Average 

features are those within the 33rd and 66th percentiles of area, and large features are those 

with an area larger than the 66th percentile. Ellipses with width 𝑊m, and depth, 𝐷m derived 

from each subset of features are used in Figure 5.16 to represent the median size and shape 

of features of ε detected at each εthld. Due to the low data counts for εthld = 0.5 m2 s−3 and 

εthld = 1.0 m2 s−3 in SSC (7 and 4 objects, respectively), ellipses are not plotted for these 

thresholds in Figure 5.16a and 5.16b. 

Simulated Deep Cloud Simulated Shower Cloud 

𝛆𝐭𝐡𝐥𝐝 (𝐦𝟐 𝐬−𝟑) Object counts 

(before filtering) 

𝛆𝐭𝐡𝐥𝐝 (𝐦𝟐 𝐬−𝟑) Object counts 

(before filtering)  

0.01 3915 (10312) 0.01 1691 (9054) 

0.03 2297 (6643) 0.03 642 (4890) 

0.05 1590 (5207) 0.05 358 (3586) 

0.1 905 (3480) 0.1 143 (2143) 

0.2 408 (2177) 0.2 48 (1193) 

0.5 114 (1081) 0.5 7 (499) 

1.0 44 (559) 1.0 4 (224) 
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Figure 5.16:   Median size of average and large ε objects in SSC ((a) and (b)), and SDC ((c) 

and (d)). Objects have been approximated by ellipses using methods identical to those 

applied to observed clouds in Section 4.5. 

 

     The shape and size of the average features of ε does not change significantly between 

SSC (Figure 5.16a) and SDC (Figure 5.16c), or with the intensity of εthld. Values of 𝐷m vary 

between 0.35 – 0.40 km in SSC and between 0.40 – 0.45 km in SDC, with no clear trend 

with εthld. This suggests that the depth of average-sized ε features is insensitive to the 

intensity of dissipation and does not differ greatly in shower or deep clouds. Values of 𝑊m 

decrease consistently with ε in both cases, but only slightly, falling from 0.94 – 0.78 km in 

SDC and from 0.93 – 0.69 km in SSC when ε increases from 0.01 – 0.2 m2 s−3. 
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Consequently, for this range of ε, the ratio of width to depth (axial ratio, 𝑅m) roughly 

decreases, but only from 2.5 to 2.  

     Comparison with observations (Figure 4.16a and 4.16c) suggests the average weak 

dissipation features (ε > 0.01 m2 s−3) are approximately the same size and shape in the 

model. However, as ε increases, there is a clear transition to smaller features with much 

lower 𝑅m (less than 1 for ε > 0.05 m2 s−3) in observations. Although these trends are found 

in the model (features get smaller and 𝑅m decreases), they are far less sensitive to changes 

in ε. This extends to the large features in the model (Figure 4.16b and 4.16d) which display 

similar insensitivity to ε in both cases, showing a small but consistent decrease in size and 

𝑅m with ε. The large weak dissipation features (ε > 0.01 m2 s−3) are significantly smaller 

in simulated clouds, while intense dissipation features (ε > 0.1 m2 s−3) are smaller in 

observed clouds. This characterises the broader distribution of ε found in the MetUM that 

has been identified in previous sections of this chapter. The larger spatial coverage of weak 

dissipation in observed clouds (and clearer changes in feature size with ε) may represent the 

effects of the advection and diffusion of large ε into broader regions of weaker dissipation; 

a process that is not accounted for in the Smagorinsky-Lilly scheme.  

     In summary, the typical spatial scales of dissipation features have been identified in 

MetUM simulations. The insensitivity of the spatial characteristics of dissipation features to 

the intensity of ε in the model represents a key difference with observations. Dissipation in 

the model is characterised by small, intense regions of ε, compared to broad, more diffuse 

regions of ε in observed clouds. A clear difference between features in the model is the 

insensitivity of 𝑅m to ε. It is not clear what guides the transition to lower 𝑅m with turbulent 

intensity in observations. And although there is some evidence of this trend in both cloud 

cases in the model, the change with ε is far smaller than observed. Until further investigation 

is conducted in observed clouds to identify which cloud processes affect the shape of 
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dissipation features, it is difficult to know whether this represents a problem with the 

Smagorinsky-Lilly scheme. 

 

5.6   Sensitivity of ε to model configuration  

     Sections 5.3 – 5.5 demonstrate that clear differences exist in the characteristics of ε 

between observed and simulated clouds. Although the full range of observed values of ε are 

also produced by the model, and median values are similar, ε can be two orders of magnitude 

larger (~ 100 m2 s−3) than can be observed reliably with radar (~ 1 m2 s−3). When 

performing correlations for ε in Section 5.4, results suggested that large values (more than 

1 m2 s−3) are much less sensitive to the characteristics of updrafts than values smaller than 

1 m2 s−3. It is possible that large values of ε are instead more sensitive to the configuration 

of the model. Therefore, this section aims to determine whether the disparity in ε between 

model and observations can be reduced by applying reasonable changes to the model grid-

length ∆𝑥, and sub-grid scheme mixing length, 𝜆0, as well as more generally assessing their 

impact on ε.  

 

5.6.1   Introduction and hypotheses 

     As described in Section 2.3.3, two control simulations were performed with ∆𝑥 = 100 m 

(assumed to be most comparable with the resolution of CAMRa) and 𝐶𝑠 = 0.2 (default 

value) for both case days. These are listed together with 6 additional simulations in Table 

2.3 which were performed to produce 100-m and 55-m grid-length forecasts using both 𝐶𝑠 =

0.2 and 𝐶𝑠 = 0.4, for both case days, using the procedure shown in Figure 2.9. These 

simulations are used to test the sensitivity of ε in the control simulations to a reduction in ∆𝑥 

from 100 m to 55 m and doubling 𝜆0 with respect to ∆𝑥 by increasing 𝐶𝑠 from 0.2 to 0.4. 
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     The mixing length 𝜆0, is prescribed for the Smagorinsky-Lilly scheme as the product of 

𝐶𝑠 and ∆𝑥 in (2.22). The sensitivity of ε to 𝜆0 is tested by simply comparing ε in simulations 

at a given ∆𝑥 when 𝐶𝑠 is changed from 0.2 to 0.4. According to (2.26), ε increases with 𝜆UM
2 , 

which would suggest that doubling 𝜆0 with respect to ∆𝑥 would lead to an increase in ε by a 

factor of four where 𝜆0~𝜆UM. However, doubling 𝜆0 will increase the degree of sub-grid 

mixing which acts to smooth velocity and precipitation fields (Hanley et al, 2015). This is 

likely to result in a decrease in shear around updrafts due to increased entrainment. Given 

that ε is dependent on a shear term in (2.26), it is difficult to know precisely the net effect 

on ε when increasing 𝜆0 prior to testing in Section 5.6.2.  

