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ABSTRACT 

 

Rice wine (Sake) is an alcoholic beverage which is produced using glutinous rice, 

fungi and yeast. It has a pale yellow to clear colour, umami taste and fruity aroma. 

Moreover, pigmented rice wine has been consumed in Asian countries for a long time, and 

the taste and flavour are distinctly different to Sake. Whereas Sake is produced from high 

polished rice and shows more clear colour and pleasant fruity aroma, whole pigmented rice 

is used to produce pigmented rice wine and its taste and aroma profiles are less known. 

In order to understand the differences in flavour and taste, commercial polished and 

unpolished pigmented rice wines were analysed for taste (sugars, organic acids, amino 

acids, phenolic acids, diketopiperazines (DKPs) and γ-glutamyl peptides) and aroma 

compounds. This study showed that compounds responsible for sweet, sour and metallic 

notes were found in commercial rice wines. These were attributed to glucose, acetic acid, 

cyclo(leucine-proline) and cyclo(isoleucine-proline). The aroma compounds in commercial 

rice wines were extracted using solid phase microextraction (SPME) and solid phase 

extraction (SPE) and analysed using gas chromatography-mass spectrometry (GC-MS) and 

GC-Olfactometry. Guaiacol and 4-vinylguaiacol were found to be the characteristic aroma 

compounds responsible for smoky-spicy note in commercial pigmented rice wine. 

The brewing process for pigmented rice wine was investigated to develop a constant 

and reproducible protocol for brewing of pigmented rice wine which can be used to 

investigate the formation of taste and aroma compounds. The pigmented rice was cooked 

by steaming or pressure cooking. The cooked rice was saccharified using Aspergillus oryzae, 

and fermented using Saccharomyces cerevisiae at 25 °C or 30 °C. This study showed that 

steaming was suitable for cooking rice. The brewing that was selected was 2 days for 
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saccharification and 9 days for fermentation at 30 °C. These conditions were based on 

obtaining higher concentration of sugars and ethanol. 

To study the formation of characteristic taste and aroma in pigmented rice wine, rice 

wines were brewed using unpolished (0%), 30% polished, 50% polished and 65% polished 

pigmented rice. They were analysed for taste and aroma compounds, and their precursors. 

The taste of lab-scale brewed rice wine was different from the commercial ones because 

astringent mouthfeel (gallic acid and protocatechuic acid) and umami were mainly found 

in lab-scale brewed rice wines, especially 0% RW. The bran increased the concentration of 

glutamic acid, phenolic acids and γ-glutamyl peptides (γ-glu-gly, γ-glu-his and γ-glu-tyr). 

The aroma compounds analysis also showed that guaiacol, 4-vinylguaiacol and vanillin were 

significantly and substantially increased in 0% RW. However, only guaiacol was found to be 

the characteristic aroma which contributed smoky-spicy note in 0% RW. This is consistent 

with sensory analysis which showed that a higher intensity of smoky-spicy note was found 

in 0% RW, compared to others. 

This study also confirmed that phenolic acids were derived from the pigmented rice 

bran by fungi and yeast during brewing. Vanillic acid was decarboxylated to form guaiacol. 

Moreover, guaiacol was also formed from unpolished pigmented rice by steaming. The 

sensory analysis confirmed that guaiacol was the key aroma compound which contributed 

smoky-spicy note in pigmented rice wine. 

 

Keywords: pigmented rice wine, characteristic aroma, smoky-spicy note, 4-vinylguaiacol, 

guaiacol  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Rice wine is known differently depending on the Asian countries such as Sake 

(Japan), Jiu (China), Yakju (Korea), Tapuy (the Philippines), Ruou Nep Than (Vietnam), Tapai 

(Malaysia) and Sato, Krachae and Ou (Thailand) (Aidoo et al., 2005). They are produced 

using polished glutinous rice and starter cultures. For Chinese rice wine, wheat Qu which 

consists of wheat flour, fungi for saccharification, and yeast for subsequent fermentation, is 

used as the starter cultures (Chen et al., 2013a, Chen et al., 2013b, Zhao et al., 2015b), 

whereas Japanese rice wine is produced using rice Koji which consists of polished rice flour, 

fungi and yeast (Furukawa et al., 2006, Okuda et al., 2009b, Ito et al., 2016). 

In order to produce a high quality Japanese rice wine, the bran is fully removed from 

the rice grain (Yoshizawa, 1999, Hashizume et al., 2007, Okuda et al., 2009b) because the 

excess of amino acids and proteins in the rice bran is believed to give an unpleasant aroma 

(Furukawa et al., 2006) and bitter taste to the rice wine (Maeda et al., 2011). In contrast, Xie 

et al. (2016) and Zhao et al. (2015b) showed that amino acids can be catabolised to the 

higher alcohols which contribute the pleasant aromas by the metabolism of the brewing 

microorganisms. During brewing, the polished glutinous rice is soaked in water to absorb 

moisture, and then steamed. The cooked rice is inoculated with the starter cultures (wheat 

Qu or rice Koji) for the fermentation (Liu et al., 2014a, Zhao et al., 2015b, Ito et al., 2016). 

After the fermentation is terminated, the rice wine is clarified and pasteurized (Japan Sake 

and Shochu Makers Assocoation and National Research Institute of Brewing, 2011) 

The aroma in Chinese and Japanese rice wines have been investigated and almost 

100 volatile compounds and semi-volatile compounds contribute the aroma in rice wine. 
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Among those compounds, esters and alcohols were the predominant aroma compounds 

(Chuenchomrat et al., 2008, Cao et al., 2010, Chen and Xu, 2010, Chen et al., 2013b, Jung et 

al., 2014, Yang et al., 2017a), which contribute solvent-like, sweet, fruity, buttery, and 

pungent aroma (Isogai et al., 2005, Chuenchomrat et al., 2008, Chen et al., 2013a, Chen et 

al., 2013b, Jung et al., 2014). Apart from these predominant aroma, Iizuka-Furukawa et al. 

(2017) showed that Japanese rice wine had grassy, bourbon-like and tonic-like aroma. The 

formation of this new characteristic aroma is caused by irregularity of yeast metabolism due 

to amino acid deficiency at the initial stage of the brewing. Moreover, Chen et al. (2013b) 

also showed that Huadiao rice wine from Zhejiang, China had herbal, smoky and Qu-like 

note (yeasty and mouldy) which might be derived from the wheat Qu. 

Mimura et al. (2014) showed that lactic acid, succinic acid and malic acid are 

responsible for sour; nucleic acids are responsible for umami, and phenol derivatives are 

responsible for bitter. Moreover, Yu et al. (2015) also showed that isoleucine, valine, serine, 

aspartic acid, glycine, alanine and threonine contribute sweet whereas arginine and lysine 

contribute sweet/bitter in rice wines. 

The pigmented rice which has the natural black, dark purple or brown-reddish 

colour is also used for the pigmented rice wine. This typical rice wine show rosé colour 

which is derived from the anthocyanins in the bran. As can be seen from the literature, the 

aroma and taste compounds in ordinary rice wines are widely published however there is 

much less known about pigmented rice wine. Therefore, this study identified the 

characteristic aroma and taste compounds of commercial pigmented rice wine and 

identified the corresponding precursors for the characteristic aroma in the pigmented rice 

wine.  
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1.2 Hypothesis 

The bran of pigmented rice contains the precursors for the characteristic aroma 

compounds in the pigmented rice wine during the brewing process. 

 

1.3 Objectives of the study 

In order to validate the hypothesis, the objectives of the present work were: 

a) Characterise and compare the characteristic aroma and taste compounds in 

commercial polished rice wine and commercial pigmented rice wine. (Chapter 3) 

b) Optimise the brewing process for the pigmented rice wine, using parallel 

fermentation. (Chapter 4) 

c) Directly compare and identify the characteristic aroma and taste compounds in rice 

wines which are brewed using pigmented rice polished to various degrees (0% for 

unpolished grain, 30%, 50% and 65% for bran fully removed). (Chapter 5) 

d) Confirm the corresponding precursors for the characteristic aroma in the pigmented 

rice wine, using standard spiking technique. (Chapter 6) 
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1.4 Structure of the thesis 

To fulfil the above objectives the study was divided into 6 chapters. 

Chapter 1: General introduction 

This chapter present a brief background to pigmented rice wine. The hypothesis and 

objective are also included in this chapter. 

Chapter 2: Literature review 

This section shows the information which is related to the manufacture of rice wine and 

the formation of aroma and taste compounds in rice wine during the brewing process. 

Chapter 3: Taste and aroma compounds in rice wine: a comparison of polished rice wine 

and pigmented rice wine 

This chapter shows the identification and comparison of the characteristic aroma and 

taste compounds in pigmented rice wine. 

Chapter 4: The optimisation of pigmented rice brewing process 

This chapter describes the effect of the rice cooking method and the brewing temperature 

on the saccharification and fermentation of pigmented rice wine. This section outlined the 

optimisation of pigmented rice brewing process for experiment in chapter 5. 
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Chapter 5: Influence of bran from pigmented rice on flavour formation in pigmented rice 

wine 

The effect of the bran from pigmented rice on the aroma and taste compounds in the 

pigmented rice wine was investigated. The characteristic aroma and taste compound, and their 

corresponding precursors were identified. 

Chapter 6: Confirmation of the precursors for the characteristic aroma compounds, smoky-

spicy note in pigmented rice wine 

The confirmation of precursors for guaiacol and 4-vinylguaiacol which contributed to 

smoky-spicy note in pigmented rice wine was shown in this chapter. 

Chapter 7: General discussion and conclusion 

This chapter summarised the optimisation of pigmented rice brewing, characteristic 

aroma and taste compounds in the pigmented rice wine and the corresponding precursors. 

Future work and the limitations were also discussed. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Raw materials for the brewing of rice wine 

2.1.1 Rice 

Rice is an essential material for the production of rice wine. In Japanese Sake 

manufacture, rice is classified into two types, either rice for eating or rice for brewing. As 

seen in figure 2.1, the appearance and structure of rice for brewing is different from the 

table rice. It is described as having thick shape and chalky core in the grain (Furukawa, 

2012). 

 

 

Figure 2-1: The appearance of Sake rice (left) and table rice (right). 

From: Japan Sake and Shochu Makers Assocoation and National Research Institute of 
Brewing (2011) 
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The white core in Sake rice corresponds to the loose arrangement of starch granules 

and airspaces. The spaces between those scatter the light, and giving more opaque white 

colour to the rice grain. Due to the loose arrangement of starch granules in this chalky core, 

rice is easily inoculated and digested by Koji mycelia (Hashimoto et al., 2004). This 

information is in agreement with Anzawa et al. (2014) and Horigane et al. (2014) who 

showed that the loose morphological structure leads greater water absorption in Sake rice 

during soaking and steaming, thus resulting in a better fermentation. However, the price of 

high quality Sake rice is expensive (Yoshizawa, 1999). Thus, table rice can be used instead 

for the production of rice wine, but the quality of this rice wine is low (Furukawa, 2012, 

Anzawa et al., 2014). 

Furthermore, pigmented rice is distinguished by the rice grain having red brown or 

dark purple colour in its covering layers (figure 2.2). The pigments in the aleurone layer of a 

rice grain consist of flavones, tannin, phenolics, sterols, tocols, γ-oryzanols (Deng et al., 

2013) and especially anthocyanins, a component of reddish to purple water soluble 

flavonoids (Yodmanee et al., 2011, Deng et al., 2013). The pigmented rice is well known for 

having an enriched taste and typical colour. Thus, it has been consumed in China, Japan, and 

Korea for a long time (Deng et al., 2013). Moreover, pigmented rice is also used for the 

brewing of rice wine (Wang et al., 2014). 
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Figure 2-2: The appearance of pigmented rice which was used in this study. 

 

Furukawa et al. (2006) and Furukawa (2012) showed that starch is the main 

component which constitutes up to 80% of unpolished rice. The abundant components in 

starch are amylose and amylopectin, which constitutes up to 98-99% of the dry weight of 

the starch granule (Tang et al., 2001, Tester et al., 2004, Chen et al., 2009). Both amylose 

and amylopectin consist of anhydrous glucose units and their chains, which are usually 

represented as (C6H12O6)n, where n means the number of unit in the polymer (Schirmer et 

al., 2015). 

A starch granule consists of semi-crystalline and amorphous regions that are packed 

in an alternating pattern (figure 2.3). The semi-crystalline form has an ordered structure of 

double helices of the amylopectin branches. This semi-crystalline region is also embedded 

in an amorphous region that contains the amylose and amylopectin branch points 

(Patindol et al., 2015). Starch is important for the production of rice wine because it is 

saccharified by fungi to produce glucose, which is subsequently fermented to produce 

ethanol by yeast (Uno et al., 2009, Anzawa et al., 2014).  
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Figure 2-3: Nano structure of starch granule. 

From: Patindol et al. (2015) 

 

Proteins are the second most abundant component in rice (Furukawa et al., 2006, 

Furukawa, 2012), and are found at higher level in the outer layer of the rice grain, and 

decrease towards the centre of the rice kernel. Champagne (2004) showed that proteins in 

polished rice were in the range of 4-11% on a dry basis. Moreover, most proteins in rice are 

presented as discrete particles, namely protein bodies (PBs). They are classified into PB-I 

and PB-II, corresponding to prolamins and glutelins. The PB-I and PB-II comprise 

approximately 20% and 60% of the protein in polished rice. Furthermore, glutelins were 

mostly identified as having a negative effect on rice wine quality because they are derived 

from tyrosol which contributes to the Zatsumi (off-flavour or unpleasant bitter 

taste) (Hashizume et al., 2007, Okuda et al., 2016, Okuda et al., 2018). During brewing, 

proteins are degraded to small peptides and amino acids by enzymes from the starter 

culture. These liberated compounds are not only utilised as nutrients, but also converted to 

aroma and flavour in rice wine by brewing strains. 
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2.1.2 Starter for fermentation of rice wine 

The fermentation starter for the brewing of rice wine consists of yeasts, fungi, and 

bacteria (Lv et al., 2015a, Lv et al., 2015b, Cai et al., 2018). This starter is known differently 

depending on the countries such as Koji (Japan), Nuruk (Korea), Banh Men (Vietnam) and 

Loog pang (Thailand). Moreover, the starter cultures are inoculated into a solid substrate 

such as rice flour and traditionally this may contain herbs (Cai et al., 2018), and in China the 

cultures are mixed into a wheat flour to produce wheat Qu (Yu et al., 2012, Chen et al., 

2013a). The brewing starter for rice wine is not only used for the rice saccharification, but 

also used for the subsequent fermentation. Moreover, there are many studies which show 

that the microorganisms in a brewing starter have an effect on the generation of flavours in 

rice wine (Yu et al., 2012, Yang et al., 2017a, Cai et al., 2018). Briefly, the filamentous fungi 

in the starter culture degrade starch and proteins in rice or wheat flour, using amylolytic 

enzymes and proteolytic enzymes. The liberated compounds are further transformed to the 

corresponding flavour compounds in the rice wine (Carroll et al., 2017, Chung et al., 2017). 

There are many studies which show that fungi, namely Rhizomucor pusillus, Rhizopus 

oryzae, Absidia corymbifera, Aspergillus fumigatus, Aspergillus orgyze and Penicillium sp. found 

in wheat Qu are used for the brewing of Chinese rice wine (Lim et al., 2006, Xie et al., 2007, 

Ohtsubo et al., 2008). Moreover, Dung et al. (2006) studied the diversity of fungi and yeast 

in Vietnamese brewing starters, and showed that Amylomyces rouxii, Amylomyces aff. rouxii, 

Rhizopus oligosporus and Rhizopus oryzae were the main fungi. These studies are also in 

agreement with Song et al. (2013), Bal et al. (2014) and Carroll et al. (2017) who showed 

that fungi, including Aspergillus, Lichtheimia, Rhizopus, Rhizomucor, and Mucor were 

commonly identified from Nuruk, Korean rice wine starter. 
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Both Gomes et al. (2005) and Khamkeaw and Phisalaphong (2016) showed that 

Rhizopus spp. and Aspergillus spp. were considered as important strains for the brewing of 

rice wine due to their high saccharification activity. Morales et al. (2008) also showed that 

these fungi produce α-amylase which breaks α-1,4 linkages of starch to yield dextrin, 

maltose, maltotriose, and maltopentose. Then, amyloglucosidase degrade these liberated 

compounds at α-1,4 and α-1,6 glucosidic linkages to yield glucose. This is in agreement with 

Dung et al. (2006) who showed that rice was saccharified to dextrin and maltose by using α-

amylase and amyloglucosidase from fungi under aerobic solid state fermentation. 

Moreover, Cho et al. (2012), Saranraj and Stella (2013), Yang et al. (2013), de Oliveira et al. 

(2016) and Carroll et al. (2017) suggested filamentous fungi can produce both amylolytic 

and proteolytic enzymes which degrade starch and proteins in rice during the brewing 

process. This study is similar with Furukawa (2012) who showed that protease and 

carboxypeptidase from fungi degrade proteins in rice to amino acids and peptides, which 

have an important impact on yeast growth and Sake aroma and flavour. 

The diversity of yeasts in traditional Thai rice wine starters was studied by Limtong et 

al. (2002). They showed that 43 yeast strains were found in 38 starter cultures for alcoholic 

sweetened rice, whereas 49 yeast strains were found in 19 starter cultures for rice wine. 

These yeast strains were identified as Saccharomycopsis fibuligera, Pichia anomala, Pichia 

burtonii, Pichia fabianii, Pichia Mexicana, Pichia heimii, Candida rhagii, Candida glabrata, 

Torulaspora globose, Torulaspora delbrueckii, Issatchenkia orientalis, Trichosporon faecale, 

Rhodotorula philyla and Saccharomyces cerevisiae (Aidoo et al., 2006). Moreover, Lv et al. 

(2013) studied the diversity of yeast in Chinese rice wine starters, they found different 

genera of yeasts such as Cryptococcus, Rhodotorula, Sporobolomyces, Pichia, Saccharomyces, 

Candida, Rhodosporidium and Saccharomycopsis in their samples. This study is in agreement 
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with Carroll et al. (2017) who showed these yeasts and Kluyveromyces and Torulopsis have 

been identified in the Korean starter culture. 

According to the previous study, Saccharomycopsis fibuligera was reported as having 

a high amylolytic activity, but the capacity of ethanol production was low (Limtong et al., 

2002). In contrast, Saccharomyces cerevisiae has been reported as having high ethanol 

production and ethanol tolerance (Dung et al., 2006, Cho et al., 2012, Yang et al., 2013, 

Carroll et al., 2017). During the brewing process, yeast produces ethanol from glucose 

(Furukawa et al., 2006, Okuda et al., 2009a, Uno et al., 2009, Anzawa et al., 2014) and other 

compounds, including higher alcohols and esters which have an effect on the quality and 

flavour of rice wine (Furukawa, 2012, Son et al., 2018). 

 

2.2 Rice brewing process 

2.2.1 Rice polishing 

Rice kernels are covered by bran (pericarp and aleurone layer) and hull (figure 2.4). 

Normally, they are removed before using. The husk is easily removed because it is not rigidly 

packed within the rice kernel, whereas the bran is difficult to remove because it is tightly 

embedded in the rice kernel. The process of bran removal is called whitening, pearling or 

polishing. During the polishing, the intensive abrasion and thermal stresses result on the 

open of rice kernel (Afzalinia et al., 2004). 
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Figure 2-4: Longitudinal section of the rice grain. 

From: Juliano (2016) 

 

The polishing of rice grains is an essential process to remove excess lipids, proteins 

and nitrogen compounds in the aleurone layer of rice grains. Anzawa et al. (2014) and Liu et 

al. (2017) showed that these components have a negative effect on rice wine taste. Thus, 

they are removed by the polishing process for high quality Sake brewing. Normally, 30% of 

bran is removed from the Sake rice for regular rice wine, whereas 65% of bran is removed for 

high quality rice wine (Furukawa, 2012). This study is in agreement with Okuda et al. 

(2009b) and Okuda et al. (2016) who showed that highly polished rice grains are preferably 

used for premium quality Sake brewing (figure 2.5). 
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Figure 2-5: Rice for Sake brewing with various polishing yields. 

From: Tatsuuma Honke Brewing (2011) 

 

Paiva et al. (2014) studied the effect of polishing on the physicochemical and 

nutritional properties of pigmented rice. They found that increasing the degree of polishing 

resulted in a decrease of protein, lipid and ash in black rice and red rice grains. Moreover, 

flavonoids, anthocyanins, proanthocyanins, free phenolic acids and bound phenolic acids 

also decreased when the polishing process increased. The results confirmed that the bran 

of pigmented rice was enriched with these components. This study is in agreement with Liu 

et al. (2017) who showed that the polishing had an effect on the loss of protein, lipid and 

ash in ordinary rice. This study also showed that amino acids, thiamine, riboflavin, Cu, Fe and 

Se were evenly distributed in the bran and the outer endosperm, and decreased after 15% 

degree of polishing. However, phytic acid, Mg, Mn, Fe, and Pb likely accumulated in the 

outer layer of rice bran, thus they were removed at only 4-9% degree of polishing. 

Kim et al. (2010) studied the effect of degree of polishing on the physicochemical 

characteristics and volatile compounds in glutinous rice wines. They found glucose and 

maltose were the abundant sugar in all rice wine samples. The increased degree of polishing 

resulted in a decrease in alcohol, amino acids and organic acids, whereas the soluble solids 
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and reducing sugars increased. They also showed that esters, alcohols and organic acids 

were the predominant volatiles in rice wines. The increased degree of polishing resulted in 

a decrease an ethyl succinate and 3-methylbutyl dodecanoate, whereas ethyl hexanoate 

and ethyl 2-octenoate increased. Therefore, this study concluded that different degree of 

polishing greatly affected the physicochemical and volatile characteristics of the glutinous 

rice wines. 

Chun et al. (2012) also investigated the effects of the degree of polishing on the 

physicochemical and sensory characteristics of Sogokju, Korean rice wine. They found that 

increasing the degree of polishing resulted in a decrease in glucose, whereas total acid was 

increased. Moreover, the sensory evaluation showed that increasing the degree of polishing 

resulted in a decrease in consumer preference. 

Park et al. (2015) investigated the quality characteristics of barley Makgeolli which 

was brewed from barley with various degree of polishing. Sugar and ethanol were not 

different between samples. However, pH, total acid and amino acids increased as the 

degree of polishing decreased. As the degree of polishing decreased, the rice wine went 

from a pale yellow to a deep purple colour. 

 

2.2.2 Rice cooking 

In order to produce the rice wine, the rice kernels are cooked to form gelatinised 

starch. This process increases the saccharification of cooked rice, which results in greater 

sugars and ethanol production. Rani et al. (1994) also showed that the hydrolysis of 

gelatinised starch was significantly higher than the corresponding raw starch. This study is 

in agreement with Srichuwong and Jane (2007) who found that starch gelatinisation is 
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necessary to increase the enzyme digestibility, because the raw starch is exceedingly 

resistant to enzyme hydrolysis. Moreover, López-Ulibarri and Hall (1997) shown that starch 

with high gelatinisation resulted a high glucoamylase activity during the saccharification 

process. 

The starch gelatinisation is explained in figure 2.6. The starch granule is heated and 

absorbs more water. This physical action increases the hydration of the amorphous region, 

which subsequently disrupt the hydrogen bonds in the starch granule. The swollen granule 

induces the destabilisation and disruptive stress in the lamellar crystalline region. Further 

heating results in the melting of the starch crystals, an increase in starch solubility and the 

leaching out of amylose from the starch granule. The ordered structure of granular starch is 

disrupted. Therefore, the hydrolytic enzyme can more easily access these structures (Wang 

and Copeland, 2013). This is in agreement with Huang et al. (2005) who also showed that a 

high saccharification rate was found from the soluble starch solution because enzymes can 

easily access the soluble starch rather than the raw starch form. However, during the 

cooling the amorphous structure in amylose starts to recrystallize, followed by the 

recrystallization of amorphous regions in amylopectin (Schirmer et al., 2015). This physical 

action is also called retrogradation (Wang et al., 2015). 
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Figure 2-6: Phase diagram showing the state and phase transition of starch when applying a 

temperature profile (Tg, gelatinization temperature; AM, amylose; AP, amylopectin). 

From: Schirmer et al. (2015) 

 

In addition, the influence of water content on the starch retrogradation was studied 

by Zhou et al. (2011). They found the decrease of water content resulted in an increase in 

the starch retrogradation. Moreover, the effect of retrogradation on the starch digestibility 

was explained by Wang et al. (2015) who showed that retrograded starch starts to form the 

crystalline structure that is highly resistant to enzymatic digestion. 

The amylose-lipid complex which comprises highly crystalline structures can be 

formed during the gelatinisation of starch in the presence of lipids. This complex is resistant 

to amylase digestion (Panyoo and Emmambux, 2017). Moreover, Wang et al. (2016) 

showed that the digestibility of starch-fatty acid complexes decreased, compared to its 

corresponding pure starch. This is also in agreement with Ai et al. (2014) and Kawai et al. 
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(2012) who showed that the decrease in hydrolysis of the starch-fatty acid complex can be 

explained by the fact that hydrolytic enzymes cannot bond with the substrate because the 

amylose-lipid complex has a compact structure, in which the α-(1-4)glycosidic bond is not 

exposed for hydrolytic enzyme action (Kawai et al., 2012). 

Ashwar et al. (2016) showed that the resistant starch from rice was increased by 

using the autoclave at 120 °C for 30 min. This type of resistant starch is formed from the 

starch retrogradation process. This is consistent with Larsen et al. (2000) who also showed 

that the resistant starch in parboiled rice was increased by increasing the cooking pressure 

because a high pressure promoted the degradation of amylopectin which results in a long-

term retrogradation. Moreover, moisture content influences the formation of resistant 

starch as described by Sievert and Pomeranz (1989). They showed that the decrease in 

water content resulted in the increase in resistant starch which was prepared using an 

autoclave. According to this, cooking methods and water content have an effect on the 

formation of resistant starch which subsequently influences the saccharification of rice 

starch because it is difficult to degrade by hydrolysis enzymes.  

 

2.2.3 Fermentation of rice wine 

2.2.3.1 Saccharification 

The saccharification of rice starch by fungi is the most important process for the 

brewing of rice wine. The fungi from the brewing starter produce the enzyme for starch 

degradation, including α-amylase and amyloglucosidase, which break down rice starch into 

dextrin, maltose and mainly glucose (Dung et al., 2006, Saranraj and Stella, 2013). These 

fermentable sugars are utilised by yeast to produce ethanol during the subsequence or 
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parallel fermentation. According to figure 2.7, the α-amylase can be classified into 

endoamylase (intercept internal α-1,4 bonds), exoamylase (intercept α-1,4 or α-1,6 bonds 

of the terminal glucose residues), debranching enzymes (intercept α-1,6 bonds) and 

transferase (hydrolyse α-1,4-glycosidic bond of donor molecule and partly transfer the 

donor to glycosidic acceptor) (Zaferanloo et al., 2014). 

 

 

Figure 2-7: Mechanism of amylase activity. 

From: Manners (1992) 

 

In addition, amyloglucosidase hydrolyses α-1,4-glycosidic bond in oligosaccharides, 

and then invert the anomeric configuration of the resulting D-glucose. This enzyme 

successfully removes glucose from the non-reducing end of amylose or amylopectin. It has 

also been shown to hydrolyse α-1,6-glycosidic linkages of starch (Adeniran et al., 2010). 

The α-amylase and glucoamylase have a large size, with limited access to the starch 

granule. Therefore, the swelling of the granule can increase its active site area. Li et al. 

(2014) studied the effects of granule swelling on the saccharification of corn starch by using 
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hydrolytic enzymes. They investigated the swelling of starch granules in the range of 40-90 

°C. Their results showed that corn starch granules were greatly swollen at 60 °C. At this 

stage, the starch granule also lost the crystalline structure and birefringence. The swelling of 

starch granules were continuously increased until at 80 °C. The swelling of waxy corn starch 

was shown to be twice that of non-waxy corn starch at the same temperature. The 

amylopectin found in waxy corn starch promoted the swelling of the corresponding starch 

granule by absorbing more water in its structure during heating. Moreover, the 

saccharification of the swollen starch granules were 2 or 3-fold higher than the one without 

heat pre-treatment, because granule swelling provides greater enzyme access to the 

granule interior. 

Najiah et al. (2017) studied the effect of saccharification conditions, including 

temperature, enzyme concentration, liquefaction temperature and the amount of 

substrate on the saccharification of sorghum starch for ethanol production. They found the 

temperature had a significant influence on the saccharification of starch. A high number of 

dextrin equivalents from sorghum starch was investigated at 45 °C by using α-amylase 

however it was reduced as the saccharification temperature increased (Aggarwal et al., 

2001). This result is in agreement with Jha et al. (2017) who showed that an increase in 

saccharification temperature within the pH range of 4.5–7.5 resulted in the increase of 

reducing sugars in black rice. Moreover, Saranraj and Stella (2013) showed that the 

temperature had an effect on the amylase activity because it is related to the growth of 

microorganism. The suitable temperature for amylase activity was reported at 25-30 °C. 

This study is in agreement with Eriksen et al. (1998) who also showed that the optimum 

growth of Aspergillus oryzae was at 35 °C which corresponded to the maximum enzyme 

activity.  
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2.2.3.2 Alcoholic fermentation 

The ethanol is produced via the Embden Meyerhof Parnas pathway (EMP), as shown 

in figure 2.8. According to this pathway, one molecule of glucose is metabolised to two 

pyruvate moieties which are then converted to two molecules of ethanol and two 

molecules of CO2 under anaerobic condition (Madigan et al., 2000). The ethanol 

production occurs in parallel with the synthesis of adenosine triphosphate (ATP), the 

source of energy required for this bio-reaction. Thus, it can be said that the ethanol is the 

co-product which is produced by yeast during its growth. The biosynthesis of ethanol can 

be terminated by the lack of ATP, because phosphofructokinase (PFK), one of the most 

important regulation enzymes in the EMP pathway is interrupted (Bai et al., 2008).  

During the fermentation, yeast cells can suffer from the various stresses which are 

derived from environmental and cell metabolism such as nutrient deficiency, high 

temperature (> 35 °C), contamination and high ethanol content (> 15% v/v). These factors 

have a negative effect on yeast viability, which then results in the low ethanol production 

(Bai et al., 2008). Basso et al. (2011) also showed that Saccharomyces cerevisiae can produce 

the ethanol in the range of 8-12% v/v however the excess ethanol is a major stress that 

influences the yeast survival. Alexandre et al. (2001) and Ma and Liu (2010) showed that the 

ethanol can enter to the cytoplasm of yeast cell, where it then profoundly alters the 

membrane fluidity which consists of the lipids. As a result, a high level of some ions, 

especially H+ pass through the membrane of a yeast cell, and then they dissipate the 

electro-chemical gradient across the membrane, which decreases the formation and 

maintenance of the proton driving force. As a result, the pH of the intracellular of yeast is 

decreased. Moreover, there are other effects on yeast cells that are caused by the ethanol 

such as growth inhibition and enzymatic inactivation. 
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Figure 2-8: The EMP pathway for ethanol production by yeast, HK: hexokinase, PGI: 

phosphoglucoisomerase, PFK: phosphofructokinase, FBPA: fructose bisphosphate aldolase, 

TPI: triose phosphate isomerase, GAPDH: glyceraldehydes-3-phosphate dehydrogenase, 

PGK: phosphoglycerate kinase, PGM: phosphoglyceromutase, ENO: enolase, PYK: pyruvate 

kinase, PDC: pyruvate decarboxylase, ADH: alcohol dehydrogenase. 

From: Bai et al. (2008)  
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High temperature has been investigated as the most important stress factor for the 

growth of microorganism (Cot et al., 2007). The range of suitable temperatures for 

Saccharomyces cerevisiae is 20-35 °C. The most suitable temperature for non-immobilised 

yeast cells is 30 °C, whereas for immobilised cells a slightly higher temperature is suitable 

because of its ability to transfer heat from particle surfaces to inside the cells (Liu and Shen, 

2008). In addition, most enzymes, with regard to the microbial activity and fermentation 

process, are sensitive to high temperature because their tertiary structure might be 

denatured and inactivated. Therefore, the temperature should be controlled throughout 

the fermentation process (Phisalaphong et al., 2006). 

Torija et al. (2003) also studied the effects of fermentation temperature on the 

growth rate of Saccharomyces cerevisiae and its fermentation activity. They showed that this 

species grows slowly at 15-20 °C, which resulted in a slower rate of fermentation. Moreover, 

the growth rate was increased at 25-30 °C with the yeast population was up to 108 cfu/ml. 

After fermentation for 8 days, the number of yeast cells was reduced to 106 cfu/ml. 

However, the yeast cells were further decreased to 102 cfu/ml from the fermentation at 35 

°C for 6 days because of the yeast mortality at high temperature. The increase of 

temperature resulted in the decrease of ethanol, whereas acetic acid and glycerol 

increased. 

Mohd Azhar et al. (2017) showed that pH and the concentration H+ have an effect 

on the permeability of essential nutrients into the yeast cell. The range of suitable pH for 

the survival and growth of yeast was shown to be 2.75-4.25 (Fleet and Heard, 1993), 

whereas the suitable pH for the ethanol production by Saccharomyces cerevisiae was 

indicated as 4.00-5.00 (Lin et al., 2012). Moreover, Staniszewski et al. (2007) also showed 

that the fermentation might require a long time, if the pH was 4.00 however the 
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concentration of the ethanol was not reduced significantly. However, the high pH (>5.00) 

resulted in a decrease in ethanol. 

