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ABSTRACT 

 

Poultry provides an important protein source consumed globally by human population. 

Simultaneously poultry act as a substantial reservoir of antibiotic resistant Escherichia coli 

(E. coli) strains including commensal with beneficial roles on poultry health and 

productivity, and pathogenic not only to poultry but zoonotically to man. This study 

investigated the role of phytochemicals as possible alternatives to antibiotics and natural 

anti-bacterial agents to control E. coli; carvacrol oil (the active ingredient of oregano) and 

oregano oil. The possible anti-E. coli roles of these phytochemicals were associated with 

missense mutations in marR and cadC genes, mutations in acrA and TolC genes and in 

ampC, ampH, pbpC and pbpG genes, which are bacterial strategies to overcome antibiotics. 

A total of 31 representative E. coli strains from 3 different sources of poultry (12 APEC 

strains, 9 commensal chicken strains, and 10 commensal turkey strains) were shown to be 

phenotypically and genotypically diverse, and sequentially differentiating between types 

proved to be difficult. These phytochemicals inhibited the growth and biofilm formation at 

very low concentrations (MIC values ranging between 0.2 - 0.5µg/ml) in comparison with 

antibiotics. At sub-MIC levels, these phytochemicals did not induce metabolic changes 

(SCFAs production) in the E. coli strains, but synergistic interactions between carvacrol 

and ampicillin were observed in controlling the most ampicillin-resistant E. coli strains. 

Though, when this combination therapy was investigated using batch culture with chicken 

caecal content challenged with an ampicillin-resistant APEC strain, it showed an adverse 

effect. Carvacrol treatment showed positive impact on the bacterial population by 

enhancing the growth of probiotic bacteria (Lactobacillus sp. and Lactobacillus salivarius) 

and bacteria with anti-Salmonella activity (Streptococcus sp. and Coprococcus sp.). Thus, 
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providing evidence that carvacrol as a feed additive might enhance avian gut health by 

controlling antibiotic-resistant APEC strains, but this needs to be supported by in vivo 

studies. 

 

 

They say “A picture is worth a thousand words”, so I tried to summarise my research into 

a cartoon/doodle. 
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CHAPTER 1: General introduction 

 

1.1 Poultry production 

The UK is one of the leading countries in poultry production within the European Union 

(EU) (Kools et al., 2008). Chicken is the most UK’s consumed meat, marking 40% - 50% 

of the total meat consumption (Valceschini, 2006). To meet the continuous increase in local 

and global demand for white meat and feed the growing population, improvements in white 

meat productivity have increased significantly in the recent years (Delgado, 2005). As a 

result, huge efforts have been put in order to achieve higher level of effectiveness in poultry 

production such as improving diet and husbandry practices (Thornton, 2010) which 

collectively led to improving feed conversion ratio (FCR) to 1.4 (Science, 1999). Though 

the use of in-feed antibiotic medication also made a contribution to an improved 

productivity (Bunyan et al., 1977), but this resulted in negative consequences of selecting 

highly resistant bacteria. As a result, the World Health Organization (WHO) set guidelines 

and recommendations to stop the use of antibiotics as growth promoters in 1997 (Caron et 

al., 2009).  After that, the EU imposed a ban on the use of prophylactic antibiotics in animal 

feed in 2006 (Millet and Maertens, 2011). These precautionary measurements are being 

taken into consideration as they are important for the poultry welfare and its sustainability, 

and moreover for human (Casewell et al., 2003) as they are at the top of the food chain 

hierarchy. One aspect of current research focuses on the effect of non-medicated diet on 

the intestinal microbiota since diet has a direct impact on productivity and animal health 

(Borda-Molina et al., 2018), so there is a need to understand the impact of this change 

through the food chain.  
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1.2 Feed additives in poultry 

1.2.1 Antibiotics 

Antibiotics are chemical compounds that kill or inhibit bacterial growth. They were 

discovered in the early 20th century as a cure to certain diseases (Davies and Davies, 2010). 

Since the discovery of penicillin by Alexander Fleming, many other antibiotics belonging 

to many different classes and with differing anti-bacterial properties have been discovered 

and chemically synthesised or manufactured de novo (Macfarlane, 1984). The growth 

promoting effect of antibiotics was discovered in the 1940s (Hughes and Datta, 1983), and 

later in the 1950s and 1960s, they were authorised with set guidelines by the EU to be used 

in animal feeds (Castanon, 2007). However, the 1980s marked the emergence of global 

antibiotic resistant bacteria (ARB) carrying antibiotic resistant genes (ARG) (Aarestrup, 

2003). This raised worries as these ARG would be transferred through the food chain from 

animals to man (Greko, 2001). A European surveillance study conducted in 2005 proved 

the presence of ARB of animal origin among patients admitted to intensive care units (ICU) 

(Hanberger et al., 2009). ARB were the reason behind high numbers of medical illnesses 

and even death (Cosgrove, 2006).  

 

Antibiotics used as a prophylactic agent have shown to have positive effects on the growth 

performance of chicken as a presumed result of reduced pathogen load,  and reduction in 

competition for nutrients in the small intestine, reduction of inflammation, and 

improvement of digestion (Thomke and Elwinger, 1998). Also, they were used to fight 

bacterial infections as a therapeutic drug and at sub-therapeutic levels as feed ingredients, 

because they were shown to enhance growth, but unfortunately this led to the rise of the 
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first incident of resistant Salmonella enterica ser. Typhimurium in 1963 (Dewey et al., 

1997).  

 

The usage of antibiotics results in disturbance of homeostasis of the human microbiota 

(Dethlefsen et al., 2008). In human, antibiotic induced diarrhea is a common phenomenon 

associated with bacterial dysbiosis (Pham and Lawley, 2014). Antibiotics affect the 

colonisation of the native microbiota, competition for food and space, and increases 

availability of ARG in pathogens (Sommer et al., 2009). This factor causes major shifts in 

the composition of microbiota in comparison with the other factors (Dave et al., 2012). For 

example, the decrease in Lactobacillus growth level gives space for Candida species to 

flourish in the caecum, due to the production of prostaglandin E2 (Kim et al., 2014). This 

is due to the fast effect and potency of antibiotics in killing or inhibiting the growth of 

bacterial communities. However, the gut microbiota can re-gain its composition after a 

short period of time from finishing the antibiotics course, due to its elasticity and flexibility 

(Dethlefsen et al., 2008). Unfortunately, long-term usage of antibiotics causes incomplete 

recovery (Dethlefsen and Relman, 2011). 

 

Bacteria are evolving continuously and developing antibiotic resistance at a high level, 

which most professionals in the field of disease control agree is due to ‘abuse’ of these 

antibiotics that led to the prevalence of ARB and ARG (Levy and Marshall, 2004). There 

are many factors that contributed to this issue with probably the over and inappropriate use 

of antibiotics in agriculture, and human and animal medication (Alekshun and Levy, 2007) 

being considered one of the primary causes. There is a continuous pressure being applied 

to reduce antibiotic usage in many areas, including general practice and hospitals 
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(Goossens et al., 2005), as the development of new antibiotics is a long procedure hindered 

by a very high resistance against existing antibiotics (Spellberg et al., 2004). There is an 

urgent need to find alternatives to antibiotics with a direct beneficial effect on the animal 

gut microbiota as their principal mode of action. 

 

1.2.1.1 Antibiotic resistance 

ARB carrying ARG increases the reservoir of resistance genes in the human microbiome 

(Sommer et al., 2010). In fact, many nosocomial infections these days are due to the 

dissemination of multi-drug resistant (MDR) Gram-negative bacteria such as 

Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriacea producing 

extended spectrum β-lactamases (ESBL) (Tacconelli et al., 2014). While, 40-60% of the 

nosocomial infections are MDR of Gram-positive bacteria such as methicillin-resistant 

Staphylococcus aureus (MRSA) (Clancy et al., 2006). The prolonged use of antibiotics 

selects for resistant bacteria (Levy, 1985), but on the other hand, the selected bacteria and 

resistance genes reservoir will decrease in numbers once the treatment stops (Alekshun and 

Levy, 1997). Therefore, the usage of antibiotics should be strictly controlled and limited in 

the medical and veterinary areas (Khachatourians, 1998).  

 

There are mechanisms which lead to the MDR phenomenon, which are encoded by 

plasmids and transposons (DeFlaun and Levy, 1989), bacteriophages (Levy and Marshall, 

2004), and through gene mutations, which can be transferred from one bacterium to another 

through horizontal gene transfer (HGT) (Chadwick and Goode, 1997). Antibiotic 

resistance plasmids have received a lot of interest, due to their medical and practical 

importance (Norman et al., 2009).  Plasmids are covalently-closed circular DNA, extra-
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chromosomal elements possessing the ability to replicate independently inside most 

bacterial cells, and some archaea and eukaryotic cells. They differ in size, which is 

measured by kilobase (kb) pairs, ranging from a small number of kb to more than hundreds 

of kb (Wegrzyn, 2005). They also differ in the genes they carry, such as antimicrobial 

resistance or virulence gene, which will give an extra advantage to the bacterial cell under 

the appropriate conditions (Amábile-Cuevas and Chicurel, 1992). Many of the virulence 

factors and AMR genes described later in Chapter 2 are plasmid-mediated. 

 

1.2.2 Probiotics, prebiotics, and synbiotics 

Probiotics, a term of Greek origin, means “for life” (AFRC, 1989). Probiotics are defined 

as “Live microorganisms which when administered in adequate amounts confer a health 

benefit on the host”, by the Food and Agriculture Organisation (FAO)/WHO (Group, 

2001). Though probiotic activity is still unclear, these health beneficial bacteria work on 

so many levels, including providing microbiota with nutrients (AFRC, 1989), repressing 

signaling of innate immune system, activation of T-cell proliferation, and contributing to 

the elimination of pathogenic microbes (Schuppan et al., 2009). Probiotic bacteria should 

have the ability to colonise the gastrointestinal tract (GIT), endure GIT harsh conditions 

(low pH and presence of bile acids), and compete with other microorganisms (Nurmi et al., 

1983). Examples of probiotic bacteria are Lactobacillus and Bifidobacterium, which are 

lactic acid bacteria (LAB), and they can restore the structure of the gut microbiota (Vyas 

and Ranganathan, 2012). LAB may restrict the growth of either Gram-positive or Gram-

negative bacterial species, owing to their ability to produce by-products with antimicrobial 

activities including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, and 

biosurfactants (Lee and Salminen, 1995). Other than bacteriocins, some LAB produce 
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reuterin, a compound with antimicrobial properties (Talarico et al., 1988). LAB as 

probiotics can be a single strain or several LAB strains that are ideally isolated from the 

gut microbiota of the animal to be targeted with this treatment. An in vitro study conducted 

on chickens supplied with Lactobacillus salivarius as a probiotic showed that there was an 

inhibition of E. coli and Salmonella enterica ser. Enteritidis growth, and specifically 

reducing their ability to adhere to the gut epithelium (Garriga et al., 1998). Other bacteria 

with such advantage include Bacillus spp., Enterococcus faecium, and  fungus such as 

Saccharomyces cerevisiae (Simon et al., 2001). 

 

The concept of prebiotics was introduced in 1907 by Elie Metchnikoff (Anukam and Reid, 

2007), and ever since that time, these products have attracted attention along with 

probiotics (Vitetta et al., 2012). Prebiotics represent “selectively fermented ingredient that 

results in specific changes in the composition and/or activity of the gastrointestinal 

microbiota, thus conferring health benefit(s) upon the host” (Gibson and Roberfroid, 1995). 

These ingredients that are often complex long chain oligosaccharides find their way to the 

large intestine, where certain numbers of the gut microbiota with the appropriate digestive 

enzymes can break them down to derive energy and proliferate (Bandyopadhyay and 

Mandal, 2014). In other words, they selectively nourish these gut microbiota to support 

their growth, increase their metabolic activities, and consequently suppress the growth of 

pathogens (Park and Floch, 2007). Lactobacillus and Bifidobacterium often have the 

capability to digest prebiotics and therefore become enriched in the large intestine. 