     The sensitivity of ε to ∆𝑥 cannot be tested as directly as for 𝜆0. For example, comparing 

ε in a 100-m simulation with a 55-m simulation while 𝐶𝑠 = 0.2 is not suitable as 𝜆0 will 

change from 20 m to 11 m. However, a comparison of ε in a simulation with ∆𝑥 = 100 m 

and 𝐶𝑠 = 0.2 (𝜆0 = 20 m) with a simulation with ∆𝑥 = 55 m and 𝐶𝑠 = 0.4 (𝜆0 = 22 m) can 

be considered a fair way to test sensitivity to ∆𝑥. Under the assumptions of Kolmogorov 

(1941), the downscale transfer rate of TKE in the Richardson cascade is constant within the 

inertial sub-range of eddy scales – where it is given by ε. In applying this concept to the 

model, if the inertial sub-range has an outer scale Λ0, that is larger than scales resolved in a 

100-m grid-length model, it is expected that the statistics of ε remain largely the same in 

simulations with ∆𝑥 = 100 m and ∆𝑥 = 55 m. Similar reasoning is used when sampling 

turbulence with a radar beam which has spatial dimensions that increase with range. For 

example, ε is sampled consistently with range when the largest dimension of the beam 

increases from 55 – 100 m as long as Λ0 > 100 m. If 𝜆0 remains within the inertial sub-

range and ∆𝑥 is suitable to resolve an inertial sub-range, characteristics of ε are expected to 

remain consistent when 𝜆0 is changed in simulations with a fixed ∆𝑥. 
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5.6.2   Sensitivity to model grid-length and mixing length 

     A convenient way to assess the sensitivity of model ε to ∆𝑥 and 𝜆0 is to compare the 

vertical distribution of median (εmed) and 95th percentile (ε95) values in each of the four 

simulations for each case. This method is used primarily to directly compare percentiles of 

ε rather than the impact on the vertical distribution. The method used to determine vertical 

distributions of εmed and ε95 for both cases is consistent with that described in Section 5.3.2.  

     Figure 5.17 and Figure 5.18 include comparisons for SDC and SSC, respectively, where 

plotted lines corresponding to ∆𝑥 = 100 m and 𝐶𝑠 = 0.2 (control simulations) are identical 

to those presented in Figure 5.7. When models are compared in terms of 𝜆0 (which include 

11 m, 20 m, 22 m and 40 m), there is a consistent increase in εmed and ε95 with 𝜆0. The 

smallest values are found in the 55-m model using 𝜆0 = 11 m. However, even in this case, 

ε95 remains approximately an order of magnitude larger than observed values. The change 

in ε95 with 𝜆0 is more pronounced than for εmed in both cloud cases, indicating that large 

values of ε are more sensitive to 𝜆0 in the model. Changes to ∆𝑥 and 𝜆0 appear to have very 

little effect on the vertical distribution of ε in both cases. 

     When ∆𝑥 = 100 m, increasing 𝐶𝑠 from 0.2 – 0.4 (𝜆0 from 20 m to 40 m) results in larger 

εmed in both cloud cases. As a mean throughout the vertical profile, εmed is larger by 31% 

in SDC, whereas εmed appears less sensitive to 𝜆0 in SSC, increasing by only 8%. 

Interestingly, when 𝐶𝑠 is increased from 0.2 – 0.4 (𝜆0 from 11 m to 22 m) in the 55-m models, 

the mean percentage increase in εmed is very similar (32% in SDC and by 7% in SSC). This 

could suggest that the impact on ε when increasing 𝜆0 occurs independent of ∆𝑥, though 

further investigation would be required to draw this conclusion. As highlighted in Section 

5.6.1, the sensitivity of ε to ∆𝑥 is most directly assessed by comparing the 100-m model 

using 𝐶𝑠 = 0.2 and the 55-m model using 𝐶𝑠 = 0.4. As shown in Figure 5.17 and Figure 

5.18, although values of εmed in these models are broadly similar, they are consistently larger 

in the 55-m model (𝜆0 = 22 m) than in the 100-m model (𝜆0 = 20 m). Values of εmed 
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increase by 16% in SDC and by 3% in SSC. Given the clear indication in Figure 5.17 and 

Figure 5.18 that ε increases more generally with 𝜆0, this difference may result from the 

slightly larger 𝜆0 in the 55-m model, rather than ∆𝑥 itself. The difference in 𝜆0 is only 2 m, 

however, the mean percentage increases are roughly half those found when increasing 𝜆0 by 

11 m in the 55-m models. Although these results indicate that ε is consistent between 100-

m and 55-m models when 𝜆0 is constant, further model experiments may be required using 

identical 𝜆0 to demonstrate this more rigorously. 

 

Figure 5.17:   Sensitivity of the vertical distribution of median and 95th percentile values of 

ε to model grid-scale and mixing length constant 𝐶𝑠, in simulated deep cloud (SDC). 

 

Figure 5.18:   Sensitivity of the vertical distribution of median and 95th percentile values of 

ε to model grid-scale and mixing length constant 𝐶𝑠, in simulated shower cloud (SSC). 
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Figure 5.19:   Sensitivity of cumulative density functions of updraft characteristics in 

simulated deep cloud (SDC) to model grid-scale and mixing length constant, 𝐶𝑠. 

 

     To provide a broader context for the impact of changing ∆𝑥 and 𝜆0 on ε, sensitivity tests 

are now applied to characteristics of convective updrafts in SDC. To accomplish this, results 

displayed in Figure 5.10 have been reproduced for each of the sensitivity simulations and 

compared with observations; this is presented in Figure 5.19. Figure 5.19b and Figure 5.19d 

suggest that updraft velocity and updraft area remain consistent in each simulation. As 

suggested in Section 5.6.1, increasing 𝜆0 acts to smooth out velocity gradients around 

updrafts through increased entrainment, reducing |
𝑑𝑤

𝑑𝑥
|. CDFs of ε and |

𝑑𝑤

𝑑𝑥
| are very similar 

in the 100-m model with 𝜆0 = 20 m and the 55-m model with 𝜆0 = 22 m, providing further 

evidence that ε is largely insensitive to ∆𝑥. When ∆𝑥 = 100 m, doubling 𝜆0 from 20 m to 
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40 m produces a CDF of weaker |
𝑑𝑤

𝑑𝑥
| values that is closer to the observed distribution; 

however, this simulation also produces the largest ε. Referring to (2.26), this result suggests 

that doubling 𝜆0 reduces the shear in the resolved flow (which, in isolation, will reduce ε), 

but this effect is small compared with the factor-of-four increase in ε due to the increased 

mixing when 𝜆0 is doubled. 