 

2.3 Aroma compounds in rice wine 

Similar to wine, the aroma in rice wine is mainly influenced by the metabolism of 

aroma from raw materials, the biosynthesis of flavour and aroma compounds from 

substrates during fermentation, the autolysis of yeast during post fermentation and the 

effect of spoilage bacteria (Fleet, 2003). However, the biosynthesis of flavour and aroma 

compounds is possibly the most important factor since many aroma active compounds in 

wine are derived during fermentation. Their formation is variable, depending on the yeast 

strain (Fleet, 2003). Moreover, Villamor and Ross (2013) showed that the aroma profile in 

wine is greatly complex, and most of them are volatile compounds which are found at very 

low concentration between 10-4 and 10-12 g/l (Guadagni et al., 1963). The volatile 

compounds in wine are classified into alcohols, esters, aldehydes, ketones, acids, terpenes, 

phenols, and sulfide compounds. Their concentrations vary with the change in viticulture 

and oenology (chemical compositions of grape, fermentation and post fermentation 

condition) (de Revel et al., 1999). 

Grosch (2001) showed that the aroma compounds which have a high odour activity 

values (OAV, the ratio of the concentration to the corresponding threshold), especially 

esters, are the important compounds, because they contribute the fruity note in wine. 

Moreover, Guth (1998) studied the effect of ethanol on the aroma and taste compounds in 

Gewürztraminer. The results showed that the reduction of the initial ethanol in wine from 

10 % to 9 % showed no effect on the aroma in the samples, compared to the control. The 
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decreases in ethanol from 10 % to 7 % resulted in an increase in fruity, floral and acid notes. 

However, the decrease in the ethanol to 3 % resulted in the low quality of wine because the 

characteristic flavour in wine was destroyed. 

Chen et al. (2013b) studied chemicals, aroma compounds and aroma reconstitution 

in Chinese rice wines. The aroma compounds in rice wines were extracted using LiChrolut 

EN resins. The extracted aroma compounds in resins were separated into an acidic fraction 

and a neutral/basic fraction which was further separated into 16 fractions by silica gel 

normal phase liquid chromatography performed on a fast protein liquid chromatography 

(FPLC). The aroma from each fraction was analysed by gas chromatography-olfactometry 

(GC-O). The aroma compounds in samples were also extracted by static headspace (HS), 

solid phase extraction (SPE) and solid phase microextraction (SPME), and then analysed by 

gas chromatography-flame ionization detector (GC-FID), gas chromatography-pulsed flame 

photometric detection (GC-PFPD) and GC-MS. The quantitative results from the 4 different 

extraction methods showed that the main compounds were acids, esters, alcohols, 

aldehydes, vanillin, geosmin and γ-nonalactone, and their concentrations were higher than 

corresponding thresholds. This analysis showed that the most odour active compounds 

were vanillin, dimethyl trisulfide, 2-phenylethyl alcohol, guaiacol, geosmin, and 

benzaldehyde, and they might be responsible for the characteristic aroma in Chinese rice 

wine. Moreover, the odour active compounds were recombined and mixed into odourless 

rice wine model for aroma reconstitution study. The results showed that the aroma profile 

was not significantly different to the original rice wine.  
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Jung et al. (2014) studied the aroma compounds and sensory evaluation in Korean 

rice wines. The aroma compounds in samples were extracted using SPME and then analysed 

by gas chromatography coupled to time of flight mass spectrometry (GC-TOF/MS). The 

results showed 45 volatile compounds which mainly comprise esters and alcohols. The 

abundant compounds, including 2-phenylethanol, ethyl acetate, 3-methylbutanol, ethyl 

octanoate, ethyl decanoate, diethyl succinate, 2-phenethyl acetate, ethyl dodecanoate, 

ethyl hexadecanoate, ethyl 9-octadecenoate, ethyl tetradecanoate and ethyl 9,12-

octadecadienoate were found in the samples. These compounds were similarly found in 

Sake. However, Makgeolli was reported as having a wide range of flavour due to the 

addition of herbs (Lee and Lee, 2008). The principle component analysis (PCA) showed that 

the contrast of fruity and yeast aroma was found. According to the sensory result, fruity and 

whiteness in Makgeolli were preferred. This result is in agreement with Lee and Lee (2008) 

who also showed that attributes, including ripe fruit and sweet grain were found in contrast 

to the herb-like and yeasty note. Jung et al. (2014) also studied the correlation (r > 0.7) 

between the sensory attributes and volatile compounds. The result showed the positive 

correlation between the alcohol note and ethanol content; sour and total acids; whiteness 

and b-value on the LAB colour scale indicating a more yellow colour.  

Niu et al. (2017) extracted the volatile compounds in light aroma Chinese rice wine 

by solvent extraction technique. The aroma profile in the extract was analysed by GC-FPD, 

GC-MS and GC-O. The result showed that ethyl esters, including ethyl acetate, ethyl 

hexanoate, ethyl octanoate, 3-methylbutyl acetate and ethyl 2-methylpropanoate were 

found in rice wines. These compounds can impart the fruity aroma. Alcohols, namely 1-

propanol, 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol and 2-phenylethanol were 

detected in samples. These alcohols are known as the important compounds in the liquor 
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(Zhang et al., 2009). Organic acids, including acetic acid, 2-methylpropanoic acid, butanoic 

acid, 3-methylbutanoic acid, pentanoic acid, hexanoic acid and octanoic acid were the main 

acids with high flavour dilution factor. Compounds such as hexanoic acid, octanoic acid and 

other acids imparted sweaty, rancid and cheesy. Notably, 3-hydroxy 2-butanone was 

detected for the first time in light aroma Chinese rice wine. Two pyrazines, 

trimethylpyrazine and tetramethylpyrazine were also identified. A high level of pyrazines 

was found in the light aroma Chinese rice wine, compared to the strong aroma liquor. 

Pyrazines were formed through the Maillard reaction with the presence of saccharides and 

amino residues (López-Galilea et al., 2006). This chemical reaction can be found in the 

pasteurisation which is used for the rice wine processing. In addition, 3-hydroxy 2-butanon, 

thiazole, dimethyl trisulfide, diallyl disulfide, 2-hydroxy 1-ethanethiol, 4,5-dihydro-3(2H)-

thiophenone, 3-thiophenecarboxaldoxime, 3-mercaptohexylacetate, 1-(3-methylthiophen-

2-yl)ethanone, 3-methylthiophene-2-carboxaldehyde and 4-methyl-5-vinylthiazole were 

found in the light aroma Chinese rice wine for the first time. According to the sensory 

evaluation, seven attributes, namely alcoholic, grassy, fruity, acid, fermentation, sweet and 

floral were observed in light aroma Chinese rice wines. Moreover, 2-methylpropanoic acid, 

β-damascenone, ethyl hexanoate, 3-methylbutyl acetate and ethyl lactate were the key 

aroma compounds in light aroma Chinese rice wine. 

Son et al. (2018) studied the volatile compounds in rice wine which was brewed by 

using rice, wheat Koji, Aspergillus oryzae and Saccharomycopsis fibuligera. The volatiles were 

extracted by SPME, and then analysed by GC-MS. The results showed that high levels of 2-

methylpropanol, 2-methylbutanol, 3-methylbutanol and 2-phenylethanol were detected in 

rice wines. The formation of these compounds was also found in relation to their 

corresponding organic acids and aldehydes. Moreover, this study showed that the most 
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abundant esters, including 2-phenylethyl acetate, ethyl acetate, 3-methylbutyl acetate, 

ethyl hexadecanoate, ethyl octanoate and ethyl decanoate were found in all rice wines. The 

positive correlation between Aspergillus oryzae and the concentration of butanol, butanoic 

acid and their liberated esters was found. Moreover, 4-ethylphenol and 4-ethylguaiacol 

were found in rice wines. Their formations increased in rice wine that was brewed by using 

Aspergillus oryzae. 

The literature of the aroma in pigmented rice wine is limited. However, one of useful 

information is published by Ueki et al. (1991). They showed that red rice wine contained a 

higher concentration of higher alcohols and esters which imparted fruity aroma, compared 

to polished rice wine. 
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2.4 The formation of the aroma compounds during the brewing of rice wine 

The aroma and flavour compounds are mostly formed during the fermentation of 

rice wine by microorganisms. This section will show the main pathways of the aroma and 

flavour compounds which are found in rice wines. 

 

2.4.1 Higher alcohols, aldehydes and organic acids from amino acids 

The amino acids can be broken down to higher alcohols, aldehydes and organic 

acids via the Ehrlich pathway (Lilly et al., 2006, Hazelwood et al., 2008, Styger et al., 2011). 

Moreover, the important volatiles derived from amino acids are shown in table 2.1. 

Table 2-1: Flavour formation from amino acid catabolism via Ehrlich pathway. 

 aldehydes higher alcohols acids 

Leu 3-methylbutanal 3-methylbutanol 3-methylbutanoic acid 

Ile 2-methylbutanal 2-methylbutanol 2-methylbutanoic acid 

Val 2-methylpropanal 2-methylpropanol 2-methylpropanoic acid 

Phe 2-phenylethanal 2-phenylethanol 2-phenylacetic acid 

Tyr 4-OH-phenylethanal 4-OH-phenylethanol 4-OH-phenylacetic acid 

Trp indole-3-acetaldehyde tryptophol indol-3-acetic acid 

Met 3-methylthiopropanal 3-methylthiopropanol 3-methylthiopropionic acid 

From: Styger et al. (2011) and Son et al. (2018) 

 

The formation of higher alcohols, aldehydes and organic acids has been reported by 

Styger et al. (2011), Son et al. (2018) and Lilly et al. (2006). They showed that the amino 

acid is changed to α-ketoglutarate via the transamination reaction by aminotransferases, 
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and then subsequently converted to the corresponding α-keto acid and glutamate. The 

liberated α-keto acid is further decarboxylated to the corresponding aldehyde. This 

aldehyde is reduced to its corresponding higher alcohol via a NADH-dependent reaction by 

an alcohol dehydrogenase. This higher alcohol is further converted to organic acid using 

acetyltransferase (figure 2.9). 

 

 

Figure 2-9: The Ehrlich pathway for the formation of amino acids-derived aldehydes, 

alcohols and organic acids. 

From: Ravasio et al. (2014) 

 

2.4.2 Esters 

Saerens et al. (2010) and Son et al. (2018) explained that there are two main 

categories of volatile esters in fermented beverages, including acetate esters which are 

formed from acetic acid and alcohols, and medium-chain fatty acid ethyl ester (C6-C12) 

which formed from the corresponding medium chain fatty acids and ethanol. However, the 

acetate esters have been reported as the most important because they are easily produced 

at a high level. Son et al. (2018) showed that esters are formed by esterification between 

alcohols and acids. Moreover, Xu et al. (2015a) also showed that esters are formed via 
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biosynthesis, using alcohol acetyltransferase and substrates (alcohols and acetyl-CoA). A 

high concentration of medium chain fatty acids and the presence of acyl-CoA: ethanol O-

acyltransferases (AEATases) promotes the formation of fatty acid ethyl esters (Saerens et al., 

2008). 

 

2.4.2.1 Acetate esters 

The acetate ester, for example ethyl acetate, 3-methylbutyl acetate, 2-methylpropyl 

acetate and phenylethyl acetate have acetic acid as the parent acid and the parent alcohol 

is ethanol or higher alcohols. The formation of acetate esters is shown in the following 

chemical reaction: the acetate esters are formed from the parent alcohols and acetyl-CoA, 

using alcohol acetyltransferases (Saerens et al., 2010). 

 

CH3COCOOH + NAD+ + CoA-SH → CH3CO-S-CoA + NADH + H+ +CO2 (a) 

CH3CO-S-CoA + R1OH → CH3COOR1 + CoA-SH   (b) 

 

This formation is in agreement with Nagasawa et al. (1998) and Verstrepen et al. 

(2003) who showed that alcohol acetyltransferases greatly affected the formation of 

acetate esters. Moreover, Lilly et al. (2006) studied the effect of alcohol acetyltransferases 

and esterase in Saccharomyces cerevisiae on the formation of acetate esters. The results 

showed that overexpression of the gene that is responsible for alcohol acetyltransferases in 

the yeast increased the formation of ethyl acetate, 3-methylbutyl acetate, 2‐phenylethyl 
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acetate and ethyl acetate. However, the application of the gene that is responsible for 

esterase in yeast decreased the formation of those esters. 

 

2.4.2.2 Medium chain fatty acid ethyl ester  

The medium chain fatty acid ethyl esters, for example ethyl hexanoate and ethyl 

octanoate have the ethanol as the parent alcohol and the parent acid is a medium chain 

fatty acid. In order to form these compounds, the fatty acids are transferred to acyl-CoA 

derivatives, which then react with ethanol to form the corresponding esters by acyl-CoA: 

ethanol O-acyltransferases (AEATases), as can be seen in the following chemical reaction 

(Knight et al., 2014). 

 

R1COOH + ATP + CoA-SH → R1CO-S-CoA + AMP + PPi   (a) 

R1CO-S-CoA + CH3CH2OH → R1COOCH2CH3 + CoA-SH   (b) 

 

Moreover, Saerens et al. (2010) studied the effect of AEATases in Saccharomyces 

cerevisiae on the formation of ethyl esters Their results showed that the deletion of the 

gene that is responsible for that formation of AEATases in yeast, resulted in a decrease of 

ethyl butanoate, ethyl hexanoate, ethyl octanoate and ethyl decanoate. 
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2.4.3 Organic acids 

Rezaei et al. (2015) showed that the organic acids, mainly citrate, malate and 

succinate are produced by Saccharomyces cerevisiae via the tricarboxylic acid (TCA) cycle. 

These compounds are important in wine products due to their effect on the organoleptic 

properties (Camarasa et al., 2003). According to figure 2.10, their formation starts with the 

conversion of glucose to pyruvate in the glycolysis pathway, which is then converted to 

acetyl CoA. After that, the substrate goes through the TCA cycle. In order to generate the 

first organic acid, citric acid from this cycle, the acetyl CoA reacts with oxaloacetate to form 

citrate by citrate synthase. The citrate is further converted to its isomer, isocitrate by 

aconitase, and then reduced and decarboxylated to form α-ketoglutarate by using isocitrate 

dehydrogenase. In order to generate the succinic acid, α-ketoglutarate is dehydrogated and 

decarboxylated to form succinyl CoA by α–ketoglutarate dehydrogenase, which is then 

hydrolysed to succinate by succinyl CoA synthetase. The formation of the third acid, fumaric 

acid in this cycle goes through the oxidisation of succinate by succinate dehydrogenase. 

The fumarate is further converted to malic acid by fumarase, which is then oxidised to 

oxaloacetate by malate dehydrogenase. 

Acetic acid is one of the most important organic acids found in wine. Fowles (1992) 

showed that acetic acid can be formed from the oxidation of acetaldehyde by acetaldehyde 

dehydrogenase (figure 2.10). The concentration of acetic acid can be increased by a longer 

fermentation, a higher concentration of sugar in the substrate and a lower fermentation 

temperature. Moreover, acetic acid is produced by the oxidation of ethanol by acetic acid 

bacteria under aerobic conditions.  
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Figure 2-10: The TCA cycle for the formation of organic acids. 

From: Rezaei et al. (2015) 
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Styger et al. (2011) and Lian and Zhao (2015) descripted the formation of lipid-

derived organic acids that they are formed via fatty acid biosynthesis (FAB), as can be seen 

in figure 2.11. 

 

 

Figure 2-11: The fatty acid biosynthesis for the formation of fatty acids. 

From: Lian and Zhao (2015)  

 

This pathway starts with Acetyl-CoA being converted to malonyl-CoA by acetyl-CoA 

carboxylase (ACC), and then further converted to malonyl-ACP by malonyl-CoA:ACP 

transacylase. The formation of malonyl-ACP is very important because it is used as the 

elongation unit, bonding with acyl-ACP to form β-ketoacyl-ACP with two more carbon 

units. The extended β-ketoacyl-ACP is converted to β-hydroxyacyl-ACP, and then converted 
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to trans-2-enoyl-ACP by β-hydroxyacyl- ACP dehydratase. After that, the double bond in 

trans-2-enoyl-ACP is reduced to form acyl-ACP by trans-2-enoyl-ACP reductase with the 

presence of NADPH. The processed acyl-ACP from this elongation cycle results in the fatty 

acyl chains being extended by two carbon units. Therefore, more elongation cycles, the 

longer the fatty acid chain. 

 

2.4.4 Volatile phenols 

Phenolic acids which are derived from the degradation of lignin have been reported 

as the precursor of volatile phenols (Zhao et al., 2015a, Ito et al., 2016, Sunao et al., 2016). 

Ito et al. (2016) showed that vanillic acid can be decarboxylated to form guaiacol, and 

ferulic acid can be decarboxylated to form 4-vinylguaiacol by microorganisms (figure 2.12).  

 

Figure 2-12: The formation of guaiacol and 4-vinylguaiacol from phenolic acids. 

Modified from: Ito et al. (2016)  
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Moreover, Belda et al. (2017) also showed that 4-coumaric acid, ferulic acid and 

caffeic acid are decarboxylated to form 4-vinylphenol, 4-vinylguaiacol and 4-vinylcatechol, 

using phenolic acid decarboxylase. These volatile phenol compounds can be reduced to 

form 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol using vinylphenol reductase, 

respectively (figure 2.13). These enzymes are produced from Saccharomyces cerevisiae and 

Lactobacillus plantarum (McKenna et al., 2014). Chang and Kang (2004) and Witthuhn et al. 

(2012) also showed that volatile phenol compounds contribute smoky note to wine, beer 

and apple juice. 

 

 

Figure 2-13: The formation of volatile phenol compounds from 4-coumaric acid, ferulic acid 

and caffeic acid by yeast. 

Modified from: Belda et al. (2017)  
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2.4.5 Lactones 

The formation of lactones (cyclic esters) in the fermentation process was shown by 

Berger et al. (1986), Vandamme and Soetaert (2002) and Romero-Guido et al. (2011). 

Briefly, fatty acids can be metabolised to form hydroxycarboxylic acids. The position of 

hydroxyl group in hydroxycarboxylic acids is moved to close to its carboxylic group via β-

oxidation. After that, the bonding between the hydroxyl group of the hydroxycarboxylic 

acid chain and the hydroxyl group at the carboxylic end is done via the lactonisation 

(intramolecular esterification), as can be seen at figure 2.14. This intramolecular cyclisation 

mostly occur for γ or δ hydroxy acids, which form five or six ring lactones. 

 

  

Figure 2-14: The formation of lactones, γ-dodecalactone by yeast via the lactonisation. 

From: An et al. (2013)  
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2.5 Taste compound in rice wine 

Taste and mouthfeel are important factors contributing to consumer preference and 

acceptability of wines (Niu et al., 2012). There are many studies on the aroma in rice wines, 

including direct nasal or retronasal perception and flavour profiling (Chen and Xu, 2010, 

Chen et al., 2013b, Chen and Xu, 2013, Su et al., 2016, Niu et al., 2017). However, the study 

of the effect of taste and mouthfeel on the overall quality, and the development of taste 

active compounds in wines has been studied more. Hufnagel and Hofmann (2008b) also 

showed that sourness, sweetness, bitterness, and astringency impart the important 

orosensory quality in red wine. However, the other attributes in wine samples were also 

investigated, for example velvety astringency (finely astringent mouthfeel), puckering 

astringency (reflexive action which released in an attempt to lubricate mouth surfaces) and 

mouthfulness or body were described as a full oral-sensation that was perceived during 

wine consumption. 

Niu et al. (2017) studied the taste compounds in wine which produced from cherry. 

The sensory evaluation was carried out, and the results compared with the chemical 

analysis, including sugars, organic acids, amino acids, tannic acid and phenolic acids. The 

sensory results revealed that sour, sweet and bitter taste were the most important 

attributes, whereas astringent sensation was the second most important attribute in cherry 

wine. However, Jung et al. (2014) showed that the commercial rice wine had bitter, sour, 

sweet, salty and umami taste however the characteristic note, including astringency and 

pungency can be found from the samples. 
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Iwano et al. (2004) studied the effect of amino acids on the taste of Sake. The results 

showed that alanine, arginine, glutamic acid and aspartic acid were found to be the 

important amino acids in Sake. This study also showed that alanine imparted sweet taste, 

arginine imparted bitter taste, glutamic acid and aspartic acid correspond to acidity, 

astringency, and added flavour. 

Correlation between the sensory test and the chemical analysis in rice wine showed 

that tartaric acid, methionine and proline contribute sour taste; sucrose, glucose and 

fructose contribute sweet taste; asparagine, serine, glycine, threonine, phenylalanine, 

leucine, gallic acid and chlorogenic acid contribute bitter taste; vanillic acid, arginine and 

tannic acid contribute astringent mouthfeel (Niu et al., 2012). However, Yu et al. (2015) 

also showed that fucose, arabinose, lactic acid, glutamic acid, arginine, isoleucine, valine, 

threonine and lysine were found to be the additional taste compounds in Chinese rice by 

using HPLC. The correlation between the taste-active compounds and the sensory 

attributes also showed that fucose and arabinose contributed to the harmony attribute; 

lactic acid, glutamic acid and arginine contributed sour taste; isoleucine, valine, threonine 

and lysine contributed sweet taste. 

Mimura et al. (2014) also studied the effect of non-volatile compounds on the taste 

of rice wine. The result showed that amino acids were positively correlated to the dull 

aftertaste and were considered to contribute to the body of rice wine. Their high level can 

increase the Zatsumi sensation which is an unpleasant bitter taste (Mimura et al., 2014, 

Takahashi et al., 2016). The sensory score of sour taste which corresponded to succinic acid 

was correlated to the pungent/smoothness attribute. The compounds including peptides, 

amino acids, phenol derivatives, and sugar derivatives, responsible for bitter taste were also 
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found in rice wine. However, Jung et al. (2014) showed that sour and bitter taste were the 

negative factors in rice wine samples. 

Polyphenolic compounds, including anthocyanins, flavonols, phenolic acids and 

flavanol monomers and some oligomers have been found in wines (Lesschaeve and Noble, 

2005, Preys et al., 2006, Hufnagel and Hofmann, 2008a, Gambuti et al., 2012). The phenolic 

compounds in Chinese rice wine, Japanese Sake, and Korean  were studied by Huang et al. 

(2015) they showed that phenolic acids including gallic acid, protocatechuic acid, vanillic 

acid, syringic acid, caffeic acid, ferulic acid, 4-coumaric acid, sinapic acid, chlorogenic acid, 

catechin, epicatechin, quercetin, and rutin were found in the samples. This is consistent 

with Xu et al. (2015b). However, Wang et al. (2014) extracted the phenolic acids and 

polyphenolic acids in black rice wines by SPE, and they were analysed by HPLC-MS/MS. The 

result showed that cyanidin-3,5-O-diglucoside, cyanidin-3-O-glucoside, cyanidin-3-O-

rutinoside and peonidin-3-O-glucoside were found, apart from non-colour phenolic 

compounds. The phenolic compounds which have the molecular weight below 500 Da 

such as flavan-3-ol monomers , flavan-3-ol dimers and trimers and hydroxybenzoic acids 

elicited astringent sensation in wine due to the precipitation of glycoproteins in saliva, 

generating a loss of lubrication in mouth (Lesschaeve and Noble, 2005, Hufnagel and 

Hofmann, 2008b). However, some phenolic compounds such as catechin, epicatechin, 

procyanidin and phenolic acid ethyl esters contribute bitterness rather than astringency 

(Hufnagel and Hofmann, 2008a, Hufnagel and Hofmann, 2008b) 

Diketopiperazines (DKPs) are produced by the degradation of polypeptides in 

several foods and beverages (Borthwick and Da Costa, 2017). Takahashi et al. (2016) 

showed that cyclo(leu-phe) and corresponding amino acids were generated in rice wine by 

the metabolism of the microorganism, or the thermal process during the pasteurisation. 
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Borthwick and Da Costa (2017) showed that cyclo(ala-pro), cyclo(ala-leu), cyclo(pro-val), 

cyclo(ile-pro), cyclo(pro-pro), cyclo(leu-pro), cyclo(ile-leu), cyclo(ala-phe), cyclo(phe-phe), 

cyclo(leu-phe) and cyclo(phe-pro) were found in alcoholic beverages such as beer, wine 

and Awamori spirit. This is in agreement with Oruna-Concha et al. (2015) who showed that 

cyclo(leu-leu), cyclo(pro-leu), cyclo(pro-ile), cyclo(pro-met), cyclo(pro-val), cyclo(pro-pro) 

and cyclo(val-ala) were detected in sherry wine. Moreover, they can contribute astringent, 

salty, grainy, metallic and bitter note to food products. 

γ-glutamyl peptides, responsible for mouthfulness, complexity and continuity taste 

by acting with CaSR calcium channels on the tongue, leading to a release of intracellular 

Ca2+ in the surrounding taste cells (Toelstede et al., 2009, Hillmann et al., 2016). Hillmann 

et al. (2016) showed that γ-glutamyl peptide compounds, including γ-glu-lys, γ-glu-his, γ-

glu-gln, γ-glu-phe, γ-glu-glu, γ-glu-met, γ-glu-thr, γ-glu-gly, γ-glu-val, γ-glu-leu, γ-glu-asp, γ-

glu-trp, γ-glu-tyr and γ-glu-gln were found in parmesan cheese by liquid chromatography 

tandem mass spectrometry (LC-MS/MS). Although Hillmann et al. (2016) found 14 different 

γ-glutamyl peptide in cheese, only γ-glu-val-gly was found in beer at concentrations in the 

range of 0.08–0.18 mg/l (Miyamura et al., 2015) and none γ-glutamyl peptides have been 

reported in pigmented rice wine.  
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2.6 The formation of typical taste compounds in rice wine 

2.6.1 Amino acids 

Ljungdahl and Daignan-Fornier (2012) showed that the amino acids are produced by 

yeast during the fermentation. Their formation starts with the formation of glutamate from 

α-ketoglutarate by NADPH-dependent glutamate dehydrogenase with the incorporation of 

ammonia (reaction 1). Then, glutamate is converted to glutamine by glutamine synthetase 

(reaction 2). The presence of glutamate and glutamine is important due to their 

involvement in transamination reactions required for the synthesis of each amino acid, as 

can be seen from figure 2.15 (Magasanik and Kaiser, 2002). The amino acids which were 

produced by this pathway can be classified into glutamate family (glutamate, glutamine, 

arginine, proline, and lysine); the aromatic family (phenylalanine, tyrosine, and tryptophan); 

the serine family (serine, glycine, cysteine, and methionine); the aspartate family (aspartate, 

asparagine, threonine, cysteine and methionine); and the pyruvate family (alanine, valine, 

leucine, and isoleucine). Moreover, Valero et al. (2003) showed that yeast has the ability to 

store amino acids in its vacuole. This action can protect the amino acids from high 

metabolic regulatory purposes. However, the amino acids are released from yeast by 

autolysis during wine production (Feuillat and Charpentier, 1982, Martínez-Rodríguez and 

Polo, 2000). Moreover, amino acids in Chinese rice wine are also liberated from the 

hydrolysis reaction of proteins and microorganism by protease and carboxypeptidase 

during the fermentation (Shen et al., 2010). 
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Figure 2-15: The formation of amino acids from the protein synthesis by yeast. 

From: Ljungdahl and Daignan-Fornier (2012) 

 

2.6.2 Phenolic acids 

The phenolic compounds can be formed from the hydrolysis or degradation of lignin 

(Cai et al., 2014, Rasmussen et al., 2014, Lee et al., 2015), Normally, the enzymes for lignin 

degradation, including lignin peroxidase, manganese peroxidase, LiP‐MnP hybrid versatile 

peroxidase and laccase are produced by fungi (Guerriero et al., 2015). The mechanism of 

lignin degradation starts with the degradation of nonphenolic recalcitrant aromatic 

substrates by lignin peroxidase. Furthermore, the manganese peroxidase can oxidise Mn2+ 
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to Mn3+, which releases an electron from the low redox substrates. After that, Mn3+ reacts 

with dicarboxylic acid to form a complex compound, which penetrates through the inside 

of partly degraded lignin to elicit its oxidative degradation (Wong, 2009). The degradation 

of lignin releases the monomeric units, including 4-hydroxyphenyl, guaiacyl and syringyl 

groups (de Gonzalo et al., 2016), as can been seen from figure 2.16. 

 

 

Figure 2-16: The formation of monomers from the degradation of lignin. 

From: de Gonzalo et al. (2016) 

 

The LiP‐MnP hybrid versatile peroxidase has been considered as the supporting 

enzyme, which accompanies the lignin peroxidase and manganese peroxidase to increase 

the high redox activity (Wong, 2009). In addition, laccases or phenol oxidases are copper 

containing enzymes found in bacteria, fungi, and plants. These enzymes are involved in 

many response, especially lignin biosynthesis, lignin degradation and detoxification of 
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phenolic compounds released from the lignin degradation (Wong, 2009, Abdel-Hamid et 

al., 2013). 

 

2.6.3 Diketopiperazines (DKPs) 

DKPs consist of two amino acids backbone form, which 2 molecules of water have 

been removed. Mishra et al. (2017) showed that they can be formed by the condensation of 

two amino acids (figure 2.17) however Borthwick and Da Costa (2017) showed that they 

cannot be produced from the heating of an equimolar amounts of amino acids. 

 

 

Figure 2-17: The condensation of two amino acids to form DKPs. 

From: Borthwick and Da Costa (2017) 
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Another formation of DKPs was showed by Borthwick and Da Costa (2017). They 

described that the heating of the acyclic tripeptides with the presence of acidic conditions 

did produce the corresponding cyclic dipeptides (figure 2.18). 

 

 

Figure 2-18: The formation of DKPs from acyclic tripeptides. 

From: Rizzi (1989) 

 

Moreover, approximately 90% of DKPs can be generated by microorganism rather 

than the thermal process (Giessen and Marahiel, 2014, Falorni et al., 2000). This is in 

agreement with Oruna-Concha et al. (2015) who showed that the formation of DKPs in 

sherry wines might be produced from flor or film of yeast during the fermentation. Mauricio 

et al. (2001) showed that flor yeast was likely grown under a high concentration of ethanol 

and acidity, thereby establishing a strongly reducing wine medium. During this stage, flor 

yeast maintains their intracellular redox balance by minimising the NAD(P)H. Thus, this 

compound can react with glutamate to form proline which is the most abundant amino 

acids in grape wine. This proline can be condensed with other amino acids to form proline-

based DKPs, as described by Borthwick and Da Costa (2017)  
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2.6.4 γ-glutamyl peptides 

The formation of γ-glutamyl peptides was showed by Toelstede et al. (2009) and 

Hillmann et al. (2016), as can be seen in figure 2.19. They described that γ-glutamyl donor 

amino acid L-glutamine (1) is merged with γ-glutamyl transferase (GGT) to form covalent γ-

glutamyl-enzyme conjugate (2). After that, this intermediate can react with one more L-

glutamine to form the homotranspeptidation product, γ-Glu-Gln (3), or react with other 

amino acids to form the heterotranspeptidation products, γ-Glu-X (4). Alternatively, the 

hydrolytic cleavage of intermediate can produce free amino acid L-glutamate (5). 

 

 

Figure 2-19: The formation of γ-glutamyl peptides by γ-glutamyl transferase (GGT). 

From: Hillmann et al. (2016) 
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Moreover, it can be seen that γ-glutamyl peptides were preferably produced from 

neutral amino acids, compared with acidic and basic amino acids (Toelstede et al., 2009). 

The GGT in the formation of γ-glutamyl peptides can be found from fungi, including 

Aspergillus, Bacillus and Lactobacillus (Hillmann et al., 2016). 

 

2.7 Concluding remarks 

In order to produce rice wine, the brewing process consists of saccharification and a 

parallel alcoholic fermentation. During the saccharification, the starch in rice is mainly 

degraded to sugars, including maltose and glucose. These fermentable sugars are further 

converted to ethanol and flavour compounds by the metabolism of the brewing 

microorganisms, fungi and yeast. Moreover, the moisture content, degree of gelatinisation 

and brewing temperature have been reported as having an effect on the quality of rice 

wine. The selected brewing process for rice wine is normally determined by a high level of 

ethanol, whereas the acetic acid content is low. 

The aroma compounds are formed during the brewing process by microorganisms. 

According to the review, esters, alcohols, acids and aldehydes are the main aroma 

compound in the rice wine. Moreover, characteristic aroma compounds, especially the 

volatile phenols are also found. Fruity and floral were reported as the basic aroma in rice 

wine however a characteristic aroma, smoky and herb-like aroma were found in rice wine 

that was brewed by using typical materials (wheat Qu and/or whole grain). Phenolic acids 

which are found in these typical materials promote the formation of volatile phenols. 

Furthermore, the five basic taste compounds in rice wine, including sugars, organic acids, 

amino acids and phenolic acids can be liberated by the catabolism of brewing strains 
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however DKPs and γ-glutamyl peptides are generated by the anabolism of the brewing 

strains. 

The aim of this thesis is firstly to identify the typical aroma and taste compounds in 

commercial pigmented rice wines then develop a suitable and consistent lab-scale brewing 

process, and finally to study the effect of bran from pigmented rice on the characteristic 

aroma and taste compounds and confirm their precursors in pigmented rice wine by using 

standard spiking technique.  
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CHAPTER 3: TASTE AND AROMA COMPOUNDS IN RICE WINE: A COMPARISON OF 

POLISHED RICE WINE AND PIGMENTED RICE WINE 

 

Abstract 

Rice wine can be produced from both polished or unpolished (or pigmented) rice. 