Prebiotics can be inulin and transgalacto-oligosaccharides (TOS) of carbohydrate and 

oligosaccharide nature (Bandyopadhyay and Mandal, 2014). Other examples of prebiotics 

are galacto-oligosaccharides (GOS) which can be found in human milk and can enrich the 
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growth of some gut microbiota (Macfarlane et al., 2008), mannan-oligosaccharides (MOS) 

that trigger immune responses, and bind to pathogens (Salmonella expressing type-1 

fimbriae) found in the intestinal tract of young chicks (Spring et al., 2000), and fructo-

oligosaccharides (FOS) improve digestion, increasing Bifidobacterium and Lactobacillus 

numbers but decreasing E. coli numbers, and mitigating Salmonella enterica ser. 

Typhimurium infection in broiler chickens (Choi et al., 1994). 

 

Combining the administration of probiotics and prebiotics is called synbiotics (Vyas and 

Ranganathan, 2012). The synergy between probiotics and prebiotics allows probiotics to 

maximise their beneficial effects on the host (Bandyopadhyay and Mandal, 2014). This is 

because probiotics might not work effectively without supplying them with growth 

requirements (Apajalahti et al., 2004). An example on synergistic therapy is using both 

Bifidobacterium lactis and GOS that was effective in improving the gut microbiota (Jung 

et al., 2008), and controlling cellulitis caused by E. coli in broiler chickens (Estrada et al., 

2001). 

 

1.2.3 Phytochemicals 

Another approach through which microbiota may be enhanced is with the use of natural 

plant products, called phytochemicals (Hashemi and Davoodi, 2010). Phytochemicals is a 

broad term that includes non-digestible carbohydrates and compounds such as lignin, 

resistant protein, polyphenols and carotenoids, some of which are considered anti-oxidants 

(Saura-Calixto et al., 2000). They differ in chemical structure, biological activity, plant 

source, and method of production. In other words, they are natural sources of growth 

promoters coming from plants, herbs, or spices (Hashemi and Davoodi, 2010). Generally, 
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phytochemicals are categorised into five main groups; terpenoids, polyphenols, 

organosulfur compounds, phytosterols, and alkaloids (Somani et al., 2015). The 

phytochemicals that infer good beneficial impacts on human health and are claimed to 

prevent and cure diseases are named nutraceuticals, that was first introduced as a term by 

DeFelice (DeFelice, 1995).  

 

Presently, plant-based natural therapies are of increased popularity, because consumers are 

becoming aware of concerns regarding synthetic additives (Hammer et al., 1999) as well 

as the dangers of antibiotic use as discussed earlier. Scientific research changed the 

perception of food including phytochemicals from being an energy source to that of health 

promoting supplements because of their bioactive roles (Berner and O’Donnell, 1998). 

Therefore, it is crucial to understand the scientific background behind their beneficial roles 

as anti-microbial agents (Mitscher et al., 1987), and how can we use them as an alternative 

to antibiotics given the rising problem of ARB in poultry industry, consumers demands, 

and the EU on the usage of antibiotics for growth promotion.  

 

Phytochemicals come from natural sources and are generally recognised as safe (GRAS) 

which make them good candidates to be used as feed additives in poultry production in 

comparison with antibiotics (Hashemi et al., 2008). The biological mechanism of action of 

phytochemicals depends on their chemical structure (Hashemi and Davoodi, 2010). 

Phytochemicals used as poultry feed additives can improve animal’s health and 

performance because of their anti-microbial, anti-stress (Wang et al., 1998) and anti-

oxidant properties (Valenzuela, 1995), and their ability to modulate gut microbiota 

(Hashemi et al., 2009) and enhance immune responses (Chowdhury et al., 2018). The 
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efficiency of these phytochemicals is determined by intrinsic and extrinsic factors such as 

animal’s nutrition and health, type of diet and environment (Giannenas et al., 2003). On 

the other hand, phytochemicals used in humans have many functions including being anti-

oxidant, anti-estrogenic, anti-inflammatory, immunomodulatory and anti-carcinogenic 

(Laparra and Sanz, 2010). They can act as prebiotics by enhancing the growth of beneficial 

bacteria and suppressing the growth of pathogenic bacteria (Cencic and Chingwaru, 2010). 

Thus, they reward the host by shaping gut microbiota in a beneficial way (Laparra and 

Sanz, 2010). Additional modes of action of phytochemicals include the decrease in 

mutagen and carcinogen formation (Bartsch et al., 1988); stimulation of healing intestinal 

mucosa damage (Asfar et al., 2003); decrease in colonic mucosa DNA oxidative damage 

(Dolara et al., 2005); alteration in colon microbiota; and regulation of metabolic, 

immunological, and adaptive gene expression (López-Oliva et al., 2010).  

 

1.2.3.1 Polyphenols 

Polyphenols are the key group of phytochemicals exhibiting nutritional importance to 

health (Saura-Calixto et al., 2007) with more than 8000 chemical compounds extracted and 

described from this group (Han et al., 2007). They are secondary metabolites produced by 

plants, and can be found in fruits, vegetables, cereals, and beverages (Puupponen-Pimia et 

al., 2002). They display anti-bacterial effects (Fukai et al., 1991) measurable by minimum 

inhibitory concentration (MIC) experiments (Eloff, 1998), anti-fungal effects (Larrondo et 

al., 1995), and anti-oxidant effects with free radical scavenging activity (González-Paramás 

et al., 2004) resorting to their chemical structure (Farag et al., 1989). As anti-bacterial 

agents, they can decrease the adhesion capability of pathogenic bacteria e.g. Clostridium 

perfringens and their numbers in chickens gut (Mitsch et al., 2004), and inhibit the growth 
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of food-borne pathogens such as Staphylococcus aureus and Salmonella enterica ser. 

Typhimurium (Paster et al., 1990). Also, they can improve the efficiency of feed utilisation 

(Hernandez et al., 2004), and therefore enhance the performance of host animals (Terada 

et al., 1993). The phytochemicals investigated in this thesis are carvacrol and oregano 

which are of polyphenol nature. 

 

 1.3 Escherichia coli (E. coli) 

The German paediatrician, Theodor Escherich, was the first one to observe E. coli in 1885 

(Escherich, 1886). E. coli is a facultative anaerobe (Finegold et al., 1983a), Gram-negative 

bacterium (Scheutz and Strockbine, 2005) belonging to the phylum Proteobacteria 

(Marchesi et al., 2016) and the family Enterobacteriaceae (Ewing, 1986), and it is part of 

the human and animal intestinal natural microbiota (Ørskov and Ørskov, 1992). The 

beneficial E. coli strains such as E. coli strain Nissle can be used as a probiotic (Wehkamp 

et al., 2004). Probiotics have been reported to have beneficial health effects, which include 

defence against enteric pathogens, stimulation and improvement of intestinal immune 

system and peristaltic activity, and enriched digestion through enzymes to break down 

indigestible food nutrients such as lactase in those who are lactose intolerant (Doyle et al., 

2013). However, some E. coli strains have the ability to cause diseases, like diarrhoea, 

urinary tract infections (UTI), bacteraemia, and infant meningitis (Ørskov and Ørskov, 

1992). These pathogenic strains attained virulence factors for producing toxins, protective 

cell covering, and iron-acquisition systems (Babai et al., 1997). The pathogenic strains 

spread among contaminated food mainly uncooked or undercooked meat (Gould et al., 

2013) and municipal potable water (Brunkard et al., 2011).  

 



30 
 

1.3.1 Types of E. coli 

E. coli is a complex specie with many variant types: there are three main groups of E. coli 

which are commensal, diarrhoeagenic, and extraintestinal pathogenic strains, classified 

based on genetic and clinical principles (Russo and Johnson, 2000). Commensal E. coli is 

part of the human and animal intestinal natural microbiota (Ørskov and Ørskov, 1992), and 

tend to harbour none or a very small number of virulence factors in comparison with the 

pathogenic ones (Selander et al., 1987) and also belongs to different phylogenetic groups 

(Herzer et al., 1990).  

 

1.3.1.1 Human pathogenic E. coli  

E. coli as a human pathogen is commonly responsible for most UTI clinical cases caused 

by the urinary pathogenic E. coli (UPEC) (Ronald, 2002). Under the diarrhoeagenic strains, 

there are different sub-pathotypes, and they are enterohemorrhagic E. coli (EHEC), 

enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC) and enteroaggregative E. 

coli (EAEC) that induce diarrhoea, whereas extraintestinal pathogenic E. coli (ExPEC), 

enteroinvasive E. coli (EIEC) and UPEC are associated with non-intestinal infections. It 

should be pointed out that UPEC are often found in the gastro-intestine and colonise the 

urethra and potentially kidneys through faecal contamination. Each pathotype has its own 

virulence characteristics, and thereby different clinical behaviours (Kaper et al., 2004). The 

focus of this thesis will be on E. coli from avian sources; commensal and pathogenic types.  
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1.3.1.2 Avian pathogenic E. coli (APEC) 

Pathogenic E. coli specific for poultry are defined as avian pathogenic E. coli (APEC), that 

are routinely found as part of the chicken or birds gut microbiota and not necessarily 

associated with an overt disease (Dho-Moulin and Fairbrother, 1999). APEC are 

considered to be a sub-type of human ExPEC as they share several virulence genes 

(Rodriguez-Siek et al., 2005), although there remains a debate whether APEC are true 

zoonotic microorganisms (Tivendale et al., 2010, Krishnan et al., 2015, Mohamed et al., 

2018). APEC bacteria usually carry large plasmids which harbour some genes that 

contribute to their pathogenicity (Rodriguez-Siek et al., 2005), and some of these plasmids 

can be transmitted to other bacteria through conjugation (Trieu‐Cuot et al., 1987). APEC 

are regarded as opportunistic bacteria that readily colonise intestine as well as lungs and 

air sac epithelium layer of poultry, due to their ability to produce adhesins (Stordeur et al., 

2002b). Progression to causing disease is often associated with other stress-related stimuli 

such as high ammonia in the atmosphere (Oyetunde et al., 1978), or infections with 

Mycoplasma species (Weinack et al., 1984). It has been suggested that some APEC are 

transmitted vertically and colonise the yolk-sac of hatchlings which tend to progress to 

disease without other stimuli. As a result of APEC infections, the poultry industry suffered 

a lot from the loss of chickens and birds, which affected the food economy (Dho-Moulin 

and Fairbrother, 1999). These APEC infections were first controlled using antibiotics, but 

unfortunately, the misuse of the antibiotics led to the rise of ARB strains instead (Bass et 

al., 1999). The emergence of antibiotic resistance reflects the bacterial evolution at the 

genetic level (McArthur et al., 2013), due to environmental stresses (Herren et al., 2006) 

and the transfer of multiple ARG among enteric bacteria that occurs through transmission 

of integrons (Bass et al., 1999), plasmids and transposons (Diarrassouba et al., 2007). 
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Currently, APEC have a very high incidence of multiple antibiotic resistance (Magray et 

al., 2018, Subedi et al., 2018).  

 

1.3.1.2.1 Avian colibacillosis caused by APEC 

One of the diseases associated with APEC strains in poultry industry is a disease 

collectively named avian colibacillosis (Gross, 1994) responsible for worldwide poultry 

loss as a result of their contribution to high morbidity and mortality rates (Ewers et al., 

2003) and can affect birds at any age (Otaki, 1995). Avian colibacillosis is a term that 

encompasses localised and systemic infections (Nolan et al., 2013), but systemic infections 

are the most prevalent among poultry (chicken and turkey) such as pericarditis, 

perihepatitis, peritonitis, and salpingitis (Dho-Moulin and Fairbrother, 1999). The common 

route of infection is through inhalation of dust particles containing APEC strains found in 

contaminated faeces (Barnes et al., 2003). APEC strains first adhere and colonise or 

establish themselves in the upper respiratory tract causing air sacculitis or air sac disease 

(Nolan et al., 2013). Depending on several factors such as possession of virulence genes 

by these APEC strains and the health status of the host, they might migrate via the blood 

stream causing septicaemia and spread to other internal organs resulting in systemic 

infections (Barnes et al., 2003). However, they eventually colonise the large intestine 

which becomes the main reservoir for these bacterial strains (Dho-Moulin and Fairbrother, 

1999) which can be excreted with the faeces to repeat the cycle of infection.  
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1.3.2 E. coli as a model microorganism 

The focus of this study was upon E. coli for the following reasons. As previously 

mentioned, E. coli is normally part of the human and animals’ intestinal natural microbiota 

(Ørskov and Ørskov, 1992), being the most dominant aerobic bacterium (Savageau, 1983) 

with 106 to 109 colony forming unit (CFU) per cm of the poultry (chicken and turkey) 

intestine (Leitner and Heller, 1992), and it is one of the first species to colonise the gut of 

human (Mitsuoka, 1973) and animal (Hudault et al., 2001). Also, it is one of the best 

studied bacterial species and often used as a model microorganism because of their 

different commensal and pathogenic types, and with E. coli K12 being the most common 

reference strain (Hobman et al., 2007). The pathogenic type such as APEC strains are the 

causative agent of colibacillosis in poultry (Gross, 1994). Moreover, E. coli can be easily 

grown in the laboratory, as it needs simple growth requirements, grows at a fast rate, and 

extensive information is already provided in literature (Donachie and Begg, 1970).  