     In summary, ε becomes consistently larger with 𝜆0 across the four simulations for SDC, 

with εmed increasing by 31% when 𝜆0 is doubled from 20 m to 40 m in the 100-m model. 

When this test is applied to SSC, values of ε appear less sensitive to changes in 𝜆0, with only 

an 8% increase in εmed. Values of ε95 are more sensitive to changes to 𝜆0 than εmed, though 

even at the smallest 𝜆0, ε95 remains an order of magnitude larger than observed values. 

Results suggest that models with different ∆𝑥 but with similar 𝜆0 produce similar values of 

ε. This indicates that ε is insensitive to changes in model grid-length when ∆𝑥 ≤ 100 m, 

providing evidence that grid-lengths of 100 m and 55m were sufficient to resolve the inertial 

sub-range of turbulence. This improves the reliability of comparisons with inertial sub-range 

turbulence sampled with CAMRa. The size and strength of convective updrafts remains 

consistent when changing ∆𝑥 and 𝜆0. When doubling 𝜆0, the reduction in ε due to weaker 

shear is small compared to the factor-of-four increase in ε from increased mixing. Models 

using grid-lengths of 55-m and 𝐶𝑠 = 0.2 produce values of ε that are closest to observations 

but still remain much larger (values of model ε95 are larger by an order of magnitude). 

Perhaps of most importance is that reasonable changes to model and sub-grid scheme 

configuration can reduce ε, but not sufficiently to agree with observed values for these cases. 
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5.7   Summary and conclusions 

     Simulations have been performed in the MetUM with 100-m grid-length and a 𝐶𝑠 of 0.2 

(control) for the shower and deep cloud cases, for which radar observations were examined 

in detail in Chapter 4. Values of ε have been determined from diagnostic outputs from the 

Smagorinsky-Lilly sub-grid scheme in the MetUM (see Section 2.3.2) to compare with ε 

retrieved with CAMRa. In Chapter 4, analysis of radar-retrieved ε was performed using 

methods specifically designed to enable consistent application to model data. Before these 

methods were applied to model data, suitable thresholds and constraints were established in 

Section 5.2 to guide the sampling of model data to account for the characteristic differences 

with radar data. Vertical cross-sections of model data (comparable with RHIs with CAMRa) 

were sampled from 3-D domains at model time-steps that spanned the time period during 

which the majority of observations were collected. Numerical thresholds were applied to ε 

to account for a limit to the minimum ε observable with CAMRa, and to radar reflectivity to 

ensure ε was sampled only from model clouds with a reflectivity that would be detected by 

CAMRa. This was a key step to ensure a fair comparison between model and observations 

was possible. 

     The evaluation of ε in the MetUM commenced with a detailed comparison of individual 

observed and simulated cloud cases in Section 5.3. Consistent with observed clouds, values 

of ε were larger in the SDC than in the SSC, a large proportion of simulated clouds were 

only weakly turbulent, and high ε was spatially correlated with regions of vertical motion. 

Large ε in the model was often found in small, localised regions strongly co-located with 

regions of shear around updrafts. Although this was also evidenced in the observed cases, 

regions of large ε were much weaker and more diffuse. The largest values of ε in the 

simulated clouds far exceeded those in the observed clouds, but also exceed the largest ε that 

can be reliably observed with CAMRa by up to two orders of magnitude. A detailed 
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comparison of individual cloud cases was not sufficient to draw strong conclusions in the 

evaluation of model ε. Instead, results were used as guidance to explain the findings of the 

more general statistics-based approach to analysis used in later sections of the chapter.  

     The first statistical approach compared the vertical distribution of ε in simulated clouds 

(defined by model total radar reflectivity) with observations in Section 5.3.2. Median values 

of ε were very similar between simulated and observed clouds, ranging from 0.01 – 0.03 

m2 s−3 in all cases. However, the 95th and 99th percentiles of model ε were respectively 

one and two orders of magnitude larger than observed values for both cloud cases. The 

intensity of ε decreases with height in the model, in contrast to observations where ε remains 

constant with height in shower clouds and increases with height in deep clouds. Although 

the reason for this difference is unclear, the vertical transport of turbulence in deep updrafts 

is thought to play a role in generating a positive vertical gradient in ε with height; a process 

of advection that is not accounted for in the Smagorinsky-Lilly scheme. To determine 

whether this presents a significant problem for the model, further research is required in 

observed clouds to investigate the impact of the advection of turbulence by updrafts on cloud 

evolution. 

     The statistics of ε in simulated updraft regions were evaluated using observations (from 

Section 4.4) in Section 5.4. For positive vertical velocity, the distribution of updraft speed 

was very similar between model and observations for both cloud cases. Simulated updraft 

regions were also broadly similar in size. Despite these similarities, the 95th and 99th 

percentiles of ε in simulated updraft regions were respectively one and two orders of 

magnitude larger than those in observed updrafts; this is consistent with the comparison of 

the vertical distribution of these percentiles in model clouds in Section 5.3.2. There was a 

broader distribution of shear (given by |
𝑑𝑤

𝑑𝑥
|) in model updrafts. For the shower case, 95th 

percentile values were twice as large in the model, while values were 65% larger in the model 
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for the deep case. It is not clear whether stronger shear alone can account for the significantly 

larger ε in the model. 

     To evaluate the strength of relationships between the 95th percentile of model ε in 

updrafts (given by ε95) to updraft characteristics, correlations were performed and compared 

directly with observations in Section 5.4.2.2. When considering the full range of ε95 in model 

updrafts, no significant correlations were identified with updraft strength, size or shear. 

When considering only ε95 in the range that can be reliably observed with radar (less than 

1 m2 s−3), significant weak positive correlations were found with updraft characteristics. 

The strength of these correlations improved further when considering only the range of ε95 

that was observed in each case, becoming similar in strength to those observed, albeit slightly 

weaker in most cases. The variability of correlation strength to data sampling suggests a limit 

to how critically comparisons can be made with observations. However, results suggest that 

although the largest values of ε in model updrafts can far exceed those observed, they do not 

have significant correlation with updraft characteristics. Further evidence of this was 

presented in Section 5.4.2.3, where the probability of ε larger than 0.1 m2 s−3 was largely 

insensitive to updraft strength in the model. Consistent with observations, the cumulative 

density functions (CDFs) of ε in model updrafts became broader with updraft strength but 

were much less sensitive to velocity changes than CDFs in observed updrafts. 