The latter gives a reddish-brown colour and unique flavour to the wine. The rice wines were 

analysed for the taste compounds, including sugars, organic acids, amino acids, phenolic 

acids, diketopiperazines (DKPs) and γ-glutamyl peptides. The volatile and semi-volatile 

compounds in 3 commercial rice wines (two polished and one pigmented rice wine) were 

extracted, using solid-phase microextraction (SPME) and solid phase extraction (SPE), and 

analysed by gas chromatography-mass spectrometry (GC–MS) and gas chromatography–

olfactometry (GC–O). A higher concentration of phenolic acids and DKPs (cyclo(val-pro), 

cyclo(ala-val), cyclo(ile-pro), cyclo(leu-pro) and cyclo(gly-leu)) were found in pigmented 

rice wine (p<0.05). The taste compounds which were presented at concentrations above 

the reported thresholds were glucose, cyclo(ile-pro) and cyclo(leu-pro) in all rice wines, 

and acetic acid in only pigmented rice wine. Ethyl ester and the higher alcohols were the 

most abundant compounds detected in rice wine samples. The analysis of GC–O showed 16 

aroma active compounds were detected in the headspace of commercial rice wines, 

however guaiacol and 4-vinylguaiacol were the characteristic aroma which was only found 

in pigmented rice wine. 

 

Keywords: pigmented rice wine, diketopiperazines, γ-glutamyl peptides, volatile 

compound, characteristic aroma  
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3.1 Introduction 

The aroma of rice wine has been widely reported as being floral note, fruity note, 

sweety note, vinegar, solvent-like note, cheesy note and vegetable-like note (Kim et al., 

2010, Chen et al., 2013b, Chen et al., 2013a), however a smoky aroma also was detected in 

Chinese rice wine which is produced by using wheat Qu (Chen et al., 2013b). These aromas 

are derived from the abundance of volatile compounds such as esters, higher alcohols, 

aldehydes, organic acids and phenols (Kim et al., 2010, Chen and Xu, 2010, Chen et al., 

2013a, Yang et al., 2017a), which are generated during fermentation from raw materials 

(mostly rice starch) and the fermentable products of microbial metabolism (Yang et al., 

2017a). 

In addition to aroma, some non-volatile compounds also are important and 

influence flavour, taste and oral sensation (Breslin, 2001). Non-volatile compounds in the 

wine matrix likely influence the aroma release, aroma intensity and aroma perception 

(Sáenz-Navajas et al., 2012), and they also contribute to taste and mouthfeel. Similar to 

wine, previous research carried out investigating the taste characteristics of rice wine has 

described it as being sweet, sour, harmonious, mellow, and fresh attribute (Yu et al., 2015, 

Shen et al., 2010), however bitter, umami and salt taste characteristics were also found 

(Jian-guo, 2004). 

The research to date has tended to focus on the aroma and taste compounds of 

non-pigmented rice wine rather than pigmented rice wine. The aim of this study is (i) to 

identify the characteristic taste and aroma compounds in pigmented rice wine, and (ii) to 

characterise and compare the taste and aroma profile of commercial polished rice wines 

and pigmented rice wines.  
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3.2 Materials and methods 

3.2.1 Materials 

Four rice wines, RW1 (Kikusui Shuzo Co., Ltd, Niigata, Japan), RW2 (Oenon Holdings 

Inc., Tokyo, Japan), PRW1 (Kiuchi Brewery, Ibaraki, Japan) and PRW2 (Mae Sai Winery, 

Thailand) were purchased from market in UK, Japan and Thailand. Samples were stored at -

20°C until analysis. Prior to analysis, rice wines were filtered through Minisart® 0.22 µm 

polyethersulfone (PES) syringe filter from Sartorius (Goettingen, Germany), and then 

diluted as appropriate. 

 

3.2.2 Chemicals 

The following chemicals were purchased from Sigma-Aldrich (Dorset, UK): ethanol, 

methyl acetate, diethyl ether, >98% 4-coumaric acid, 98% epicatechin, > 97% vanillic acid, 

>98% sinapic acid, >97% protocatechuic acid, >99% ferulic acid, >95% syringic acid, >98% 

caffeic acid, 98% catechin, 97% gallic acid, 99% 4-hydroxybenzoic acid, 99.5% glucose, >99% 

fructose, 99% maltose, 95% maltotriose, >99% malic acid, 98% lactic acid, 99% citric acid, 99% 

sodium succinate, 99% sodium tartrate, 1,2-dichlorobenzene, saturated alkane standard 

C5–C30 and C7–C40 and all aroma standards. Cyanidin-3-glucoside (>96%) was purchased 

from Extrasynthese (Genay, France). Analytical grade sulfuric acid, HPLC grade methanol, 

>99% acetic acid, Optima™ 0.1% formic acid and Pierce® acetonitrile were purchased from 

Fisher Scientific (Loughborough, UK). Analytical grade formic acid was purchased from BDH 

(Poole, UK). The EZfaast™ amino acid analysis kit was purchased from Phenomenex 

(Macclesfield, UK). The standard of DKPs, >99% cyclo(proline-valine), >99% cyclo(alanine-

valine), >99% cyclo(isoleucine-proline), >99% cyclo(leucine-proline), >98% cyclo(proline-
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proline), >99% cyclo(alanine-proline) and standard of γ-glutamyl peptides including >99% 

γ-glutamyl tyrosine (γ-glu-tyr), >99% γ-glutamyl phenylalanine (γ-glu-phe), >99% γ-

glutamyl histidine (γ-glu-his), >99% γ-glutamyl methionine (γ-glu-met), >99% γ-glutamyl 

glutamic acid (γ-glu-glu), >99% γ-glutamyl leucine (γ-glu-leu), >99% γ-glutamyl valine (γ-

glu-val), >99% γ-glutamyl alanine (γ-glu-ala) and >99% γ-glutamyl glycine (γ-glu-gly) were 

purchased from Bachem (Bubendorf, Switzerland). 

 

3.2.3 Analysis of taste compounds in rice wine 

3.2.3.1 Sugars, ethanol and organic acids 

The analytical method was adapted from Zeppa et al. (2001). The analyses were 

performed on an Agilent series 1100 HPLC system (Waldbronn, Germany) with diode array 

detector (DAD) and reflective index (RI) detector, series ERC-7515A from Polymer 

laboratories (Shropshire, UK). The sample (50 µl) was injected into an Aminex HPX-87H 

column (300 mm x 7.8 mm, 9 µm particle size) from Bio-Rad (Hertfordshire, UK) which was 

thermostatically maintained at 45 °C. The compounds were eluted with 5mM sulfuric acid, 

and the flow rate was controlled at 0.6 ml/min. Chromatograms were analysed at 210 nm 

for organic acids, whereas the RI detector was used for sugars and ethanol analysis. The 

identification of compounds was based on retention times by comparison with standards of 

both organic acids and sugars. Quantification was carried with the external calibrations 

using the corresponding standards in the following concentrations: 10, 25, 50, 70 and 100 

mg/l for organic acids, and 50, 125, 250, 350 and 500 mg/l for sugars respectively, R2 > 0.99 

for all analytes.  
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3.2.3.2 Free amino acids 

Free amino acids in samples were derivatised by using the EZ:faast™ amino acid kit 

from Phenomenex (CA, USA). The derivatised samples were analysed by GC-MS, using GC 

series 7890A and MS series 5975C from Agilent (CA, USA) as described by Elmore et al. 

(2005). In order to quantify the compounds, calibration curves were came out using the 

corresponding standard compounds in the range of 25-200 µM, R2 > 0.99. 

 

3.2.3.3 Free phenolic acids 

The phenolic acids were analysed using HPLC series 1200 from Agilent (Waldbronn, 

Germany). This analytical method was modified from Seal (2016). Briefly, the pre-filtered 

sample (5 µl) was injected into a Nova-Pak® C18 column (250 mm x 4.6 mm, 4 µm particle 

size) from Waters (Dublin, Ireland) which was thermostatically controlled at 40 °C. The 

mobile phase was composed of 0.1% formic acid (solvent A) and methanol (solvent B) with 

a flow rate of 0.8 ml/min. The gradient elution was changed from 5% to 10% B in 13 min, 

from 10% to 25% B in 25 min, from 25% to 35% B in 30 min, from 35% to 20% B in 32 min, 

from 20% to15% B in 35 min, from 15% to 10% B in 40 min and from 10% to 5% B in 50 min, 

then the gradient back to initial condition (solvent A: solvent B: 95: 5) in 60 min before the 

next injection. Compounds were detected by using DAD detector at 280 and 320 nm for 

phenolic acids, whereas the wavelength at 520 nm was used for cyanidin-3-glucoside 

analysis. Quantification was carried out by the external calibration method using 

commercially available standards in the following concentrations: 0.5, 1, 5, 10 and 50 mg/l 

for phenolic acids, and 50, 125, 250, 350 and 500 mg/l for anthocyanins, respectively (R2 > 

0.99).  
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3.2.3.4 DKPs 

Analysis of DKPs was carried out as described by Oruna-Concha et al. (2015). Briefly, 

internal standard 50 µl (1,2-dichlorobenzene, 100 mg/l) was added into 15 ml of rice wine. 

Samples containing 0.33 mg/l of internal standard were passed through the SPE cartridge 

(Strata-X 33 µm polymeric reversed phase giga tube) from Phenomenex (CA, USA), HPLC 

water and methyl acetate were used for washing and elution, respectively. The eluent was 

concentrated by flushing with N2, and then injected into the GC-MS, using GC series 7890A 

and MS series 5975C from Agilent (CA, USA), which was equipped with a DB-WAX Ultra 

Inert column (30 m x 0.25 mm id, 0.25 µm) from Agilent (CA, USA). For the quantification 

of DKPs, external calibration curves of the corresponding DKP standards were prepared 

relative to 1,2-dichlorobenzene (internal standard) (R2 > 0.90). 

 

3.2.3.5 γ-glutamyl peptides 

The analysis of γ-glutamyl peptides was modified from Toelstede et al. (2009). The 

sample (500 µl) containing 0.2 mg/l of γ-glu-met (internal standard) was filtered through 

an Amicon® Ultra, 0.5 ml centrifugal filter, MWCO 3kDa, from Sigma-Aldrich (Steinheim, 

Germany) using Minispin centrifuge from Eppendorf (Ontario, Canada) at 12,045 g for 10 

minutes. The sample (5 µl) was analysed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), series 6410 from Agilent (CA, USA) equipped with a reversed 

phase Zorbax C18 column (2.1 mm x 100 mm, 1.8 µm) from Agilent (CA, USA). The 

compounds were separated by using a mobile phases which comprised of 0.1% formic acid 

and 0.1% formic acid in acetonitrile, and the flow rate was controlled at 0.2 ml/min. The 

gradient elution was changed from 0% to 10% B in 20 min, from 10% to 100% B in 45 min, 
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and then back to initial condition (solvent A: solvent B: 100: 0) in 50 min before the next 

injection. The LC-MS/MS was operated in the positive electrospray ionization mode. The 

detection of γ-glutamyl dipeptides was performed in Dynamic MRM mode. The ion spray 

voltage was set at 4000 eV, and nitrogen served as curtain gas (35 psi). The compounds 

were quantified using the optimised mass transitions as follows: γ-glu-glu (m/z 

277.1→84.1), γ-glu-met (m/z 279.1→150.1), γ-glu-his (m/z 285.1→110.1), γ-glu-ala (m/z 

219.1→44.1), γ-glu-gly (m/z 205.1→84.1), γ-glu-leu (m/z 261.2→84.1), γ-glu-val (m/z 

247.1→84.1), γ-glu-tyr (m/z 311.1→182.1) and γ-glu-phe (m/z 295.1→120.1), respectively. 

For quantification, the peak area of the compound of interest was compared to the 

corresponding standard curve which was prepared in the range of 0.01-5 mg/l, (R2 > 0.93). 

 

3.2.4 Aroma analysis for rice wines 

3.2.4.1 Volatile compounds 

The volatile compounds were extracted by SPME based on a method by Chen and Xu 

(2010). The sample (5 g) was spiked with 50 µl of internal standard (1,2-dichlorobenzene, 1 

mg/l). After that, the sample containing 0.01 mg/l of internal standard was incubated at 40 

ºC for 10 min to equilibrate. A 50/30 µm fibre (DVB/CAR/PDMS) from Supelco (PA, USA) 

was exposed to the headspace for 30 min, and the extract was analysed by GC-MS, using GC 

series 7890A and MS series 5975C from Agilent (CA, USA). The compounds were separated 

on a Zebron™ ZB-5MSi column (30 m × 250 µm internal diameter, 1 µm film thickness) 

from Phenomenex (Cheshire, USA). Helium was used as the mobile phase at a flow rate of 

0.9 ml/min. The oven temperature was set at 40 °C for 5 min, and then increased to 220 °C 

for 5 min at a heating rate of 5 °C/min. The extract was also analysed on Stabilwax®-DA 
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column (30 m × 250 µm internal diameter, 0.5 µm film thickness) from Restek (PA, USA) for 

compound confirmation. Mass spectra were recorded in the electron-impact mode at an 

ionisation voltage of 70 eV and source temperature of 230 °C, with a scan range of 20–280 

m/z. Linear retention indices (LRIs) were determined using a series of standard alkanes C5-

C30 under the same chromatographic conditions. Identification of aroma compounds was 

based on comparison of their mass spectrum and LRIs with authentic standards. The 

relative quantity of each compound in rice wine was calculated by comparing the peak area 

with peak area of internal standard, using a response factor of 1. The Quantification of 

guaiacol and 4-vinylguaiacol was carried out using their calibration curves which were 

prepared in the range of 0.01-5 mg/l and 0.002-2 mg/l respectively, R2 > 0.99. 

 

3.2.4.2 Semi-volatile compounds 

The semi-volatile compounds were extracted using SPE. This procedure was 

modified from Lignou et al. (2013). Briefly, 50 µl internal standard (1,2-dichlorobenzene, 

100 mg/l) was added to15 ml of rice wines. Samples containing 0.33 mg/l of internal 

standard were passed through the SPE cartridge (Strata-X 33 µm polymeric reversed phase 

giga tube) from Phenomenex (CA, USA). Methanol and water were used to condition the 

cartridge, and methyl acetate was used for compound elution. After that, the eluents were 

dried using N2, and reconstituted in methyl acetate to 1 ml. The extract (2 µl) was injected 

on GC-MS, using GC series 7890A and MS series 5975C from Agilent (CA, USA). The 

compounds were separated using a Stabilwax®-DA column (30 m x 250 µm internal 

diameter, 0.5 µm film thickness) from Restek (PA, USA). The inlet temperature was 250 °C 

and detector temperature was 280 °C. Helium was used as carrier gas with the flow rate 

was 1.4 ml/min. The oven temperature was started at 50 °C for 1 min, and increased to 200 
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°C at a rate of 6 °C/min, and then increased to 250 °C for 30 min at a rate of 30 °C/min. The 

extract was also analysed on Zebron™ ZB-5MSi column (30 m × 250 µm internal diameter, 

1 µm film thickness) from Phenomenex (CA, USA) for compound confirmation. Mass 

spectra were recorded in the electron impact mode at an ionisation voltage of 70 eV and 

source temperature of 150 °C, with a scan range of 10–300 m/z. Linear retention indices 

(LRIs) were determined using a series of standard alkanes C7-C40 under the same 

chromatographic conditions. Identification of aroma compounds was based on comparison 

of their mass spectrum and LRIs with authentic standards. The relative quantity of each 

compound in rice wine was calculated by comparing the peak area with peak area of 

internal standard, using a response factor of 1. 

 

3.2.4.3 GC-Olfactometry  

The analytical method was adapted from Lignou et al. (2013). The samples were 

extracted using SPME and SPE, and then analysed by gas chromatography-olfactometry (GC-

O), using an HP5890 GC from Agilent (Waldbronn, Germany), and an ODO 2 series II from 

SGE (Buckinghamshire, UK). The compounds were separated using a Zebron™ ZB-5MSi 

column (30 m × 250 µm internal diameter, 1 µm film thickness) from Phenomenex (CA, 

USA). Two assessors (one female and one male) were used for the detection and verbal 

description of the aroma active compounds of the extracts. The assessors had at least 2 

years of experience in recognising odorants by GC-O. The intensity of aromas was scored in 

the range of 1-9, where 1 means very weak and 9 means very strong. To confirm the result, 

the extracts were analysed using a Stabilwax®-DA column (30 m × 250 µm internal 

diameter, 0.5 µm film thickness) from Restek (PA, USA). 
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3.2.5 Statistical analysis 

IBM SPSS Statistics for Windows, Version 22.0 software (IBM Corp., Armonk, NY, 

USA) was used for the statistical analysis of experimental data. The difference between the 

mean values was considered at 95% (p < 0.05), 99% (p < 0.01) or 99.9% (p < 0.001) 

confidence interval, using the analysis of variance (ANOVA) with the post hoc Duncan test. 

 

3.3 Results and discussions 

3.3.1 Taste compounds in rice wine 

3.3.1.1 Sugars, ethanol and organic acids 

The maltose, glucose and fructose in the commercial rice wines are presented in 

table 3.1. Fructose was only found in PWR2 at a high concentration, whereas glucose was 

the second most abundant sugar in all commercial rice wines. The highest concentration of 

glucose was also found in PRW2, with a value of twenty, six and five times higher compared 

to PRW1, RW1 and RW2 respectively. Moreover, the concentration of glucose in all rice 

wine samples was above the reported threshold, so it will contribute to the sweet taste. The 

concentration of maltose and glucose in RW1, RW2 and PRW1 are in agreement with Shen 

et al. (2011) who showed that Chinese rice wine contained maltose and glucose in the 

range of 11–543 mg/100 ml and 224–1,626 mg/100 ml, respectively. Notably, a high 

concentration of fructose in PWR2 is well in access of that reported by Niu et al. (2008) and 

Shen et al. (2011) who showed that maltose and glucose are the main sugar in rice wine. In 

addition, Das et al. (2014) showed that fructose was found in rice beer at only 20 mg/l.  
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The percent of ethanol in commercial rice wines was also investigated. The results 

showed that the highest concentration of ethanol was found in RW1 and RW2, whereas 

PRW2 had the lowest ethanol content (p < 0.05). Higher ethanol content in RW1 and RW2 

corresponds to higher glucose content, compared to PRW1. The concentration of ethanol 

in RW1, RW2 and PRW1 is in agreement with Furukawa (2012) who showed that Japanese 

rice wines have the ethanol around 15 % (v/v), however the ethanol content of PRW2 was 

rather low. 

The organic acids, including citric acid, malic acid, succinic acid and lactic acid were 

investigated in all commercial rice wines. Among them, succinic acid, malic acid, lactic acid 

and acetic acid were found to be the most abundant organic acids. The PRW2 showed the 

highest concentration of malic acid and acetic acid, with a value of ten and thirty times 

higher than the reported thresholds, whereas the concentration of succinic acid was lower 

than others. Moreover, the concentration of acetic acid in PRW1 was five times above the 

threshold. The lactic acid was also found in PRW1 at the highest concentration. The 

concentration of citric acid, malic acid, lactic acid in RW1, RW2 and PWR1 were lower than 

those found by Yu et al. (2015) and Das et al. (2014). The concentration of succinic acid in 

all rice wine samples was higher than its reported threshold. Moreover, the concentration 

of malic acid and acetic acid in PWR2 were also higher than those published reports. The 

lower pH in commercial rice wines corresponded to a higher concentration of organic 

acids. 

The formation of sugars in rice wine was explained by Shen et al. (2011) and Das et 

al. (2014) who showed that maltose and glucose comes from the hydrolysis of starch in rice 

during the fermentation. The glucose is converted to acetyl CoA, and further converted to 

ethanol via the Embden Meyerhof pathway (Lin and Tanaka, 2006). Glucose is also 
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converted to organic acids via the tricarboxylic acid pathway (West, 2017). However, lactic 

acid and acetic acid are formed via the hetero-fermentative catabolism of yeasts (Pardali et 

al., 2017) and the oxidation of ethanol by Acetobacter (Bartowsky and Henschke, 2008). 

Notably, the highest concentration of glucose and fructose in PRW2 were not likely to 

correspond with the concentration of ethanol, however they were likely to correspond with 

the highest concentration of acetic acid in that sample. 
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Table 3-1: Sugars, ethanol and organic acids content in commercial rice wines and their reported thresholds. 

compounds †threshold 
concentration §Sig 

RW1 RW2 PRW1 PRW2 

ethanol - 15.5 ± 0.1d 15.2 ± 0.1c 12.3 ± 0.1b 5.2 ± 0.1a *** 

pH - 4.2 ± 0.1c 4.3 ± 0.1d 3.6 ± 0.1b 2.7 ± 0.1a *** 

sugars (mg/ 100 ml)       

maltose - 383 ± 9b 324 ± 10a 387 ± 1b 423 ± 3c *** 

glucose 324 1327 ± 6b 1631 ± 1c 434 ± 1a 8,864 ± 98d *** 

fructose 183 nd nd nd 13,408 ± 470 - 

organic acids (mg/ 100 ml)       

citric acid 50 6.6 ± 1.3a 8.7 ± 0.9b 9.8 ± 1.4b nd ** 

tartaric acid 44 nd nd 8.4 ± 1 nd - 

malic acid 49 21.6 ± 0.5c 13.8 ± 2.8b 6.8 ± 0.6a 558 ± 6d *** 

succinic acid 106 378 ± 2b 557 ± 1c 381 ± 3b 109 ± 7a *** 

lactic acid 139 3.1 ± 0.1a 7.4 ± 0.1b 113 ± 1d 21.4 ± 0.9c *** 

acetic acid 12 nd nd 60.5 ± 3.7a 401 ± 13b *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
†Taste threshold in bottled water was obtained from Hufnagel and Hofmann (2008b). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; **Significant at the 1% level (0.001 < p ≤ 0.01) and  
***Significant at the 0.1% level (p ≤ 0.001). 
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3.3.1.2 Free amino acids 

Of seventeen amino acids identified (table 3.2), the predominant ones were alanine, 

glycine, proline, valine and leucine. This amino acid profile is similar to that reported by 

Shen et al. (2010) and Das et al. (2014). The results also showed very low concentrations of 

amino acids were found in PRW2 (p < 0.05). Contrary to expectations, this study did not 

find a significant difference in most amino acids between RW1 and RW2 which were 

produced from the polished rice (proteins are almost removed), compared to PRW1 which 

was produced from pigmented rice (unpolished rice). According to the results, the amino 

acids in the commercial rice wines are varied due to the manufacturing process rather than 

the type of rice (polished rice or pigmented rice). This results are in disagreement with Xie 

et al. (2016) who showed that amino acids in Chinese rice wines are derived from the 

degradation of proteins in rice, and they have a positive correlation with the total proteins 

in rice grain, r = 0.92. 

Hufnagel and Hofmann (2008b) showed that amino acids contribute to the taste of 

wine, which vary from sweet (ala, gly, thr, ser and pro), umami (glu, asn and asp) and bitter 

(val, leu, ile, phe, lys, tyr and his). This is in agreement with Zhao et al. (2016) who showed 

that amino acids contribute sweet (met, ala, gly, pro and ser), umami (glu, tyr and asp), and 

bitter (his, lys, val, try, tyr, phe, ile and leu) in foods. However, their concentrations in these 

commercial rice wines were lower than the reported thresholds.  
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Table 3-2: Amino acids identified in commercial rice wines and their threshold values. 

compounds taste 
†threshold 

(μM) 
concentration (μM) 

§Sig 
RW1 RW2 PRW1 PRW2 

alanine sweet 12,000 1030 ± 43c 1092 ± 16d 940 ± 15b 39 ± 4a *** 

glycine sweet 25,000 1020 ± 51b 1211 ± 21c 973 ± 27b 27 ± 1a *** 

threonine sweet 35,000 236 ± 14b 484 ± 3d 277 ± 12c 13 ± 6a *** 

serine sweet 25,000 504 ± 40a 972 ± 11c 719 ± 27b nd *** 

cysteine sweet - 55.2 ± 1b 94 ± 6c 25 ± 10a nd *** 

proline sweet 25,000 749 ± 32c 796 ± 18d 655 ± 12b 18 ± 2a *** 

glutamic acid umami 1,200 531 ± 79b 853 ± 45c 536 ± 22b 10 ± 1a *** 

asparagine umami 50,000 448 ± 40c 725 ± 4d 268 ± 8b 20 ± 4a *** 

aspartic acid umami 20,000 361 ± 23b 685 ± 10d 618 ± 23c 153 ± 9a *** 

valine bitter 20,000 479 ± 29b 786 ± 5d 641 ± 33c 20 ± 1a *** 

leucine bitter 11,000 709 ± 47b 923 ± 19c 692 ± 26b 22 ± 9a *** 

isoleucine bitter 10,000 232 ± 13b 384 ± 3d 320 ± 14c 10 ± 1a *** 

phenylalanine bitter 45,000 207 ± 15b 385 ± 4d 286 ± 10c 14± 1a *** 

lysine bitter 80,000 339 ± 31b 880 ± 30c 317 ± 25b 29 ± 2a *** 
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Table 3-2: Amino acids identified in commercial rice wines and their threshold values (continued). 

compounds taste 
†threshold 

(μM) 

concentration (μM) 
§Sig 

RW1 RW2 PRW1 PRW2 

tyrosine bitter 4,000 337 ± 26b 487 ± 8c 353 ± 16b 18 ± 1a *** 

histidine bitter 45,000 158 ± 9b 311 ± 15c 39 ± 2a nd *** 

ornithine - - 109 ± 8a 335 ± 18c 264 ± 18b nd *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. 

nd = not detected. 
†Taste threshold in bottled water was obtained from Hufnagel and Hofmann (2008b). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ***Significant at the 0.1% level (p ≤ 0.001). 
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3.3.1.3 Free phenolic acids 

According to table 3.3, gallic acid, protocatechuic acid, 4-hydroxybenzoic acid and 

syringic acid were found in all commercial rice wines, however vanillic acid, 4-coumaric acid 

and ferulic acid were only detected in PRW1. This results is in agreement with Que et al. 

(2006) who showed that gallic acid, catechin, vanillic acid, caffeic acid, syringic acid, 

epicatechin, 4-coumaric acid, ferulic acid, rutin and quercetin were found in rice wines, 

however the concentration of vanillic acid and ferulic acid in PRW1 was higher than those 

samples. The results also showed that PRW2 had only gallic acid and 4-hydroxybenzoic acid, 

and their concentrations were much lower than the others. 

Most of the free phenolic acids were significantly higher in pigmented rice wine, 

PRW1 (p<0.05). This finding was also reported by Wang et al. (2014) who showed that the 

phenolic compounds in black rice wine were higher than in polished rice wine, because the 

precursors of phenolic acids were mainly found in the outer layer of rice grains, and is lost 

by polishing from whole rice to 90% polished rice (Zhou et al., 2004). 

The formation of phenolic acids was reported by Lambert et al. (2014) who showed 

that ferulic acid, vanillic acid and protocatechuic acid were generated from lignin in plants 

by microbial enzymes. Thus, they might be released from rice grain during fermentation. 

Moreover, Hufnagel and Hofmann (2008b) showed that phenolic acids contributed bitter 

and astringent in wine. However, their concentration in commercial rice wines was lower 

than the reported thresholds. 
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Table 3-3: Phenolic acids and anthocyanins identified in commercial rice wines and their reported thresholds. 

compounds 
†threshold 

(mg/l) 
concentration (mg/l) §Sig 

RW1 RW2 PRW1 PRW2 

gallic acid 49 10.8 ± 0.1b 18.1 ± 0.1d 17.2 ± 0.5c 5.1 ± 0.2a *** 

protocatechuic acid 31 2.6 ± 0.1a 3.2 ± 0.1b 19.2 ± 0.4c nd *** 

4-hydroxybenzoic acid 92 13.5 ± 0.1b 15.1 ± 0.1c 16.4 ± 0.1d 3.3 ± 0.1a *** 

vanillic acid 53 nd nd 3.3 ± 0.1 nd - 

syringic acid 52 1.1 ± 0.0a nd 1.8 ± 0.1b nd ** 

4-coumaric acid 23 nd nd 0.5 ± 0.0 nd - 

ferulic acid 13 nd nd 3.3 ± 0.4 nd - 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. 

nd = not detected. 
†Taste threshold in bottled water was obtained from Hufnagel and Hofmann (2008b). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; **Significant at the 1% level (0.001 < p ≤ 0.01) and  
***Significant at the 0.1% level (p ≤ 0.001). 
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3.3.1.4 DKPs 

Several DKPs were detected in commercial rice wines (table 3.4). However, the 

concentration of cyclo(val-pro), cyclo(ala-val), cyclo(ile-pro), cyclo(leu-pro), and cyclo(gly-

leu) were significantly higher in pigmented rice wines, PRW1 (p < 0.05). The results also 

showed that DKPs in commercial rice wine were proline-based. This result is in agreement 

with Borthwick and Da Costa (2017) who showed that proline-based DKPs are found 

widespread in foods and beverages. Moreover, Gautschi et al. (1997) also showed that 

proline-based DKPs which were cyclo(ala-pro), cyclo(val-pro), cyclo(ile-pro), cyclo(leu-

pro), cyclo(met-pro), cyclo(phe-pro), and cyclo(pro-pro) were found in beer. 

The highest concentration of DKPs in PRW1 was not related with the concentration 

of the corresponding amino acids (table 3.2). Therefore, the amino acids might not be their 

precursors. Moreover, DKPs in commercial rice wines, except in PRW2 were likely formed 

under the acidic condition. This is in agreement with Borthwick and Da Costa (2017) who 

showed that DKPs are more formed by the intramolecular cyclization of acyclic peptides 

with the presence of heating under acidic condition. However, Mishra et al. (2017) showed 

that 90% of DKPs in fermented foods was formed by microorganism. 

It has been shown that DKPs contribute the astringent, salty, grainy and metallic in 

food products (Borthwick and Da Costa, 2017). Moreover, the concentration of cyclo(ile-

pro) and cyclo(leu-pro) in RW1, RW2 and especially PRW1 were above their thresholds. 
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Table 3-4: Diketopiperazines (DKPs) identified in commercial rice wines and their reported thresholds. 

compounds 
†TC  

(bitter) 

†TC 
(metallic) 

concentration (mg/l) §Sig 
RW1 RW2 PRW1 PRW2 

cyclo(val-pro) 251 63 4.9 ± 0.1c 3.9 ± 0.5b 9.2 ± 0.3d 0.04 ± 0.0a *** 

cyclo(ala-val) 250 69 0.37 ± 0.0b 0.03 ± 0.0a 0.87 ± 0.1c nd *** 

cyclo(ile-pro) 101 25 42.7 ± 1.1c 36.2 ± 5.1b 60.3 ± 1.3d 1.1 ± 0.1a *** 

cyclo(leu-pro) 250 25 43.5 ± 1.3c 36.6 ± 5.2b 70.4 ± 1.5d 0.48 ± 0.0a *** 

cyclo(pro-pro) 501 147 10.5 ± 1.6a 10.8 ± 1.1a 12.8 ± 1.7a nd *** 

cyclo(gly-leu) 100 90 0.81 ± 0.0b 0.57 ± 0.1a 1.4 ± 0.1c nd *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. 

nd = not detected. 
†Taste threshold in bottled water (mg/l) was obtained from Stark and Hofmann (2005). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ***Significant at the 0.1% level (p ≤ 0.001). 
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3.3.1.5 γ-glutamyl peptides 

This investigation showed the presence of γ-glutamyl peptides in pigmented rice 

wine (PRW1) for the first time (table 3.5). The γ-glu-gly and γ-glu-his were the most 

abundant compound in RW1, RW2 and PRW1. Moreover, the concentrations of γ-glu-val, γ-

glu-leu, γ-glu-glu, γ-glu-phe and γ-glu-tyr were higher in PRW1, compared to polished rice 

wine (RW1 and RW2). The formation of the most γ-glutamyl peptides is likely corresponded 

parent amino acids in the pigmented rice. However, the concentrations of γ-glu-gly and γ-

glu-his in polished rice wines were higher than pigmented rice wines. This can be explained 

by the fact that the polished rice wines contained the more of corresponding amino acids 

(glu, gly and his), compared to PRW1 and PRW2. 

Toelstede et al. (2009) showed that γ-glutamyl peptides are formed from γ-glutamyl 

donor amino acid L-glutamine, which further react with another amino acids to form the 

corresponding γ-glutamyl peptides, using γ-glutamyl transferase (GGT) from Aspergillus, 

Bacillus and Lactobacillus (Hillmann et al., 2016). 

Miyamura et al. (2015), Zhao et al. (2016) and Shibata et al. (2017) also showed that 

γ-glutamyl peptides contribute kokumi taste which is responsible for long-lasting mouth 

fullness. However, their concentrations in the commercial rice wines were lower than the 

reported thresholds. Although no single compound was above threshold for the kokumi 

taste in commercial rice wines, the effect of the overall concentration of these compounds 

on the kokumi taste should be further studied. 
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Table 3-5: γ-glutamyl peptides identified in commercial rice wines and their reported thresholds. 

compounds 
†threshold 

(mg/l) 
concentration (mg/l) §Sig 

RW1 RW2 PRW1 PRW2 

γ-glu-gly 3.6 0.29 ± 0.01b 0.68 ± 0.01c 0.08 ± 0.02a nd *** 

γ-glu-val 0.7 nd nd 0.05 ± 0.0 nd - 

γ-glu-leu 1.3 0.02 ± 0.0a 0.02 ± 0.0a 0.06 ± 0.0b nd *** 

γ-glu-glu 4.9 nd nd 0.04 ± 0.0 nd - 

γ-glu-his 2.8 0.38 ± 0.6b 0.66 ± 0.1c 0.09 ± 0.0a nd *** 

γ-glu-phe 0.8 0.02 ± 0.0a 0.02 ± 0.0a 0.05 ± 0.0b nd *** 

γ-glu-tyr 1.5 nd nd 0.07 ± 0.0 nd - 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
†Taste threshold of γ-glutamyl peptides was obtained from Zhao et al. (2016), except γ-glu-phe and γ-glu-tyr were obtained from Shibata et 
al. (2017) 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ***Significant at the 0.1% level (p ≤ 0.001). 
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3.3.2 The analysis of aroma in the commercial rice wines 

3.3.2.1 Volatile compounds 

The commercial rice wine samples were analysed for volatile compounds which 

contribute to aroma. As results from the analysis of taste compounds, PRW2 did not look 

like a genuine rice wine due to the highest concentrations of fructose, glucose and acetic 

acid were found in that sample (table 3.1). 