 

In terms of antibiotic resistance, E. coli is the most common carrier of ESBL genes which 

are located on plasmids that facilitate their transfer (Donachie and Begg, 1970), and these 

genes are widespread among chickens (Machado et al., 2008). Food containing ARB of 

animals origin affect antibiotics action used among humans, because of the spread of ARB 

and their ARG, or provides a reservoir for ARB and their ARG in human gut that might 

cause opportunistic diseases in the future (Smith et al., 2002). In human hosts, it is the main 

causative agent and is responsible for most cases of UTI infection (Stamm and Hooton, 

1993). 
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1.4 General overview of the thesis 

This thesis is intended to shed light upon current issues in the poultry industry which are 

threatening health and welfare of birds and affecting their productivity. The first issue is 

the spread of antibiotic resistance among E. coli strains in poultry industry. As a result of 

the use and abuse of antibiotics and how we can control E. coli using alternatives. The 

second issue is controlling pathogenic E. coli strains in poultry; APEC strains are the 

causative agent of colibacillosis disease and responsible for economic losses in poultry 

industry. The focus was on using phytochemicals from polyphenol group (carvacrol and 

oregano) as potential feed additives in poultry production. Thus, the testable hypotheses of 

this thesis are: 

• Phenotypic and genotypic characteristics can be used to establish differential 

criteria between APEC and commensal E. coli strains.  

• Phytochemicals (carvacrol an oregano) used in this study can exhibit anti-bacterial 

properties against the E. coli strains. 

• The mechanisms of action of these phytochemicals can be investigated. 

• The use of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin can be used to increase the efficacy of ampicillin in controlling 

ampicillin-resistant E. coli strains. 

• The effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin can be used to increase the efficacy of ampicillin in controlling a mixture 

of an APEC and two commensal E. coli strains. 

• The effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin can be used to increase the efficacy of ampicillin in controlling 
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ampicillin-resistant E. coli strains in pooled caecal content challenged with an 

APEC strain. 

 

1.5 General aims and objectives 

The aims and objectives of this thesis were: 

• To characterise different types of E. coli strains (commensal and APEC) coming 

from poultry sources (chicken and turkey) in terms of their phenotype and genotype 

(see Chapter 2). 

• To study the efficacy of phytochemicals (carvacrol and oregano) as anti-bacterial 

agents on the growth of the E. coli strains, their biofilm formation, and their 

production of short-chain fatty acids (SCFAs) (see Chapter 3). 

• To investigate the mechanistic roles of these phytochemicals on the E. coli strains 

by looking at their phenotypic and genotypic changes (see Chapter 4). 

• To study the efficacy of carvacrol when combined with ampicillin on ampicillin-

resistant E. coli strains by looking at their growth, and production of SCFAs as part 

of their metabolism, and to study the efficacy of combined treatment of carvacrol 

and ampicillin on a mixed E. coli culture of an APEC and two commensal E. coli 

strains by looking at their total numbers and ability to recover the starting strains 

(see Chapter 5). 

•  To study the efficacy of combined treatment of carvacrol and ampicillin on pooled 

caecal content challenged with an APEC strain by looking at total numbers of E. 

coli and ampicillin-resistant E. coli, production of SCFAs, and changes in bacterial 

populations at different taxonomic levels (see Chapter 6). 
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Note: This general introduction aimed at covering all the aspects and linking different 

angles related to this topic in brief without going into details of each section. More detail 

will be given in each research chapter (see Chapters 2 to 6) in relation to the discussed 

topic.  
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CHAPTER 2: Identification and characterisation of E. coli strains 
 

 

 

2.1 Introduction 

 

E. coli is normally part of the intestinal natural bacterial microbiota of humans and animals 

intestinal tract (Ørskov and Ørskov, 1992). It is a facultative anaerobe enabling it to live in 

both aerobic and anaerobic environments (Finegold et al., 1983b). It can overcome the 

strict anaerobic conditions of the gut by colonising the epithelium layer close to blood 

supply where oxygen is available (Savage, 1977). Moreover, it can utilise mucin within the 

mucous layer covering the epithelium layer as a sole carbon and energy source (Montagne 

et al., 2004). However, E. coli flourishes and thrives in many environmental conditions 

contaminated by faecal matter (Ibekwe et al., 2011). Thus, controlling effluent 

contaminated with faecal matter is essential (James, 2006) whether this is on farm, 

slaughterhouses, hospitals, workplaces or homes. It is particularly important to control 

faecal contamination from farm to fork along the human food chain.  Irrespective of 

whether E. coli which we are highlighting in this study is defined as a harmless commensal 

or a pathogen, a major concern for E. coli and for that matter all bacteria along this farm to 

fork pathway is the carriage of ARG. Animal production systems have relied upon 

antibiotics for healthy animal development, but this comes with the known outcome of 

selection of resistant organisms, increasing the reservoir of resistance genes that may enter 

the food chain and ultimately the human microbiome (Sommer et al., 2010). ARB pose a 

major risk because of the potential to become MDR over time (Fair and Tor, 2014) and 

resistant to antibiotic therapy.  
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This chapter aims to study the characteristics of E. coli strains isolated from the gut of 

poultry (Chickens and Turkeys) as it is intended to use representative poultry E. coli to 

assess the potential of phytochemicals as alternatives to antibiotics as a way of controlling 

them given the fact that they may carry antibiotic resistance and virulence genes that might 

spread among the food chain. 

 

 

2.2 Materials and methods 

 

2.2.1 E. coli strains 

 

A total of thirty-three (33) E. coli strains (Table 2.1) were used in this study: 

• 12 APEC strains isolated from the respiratory system (lung and air sacs; where the 

colibacillosis disease usually starts) of the diseased birds (chickens) suffering from 

colibacillosis with clear signs of infection (generously provided by Prof. Roberto 

La Ragione, University of Surrey),  

• 9 wild-type presumptive commensal E. coli strains isolated from healthy chicken 

gut (caecum) and 10 E. coli strains isolated from healthy turkey gut (caecum) (a 

gift from colleague, Fatemah Alkandhari; a previous PhD student who had 

undertaken poultry feed trials at the CEDAR farm, University of Reading),  

• 2 E. coli strains wild-type K12 (MG 1655 WT) and its acrAB mutant (MG 1655M) 

(generously provided by Prof. Chris Thomas, University of Birmingham). 
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Table 2.1 E. coli strains 

No. Code Source/ Host Type 

1 7 Chicken respiratory system APEC 

2 14 Chicken respiratory system APEC 

3 43 Chicken respiratory system APEC 

4 45 Chicken respiratory system APEC 

5 46 Chicken respiratory system APEC 

6 47 Chicken respiratory system APEC 

7 48 Chicken respiratory system APEC 

8 49 Chicken respiratory system APEC 

9 51 Chicken respiratory system APEC 

10 52 Chicken respiratory system APEC 

11 53 Chicken respiratory system APEC 

12 54 Chicken respiratory system APEC 

13 C1 Chicken gut (Caecum) Wild-type commensal strain 

14 C2 Chicken gut (Caecum) Wild-type commensal strain 

15 C3 Chicken gut (Caecum) Wild-type commensal strain 

16 C4 Chicken gut (Caecum) Wild-type commensal strain 

17 C5 Chicken gut (Caecum) Wild-type commensal strain 

18 C6 Chicken gut (Caecum) Wild-type commensal strain 

19 C7 Chicken gut (Caecum) Wild-type commensal strain 

20 C8 Chicken gut (Caecum) Wild-type commensal strain 

21 C9 Chicken gut (Caecum) Wild-type commensal strain 

22 T1 Turkey gut (Caecum) Wild-type commensal strain 

23 T2 Turkey gut (Caecum) Wild-type commensal strain 

24 T3 Turkey gut (Caecum) Wild-type commensal strain 

25 T4 Turkey gut (Caecum) Wild-type commensal strain 

26 T5 Turkey gut (Caecum) Wild-type commensal strain 

27 T6 Turkey gut (Caecum) Wild-type commensal strain 

28 T7 Turkey gut (Caecum) Wild-type commensal strain 

29 T8 Turkey gut (Caecum) Wild-type commensal strain 

30 T9 Turkey gut (Caecum) Wild-type commensal strain 

31 T10 Turkey gut (Caecum) Wild-type commensal strain 

32 MG1655 WT University of Birmingham Wild-type K12 

33 MG1655 acrAB M University of Birmingham Mutant K12 (acrAB mutant) 

APEC strains refer to E. coli strains isolated from infected birds (chickens); wild-type commensal strains 

refer to E. coli strains isolated from healthy birds (chickens and turkeys).
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2.2.2 Confirmation of the identity of E. coli strains 

 

2.2.2.1 Growth on general purpose and selective media  

 

For preliminary identification, an inoculum (a loopful of colonies) from an overnight E. 

coli culture (10 – 12hr) grown on nutrient agar (NA) (Sigma-Aldrich, UK) plate at 37⁰C 

was streaked to give single colonies on MacConkey agar (Sigma-Aldrich, UK) and Eosin-

methylene blue (EMB) agar (Sigma-Aldrich, UK) plates. The plates were incubated 

overnight at 37°C. After the incubation period, each plate was checked for growth and pink 

colonies on MacConkey agar, and metallic green colonies on EMB agar, gave a 

presumptive indication of being E. coli strains. 

 

2.2.2.2 Catalase test 

An inoculum (a loopful of colonies) from an overnight E. coli culture (10 – 12hr) grown 

on NA plate was placed on a glass slide. Then, a drop of Hydrogen Peroxide (3%) (Sigma-

Aldrich, UK) was placed on top of the bacterial biomass. Appearance of bubbles over the 

bacterial biomass immediately and certainly no later than 3min indicated the presence of 

catalase enzyme. 

 

2.2.2.3 Oxidase test 

An inoculum (a loopful of colonies) from an overnight E. coli culture (10 – 12hr) grown 

on nutrient agar plate was placed on filter paper. Then a drop of 1% tetramethyl-p-

phenylene diamine dihydrochloride (Sigma-Aldrich, UK) was placed on top of the 

bacterial biomass. Appearance of blue colour indicated the presence of oxidase enzyme. 
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2.2.2.4 Analytical Profile Index (API) 20E 

An inoculum (a loopful of colonies) from an overnight E. coli culture (10 – 12hr) grown 

on NA plate was suspended in sterile-distilled water, and the optical density (OD) of the 

suspension was adjusted to 0.1 at 600nm (108 CFU/ml). Then, the bacterial suspension was 

introduced into API 20E (BioMѐrieux, UK) strips according to the manufacturer's 

instructions. The strips were incubated overnight at 37°C. Results were taken as positive 

or negative following the manufacturer's instructions. 

 

2.2.3 Phenotypic characterisation 

2.2.3.1 Sugar utilisation 

An inoculum (a loopful of colonies) from an overnight E. coli culture (10 – 12hr) grown 

on NA plate was streaked on M9 minimal medium (see Appendix) or M9 minimal medium 

supplemented with thiamine (25μg/ml) if mutant E. coli K12 strains were to be tested to 

which different sugars (sucrose, sorbose, and dulcitol) at a concentration of 0.2% w/v were 

provided as the sole carbon and energy source. The plates were incubated at 37°C for up 

to 48hr and scored as positive if growth was observed or negative if no growth was 

observed. 