     The typical spatial scales of coherent features in ε were identified and compared with 

observations in Section 5.5. These scales were largely insensitive to the intensity of ε and 

remained similar in shower and deep clouds; a key difference with observations. Generally, 

weak ε features are smaller in the model and intense ε features are larger and more numerous. 

Results suggest that model turbulence is characterised by small, intense regions of ε, 

consistent with the qualitative inspection of individual cloud cases in Section 5.3. Further 

investigation is required to identify whether the size and shape of ε features is related to 
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cloud processes in observations. Until this happens, it is difficult to know whether the 

differing spatial characteristics of ε impacts cloud evolution in the model. 

     The sensitivity of model ε to grid-length ∆𝑥, and sub-grid scheme mixing length, 𝜆0 was 

presented in Section 5.6. Although the size and strength of updrafts remains consistent as ∆𝑥 

and 𝜆0 is changed, values of ε become consistently larger as 𝜆0 is increased. In 100-m 

models, doubling 𝜆0 led to an increase in median values of ε by 31% and 8% in SDC and 

SSC, respectively. When 𝐶𝑠 = 0.2 was used in the 55-m model (which leads to the smallest 

considered 𝜆0 of 11 m), values of ε95 are most similar to observations but still remain 

approximately one order of magnitude larger. The similarity of ε in 55-m and 100-m models 

with similar 𝜆0 suggests ε is insensitive to ∆𝑥 when ∆𝑥 < 100 m, likely indicating that ∆𝑥 ≤

100 m was sufficient to resolve an inertial sub-range for these simulations. When 𝜆0 is 

increased, the reduction in ε due to weaker shear is small compared to the factor-of-four 

increase in ε due to increased mixing (see (2.26)). Most importantly, no reasonable changes 

to model and sub-grid scheme configuration has reduced ε sufficiently to agree with 

observations. 

 

 

 

 

 

 



222 
 

Chapter 6 

Summary and future work 

6.1   Overview 

     The effects of turbulence in convective clouds are profound and wide-ranging; but remain 

poorly understood in observations and in numerical weather prediction (NWP) models. In 

convection-permitting models (CPMs), schemes to parametrise the sub-grid effects of 

turbulence are often taken from large-eddy simulation (LES) models; which use mixing-

length-based TKE closure schemes. The suitability of such schemes for use in CPMs is not 

well understood. More specifically, it is not often clear that the assumptions required for 

these schemes to perform as intended are valid for CPMs. This is especially true when 

forecasting with grid-lengths larger than 100 m. The associated uncertainty is reflected in 

the widely-reported sensitivity of simulations of convective clouds to the configuration of 

turbulence schemes. To evaluate the parametrisation of sub-grid turbulence in CPMs, 

diagnostics from the schemes must be evaluated using comparable observations. However, 

a suitable observational dataset for this application has, until now, not been available.  

     Some high-resolution Doppler radars are capable of reliably sampling velocity variances 

from with the inertial sub-range of turbulence across large swathes of atmosphere. This 

method has clear benefits over in situ methods (such as aircraft) which can only collect time-

series measurements from single points in space. Although the theoretical approach to 

retrieving turbulence from capable radars is well established, the development of a 

comprehensive retrieval method which can be applied consistently across many cloud cases, 

under a wide range of conditions, has not yet been presented. Such an approach is necessary 

to investigate statistics of turbulence to a level of detail that is sufficient for the evaluation 

of numerical models. 
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     To address these points: 

1. A comprehensive turbulence retrieval method to estimate the eddy dissipation rate ε, 

was presented in Chapter 3, with a focus on applications to data collected with the 

Chilbolton Advanced Meteorological Radar (CAMRa). 

2. Using retrievals of ε performed for many cloud scans on two contrasting case days, 

a statistical assessment of relationships between ε and cloud characteristics was 

conducted in Chapter 4. 

3. Observed statistical relationships were used to evaluate ε from the Smagorinsky-Lille 

sub-grid turbulence parametrisation in the Met Office Unified Model (MetUM) in 

Chapter 5. Simulations of the corresponding case days were performed and methods 

used to analyse observations were applied consistently to model data to produce 

comparable statistics. 

     In the following sections, the results, limitations and potential avenues for future work 

associated with these three chapters are summarised. 

 

6.2   Turbulence retrieval with radar 

6.2.1   Summary 

     In Section 2.1.2, the specifications of CAMRa and the scanning strategy used in data 

collection were discussed to demonstrate the suitability of CAMRa to turbulence retrieval. 

Specifically, CAMRa is of suitably high resolution that the width of the beam remains below 

estimates of the inertial sub-range outer-scale Ʌ0, for the distances clouds were observed (30 

– 150 km). In this sense, the Doppler velocity variance 𝜎𝑣
2, measured by CAMRa includes 

variances from inertial sub-range eddies, allowing for the estimation of ε.  

     In Chapter 3, 𝜎𝑣
2 measured by CAMRa was partitioned into a sum of variances from 

various contributing mechanisms (3.1), including that from turbulence which can be 
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converted to ε. By either calculating variance contributions or demonstrating their 

negligibility based on a threshold value of 0.5 m2 s−2, the contribution from turbulence was 

inferred from 𝜎𝑣
2. To enable this process to be performed consistently for each 𝜎𝑣

2 

observation in a given scan (and across many separate scans), a detailed examination of each 

variance contributor under the range of observed conditions was required. The maximum 

sum of realistic variances from neglected contributors implied a positive bias in ε of 15% 

(when 𝜎t
2 = 5 m2 s−2) which decreased as 𝜎t

2 becomes larger.  

     In the context of CAMRa and the observations collected, velocity variance from antenna 

rotation and beam broadening (𝜎𝛼
2 and 𝜎B

2) were found to be negligible. Moreover, 𝜎𝛼
2 and 

𝜎B
2 remain negligible for any Doppler radar capable of sampling within the inertial sub-range 

for turbulence retrieval, except in the case of extreme rotation speeds (close to one revolution 

per second). Contributions from the oscillation, break-up and coalescence of hydrometeors 

were not calculated, but were neglected based on the chosen threshold using guidance from 

Zrnic and Doviak (1989).  