The results of the volatile analysis are shown in table 3.6. They have been classified 

into eight groups, including esters, alcohols, aldehydes, volatile acids, volatile phenols and 

lactones. Among them, esters and alcohols were the most abundant volatiles in the 

commercial rice wine samples. These results are in agreement with the work published by 

Chen and Xu (2013), Jung et al. (2014) and Son et al. (2018) who showed that the volatile 

compounds in rice wines which had been brewed from polished rice are predominantly 

esters and alcohols. For esters, ethyl acetate, ethyl hexanoate and 2-methylbutyl acetate 

were the most abundant esters in the commercial rice wines. Notably, (E)-2-decenyl 

acetate in PRW1, and ethyl 2-furancarboxylate and ethyl 2-hydroxy 4-methylpentanoate in 

PRW2 were also found. These compounds have not been reported before in rice wine by 

Chen et al. (2013b) and Son et al. (2018). The results also showed that PRW1 and PRW2 

contained the lipid derived esters at a high concentration. These lipid derived esters are 

likely to be formed from the corresponding fatty acids, which are liberated from the bran of 

unpolished rice. Sandhu et al. (2018) also showed that the bran of rice is the source of 

proteins, lipids and minerals, and they were reduced by the polishing process. Moreover, 

Lee et al. (2018) showed that a high concentration of fatty acids and the corresponding 

volatile compounds in fermented rice are formed by the degradation of lipid in its bran. The 
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acetate esters were found in PRW2 at a higher concentration possibly due to a higher 

concentration of acetic acid was found in that sample. 

The higher alcohols, including propanol, 2-methylpropanol, 3-methylbutanol and 2-

methylbutanol were found in RW2 at a high concentration, and their formations may be 

related to the high concentration of the corresponding amino acids which are val, leu and 

ile in that sample. This is in agreement with Jung et al. (2014) and Zhang et al. (2015) who 

showed that 2-methylpropanol, 3-methylbutanol and 2-phenylethyl alcohol were found in 

rice wine samples. These amino acids-derived alcohols are formed from the corresponding 

amino acids via the Ehrlich pathway (Chen et al., 2013b). Moreover, the lipid-derived 

alcohols which are hexanol, octanol and 2-decenol were mostly found in PRW1. These 

compounds are likely to be formed from the corresponding fatty acids, which are derived 

from the degradation of lipid in the bran of unpolished rice. This is in agreement with 

Wanyo et al. (2016) who showed that rice bran contains more fatty acids especially linoleic 

acid. 

Strecker aldehydes which are 3-methylbutanal and 2-phenylethanal were detected 

in commercial rice wines, and their concentration was higer in pigmented rice wine. These 

Strecker aldehydes are formed from the corresponding amino acids which are leu and phe 

in commercial rice wines via the Ehrlich pathway. Moreover, the highest concentration of 2-

furfural was found in PRW2. This compound is formed from the degradation of hexose 

sugars (fructose or glucose) in the presence of heating (pasteurisation) and acid condition 

(Pereira et al., 2011). This is consistent with the highest concentrations of fructose, glucose 

and acetic acid in PRW2 (table 3.1).  
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Phenolic acids-derived aroma compounds were detected in pigmented rice wines 

(table 3.6). Guaiacol was found in PRW1, whereas 4-ethylphenol and 4-ethylguaiacol were 

found in PRW2. Moreover, Belda et al. (2017) showed that guaiacol, 4-ethylphenol and 4-

ethylguaiacol are likely to be formed from vanillic acid, 4-coumaric acid and ferulic acid, and 

their formation pathway was shown in table 2.13. These corresponding phenolic acids are 

derived from the degradation of lignin, which are found in rice bran at a high concentration 

(Zhou et al., 2004). 
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Table 3-6: Selected aroma compounds detected in commercial rice wines using SPME. 

volatile compounds 
†LRI ‡ID approximate concentration (µg/l) §Sig 

ZB-5MSi WAX-DA RW1 RW2 PRW1 PRW2 

ethyl esters         

ethyl acetate 615 900 A 23.7 ± 0.7a 22.7 ± 2.4a 46 ± 1.8a 479 ± 46b *** 

ethyl propanoate 714 - B 0.01 ± 0.0a nd 0.02 ± 0.0b nd *** 

ethyl 2-methylpropanoate 762 973 A 0.13 ± 0.0a nd 0.18 ± 0.1a 1 ± 0.3b *** 

ethyl butanoate 802 1046 A 1.2 ± 0.1c 0.59 ± 0.1b 0.36 ± 0.0a 0.63 ± 0.1b *** 

ethyl 2-methylbutanoate 852 1062 A nd nd 0.29 ± 0.0a 0.56 ± 0.1b *** 

ethyl 3-methylbutanoate 855 1078 A nd nd 0.01 ± 0.0a 0.6 ± 0.1b *** 

ethyl hexanoate 1001 1237 A 65 ± 2.0d 1.6 ± 0.1b 11.5 ± 0.7c 0.91 ± 0.1a *** 

ethyl 2-furancarboxylate 1057 1636 A nd nd nd 0.1 ± 0.0 - 

ethyl 2-hydroxy 4-methylpentanoate 1061 1553 A nd nd nd 0.27 ± 0.0 - 

ethyl heptanoate 1097 1341 A nd nd 0.11 ± 0.0b 0.05 ± 0.0a *** 

ethyl benzoate 1180 1684 A 0.03 ± 0.0a nd 0.08 ± 0.0b 1 ± 0.0c *** 

ethyl octanoate 1196 1444 A 1.3 ± 0.0b 0.04 ± 0.0a 15.6 ± 0.3d 2.1 ± 0.1c *** 

ethyl phenylacetate 1252 1798 A 0.06 ± 0.0a nd 0.16 ± 0.0b 2.3 ± 0.1c *** 

ethyl decanoate 1395 1646 A nd nd 0.34 ± 0.0a 0.68 ± 0.0b *** 

acetate esters         

2-methylpropyl acetate 776 1023 A 0.29 ± 0.0a 0.27 ± 0.0a nd 6.4 ± 1.3b *** 

2-methylbutyl acetate 878 1129 A 0.33 ± 0.0a 0.72 ± 0.1b 0.2 ± 0.0a 1.2 ± 0.3c *** 

3-methylbutyl acetate 880 - B 8.2 ± 0.4d 4.1 ± 0.4b 0.52 ± 0.0a 5.4 ± 1.1c *** 
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Table 3-6: Selected aroma compounds detected in commercial rice wines using SPME (continued). 

volatile compounds 
†LRI ‡ID approximate concentration (µg/l) §Sig 

ZB-5MSi WAX-DA RW1 RW2 PRW1 PRW2 

2-phenethyl acetate 1265 1831 A 0.03 ± 0.0b 0.02 ± 0.0a 0.53 ± 0.0d 0.17 ± 0.0c *** 

(2E)-2-decenyl acetate 1408 1746 A nd nd 7.1 ± 0.9 nd - 

other esters         

butyl butanoate 996 1226 A nd nd nd 0.2 ± 0.0 - 

3-methylbutyl hexanoate 1251 - B 0.03 ± 0.0 nd nd nd - 

alcohols         

propanol 595 1051 A 6.8 ± 0.5a 12.4 ± 1.1b 12.4 ± 3.4b nd *** 

2-methylpropanol 627 1110 A 9.6 ± 3.1ab 18.4 ± 0.7b 5.4 ± 0.7a 43 ± 9.0c *** 

3-methylbutanol 737 1218 A 8.6 ± 0.5 8.24 ± 1.3 6.5 ± 0.0 6.8 ± 1.7 ns 

butanol 664 1157 A nd nd nd 8.8 ± 1.6 - 

2-methylbutanol 740 1215 A 3 ± 0.2b 3.7 ± 0.3c 2.7 ± 0.0b 1.4 ± 0.3a *** 

2-furfuryl alcohol 867 1670 A nd nd nd 0.16 ± 0.0 - 

hexanol 870 1362 A nd nd 0.1 ± 0 nd - 

phenylmethyl alcohol 1043 1890 A nd nd nd 0.86 ± 0.0 - 

octanol 1071 1566 A nd nd 0.62 ± 0.2 nd - 

phenylethyl alcohol 1124 1925 A 12 ± 0.3c 10.6 ± 0.2b 14.8 ± 0.9d 3.3 ± 0.1a *** 

(E)-2-decenol 1271 1824 A nd nd 0.62 ± 0.1 nd - 

aldehydes         

3-methylbutanal 654 928 A 0.36 ± 0.0c 0.04 ± 0.0a 0.06 ± 0.0b nd *** 
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Table 3-6: Selected aroma compounds detected in commercial rice wines using SPME (continued). 

volatile compounds 
†LRI ‡ID approximate concentration (µg/l) §Sig 

ZB-5MSi WAX-DA RW1 RW2 PRW1 PRW2 

2-furfural 837 1483 A 0.58 ± 0.0a 0.84 ± 0.0c 0.67 ± 0.0b 9.2 ± 0.1d *** 

2-phenylethanal 1054 1664 A 1.1 ± 0.1c 0.56 ± 0.03b 1.2 ± 0.03d 0.2 ± 0.0a *** 

volatile phenols         
¦guaiacol 1098 1875 A nd nd 0.07 ± 0.02 nd - 

4-ethylphenol 1168 2213 A nd nd nd 0.22 ± 0.0 - 

4-ethylguaiacol 1291 2043 A nd nd nd 0.1 ± 0.0 - 

others         

acetic acid 661 1469 A nd nd 5.2 ± 0.8a 63 ± 13.3b *** 

2,3-butanediol 789 - B 3.1 ± 0.8b 2.5 ± 0.6ab 0.8 ± 0.0a 3.1 ± 0.8b ** 

2,3-dimethylpyrazine 925 1366 A nd nd nd 0.09 ± 0.0 - 

2-acetylpyrazine 1031 1649 A nd nd nd 0.75 ± 0.0 - 
Values with the same letter superscripts within each row are not significantly different (p = 0.05).  

Data are present as mean ± standard error, n=3. nd = not detected. 
†Linear retention index calculated from a linear equation between each pair of straight chain alkanes (C5–C30). 
‡ID, mass spectrum and LRI agree with those of authentic compound; A agreement on both column and B agreement on just one column. 
¦Compound was quantified in mg/l, using the corresponding standard calibration curve. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05), **Significant at the 1% level (0.001 < p ≤ 0.01) and ***Significant at the 0.1% level (p ≤ 0.001).  
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3.3.2.2 Semi-volatile compounds 

The semi-volatile compounds in the commercial rice wines were extracted using 

SPE. Notably, PRW2 was excluded from this experiment due to the colour which was eluted 

from the SPE cartridge during the extraction. The anthocyanins were not found in this 

sample, so that colour might be derived from an alternative source. Additional aroma 

compounds in rice wine samples were detected, using SPE. It can be seen that the volatile 

esters were reduced, whereas organic acids were increased. This is in agreement with 

Pietrogrande and Basaglia (2007) and Mendes et al. (2012) who showed that the SPE is 

widely used for the extraction of volatile and semi-volatile compounds in wine. It is suitable 

for the extraction of semi-volatiles, non-volatiles, non-polar, polar, and ionised compounds, 

and less suitable for non-polar volatile compounds. 

According to the table 3.7, the lactic acid-derived esters were mostly found in PRW1. 

The formation of these compounds was likely to be related to a high concentration of lactic 

acid in that sample (table 3.1). Moreover, PRW1 showed a higher concentration of medium 

chain lipid-derived esters which were ethyl 2-hydroxybutanoate, ethyl 3-hydroxybutanoate 

and ethyl 2-hydroxyhexanoate, compared to others. They are likely to be formed from the 

corresponding fatty acids, which are derived from the degradation of lipid in the rice bran 

(Wanyo et al., 2016). 

Organic acids were found to be the most abundant semi-volatiles in commercial rice 

wine samples. They were classified to amino acids-derived acids (2-methylpropanoic acid, 

2-methylbutanoic acid and 3-methylbutanoic acid) which were likely to be formed from 

valine, isoleucine and leucine (table 3.2), and fatty acids which were hexanoic acid, octanoic 

acid, 2-octenoic acid and decanoic acid. 
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4-vinylguaiacol was found in PRW1 only. This compound is likely to be formed from 

ferulic acid, which is derived from the degradation of lignin (Belda et al., 2017). This is in 

agreement with Mo and Xu (2010) who showed that 4-vinylguaiacol is the most abundant 

volatile phenol compound in alcoholic beverages, which is also formed from the thermal 

decarboxylation of ferulic acid during rice cooking or sterilisation. However, Sunao et al. 

(2016) showed that 4-vinylguaiacol in rice wine is formed by spoilage bacteria (Bacillus spp. 

or Staphylococcus spp.) through the enzymatic decarboxylation of ferulic acid during the 

brewing process. 
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Table 3-7: Additional aroma compounds detected in commercial rice wines using SPE. 

volatile compounds 
†LRI ‡ID approximate concentration (mg/l) §Sig 

WAX-DA ZB-5MSi RW1 RW2 PRW1 

Esters        

ethyl lactate 1350 817 A 26 ± 3.8a 30 ± 4.0a 153 ± 37b *** 

ethyl 2-hydroxybutanoate 1409 910 A nd nd 0.05 ± 0.0 - 

2-methylpropyl lactate 1461 968 A nd nd 0.64 ± 0.1 - 

ethyl 3-hydroxybutanoate 1524 935 A 0.79 ± 0.2a 0.6 ± 0.0a 4.7 ± 0.5b *** 

ethyl 2-hydroxyhexanoate 1545 1059 A nd nd 0.11 ± 0.0 - 

3-methylbutyl lactate 1573 1072 A nd nd 4.9 ± 0.5 - 

ethyl succinate 1680 1182 A 0.3 ± 0.1a 0.34 ± 0.0a 2.7 ± 0.3b *** 

ethyl malate 2042 1270 A 0.17 ± 0.1a 0.1 ± 0.0a 0.27 ± 0.0b * 

3-methylbutyl dodecanoate 2066 - B 0.18 ± 0.1 0.12 ± 0.0 0.06 ± 0.0 ns 

Alcohols        

3-ethoxypropanol 1377 843 A 0.23 ± 0.0a 0.38 ± 0.0ab 0.48 ± 0.1b ** 

homovanillyl alcohol 2842 1537 A nd nd 0.07 ± 0.0 - 

4-hydroxybenzeneethanol 3009 1428 A 23.7 ± 5.9 21.3 ± 4.1 26.7 ± 6.4 ns 

Aldehydes        

benzaldehyde 1548 961 A 0.18 ± 0.0 0.04 ± 0.0 0.07 ± 0.0 ns 

5-hydroxymethylfurfural 2497 - B nd 0.1 ± 0.0 0.09 ± 0.0 ns 

vanillin 2562 1402 A 0.14 ± 0.0a 0.07 ± 0.0a 0.44 ± 0.1b ** 

4-hydroxybenzaldehyde 2958 - B 0.24 ± 0.1a 0.05 ± 0.0a 0.63 ± 0.0b *** 
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Table 3-7: Additional aroma compounds detected in commercial rice wines using SPE (continued). 

volatile compounds 
†LRI ‡ID approximate concentration (mg/l) §Sig 

WAX-DA ZB-5MSi RW1 RW2 PRW1 

organic acids        

2-methylpropanoic acid 1570 - B 0.34 ± 0.1 0.3 ± 0.0 0.37 ± 0.0 ns 

butanoic acid 1630 775 A 0.56 ± 0.1a 0.49 ± 0.0a 1.8 ± 0.2b *** 

3-methylbutanoic acid 1671 839 A 0.13 ± 0.0 0.1 ± 0.0 0.19 ± 0.0 ns 

2-methylbutanoic acid - 847 B 0.02 ± 0.0 0.02 ± 0.0 0.03 ± 0.0 ns 

hexanoic acid 1846 1000 A 8.2 ± 2.8b 0.74 ± 0.0a 3.7 ± 0.4ab ** 

octanoic acid 2058 - B 0.33 ± 0.1b 0.06 ± 0.0b 2.5 ± 0.0a *** 

2-octenoic acid 2183 - B nd nd 0.13 ± 0.0 - 

decanoic acid 2269 - B 0.2 ± 0.1ab 0.47 ± 0.2b 0.07 ± 0.0a ** 

homovanillic acid 2340 1468 A nd nd 0.46 ± 0.1 - 

dodecanoic acid 2479 - B 0.42 ± 0.2 0.29 ± 0.1 0.14 ± 0.1 ns 

benzeneacetic acid 2556 1250 A 0.37 ± 0.1 0.34 ± 0.1 0.28 ± 0.1 ns 

hexadecanoic acid 2903 - B 0.35 ± 0.1a 0.36 ± 0.0a 0.62 ± 0.1b * 

octadecanoic acid 3116 - B nd 0.77 ± 0.3b 0.27 ± 0.1a ** 

4-hydroxybenzenacetic acid 3697 - B 0.13 ± 0.0a 0.16 ± 0.0a 0.36 ± 0.1b ** 

volatile phenols        

phenol 2008 - B 0.01 ± 0.0a 0.01 ± 0.0a 0.04 ± 0.0b *** 

4-vinylguaiacol 2197 1316 A nd nd 0.9 ± 0.5 - 
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Table 3-7: Additional aroma compounds detected in commercial rice wines using SPE (continued). 

volatile compounds 
†LRI ‡ID approximate concentration (mg/l) §Sig 

WAX-DA ZB-5MSi RW1 RW2 PRW1 

Others        

dimethyl sulfoxide 1595 - B 0.22 ± 0.0 0.18 ± 0.1 0.17 ± 0.1 ns 

γ-butyrolactone 1653 916 A 0.2 ± 0.1 0.32 ± 0.1 0.16 ± 0.0 ns 

γ-nonalactone 2034 1365 A nd nd 0.24 ± 0.0 - 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
†Linear retention index calculated from a linear equation between each pair of straight chain alkanes (C7–C40). 
‡ID, mass spectrum and LRI agree with those of authentic compound; A agreement on both column and B agreement on just one column. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05), *Significant at the 5% level (0.01 < p ≤ 0.05), **Significant at the 1% level (0.001 < p ≤ 0.01) and ***Significant at the 0.1% level (p ≤ 
0.001).  
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3.3.2.3 GC-Olfactometry 

It is important to identify which of the volatile aroma compounds are likely to be 

aroma active. According to table 3.8 and 3.10, twenty six aromas were presented in RW1, 

RW2 and PRW1. Moreover, the confirmation of their corresponding aroma compounds 

detected by GC-MS was showed in table 3.9 and 3.11. Ethyl propanoate, ethyl 2-

methylpropanoate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, 2-

methylbutyl acetate, 3-methylbutyl acetate, ethyl 3-hydroxybutanoate, ethyl hexanoate, 

ethyl octanoate and 3-methylbutyl lactate, were found to be the most important aroma 

compounds which impart fruity and sweet notes. Theses esters are in agreement with Chen 

et al. (2013b), except 2-methylbutyl acetate, ethyl 3-hydroxybutanoate and 3-methylbutyl 

lactate. The polished rice wine (RW1 and RW2) showed higher cheesy note, whereas PWR1 

showed a higher fruity, floral, green and earthy note which were derived from esters, 

aldehydes and pyrazines. 

Notably, PRW1 showed smoky-spicy note which were derived from guaiacol and 4-

vinylguaiacol. These aroma compounds are likely to be formed from the degradation of 

vanillic acid and ferulic acid, which are liberated from the degradation of lignin in plants 

(Priefert et al., 2001, Sunao et al., 2016). The study of aroma in pigmented rice wine is not 

widely published. However, Chen et al. (2013b) showed that volatile phenols, including 

guaiacol, 4-ethylguaiacol, 4-methylphenol, 4-ethylphenol and 4-vinylguaiacol impart to 

smoky notes in Chinese rice wine which was brewed with polished rice and wheat Qu. They 

also showed that these volatile phenols are derived from the wheat Qu, and their 

concentrations were lower in those rice wines without wheat Qu. This is in agreement with 

Park et al. (2013) who showed that the smoky note is not found in the Korean rice wines, 

which was brewed using polished rice. 
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The analysis of GC-O also showed that the aroma intensity in rice wines reported 

from each assessor was quite variable (table 3.8 and 3.10). This is in agreement with 

Schranz et al. (2017) who showed that olfactory perception can be influenced by the aroma 

receptors of assessors. The variation of aroma receptors in humans is caused by the single 

nucleotide polymorphisms (SNPs). Human subjects with SNPs in the DNA sequence of 

aroma receptors might have highly sensitive aroma perception (Schranz et al., 2017). 

Although the concentration of each aroma in commercial rice wine samples was variable, 

the corresponding aroma attribute detected by assessors did not vary. Moreover, the nasal 

mucosa contains metabolic enzymes and aroma-binding proteins and these will vary 

between individuals. They can convert or decompose the aroma compounds to their 

derivatives before docking to the receptor proteins of the cilia (Nagashima and Touhara, 

2010) thus reducing the concentration perceived and the intensity scores. 
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Table 3-8: Aroma description and intensity of the volatile compounds in commercial rice wines detected by GC–O. 

aromas responsible compound 

aroma intensity from individual assessor ‡aroma intensity 
(mean) RW1 RW2 PRW1 

§A1 A2 A1 A2 A1 A2 
RW1 RW2 PRW1 †R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

strecker/cocoa 3-methylbutanal 7 7 nd nd 5 4 3 3 3 3 nd nd 4 4 2 

pineapple ethyl propanoate 5 4 3 3 nd nd nd nd nd nd nd nd 4 nd nd 

strecker 3-methylbutanol 3 3 5 3 8 6 5 nd 7 5 5 3 4 5 5 

fruity ethyl 2-methylpropanoate 5 3 5 5 6 4 3 3 6 7 nd nd 4 4 3 

fruity ethyl butanoate 7 7 7 7 nd nd 5 7 4 5 5 3 7 3 4 

sweet ethyl lactate 5 5 nd nd nd nd nd nd 5 6 nd nd 3 nd 3 

fruity ethyl 2-methylbutanoate nd nd nd nd nd nd nd nd 4 4 nd nd nd nd 2 

strawberry ethyl 3-methylbutanoate nd nd nd nd nd nd nd nd 5 6 5 5 nd nd 5 

meaty *2-methyl 3-furanthiol nd nd nd nd nd nd nd nd nd 3 5 3 nd nd 3 

fruity 3-methylbutyl acetate 3 4 5 nd 3 nd 3 nd nd nd nd nd 3 2 nd 

fruity 2-methylbutyl acetate 7 8 5 5 4 4 3 3 nd nd nd nd 6 4 nd 

fruity ethyl 3-hydroxybutanoate nd nd nd nd nd nd nd nd nd nd 3 3 nd nd 2 

pineapple ethyl hexanoate 8 7 7 7 6 6 5 5 6 7 5 5 7 6 6 

fruity ethyl octanoate nd nd 3 3 nd nd nd nd nd nd 3 3 2 nd 2 

floral 2-phenylethanal 4 4 nd nd nd nd nd nd 5 7 5 5 2 nd 6 

floor cleaning octanol nd nd nd nd 5 4 nd nd 4 4 3 3 nd 2 4 

earthy *2-isopropyl-3-methoxypyrazine 4 4 nd nd 5 4 nd nd 6 6 3 3 2 2 5 
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Table 3-8: Aroma description and intensity of the volatile compounds in commercial rice wines detected by GC–O (continued). 

aromas responsible compound 

aroma intensity from individual assessor ‡aroma intensity 
(mean) RW1 RW2 PRW1 

§A1 A2 A1 A2 A1 A2 
RW1 RW2 PRW1 †R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

smoky-spicy guaiacol nd nd nd nd nd nd nd nd 6 6 7 7 nd nd 7 

rose phenylethyl alcohol 5 4 3 3 nd nd 7 7 4 3 7 7 4 4 7 

green *2-isobutyl-3-methoxypyrazine nd nd nd nd nd nd nd nd nd nd 3 3 nd nd 2 
‡The value for intensity is the mean of intensities observed from two assessors and two replicate analyses for each sample. 

*Compounds with no peak in the GC-MS. These were based on finding the correct aroma at the correct LRI on one or two columns. 
§A1 and A2 were the aroma intensity from rice wines detected by assessor 1 and assessor 2, respectively. 
†R1 and R2 were a replication of the analysis of aroma intensity by GC-O from each assessor. 

nd = not detected. 
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Table 3-9: Confirmation of aromas from volatile compounds in rice wines detected by GC-O with the corresponding aroma compounds 

from GC-MS. 

aromas responsible compound 
†ZB-5MSi †WAX-DA 

GC-O GC-MS AC GC-O GC-MS AC 

strecker/cocoa 3-methylbutanal 657 654 657 908 - 928 

pineapple ethyl propanoate 722 714 712 957 - 961 

strecker 3-methylbutanol 734 737 732 1215 1218 1207 

fruity ethyl 2-methylpropanoate 765 762 752 966 973 976 

fruity ethyl butanoate 811 802 801 1040 1046 1050 

sweet ethyl lactate 816 817 812 - - - 

fruity ethyl 2-methylbutanoate 856 852 850 1051 1062 1062 

strawberry ethyl 3-methylbutanoate 859 855 851 1069 1078 1082 

meaty *2-methyl 3-furanthiol 880 - 877 1322 - 1307 

fruity 3-methylbutyl acetate 879 878 876 - - - 

fruity 2-methylbutyl acetate 886 880 881 1120 1129 1130 

fruity ethyl 3-hydroxybutanoate 941 935 935 1535 1530 1540 

pineapple ethyl hexanoate 1005 1001 998 1237 1240 1237 

fruity ethyl octanoate 1200 1196 1194 1450 1444 1438 

floral 2-phenylethanal 1056 1054 1058 1656 1664 1678 

floor cleaning octanol 1071 1071 1073 - - - 

earthy *2-isopropyl-3-methoxypyrazine 1085 - 1095 - - - 

smoky-spicy guaiacol 1097 1098 1092 1872 1875 1862 
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Table 3-9: Confirmation of aromas from volatile compounds in rice wines detected by GC-O with the corresponding aroma compounds 

from GC-MS (continued). 

aromas responsible compound 
†ZB-5MSi †WAX-DA 

GC-O GC-MS §AC GC-O GC-MS §AC 

rose phenylethyl alcohol 1122 1124 1119 1921 1925 1909 

green *2-isobutyl-3-methoxypyrazine 1185 - 1181 1513 - 1533 
†LRI on both of ZB-5MSi and WAX-DA column, calculated from a linear equation between each pair of straight chain alkanes C5–C25. 

§AC is LRI from authentic compounds. 

*Compounds with no peak in the GC-MS. These were based on finding the correct aroma at the correct LRI on one or two columns. 
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Table 3-10: Additional aroma description and intensity of the semi-volatile compounds in commercial rice wines detected by GC–O. 

aromas responsible compound 

aroma intensity from individual assessor ‡aroma intensity 
(mean) RW1 RW2 PRW1 

§A1 A2 A1 A2 A1 A2 
RW1 RW2 PRW1 †R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

cheese 3-methylbutanoic acid nd nd 3 5 nd nd 3 3 nd nd nd nd 2 2 nd 

cheese 2-methylbutanoic acid 6 7 3 nd nd 7 5 5 5 6 3 3 4 4 4 

sweet 3-methylbutyl lactate nd nd nd nd nd nd nd nd 4 5 5 5 nd nd 5 

smoky/clove 4-vinylguaiacol nd nd nd nd nd nd nd nd nd nd 3 4 nd nd 2 
‡The value for intensity is the mean of intensities observed from two assessors and two replicate analyses for each sample. 

*Compounds with no peak in the GC-MS. These were based on finding the correct aroma at the correct LRI on one or two columns. 
§A1 and A2 were the aroma intensity from rice wines detected by assessor 1 and assessor 2, respectively. 
†R1 and R2 were a replication of the analysis of aroma intensity by GC-O from each assessor. 

nd = not detected. 
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Table 3-11: Confirmation of additional aromas from semi-volatile compounds in rice wines detected by GC-O with the corresponding aroma 

compounds from GC-MS. 

aromas responsible compound 
†ZB-5MSi †WAX-DA 

GC-O GC-MS §AC GC-O GC-MS §AC 

cheese 3-methylbutanoic acid 830 839 839 1674 1671 1687 

cheese 2-methylbutanoic acid 858 847 845 1689 - 1691 

sweet 3-methylbutyl lactate 1072 1072 1084 - - - 

smoky/clove 4-vinylguaiacol 1334 1316 1324 - - - 
†LRI on both of ZB-5MSi and WAX-DA column, calculated from a linear equation between each pair of straight chain alkanes C5–C25. 

§AC is LRI from authentic compounds. 
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3.4 Conclusion 

This study has identified taste and aroma compounds in the commercial rice wines 

which were brewed from the polished rice and pigmented rice. All rice wines showed sweet 

taste and metallic note, which are imparted from glucose and DKPs (cyclo(leu-pro) and 

cyclo(pro-pro)). However, a sour taste from lactic acid and acetic acid was showed as the 

characteristic taste in the pigmented rice wine. PRW2 showed the highest centration of 

glucose, fructose and acetic acid, which is greatly different from the ordinary rice wine. 

Moreover, the unnatural colour from an alternative source was found in this sample. Thus, 

PRW2 might not be a genuine rice wine. 

Several esters and alcohols were found to be the most abundant aroma compound, 

which derives fruity note and floral note in commercial rice wines. However, the pigmented 

rice wine (PRW1) showed a higher fruity, green and earthy note, compared to the polished 

rice wines. In addition, the smoky-spicy notes were found to be the characteristic aroma in 

PRW1. They are derived from guaiacol and 4-vinylguaiacol. According to the reviews in 

chapter 2 section 2.4.5, their possible precursors are vanillic acid and ferulic acid which are 

found in the bran of pigmented rice. Thus, the identification of the characteristic aroma 

compounds and their exact precursors were studied in chapter 5.  
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CHAPTER 4: THE OPTIMIZATION OF PIGMENTED RICE BREWING PROCESS 

 

Abstract 

The brewing of pigmented rice wine was investigated in this chapter. The brewing 

process was carried out using different rice cooking methods (steaming and pressure 

cooking) and brewing temperature (25 °C and 30 °). In order to find the selected brewing 

condition, sugars, ethanol and organic acids were investigated throughout the brewing 

process. Steaming was found to be the better cooking method. The saccharification 

conditions selected for subsequent experiments were 30 °C for 2 days due to a higher 

concentration of total sugars. Moreover, the selected fermentation procedure was 30 °C 

and 9 days due to a higher concentration of ethanol and a lower concentration of acetic 

acid. The challenge of this study is to find the suitable conditions for the parallel 

fermentation of pigmented rice wine in the presence of Aspergillus oryzae for starch 

saccharification, and Saccharomyces cerevisiae for alcoholic fermentation. 

 

Keywords: saccharification, alcoholic fermentation, pigmented rice wine, brewing process 
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4.1 Introduction 

The traditional rice brewing process mainly consists of steaming rice and then 

inoculation with fungi and yeast. While Aspergillus oryzae has been reported as the 

important fungi that produces α-amylase, glucoamylase and protease for the degradation of 

starch (Jiao et al., 2017), Saccharomyces cerevisiae is widely known as the important yeast for 

alcohol production, and has high stress tolerance during fermentation (Boulton and Quain, 

2008). 

Jha et al. (2017) showed that the optimum condition for the brewing of black rice, 

using Aspergillus oryzae was 43 °C for 64 h. This is in agreement with Thippeswamy et al. 

(2006) who showed the optimum temperature for α-amylase production from Aspergillus 

oryzae was found to be 50 °C. Although the increase in temperature resulted in increased 

enzyme activity, the excess temperature can terminate the activity of enzyme. In addition, 

Sundarram and Murthy (2014) showed that the saccharification at a high temperature 

caused the loss of moisture from the substrate, thus reducing the growth rate and enzyme 

activity of fungi. 

During alcoholic fermentation, the temperature also influences the growth rate and 

biomass of yeast (Charoenchai et al., 1998). These results are related to the production of 

ethanol in wine and beer (Du et al., 2011, Charoenchai et al., 1998, Olaniran et al., 2011). 

According to Torija et al. (2003), the growth of yeast cells slowly increased at 15-20 °C, 

compared to the fermentation at 25-30 °C. This is consistent with Trott and Morano (2003) 

who showed that Saccharomyces cerevisiae produced high levels of ethanol at 25-30 °C. 

However, the fermentation temperature at 35 °C caused a decrease in the growth of the 

yeast and an increase in the mortality. This is similar to that of Casey and Ingledew (1986) 
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who showed that as the temperature increased, the production of ethanol decreased while 

the levels of glycerol and acetic acid increased. 

Uscanga et al. (2003) also showed that Saccharomyces cerevisiae can produce more 

ethanol under small amounts of oxygen, whereas this process is terminated under excess 

oxygen content. This is in agreement with Wellala et al. (2006) who showed that the 

brewing of rice wine is mostly done under semi-aerobic conditions. However, the oxygen 

might decrease the ethanol production during the fermentation of rice wine. According to 

Du Toit et al. (2017), the acetaldehyde dehydrogenase from acetic acid bacteria produce 

acetic acid from the oxidation of ethanol. 