 

2.2.3.2 Antibiotic susceptibility testing (AST) using antibiotic discs 

 

The antibiotic susceptibility of the E. coli strains was determined using Kirby-Bauer 

method (Barry et al., 1979). Briefly, an inoculum (a loopful of colonies) from an overnight 

E. coli culture (10 – 12hr) grown on NA plate was suspended in Luria-Bertani (LB) broth 

(Sigma-Aldrich, UK) and the OD of the suspension was adjusted to 0.100 at 600 nm (108 

CFU/ml). Then, 0.1 ml of the suspension was transferred to NA or LB plates and spread 
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evenly. After that, antibiotic discs purchased from Thermo Fisher (cefotaxime 30μg, 

nalidixic acid 30μg, chloramphenicol 30μg, colistin 10μg, ampicillin 25μg, streptomycin 

25μg, and tetracycline 30μg) were placed on the air-dried surface of the spread bacterial 

inocula, and plates were incubated overnight at 37°C. Diameters of inhibition zones were 

interpreted according to the guidelines of Clinical and Laboratory Standards Institute 

(CLSI), 2016. The zone diameter interpretive criteria for each antibiotic disk were the 

following; cefotaxime 30μg (S = ≥ 2.6 cm, I = 2.3-2.5 cm, R ≤ 2.2 cm), nalidixic acid 30μg 

(S = ≥ 1.9 cm, I = 1.4-1.8 cm, R ≤ 1.3 cm), chloramphenicol 30μg (S = ≥ 1.8 cm, I = 1.3-

1.7 cm, R ≤ 1.2 cm),, colistin 10μg (S = ≥ 1.1 cm, R ≤ 1.0 cm), ampicillin 25μg (S = ≥ 1.7 

cm, I = 1.4-1.6 cm, R ≤ 1.3 cm), streptomycin 25μg (S = ≥ 1.5 cm, I = 1.2-1.4 cm, R ≤ 1.1 

cm), and tetracycline 30μg (S = ≥ 1.5 cm, I = 1.2-1.4 cm, R ≤ 1.1 cm). 

 

2.2.3.3 Detection of biofilm using modified Congo red agar 

The method of Milanov was followed for detection of biofilm in E. coli  (Milanov et al., 

2015). In brief, an inoculum of overnight E. coli culture (10 – 12hr) grown on NA plate at 

37⁰C was spotted on modified Congo red agar plates. The plates were incubated overnight 

at 37⁰C, then for 4 days at 25°C. After the incubation period, each plate was checked for 

growth, colour of colonies, and appearance, to detect lacy colonies which are a correlate 

for biofilm formation.  
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2.2.4 Genotypic characterisation 

2.2.4.1 DNA extraction and quantitative and qualitative assessments 

Genomic DNA of the E. coli strains (Table 2.1) was extracted using Gentra Puregene 

Yeast/Bact. Kit (Qiagen®, UK) following the manufacturer’s recommendations. For 

quantitative assessment of the genomic DNA extracts, DNA concentration was measured 

spectrophotometrically using a Nanodrop machine (NanoDrop Technology, USA) 

following the manufacturer’s recommendation. And for qualitative assessment, a sample 

of the genomic DNA extracts (1µl) was separated on a 1% agarose gel in 0.5X tris-borate 

EDTA (TBE) buffer containing 0.03μg/ml ethidium bromide stain.  The genomic DNA 

extracts were stored at -20⁰C; to be used as templates for polymerase chain reaction (PCR) 

experiments. 

2.2.4.2 Detection of virulence factors by PCR 

The presence of virulence genes is listed in Table 2.2 and was detected by PCR using GE 

Healthcare illustra™ PuReTaq Ready-To-Go™ PCR Beads (Thermo Fisher Scientific, 

UK) in the panel of E. coli strains (n= 31) and compared with the control strain MG1655 

WT (E. coli K12). PCR reactions of the target genes using specific primers (Table 2.2) 

were performed in a volume of 25µl with different volumes of 10mM MgCl2 (no MgCl2 

for fim1, papC, csgA, iucD, and cvi/cva; and 1.25µl of 10mM MgCl2 for crl, tsh, irp2, iss, 

astA, kps, and hlyA). The PCR reactions were carried out in a Thermocycler (Thermo 

Scientific, UK) with the following program: 3 min initial denaturation at 94°C, followed 

by 30 cycles of 30 sec denaturation at 94°C, 30 sec annealing at 58°C, 3 min extension at 

68°C, and final extension of 72°C for 5 min. The amplified products were separated in 

1.5% (wt/vol) agarose gel in 0.5X TBE buffer containing 0.03µg/ml ethidium bromide 

stain at 50V for 1hr. 
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Table 2.2 PCR primers used for detection of virulence genes 

Gene ID  Virulence factor Class 
Primers sequence 

(5ˋ --- 3ˋ) 

Product 

size (bp) 

Genomic 

location 

Reference* 

(primers) 

fim1 Type 1 fimbriae Adhesins 
F: AGAACGGATAAGCCGTG 

R: GCAGTCACCTGCCCTCCGGTA 
508 Chromosome 

(Johnson and 

Stell, 2000) 

papC P fimbriae Adhesins 
F: TGATATCACGCAGTCAGTAG 

R: CCGGCCATATTCACATA 
501 Chromosome 

(Ewers et al., 

2005) 

csgA Curli fimbriae Adhesins 
F: ACTCTGACTTGACTATTACC  

R: AGATGCAGTCTGGTCAAC 
200 Chromosome 

(Maurer et 

al., 1998) 

crl Curli fimbriae Adhesins 
F: TTTCGATTGTCTGGCTGTATG  

R: CTTCAGATTCAGCGTCGTC 
250 Chromosome 

(Maurer et 

al., 1998) 

tsh 
Temperature-sensitive 

hemagglutinin 
Adhesins 

F: ACTATTCTCTGCAGGAAGT 

R: CTTCCGATGTTCTGAACG 
824 Plasmid 

(Ewers et al., 

2005) 

iucD Aerobactin protein 
Iron acquisition 

system 

F: ACAAAAAGTTCTATCGCTTC 

R: CCTGATCCAGATGATGCT 
714 Plasmid 

(Ewers et al., 

2005) 

irp2 Yersiniabactin protein 
Iron acquisition 

system 

F: AAGGATTCGCTGTTACCGGA 

R: AACTCCTGATACAGGTGG 
413 Chromosome 

(Ewers et al., 

2005) 

iss 
Increased serum survival 

protein 
Serum resistance 

F: ATCACATAGGATTCTGCC 

R: CAGCGGAGTATAGATGCC 
309 Plasmid 

(Ewers et al., 

2005) 

astA 
Heat-stable 

enteroaggregative toxin 
Toxin 

F: TGCCATCAACACAGTATATC 

R: TCAGGTCGCGAGTGACGG 
116 Plasmid 

(Ewers et al., 

2005) 

cvi/cva Colicin V protein Colicin 
F: TCCAAGCGGACCCCTTATAG 

R: CGCAGCATAGTTCCATGCT 
598 Plasmid 

(Ewers et al., 

2005) 

kps K1 capsular antigen Capsule 
F: TATAATTAGTAACCTGGGGC 

R: GGCGCTATTGAATAAGACTG 
927 Plasmid 

(Knöbl et al., 

2012) 

hlyA α-Haemolysin Toxin 
F: AACAAGGATAAGCACTGTTCTGGCT 

R: ACCATATAAGCGGTCATTCCCGTCA 
1177 Plasmid 

(Yamamoto 

et al., 1995) 
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2.2.4.3 Detection of antimicrobial resistance (AMR) genes by PCR 

The presence of AMR genes is listed in Table 2.3 and was detected by PCR using GE 

Healthcare illustra™ PuReTaq Ready-To-Go™ PCR Beads (Thermo Fisher Scientific, 

UK) in the panel of E. coli strains (n= 31) and compared with the control strain MG1655 

WT (E. coli K12). PCR reactions of the target genes using specific primers (Table 2.3) 

were performed in a volume of 25µl, and carried out in a Thermocycler (Thermo Scientific, 

UK) with the programs listed in (Table 2.4). The amplified products were separated in 

1.5% (wt/vol) agarose gel in 0.5X TBE buffer containing 0.03µg/ml ethidium bromide 

stain at 75V for 1hr. 
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Table 2.3 PCR primers used for detection of AMR genes 

 

Gene ID 
Antimicrobial 

resistance gene 

Primers sequence 

(5` --- 3`) 

Product size 

(bp) 

Genomic 

location 

Reference 

(Primers) 

CTX-M1 Cefotaxime 
F: GGACGTACAGCAAAAACTTGC 

R: CGGTTCGCTTTCACTTTTCTT 
624 Plasmid (Ryoo et al., 2005) 

CTX-M15 

(QnrA) 
Cefotaxime 

F: AGAGGATTTCTCACGCCAGG 

R: TGCCAGGCACAGATCTTGAC 
580 Plasmid (Cattoir et al., 2007) 

mcr-1 Colistin 
F: ATGATGCAGCATACTTCTGTGTGG 

R: TCAGCGGATGAATGCGGTGC 
320 Plasmid (Cannatelli et al., 2016) 

mcr-4 Colistin 
F: ATTGGGATAGTCGCCTTTTT 

R: TTACAGCCAGAATCATTATCA 
487 Plasmid (Carattoli et al., 2017) 

SHV β-lactams 
F: CACTCAAGGATGTATTGTG 

R: TTAGCGTTGCCAGTGCTCG 
885 Plasmid (Pitout et al., 1998) 

TEM β-lactams 
F: TCGGGGAAATGTGCGCG 

R: TGCTTAATCAGTGAGGCACC 
971 Plasmid (Pitout et al., 1998) 

IncF Fertility factor 
F: CCATGCTGGTTCTAGAGAAGGTG 

R: GTATATCCTTACTGGCTTCCGCAG 
462 Plasmid (Carattoli et al., 2005) 

IncI Cefotaxime 
F: CGAAAGCCGGACGGCAGAA 

R: TCGTCGTTCCGCCAAGTTCGT 
139 Plasmid (Carattoli et al., 2005) 

IncK AMR genes 
F: GCGGTCCGGAAAGCCAGAAAAC 

R: TCTTTCACGAGCCCGCCAAA 
160 Plasmid (Carattoli et al., 2005) 

IncX Colistin 
F: AACCTTAGAGGCTATTTAAGTTGCTGAT 

R: TGAGAGTCAATTTTTATCTCATGTTTTAGC 
376 Plasmid (Carattoli et al., 2005) 
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Table 2.4 Thermocycler programs for the PCR primers used for detection of AMR genes 

Gene ID 
10mM MgCl2 

(µl) 

Initial 

denaturation No. of 

cycles 

Denaturation Annealing 
Extension 

(72ºC) 

Final 

Extension 

(72ºC) 

Temp. Time Temp. Time Temp. Time Time Time 

CTX-M1 1.25 95ºC 10min 35 95ºC 1min 54ºC 1min 1min 10min 

CTX-M15 

(QnrA) 
1.25 94ºC 10min 35 94ºC 1min 56ºC 1min 1min 10min 

mcr-1 3.75 95ºC 10min 30 95ºC 1min 55ºC 1min 1min 10min 

mcr-4 1.25 95ºC 10min 30 95ºC 1min 50ºC 1min 1min 10min 

SHV 6.25 96ºC 15sec 26 96ºC 15sec 50ºC 15sec 2min 2min 

TEM 6.25 96ºC 15sec 24 96ºC 15sec 50ºC 15sec 2min 2min 

IncF - 95ºC 10min 30 95ºC 1min 60ºC 1min 1min 10min 

IncI 1.25 95ºC 10min 30 95ºC 1min 62ºC 1min 1min 10min 

IncK 1.25 95ºC 10min 30 95ºC 1min 62ºC 1min 1min 10min 

IncX 3.75 95ºC 10min 30 95ºC 1min 55ºC 1min 1min 10min 
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2.2.4.4 Genotypic analysis by Enterobacterial Repetitive Intergenic Consensus – 

Polymerase Chain Reaction (ERIC-PCR) 

 

PCR reactions were carried out using GE Healthcare illustra™ PuReTaq Ready-To-Go™ 

PCR Beads (Thermo Fisher Scientific, UK) with specific primers, ERIC primer 1: 5′-

ATGTAAGCTCCTGGGGATTCAC-3′, and ERIC primer 2: 5′-

AAGTAAGTGACTGGGGTGAGCG-3′ and performed in a volume of 25µl: 1µl of DNA 

extract, 2µl of ERIC-PCR primers mix, 6.25µl of 10mM MgCl2, and 15.75µl of de-ionised 

water. The PCR tubes were placed in a Thermocycler (Thermo Scientific, UK) with the 

following program: 2 min initial denaturation at 94°C, followed by 35 cycles of 30 sec 

denaturation at 95°C, 30 sec annealing at 52°C, 1 min extension at 72°C, and final 

extension of 72°C for 5 min. The amplified products were separated in 1.5% (wt/vol) 

agarose gel in 0.5X TBE buffer containing 0.03µg/ml ethidium bromide stain at 50V for 

1hr. The resulted bands were identified and classified into different sizes to construct a 

dendrogram based on similarities and differences in number and sizes of bands using 

NTSYS software. 