     The contribution from a distribution of hydrometeor fall-speeds within the sample 

volume (𝜎TV
2 ) was analysed in detail owing to the range of elevations and potential 

hydrometeor types within the observational dataset. By deriving new hydrometeor-specific 

Doppler variance equations as a function of elevation angle, the negligibility of 𝜎TV
2  was 

assessed across the range of observed conditions. Variances from ice aggregates (accounting 

for observations above the melting layer) were negligible in all observed conditions and even 

if sampling vertically. Variances from rain (assumed only below the melting layer) were 

negligible when observed at elevation lower than 13.9°. Variances from hail were larger than 

for rain but remain negligible when observed at elevations lower than 11.5°. Results 

indicated that 𝜎TV
2  can be neglected if close-range, high-elevation scanning is avoided; as 

was true for observations collected with CAMRa. 
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     Variance contributions from radial velocity shear 𝜎𝑠
2, on scales larger than the sample 

volume have been removed from 𝜎𝑣
2. This was achieved by fitting a velocity surface to 

Doppler velocity data (as is often applied in past studies). Using this method, linear radial 

and elevation shears were calculated over a fixed scale (Ʌ𝑠) of 900 m for each sample 

volume. These shears were used in variance equations that have been derived in Section 

3.4.1 following uncertainty noted in the literature. Although Ʌ𝑠 was selected to reflect the 

estimate of Ʌ0, resulting values of ε (derived from 𝜎t
2 after shear removal) were found to be 

largely insensitive to Ʌ𝑠. This indicated that it is of primary importance that the largest scale 

of the sample volume is smaller than Ʌ0. New equations were presented to account for shear 

in the azimuthal dimension of the radar beam in RHI scans by identifying statistical 

relationships with shear along the beam using PPI data. These relationships (mean and 

median values of azimuthal shear as a function of radial shear) were used to estimate the 

variance from a contributor to Doppler variance that cannot be measured directly in RHIs 

and is often overlooked, allowing the 3-D shear-induced Doppler variance to be estimated 

in 2-D radar scans. 

     The retrieval method summarised here has been developed to consider each term in (3.1) 

under a wide range of conditions, allowing reliable estimates of ε to be collected consistently 

throughout a large dataset of radar observations. The considerations of each term in (3.1) are 

suitably general to provide a retrieval method that can be applied simply to future 

observations with CAMRa. It also provides a reliable framework for turbulence retrieval 

with other Doppler-capable radars that are able to sample within the inertial sub-range. 

 

6.2.2   Limitations and future work 

     Although it is highly probable that the resolution of CAMRa is sufficiently high to sample 

velocity variance from inertial sub-range turbulence, no steps have been taken to verify this 

assumption directly. The method presented in Chapter 3 included the assumption that Ʌ0 
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was 900 m throughout each observed cloud over both case days. However, as noted by 

Sinclair (1974), the value of Ʌ0 can vary spatially within individual clouds. The effects of 

this variability on the retrieval appears to be small, as indicated by the insensitivity of ε to 

Ʌ𝑠. Regardless of this, turbulent eddies closer than Ʌ0 from the surface and from the cloud 

top would remain unlikely to be isotropic due to the suppression of the vertical dimension 

of eddies at the boundaries. This suggests that estimates of ε in these cloud regions may be 

unreliable.  

     It is not practical to make many estimates of Ʌ0 for each cloud case over a dataset as large 

as that used for this application. However, using the spatial spectra approach (see Section 

1.4.3) it is possible to make estimates of Ʌ0 from Doppler velocity data (e.g. Brewster and 

Zrnic, 1986) in individual clouds. A sample of Doppler velocities from a scanned cloud 

could be used to estimate Ʌ0 for each cloud case, allowing Ʌ𝑠 to be determined on a case-to-

case basis. Turbulence retrieval for the statistics-based evaluation of numerical models is 

unlikely to require precise measurements of Ʌ0; however, uncertainty can be mitigated by 

retrieving ε only in cloud regions where turbulence is most likely to be isotropic (e.g. Kollias 

et al., 2001). Measurements of turbulence near cloud edges have not been possible in this 

application as they are commonly areas with low signal-to-noise ratios which degrades the 

reliability of Doppler variance. Owing to the importance of turbulent entrainment processes 

in modulating the in-cloud environment, future research should investigate methods to 

improve the retrieval of ε near cloud edges. 

     Further research is required to investigate the variance contribution from the break-up 

and coalescence of rain drops and the rotation of hailstones, 𝜎H
2. Owing to the nature of these 

processes, a contribution from 𝜎H
2 is likely to be present in any sample volume that includes 

hydrometeors. Values of 𝜎H
2 are also unlikely to be dependent on radar viewing angle, 

suggesting that such variances cannot be avoided through changes to radar specifications of 

scanning strategy. The value of 𝜎H
2 was assumed to be similar to 𝜎o

2 and neglected in this 
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application without further investigation. Zrnic and Doviak (1989) suggest that the 

contributions from 𝜎H
2 should be accounted for when attempting to retrieve ε from Doppler 

variance. However, the significance of 𝜎H
2 remains poorly understood and more fundamental 

research into the small-scale processes associated with falling hydrometeors may be 

required. 

 

6.2.3   An improved scanning strategy for turbulence retrieval 

     The accuracy of retrieved ε is likely to depend more on the degree to which variance 

contributors are justifiably neglected (𝜎TV
2 , 𝜎𝛼

2, 𝜎B
2, 𝜎o

2 and 𝜎H
2) than the accuracy in which 

terms are calculated and removed directly (𝜎𝑠
2). This suggests that improvements to the 

retrieval of ε are made primarily through changes to scanning strategy and radar 

specifications to ensure that neglected terms remain as small as possible, while also 

improving the ability to calculate 𝜎𝑠
2 directly.      

     The radar specifications and scanning strategy applied to collect the DYMECS data were 

not selected with turbulence retrieval as a priority. The data has been more than sufficient to 

retrieve turbulence from the collected data fields and perform analysis of in-cloud turbulence 

from RHI vertical cross-sections. However, in deriving and applying the turbulence retrieval 

method (see Chapter 3), the findings have been used to suggest improvements to future 

strategy and specifications in order to simplify the retrieval process, improve data collection, 

and to produce more accurate retrievals. The improvements summarised in this section have 

been applied to collect new observations of convective clouds with CAMRa on three days 

between July and September 2017. The improvements can be divided into two classes of 

recommendations. The first is comprised of radar specification and scanning constraints that 

both simplify the retrieval process and improve the retrieval accuracy (not limited to 

CAMRa). The second involves more preferential changes to scanning strategy to improve 
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the efficiency and quality of data collection for individual storm cases – these are described 

relative to DYMECS data collection and summarised first below. 

     During DYMECS, volume scans were obtained by performing PPI scans at progressively 

higher elevations following RHI sets. In this thesis, data from PPI scans are used to derive 

statistical relationships between radial velocity shear in the azimuthal and radial dimensions. 