The method used to cook the rice has an influence on the brewing of rice wine. 

Steaming is widely used for the cooking of rice during the manufacture of rice wine. This 

traditional process starts with rice soaking, followed by steaming. The moisture which is 

absorbed by the rice grain accelerates the starch gelatinization at high temperature (Xu et 

al., 2016). However, there are some disadvantages, including half-cooking and 

retrogradation of starch in rice which are frequently observed during the large scale 

steaming, thus affecting the subsequent fermentation (Xu et al., 2016). Therefore, a new 

method for rice cooking, including extrusion, liquefying, and roasting is used instead of the 

traditional steaming process (Chen and Xu, 2012, Li et al., 2013, Xu et al., 2015b). 

During the artisanal brewing of rice wine, pressure cooking may be used because it is 

a domestic process found in many households. Rashmi and Urooj (2003) showed that rice 

which was cooked by pressure cooking had a high degree of gelatinization, which promotes 

the growth rate of brewing cultures and ethanol production. This is in agreement with Rani 

et al. (1994) who showed that the gelatinised starch was significantly more hydrolysed, 

compared to the corresponding native starch. One likely explanation is that gelatinisation 
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cause the disrupted of H-bond in linear structure of starch (crystallinity), thus making it 

more accessible to enzymes for the degradation. 

The brewing process of pigmented rice wine is less documented and therefore the 

choice of rice cooking method and range of temperature needs to be considered. The 

challenge for this study is to find the suitable conditions for the initial saccharification 

process which is favourable for parallel fermentation that limited to 25 °C or 30 °C with the 

presence of characteristic cultures (A. oryzae ATCC 22787 and S. cerevisiae NCYC 478) and 

the pigmented glutinous rice. Thus, the aims of this study were to investigate the influence 

of (i) the rice cooking procedure (steaming and pressure cooking) on the saccharification 

process during the production of pigmented rice wine and (ii) the effect of the brewing 

temperature on the production of ethanol, sugars, organic acids and phenolic acids in 

pigmented rice wine.  

 

4.2 Materials and methods 

4.2.1 Materials 

Glutinous pigmented rice (Double Elephant, Thailand) was purchased from a local 

supplier at Reading, UK. Brewing microorganisms were Aspergillus oryzae ATCC 22787 and 

Saccharomyces cerevisiae NCYC 478 obtained from LGC Standards (Teddington, UK) and The 

National Collection of Yeast Cultures (Norwich, UK), respectively.  
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4.2.2 Chemicals 

Ethanol, 99.5% glucose, 99% fructose, 99% maltose, 95% maltotriose, 99% malic acid, 

98% lactic acid, 99% citric acid, 99% sodium succinate and 99% sodium tartrate were 

purchased from Sigma-Aldrich (Dorset, UK), whereas >96% cyanidin-3-glucoside was 

purchased from Extrasynthese (Genay, France). Analytical grade sulfuric acid and HPLC 

grade methanol were purchased from Fisher Scientific (Loughborough, UK), whereas formic 

acid was purchased from BDH (Poole, UK). 

 

4.2.3 Brewing process 

4.2.3.1 Saccharification 

Pigmented rice was steamed for 60 min at 100 ºC, or pressure cooked at 80 kPa for 

60 min, and inoculated with Aspergillus oryzae (3x106 spores/ml), followed by incubation at 

25 ºC or 30 ºC for 8 days. Sugars and organic acids were analysed every 24 h. The optimum 

saccharification process was determined by the conditions (time and temperature) that 

produced the highest concentration of glucose. 

 

4.2.3.2 Alcoholic fermentation 

The optimum saccharification process was applied to the cooked pigmented rice, 

which was subsequently inoculated with Saccharomyces cerevisiae (6x106 cells/ml) and left 

to ferment for 10 days at either 25 ºC or 30 ºC. Samples were collected every day to 

determine the concentration of sugars, organic acids, ethanol, phenolic acids and 
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anthocyanins. The optimum fermentation conditions were selected on the basic of high 

ethanol content and reduced levels of acetic acid. Samples were pasteurised at 70 ºC for 10 

min. 

 

4.2.4 Sugars, ethanol and organic acids content 

Sugars, ethanol and organic acids was analysed by HPLC from Agilent (Waldbronn, 

Germany). The method was adapted from Zeppa et al. (2001), and the details are shown in 

chapter 3, section 3.2.3.1. The standard curves for sugars, ethanol and organic acids were 

prepared in the range of 10-100 mg/l, 10-1,000 mg/l and 0.01-1 ml/100 ml, respectively, 

R2>0.99. 

 

4.2.5 Statistical analysis 

IBM SPSS Statistics for Windows, Version 22.0 software (IBM Corp., Armonk, NY, 

USA) was used for the statistical analysis of experimental data. The difference between the 

mean values was considered at 95% confidence interval, using the analysis of variance 

(ANOVA) with the post hoc Duncan test.  
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4.3 Results and discussions 

4.3.1 Effect of the rice cooking method and incubation temperature on the 

saccharification of pigmented rice 

Sugars including maltotriose, maltose and glucose were monitored throughout the 

saccharification of steamed pigmented rice at two different temperatures, 25 °C and 30 °C. 

According to figure 4.1, the concentrations of sugars were low on day 1 regardless of the 

temperature however the concentration of maltotriose and maltose significantly increased 

by day 2 as the rice starch was degraded to maltotriose and maltose by the fungi. From day 

2, an increase in glucose was observed as both maltotriose and maltose were converted to 

glucose. The highest concentration of glucose was observed at day 6. After that, all sugars 

decreased as their rate of formation was less than their rate of consumption by Aspergillus 

oryzae. A higher concentration of sugars was observed at 30 ºC on day 2, compared to that 

at 25 ºC (p < 0.05). 

According to figure 4.2, the formation of sugars from pressure cooked pigmented 

rice followed a similar pattern to that of steamed pigmented rice, but their concentration 

were much less. The concentrations of sugars were low on day 1, regardless of temperature 

and then increased from day 2, especially at 25 ºC. After that, the highest concentration of 

sugars was observed on day 6, and then they started to decrease on day 7. A higher 

concentration of sugars, except glucose was observed in the saccharified pressure cooked 

pigmented rice at 25 ºC, compared to that at 30 °C (p < 0.05). 

Maltotriose was observed as the most abundant sugar in saccharified pigmented 

rice. Maltotriose is produced from the degradation of starch by α-amylase from Aspergillus 

oryzae, and then broken down to maltose and glucose by glucoamylase (Santoyo et al., 
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2003, Ghosh et al., 2015). This explains the observation that a low concentration of glucose 

and a high concentration of maltotriose were investigated on the first day saccharification 

process. 

During the saccharification, the concentrations of sugars in steamed pigmented rice 

were higher than in the pressure cooked rice, regardless of the temperature. This result may 

be explained by the fact that the grain absorbed more water during the steaming, and its 

outer layer or the bran was broken. The starch granules in the steamed rice were likely to be 

more swollen and gelatinised. Under these conditions, the fungi grow well as they would 

have access to nutrients from the swollen substrate, rice starch.  
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Figure 4-1: The concentration of glucose, maltose and maltotriose from the saccharification 

of steamed pigmented rice using Aspergillus oryzae. The saccharification temperatures were 

25 ºC and 30 ºC and the saccharification time was 8 days, n=3. 
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Figure 4-2: The concentration of glucose, maltose and maltotriose from the saccharification 

of pressure cooked pigmented rice using Aspergillus oryzae. The saccharification 

temperatures were 25 ºC and 30 ºC and the saccharification time was 8 days, n=3. 
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On the contrary, a lower concentration of sugars was found in saccharified pressure 

cooked pigmented rice. This finding suggests that the outer layer of the pigmented rice was 

not broken by the pressure cooking. Thus, starch granules were less swollen. Moreover, a 

higher temperature and shear from steam pressure cooking increase the degradation of 

amylopectin in starch (Byars, 2003). This results in the long term retrogradation by the 

recrystallization of de-branched amylopectin during cooling. This is consistent with Dundar 

and Gocmen (2013) who showed that starch which is autoclaved at higher temperature 

results in the increase of retrograded starch. Moreover, the recrystallized structure has been 

seen to be resistant to enzymatic hydrolysis (Ashwar et al., 2016). 

For the saccharification of steamed pigmented rice, 30 °C was found to be better 

than 25 °C, however the reverse was found for the pressure cooked pigmented rice. This 

can be explained that pressure cooked pigmented rice which was saccharified at 25 °C 

possibly had a higher moisture, compared that to 30 °C. Therefore, the recrystallization of 

rice starch was less during cooling. This is consistent with Biliaderis et al. (1986) who 

showed that retrogradation of starch is decreased by an increase in moisture content, 

because moisture is a plasticizer in starchy foods which decrease the rearrangement of 

crystalline regions in starch granule during cooling. 

In summary, the steaming was found to be the better method for rice cooking. The 

selected saccharification conditions were found at 30 ºC for 2 days due to the highest 

concentration of total sugars. These conditions were used for the next experiment. 
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4.3.2 Effect of temperature on the alcoholic fermentation of pigmented rice 

Following saccharification, the rice was inoculated with Saccharomyces cerevisiae for 

alcoholic fermentation. During this step, and regardless of temperature, the levels of 

maltose and glucose decreased, whereas an increase in ethanol was observed, particularly 

on day 9 (figure 4.3). The concentration of ethanol formed during from both alcoholic 

fermentations was not significantly different. This result is in disagreement with Trott and 

Morano (2003) who showed that more ethanol is produced by yeast at 30 ºC. 

The ethanol content found in the present study was around 9% (v/v), slightly lower 

that 12% ethanol reported by Singkong (2015) in black rice wine. However, Casey and 

Ingledew (1986) showed that ethanol in the range of 5-20% (v/v) is produced by 

Saccharomyces cerevisiae. The formation of ethanol was described by Dalawai et al. (2017) 

who showed that glucose is converted to pyruvate via the glycolytic pathway, and then 

undergoes decarboxylation to form acetaldehyde, which is converted to ethanol under 

anaerobic conditions.  
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Figure 4-3: The concentration of maltose, glucose and ethanol from the fermentation of 

steamed pigmented rice using Saccharomyces cerevisiae. The fermentation temperatures 

were 25 ºC and 30 ºC and the fermentation time was 10 days, n=3.  
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Thus, glucose continuously decreased during alcohol production. Singkong (2015) 

also showed that sugars were reduced during 10 days of fermentation, because they were 

converted to ethanol by Saccharomyces cerevisiae. Moreover, Ma and Liu (2010) and 

Singkong (2015) showed that protein in the yeast cells can be denatured by ethanol at high 

concentration. This physical damage causes the dysfunction of yeast cell wall, thus affecting 

the termination of alcohol production. 

The concentration of organic acids, including malic acid, lactic acid, succinic acid, 

and acetic acids increased throughout 10 days during the fermentation (figure 4.4). They 

were formed by yeast metabolism which used glucose as a substrate (Liu et al., 2014a). This 

is similar to wrok reported by Singkong (2015) who showed that the pH of black rice wine 

decreased during fermentation because organic acids and CO2 were produced in parallel 

with ethanol production. In addition, a high concentration of acetic acid was found from 

fermentation at 25 ºC. 

Succinic acid was the most abundant organic acid in the pigmented rice wine. This is 

consistent with Yu et al. (2015) who also showed that succinic acid was the most abundant 

organic acid in rice wine. However, Liu et al. (2014a), Liu et al. (2014b) and Das et al. (2014) 

showed that lactic acid was the most abundant organic acid in Chinese rice wine and Indian 

rice beer. These differences could be linked to the use of different brewing strains. 

Moreover, Lee et al. (2012a) showed that high concentrations of acetic acid, tartaric acid 

and malic acid were found in static cultures fermentation (non-shaking condition) rather 

than agitated cultures fermentation (shaking condition).  
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Figure 4-4: The concentration of citric acid, malic acid, succinic acid, lactic acid and acetic 

acid from the fermentation of steamed pigmented rice using Saccharomyces cerevisiae. The 

fermentation temperatures were 25 ºC and 30 ºC and the fermentation time was 10 days, 

n=3.  
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The effect of brewing temperature on the concentration of organic acids during the 

brewing of pigmented rice was also investigated. Organic acids, especially succinic acid and 

acetic acid were found at a higher concentration in the fermentation at 25 °C. A possible 

explanation for this might be that pigmented rice was brewed under semi-anaerobic 

condition, which allowed small amounts of oxygen into the fermentation system. This 

amount of oxygen might be slowly utilised, as the growth rate of brewing strains was slower 

at 25 °C. Therefore, the remaining of oxygen during the fermentation resulted in more 

ethanol being oxidise to acetic acid by Acetobacter under the respiratory metabolism 

(Bartowsky and Henschke, 2008). These results are not consistent with Rina et al. (2016) 

and Shang et al. (2016) who had previously reported a reduction in the concentration of 

acetic acid during fermentation at low temperature (20 °C), but an increase at higher 

temperature. However, Adachi et al. (1997) indicated that a low concentration of acetic 

acid can be found as a result of fermentation at high temperature, as acetic acid will be 

evaporated. Although acetic acid is the most abundant volatile acid in wine, its excessive 

concentration (> 0.9 g/l) affects negatively the quality of wine because it can contribute a 

sour taste (Shang et al., 2016). The brewing of pigmented rice at 30 ºC for 9 days showed a 

slightly higher ethanol, whereas the acetic acid was reduced. However, only acetic acid was 

different between samples (p < 0.05). Therefore, this condition was selected as the 

standard brewing method for the pigmented rice wine in this presented study. 
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4.4 Conclusions 

Steaming was found as a suitable cooking for the pigmented rice because the 

steaming increased the moisture content and gelatinisation of starch, which increased the 

growth of Aspergillus oryzae. Thus, a higher concentration of sugars was produced from 

steamed pigmented rice, compared to pressure cooked pigmented rice. Moreover, the 

saccharification at 30 °C resulted in a greater increase of glucose concentration. 

The concentration of sugars decreased during the parallel fermentation step 

because they were converted to ethanol by Saccharomyces cerevisiae. The concentration of 

ethanol at 30 ºC slightly differed from that at 25 ºC, whereas a high concentration of 

succinic acid and acetic acid was found in the rice wine which produced at 25 ºC. 

In summary, for all future brewing experiments, steaming was confirmed as the 

preferred method for cooking the rice. Saccharification at 30 ºC for 2 days and parallel 

fermentation at 30 ºC for 9 days were the selected conditions for the brewing of steamed 

pigmented rice, due to a higher concentration of ethanol and a lower organic acids 

production. However, the ultimate aim of this study is to identify the characteristic taste 

and aroma compounds and their precursors in pigmented rice wine. In order to achieve the 

aim, this brewing process was used to produce the lab-scale pigmented rice wine in chapter 

5. 
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CHAPTER 5: INFLUENCE OF BRAN FROM PIGMENTED RICE ON FLAVOUR FORMATION IN 

PIGMENTED RICE WINE 

 

Abstract 

Pigmented rice wines were brewed using unpolished, 30% polished, 50% polished 

and 65% polished pigmented rice, and then analysed for the characteristic taste and aroma 

compounds. This study showed that the bran promoted the formation of phenolic acids, 

glutamic acid and γ-glutamyl peptides (γ-glu-gly, γ-glu-his and γ-glu-tyr). Moreover, a higher 

concentration of acetic acid, succinic acid, glutamic acid, gallic acid and protocatechuic 

acid was found in 0% RW, compared to other samples and their concentrations were above 

reported thresholds. Esters, alcohols, and organic acids were found to be the predominant 

aroma compounds in rice wines however guaiacol, 4-vinylguaicol and vanillin were 

significantly and substantially higher in 0% RW, compared to others. The GC-Olfactometry 

showed that 0% RW had smoky-spicy note as a characteristic aroma, and it was derived from 

guaiacol. This is consistent with the aroma profiling analysis which showed that a higher 

intensity of smoky-spicy note was found in 0% RW, compared to others. This study 

summarised that guaiacol was found as a characteristic aroma compound in 0% RW, and it 

was likely to have been formed from the bran of pigmented rice during brewing. However, 

the confirmation of its precursor in the pigmented rice bran was further studied. 

 

Keywords: pigmented rice wine, guaiacol, 4-vinylguaiacol, smoky-note, characteristic 

aroma  
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5.1 Introduction 

According to the analysis of taste and aroma compounds in commercial polished 

rice wines and pigmented rice wines (chapter 3), the smoky-spicy note was observed as a 

characteristic aroma in pigmented rice wine. However, the effect of bran from pigmented 

rice on the formation of characteristic taste and aroma compounds should be investigated. 

The brewing process of unpolished black rice presents some challenge. Takeshita et 

al. (2015) showed that the fermentation of cooked black rice was slow on the first day 

because its grain was difficult to hydrolyse by enzymes, comparing to the corresponding 

polished rice. However, the concentration of ethanol (11-13.8%) was not different between 

samples. Moreover, Chay et al. (2017) also showed that yield, ethanol, total proteins, total 

sugars and reducing sugars from polished rice wine were higher than that in pigmented rice 

wine, regardless of brewing process. This attributed to the greater fermentation efficiency 

of the white rice. 

The effect of the bran from aromatic red rice (Oryza sativa var. Indica, Tapol) on the 

aroma compounds in polished rice wine was found by Ueki et al. (1991). They showed that 

polished rice wine which was brewed by adding the bran of aromatic red rice contained a 

higher concentration of higher alcohols (2.5 times) and esters (3.5-5.0 times), compared 

that to polished rice wine which was brewed without the bran. Sukhonthara et al. (2009) 

showed that organic acids, including 3-methylbutanoic acid, hexanoic acid, heptanoic acid 

and octanoic acid were the most abundant aroma compounds in the bran of pigmented 

rice, especially back rice. These are likely to form the corresponding esters during brewing. 
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However, much less is known about the taste and aroma compounds in pigmented 

rice wine. Previous studies have shown that pigmented rice wine had characteristic aromas, 

particularly smoky-spicy notes. We know from chapter 3 that guaiacol and 4-vinylguaiacol 

are the compounds must likely to contribute to those notes. Since these aromas are not 

detected in commercial polished rice wines, they are likely to have arisen from the bran, or 

precursors in the bran. The aim of this study was to investigate the source of these smoky-

spicy notes. 

 

5.2 Materials and methods 

5.2.1 Materials 

Black glutinous rice (Double Elephant, Thailand) was purchased from a local supplier 

at Reading, UK. The brewing strains, including Aspergillus oryzae ATCC 22787 and 

Saccharomyces cerevisiae NCYC 478 were purchased from LGC Standards (Teddington, 

Middlesex, UK) and The National Collection of Yeast Cultures (Colney, Norwich, UK), 

respectively. The polishing machine was purchased from Twinbird (Tsubame, Niigata. 

Japan). The black glutinous rice was polished to remove the bran with various degree of 

polishing to produce 0% (unpolished grain), 30%, 50% and 65% (bran was fully removed). 

The degree of polishing was calculated by the following equation. The polished rice is show 

in figure 5.1. 

𝐷𝐷𝐷 = �1 −
𝑤𝑤𝑤𝑤ℎ𝑡 𝑜𝑜 𝑝𝑜𝑝𝑤𝑝ℎ𝑤𝑒 𝑟𝑤𝑟𝑤
𝑤𝑤𝑤𝑤ℎ𝑡 𝑜𝑜 𝑏𝑟𝑜𝑤𝑏 𝑟𝑤𝑟𝑤

�× 100 
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unpolished grain  

(0%) 
partially polished 

grain (30%) 
partially polished 

grain (50%) 
fully polished grain 

(65%) 

Figure 5-1: Black glutinous rice subject to various degree of polishing (from 0% unpolished 

to 65% polished) 

 

5.2.2 Chemicals 

The chemicals in this study were methyl acetate, diethyl ether, >98% 4-coumaric 

acid, 98% epicatechin, >97% vanillic acid, >98% sinapic acid, >97% protocatechuic acid, 

>99% ferulic acid, >95% syringic acid, >98% caffeic acid, 98% catechin, 97% gallic acid, 99% 4-

hydroxybenzoic acid, 99.5% glucose, >99% fructose, 99% maltose, 95% maltotriose, >99% 

malic acid, 98% lactic acid, 99% citric acid, 99% sodium succinate, 99% sodium tartrate, 99% 

1,2-dichlorobenzene, saturated alkane standard C5-C30 and C7-C40, >99% guaiacol and 98% 

4-vinylguaiacol were purchased from Sigma-Aldrich (Dorset, UK). Cyanidin-3-glucoside 

(>96%) chloride was purchased from Extrasynthese (Genay, France). Analytical grade 

sulfuric acid, HPLC grade methanol, >99% acetic acid, Optima™ 0.1% formic acid and Pierce® 

acetonitrile purchased from Fisher Scientific (Loughborough, UK). Analytical grade formic 

acid was purchased from BDH (Poole, UK). EZfaast™ amino acid test kit was purchased from 

Phenomenex (CA, USA). The standard of DKPs were >99% cyclo(proline-valine), >99% 

cyclo(alanine-valine), >99% cyclo(isoleucine-proline), >99% cyclo(leucine-proline), >98% 

cyclo(proline-proline), >99% cyclo(alanine-proline) and standard of γ-glutamyl peptides 

including >99% γ-glutamyl tyrosine (γ-glu-tyr), >99% γ-glutamyl phenylalanine (γ-glu-phe), 
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>99% γ-glutamyl histidine (γ-glu-his), >99% γ-glutamyl methionine (γ-glu-met), >99% γ-

glutamyl glutamic acid (γ-glu-glu), >99% γ-glutamyl leucine (γ-glu-leu), >99% γ-glutamyl 

valine (γ-glu-val), >99% γ-glutamyl alanine (γ-glu-ala) and >99% γ-glutamyl glycine (γ-glu-

gly) were purchased from Bachem (Bubendorf, Switzerland). 

 

5.2.3 Brewing process of pigmented rice wines 

Black glutinous rice which had been subjected to various degree of polishing from 

0% to 65% (120 g) was cleaned using water, and soaked in water for overnight. The rice was 

steamed at 100 ºC for 60 min, and then left to cool. It was inoculated with Aspergillus oryzae 

(3x106 spores/ml), and then incubated at 30 °C for 2 days under aerobic conditions to 

promote saccharification. For fermentation, Saccharomyces cerevisiae (6x106 cells/ml) was 

added to the rice mash, and saccharification and fermentation continued in parallel for a 

further 9 days at 30 °C under anaerobic conditions. The rice cake was then removed from 

the rice wine using Heraeus Multifuge 3SR+ centrifuge from Thermo Scientific (Paisley, UK) 

and Piramoon Fiberlite 6x250 LE rotor from Marshall Scientific (Hampton, UK) at 7,300 g for 

15 min at 15 °C. Rice wine samples were pasteurised at 70 °C for 10 min, and cooled in a 

water bath to ambient temperature. The rice wines were stored in the freezer at -20 °C until 

further analysis.  
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0% RW 30% RW 50% RW 65% RW 

Figure 5-2: Rice wines produced from pigmented rice subject to a different degree of 

polishing from 0% (unpolished grain) to 65% (fully polished grain) 

 

5.2.4 Chemical analysis of raw pigmented rice 

5.2.4.1 Free amino acids 

To prepare the rice flour, pigmented rice (unpolished grain and 65% polished grain) 

was milled using the cryogenic tissue grinder from Stratech scientific (Cambridge, UK). The 

rice bran or rice flour samples (2 g) were mixed with 10 ml of 0.01M hydrochloric acid, and 

then shaken for 30 min using the Multi Reax shaker from Heidolph (Schwabach, Germany). 

The samples were left for 15 min, and then centrifuged to remove the supernatant at 7,300 

g for 15 min, using a Howe laborzentrifugen, series 3K10 and 19776-H rotor from Sigma 

(Osterode am Harz, Germany). The pellet was re-extracted again under the same 

conditions, and then both supernatants were combined. Amino acids from the extracts 

were derivatised using the EZfaast™ test kit from Phenomenex (CA, USA). The samples were 

analysed for amino acids by gas chromatography-mass spectrometry (GC-MS) from Agilent 

(CA, USA) as reported by Elmore et al. (2005). To quantify the amino acids, the calibration 

curves of basic amino acids were carried out in the range of 50-200 µM, R2 > 0.9.  
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5.2.4.2 Acid soluble and insoluble lignin 

This analysis was adapted by Sluiter et al. (2010). The rice flour (unpolished and 65% 

polished grain) or pigmented rice bran (300 mg) were placed into autoclavable bottles, and 

then 72% sulfuric acid (3 ml) was added. The slurry was stirred and then incubated in a 

water bath at 30 °C for 60 min. During the incubation, the samples were stirred every 5 min. 

After that, 84 ml of water was added into the slurry, which then autoclaved at 121 °C for 60 

min. The residues were separated from the supernatant using vacuum filtration, and then 

placed to pre-weighed crucibles. The samples were dried at 105 °C to constant weight 

using a hot air oven from Gallenkamp (Loughborough, UK), and then burned at 575 °C 

overnight using the muffle furnace from Carbolite (Bamford, UK). The crucibles were cooled 

in the desiccator, and then weighed. The supernatant was measured for acid soluble lignin 

at 320 nm using a spectrophotometer, series CE1021 from Cecil instrument (Cambridge, 

UK). To quantify the acid soluble and non-soluble lignin, the following equations were used. 

 

% 𝑎𝑟𝑤𝑒 𝑤𝑏𝑝𝑜𝑝𝑖𝑏𝑝𝑤 𝑝𝑤𝑤𝑏𝑤𝑏 (𝐴𝐴𝐴) =  
(𝑤𝑤𝑤𝑤ℎ𝑡𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑟𝑑𝑑𝑟𝑑−𝑤𝑤𝑤𝑤ℎ𝑡𝑎𝑟ℎ)−𝑤𝑑𝑑𝑤ℎ𝑡𝑝𝑑𝑝𝑡𝑑𝑑𝑝

𝑂𝑂𝑂𝑟𝑎𝑠𝑝𝑠𝑑
× 100 (a) 

% 𝑎𝑟𝑤𝑒 𝑝𝑜𝑝𝑖𝑏𝑝𝑤 𝑝𝑤𝑤𝑏𝑤𝑏 (𝐴𝐴𝐴) = 𝑈𝑈𝑎𝑎𝑟×𝑣𝑣𝑣𝑣𝑣𝑤𝑓𝑑𝑠𝑡𝑑𝑎𝑡𝑑×𝑑𝑤𝑣𝑣𝑡𝑤𝑣𝑡
𝜀×𝑂𝑂𝑂𝑟𝑎𝑠𝑝𝑠𝑑×𝑝𝑝𝑡ℎ𝑣𝑤𝑡𝑤ℎ𝑡

× 100  (b) 

Where UVabs = the mean of the absorbance from the sample at 320 nm 

volume = volume of filtrate, 87 ml 

dilution = 
𝑣𝑣𝑣𝑣𝑣𝑤𝑟𝑎𝑠𝑝𝑠𝑑×𝑣𝑣𝑣𝑣𝑣𝑤𝑑𝑑𝑠𝑟𝑡𝑑𝑝𝑤 𝑟𝑝𝑠𝑠𝑑𝑝𝑡

𝑣𝑣𝑣𝑣𝑣𝑤𝑟𝑎𝑠𝑝𝑠𝑑
 

ɛ= absorbability of biomass at the specific wavelength, 30 

ODWsample = weight of sample in milligram 

pathlength = 1 cm 
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Weight protein = Amount of protein present in the acid insoluble residue. The 

measurement is only necessary for biomass containing high amounts of 

protein.  

 

5.2.4.3 Free phenolic acids and anthocyanins 

The pigmented rice flour (unpolished and 65% polished grain) and pigmented rice 

bran were defatted, to prevent oxidation, by solvent extraction method (Jung et al., 2007). 

Briefly, 5 g of sample was mixed with 20 ml of hexane, and then stirred for 1 h. Then, the 

solvent was removed from the sample using Whatman™ qualitative filter paper grade 1 

from Whatman (Buckinghamshire, UK). The process was repeated for a second time to 

ensure the removal of all lipid material from the samples. Defatted samples were dried in a 

desiccator at room temperature overnight. To extract the phenolic acids and anthocyanins, 

0.1% formic acid in 70% methanol (10 ml) was added into defatted sample (0.2 g), and then 

shaken for 45 min using the Multi Reax shaker from Heidolph (Schwabach, Germany). The 

supernatant was removed from the samples, using a Howe laborzentrifugen series 3K10 

and 19776-H rotor from Sigma (Osterode am Harz, Germany) at 7,300 g for 15 min. The 

pellet was re-extracted to ensure the complete extraction of phenolic acids and 

anthocyanins. The supernatants were combined, and then concentrated at 40 °C by using a 

rotary evaporator, series R110 from Büchi (Flawil, Switzerland). Dried samples were re-

dissolved with 0.1% formic acid in 70% methanol (2 ml), and then filtrated with 0.22 µm 

Minisart® syringe filter from Sartorius (Goettingen, Germany). The samples were analysed 

for phenolic acids and anthocyanins using high performance liquid chromatography (HPLC) 

from Agilent (CA, USA) as described by Seal (2016). Details of this method was shown in 

chapter 3, section 3.2.3.3. All phenolic acids and anthocyanins were quantified using the 
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external standard method. Quantification was based on peak area. Calibration curves of the 

standards were carried out by diluting stock standards in 0.1% formic acid in 70% methanol 

to yield 2-6 mg/l (phenolic acids) or 1-200 mg/l (anthocyanins), R2 > 0.99. 

 

5.2.5 Analysis of taste compounds in pigmented rice wines 

5.2.5.1 Sugars, ethanol and organic acids 

Rice wines were filtered using a 0.22 µm Minisart® syringe filter from Sartorius 

(Goettingen, Germany), and then analysed for sugars, ethanol and organic acids using HPLC 

from Agilent (CA, USA). The analytical conditions were adapted from Zeppa et al. (2001), 

and the information of this procedure was shown in chapter 3, section 3.2.3.1. Sugars, 

ethanol and organic acids were quantified using the external standard method. 

Quantification was based on peak area. Calibration curves of the standards were carried out 

by diluting stock standards to yield 0.01-5 g/l (sugars), 0.1-1 % (ethanol) and 0.1-1 g/l mg/l 

(organic acids), R2 > 0.99. 

 

5.2.5.2 Free amino acids 

The pre-filtered samples were derivatised using the EZfaast™ kit from Phenomenex 

(CA, USA) as described by Elmore et al. (2005). The amino acids in the derivatised samples 

were analysed, using GC-MS from Agilent (CA, USA). All basic amino acids were quantified 

using the external standard method. Quantification was based on peak area. Calibration 

curves of the standards were carried out by diluting stock standards to yield 50-300 μM, R2 

> 0.99. 
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5.2.5.3 Free phenolic acids and anthocyanins 

The pre-filtered rice wines were analysed for phenolic acids and anthocyanins using 

HPLC from Agilent (CA, USA) as described by Seal (2016). This procedure was shown in 

chapter 3, section 3.2.3.3. The phenol acids and anthocyanins were quantified using the 

external standard method. Quantification was based on peak area. Calibration curves of the 

standards were carried out by diluting stock standards to yield 0.5-50 mg/l (phenolic acids) 

or 0.4-100 mg/l (anthocyanins), R2 > 0.99. 

 

5.2.5.4 Diketopiperazines (DKPs) 

Pigmented rice wines were extracted for DKPs, using Strata-X 33 µm polymeric 

reversed phase giga tube from Phenomenex (CA, USA) as described by Oruna-Concha et al. 

(2015). Prior the extraction, 50 µl of internal standard (1,2-dichlorobenzene, 100 mg/l) was 

added into 15 ml pigmented rice wine to obtain the final concentration of internal standard 

in sample was 0.33 mg/l. The extract was analysed for DKPs using GC-MS from Agilent (CA, 

USA), and the analytical condition was shown in chapter 3, section 3.2.3.4. DKPs were 

quantified using the external standard method. Quantification was based on peak area. 

Calibration curves of the standards were carried out by diluting stock standards to yield 0.1-

5 mg/l, R2 > 0.98. 

 

5.2.5.5 γ-glutamyl peptides 

To prepare the samples, rice wine (500 µl) containing 0.2 mg/l of γ-glu-met (internal 

standard) was filtered through an Amicon® Ultra, MWCO 3kDa filter from Sigma-Aldrich 
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(Steinheim, Germany) at 12,045 g for 10 minutes, using Eppendorf centrifuge (Ontario, 

Canada). The filtered samples were analysed for γ-glutamyl peptides by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) from Agilent (CA, USA) as 

described by Toelstede et al. (2009), and the procedure was shown in chapter 3, section 

3.2.3.5. All γ-glutamyl peptides in samples were quantified using the external standard 

method. Quantification was based on peak area. Calibration curves of the standards were 

carried out by diluting stock standards to yield 0.01-5 mg/l, R2 > 0.93. 

 

5.2.6 Analysis of aroma compounds in pigmented rice wine 

5.2.6.1 Volatile compounds 

The volatile compounds in pigmented rice wines were extracted using solid phase 

microextraction (SPME) as described by Chen and Xu (2010). The samples were analysed 

for volatile compounds using GC-MS from Agilent (CA, USA), and the procedure was shown 

in chapter 3, section 3.2.4.1. The quantification of guaiacol and 4-vinylguaiacol was carried 

out using the external standard. Quantification was based on peak area. Calibration curves 

of the standards were carried out in the range of 0.01-5 mg/l for guaiacol and 0.002-2 mg/l 

for 4-vinylguaiacol, R2 > 0.99. 

 

5.2.6.2 Semi-volatile compounds 

The semi-volatile compounds in pigmented rice wines were extracted using solid 

phase extraction (SPE) as shown by Lignou et al. (2013). The extract wad analysed for semi-
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volatile compounds using GC-MS from Agilent (CA, USA), and the procedure was shown in 

chapter 3, section 3.2.4.2. 