 

2.2.5 Statistical analyses 

ERIC-PCR dendrogram was constructed using data in the form of binary matrix scored as 

0 for absence of band or 1 for presence of band. The scores were analysed using SAHN 

program of the NTSYS-pc software version 2.2 based on simple matching coefficient and 

Unweighted Pair Group Method with Arithmetic Averages (UPGMA) to construct a cluster 

analysis in the form of a dendrogram. 
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Results of all tests (except for ERIC-PCR) were summarised in the form of binary data of 

0 as negative, 1 as positive, and -1 as intermediate (AST results), and used to construct a 

cluster analysis in the form of multi-dimensional scaling (MDS) using R i386 3.4.3 

software.  

 

 

2.3 Results 

2.3.1 Confirmation of the identity of E. coli strains 

The E. coli strains (Table 2.1) gave pink colonies on MacConkey agar, and green metallic 

sheen colonies on EMB agar, which is highly indicative that they are E. coli strains (Table 

2.5). As for catalase and oxidase tests, the results showed that all the strains were catalase 

positive and oxidase negative bacteria (Table 2.5). This gave us additional evidence that 

these strains are E. coli and gave us a clue on which API strip is to be used. Therefore, E. 

coli strains were characterised biochemically using API 20E strips which summarises 20 

biochemical tests in one strip. The biochemical profile based on a seven-digit profile code 

confirmed that the identification of the bacterial identity according to the biochemical tests 

were E. coli strains (Table 2.5). 
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2.3.2 Phenotypic characterisation 

The E. coli strains were tested for their ability to utilise different sugars (Sucrose, sorbose, 

and dulcitol). The E. coli strains (APEC = 12 strains, chicken strains = 9 strains, and turkey 

strains = 10 strains) showed various results; (30/31: 96.77%) utilised sucrose, (24/31: 

77.42%) utilised sorbose, and (12/31: 38.71%) utilised dulcitol (Table 2.5). The high 

prevalence of sucrose utilisation was unexpected in comparison with the reference strain 

E. coli K12 MG 1655WT, whereas the distribution of dulcitol and sorbose utilisation was 

in keeping with known variability in these phenotypes (Edwards and Ewing, 1962). 
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Table 2.5 Growth on selective media, API 20E code, catalase test, oxidase test, and sugar 

utilisation 

Code API 20E Code MCA EMB CAT OXI SAC SOR DUL 

7 1044572 Pink Metallic green + - + + - 

14 1044572 Pink Metallic green + - + + - 

43 1044572 Pink Metallic green + - + + + 

45 1044572 Pink Metallic green + - + + + 

46 1044552 Pink Metallic green + - + + + 

47 1044552 Pink Metallic green + - + + - 

48 1044572 Pink Metallic green + - + + + 

49 1044552 Pink Metallic green + - + + + 

51 7144572 Pink Metallic green + - + + + 

52 1044552 Pink Metallic green + - + + + 

53 1044572 Pink Metallic green + - + + + 

54 1044572 Pink Metallic green + - + + + 

C1 5044552 Pink Metallic green + - + + - 

C2 5044152 Pink Metallic green + - + - - 

C3 7144572 Pink Metallic green + - + + + 

C4 7044552 Pink Metallic green + - + + - 

C5 5044552 Pink Metallic green + - + + + 

C6 7044552 Pink Metallic green + - + + - 

C7 7044552 Pink Metallic green + - + + - 

C8 5044552 Pink Metallic green + - + + - 

C9 7144572 Pink Metallic green + - + + + 

T1 5144522 Pink Metallic green + - - - - 

T2 5144572 Pink Metallic green + - + + - 

T3 7044552 Pink Metallic green + - + + - 

T4 7144572 Pink Metallic green + - + + - 

T5 7044552 Pink Metallic green + - + - - 

T6 5044552 Pink Metallic green + - + - - 

T7 7044573 Pink Metallic green + - + - - 

T8 5044552 Pink Metallic green + - + + - 

T9 7044552 Pink Metallic green + - + - - 

T10 7044552 Pink Metallic green + - + - - 

MG 1655 WT 5044552 Pink Metallic green + - + - + 

MG1655 acrAB M 4064500 Beige Pink + - - - + 

Shaded cells represent positive for utilisation of sugars. MCA, MacConkey agar; EMB, Eosin-methylene 

blue agar. CAT, Catalase; OXI, Oxidase; SAC, Sucrose; SOR, Sorbose; DUL, Dulcitol; +, positive; -, 

negative. 
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The susceptibility of the E. coli strains to different classes of antibiotics was examined and 

the results are shown in Table 2.6. The bacterial strains (APEC = 12 strains, chicken strains 

= 9 strains, and turkey strains = 10 strains) showed very high levels of resistance to colistin 

(31/31: 100%) and cefotaxime (27/31: 87.10%). The lowest percentage of resistance was 

noted in chloramphenicol (2/31: 6.45%), that was only found in two APEC strains (APEC 

7 and 46). Generally, most of the bacterial strains displayed multiple antibiotic resistance 

to several antibiotics. To compare the trend of antibiotic resistance among the strains, the 

highest percentages of multiple antibiotic resistance (resistance to at least 3 antibiotics) 

were encoded by the presumed commensal strains isolated from chicken (9 strains) and 

turkey (10 strains) which showed very similar prevalence of resistance (8/9: 88.89% and 

10/10: 100%, respectively) followed by APEC strains (7/12: 58.33%). However, APEC 

strains were the only strains that exhibited resistance to 6 antibiotics out of the tested 7 

antibiotics among the strains, and this was displayed by the strains APEC 46 and 52. 
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Table 2.6 AST profiling of the E. coli strains 

Code 
CTX 

 30μg 

NA 

 30μg 

C 

30μg 

CT 

10μg 

SAM 

 25μg 

S 

 25μg 

TE 

 30μg 

7 R  R R R S  S R 

14 I R S R S  S S 

43 R  S S R S  I S 

45 R  S S R R  S S 

46 S  R R R R  R R 

47 R S S R S  S S 

48 I  R I R R R R 

49 S  S S R S S S 

51 R S S R R S S 

52 R R S R R R R 

53 R R S R S  S S 

54 R S S R S   I S 

C1 R  R S R R I R 

C2 R  S S R R S S 

C3 R  S S R R R R 

C4 R  R S R I  I R 

C5 R  S S R R S S 

C6 R  S S R R S S 

C7 R  R S R R S R 

C8 R  R S R R S R 

C9 R  S S R S  S S 

T1 R S S R R S S 

T2 R S S R R S S 

T3 R S S R R R R 

T4 R  S S R R S S 

T5 R  S S R R S R 

T6 R  R S R R R S 

T7 R  R S R R S S 

T8 R  R S R R S S 

T9 R R S R R S S 

T10 R R S R R S S 

MG 1655 WT S  R I R I  R S 

MG1655 acrAB M S  I S R R  I S 

Shaded cells indicate resistance. CTX, Cefotaxime; NA, Nalidixic acid; C, Chloramphenicol; CT, Colistin; 

SAM, Ampicillin; S, Streptomycin; TE, Tetracycline; R, resistant; S, sensitive; I, intermediate.  
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The E. coli strains showed their ability to form lacy colonies on the modified Congo red 

agar plates. This phenotype is recognised as a surrogate assessment for the bacterial ability 

to produce curli fimbriae and/or cellulose (Table 2.7). 

 

 

Figure 2.1 An example of the results of Congo red agar; red lacy colonies = positive for 

biofilm formation, and smooth beige colonies = negative for biofilm formation. 

 

 

Table 2.7 Detection of biofilm on the modified Congo red agar 

Code Appearance Colony color 

All APEC strains Lacy Red 

All chicken strains Lacy Red 

T1, T2, T4 Smooth Beige 

T3, T5, T6, T7,  

T8, T9, T10 
Lacy Red 

MG1655 WT Lacy Red 

MG1655 acrAB M Lacy Red 
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2.3.3 Genotypic characterisation 

 

2.3.3.1 Detection of virulence genes by PCR 

 

The pathogenic potential of the E. coli strains from three categories of poultry sources were 

investigated by the detection of twelve virulence genes (Table 2.8). Table 2.8 is 

constructed such that virulence genes were grouped according to the function encoded by 

the virulence factor; five genes responsible for adhesion (fim1, papC, csgA, crl, and tsh), 

two genes responsible for iron acquisition system (iucD and irp2), one gene responsible 

for serum resistance (iss), one gene responsible for colicin (cvi/cva), one gene responsible 

for capsule (kps), and two genes responsible for the production of toxins (astA and hlyA) 

located in either the bacterial chromosome or a plasmid. The reasons for choosing these 

virulence genes specifically were the following: 1) fim1 deletion was associated with 

reduction of colonization and inflammation of UTI (Connell et al., 1996, Bahrani‐Mougeot 

et al., 2002), 2) papC  is required for the expression of P fimbriae (Nowrouzian et al., 

2001), 3) csgA is the major structural subunit of the curli operon (Dueholm et al., 2011), 

4) crl encodes for the transcriptional regulator of the csgBA operon which coordinates curli 

biosynthesis (Pratt and Silhavy, 1998), and activates biofilm formation (Gualdi et al., 

2008), 5) tsh is associated with virulence of APEC strains and found in birds suffering from 

colibacillosis (Janßen et al., 2001), 6) iucD is a gene found in the aerobactin operon which 

regulates aerobactin biosynthesis (Neilands, 1992), 7) irp2 is the promoter region of high-

pathogenicity island which is yersinibactin region (Carniel, 1999), 8) iss gene was found 

to be associated with complement resistance and virulence of avian E. coli (Nolan et al., 

2003), 9) astA encodes for enterotoxin conferring heat-stability (Savarino et al., 1993), 10) 

cvi/cva is part of the colicin V operon encoding for colicin protein with toxicity traits 
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(Ewers et al., 2007) and spread among APEC strains found in chickens suffering from 

mortality of chicken embryo (Oh et al., 2012), 11) kps encodes for the biosynthesis of the 

capsule or K-antigen which mediates capsular transport system (Smith et al., 1990), 12) 

hlyA encodes for one of the major virulence factors α-hemolysin protein which is an 

exotoxin that binds to the host red blood cells (Menestrina et al., 1994), and found in APEC 

strains in chickens suffering from colibacillosis (Janßen et al., 2001).  

 

 Generally, APEC strains harboured more virulence genes than the commensal strains, 

which is what was anticipated. APEC 47 possessed all virulence genes except csgA and 

hlyA. The two genes responsible for adhesion (papC and tsh) were absent in all presumptive 

commensal strains which may suggest they have less ability to colonise than the APEC 

strains. Among the virulence genes, the most prevalent genes were fim1 and irp2 which 

again were present in a very high percentage among APEC strains (12/12: 100% and 11/12: 

91.67%, respectively). As a control, E. coli MG 1655 WT (E. coli K12) was included in 

this study, and it only showed the presence of one gene (cvi/cva). Also, it was noted that 

chromosome-related genes (fim1, papC, csgA, crl, irp2 and kps) were more frequently 

spread among the E. coli strains than plasmid-related genes (tsh, iucD, iss, astA, cvi/cva 

and hlyA). Among the commensal strains, turkey strains showed a higher frequency of 

presence of irp2 which encodes for iron-acquisition system in comparison with chicken 

strains (7/10: 70% and 1/9: 11.11%, respectively), but iucD was relatively more prevalent 

in chicken strains (2/9: 22.22%) and completely absent in turkey strains (0/10: 0%). The 

csgA and crl genes that govern curli fimbriae expression were present in all chicken strains 

(7/9: 77.78% and 9/9: 100%, respectively) but were less prevalent in turkey strains (5/10: 
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50% and 7/10: 70%, respectively). This may suggest that chicken strains are better 

colonisers than turkey strains, because expression of curli facilitates colonisation and 

formation of biofilm (Szabó et al., 2005).  