This has allowed for the estimation of the velocity variance due to shear in the azimuthal 

direction in RHI scans, which do not provide the means for its direct measurement (Section 

3.4). The derived relationships can now be used without the requirement for new PPI 

observations, allowing the prioritisation of RHI scanning when collecting observations. In 

practise, this allows more vertical cross-sections to be collected for each storm case, and 

more rapid sampling of many different storms when required. In the DYMECS observations, 

multiple RHIs were performed along lines of fixed azimuth through rainfall maxima. These 

scans provided no information regarding the horizontal changes in turbulent structures 

within the cloud. To investigate this, sequential RHIs are performed separated by small 

azimuthal increments to collect vertical profiles horizontally across a targeted storm. This 

strategy can be used to reconstruct 3D volumes of cloud for target storms. Where possible, 

the azimuthal spacing is set close to the beam-width of the radar (0.25°), which would avoid 

the need to interpolate between RHIs. Depending on the size and range of the target storm, 

the spacing was relaxed to 0.5° or 1° to avoid needing to perform tens of RHIs to cover the 

horizontal extent of the cloud. 

     The retrieval of turbulence can be further improved through changes to radar variables 

and scanning constraints. The radial pulse length of CAMRa is 75 m, however, this was 

averaged to 300 m in the DYMECS data. This has restricted the velocity surface fit scale to 

multiples of 300 m when removing velocity variance contributions due to shear (See Section 

3.4.2). Although ε is shown to be largely insensitive to this scale in Section 3.4.2, the extra 

precision should be utilised, especially in cases where the largest scale of the inertial sub-

range of turbulence can be measured. From thorough investigation into velocity variance 
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contributions from hydrometeor fall-speed distributions (Section 3.3), scanning methods can 

be constrained so that the contribution is small enough to be ignored. This is ensured 

completely when scanning through ice aggregates, and by limiting the elevation of RHIs to 

11.5° when scanning through rainfall or hail. Under the assumption that rain and hail only 

exist below 3 km (with negligible contribution from ice aggregates above this level), 

observations can be collected at any elevation for storms located further than 15 km from 

the radar.  

     As outlined in Section 2.1.2, reliable observations of the spectrum width 𝜎𝑣, can only be 

made between 0.6 and 6 m s−1, owing to the Nyquist velocity of the radar. However, in the 

DYMECS scans, there appears to be a lower limit to the observable values of 𝜎𝑣 of ~ 0.9 

m s−1. Subsequent tests with CAMRa (Chris Westbrook, pers. comm.) have revealed that 

the minimum detectable 𝜎𝑣 is related to the number of pulse-pairs used while scanning. 

Using a higher number of pulse-pairs allows the collection of more signal returns per ray, at 

the cost of scanning speed. During DYMECS, 32 pulse-pairs were used to enable fast (2° 

s−1) scanning in PPI mode; therefore, the time saved in omitting PPI scans can be used to 

scan with more pulses per ray in RHI mode. Figure 6.1 shows a comparison of 𝜎𝑣 observed 

by RHIs through cloud and precipitation on 17 May 2017, using 32 pulse-pairs (left) and 

128 pulse-pairs (right). When using 32 pulse pairs, the lowest observed values of 𝜎𝑣 are 

again ~ 0.9 m s−1. When scanning through the same cloud with 128 pulse pairs, values fall 

as low as ~ 0.6 m s−1. When collecting new observations with 128 pulse-pairs, observations 

of 𝜎𝑣 can be made much closer to the lower limit imposed by the Nyquist velocity of 

CAMRa. 
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Figure 6.1:   Comparison of Doppler spectrum width from RHIs performed on 17 May 2017 

with 32 (top panel) and 128 (bottom panel) pulse-pairs (Chris Westbrook, pers. comm.). 

 

 

6.3   Statistics of ε in observed clouds 

6.3.1   Summary 

     The method developed in Chapter 3 to retrieve ε from the Doppler spectrum variance was 

applied to a subset of RHI observations collected with CAMRa for two case studies; shallow 

‘shower’ clouds and more vigorous ‘deep’ clouds. By analysing fields of ε together with 

retrievals of vertical velocity 𝑤, performed previously for each cloud case, a detailed 

statistical analysis was conducted in Chapter 4 to determine relationships between ε and 
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cloud characteristics. The comparisons and methods used were carefully selected to be 

replicable with model data, ensuring a reliable evaluation of the model was possible. 

     Values of ε ranged from 10−3 − 10−1 m2 s−3 in shower clouds and from 10−3 −

1 m2 s−3 in deep clouds. When comparing individual cloud cases, mean values of ε in the 

deep cloud (0.04 m2 s−3) were twice as large as those in the shower cloud and the maximum 

value of ε (0.61 m2 s−3) was a factor of six larger in the deep cloud. In both cases, turbulence 

was spatially correlated with the main updraft and, in the deep case, strong turbulence 

appeared more widely distributed in the upper regions of the cloud. These suggestions were 

investigated further by comparing the vertical distribution of various percentiles of ε 

calculated from all sampled clouds on both days. Median values of ε were similar (~ 0.01 

m2 s−3) and remained approximately constant with height in both cloud types. The 95th 

percentile of ε increased consistently with height in deep clouds (from 0.01 – 0.1 m2 s−3 

from cloud base to cloud top) though remained approximately constant with height (~ 0.01 

m2 s−3) in shower clouds. The range of observed ε values were consistent with those 

reported in clouds with similar updraft speeds in previous studies. Results suggested that a 

large proportion of the cloud area was only weakly turbulent in both cloud types, while the 

stronger updrafts in the deep clouds led to a positive vertical gradient in ε. 

     Statistical relationships between ε and cloud characteristics were sought through 

correlation techniques in 25 examples of single-cell convective clouds (SCCCs) identified 

(qualitatively) in the shower and deep cloud datasets. The mean magnitudes and 95th 

percentiles of 𝑤 were found to be most strongly correlated with ε, while no significant 

correlations were found between ε and the spatial dimensions of the cloud or updraft. By 

splitting SCCCs into different regions, the largest ε was found within and above the main 

updraft; providing further evidence for the strong association between ε and updrafts, and 

the positive vertical gradient in ε identified earlier in this application and suggested in 

previous studies. Turbulence in cloud regions containing the main downdraft was 17% lower 
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than the cloud average, suggesting downdrafts are significantly less important in generating 

strong turbulence than updrafts.  