 

5.2.6.3 GC-Olfactometry 

Pigmented rice wines which produced from unpolished grain and 65% polished grain 

were analysed for aroma description using GC-O. This method was adapted from Lignou et 

al. (2013), and it was shown in chapter 3, section 3.2.4.3. Four assessors (two males and two 

females) were used for the detection and verbal description of aroma active compounds in 

samples. The assessors had at least 2 years of experience in recognising odorants by GC-O.  

 

5.2.7 Sensory evaluation for the pigmented rice wine 

A professional panel of eight trained assessors (one male and 7 females), each with a 

minimum of six months’ experience, was used to develop vocabularies for aroma profiling 

of pigmented rice wines. Unpolished pigmented rice wine (0% RW) and 65% polished 

pigmented rice wine (65% RW) were labelled with a random symbol, and presented to each 

assessor. To develop vocabularies for the aroma profiling, assessors were asked to sniff all 

samples to produce a list of descriptive terms for aromas in the samples. Following this 

initial session, reference materials were provided (table 5.1). These terms were discussed by 

the panel of assessors as a group, assisted by a panel leader, to agree on a final profile 

consisting of 7 aroma terms. The quantitative sensory assessment took place in individual 

sensory booths under red light and room temperature controlled to 23 °C. 5 ml of 

unpolished pigmented rice wine (0% RW), 30% polished pigmented rice wine (30% RW) and 
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65% polished pigmented rice wine (65% RW) presented in an amber bottles which were 

covered with aluminium foil, coded with random 3 digit codes, and then cooled at 4 °C. 

Samples were presented to the assessors in a balanced and randomised order, and 

assessors were asked to sniff the samples and score them on aroma attributes. The intensity 

of each attribute was recorded on an unstructured line scale (scaled 0–100), and data were 

collected using Compusense® version 5 software from Compusense (ON, Canada). A 

duplicate assessment was carried out in a separate session. 

 

Table 5-1: Reference materials provided to help assessors to standardise attribute 

descriptors. 

descriptor reference material brand 

soy sauce light soy sauce Blue dragon 

acid balsamic vinegar M&S 

sweet  dried jujube - 

smoky-spicy aromatic hoisin dip ASDA 

creamy-cheesy Yorkshire blue cheese M&S 

beefy beef yeast extract Bovril 

mushroom - - 

 

5.2.8 Statistical analysis 

IBM SPSS Statistics for Windows, Version 22.0 software (IBM Corp., Armonk, NY, 

USA) was used for the statistical analysis of experimental data. The statistical significant 

difference of the mean value was considered significant at p<0.05 by using the analysis of 

variance (ANOVA). All ANOVA were conducted using a 95% confidence interval and post 

hoc Duncan test was used for multiple pairwise comparisons. The Pearson’s correlation was 
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used to identify the relation between two factors, if required. To analyse the data from the 

sensory evaluation, the Senpaq software version 4.2 (Qi Statistics, Reading, UK) was applied. 

 

5.3 Results and discussions 

5.3.1 The chemical composition of pigmented rice and polished pigmented rice 

5.3.1.1 Free amino acids 

Amino acids tended to be higher in the unpolished grain, compared to polished 

grain. The amino acid composition of the bran, unpolished and 65% polished pigmented 

rice is shown in the table 5.2. Alanine, glycine, asparagine and glutamic acid were found to 

be the predominant amino acid in the bran and unpolished pigmented rice. This is 

consistent with Shen et al. (2015) who showed that alanine, aspartic acid, threonine, 

glutamic acid and serine were found to be the predominant amino acid in black rice. 

Moreover, Liu et al. (2017) showed that aspartic acid, valine, leucine, arginine and proline 

were observed as the most abundant amino acid in unpolished non-pigmented rice. 

Amino acids isoleucine, threonine, methionine, phenylalanine, glutamine, lysine, 

histidine, tyrosine and tryptophan were not present in 65% polished pigmented rice, and all 

other amino acids  decreased as the degree of polishing increased (p < 0.05). This is 

consistent with Liu et al. (2017) who showed that an increase in polishing (from 0% to 

14.8%) resulted in the decrease of amino acids, regardless of the rice variety. Saikusa et al. 

(1994) also studied the amino acids in the fraction of rice which was prepared by polishing 

at 5-10, 10-14, 14-18, 18-23, 23-27 and 27-100 %. They found that the highest 

concentration of amino acids was observed in the first fraction (5-10% polishing), and then 
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it was decreased by the abrasive process of polishing. Moreover, the decrease of amino 

acids was observed towards the centre of the kernel. Thus, confirming that the amino acids 

are more concentrated in the bran of the rice grain. 

 

Table 5-2: Free amino acid composition in the bran, unpolished and 65% polished 

pigmented rice. 

compounds 

concentration in each fraction of pigmented rice 
(mg/ 100 g) §Sig 

Bran unpolished grain 65% polished 
grain 

alanine 45 ± 1.0c 26 ± 0.7b 12 ± 0.6a *** 

glycine 15 ± 0.1c 11 ± 0.3b 5.9 ± 0.3a *** 

valine 9.9 ± 0.1c 5.7 ± 0.1b 4.2 ± 0.2a *** 

leucine 11 ± 0.2c 5.4 ± 0.1b 4 ± 0.3a *** 

isoleucine 6.9 ± 0.1 4.9 ± 0.1 nd ns 

threonine 10.3 ± 0.1 6.3 ± 0.1 nd ns 

serine 23 ± 0.4c 8 ± 0.3b 4.4 ± 0.2a *** 

proline 8.6 ± 0.1c 6 ± 0.1b 4.5 ± 0.1a *** 

asparagine 36 ± 0.9c 20.2 ± 0.5b 11.9 ± 0.2a *** 

aspartic acid 44 ± 2.0c 17 ± 0.6b 10.2 ± 0.2a *** 

methionine 3 ± 0.1 4 ± 1.3 nd ns 

glutamic acid 106 ± 7c 28 ± 3b 11.3 ± 2a *** 

phenylalanine 10.9 ± 0.1 6.7 ± 0.1 nd ns 

glutamine 12.6 ± 0.6b 10.3 ± 0.2a nd * 

lysine 28.9 ± 0.3b 13.6 ± 0.2a nd * 

histidine 14.8 ± 0.7b 13 ± 0.1a nd * 

tyrosine 14.6 ± 0.6b 12 ± 0.1a nd * 

tryptophan 17.6 ± 0.2b 13.5 ± 0.1a nd * 
Values with the same letter superscripts within each row are not significantly different (p = 
0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, 
no significant difference between means (P > 0.05), *Significant at the 5% level (0.01 < p ≤ 
0.05) and ***Significant at the 0.1% level (p ≤ 0.001).  
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5.3.1.2 Acid soluble and acid insoluble lignin 

Lignin is a dietary fibre which is found in plant cell walls (DeVries et al., 1999). It 

consists of a highly branched three dimensional phenolic structure, including 4-coumaril, 

coniferyl and sinapyl alcohols (Brebu and Vasile, 2010). The content of lignin in the bran, 

unpolished and 65% polished pigmented rice is shown in the table 5.3. The concentration of 

acid soluble and acid insoluble lignin in the bran was 1.25 and 2 fold higher than unpolished 

pigmented rice, respectively. Moreover, the content of lignin in unpolished pigmented rice 

is in agreement with Fardet et al. (2008) who showed that lignin in wheat was found in the 

range of 0.6-1.3 g/ 100 g sample. The bran removal caused the decrease of lignin, especially 

in 65% polished grain because lignin is mostly found in the bran or cell walls of rice grain. 

This is consistent with Knudsen (2014) who showed that a higher content of lignin is found 

in the outer part of the kernel, compared that to endosperm.  

 

Table 5-3: Lignin composition of the bran, unpolished and 65% polished pigmented rice. 

compound 
concentration (%) 

§Sig 
Bran unpolished grain 65% polished 

grain 
acid soluble lignin 1.5 ± 0.1c 1.1 ± 0.1b 0.74 ± 0.0a *** 

acid insoluble lignin 3.1 ± 0.3c 1.8 ± 0.4b 0.18 ± 0.1a *** 
Values with the same letter superscripts within each row are not significantly different (p = 
0.05). 

Data are presented as mean ± standard error, n = 3. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means;  
***Significant at the 0.1% level (p ≤ 0.001).  
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5.3.1.3 Free phenolic acids and anthocyanins 

The bran, unpolished and 65% polished pigmented rice were analysed for free 

phenolic acid and anthocyanins. According to the results in table 5.4, protocatechuic acid, 

catechin, vanillic acid, synringic acid, 4-coumaric acid and ferulic acid were found in 

unpolished pigmented rice. This is consistent with Shao et al. (2017) who showed that 

protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, 4-coumaric acid, vanillic acid, 

4-hydroxybenzoic acid, sinapic acid and isoferulic acid were found in unpolished pigmented 

rice. However, a higher concentrations of those compounds were observed from our study, 

compared that to Shao et al. (2017). 

One anthocyanin, cyaniding-3-glucoside was found in unpolished pigmented rice. 

Anthocyanins have been shown as contributing the red brown or dark purple colour of the 

kernel (Yodmanee et al., 2011). This is consistent with Sompong et al. (2011) who showed 

that cyanindin-3-glucoside was found in black rice samples from Thailand, however their 

concentrations (19.3-137.4 mg/ 100 g sample) were lower than our study. Moreover, 

Ichikawa et al. (2001) also showed that cyanindin-3-glucoside represents around 94% of the 

total anthocyanins composition in pigmented rice and Yawadio et al. (2007) showed that 

this compound was found in Japanese black rice at 86% of the total anthocyanins.  

The concentration of both phenolic acids and anthocyanin decreased as the degree 

of polishing increased, especially in the 65% polished pigmented rice (p < 0.05). Kong and 

Lee (2010) and Paiva et al. (2014) showed that free phenolic acids and anthocyanins are 

mostly distributed in the bran layer and therefore are affected by physical process such as 

polishing. This is consistent with our results which showed that the highest concentration 

of phenolic acids and anthocyanins were found in the bran of pigmented rice (p < 0.05). 
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Table 5-4: Phenolic acids and anthocyanins identified in the bran, unpolished and 65% 

polished pigmented rice. 

compounds 
concentration (mg/ 100 g sample) §Sig 

bran 0% DM 65% DM 

protocatechuic acid 11.4 ± 0.6c 7.5 ± 0.4b 2.2 ± 0.9a *** 

catechin 4.1 ± 0.1b 2.7 ± 0.4a nd * 

vanillic acid 2.9 ± 0.3c 1.6 ± 0.1b 0.45 ± 0.0a *** 

synringic acid 3.5 ± 0.5b 2.4 ± 0.1a nd * 

4-coumaric acid 0.43 ± 0.0b 0.32 ± 0.0a nd ** 

ferulic acid 0.88 ± 0.1b 0.52 ± 0.0a nd * 

cyanidin-3-glucosude 174 ± 10b 94 ± 7a nd *** 
Values with the same letter superscripts within each row are not significantly different (p = 
0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; 
*Significant at the 5% level (0.01 < p ≤ 0.05), **Significant at the 1% level (0.001 < p ≤ 0.01) 
and ***Significant at the 0.1% level (p ≤ 0.001). 

 

The concentration of phenolic acids corresponded to the concentration of lignin 

(table 5.3) because lignin is formed by enzymatic dehydrogenation of cinnamyl, coiferyl and 

sinapyl alcohol. Thus, the corresponding phenolic acids such as 4-coumaric acid, ferulic 

acid, 4-hydroxybenzoic acid and protocatechuic acid are from the degradation of lignin 

(chapter 2, section 2.2.6). Dick et al. (2011) also showed that anthocyanins in plants are 

formed from phenylalanine via the anthocyanin biosynthetic pathway. 
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5.3.2 The effect of degree of polishing on the formation of taste compounds in 

pigmented rice wine 

5.3.2.1 Sugars, ethanol and organic acids 

The sugar and organic acid compositions as well as ethanol and pH values for the 

pigmented rice wines with different degree of polishing are presented in table 5.5. The 

concentration of maltose and glucose in lab-scale brewed pigmented rice wines were lower 

than that in commercial rice wines (chapter 3), whereas fructose was not found in in lab-

scale brewed pigmented rice wines. Maltose was only found in 0% RW, whereas glucose was 

found in all lab-scales brewed pigmented rice wines with concentrations lower than the 

reported thresholds. These fermentable sugars were likely generated from the degradation 

of rice starch using Aspergillus oryzae via the saccharification (Dung et al., 2006, Saranraj and 

Stella, 2013). Moreover, an increase in polishing resulted in an increase in glucose content 

in rice wines (p<0.05). This can be explained by the fact that polishing increases the 

concentration of carbohydrate in rice grain (Payakapol et al., 2011). This is consistent with 

Eun et al. (2007) who showed that the concentration of glucose in Jinyangju rice wine 

increased as the polishing of glutinous rice increased. However, Lee et al. (2012b) and Park 

et al. (2015) showed that there was no correlation between degree of polishing and total 

sugars content in rice wine. 

The concentration of ethanol in rice wines was not significantly different between 

samples, although the concentration of glucose was found at the highest concentration (p 

< 0.05) in 65% RW. This is in agreement with Park et al. (2015) who showed that the 

concentration of ethanol was not significantly different between alcoholic beverages which 

were produced from barley with different degree of polishing. This corresponded to the 

concentration of total sugars which were not different between samples. 
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Glucose is the substrate for ethanol formation via the EMP pathway (Bai et al., 2008). 

According to this, a higher concentration of ethanol was found in 65% RW, compared to the 

other samples. However, no significant differences were observed between rice wines. This 

might be explained by the fact that Saccharomyces cerevisiae produces ethanol in the range 

of 8-12% v/v. Moreover, the concentration of ethanol which is above 15% can terminate the 

fermentation because the yeast cannot survive at those conditions (Basso et al., 2011). 

Five organic acids including citric acid, malic acid, succinic acid and acetic acid were 

found in 0% RW. Among these compounds, only succinic acid in 0% RW was higher than the 

threshold value. The concentration of organic acids, except acetic acid in our study were 

consistent with that reported by Chun et al. (2012). The polishing process changed and 

reduced the concentration of organic acids in rice wines as only citric acid, malic acid and 

succinic acid were detected in 0% RW with the concentration ranging from 0.33-2.03 g/l. 

This is in agreement with Park et al. (2015) who showed that the concentration of total 

organic acids in wines which were brewed from Huinchalssal-bori barley was decreased by 

the increase of degree of polishing. Chun et al. (2012) showed that citric acid and succinic 

acid decreased as the polishing process increased. Moreover, they also showed acetic acid 

was not found in 30-40% polished rice wine, compared that to 10-20% polished rice wine. 

This might be explained by the fact that not only glucose was used as the precursor for 

organic acid formation, but also fatty acids in the rice bran might have been used too. Free 

fatty acids are converted to the acetyl CoA via fatty acid oxidation by Saccharomyces 

cerevisiae (Van Roermund et al., 2003), and they go through the TCA cycle to form citric 

acid, malic acid and succinic acid (Rezaei et al., 2015). According to the redox pathway in 

Saccharomyces cerevisiae, acetyl CoA is also converted to acetaldehyde using acetaldehyde 

dehydrogenase. It is possibly converted to ethanol using alcohol dehydrogenase, and acetic 
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acid using non-acetylating acetaldehyde dehydrogenase (Henningsen et al., 2015). Thus, an 

increase in the bran content resulted in an increase in the concentration of citric acid, malic 

acid, succinic acid and acetic acid. 
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Table 5-5: Sugars, organic acids, ethanol and pH values in rice wines brewed from pigmented rice with different degree of polishing and their 

reported threshold values. 

compounds 
†TC 

(g/l) 
concentration §Sig 

0% RW 30% RW 50% RW 65% RW 

ethanol (% v/v) - 12 ± 0.1 12.2 ± 0.3 11.6 ± 0.3 11.8 ± 0.7 ns 

pH - 4.8 ± 0.0d 4.2 ± 0.0c 3.9 ± 0.0b 3.7 ± 0.1a *** 

sugars (g/l)       

maltose - 1.3 ± 0.4 nd nd nd - 

glucose 3.2 0.8 ± 0.1a 1.2 ± 0.1b 1.2 ± 0.1b 1.8 ± 0.1c *** 

organic acid (g/l)       

citric acid 0.5 0.33 ± 0.0 nd nd nd - 

malic acid 0.5 0.44 ± 0.1 nd nd nd - 

succinic acid 0.1 2.03 ± 0.2 nd nd nd - 

lactic acid 1.4 0.73 ± 0.2 0.9 ± 0.1 1.04 ± 0.2 0.76 ± 0.0 ns 

acetic acid 0.1 0.65 ± 0.1c 0.39 ± 0.1ab 0.36 ± 0.1a 0.48 ± 0.0b *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05).  

Data are presented as mean ± standard error, n=3. nd = not detected. 
†Taste threshold concentrations, (TC) of sugars (sweet) and organic acids (sour) were obtained from Hufnagel and Hofmann (2008b). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05) and ***Significant at the 0.1% level (p ≤ 0.001). 
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5.3.2.2 Free amino acids 

The free amino acid compositions of pigmented rice wine samples are presented in 

table 5.6. Higher concentrations of all amino acids were found in lab-scale brewed rice 

wines, compared to commercial rice wine (chapter 3). Moreover, glycine, proline, leucine, 

asparagine, glutamic acid and glutamine were found to be the predominant compounds in 

all rice wine samples. This amino acid profile in pigmented rice wine was similar to those 

reported in rice beer by Das et al. (2014) who found arginine, serine, aspartic acid, glutamic 

acid, glycine, tyrosine, proline, valine, phenylalanine, isoleucine, leucine, histidine and lysine 

in those samples. Kang et al. (2014) also showed that alanine, proline, tyrosine, valine, 

methionine, leucine, phenylalanine and lysine were found in Korean rice wine samples. 

Moreover, the concentration of glutamic acid in rice wines from our study was above the 

reported threshold, thus contributing to the umami taste. 

Amino acids, especially glycine, proline, methionine, leucine, aspartic acid and 

glutamic acid in rice wines decreased as the degree of polishing increased. Moreover, the 

concentration of total amino acids was also decreased by the increase in the rice polishing. 

This is consistent with Chun et al. (2012) and Kang et al. (2014). The rice bran is the source 

of amino acids however they are decreased by the progressive polishing process (Liu et al., 

2017). 

Shen et al. (2010) and Kang et al. (2014) showed that amino acids in Chinese rice 

wine mostly originate from the hydrolysis reaction of proteins in rice and wheat Qu, using 

protease and carboxypeptidase from brewing strains. The formation of amino acids is 

important for rice wine because they are the source of nitrogen which is used for the 

growth of the brewing strains. However, the concentration of some amino acids in rice 

wines from our study was not decreased by the increase of polishing. This can be explained 
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by the fact that the amino acids might be formed by the autolysis of yeast during the 

alcoholic fermentation (Feuillat and Charpentier, 1982). Autolysis normally takes place at 

the end of the stationary phase of growth, and usually correlates to the mortality of yeast 

cell. This is an irreversible process caused by an intracellular yeast enzyme. During the 

autolysis, nucleotides, amino acids, peptides and proteins are liberated from the yeast cells 

because their cell walls are degraded by intracellular enzymes (Alexandre and Guilloux-

Benatier, 2006). Thus, the amino acids in rice wines were not only liberated from the bran 

of pigmented rice, they could have also formed from the yeast cells. 
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Table 5-6: Free amino acids concentration in rice wines brewed from pigmented rice with different degree of polishing and their reported 

threshold values. 

compounds 
†TC 

(mM) taste 
concentration (mM) §Sig 

0% RW 30% RW 50% RW 65% RW 

alanine 12 sweet 7.1 ± 0.1a 8.7 ± 0.4c 7.9 ± 0.2b 8.3 ± 0.2bc *** 

glycine 25 sweet 5.9 ± 0.1b 6.2 ± 0.2b 5.1 ± 0.3a 5.2 ± 0.2a *** 

threonine 35 sweet 1.9 ± 0.1b 1.9 ± 0.1b 1.5 ± 0.1a 1.8 ± 0.1b ** 

serine 25 sweet 3.7 ± 0.2ab 4.2 ± 0.3b 3.4 ± 0.4a 4.1 ± 0.3b * 

proline 25 sweet 4.5 ± 0.1d 3.8 ± 0.2c 3.1 ± 0.2a 3.4 ± 0.1b *** 

methionine 5 sweet 0.8 ± 0.0b 0.9 ± 0.0b 0.6 ± 0.0a 0.7 ± 0.0a *** 

valine 20 bitter 3.4 ± 0.1d 2.9 ± 0.2c 2.3 ± 0.3a 2.6 ± 0.1b *** 

leucine 11 bitter 4.1 ± 0.1b 4.5 ± 0.3b 3.3 ± 0.3a 3.6 ± 0.2a *** 

isoleucine 10 bitter 1.7 ± 0.1c 1.8 ±0.1c 1.2 ± 0.1a 1.5 ± 0.1b *** 

phenylalanine 45 bitter 2.8 ± 0.1b 3.2 ± 0.2c 2.4 ± 0.2a 2.6 ± 0.1ab *** 

lysine 80 bitter 2.2 ± 0.2a 2.9 ± 0.5b 2.3 ± 0.1ab 2.6 ± 0.4ab * 

histidine 45 bitter 1.6 ± 0.1a 1.9 ± 0.2b 1.4 ± 0.2a 1.6 ± 0.1a ** 

tyrosine 4 bitter 2.9 ± 0.1c 1.9 ± 0.2a 2.1 ± 0.2a 2.5 ± 0.2b *** 

aspartic acid 20 umami 6.9 ± 0.3c 5.3 ± 0.4b 3.7 ± 0.5a 4.1 ± 0.3a *** 

glutamic acid 1.2 umami 7.9 ± 0.2c 5.5 ± 0.4b 4.2 ± 0.2a 4.2 ± 0.1a *** 

asparagine 50 umami 0.7 ± 0.0a 1.2 ± 0.0b 1.3 ± 0.1b 1.6 ± 0.1c *** 
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Table 5-6: Free amino acids concentration in rice wines brewed from pigmented rice with different degree of polishing and their reported 

threshold values (continued). 

compounds 
†TC 

(mM) taste 
concentration (mM) §Sig 

0% RW 30% RW 50% RW 65% RW 

glutamine 50 umami 4.6 ± 0.3a 6.2 ± 0.3c 4.5 ± 0.3a 5.2 ± 0.3b *** 

ornithine - - 0.22 ± 0.0a 0.56 ± 0.1b 0.27 ± 0.0a 0.3 ± 0.0a *** 

tryptophan - - 0.64 ± 0.1b 0.66 ± 0.1b 0.43 ± 0.0a 0.41 ± 0.0a *** 

cysteine - - 0.54 ± 0.1a 0.77 ± 0.1b 0.46 ± 0.0a 0.47 ± 0.1a ** 

total amino acids - - 64 ± 1.2b 65 ± 4b 51 ± 3a 57 ± 3a *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n = 3. 
†Taste threshold concentrations, (TC) were obtained from Hufnagel and Hofmann (2008b). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; *Significant at the 5% level (0.01 < p ≤ 0.05), 
**Significant at the 1% level (0.001 < p ≤ 0.01) and ***Significant at the 0.1% level (p ≤ 0.001). 
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5.3.2.3 Free phenolic acids and anthocyanins 

The phenolic acids and anthocyanin identified in rice wines are shown in table 5.7. 

Gallic acid and protocatechuic acid were found to be the predominant phenolic acid in all 

rice wine samples, followed by 4-hydroxybenzoic acid, vanillic acid, 4-coumaric acid and 

ferulic acid. This is in agreement with Wang et al. (2014) who showed that gallic acid, 

protocatechuic acid, 4-hydroxybenzoic acid, vanillic acid, ferulic acid and cyanidin-3-

glucoside were detected in unpolished black rice wines, however their concentrations were 

lower than that in 0% RW from our study. Moreover, the concentrations of gallic acid, 

protocatechuic acid, 4-hydroxybenzoic acid, vanillic acid, 4-coumaric acid and gerulic acid 

in commercial pigmented rice were also lower than that in lab-scale brewed pigmented 

rice wine. The phenolic acids and anthocyanins in rice wine samples can be correlated with 

the corresponding compounds in raw pigmented rice (table 5.4). 

The concentration of gallic acid in 0% RW, 30% RW and 65% RW, and the 

concentration of protocatechuic acid in 0% RW were higher than reported thresholds. Thus, 

these compounds might contribute to the astringent mouthfeel in the rice wines, especially 

in 0% RW. Furthermore, 0% RW had a rosé colour which may have been as a results of the 

cyanidin-3-glucoside being released from the bran of pigmented rice (Yodmanee et al., 

2011, Samyor et al., 2017). 

An increase in degree of polishing resulted in the decrease in all phenolic acids and 

anthocyanins in rice wines. This is in agreement with their higher concentrations were 

found in pigmented rice grain, compared that to polished rice grain (table 5.4).  
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Table 5-7: Phenolic acids and anthocyanins identified in rice wines brewed from pigmented rice with different degree of polishing and their 

reported threshold values. 

compounds 
†TC 

(mg/l) taste/mouthfeel 
concentration (mg/l) §Sig 

0% RW 30% RW 50% RW 65% RW 

gallic acid 50 astringent 74 ± 3.0c 55 ± 3.4b 48 ± 5.0a 55 ± 3.0b *** 

protocatechuic acid 32 astringent 58 ± 2.0b 2.4 ± 0.2a 3.6 ± 0.3a 2.4 ± 0.3a *** 

4-hydroxybenzoic acid 92 astringent 22 ± 4.5c 14 ± 0.2b 14 ± 0.5b 9.4 ± 0.2a *** 

vanillic acid 53 astringent 3.7 ± 0.1c 2.2 ± 0.3a 2.1 ± 0.3a 2.6 ± 0.4a *** 

4-coumaric acid 23 astringent 2.5 ± 0.1b 0.5 ± 0.0a 0.5 ± 0.0a 0.5 ± 0.0a *** 

ferulic acid 13 astringent 13 ± 0.1c 8.5 ± 0.8b 6.3 ± 0.3a 5.6 ± 0.3a *** 

sinapic acid - - 1.8 ± 0.2 nd nd nd - 

cyanidin-3-glucoside - - 7.8 ± 0.5 nd nd nd - 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n = 3. nd = not detected. 
†Taste threshold concentrations (TC) were obtained from Hufnagel and Hofmann (2008b). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ***Significant at the 0.1% level (p ≤ 0.001). 
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5.3.2.4 Diketopiperazines (DKPs) 

Four proline-based DKPs, namely cyclo(pro-val), cyclo(pro-ile), cyclo(pro-leu) and 

cyclo(pro-pro) were found in the pigmented rice wines (table 5.8). However, their 

concentrations were lower than the reported thresholds. These DKPs were previously found 

to be odour active in fermented food products such as cheese, red wine and yeast extract 

(Borthwick and Da Costa, 2017). Moreover, they were also detected in commercial rice 

wines with the concentration in the range of 0.03-12.8 mg/l (chapter 3). 

DKPs are possibly formed from the condensation of an equimolar amounts of amino 

acids under heating process (Mishra et al., 2017). However, Borthwick and Da Costa (2017) 

showed that they are likely to be formed from the heating of the acyclic tripeptides under 

the acidic conditions. This is consistent with our study which showed that the DKPs were 

likely to be formed form the corresponding amino acids under the acidic condition, and the 

Pearson’s correlation showed a correlation coefficient from -0.76 to -0.9. Therefore, a 

higher concentration of DKPs was found in 65% RW, compared to other rice wines. 

The degree of rice polishing did not have an effect on the formation of DKPs. 

Moreover, an increase in the concentration of amino acids did not result in an increase in 

DKPs content. This could be due to amino acids being in excess in all lab-scale brewed rice 

wines, which were used for the formation of the corresponding DKPs. 
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Table 5-8: Diketopiperazines (DKPs) identified in rice wines brewed from pigmented rice with different degree of polishing and their 

reported threshold values. 

compounds 
†TC (mg/l) concentration (mg/l) §Sig 

metallic bitter 0% RW 30% RW 50% RW 65% RW 

cyclo(pro-val) 62 251 1.1 ± 0.2a 1.9 ± 0.1b 1.8 ± 0.3b 2.1 ± 0.4b ** 

cyclo(pro-ile) 25 101 5.1 ± 0.6a 14.2 ± 1.2b 16.3 ± 2.3b 17.2 ± 2.7b *** 

cyclo(pro-leu) 25 250 8.9 ± 1.3 9.7 ± 1.1 9.3 ± 1.8 9.8 ± 1.6 ns 

cyclo(pro-pro) 147 501 2.9 ± 0.2a 4.1 ± 0.1b 4.3 ± 0.5b 4.9 ± 0.4c *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. 
†Taste threshold concentrations, (TC) were obtained from Stark and Hofmann (2005). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05), **Significant at the 1% level (0.001 < p ≤ 0.01) and ***Significant at the 0.1% level (p ≤ 0.001). 
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5.3.2.5 γ-glutamyl peptides 

Five γ-glutamyl peptides were identified in lab-scale brewed rice wines (table 5.9). γ-

glu-gly and γ-glu-his were observed as the most abundant compound, and their 

concentrations were in the range of 2.53-3.29 and 1.21-1.62 mg/l, respectively. Moreover, 

γ-glu-leu, γ-glu-phe and γ-glu-tyr were found to be the less abundant compounds with 

concentrations in the range of 0.04-0.07, 0.04-0.08 and 0.05-0.1 mg/l, respectively. Lab-

scale brewed rice wine samples showed a lower concentration of those γ-glutamyl 

peptides, compared to commercial rice wines. Moreover, γ-glu-val and γ-glu-glu were found 

as an additional compound in commercial rice wines (chapter 3). 

According to Toelstede et al. (2009) and Zhao et al. (2016), γ-glutamyl peptides 

impart kokumi taste, responsible to the long lasting mouthfeel in fermented products. 

Although, the concentration of these γ-glutamyl peptides in rice wines was lower than the 

individual threshold, it can be assumed that the combination of all γ-glutamyl peptides 

might contribute to the overall kokumi taste. 

The concentrations of γ-glu-gly and γ-glu-his in the rice wines decreased as the 

polishing process increased. This suggested that the bran of pigmented rice contained the 

corresponding precursors which are used for the formation of γ-glutamyl peptides. This is 

consistent with Zhao et al. (2016) and Hillmann et al. (2016) who showed that γ-glutamyl 

peptides are formed, using free amino acids from the fermented materials and γ-glutamyl 

transferase from fungi, including Aspergillus, Bacillus and Lactobacillus and yeast 

Saccharomyces cerevisiae. 
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Table 5-9: γ-glutamyl peptides identified in rice wines brewed from pigmented rice with different degree of polishing and their reported 

threshold values. 

compounds 
†TC 

(mg/l) 
concentration (mg/l) §Sig 

0% RW 30% RW 50% RW 65% RW 

γ-glu-gly 3.6 3.29 ± 0.0d 3.09 ± 0.0c 2.7 ± 0.1b 2.53 ± 0.0a *** 

γ-glu-leu 1.3 0.05 ± 0.0b 0.06 ± 0.0b 0.04 ± 0.0a 0.07 ± 0.0c *** 

γ-glu-his 2.8 1.62 ± 0.1c 1.42 ± 0.0b 1.21 ± 0.1a 1.21 ± 0.2a ** 

γ-glu-phe 0.8 0.07 ± 0.0b 0.07 ± 0.0b 0.04 ± 0.0a 0.08 ± 0.0c *** 

γ-glu-tyr 1.5 0.1 ± 0.0d 0.07 ± 0.0c 0.05 ± 0.0a 0.06 ± 0.0b *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. 
†Taste threshold concentrations, (TC) for γ-glu-gly, γ-glu-leu and γ-glu-his were obtained from Zhao et al. (2016); for γ-glu-phe and γ-glu-tyr 
were obtained from Shibata et al. (2017). 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; **Significant at the 1% level (0.001 < p ≤ 0.01) and  
***Significant at the 0.1% level (p ≤ 0.001). 
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5.3.3 The effect of degree of polishing on the formation of aroma compounds in 

pigmented rice wine 

5.3.3.1 Volatile compounds 

Aroma volatile compounds identified in lab-scale brewed pigmented rice wines are 

presented in table 5.10. Esters and alcohols were found to be the predominant volatile 

compounds in all rice wines. The esters identified in lab-scale brewed rice wines are in 

agreement with those in commercial rice wine samples which reported by Yotmanee et al. 

(2015). However, ethyl dodecanoate, ethyl tetradecanoate and ethyl pentadecanoate were 

found as additional lipid-derived esters in lab-scale brewed rice wines. Ethyl acetate and 3-

methylbutyl acetate were found to be the most abundant esters in rice wines, and their 

higher concentrations were observed in 0% RW, compared that to other rice wines. Notably, 

2-methylbutyl acetate, ethyl 2-methylbutanoate and ethyl 2-hydroxyhexanoate were 

observed as the additional esters in pigmented rice wines, and those esters were not 

detected in rice wine by Niu et al. (2017) and Son et al. (2018). 

Higher alcohols were also found to be the predominant volatile compounds in rice 

wines. Their formation involved the use of amino acids (leucine, valine, isoleucine and 

phenylalanine) under anaerobic conditions or chemical reduction of the corresponding 

aldehydes via the metabolism of yeast during the brewing (Fan et al., 2011). In this study, 

higher alcohols identified in rice wines were 2-methylpropanol, 3-methylbutanol, 2-

methylbutanol and 2-phenylethyl alcohol. This is in agreement with Xu et al. (2015a) who 

showed that 2-methylpropanol and 3-methylbutanol were found in Chinese rice wines, and 

Son et al. (2018) showed that 3-methylbutanol, 2-methylbutanol and 2-phenylethyl alcohol 

were found to be the predominant higher alcohols in rice wines. Moreover, 65% RW 
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contained a higher concentration of these higher alcohols, compared to 0% RW and 

commercial rice wines in chapter 3. 