 

In terms of the potential toxicity of the E. coli strains, the presence of astA gene as 

confirmed to be more prevalent among APEC strains (7/12: 58.33%) than chicken (6/9: 

66.67%) and turkey (2/10: 20%) strains. There is a noticeable difference in the occurrence 

of kps gene that encodes for the synthesis of capsule with percentages of 33.33% (4/12) in 

APEC strains, 11.11% (1/9) in chicken strains, and 0% (0/10) in turkey strains. According 

to the presence of cvi/cva gene, the ColV plasmid is more prevalent among APEC strains 

(10/12: 83.33%), in comparison with chicken (2/9: 22.22%) and turkey (3/10: 30%) strains. 

Also, the iss gene responsible for serum resistance was present in (11/12: 91.67%) of APEC 

strains, (4/9: 44.44%) of chicken strains, and (3/10: 30%) of turkey strains.   
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Table 2.8 Virulence genes profile in the E. coli strains 

Code fim1 papC csgA crl tsh iucD irp2 iss astA cvi/cva kps hlyA 

7 + - + - - - - - - - - - 

14 + - + + + + + + + - + + 

43 + - + - - + + + + + - + 

45 + - + + - + + + + + - + 

46 + - + + + + + + + + - + 

47 + + - + + + + + + + + - 

48 + - - + + + + + - + + - 

49 + + + + + + + + + + - + 

51 + - - - - - + + + + - + 

52 + - + + + - + + - + - - 

53 + - + + - + + + - + - + 

54 + - - + - - + + - + + - 

C1 + - + + - - - - + - - + 

C2 + - + + - - - + - + - - 

C3 + - - + - - - + + - - - 

C4 + - + + - - - - + - - - 

C5 + - + + - + - + - + - - 

C6 + - - + - - - - - - - + 

C7 - - + + - - - - + - - + 

C8 + - + + - - - - + - - - 

C9 - - + + - + + + + - + - 

T1 + - + + - - + + + + - - 

T2 + - + + - - + + - + - - 

T3 - - - - - - - - - - - - 

T4 - - - + - - - - - + - - 

T5 + - + + - - - + - - - + 

T6 + - + + - - + - - - - + 

T7 + - - + - - + - + - - - 

T8 + - - - - - + - - - - - 

T9 + - + + - - + - - - - - 

T10 + - - - - - + - - - - - 

MG1655 WT - - - - - - - - - + - - 

Shaded cells (+) represent positive for presence of the virulence genes and unshaded cells (-) represent 

negative for absence of the virulence genes. +, positive; -, negative. 
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2.3.3.2 Detection of AMR genes by PCR 

 

The presence of antimicrobial resistance genes of the E. coli strains from three categories of 

poultry sources were investigated by the detection of twelve virulence genes (Table 2.9). Table 

2.9 focused on certain antimicrobial resistance genes (cefotaxime, colistin, and β-lactams) as 

these were the most prevalent ones from AST results (Table 2.6). Among the spread of AMR 

genes, TEM plasmid was present in all turkey strains (10/10: 100%) but with less occurrence 

in APEC and chicken strains (4/12: 33.33%, and 4/9: 44.44%, respectively). In general, APEC 

strains harboured higher percentages of AMR genes than the commensal strains. Moreover, 

there was a relatively higher percentage of occurrence of β-lactam plasmids (SHV and TEM) 

than the remaining AMR genes. Cefotaxime resistance plasmids were less present than colistin 

resistance plasmids among the E. coli strains.  
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Table 2.9 AMR genes profile in the E. coli strains 

Code CTX-M1 
CTX-M15 

(QnrA) 
mcr-1 mcr-4 SHV TEM IncF IncI IncK IncX 

7 + - + + + - - + - - 

14 - + - + + - - - - - 

43 - + - - - - - - - - 

45 - + - - - + - - - - 

46 - - - - - + - - - - 

47 - + - + - - - - - - 

48 - - - - - - - - - - 

49 - + - - + - - + + - 

51 + + - + + + - - - - 

52 - + + + + + + - - + 

53 - + + + + - + - - - 

54 - - - + - - - + - - 

C1 - + - + - + - - - - 

C2 - - - - - + - - - - 

C3 - - - - - - - - - - 

C4 - - - - - - - - - - 

C5 - - - - - + - + - - 

C6 - + + + + + - - + - 

C7 - - - - - - - - - - 

C8 - + - + - + - - - - 

C9 - - - - - - - - + - 

T1 + - + + + + - - + - 

T2 - - - - - + - - - - 

T3 - + - + + + - - - - 

T4 - + + - + + - - - - 

T5 - + - - + + - - - - 

T6 + + - + + + + + - - 

T7 - + - - + + + - - - 

T8 - - - - - + + - - - 

T9 - - - - - + + - - - 

T10 - - - - - + + - - - 

MG1655 WT - + + + + - + - + - 

Shaded cells (+) represent positive for presence of the AMR genes and unshaded cells (-) represent negative for 

absence of the AMR genes. +, positive; -, negative. 
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2.3.3.3 Genotypic analysis by ERIC-PCR 

ERIC-PCR patterns yielded different numbers and sizes of the amplified products, ranging 

from 100 to 10,000bp. UPGMA cluster analysis using NTSYS software combined all the 

profiles and placed them in the form of a dendrogram. Dendrogram analysis (Figure 2.2) 

placed the strains into 3 main discrete groups/nodes consisting of APEC strains (except for 49 

and 52), turkey strains (excluding T1 and T2) with E. coli MG1655 WT (E. coli K12), and 

chicken strains with APEC 49 and 52, and an outlier of two turkey strains (T1 and T2). They 

were classified into different and variable clusters, reflecting an overlap between pathogenic 

and commensal strains. 

Figure 2.2 A dendrogram showing bacterial diversity of the E. coli strains based on UPGMA 

cluster analysis 

Node A 

Node B 

Node C 
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2.3.4 MDS cluster analysis 

The results of confirmation of E. coli strains’ identity, phenotypic characterisation, and 

genotypic characterisation (except for ERIC-PCR) were summarised and used for construction 

of a cluster analysis in the form of MDS (Figure 2.3). 

 

Figure 2.3 MDS showing bacterial diversity of the E. coli strains based on the results of all 

previous tests. The E. coli strains were grouped in different colours (APEC = red, commensal 

chickens = blue, commensal turkeys = green, and E. coli MG 1655 WT = black). 
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2.4 Discussion 

An early objective of this study was to establish appropriate E. coli representatives of the 

poultry (chickens and turkeys) gut, to study the impact of the selected phytochemicals 

(carvacrol and oregano extract). E. coli are commensals in the gut, but some variants also have 

the potential to be pathogenic in poultry causing a variety of clinical signs as discussed in the 

introduction. Moreover, these E. coli strains reflect strains that potentially colonise the human 

gut after direct or indirect contamination during poultry consumption, which maybe a source 

of antibiotic resistance in humans (Linton et al., 1977a, Van den Bogaard et al., 2001, Liu et 

al., 2016). The 33 E. coli strains included different groups of E. coli; APEC strains (12 strains), 

wild-type commensal strains isolated from poultry gut of healthy chickens (9 strains) and 

turkeys (10 strains) and supported by mutant E. coli K12 MG1655 WT and MG1655 acrAB M 

strains to be used as negative controls (Table 2.1). The wild-type commensal strains were 

isolated from the caecum of the healthy chickens and turkeys where high counts of enteric 

bacteria are known to be colonising (Zhu et al., 2002). For the brevity in this thesis, the term 

“commensal” rather than ‘putative/presumptive commensal’ has been used to describe any E. 

coli that came from the gut of a healthy chicken or turkey. However, it is highly likely that as 

APEC can colonise the gut of poultry and not cause any disease until an appropriate 

predisposition causes induction, it is possible that the group called “commensal” could indeed 

have some APEC representatives. Without testing Koch’s postulates in animal studies, it is not 

possible here to affirm true commensal or pathogen status. That said, the APEC strains were 

defined as pathogenic as these were isolated from tissues within the bird suffering 

colibacillosis. 
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For the sake of a quick phenotypic characterisation and differentiation among the strains, the 

second set of biochemical tests included sugar utilisation was done. Sugar utilisation tests 

(Table 2.5) demonstrated that the E. coli strains can utilise different sugar sources (sucrose, 

sorbose, and dulcitol). The reason for these simple tests was to establish how variable a group 

of strains were represented in the panel of 31 bacterial strains used in this study, as it is known 

that each of the previously mentioned sugars is used by a proportion of but not all strains 

(Edwards and Ewing, 1972). It was considered a simple method for rapid differentiation 

between strains if such availability was represented in this group of strains. The majority of the 

E. coli strains utilised sucrose (Table 2.5) as a carbon and energy source was found to be 

responsible for the increase in acetate and butyrate concentrations in the chicken caecum. This 

makes sucrose an important energy source found in poultry diet (Jozefiak et al., 2004). Also, 

this indicates that the E. coli strains break down sucrose by catalytic enzymes sucrose 6-

phosphate hydrolases and sucrose phosphorylases (Reid and Abratt, 2005). The frequency of 

use of sucrose was considerably higher than anticipated when compared with the data of 

(Edwards and Ewing, 1972) and (Alaeddinoglu and Charles, 1979), suggesting that perhaps 

sucrose utilisation was a characteristic of poultry E. coli, and perhaps this characteristic gives 

some selective advantage over non-sucrose utilisers. Also, the use of sorbose was a little higher 

than anticipated compared with the previous work of (Woodward and Charles, 1982). The 

ability of these E. coli strains to utilise more than one type of sugar reflects their ability to 

compete for nutrients available in poultry gut (mainly in the caecum), which may enable them 

to successfully colonise poultry gut (Conway and Cohen, 2015). The majority of APEC strains 

(9/12: 75%) were able to utilise the three sugars, in comparison with only (3/9: 33.33%) of the 

chicken strains and none of the turkey strains (0/10: 0%). However, without much wider studies 

relating to metabolic competence with host species, any correlation proposed here is somewhat 

speculative. Additional phenotypic characterisation and differentiation was investigated 
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through profiling of antibiotic resistance using antibiotic disks and detection of biofilm 

formation on a modified Congo red agar plates. 

 

Genotypic characterisation using molecular methods including PCR were included to 

determine their virulence determinants and check the correlation between metabolic type and 

virulence type and antimicrobial resistance genes. Antimicrobial resistance, although not being 

a virulence factor in the true sense of the term, is one of the factors that can contribute to the 

pathogenicity or virulence of the E. coli strains, by providing systems that prevent the 

effectiveness of antibiotics used in treatment.  

 

One of the aims in this study is to assess the utility of phytochemicals to act against both 

antibiotic-resistant and pathogenic bacteria using E. coli as a suitable bacterial model. Hence, 

the E. coli strains were tested for their ability to resist antibiotics, and results showed a high 

prevalence of multi-resistance to several antibiotics (Table 2.6). The reason for an emphasis 

on ß-lactam antibiotics in particular, is due to the very frequent use of ampicillin in poultry 

production and the rapid emergence of resistance in poultry and the need to counter this rise 

(Hayes et al., 2004, Bortolaia et al., 2010, Dierikx et al., 2013). One question that arises 

regarding in the panel of 31 strains used in this study is whether they are representative of the 

E. coli found in poultry production or not. Each isolate was recovered from on-farm poultry 

production, and therefore are truly representatives of the type of E. coli in these specific 

animals, but whether representative of poultry production in this region or nationally is 

questionable. At the slaughterhouse, these strains can be easily spread at the evisceration stage 

resulting in cross-contamination of poultry meat that then enter the human food chain 

(Redmond et al., 2004). Humans will be exposed to such bacteria either by direct or indirect 

contact during food handling, processing, and preparation or cooking/eating, and therefore 
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increasing the spread of antibiotic resistant E. coli strains (Collignon, 2009). A previous study 

has shown that human guts are colonised by antibiotic resistant E. coli of chicken sources 

(Linton et al., 1977a). Another study confirmed that humans carry antibiotic resistant E. coli 

strains that mostly come from poultry sources (Collignon, 2009). Thus, this test demonstrates 

the high prevalence or high spread of antibiotic resistance of E. coli in poultry proved by AST 

(Table 2.6) and PCR (Table 2.9) results, and therefore alternatives (such as phytochemicals) 

other than antibiotics should be investigated for their use to control their spread among the food 

chain. 