     Owing to the inadequacy of the results of the SCCC analysis for reliable model evaluation 

and the importance of updrafts in the intensity and spatial distribution of ε, a more focused 

investigation into ε in regions of convective updrafts was then performed. An automated 

updraft detection algorithm was used to record the spatial co-ordinates of updraft regions 

throughout the RHI datasets. These co-ordinates were overlaid onto fields of ε for statistical 

analysis. Strong positive correlations were found for the 95th percentile of ε (ε95) with 𝑤95 

and |
𝑑𝑤

𝑑𝑥
|

95
 (consistent with suggestions from previous studies of individual clouds), while 

much weaker positive correlations existed with updraft dimensions. Combining data from 

both case days improved the strength of correlations, suggesting that consistent relationships 

may exist between ε and updraft characteristics that are independent of the day of 

observation. Cumulative density functions (CDFs) of ε were presented as a function of 𝑤95 

indicating a consistent trend (for both cases) towards a lower probability of small ε and 

higher probability of large ε when 𝑤95 increases. In both cases, changes to the CDFs of ε 

became more pronounced as 𝑤95 became larger, indicating a non-linear relationship between 

the updraft velocity and the intensity of turbulence (as suggested by comparing previous 

studies in Table 1.1). CDFs of ε remained similar between shower and deep clouds for some 

intervals of 𝑤95, further suggesting that ε could be expressed as a function of cloud 

characteristics independent of the day of observation. 

     Automated detection techniques were applied to fields of ε to characterise the spatial 

scales of dissipation features. Coherent features of weak turbulence (ε > 0.01 m2 s−3) had 

similar spatial scales in both shower and deep clouds (2.25 km wide and 1 km deep). As 

turbulence became more intense the median size of dissipation features decreased in both 

cases but, for given thresholds of ε, remained larger (and most notably deeper) in deep 

clouds. 
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     The results of Chapter 4 have provided quantitative evidence for many of the 

characteristics of ε identified in previous studies in individual clouds, together with methods 

to identify new features of ε. These include: 

• Quantifying the degree to which turbulent intensity increases with height in 

convective clouds and how this is affected by the updraft strength. 

• Characterising the relationships between ε and cloud and updraft features using 

correlations and probability distributions. Such results provide the necessary 

quantitative detail required to evaluate numerical models beyond the limited (and 

often qualitative) identification of themes presented in previous studies. 

• Characterising the spatial scales of coherent dissipation features in clouds with 

different updraft strength. The change in the feature shape and size has been 

demonstrated as a function of turbulent intensity. 

 

6.3.2   Limitations and future work 

     A potential limitation of the research presented in Chapter 4 is associated with the 

assumption that values of 𝑤 (from Nicol et al. (2015)) remain reliable for each cloud case. 

The single-Doppler method used by Nicol et al. (2015) requires numerous assumptions (see 

Section 2.2.3) to derive 𝑤 from estimates of horizontal convergence using Doppler velocities 

collected only along the line-of-sight. In cases where convergence is not isotropic in the 

horizontal plane (i.e. convergence estimated along the line-of-sight cannot be used to 

estimate convergence perpendicular to the beam axis) 𝑤 retrievals may become unreliable. 

There are likely to be cases where the assumption of isotropic convergence is not valid, 

which may affect statistical relationships between 𝑤 and ε. However, any impact should be 

lower when comparing statistics of 𝑤 and ε in individual clouds (as in Chapter 4) than if 

comparing point-for-point values. Future work could involve using the 𝑤-retrieval approach 

presented by Hogan et al. (2008) which involves tracking features in Doppler velocity in 
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consecutive RHI scans aligned with the mean wind as perhaps a more reliable method to 

estimate 𝑤 in this data. Future data collection using dual-Doppler radar could be used to 

improve retrievals of 𝑤 by estimating horizontal convergence from the Doppler velocity 

field sampled from two azimuths simultaneously. 

     A key limitation surrounds the use of RHI data alone in attempting to derive the statistics 

of in-cloud turbulence, i.e. one vertical cross-section through cloud observed at one instance. 

Reliably comparing ε with cloud features that are observed simultaneously at one instance 

requires two assumptions: (1) that the cascade of TKE to dissipation scales occurs on 

timescales that are small compared to the evolution the cloud environment; and (2) that the 

effects of eddy advection are small. Evidence of these effects was found by Istok and Doviak 

(1986) when attempting to explain ε in the context of cloud characteristics in an observed 

supercell thunderstorm. The effects of the advection of turbulence and the time-scales to 

dissipation will impact the degree to which ε can be reliably related to cloud processes 

observed simultaneously. The strength and significance of observed correlations would 

suggest that these effects have been small in this application; a likely benefit of the statistical 

approach taken, which avoids point-for-point comparisons of ε with other cloud variables. 

However, single RHI data alone is likely to be insufficient if a comprehensive explanation 

of ε in relation to cloud processes is desired. 

     Future research into the role of turbulence in convective clouds using radar observations 

can benefit from improvements to scanning strategy for data collection. These should include 

co-ordinated observations of clouds using multiple high-resolution Doppler radars capable 

of sampling inertial sub-range turbulence. By doing this, clouds can be observed from more 

than one direction simultaneously allowing the reconstruction of 3-D cloud structure. 

Repeatedly scanning target clouds over time-scales sufficient to capture the evolution of the 

cloud will allow ε to be analysed more specifically in the context of 3-D cloud processes. 

This may reveal the time-scales of turbulence in clouds from production to dissipation scales, 
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and the effects of advection on the spatial distribution of ε. Where possible, observations 

should be extended to clouds with much weaker and much stronger updrafts than those 

considered in this application to better examine how ε scales with updraft strength. Such an 

approach would allow for a more detailed evaluation of numerical models by testing results 

against turbulence in 3-D model cloud structures. Future projects (with or without CAMRa) 

should use the turbulence retrieval method designed in Chapter 3 and use improvements to 

scanning strategy and radar specification suggested in Section 6.2.3 to improve the quality 

of data collection. 

     Future research could also be aimed at identifying which cloud characteristics determine 

the size and shape of dissipation features. Of particular interest would be to investigate 

whether the spatial coverage of dissipation provides a better characterisation of cloud 

processes such as updrafts than the turbulent intensity alone. 

 

6.4   Evaluation of ε in the MetUM 

6.4.1   Summary 

     Diagnostic outputs from the Smagorinsky-Lilly sub-grid turbulence scheme have been 

used to derive ε in 100-m grid-scale MetUM (control) simulations of the shower and deep 

cloud cases. Constraints and thresholds were applied to model data to ensure a fair 

comparison with observations. Reliable evaluation of the model was performed by 

conducting a statistical analysis of ε in model clouds using methods that were consistent 

with those used in observations. 