A higher concentration of guaiacol and 4-vinylguaiacol was observed in lab-scale 

brewed unpolished pigmented rice wines. This is consistent with Yotmanee et al. (2015) 

who showed that a higher concentration of those volatile phenols was found in commercial 

pigmented rice wine. Chen et al. (2013a) also showed that guaiacol and 4-vinylguaiacol 

were found in Chinese rice wines which were produced using wheat Qu. The concentration 

of guaiacol and 4-vinylguaiacol in lab-scale brewed rice wine samples was decreased by the 

increase of polishing. This showed that the bran of pigmented rice had the precursors for 

the formation of guaiacol and 4-vinylguaiacol. This is in agreement with Witthuhn et al. 

(2012) who showed that guaiacol is formed from vanillic acid which is derived from the 

degradation of lignin in grain, and Coghe et al. (2004) also showed that 4-vinylguaiacol is 

formed from ferulic acid which is liberated from lignin. 

In summary, most of the volatile aroma compounds were not significantly different 

between 0% RW and 65% RW. This can be explained that the bran of pigmented rice did not 

have an effect on their formations. Volatile phenol compounds, including phenol, guaiacol 

and 4-vinylguaiacol) were found in 0% RW using SPME technique. They were significantly 

and substantially higher in 0% RW, compared that to 65% RW. This can be explained that the 

bran of pigmented rice promoted the formation of guaiacol and 4-vinylguaiacol during 

brewing process. Moreover, their formations were shown by Ito et al. (2016) and presented 

in chapter 2, figure 2.12. 
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Table 5-10: Aroma volatile compounds identified in rice wines brewed using pigmented rice with varying degree of polishing. 

volatile compounds 
†LRI ‡ID 

§approximated concentration ¦Sig 

ZB-5MSi WAX-DA 0% RW 30% RW 50% RW 65% RW 
acetate esters         

ethyl acetate 623 900 A 161 ± 16b 88 ± 4a 90 ± 18a 104 ± 17a *** 

propyl acetate 715 - B 0.71 ±0.0a 0.75 ± 0.1a 0.78 ± 0.2a 1 ± 0.1b * 

2-methylpropyl acetate 774 1002 A 4.1 ± 0.2 3.6 ± 0.7 3.9 ± 1.2 5.4 ± 1.3 ns 

3-methylbutyl acetate 877 1130 A 75 ± 13b 47 ± 10a 52± 12a 62 ± 5ab * 

2-methylbutyl acetate 879 - B 12 ± 0.6b 8.8 ± 1.7a 8.7 ± 2.2a 10 ± 1.7ab * 

ethyl 2-phenylacetate 1251 1784 A 1.3 ± 0.1a 5.3 ± 0.2b 5.3 ± 0.8b 5.6 ± 0.9b *** 

2-phenylethyl acetate 1264 1835 A 5.3 ± 0.7a 6.4 ± 0.6ab 6.6 ± 0.9ab 7.6 ± 1.6b * 

ethyl esters         

ethyl propanoate 713 - B 0.3 ± 0.0a 0.39 ± 0.0b 0.38 ± 0.1b 0.33 ± 0ab * 

ethyl 2-methylpropanoate 760 - B 0.63 ± 0.0a 0.98 ± 0.1b 0.76 ± 0.2a 0.77 ± 0.1a * 

ethyl butanoate 800 1050 A 2.4 ± 0.1b 1.7 ± 0.2a 1.7 ± 0.3a 1.9 ± 0.3a * 

ethyl 2-methylbutanoate 851 - B 0.24 ± 0.0a 0.35 ± 0.1b 0.31 ± 0.1ab 0.37 ± 0.0b * 

ethyl 3-methylbutanoate 854 - B 0.23 ± 0.0a 0.46 ± 0.1b 0.47 ± 0.1b 0.6 ± 0.0c *** 

ethyl pentanoate 899 - B 0.33 ± 0.0 0.4 ± 0.1 nd nd ns 

ethyl hexanoate 998 1237 A 12 ± 0.4b 9 ± 0.8a 9 ± 1.5a 10 ± 1ab * 

ethyl heptanoate 1096 1351 A 0.36 ± 0.1a 0.98 ± 0.2b 1 ± 0.2b 1.1 ± 0.2b ** 

ethyl octanoate 1195 1438 A 23 ± 2.1 25 ± 3 25 ± 2 27 ± 5 ns 
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Table 5-10: Aroma volatile compounds identified in rice wines brewed using pigmented rice with varying degree of polishing (continued). 

volatile compounds 
†LRI ‡ID 

§approximated concentration ¦Sig 

ZB-5MSi WAX-DA 0% RW 30% RW 50% RW 65% RW 
ethyl nonanoate 1293 1541 A 0.32 ± 0.3 1.4 ± 1.2 1.4 ± 0.3 1.3 ± 0.1 ns 

ethyl decanoate 1392 1643 A 2.7 ± 2.5 4.8 ± 1.2 4.2 ± 0.3 4.4 ± 0.8 ns 

ethyl dodecanoate 1596 1847 A 0.26 ± 0.2 0.67 ± 0.6 0.52 ± 0.5 0.85 ± 0.8 ns 

ethyl tetradecanoate - 2067 B 3.9 ± 0.1 4 ± 3.1 6.3 ± 2.4 4.5 ± 0.1 ns 

ethyl pentadecanoate - 2151 B 0.22 ± 0.0 0.5 ± 0.2 0.58 ± 0.2 0.42 ± 0.0 ns 

alcohols         

propanol 568 1032 A 5.4 ± 0.6a 13 ± 1b 11 ± 1b 13 ± 2b *** 

2-methylpropanol 633 1097 A 54 ± 2a 51 ± 4a 54 ± 4a 71 ± 12b * 

butanol 664 1132 A 0.27 ± 0.0a 1.1 ± 0.1b 0.81 ± 0.2b 0.78 ± 0.1b *** 

3-methylbutanol 732 1207 A 27 ± 2a 31 ± 3ab 34 ± 4b 31 ± 3ab * 

2-methylbutanol 739 - B 20 ±1 23 ± 2 22 ± 4 21 ± 3 ns 

pentanol - 1249 B 0.26 ± 0.0 0.24 ± 0.1 0.17 ± 0.1 0.14 ± 0.0 ns 

hexanol 876 - B 0.45 ± 0.1b 0.39 ± 0.0ab 0.39 ± 0.1ab 0.31 ± 0.1a * 

2-ethylhexanol 1029 - B 0.16 ± 0.0b 0.08 ± 0.0a 0.07 ± 0.0a nd *** 

octanol 1070 1542 A 0.21 ± 0.1ab 0.32 ± 0.0c 0.27 ± 0.1b 0.18 ± 0.0a * 

2-phenylethyl alcohol 1123 1909 A 32 ± 2a 60 ± 5c 54 ± 5c 44 ± 6b *** 
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Table 5-10: Aroma volatile compounds identified in rice wines brewed using pigmented rice with varying degree of polishing (continued). 

volatile compounds 
†LRI ‡ID 

§approximated concentration ¦Sig 

ZB-5MSi WAX-DA 0% RW 30% RW 50% RW 65% RW 
acids         

acetic acid - 1486 B 4.6 ± 0.3b 1 ± 0.4a 1.1 ± 0.1a 1.3 ± 0.3a ** 

2-methylbutanoic acid 846 - B 0.67 ± 0.2a 0.98 ± 0.1ab 0.75 ± 0.2a 1.1 ± 0.2b * 

volatile phenols         

phenol 980 1997 A 0.2 ± 0.1 nd nd nd - 

guaiacol 1096 1856 A 2.2 ± 0.2b 0.08 ± 0.0a 0.03 ± 0.0a nd *** 

4-vinylguaiacol 1326 2211 A 0.75 ± 0.2c 0.41 ± 0.1b 0.21 ± 0.0a 0.04 ± 0.0a *** 

aldehydes         

3-methylbutanal 658 - B 0.04 ± 0.0 0.04 ± 0.0 0.03 ± 0.0 0.04 ± 0.0 ns 

methional 913 - B 0.02 ± 0.0b 0.01 ± 0.0a nd nd *** 

benzaldehyde 968 1539 A 0.16 ± 0.0a 1.2 ± 0.2b 1.7 ± 0.3c 1.3 ± 0.2b *** 

phenylacetaldehyde 1052 - B 0.15 ± 0.1a 0.35 ± 0.1bc 0.36 ± 0.1c 0.25 ± 0.0ab ** 

2(E)-decenal - 1652 B 1.2 ± 0.0 1.2 ± 0.3 1.1 ± 0.2 0.96 ± 0.2 ns 

2-undecenal - 1773 B 1.1 ± 0.0a 1.6 ± 0.3c 1.4 ± 0.1bc 1.2 ± 0.1ab ** 

others         

2-heptanone 891 - A 0.18 ± 0.0b 0.13 ± 0.0a 0.13 ± 0.0a 0.13 ± 0.0a ** 

butyrolactone 916 - A 1.1 ± 0.1a 2.7 ± 0.5b 2.9 ± 0.7b 2.4 ± 0.3b ** 

1-octen-3-one 983 1444 A 0.07 ± 0.0a 0.22 ± 0.0b 0.26 ± 0.1b 0.21 ± 0.0b *** 
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Table 5-10: Aroma volatile compounds identified in rice wines brewed using pigmented rice with varying degree of polishing (continued). 

volatile compounds 
†LRI ‡ID 

§approximated concentration ¦Sig 

ZB-5MSi WAX-DA 0% RW 30% RW 50% RW 65% RW 
2-nonanone 1093 - A 0.23 ± 0.1b 0.15 ± 0.0a 0.14 ± 0.0a 0.15 ± 0.0a * 
γ-nonalactone 1373 - A 0.28 ± 0.1 0.26 ± 0.0 0.26 ± 0.0 0.19 ± 0.0 ns 

Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
†Linear retention index calculated from a linear equation between each pair of straight chain alkanes (C5–C30). 
‡ID, mass spectrum and LRI agree with those of authentic compound; A agreement in both column and B agreement on one column. 
§Estimated quantities (µg/l) in the headspace from 5 g sample, calculated by comparison with internal standard, the experiment was carried 
out using ZB-5MSi column. 

If the compounds were not detected on ZB-5MSi column, they were semi-quantified using WAX-DA column. 

The guaiacol and 4-vinylguaiacol were quantified in mg/l, using their external calibration curves. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05), *Significant at the 5% level (0.01 < p ≤ 0.05), **Significant at the 1% level (0.001 < p ≤ 0.01) and ***Significant at the 0.1% level (p ≤ 
0.001). 
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5.3.3.2 Semi-volatile compounds 

The semi-volatile aroma compounds identified in the pigmented rice wines are 

shown in table 5.11. Ethyl 2-oxopropanoate, ethyl 2-phenylethanoate and 3-methylbutyl 

dodecanoate were detected as the additional esters using this extraction technique. This is 

in agreement with Yotmanee et al. (2015), however ethyl 2-oxopropanoate and ethyl 2-

phenylethanoate were not detected in the commercial rice wines. Zea et al. (2001) and 

Moreno et al. (2005) showed that ethyl 2-oxopropanoate (ethyl pyruvate) was found in 

sherry wines. Moreover, Duarte et al. (2010) showed that this aroma compound was 

formed during fermentation of raspberry wines, using Saccharomyces cerevisiae and 

Saccharomyces bayanus. The increase in degree of polishing resulted in an increase in the 

concentration of ethyl 2-oxopropanoate, ethyl lactate and ethyl 2-phenylethanoate, 

however the concentration of ethyl 3-hydroxybutanoate decreased. 

Several alcohols were found in lab-scale brewed rice wine samples. This is consistent 

with Yotmanee et al. (2015) who showed that those alcohols were found in commercial 

rice wines. However, 3-(methylthio)propanol was found as an additional compound in lab-

scale brewed rice wines. Among them, 4-hydroxybenzeneethanol was observed as the 

predominant alcohols in those rice wines, and its concentration in 0% RW was higher than 

other samples. However, this was not significantly different between samples. Overall, most 

of the alcohols were not affected by the polishing. 

A large number of organic acids were found using SPE, as this extraction technique is 

more suitable for the polar compounds, compared with SPME (table 5.11). Among them, 3-

(methylthio)propanoic acid was detected as the additional compound in rice wines from 

this study, and this organic acid was not found in commercial rice wine by Yotmanee et al. 

(2015). Overall, no significant differences were found for most of the organic acids between 
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rice wine samples. However, the concentration of propanoic acid, 2-methylpropanoic acid, 

butanoic acid, 3-methylbutanoic acid and benzeneacetic acid slightly increased, whereas 

the concentration of 3-(methylthio)propanoic acid lightly decreased by the increase in 

degree of polishing. Moreover, 2-methylpropanoic acid, 3-methylbutanoic acid and 3-

(methylthio)propanoic acid were formed from valine, isoleucine and methionine in rice 

wines via the Ehrlich pathway. This was explained by Ravasio et al. (2014) and presented in 

chapter 2, figure 2.9. 
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Table 5-11: Semi-volatile aroma compounds identified in rice wines brewed using pigmented rice with varying degree of polishing. 

volatile compounds 
†LRI ‡ID 

§approximated concentration (µg/l) ¦Sig 
WAX-DA ZB-5MSi 0% RW 30% RW 50% RW 65% RW 

ethyl esters         

ethyl 2-oxopropanoate 1342 - B 0.4 ± 0.1a 1.2 ± 0.1b 1.4 ± 0.1b 2 ± 0.3c *** 

ethyl lactate 1348 - B 6.2 ± 0.7a 9.9 ± 0.8b 12.3 ± 0.2b 16 ± 2.4c *** 

ethyl 3-hydroxybutanoate 1524 929 A 5.8 ± 1.4c 3.3 ± 0.3b 3.6 ± 1b 1.1 ± 0.6a ** 

ethyl 2-hydroxyhexanoate 1544 - B 0.02 ± 0.0a 0.08 ± 0.0b 0.1 ± 0.0b nd *** 

ethyl succinate 1666 1179 A 0.17 ± 0.0ab 0.25 ± 0.0b 0.18 ± 0.0ab 0.11 ± 0.0a * 

ethyl 2-phenylethanoate 1797 1251 A 0.12 ± 0.0a 0.53 ± 0.0b 0.53 ± 0.1b 0.51 ± 0.1ab * 

3-methylbutyl dodecanoate 2066 - B 0.2 ± 0.2 0.05 ± 0.0 0.04 ± 0.0 nd ns 

alcohols         

3-ethoxypropanol 1379 - B 0.23 ± 0.1a 0.34 ± 0.0b 0.4 ± 0.0b 0.56 ± 0.1c * 

3-(methylthio)propanol 1715 980 A 0.39 ± 0.2 0.29 ± 0.0 0.36 ± 0.1 0.2 ± 0.0 ns 

benzyl alcohol 1871 - B 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 ns 

homovanillyl alcohol 2830 - B 0.01 ± 0.0 nd nd nd - 

4-hydroxybenzeneethanol 3012 1427 A 26 ± 8 19 ± 3 19 ± 3 18 ± 3 ns 
acids         

acetic acid 1448 - B 5.9 ± 2.5 5.4 ± 1.9 6.2 ± 1.9 8.6 ± 4.1 ns 

propanoic acid 1548 - B 0.05 ± 0.0a 0.14 ± 0.0ab 0.14 ± 0.0ab 0.16 ± 0.0b ** 

2-methylpropanoic acid 1568 753 A 8 ± 1a 16 ± 3b 14 ± 1b 16 ± 2b *** 
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Table 5-11: Semi-volatile aroma compounds identified in rice wines brewed using pigmented rice with varying degree of polishing 

(continued). 

volatile compounds 
†LRI 

‡ID 
§approximated concentration (µg/l) 

¦Sig 
WAX-DA ZB-5MSi 0% RW 30% RW 50% RW 65% RW 

butanoic acid 1647 775 A 0.94 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 1.3 ± 0.3 ns 

3-methylbutanoic acid 1687 839 A 3.2 ± 0.7a 5.1 ± 0.3b 5.2 ± 0.6b 5.8 ± 0.7b *** 

hexanoic acid 1857 - B 0.7 ± 0.2 0.6 ± 0.1 0.7 ± 0.1 0.64 ± 0.2 ns 

octanoic acid 2083 - B 0.66 ± 0.2 0.66 ± 0.1 0.59 ± 0.1 0.62 ± 0.2 ns 

nonanoic acid 2173 - B 0.05 ± 0.0 0.04 ± 0.0 0.04 ± 0.0 0.05 ± 0.0 ns 

decanoic acid 2258 - B 0.32 ± 0.2 0.15 ± 0.0 0.12 ± 0.0 0.31 ± 0.3 ns 

3-(methylthio)propanoic acid 2298 - B 0.1 ± 0.0b 0.06 ± 0.0a 0.04 ± 0.0a nd *** 

dodecanoic acid 2469 - B 0.5 ± 0.6b 0.11 ± 0.0a nd nd * 

benzeneacetic acid 2561 - B 6.9 ± 0.4 9.3 ± 3.4 9.6 ± 3.2 13 ± 4 ns 

hexadecanoic acid 2912 990 A 0.58 ± 0.2 0.5 ± 0.2 0.6 ± 0.1 0.5 ± 0.1 ns 

octadecanoic acid 3104 - B 0.29 ± 0.0ab 0.23 ± 0.1ab 0.33 ± 0.0b nd *** 

4-hydroxybenzeneacetic acid 3587 1557 A 2.4 ± 1.4 4.7 ± 2.6 3.5 ± 1 4.4 ± 2.7 ns 
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Table 5-11: Semi-volatile aroma compounds identified in rice wines brewed using pigmented rice with varying degree of polishing 

(continued). 

volatile compounds 
†LRI ‡ID 

§approximated concentration (µg/l) ¦Sig 
WAX-DA ZB-5MSi 0% RW 30% RW 50% RW 65% RW 

aldehydes         

vanillin 2556 - B 0.15 ± 0.0b 0.14 ± 0.0b 0.1 ± 0.0ab 0.08 ± 0.0a *** 

4-hydroxybenzaldehyde 2949 - B 0.06 ± 0.0a 0.44 ± 0.1a 1.5 ± 0.3b 2.5 ± 0.7c *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n=3. nd = not detected. 
†Linear retention index calculated from a linear equation between each pair of straight chain alkanes (C7–C40). 
‡ID, mass spectrum and LRI agree with those of authentic compound; A agreement in both column and B agreement on one column. 
§Estimated quantities (µg/l) in 15 ml sample, calculated by comparison with internal standard, the experiment was carried out using WAX-
DA column. 

If the compounds were not detected on WAX-DA column, they were semi-quantified using ZB-5MSi column. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05), *Significant at the 5% level (0.01 < p ≤ 0.05), **Significant at the 1% level (0.001 < p ≤ 0.01) and ***Significant at the 0.1% level (p ≤ 
0.001). 
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5.3.3.3 GC-Olfactometry 

The GC-O analysis of the SPME extract yielded a total 23 odours descriptions (table 

5.12, 5.13 and 5.14). These included aromas like cocoa, fruity, peach, cheesy, beefy, potato, 

sweet, plastic, floral, mushroom, earthy, green, bell pepper and smoky-spicy. The intensity 

of each aroma in pigmented rice wines varied significantly between assessors. This is 

consistent with Schranz et al. (2017) who showed that the olfactory perception of assessors 

can be influenced by their aroma receptors. 

The aromas in lab-scale brewed rice wines detected by GC-O from this experiment is 

in agreement with Yotmanee et al. (2015). Moreover, Chen et al. (2013b), Chen et al. 

(2013a) and Niu et al. (2017) also showed that rice wine which is produced using wheat Qu 

mostly contributed fruity, floral, sweet, cheese, earthy, green and smoky-spicy aroma. 

However, the smoky-spicy aroma was not detected in the Japanese rice wine which was 

brewed without wheat Qu (Isogai et al., 2005, Yoshizaki et al., 2010). Thus, indicating that 

the wheat might be containing the lignin which contain the precursor of volatile phenols in 

Chinese rice wines. 

Notably, green, earthy and bell pepper aroma from 2,3-diethyl-5-methylpyrazine and 

2-(1-methylpropyl)-3-methoxypyrazine, and roasted aroma from methyl 2-methyl-3-furyl 

disulfide were reported for the first time in rice wines, compared to Chen et al. (2013b) and 

Yotmanee et al. (2015). Although, these aromas were found in both of 0% RW and 65% RW, 

the higher intensity was found in 0% RW. Moreover, Champagne (2008) showed that 2-

isobutyl-3-methoxypyrazine and 2-methyl-3-furanthiol were naturally found in unpolished 

rice. They can contribute to bell pepper and meaty note in cooked unpolished rice. Thus, 

these green and meaty aromas might not be derived from the pigmented rice grain during 

the brewing process. 
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Overall, fruity, sweet, floral, earthy and green notes were found in both of 0% RW and 

65% RW. They were likely derived from esters, alcohols and pyrazines. However, smoky-spicy 

notes from guaiacol were only found to be the characteristic aroma in 0% RW. Thus, the 

bran of pigmented rice wine had an effect on the formation of smoky-spicy notes in 0% RW. 
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Table 5-12: Aroma description and intensity of the volatile compounds (individual score from assessors) in unpolished pigmented rice wines 

(0% RW) detected by using GC–O. 

aromas responsible compound 

aroma intensity from individual assessor 

0% RW 
§A1 A2 A3 A4 

†R1 R2 R1 R2 R1 R2 R1 R2 

cocoa 3-methylbutanal 4 2 4 nd nd nd nd nd 

strecker 3-methylbutanol 5 3 4 3 5 2 5 3 

fruity/ peach ethyl 2-methylpropanoate 5 5 5 7 5 2 5 5 

fruity ethyl butanaote 3 6 6 4 5 7 5 3 

cheese 3-methylbutanoic acid 3 6 6 6 nd 5 3 5 

fruity/strawberry ethyl 2-methylbutanoate 4 5 6 7 3 4 6 5 

fruity ethyl 3-methylbutanoate 3 4 6 7 5 3 6 6 

meat *2-methyl-3-furanthiol 3 5 4 5 7 8 6 6 

sweet/fruity 3-methylbutyl acetate 3 5 7 7 nd 3 nd nd 

potato methional 3 4 5 6 2 3 6 5 

sweet/plastic benzaldehyde 2 2 4 3 3 nd nd nd 

mushroom 1-octen-3-one 2 2 3 3 nd nd nd nd 

fruity ethyl hexanoate 2 5 5 4 2 5 5 5 

floral phenylacetaldehyde 4 6 3 7 nd nd nd nd 

earthy unknown 6 7 4 6 7 5 5 5 
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Table 5-12: Aroma description and intensity of the volatile compounds (individual score from assessors) in unpolished pigmented rice wines 

(0% RW) detected by using GC–O (continued). 

aromas responsible compound 

aroma intensity from individual assessor 

0% RW 
§A1 A2 A3 A4 

†R1 R2 R1 R2 R1 R2 R1 R2 

green/earthy *2-isopropyl-3-methoxypyrazine 6 nd 6 7 7 7 6 7 

smoky-spicy guaiacol 7 8 8 10 7 7 8 8 

rose 2-phenylethyl alcohol 6 4 nd nd 4 3 nd nd 

earthy/smoky *2,3-diethyl-5-methylpyrazine 6 5 5 6 3 nd 5 nd 

green *2-(1-methylpropyl)-3-methoxypyrazine 3 5 3 5 4 4 3 nd 

bell pepper *2-isobutyl-3-methoxypyrazine 6 6 5 5 nd nd nd nd 

roasted *methyl 2-methyl-3-furyl disulfide nd 3 3 nd nd 2 nd nd 

sweet/fruity ethyl octanoate 3 3 3 2 nd nd nd nd 

rose/honey ethyl 2-phenylacetate 3 4 3 2 nd nd nd nd 
*Compounds with no peak in the GC-MS. These were based on finding the correct aroma at the correct LRI on one or two columns. 
§A1, A2, A3 and A4 were the aroma intensity from rice wines detected by assessor 1, assessor 2, assessor 3 and assessor 4, respectively. 
†R1 and R2 were a replication of the analysis of aroma intensity by GC-O from each assessor. 

nd = not detected. 
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Table 5-13: Aroma description and intensity of the volatile compounds (individual score from assessors) in 65% polished pigmented rice 

wines (65% RW) detected by using GC–O. 

aromas responsible compound 

‡aroma intensity from individual assessor 

65% RW 
§A1 A2 A3 A4 

†R1 R2 R1 R2 R1 R2 R1 R2 

cocoa 3-methylbutanal 2 2 4 3 nd nd nd nd 

strecker 3-methylbutanol 3 3 5 4 3 3 5 4 

fruity/ peach ethyl 2-methylpropanoate 5 4 6 6 2 2 5 5 

fruity ethyl butanaote 5 5 4 5 2 nd 5 5 

cheese 3-methylbutanoic acid 6 4 6 6 1 6 6 6 

fruity/strawberry ethyl 2-methylbutanoate 5 6 6 5 2 4 6 7 

fruity ethyl 3-methylbutanoate 5 6 4 6 2 3 6 6 

meat *2-methyl-3-furanthiol 6 5 5 5 2 5 5 5 

sweet/fruity 3-methylbutyl acetate 3 5 7 7 nd nd nd nd 

potato methional 3 6 5 3 1 2 5 4 

sweet/plastic benzaldehyde 2 2 4 3 1 1 2 2 

mushroom 1-octen-3-one 4 3 6 2 1 nd 2 3 

fruity ethyl hexanoate 4 4 4 3 3 3 3 2 

floral phenylacetaldehyde 4 4 2 5 nd nd nd nd 

earthy unknown 6 7 3 6 2 3 6 nd 
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Table 5-13: Aroma description and intensity of the volatile compounds (individual score from assessors) in 65% polished pigmented rice 

wines (65% RW) detected by using GC–O (continued). 

aromas responsible compound 

‡aroma intensity from individual assessor 

65% RW 
§A1 A2 A3 A4 

†R1 R2 R1 R2 R1 R2 R1 R2 

green/earthy *2-isopropyl-3-methoxypyrazine 6 7 7 6 5 6 6 6 

smoky-spicy guaiacol nd nd nd nd nd nd nd nd 

rose 2-phenylethyl alcohol 4 5 nd nd 4 3 nd nd 

earthy/smoky *2,3-diethyl-5-methylpyrazine 6 4 2 5 3 nd 3 nd 

green *2-(1-methylpropyl)-3-methoxypyrazine 3 4 3 4 3 2 nd nd 

bell pepper *2-isobutyl-3-methoxypyrazine 5 5 4 5 nd nd nd nd 

roasted *methyl 2-methyl-3-furyl disulfide nd nd nd nd nd nd nd nd 

sweet/fruity ethyl octanoate 2 3 3 4 nd nd nd nd 

rose/honey ethyl 2-phenylacetate 5 5 3 4 nd 1 nd nd 
*Compounds with no peak in the GC-MS. These were based on finding the correct aroma at the correct LRI on one or two columns. 
§A1, A2, A3 and A4 were aroma intensity in rice wines detected by assessor 1, assessor 2, assessor 3 and assessor 4, respectively. 
†R1 and R2 were replication (duplicate) of the analysis of aroma intensity by GC-O from each assessor. 

nd = not detected. 
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Table 5-14: Intensity of volatile compounds (mean) in 65% polished (65% RW) and unpolished (0% RW) pigmented rice wines, and their 

corresponding volatile aroma compounds. 

aromas responsible compound 
†LRI ZB-5MSi †LRI WAX-DA 

¦aroma intensity 
(mean) 

SPME SPE §AC SPME SPE §AC 0% RW 65% RW 

cocoa 3-methylbutanal 654 - 657 915 905 928 3 3 

strecker 3-methylbutanol 733 723 732 1216 1221 1204 4 4 

fruity/ peach ethyl 2-methylpropanoate 754 743 752 965 - 976 5 4 

fruity ethyl butanoate 797 - 801 1037 1041 1050 5 4 

cheese 3-methylbutanoic acid 829 831 839 1673 1661 1687 5 5 

fruity/strawberry ethyl 2-methylbutanoate 845 830 840 1052 - 1042 5 5 

fruity ethyl 3-methylbutanoate 850 - 851 1069 - 1082 5 5 

meat *2-methyl-3-furanthiol 869 852 863 1324 1321 1307 6 5 

sweet/fruity 3-methylbutyl acetate 873 - 878 1143 - 1128 6 6 

potato methional 905 912 912 - - - 4 4 

sweet/plastic benzaldehyde 961 - 969 - - - 3 2 

mushroom 1-octen-3-one 976 - 978 1302 1315 1302 3 3 

fruity ethyl hexanoate 994 - 998 1232 1239 1237 4 3 

floral phenylacetaldehyde 1050 1055 1058 - - - 5 4 

earthy unknown 1084 - - - - - 6 5 

green/earthy *2-isopropyl-3-methoxypyrazine 1090 1080  1449 - 1439 7 6 

smoky-spicy guaiacol 1092 1097 1095 1869 1875 1862 8 nd 
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Table 5-14: Intensity of volatile compounds (mean) in 65% polished (65% RW) and unpolished (0% RW) pigmented rice wines, and their 

corresponding volatile aroma compounds (continued). 

aromas responsible compound 
†LRI ZB-5MSi †LRI WAX-DA 

¦aroma intensity 
(mean) 

SPME SPE §AC SPME SPE §AC 0% RW 65% RW 

rose 2-phenylethyl alcohol 1124 1110 1119 1936 1947 1925 4 4 

earthy/smoky *2,3-diethyl-5-methylpyrazine 1155 1163 1151 1478 1467 1488 5 4 

green *2-(1-methylpropyl)-3-methoxypyrazine 1170 - 1175 1498 - 1509 4 3 

bell pepper *2-isobutyl-3-methoxypyrazine 1181 1182 1181 1526 1522 1533 6 5 

roasted *methyl 2-methyl-3-furyl disulfide 1184 - 1178 - - - 3 nd 

sweet/fruity ethyl octanoate 1192 - 1194 - - - 3 3 

rose/honey ethyl 2-phenylacetate 1249 - 1251 1837 - 1818 3 4 
†LRI from GC-O using ZB-5MSi and WAX-DA column, calculated from a linear equation between each pair of straight chain alkanes C5–C25. 
¦Aroma intensity (mean) in samples was analysed using ZB-5MSi. Aroma compounds were extracted using SPME. 

§AC is LRI from authentic compounds. 

*Compounds with no peak in the GC-MS. These were based on finding the correct aroma at the correct LRI on one or two columns. 

nd = not detected.  
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5.3.4 Sensory analysis of pigmented rice wine 

Attributes including yeasty note (soy sauce), acid (balsamic vinegar), sweet aroma 

(dried jujube), smoky-spicy note (hoisin sauce), cheese (creamy blue cheese), mushroom 

and beefy note were used to describe the aroma of the pigmented rice wines by the panel. 

The highest scores were obtained for yeasty and cheesy notes, regardless of the presence of 

the bran. 

According to table 5.15, a higher intensity of smoky-spicy note (hoisin sauce) was 

shown 0% RW, compared to 30% RW and 65% RW. However, the cheesy note was 

significantly higher in 65% RW, compared to other samples. This is in agreement with 

Yotmanee et al. (2015) who showed that smoky-spicy note was found in commercial 

pigmented rice wine. The increase in degree of polishing resulted in the decrease in smoky-

spicy note (hoisin sauce) (Pearson’s correlation coefficient, r = -0.87). 
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Table 5-15: Aroma profiling in rice wines brewed using pigmented rice with varying degree of polishing (0%, 30% and 65%). 

aroma attribute 
rice wine samples §Sig 

0% RW 30% RW 65% RW 

yeasty note (soy sauce) 40.9 ± 3.7 44.4 ± 1.1 42.4 ± 0.8 ns 

acid (balsamic vinegar) 27.8 ± 1.5 25.3 ± 1.6 26.6 ± 2.1 ns 

sweet aroma (dried jujube) 23.9 ± 1.7b 21.4 ± 0.3ab 19.3 ± 2.7a * 

smoky-spicy note (hoisin sauce) 22.9 ± 1.8b 19.4 ± 0.8a 16.8 ± 2.1a ** 

cheese (creamy blue cheese) 19.4 ± 3.4a 28.2 ± 3.1b 32.5 ± 0.5b ** 

mushroom 1.1 ± 0.7 2.6 ± 1.3 3.1 ± 1.2 ns 

beefy note 22.9 ± 0.3b 19.9 ± 1.7a 19.7 ± 1.2a * 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05), *Significant at the 5% level (0.01 < p ≤ 0.05) and **Significant at the 1% level (0.001 < p ≤ 0.01). 
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The PC plot shows that the first two dimensions accounted for 63.3 and 13.8% of the 

variance respectively. PC1 separated the 0% RW from all samples, characterised by aroma 

attributes which included smoky-spicy (hoisin sauce), sweet aroma (dried jujube), beefy 

note and acid (balsamic vinegar). Contrary to 0% RW, the polished samples (30% RW and 

65% RW) were characterised by cheesy note, mushroom and yeasty aroma (figure 5.3). 

 

Figure 5-3: Principal component analysis (PCA) biplots of sensory descriptive trait scores for 

aromas and pigmented rice wine samples (0% RW (unpolished pigmented rice wine), 30% 

RW (30% polished pigmented rice wine and 65% RW (fully polished pigmented rice wine)). 