 

 

The second factor to be considered in this assessment was biofilm formation which was 

detected by two ways; on modified Congo red agar as a surrogate for curli production (Table 

2.7) which is an important component of biofilm formation (Cookson et al., 2002), and by the 

crystal violet biofilm assay (see Chapter 3). The E. coli strains were initially tested for their 

ability to form “lacy colonies” on the modified Congo red agar as a rapid and simple estimation 

of the production of the main ingredients of biofilm; curli and/or cellulose (Table 2.7). Even 

though the culturing method was not very accurate in detecting the ability of the bacterial 

strains to form biofilm and its composition, it was a simple plate test to assess biofilm 

formation. It was noted that the vast majority of the E. coli strains (28/31: 90.32%) produced 

lacy colonies, with only three commensal turkey strains (T1, T2, and T4) unable to do so.  

 

To profile the E. coli strains for the carriage of virulence determinants, PCR was performed 

(Table 2.8). There are no clear definitions for APEC strains though the Nolan laboratory in the 

USA suggests detection of as few as five virulence genes is sufficient to define an APEC 

(Johnson et al., 2008), even though this is challenged by the recent work from the Woodward 
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Laboratory (Cordoni et al., 2016). Also, there is an overlap between APEC strains and UPEC 

causing urinary tract infections in human and meningitis in newly-born babies (Ewers et al., 

2007). Moreover, in terms of virulence genes content, there is a similarity between APEC and 

ExPEC in human, therefore virulence genes harboured by APEC strains may be a source of 

spread of these genes among ExPEC strains (Zhao et al., 2009). Although the number of genes 

tested was not extensive, the PCR data shows there is a high prevalence of virulence genes 

encoded in the chromosome or on plasmid among the APEC strains (Dho-Moulin and 

Fairbrother, 1999). Even though there is a higher prevalence of chromosome-related genes 

spread among the strains than plasmid-related genes, here is evidence that there is a reservoir 

of genes that are located on transmissible plasmids, providing a source for their dissemination 

among bacterial strains (Ewers et al., 2007). The collective set of adhesion genes (fim1, papC, 

csgA, crl, and tsh) are widespread among the E. coli strains allowing them to adhere to mucosal 

surfaces inside the host and are mediated by the expression of adhesin proteins (Stordeur et al., 

2002a). A previous study proved that the presence of fim1 responsible for expression of type 1 

fimbriae increases the chances of colonising the urinary tract and therefore giving them an extra 

virulence advantage (Connell et al., 1996). Interestingly, the presence of papC gene is 

associated with septicemia in chicken and turkey, which was found among APEC strains only. 

Iron acquisition systems which are encoded by the two genes (iucD and irp2) (Khasheii et al., 

2016) were highly prevalent in APEC strains, enabling them to survive and thrive in iron-

deprived environments (Foxman et al., 2000) reflecting their pathogenicity nature (Zhao et al., 

2009). The presence of astA gene encoding enterotoxic activity (Savarino et al., 1993) was 

widespread among APEC strains.  
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The following genes (iss, kps, and cvi/cva) encoding for different virulence factors were found 

encoded on the same ColV plasmid (Johnson et al., 2006). Increased serum resistance is 

encoded by the iss gene enabling the strain to fight immunological responses of the host 

(Johnson et al., 2002). The gene kps is responsible for expression of capsular antigen that has 

anti-immunological properties (Dho-Moulin and Fairbrother, 1999), was also prevalent in 

APEC and chicken strains but absent in turkey strains. The production of bacteriocin colicin V 

(ColV) mediated by cvi/cva genes, regulated by ColV operon (Clowes, 1972) was commonly 

widespread among APEC strains and confirmed here, also exhibit anti-immunological 

properties (Johnson et al., 2006). The last determinant included in the PCR tests was the 

production of α-haemolysin toxin encoded by the hlyA gene responsible for breaking down red 

blood cells in mammals and associated with extra-intestinal diseases (Cavalieri et al., 1984) 

was also widespread among APEC strains.  

 

AST profiling (Table 2.6) was initially performed to screen for the antibiotic resistance among 

the E. coli strains and to focus on specific antibiotics to be further detected for using PCR 

(Table 2.9). The antibiotics of interest were cefotaxime, colistin, and β-lactams, with penicillin 

being the first antibiotic of use in poultry. Once more, APEC strains harboured more AMR 

genes than the commensal strains. These tests demonstrate that the percentage of AMR 

resistance spread among these E. coli strains is very high, despite the ban that was imposed in 

2006 on the use of prophylactic antibiotics. 

 

ERIC-PCR is a technique that generates multiple copies of conserved and repeated sequences 

that can be found in the Enterobacteriaceae family (Hulton et al., 1991) Bacteria possessing 

these 126bp sequences differ in the number and their location on the genome, and therefore the 

sizes of the amplicons generated by PCR using ERIC sequences for priming amplification 
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(Sharples and Lloyd, 1990). The fingerprinting profiles generated can be used to study the 

relationships between bacterial strains isolated from different groups (Mohapatra et al., 2007). 

Thus, ERIC-PCR is a quick surveillance tool to characterise bacterial strains at the molecular 

level (Millemann et al., 1996), and it is a favoured tool in typing/differentiating E. coli strains, 

because of its high discriminatory power and reproducibility, enabling the study of genetic 

relationships isolated from different origin (Oltramari et al., 2014). The data generated in 

Figure 2.2 showed three distinct clusters (nodes) referring to different origin of the analysed 

strains, and at a similarity coefficient of 0.75. Two Turkey strains (T1 and T2) lie outside of 

these clusters which suggests a less homogenous group spread across two of three nodes 

excluding the two outliers already mentioned. However, except for APEC strains 49 and 52, 

the remaining APEC strains (7, 14, 43, 45, 46, 47, 48, 51, 53, and 54) clustered together in one 

node (node A Figure 2.2) and all chicken strains were found in a single cluster (node C Figure 

2.2). The third cluster (node B Figure 2.2) combined the remaining turkey strains apart from 

the outliers T1 and T2. The APEC strains were potential pathogens as each was isolated as a 

pure culture from the internal tissues of a diseased chicken. The chicken E. coli strains were 

isolated from healthy animals and for this thesis the term presumptive commensal has been 

used to describe these. Previous experiments have shown the distribution of virulence genes 

and other markers (e.g. sugar utilisation and antibiotic resistance) and it has been difficult to 

readily differentiate the “presumptive commensals” from APEC virulent based on those 

characteristics alone. ERIC-PCR has however, demonstrated relatively distinct profiles 

suggesting distinct genomic backbone and distributions of repetitive elements. Given ERIC-

PCR may reflect in part deeper ancestral lineages, although this can be challenged when 

compared with other methods such as multi-locus sequence typing (MLST), the separation 

between these two clusters appears to reflect relative pathogenicity. Is it possible that APEC 

49 and 52 are commensals and characterised as APEC in error or could these commensals 
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carrying transient APEC traits; keeping in mind that some virulence factors (e.g. fimbriae are 

very common across all E. coli types and that some virulence factors (e.g. some toxins) are 

plasmid carried and therefore mobile.  

 

MDS cluster analysis (Figure 2.3) grouped the APEC strains (red colour) away from the 

commensal ones, and this confirms their different phenotypic and genotypic background except 

for APEC 7, 51, and 52. The commensal chicken E. coli strains (blue colour) were in the middle 

between APEC and turkey strains (green colour), which may suggest that some of them may 

be APEC strains. While, the turkey strains were more distinctive commensals among the three 

groups as suggested by previous tests. However, there is an overlap between the accurate 

definition of APEC and commensal E. coli strains isolated from poultry sources.  

 

In conclusion, phenotyping and genotypic characteristics can be used to establish differential 

criteria between APEC and commensal strains. The earlier experiments demonstrated that E. 

coli strains are so diverse in their phenotypic and genotypic characteristic, and most of the 

groups were either APEC or commensals suggesting genetic diversity. However, there was a 

bit of overlap between the two groups suggesting shared genetic similarities or partial 

relationships between APEC and commensal strains. Genetic typing may give us a clue into 

the complete definition of E. coli strains from APEC or commensal origin (Kilic et al., 2009). 

Future experiments may include differentiating the strains based on whole genome sequencing 

(WGS), to give us better understanding of their genetic identity and origin, Real-Time PCR to 

study gene expression, as the genes might be present but not expressed, and plasmids extraction 

to study their stability. To increase the accuracy and neglect biasedness of these tests, higher 
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numbers of E. coli strains should be included, and collected from different hatchery sources 

and different countries of the EU. 

 

Collectively, the previously-mentioned studies confirmed that they are E. coli strains, 

characterised them phenotypically using biochemical tests, detected the occurrence of 

antimicrobial resistance, formation of biofilm by simple plating method, and presence of 

virulence genes, AMR genes, and genotypic typing using ERIC-PCR among APEC and 

commensal wild-type E. coli strains, which were isolated from poultry sources reared for 

human consumption. These traits are associated with possible health risks in poultry food chain, 

so it was important to know if these traits were spread or not, and how often are they are spread 

among the E. coli strains of different provenance. Therefore, this thesis will explore the 

potential of controlling these E. coli strains with natural plant products i.e. phytochemicals with 

an emphasis upon carvacrol and oregano extract, as a possible alternative to antibiotics in 

poultry feeds.   
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CHAPTER 3: Phytochemicals (carvacrol and oregano)  

as anti-bacterial agents 
 

 

3.1 Introduction  

3.1.1 Phytochemicals as feed additives in poultry production 

Previous research has demonstrated that using phytochemicals as feed additives results in a 

decrease in the population of E. coli and also an increase in the activity of specific digestive 

enzymes (Jang et al., 2007) such as amylase in the intestinal system of female broiler chickens 

(Lee et al., 2003a) and maltase in the intestinal system of male broiler chickens (Xu et al., 

2003). Carvacrol and thymol as feed additives showed enhanced growth promoting effects on 

anti-oxidant enzyme activities, immune responses, digestive enzyme activities among broiler 

chickens (Hashemipour et al., 2013). Oregano oil containing carvacrol and thymol is effective 

against E. coli in a dosage-dependent manner (Friedman et al., 2002). Furthermore, oregano 

oil exhibits high biological activities resulting in growth promotion when used as feed additives 

in poultry (Giannenas et al., 2005). Another study showed that oregano extract (Origanum 

vulgare) contains a high phenolic content that exhibits anti-oxidant properties (Gómez-Estaca 

et al., 2009). An older study showed that consuming oregano extract and other herbs as part of 

the human diet exhibited anti-microbial activities (Hammer et al., 1999). More recent studies 

showed that broiler chickens fed diet supplemented with oregano resulted in the following : 1) 

significant increase in the digestive enzyme chymotrypsin and enhanced protein digestion 

(Basmacioğlu Malayoğlu et al., 2010), 2) significant increase in body weight, higher anti-

oxidant activity of serum, significant decrease in caecal E. coli population resulting in an 

increased growth performance (Roofchaee et al., 2011), 3)  significant increase in body weight 

and significant decrease in FCR among broilers chickens infected with Eimeria species (PAJIĆ 
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et al., In press).  Moreover, oregano and other herb extracts can suppress the growth of harmful 

coliform bacteria, but do not affect the growth of beneficial bacteria (Namkung et al., 2004).  

 

3.1.2 Effect of phytochemicals on the growth of E. coli 

Thymol and carvacrol are phenolic compounds and they are the main constituents of the 

essential oils of oregano. They are structural isomers, sharing the same chemical structure in 

the form of a phenolic ring but differing in the location of hydroxyl groups (Ultee et al., 2002b). 

Moreover, carvacrol is the key ingredient of oregano essential oil that is extracted from plants 

of the genus Origanum (Kintzios, 2002), but its abundance in plantae differs from one species 

to another (Gounaris et al., 2002). Thymol, carvacrol, and oregano share the same chief 

components which are monoterpenic phenols consisting of two main ingredients of γ-terpinene 

and p-cymeme (Kokkini, 1996). Carvacrol and oregano exhibit anti-microbial activities against 

pathogenic microorganisms whether from plant, animal or human sources, and these 

microorganisms include bacteria and fungi (Baricevic and Bartol, 2002).  

 

In the field of pharmacology, phytochemicals have been shown to have many beneficial 

properties being anti-microbial and anti-oxidant agents (Kalemba and Kunicka, 2003). 