     Vertical cross-sections of individual clouds of similar size and updraft strength were 

identified in observations and model simulations and compared for both cases. Many 

similarities with observations were present in the simulated clouds: (1) Values of ε were 

larger in the simulated deep cloud (SDC), than in the simulated shower cloud (SSC); (2) in 
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both model cloud cases, a large proportion of the cloud area was only weakly turbulent; (3) 

high ε was spatially correlated with regions of vertical (upward) motion in both model 

clouds. However, key differences included: (1) the largest values of ε in the model clouds 

far exceeded (by up to two orders of magnitude) values that were present in the observed 

cases and values that could be reliably sampled with CAMRa; (2) high ε was found in 

smaller, more intense regions that were much more strongly co-located with shear around 

updrafts than for the observed cases, where high ε was weaker and more diffuse. 

     When comparing the vertical distribution of ε in model clouds with observations, median 

values of ε were very similar, ranging from 0.01 – 0.03 m2 s−3 in all cases. However, the 

95th and 99th percentiles of ε were one and two orders of magnitude, respectively, larger in 

the model in both cloud cases. The intensity of model ε decreased with height, contrasting 

with the positive vertical gradient in observed deep cloud and consistency with height in 

observed shower cloud. In Chapter 4, stronger updrafts were thought to be more effective in 

transporting intense turbulence towards the upper regions of observed clouds; a process of 

advection that is not accounted for by the Smagorinsky-Lilly scheme and may explain the 

differing vertical profiles of ε. 

     Updraft velocities and sizes were well simulated by the model for both cloud cases. 

Despite this, the 95th and 99th percentiles of ε in model updraft regions were again one and 

two orders of magnitude larger than observed values. The horizontal gradients in updraft 

velocity were significantly stronger in the model; twice as large in SSC and 65% larger in 

SDC. Although the increased shear will result in larger values of ε from the Smagorinsky-

Lilly scheme, it is not clear whether stronger shear alone can account for the significant 

differences in large ε found in the model. No significant correlations were initially found in 

model updrafts between ε95 and the updraft strength, size or shear. Including only values of 

ε95 that corresponded to the range of values that were observed resulted in significant 

positive correlations with updraft characteristics that were of similar strength (albeit slightly 
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weaker) to those observed. This suggested that the extreme values of ε95 found in the model 

were not significantly correlated with cloud characteristics. Consistent with observations, 

CDFs of ε became broader with model updraft strength, though distributions were much less 

sensitive to velocity changes in the model. 

     The spatial scales of coherent ε features in the model were found to be largely insensitive 

to the intensity of ε and remained very similar in both cloud cases. These were key 

differences with observations, where the spatial scales of dissipation features decreased with 

turbulent intensity and, for a given threshold of ε, were generally smaller in the shower case. 

Without further investigation into how the spatial scales of ε are related to observed cloud 

processes, it is not clear whether the differing characteristics of ε in the model affect the 

evolution of clouds. 

     Simulations were performed to test the sensitivity of ε to the model grid-length ∆𝑥, and 

sub-grid scheme mixing length, 𝜆0. Although the size and strength of updrafts did not change 

significantly with changes to ∆𝑥 and 𝜆0, values of ε became consistently larger as 𝜆0 was 

increased. When ∆𝑥 was 100 m, doubling 𝜆0 from 20 m to 40 m increased median ε by 31% 

in SDC and by 8% in SSC. The simulation using the smallest 𝜆0 of 11 m (55 m model using 

𝐶𝑠 of 0.2) produced the smallest median values of ε; however, ε95 remained an order of 

magnitude larger than observed values. When using very similar values of 𝜆0 in 55-m and 

100-m models, the statistics of ε were approximately the same, suggesting that 100 m was 

within the inertial sub-range for these simulations. Doubling 𝜆0 acted to smooth velocity 

fields and reduce shear through increased mixing. According to (2.26), weaker shear (in 

isolation) will reduce ε. However, the effect is small compared to the factor-of-four increase 

in ε through the increased mixing, suggesting that ε is more sensitive to changes to 𝜆0. Of 

key importance was that no reasonable changes to 𝜆0 or ∆𝑥 reduced values of ε sufficiently 

to agree with observations. 
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6.4.2   Limitations and future work 

     Although a fair comparison with observations has been attempted through careful 

consideration of thresholds and constraints to model data sampling, the quality of the 

comparison could be improved. During DYMECS, the targeting algorithm used to direct 

CAMRa prioritised scanning through the centre of mature, precipitating clouds. The 

sampling of model data involved taking vertical profiles (as they are comparable with RHIs) 

at regular intervals throughout the domain, rather than targeting the centre of precipitating 

model clouds. The impact on the comparison with observations is not clear; however, while 

performing an RHI to scan through the centre of a target cloud, non-target clouds in the line-

of-sight were frequently sampled. This suggests that a large proportion of observed clouds 

were sampled with no directional preference, as is true in model data sampling. To improve 

the comparison with observations, model clouds could be targeted using an algorithm similar 

to that used in DYMECS and compared with the data associated only with target clouds in 

each RHI.  

     The primary aim of Chapter 5 was to identify how the characteristics of ε differed with 

observed values in the MetUM. Given the significant differences identified in model ε, future 

work should be focused on addressing the reasons as to why such differences exist. Of key 

importance is that the MetUM simulations are resolving an inertial sub-range for the 

Smagorinsky-Lilly scheme to perform correctly. Future research should focus on testing the 

assumption that models resolve an inertial sub-range though direct computation of velocity 

spectra (e.g. Bryan et al. 2003). Results presented in Chapter 5 indicated that ε was largely 

insensitive to changes to model grid-length when the mixing length was constant. As ε is 

scale-independent in the inertial sub-range, this result has been taken to suggest that both the 

55-m and 100-m models have indeed resolved an inertial sub-range. If this is true (or an 

inertial sub-range is demonstrated using more direct methods), future research requires 

investigation into additional reasons for why values of ε remain so much larger in the model. 
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     For a clear comparison, observations of ε have been used to evaluate MetUM simulations 

of the observed cases only. However, the observations also provide more general guidelines 

for the values of ε and relationships with cloud characteristics that are typical in clouds. As 

such, these observations can be compared with ε from any turbulence parametrisation given 

that ε can be derived. It would be particularly interesting to compare observed ε with values 

produced by the Smagorinsky-Lilly scheme when used in an LES model. Such an 

investigation would allow for a more critical evaluation of the Smagorinsky-Lilly scheme in 

the modelling environment for which is was designed, which would provide a better platform 

to judge how its performance changes when adopted for use in a CPM. 
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