PC1 vs. PC2 accounts for 77.1% of the explained variation. 
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The sensory characteristics of rice wines have been previously reported by Jung et al. 

(2014) who showed that Korean rice wines produced by using polished rice were described 

with aroma attributes which included alcohol, sour, sweet, fruity, roasted cereal, yeasty and 

mouldy notes. Yang et al. (2017b) also showed that aroma attributes such as alcohol, fruity 

and cereal-like aromas were found in Chinese rice wines which were produced by polished 

glutinous rice. Contrary to the polished rice wines, the sensory characteristics of pigmented 

rice wines are less known. However, our study has shown that rice wine which is produced 

from unpolished pigmented rice has the smoky-spicy notes (hoisin sauce). This can be 

correlated with the results from the analysis of aroma profile and GC-Olfactometry, which 

showed that the smoky-spicy note identified as guaiacol was only found in pigmented rice 

wine. To confirm this, the effect of volatile phenols (guaiacol and 4-vinylguaiacol) on the 

smoky-spicy notes in pigmented rice wine was further studied using the standard spiking 

technique. 

 

5.4 Conclusions 

Rice wines produced using pigmented rice with varying degree of polishing were 

analysed for characteristic taste and aroma compounds as well as their precursors. The 

concentration of sugars (glucose and maltose), organic acids (citric acid, malic acid, 

succinic acid, lactic acid and acetic acid), free amino acids and DKPs did not change as the 

pigmented rice was polished. However, phenolic acids and γ-glutamyl peptides (γ-glu-gly, γ-

glu-his and γ-glu-tyr) were formed in greater amount in 0% RW, compared to other rice 

wines.  
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The analysis of aroma compounds showed that esters, alcohols and fatty acids were 

found to be the predominant aroma compound in rice wines. Most of the aroma 

compounds were unaffected by the presence of the pigmented rice bran. However, phenol, 

guaiacol, 4-vinylguaiacol and vanillin were significantly and substantially higher in 0% RW, 

compared to others. This can be explained by the fact that those compounds were formed 

from their precursors in the bran of pigmented rice. The analysis of GC-Olfactometry 

showed that fruity, sweet, floral, green and earthy note were detected in 0% RW and 65% 

RW, whereas smoky-spicy aroma which was derived from guaiacol was only found in 0% RW. 

However, Yotmanee et al. (2015) showed both of guaiacol and 4-vinylguaiacol were 

detected in commercial rice wine samples by GC-O. This can be explained that a lower 

concentration of 4-vinylguaiacol was found in 0% RW, Thus, it was not detected by GC-O. 

The sensory analysis showed that a higher intensity of sweet and smoky-spicy note was 

found in 0% RW, whereas a higher intensity of mushroom and cheesy notes was found in 

65% RW. This is in agreement with the analysis of GC-O which showed that the smoky-spicy 

note was found in 0% RW. 

In summary, the bran of pigmented rice increases the formation of guaiacol which 

contributed characteristic aroma, smoky-spicy note in pigmented rice wine during brewing. 

This aroma compound is likely to be formed from vanillic acid or ferulic acid which is 

derived from lignin in the bran of pigmented rice. To confirm this result, the effect of those 

phenolic acids on the formation of guaiacol in pigmented rice wine was further studied in 

next chapter.  
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CHAPTER 6: CONFIRMATION OF THE PRECURSORS FOR THE CHARACTERISTIC AROMA 

COMPOUNDS, SMOKY-SPICY NOTE IN PIGMENTED RICE WINE 

 

Abstract 

Pigmented rice wine contained smoky-spicy note which was derived from guaiacol 

or 4-vinylguaiacol. These aroma compounds were formed from their corresponding 

precursor in the bran of pigmented rice. In order to identify these, 65% polished pigmented 

rice wines were spiked with vanillic acid and ferulic acid at different concentrations in the 

range of 0-20 mg/100 g rice, and then analysed for the corresponding aroma compounds. 

This study showed that vanillic acid and ferulic acid were decarboxylated to form guaiacol 

and 4-vinylguaiacol, respectively. These phenolic acid compounds were likely to have been 

liberated from the bran of pigmented rice during brewing. Moreover, guaiacol was formed 

from unpolished pigmented rice during steaming. The sensory aroma profiling analysis also 

confirmed that guaiacol was a key aroma compound, responsible for the smoky-spicy note 

in unpolished pigmented rice wine. 

 

Keywords: guaiacol, 4-vinylguaiacol, smoky-spicy aroma, pigmented rice wine 
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6.1 Introduction 

Aroma compounds in pigmented rice wine were studied by Yotmanee et al. (2015) 

and Yotmanee et al. (2018). They showed that guaiacol and 4-vinylguaiacol were the 

characteristic aromas which were responsible for smoky-spicy notes in commercial 

pigmented rice wine. This is in agreement with the results in chapter 5 which showed that 

those aroma compounds were also identified as a characteristic aroma in lab-scale brewed 

pigmented rice wine. However, the analysis of GC-Olfactometry showed that only guaiacol 

contributed a smoky-spicy note in lab-scale brewed unpolished pigmented rice wine, 

whereas 4-vinylguaiacol was not detected due to its low concentration. Moreover, the bran 

of pigmented rice contained precursors which are likely to be converted to guaiacol and 4-

vinylguaiacol during brewing. 

Ito et al. (2016) showed that ferulic acid is converted to 4-vinylguaiacol and 

guaiacol, whereas vanillic acid is converted to guaiacol via decarboxylation during brewing. 

These aroma compounds were generated using brewing microorganisms such as 

Saccharomyces cerevisiae and Aspergillus oryzae. However, Mo and Xu (2010) showed that 4-

vinylguaiacol in Chinese rice wine was likely to be formed from wheat Qu (a starter 

containing Aspergillus oryzae) rather than from yeast. Moreover, Witthuhn et al. (2012) 

showed that ferulic acid is possibly metabolised to formed vanillic acid by Paecilomyces 

variotii (Rahouti et al., 1989), Rhodotorula rubra (Huang et al. (1993) and Sporotrichum 

thermophile (Topakas et al., 2003), and then further converted to guaiacol. However, Yang 

et al. (2007) and Yang et al. (2010) showed that guaiacol was found to be the characteristic 

aroma compound in unpolished black rice.  
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Guaiacol and 4-vinylguaiacol were found to be the characteristic aroma compounds, 

responsible for smoky-spicy notes in pigmented rice wines however their formation in the 

brewing process of pigmented rice wine has never been studied. Therefore, the aim of this 

study was (i) to identify and confirm their precursors which are derived from the bran of 

pigmented rice and (ii) confirm the aroma compound which contributes to smoky-spicy 

notes in lab-scale brewed pigmented rice. 

 

6.2 Materials and methods 

6.2.1 Materials 

Black glutinous rice, Aspergillus oryzae ATCC 22787 and Saccharomyces cerevisiae 

NCYC 478 were used for this study and obtained from the same suppliers as in Chapter 5 

Black glutinous rice was polished to obtain 65% polished grain, using a polishing 

machine from Twinbird (Niigata. Japan). The degree of polishing was calculated by the 

equation that was shown in chapter 5, section 5.2.1 which is shown as following equation. 

 

𝐷𝐷𝐷 = �1 −
𝑤𝑤𝑤𝑤ℎ𝑡 𝑜𝑜 𝑝𝑜𝑝𝑤𝑝ℎ𝑤𝑒 𝑟𝑤𝑟𝑤
𝑤𝑤𝑤𝑤ℎ𝑡 𝑜𝑜 𝑏𝑟𝑜𝑤𝑏 𝑟𝑤𝑟𝑤

� × 100 
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6.2.2 Chemicals 

The chemicals in this study, including >98% 4-coumaric acid, 98% epicatechin, >97% 

vanillic acid, >98% sinapic acid, >97% protocatechuic acid, >99% ferulic acid, >95% syringic 

acid, >98% caffeic acid, 98% catechin, 97% gallic acid, 99% 4-hydroxybenzoic acid, 1,2-

dichlorobenzene, saturated alkane standard C5-C30 and C7-C40, >99% guaiacol and 98% 4-

vinylguaiacol were purchased from Sigma-Aldrich (Dorset, UK). Cyanidin-3-glucoside (>96 

) was purchased from Extrasynthese (Genay, France). HPLC grade methanol and formic acid 

were purchased from BDH (Dorset, UK). 

 

6.2.3 Brewing process 

In the laboratory, 65% polished pigmented (60 g) was steamed and then spiked with 

vanillic acid and ferulic acid at two concentrations (10 and 20 mg/100 g of sample) which 

were higher than naturally present in the sample to access their contribution. The samples 

were brewed using the brewing process which was shown by Yotmanee et al. (2018). The 

samples were centrifuged using a Howe laborzentrifugen, series 3K10 and 19776-H rotor 

from Sigma (Osterode am Harz, Germany) at 7,300 g for 15 min at room temperature. The 

clarified samples were stored at -20 °C for further analysis. 

 

6.2.4 Analysis of precursors for guaiacol and 4-vinylguaiacol in pigmented rice wines 

Volatile compounds were extracted from the rice wines using solid phase 

microextraction (SPME) technique as adapted from Chen and Xu (2010). The compounds 

of interest were analysed by gas chromatography-mass spectrometry (GC-MS) from Agilent 
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(CA, USA) coupled to a Zebron™ ZB-5MSi column (30 m × 250 µm internal diameter, 1 µm 

film thickness) from Phenomenex (CA, USA). The analysis procedure was shown in chapter 

3. The quantification of guaiacol and 4-vinylguaiacol was carried out using the external 

standard. Quantification was based on peak area. Calibration curves of the standards were 

carried out in the range of 0.002-20 mg/l for guaiacol and 0.001-10 for 4-vinylguaiacol, R2 > 

0.99. 

 

6.2.5 Aroma profiling of rice wines by sensory analysis 

To identify the aroma compounds which were responsible for smoky-spicy notes in 

pigmented rice wine, 65% polished rice wines were spiked with guaiacol and 4-vinylguaiacol 

at their natural concentrations in unpolished pigmented rice wine (table 6.1), and the 

aroma profile was assessed by the trained professional panel (one male and 7 females) as 

shown in chapter 5, section 5.2.7. 

 

Table 6-1: Rice wine samples prepared for aroma profiling analysis. 

sample 
standard spiking (mg/l) 

guaiacol 4-vinylguaiacol 

65% polished pigmented rice wine (65% RW) × × 

65% RW + guaiacol (65% RW G+) 2 × 

65% RW + 4-vinylguaiacol (65% RW PVG+) × 0.8 

65% RW + guaiacol and 4-vinylguaiacol (65% RW GP+) 2 0.8 

0% polished rice pigmented rice wine (0% RW) × × 
G+ = guaiacol; PVG+ = 4-vinylguaiacol; GP+ = guaiacol and 4-vinylguaiacol. 
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6.2.6 Analysis of precursors for guaiacol and 4-vinylguaiacol 

6.2.6.1 Analysis of guaiacol and 4-vinylguaiacol in steamed pigmented rice 

Sample (1 g) was mixed with 15 ml of HPLC water, and spiked with 20 µl of internal 

standard (1,2-dicholrobenzene, 1 mg/l). The sample was incubated at 40 °C for 30 min for 

the aroma extraction using SPME, and then analysed for compounds of interest by GC-MS 

from Agilent (CA, USA) which coupled with a Zebron™ ZB-5MSi column (30 m × 250 µm 

internal diameter, 1 µm film thickness) from Phenomenex (CA, USA). This procedure was 

described in chapter 3. The quantification of guaiacol and 4-vinylguaiacol was carried out 

using the external standard. Quantification was based on peak area. Calibration curves of 

the standards were carried out in the range of 0-4 mg/l, R2 > 0.99. 

 

6.2.6.2 Analysis of phenolic acids during brewing process 

To investigate the formation of phenolic acids during brewing, pigmented rice wines 

were analysed for those compounds throughout the brewing process by high performance 

liquid chromatography (HPLC) from Agilent (Waldbronn, Germany). The analytical method 

was adapted from Seal (2016) and it was shown in chapter 3. Quantification was based on 

peak area. Calibration curves of the standards were carried out by diluting stock standards 

to yield 0.5-100 mg/l for phenolic acids or 0.5-1.5 g/l for anthocyanins, R2 > 0.99. 
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6.2.7 Statistic analysis 

IBM SPSS Statistics for Windows, Version 22.0 software (IBM Corp., Armonk, NY, 

USA) was used for the statistical analysis of experimental data. The statistical significant 

difference of the mean value was considered significant at p<0.05 by using the analysis of 

variance (ANOVA). All ANOVA were conducted using a 95% confidence interval and post 

hoc Duncan test was used for multiple pairwise comparisons. The Pearson’s correlation was 

used to identify the relation between two factors, if required. To analyse the data from the 

sensory evaluation, the Senpaq software version 4.2 (Qi Statistics, Reading, UK) was applied. 

 

6.3 Results and discussions 

6.3.1 Analysis of precursors for guaiacol and 4-vinylguaiacol in pigmented rice wines 

To identify and confirm the precursors from which guaiacol and 4-vinylguaiacol are 

generated in pigmented rice wine during the brewing process, the 65% polished rice grain 

(control) was spiked with ferulic acid and vanillic acid, and then brewed using the brewing 

method from Yotmanee et al. (2018). The rice wine samples were analysed for compounds 

of interest which were guaiacol and 4-vinylguaiacol. According to results in table 6.2, 

guaiacol was formed in 65% RW spiked with vanillic acid, and it was observed that the 

concentration increased with the increase of vanillic acid. Similar effect was observed for 

the formation of 4-vinylguaiacol when 65% RW was spiked with ferulic acid. These are 

consistent with Ito et al. (2016) who showed that guaiacol and 4-vinylguaiacol were 

decarboxylated to form vanillic acid and ferulic acid during brewing, respectively. 
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Table 6-2: Concentration of guaiacol and 4-vinylguaiacol in 65% RW in the presence of ferulic acid and vanillic acid standards. 

compounds 

concentration (mg/l) 
§Sig spiked with ferulic acid (mg/ 100 g sample) spiked with vanillic acid (mg/ 100 g sample) 

control 
(0) 

natural 
(0.5)  10 20 control 

(0) 
natural 

(1.5) 10 20 

guaiacol nd nd nd nd nd nd 0.01 ± 0.0a 0.08 ± 0.0b *** 

4-vinylguaiacol 0.27 ± 0.1a 0.6 ± 0.1a 0.59 ± 0.1a 41 ± 6b 0.27 ± 0.1a 0.04 ± 0.0a 0.26 ± 0.1a 0.5 ± 0.5a *** 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean ± standard error, n = 3. nd = not detected. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ***Significant at the 0.1% level (p ≤ 0.001). 
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6.3.2 Aroma profiling of rice wines spiked with standard of guaiacol and 4-vinylguaiacol 

In order to investigate the effect of guaiacol and 4-vinylguaiacol on the aroma profile 

of pigmented rice wine, 65% polished rice wine (control) was spiked with guaicol and 4-

vinylguaiacol at the concentrations that were naturally present in unpolished pigmented 

rice wine, and then scored for the aroma profiling (table 6-3). 

The aroma attributes, including were yeasty, acidic, sweet, dried jujube beefy/meaty 

and alcoholic aroma were not significantly different between samples (table 6.3). The 

addition of guaiacol resulted in an increase in smoky-spicy (hoisin sauce) aroma in 65% RW, 

and this was not significantly different to 0% RW. However, the smoky-spicy aroma in 65% 

RW was slightly increased by the addition of 4-vinylguaiacol. The addition of both guaiacol 

and 4-vinylguaiacol resulted in an increase in smoky-spicy aroma in 65% RW. These results 

confirmed that guaiacol was the key aroma compound which contributed smoky-spicy 

note in unpolished pigmented rice wine. 

The aroma intensity in rice wine samples was quite variable between assessors. As 

discussed above, assessors have different aroma receptors which influence their sensitivity 

towards certain compounds. In particular, they have shown this a wide range of sensitivities 

for phenol compounds (Schranz et al., 2017). Moreover, assessors have different metabolite 

enzymes in the nasal cavities which have an impact on different bioconversions of aroma 

compounds before docking with aroma receptors. Therefore, the intensity and attribute of 

aromas were variable between assessors (Nagashima and Touhara, 2010). 
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Table 6-3: Aroma profiling in 65% polished rice wines spiked with guaiacol, 4-vinylguaiacol and both of guaiacol and 4-vinylguaiacol. 

aroma attribute 
rice wine samples §Sig 

0% RW 65% RW 65% RW GP+ 65% RW PVG+ 65% RW G+ 

yeasty aroma (soy sauce) 39.7 41.7 35.8 38 34.9 ns 

acidic aroma (balsamic vinegar) 18.6 22.8 21.5 19.7 22.8 ns 

overall sweet aroma 29.5 23.1 27.1 27.8 25.7 ns 

sweet aroma (dried jujube) 12.5 9 12.1 12.2 10.6 ns 

beefy/meaty aroma 25.1 19.6 19.9 21 20.5 ns 

smoky-spicy aroma (hoisin sauce) 22.3a 13.6b 19.9a 18.1ab 23.2a ** 

cheesy/mushroom aroma 22.9 32.6 33.8 28.7 27.4 ns 

alcoholic aroma 15.7 20.8 18.2 18.2 19.7 ns 
Values with the same letter superscripts within each row are not significantly different (p = 0.05). 

Data are presented as mean. 

G+ = guaiacol; PVG+ = 4-vinylguaiacol; GP+ = guaiacol and 4-vinylguaiacol. 
§Sig = Probability, as obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (P > 
0.05) and **Significant at the 1% level (0.001 < p ≤ 0.01). 
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6.3.3 Analysis of precursors for guaiacol and 4-vinylguaiacol 

6.3.3.1 Analysis of guaiacol and 4-vinylguaiacol in steamed pigmented rice 

In order to find the source of guaiacol and 4-vinylguaiacol, steamed pigmented rice 

was analysed for these key compounds. Only guaiacol was found in the steamed unpolished 

pigmented rice (table 6.4). This is in agreement with Yang et al. (2007) who studied the 

formation of these aroma compounds in cooked black rice which was mixed with polished 

rice at different ratios, 100:0, 50:50, 20:80, 5:95 and 0:100 %. They showed that guaiacol 

was found at higher concentration in 100% cooked black rice, whereas its concentration 

decreased as the polished rice ratio was increased. Moreover, Choi et al. (2018) showed 

that guaiacol was the characteristic aroma compound in cooked black rice and that was 

removed by polishing. Furthermore, Brebu and Vasile (2010) also showed that the thermal 

degradation of lignin in plants was the cause of the formation of guaiacol. Thus, guaiacol in 

the pigmented rice wine originates from the degradation of lignin in the bran of pigmented 

rice during the steaming process. 

 

Table 6-4: Concentration of guaiacol and 4-vinylguaiacol in steamed pigmented rice. 

compounds 
concentration (mg/g sample) 

steamed unpolished grain 
(0%) 

steamed polished grain 
(65%) 

guaiacol 0.23 ± 0.04 nd 

4-vinylguaiacol nd nd 
Data are presented as mean ± standard error, n=3. 

nd = not detected. 
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6.3.3.2 Analysis of phenolic acids during brewing process 

The concentration of all phenolic acids and anthocyanins were found at a lower 

concentration on day 0, regardless of the brewing temperature (figure 6.1). After that, their 

concentrations increased by the degradation of the corresponding precursors. This is 

consistent with de Gonzalo et al. (2016) who also showed that lignin is degraded to the 

monomers, including 4-hydroxyphenyl group (4-hydroxybenzoic acid and 4-coumaric 

acid), guaiacyl group (ferulic acid, vanillic acid and protocatechuic acid) and syringyl group 

(sinapic acid and gallic acid) using the enzyme from the microorganisms. Shin et al. (2019) 

showed that the derivatives of hydroxycinnamic acids (ferulic acid, 4-coumaric acid and 

caffeic acid) are likely to be present in rice bran. 

At the end of the saccharification process, the concentration of phenolic acids and 

cyanidin-3-glucoside had decreased. They either bonded to insoluble polysaccharides (Shin 

et al., 2019) or metabolised to form other compounds, for example protocatechuic acid is 

converted to catechol, 4-coumaric is converted to 4-vinylphenol (Filannino et al., 2015), 

caffeic acid is converted to 4-vinylcatechol and ferulic acid is converted to 4-vinylguaiacol 

(Belda et al., 2017). Moreover, Zhang et al. (2001) showed that the sugar groups in 

anthocyanins can be removed by anthocyanase from fungi, leading to the anthocyanin 

decolourisation. 

Gallic acid and protocatechuic acid were found to be the most abundant 

compounds from saccharified pigmented rice. This is in agreement with Hiemori et al. 

(2009) who showed that protocatechuic acid is formed from the degradation of cyanidin-

3-glucoside which is the most abundant anthocyanin in rice, and then degraded to gallic 

acid. The results also showed that the concentration of phenolic acids and cyanidin-3-
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glucoside from the saccharification at 25 °C were different to that at 30 °C, especially from 

day 2 onwards. 

 

     

      

 

Figure 6-1: Concentration of phenolic acids and anthocyanins from the saccharification of 

steamed pigmented rice using Aspergillus oryzae at 25 °C (blue) and 30 °C (red) for 7 days, 

n=3.  
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Figure 6-1: Concentration of phenolic acids and anthocyanins from the saccharification of 

steamed pigmented rice using Aspergillus oryzae at 25 °C (blue) and 30 °C (red) for 7 days, 

n=3 (continued).  
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To investigate the concentration of phenolic acids during fermentation, steamed 

pigmented rice was saccharified and then fermented using the selected brewing process 

from chapter 4. The rice wine samples were analysed for phenolic acids every 24 h. This 

study showed that the concentration of all phenolic acids and anthocyanins were detected 

at a lower concentration on day 0, regardless of the brewing temperature (figure 6.2). After 

that, their concentrations were increased by the degradation of the corresponding 

precursors. The concentration of phenolic acids and cyanidin-3-glucoside from the 

alcoholic fermentation at 25 °C were different from that at 30 °C (p < 0.05). Gallic acid and 

protocatechuic acid were found to be the predominant compounds in those rice wine 

samples. This corresponded to those in the saccharified pigmented rice. Hiemori et al. 

(2009) and Shin et al. (2019) showed that phenolic acids, including 4-hydroxyphenyl 

group, guaiacyl group and syringyl group are formed from the degradation of lignin. The 

concentration of all phenolic acids and cyanidin-3-glucoside were decreased during 

fermentation. This can be explained by the fact that ferulic acid, 4-coumaric acid and caffeic 

acid are converted to 4-vinyl derivatives, and then further reduced to 4-ethyl derivatives by 

microorganisms (Belda et al., 2017). 

In summary, all phenolic acids and anthocyanins were increased by the metabolism 

of fungi and yeast during brewing process. However, the concentration of vanillic acid, 

syringic acid, ferulic acid and 4-coumaric acid was decreased during the brewing, especially 

the saccharification because they were converted to the volatile phenol compounds. 

Moreover, cyaniding-3-glucoside which was presented in flavylium cation (red colour) was 

converted to carbinol base (colourless) and chalcone (pale yellow colour) due to the pH of 

pigmented rice wines which were in the range of 4-6. This is consistent with Castaneda-

Ovando et al. (2009).  
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Figure 6-2: Concentration of phenolic acids and anthocyanins from the fermentation of 

steamed pigmented rice using Saccharomyces cerevisiae at 25 °C (blue) and 30 °C (red) for 9 

days, n=3.  
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Figure 6-2: Concentration of phenolic acids and anthocyanins from the fermentation of 

steamed pigmented rice using Saccharomyces cerevisiae at 25 °C (blue) and 30 °C (red) for 9 

days, n=3 (continued). 
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6.4 Conclusions 

This study showed that phenolic acids were derived from the bran of pigmented rice 

during the brewing process. One of these phenolic acids, vanillic acid was decarboxylated 

to form guaiacol which was responsible for the smoky-spicy note in pigmented rice wine. 

Moreover, guaiacol was also found to be generated from the bran of unpolished pigmented 

rice during steaming process. The aroma profiling study confirmed that guaiacol was the 

key aroma compound responsible for smoky-spicy note in unpolished pigmented rice wine 

rather than 4-vinylguaiacol. 

 

6.5 Publication 

1) Yotmanee, S., Oruna-Concha, M.J. and Parker, J.K. (2018). The impact of volatile 

phenols on the aroma, and the identification of their precursors in pigmented rice 

wine. The 6th Nursten symposium, University of Nottingham, UK, 27-28 September 

2018. 

(Oral presentation) 
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CHAPTER 7: GENERAL DISCUSSIONS 

 

7.1 Discussion 

Pigmented rice wine is produced using pigmented rice. Similar to Chinese rice wine, 

the brewing process of pigmented rice wine consists of fungi to saccharify rice starch to 

glucose, and brewing yeast to convert glucose to ethanol (Yang et al., 2017b, Chen et al., 

2013b). Pigmented rice wine has been used by Chinese for drinking and medical purposes 

for a long time. However, the aroma and taste compounds in pigmented rice wine are less 

known. To characterise the taste and aroma compounds in pigmented rice wine, and 

identify their precursors, this study was conducted with the following interrelated aims: 

I. Characterise and compare the characteristic taste and aroma compounds in 

commercial polished rice wine and commercial pigmented rice wine 

II. Optimise the brewing process for the pigmented rice wine, using parallel 

fermentation 

III. Directly compare and identify the characteristic taste and aroma compounds in rice 

wines which are brewed using pigmented rice polished to various degrees (0% for 

unpolished grain, 30%, 50% and 65% for bran fully removed) 

IV. Confirm the corresponding precursors for the characteristic aroma in the pigmented 

rice wine, using standard spiking technique 
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To identify the characteristic taste and aroma in pigmented rice wine, commercial 

rice wines, including polished rice wines and pigmented rice wines, were analysed for taste 

compounds and aroma compounds (chapter 3). Most taste compounds were not likely to 

be formed from the bran of pigmented rice because their concentrations did not increase 

in the presence of the bran. Moreover, esters, alcohols and organic acids were the most 

abundant aroma compound in commercial rice wines. This is consistent with 

Chuenchomrat et al. (2008), Chen and Xu (2010) and Yang et al. (2017b). However, the 

analysis of GC-O showed that guaiacol and 4-vinylguaiacol which were responsible for the 

smoky-spicy notes which were found in pigmented rice wine. This is in agreement with 

Chen et al. (2013b) who showed that guaiacol and 4-vinylguaiacol contribute smoky note 

in Chinese rice wine which was brewed using wheat Qu. These aroma compounds are be 

formed from their precursors in the bran of pigmented rice. Thus, the influence of the bran 

from pigmented rice on the formation of guaiacol and 4-vinylguaiacol was further studied. 

In chapter 4, a reproducible labscale process for brewing rice wine was developed. 

This brewing process was used for the production of pigmented rice wines which were 

analysed for the characteristic taste and aroma compounds (chapter 5). The challenge of 

this study was the application of pigmented rice cooking methods (steaming and pressure 

cooking) and the parallel fermentation which were suitable for the growth and activities of 

Aspergillus oryzae ATCC 22787 and Saccharomyces cerevisiae NCYC 478. The brewing 

process was monitored for sugars, ethanol and organic acids at 25 °C or 30 °C. The 

steaming process was selected for the pigmented rice cooking method. The selected 

saccharification process was observed at 30 °C for 2 days due to a higher concentration of 

sugars (figure 4-1). The selected alcoholic fermentation was selected at 30 °C for 9 days due 

to a lower concentration of acetic acid and higher concentration of ethanol (figure 4-3 and 
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4-4). According to this experiment, the brewing process for further pigmented rice wine 

producdtion was defined. However, the ultimate aim of this study was to observe the 

formation of guaiacol and 4-vinylguaiacol in pigmented rice wine. Thus, the selected 

brewing process was used to brew pigmented rice wines, which were analysed for 

characteristic aroma compounds, and their precursors. 

In chapter 5, rice wines brewed using unpolished pigmented rice, 30% polished 

pigmented rice, 50% polished pigmented rice and 65% polished rice were analysed for taste 

and aroma compounds as well as the precursors for the characteristic aroma compounds. 

Unpolished pigmented rice wines had a higher sour (acetic acid and succinic acid), umami 

(glutamic acid) and astringent mouthfeel (gallic acid and protocatechuic acid), compared 

to others. Moreover, the bran of pigmented rice promoted the formation of glutamic acid, 

phenolic acids and γ-glutamyl peptides (γ-glu-gly, γ-glu-his and γ-glu-tyr). Esters, alcohols 

and organic acids were found to be the predominant aroma compound in rice wines. The 

bran promoted the formation of guaiacol and 4-vinylguaiacol, and they were significantly 

and substantially higher in unpolished pigmented rice wine (table 5-10). This is consistent 

with Yotmanee et al. (2015). However, the GC-Olfactometry showed that only guaiacol was 

found to be the characteristic aroma compound which was responsible for smoky-spicy 

note in unpolished pigmented rice wine (table 5-14). The aroma profiling analysis showed 

that a higher intensity of smoky-spicy aroma was observed in unpolished pigmented rice 

wine, compared to other samples. This showed that guaiacol which was responsible for 

smoky-spicy note was found to be the characteristic aroma compound in pigmented rice 

wine, and it was formed from the bran of pigmented rice thus the precursors for both 

guaiacol and 4-vinylguaiacol were further studied.  
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In chapter 6, the identification of the corresponding precursors of guaiacol and 4-

vinylguaiacol was studied using standard spiking technique. The results showed that vanillic 

acid and ferulic acid were found to be precursor for guaiacol and 4-vinylguaiacol, 

respectively. These phenolic acid compounds were likely derived from the bran of 

pigmented rice during the brewing process. This is in agreement with Butsat and 

Siriamornpun (2010) and Zhang et al. (2010). Moreover, the aroma profiling analysis also 

showed that guaiacol likely contributes smoky-spicy note in unpolished pigmented rice 

wine rather than 4-vinylguaiacol. 

 

7.2 Contribution to knowledge 

According to the abundance literature regarding the taste and aroma compounds in 

pigmented rice wine, this study provides useful information for person who is interested in 

flavour and brewing sciences, due to the fact that this information can be used to 

understand the flavour in other alcoholic beverages. The contributions to scientific 

knowledge are summarized as follows: 

I. The reliable methods and techniques for the analysis of volatile compounds 

(SPME/GC-MS), semi-volatile compounds (SPE/GC-MS) and GC-Olfactometry for 

pigmented rice wine were successfully developed. 

II. The method of analysis for γ-glutamyl peptides in pigmented rice wine was 

successfully developed (without derivatisation). This method is more convenient 

when compared to that provided by Miyamura et al. (2015). 
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III. The selected condition of the brewing process for the pigmented rice wine was 

observed. This process used the parallel fermentation which shorts the time for the 

fermentation. 

IV. The effect of the bran from pigmented rice on the taste and aroma compounds in 

pigmented rice wine was investigated. This showed that the bran promoted the 

formation of guaiacol, responsible for smoky-spicy note which was a characteristic 

aroma in pigmented rice wine.  

 

7.3 Limitations of the research 

There are some limitations that need to be considered in the present research: 

I. The polished rice wines and pigmented rice wine were purchased for the analysis of 

taste and aroma compounds however commercial pigmented rice wine was limited 

and difficult to find. Ideally, three or four samples per each treatment would have 

been needed for the study. 

II. The impact of the bran from pigmented rice on the taste in pigmented rice wine was 

studied however taste thresholds and taste profiling analysis were not studied due 

to local restrictions on producing pigmented rice wines. The samples in this study 

were precluded for health and safety reasons because (i) they were produced using 

brewing strains which had not officially been declared as food-grade, and (ii) as a 

result, they were brewed in a microbiology laboratory as the non-food grade 

brewing strains were not allowed to be used in the food processing plant in our 

department, thus resulted in samples not being tasted by the panel. Therefore, the 

taste thresholds from the published studies were used instead, and taste attributes 

were omitted from the sensory analysis.  
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7.4 Future studies  

During this research, several interesting phenomena were observed regarding the 

brewing process for pigmented rice wine and the impact of the bran from pigmented rice 

on the characteristic taste and aroma compounds in pigmented rice wine. However, not all 

were explored fully due to the limitation with respect to the time frame and scope of the 

study. The following can be explored further to fulfil the gap of knowledge and provide the 

interesting results regarding the taste and aroma in pigmented rice wine. 

I. It would be of interest to study the taste and aroma thresholds in pigmented rice 

wine. This will provide the precise taste and aroma thresholds for the pigmented rice 

wine, compared to the published thresholds that were used in this study which were 

done in different food models. 

II. To identify the active aroma compounds in pigmented rice wine, the odour active 

value (OAV) should be studied in the future. Moreover, the accurate quantification 

of aroma compounds should be further studied as well. This will be used to calculate 

the OAV, as described in the following equation. 

 

𝐷𝑂𝐴 =  
𝑟𝑜𝑏𝑟𝑤𝑏𝑡𝑟𝑎𝑡𝑤𝑜𝑏 𝑜𝑜 𝑤𝑏𝑒𝑤𝑖𝑤𝑒𝑖𝑎𝑝 𝑎𝑟𝑜𝑎𝑎 𝑟𝑜𝑎𝑝𝑜𝑖𝑏𝑒

𝑡ℎ𝑤 𝑟𝑜𝑟𝑟𝑤𝑝𝑝𝑜𝑏𝑒𝑤𝑏𝑤 𝑡ℎ𝑟𝑤𝑝ℎ𝑜𝑝𝑒 
 

 

III. To understand the consumer perceptions and acceptability of pigmented rice wine, 

consumer tests in both Asian and Caucasian should be carried out. This can be used 

to develop the quality of pigmented rice wine which is most acceptable to 

consumers of differing ethnic origin. 
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