Generally, the phytochemicals (e.g. carvacrol) with a high percentage of other phenolic 

compounds display potent anti-bacterial properties (Guynot et al., 2003). As anti-bacterial 

agents, the main mechanism of action appears to be disruption of the integrity and functionality 

of the cell wall and cell membrane structures (Sikkema et al., 1995a). At MIC level, they disrupt 

the outer membrane structure of Gram-negative bacteria, increasing the permeability of cell 

membrane, leading to leakage of cellular energy sources in the form of adenosine tri-phosphate 

(ATP) (Gill and Holley, 2006) and may also result in the bursting of the bacterial cell (Sikkema 

et al., 1995a). The essential oils are highly hydrophobic and thus can readily integrate into and 
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transition across the bacterial cell membrane (Sikkema et al., 1995a). Interestingly, exposing 

bacteria to sub-lethal concentrations of these phytochemicals leads to changes in the ratio of 

unsaturated and saturated fatty acid component of the cell membrane (Di Pasqua et al., 2006) 

suggesting that bacteria develop an adaptive response upon exposure.  

 

3.1.3 Biofilm formation in E. coli 

Biofilm formation is a change in behavioural lifestyle that reflects a protective growth mode 

allowing bacteria to survive harsh conditions (Costerton et al., 1995), as planktonic cells attach 

to a surface and become covered with extracellular matrix of carbohydrate or 

exopolysaccharide nature (Wingender et al., 2012). Biofilm is defined as the collective 

attachment of bacterial cells to a solid surface (biotic or abiotic), whereby the process involves 

coverage with a bacterial derived exopolysaccharide matrix, creating a community of one or a 

variety of bacterial species (Costerton et al., 1995). The major components of the biofilm 

structure are exopolysaccharide, proteins, and nucleic acids (Davey and O'toole, 2000). The 

exopolysaccharide component is the result of bacterial metabolism (Davies et al., 1993), 

encompasses the large part of biofilm dry weight, and plays a key role in biofilm formation 

(Beauregard et al., 2013). It is known that specific genes of the bacterium are upregulated to 

enable this form of adherence, and that certain factors such as gravity and surface attachment 

are required to switch the relevant genes on. These complex structures form on many surfaces 

including host tissues  (Costerton et al., 1987). Moreover, biofilm as a structural unit provides 

an ideal space for gene exchange through conjugation between cells (Hausner and Wuertz, 

1999). 
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The first step in biofilm formation includes motility and adherence to surfaces enhanced by 

flagella (Harshey, 2003). Attachment to surfaces triggers genes expression and production of 

the extracellular matrix (Beloin et al., 2008). Biofilm formation enables sessile cells to lower 

their growth rate and utilise less nutrients (Costerton et al., 1995). Most bacteria live in the 

biofilm form rather than planktonic form as an adaptation strategy in the natural environment 

(Simões et al., 2010). There are many bacterial species associated with biofilm formation 

behaviour, but the significant ones are food-borne pathogens such as Listeria monocytogenes, 

Salmonella sp., Bacillus sp. (Palmer et al., 2007), Escherichia coli, Pseudomonas sp. (Stoodley 

et al., 2001) and Campylobacter jejuni (Kalmokoff et al., 2006). 

 

Generally, biofilm-forming bacteria have greatly reduced sensitivity to anti-microbial 

compounds and other stressors, in comparison with non-formers (Høiby et al., 2010). The 

reason behind their reduced sensitivity is due to the difficulty with which anti-bacterial agents 

penetrate the bacterial cell, and also due to the presence of genes responsible for protection 

against stress (Stewart, 2002). Stopping bacteria from forming biofilm may improve 

susceptibility to antibiotics (Stewart, 2002). Thus, eradication of biofilm formation is through 

prevention of bacterial growth in the first place which can be achieved by using anti-bacterial 

agents (Zhao et al., 2017). Research has suggested that essential oils maybe be effective in 

attenuating bacterial biofilm formation (Gursoy et al., 2009). 

 

3.1.4 Production of SCFAs by E. coli 

As part of E. coli metabolism, SCFAs are produced, and they are defined as carboxylic acids 

with an aliphatic tail of varied length (McNaught and Wilkinson, 1997) of no more than 6 

carbon atoms. They are produced as a result of bacterial fermentation which occurs 

anaerobically (Soergel, 1994) in the caecum or colon; the main site of anaerobic fermentation 
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(Reilly and Rombeau, 1993). Three SCFAs (propionate, butyrate, and acetate) play a role in 

intestinal health, especially butyrate as a direct energy source for epithelial cells (Wong et al., 

2006), and is important in sustaining a good shape gastrointestinal tract (Meimandipour et al., 

2010). The other SCFAs produced mostly in monogastric species in minor amounts include 

lactate, succinate, and branched chain fatty acids (Demigne et al., 1999). The quantity and type 

of SCFAs produced reflect the diversity and number of bacterial species present in the gut, and 

the type of substrates available (Macfarlane and Macfarlane, 2003). 

 

The production rate of SCFAs depends mainly on the starch, fibre, and carbohydrates available 

in the diet (Demigné and Rémésy, 1985) that were not digested in the small intestine (Wong et 

al., 2006). SCFAs exert many beneficial effects by reducing gut inflammation, increasing 

caecal blood flow and thickening mucosal lining, and providing energy (Gorbach, 1996). 

Specifically, butyrate which makes up 15-20% of the SCFAs produced in the human colon 

(Hamer et al., 2008) is responsible for suppressing the proliferation of colonic cancer cells in 

vitro (Gibson et al., 1992). Moreover, SCFAs provide communication signals between the host 

and SCFA-producing gut bacteria lining the epithelium layer (Kelly et al., 2015).  

 

In birds, SCFAs are available in different amounts throughout their gastrointestinal tract, but 

the highest concentration is in the caecum (Annison, 1991), as it harbours the highest 

concentrations of bacteria most of which are strict anaerobes that produce SCFAs as end 

products (Barnes et al., 1972). Also, the concentrations of SCFAs vary over the life cycle of 

the chicken (Barnes, 1979) but importantly are maintained at 5-15% equivalence of their daily 

energy requirements (Gasaway, 1976). They also provide protection against colonisation of 

pathogenic bacteria (Nurmi and Rantala, 1973). However, birds fed high fibre diets tend to 
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have an elevated level of fermentation in the caecum, and this may cause caecal hypertrophy 

(Redig, 1989).  

 

3.1.5 Aims and objectives 

This section of the thesis focuses on: 

• Testing the potential of these phytochemicals as control agents in poultry production 

with a specific objective of controlling E. coli, that is both a natural commensal as well 

as an opportunistic pathogen (Hartl and Dykhuizen, 1984) and their ability to reduce or 

eliminate biofilm formation (Costerton et al., 1999).  

• Studying the metabolic pathways of the E. coli strains upon addition of sub-lethal 

concentrations of aqueous carvacrol and oregano, by focusing on the production of 

SCFAs which can be formed during respiration and fermentation, as this approach may 

give us some clues about the mechanisms of action of these phytochemicals by 

checking which part of the metabolic pathways they are affecting, and if there are more 

effects on the by-products of respiration or fermentation of the metabolic reactions. 

Also, will the presence of sub-lethal concentrations lead to a shift in the production of 

SCFAs and to what extent? 
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3.2 Materials and methods 

3.2.1 Determination of growth curves and MIC values of E. coli strains in the presence of 

different concentrations of aqueous phytochemicals 

An inoculum of each pure culture of the E. coli strains (APEC = 12 strains, chicken strains = 9 

strains, turkey strains = 10 strains, and 2 reference E. coli MG1655 K12 strains) was prepared 

by picking well-isolated colonies from an overnight bacterial culture (10 – 12hr) grown on NA 

plate and suspending in LB broth. The OD was adjusted to 0.01 at 600nm (107 CFU/ml) and a 

volume of 75µl of the bacterial suspension was added to the wells of the Greiner CELLSTAR® 

96 well plate (sterile, F-bottom, with lid). Each well had 225µl of LB broth containing test 

phytochemicals (purchased as essential oils with assay of ~ 99% from Sigma Aldrich, UK) at 

the various concentrations previously added, so that the total final volume was 300µl in each 

well. For these initial studies, carvacrol or oregano (Sigma Aldrich, UK) were dissolved 

directly in the water-based LB broth, and dilutions made to add to the wells of the Greiner 

plate. For future reference, these dilutions will be referred to as aqueous carvacrol or aqueous 

oregano. The concentration ranges were given in the results section 3.3. Then, the OD600 of the 

growing bacterial strain was taken spectrophotometrically every 1hr for 24hr under aerobic 

conditions and at a temperature of 37ºC using Fluostar Omega system. The OD600 readings 

were used to plot the relationship between time and OD. Plots were used to calculate bacterial 

growth to determine the MIC value of carvacrol or oregano against the E. coli strains. 

 

 

3.2.2 Determination of E. coli biofilm formation using crystal violet method in the 

presence of different concentrations of ethanol-based phytochemicals 

The method of O’Toole and Kolter was adapted for the determination of the potential of E. coli 

to form biofilm (O'Toole and Kolter, 1998). In brief, well-isolated colonies of each E. coli 

strains (APEC = 12 strains, chicken strains = 9 strains, turkey strains = 10 strains, and 2 
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reference E. coli MG1655 K12 strains) from an overnight culture (10 – 12hr) grown on nutrient 

agar were suspended in LB broth without salt, and the OD was adjusted to of 0.01 at 600nm 

(107 CFU/ml). Then, 225µl of LB broth medium without salt supplemented with differing 

concentrations of ethanol or phytochemical dissolved in ethanol, and 75µl of the bacterial 

suspension were loaded into individual wells of a polystyrene Greiner CELLSTAR® 96 well 

plate (sterile, F-bottom, with lid). In this experiment, the phytochemicals were first dissolved 

in ethanol (70%) and subsequently diluted in LB broth medium without salt. This was done to 

overcome false biofilm formation caused by small amounts of undissolved phytochemicals 

binding the well wall and absorbing crystal violet (see below). 

 

The 96 well plates were incubated overnight at 37⁰C, then for 2 days at 25°C. After incubation, 

the plate was inverted over a stack of absorbent paper to remove the bulk of the bacterial 

suspension in each well. Then, the wells were first washed with running tap water twice, stained 

with 300µl of 0.1% crystal violet for 30 min for biofilm detection. After that, the wells were 

washed with running tap water twice, dried, and for quantification of the formed biofilm, 300µl 

of (9:1) ethanol/acetone was added into each well, and then the absorbance was measured at 

590nm using Fluostar Omega system. 

 

 

3.2.3 Determination of SCFAs in E. coli strains in the presence of sub-lethal 

concentrations of aqueous phytochemicals by capillary gas chromatography (GC) 

The method of Richardson was adapted to extract SCFAs using GC (Richardson et al., 1991). 

A sample of 1ml of overnight culture (10 – 12hr) from each E. coli strain (APEC = 12 strains, 

chicken strains = 7 strains and turkey strains = 6 strains with carvacrol and oregano MIC values 

≥ 0.3µg/ml , and 1 reference E. coli MG1655 K12 strain) with OD of 1.00 at 600nm (109 

CFU/ml) grown in LB broth (control), and LB broth containing 0.2µg/ml sub-lethal 
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concentrations of aqueous carvacrol or aqueous oregano with OD of 0.1 at 600nm (108 

CFU/ml) at 37ºC was transferred into a flat bottomed 100mm x 16mm glass tube. Then, 1ml 

of external standard consisting of acetate, butyrate, formate, propionate, and lactate prepared 

at 1M each and in final concentration of 100mM, 50µl of 0.1M 2-ethylbutyric acid solution 

(internal standard), 500µl of concentrated hydrochloric acid (HCl), and 3ml of diethyl ether 

were added in this order to the tube. The tubes were vortexed in a multi-vortex for 1min, and 

then centrifuged at 2000 g for 10min in MSE Minstral 3000i centrifuge. A volume of 400µl of 

the resultant supernatant was transferred to a GC vial and 50µl of standard N-methyl-N-(t-

butyldimethylsilyl) - trifluoroacetamide (MTBSTFA) was added to it. The GC vial was 

incubated at room temperature for 3 days, and then placed in a HP 5890 series ΙΙ GC system 

(Hewlett Packard, Palo Alto, USA) using fused-silica capillary column 0.25µm film thickness 

(25m x 0.32mm) for the determination of SCFAs. The column temperature was set to be at 

63ºC for 3min and then increased to 190ºC at 10ºC/min, and the carrier gas was helium. 

3.2.4 Statistical analyses 

For growth experiments, least square means for multiple comparisons was performed to 

compare between OD600 readings of control vs. OD600 readings of MIC level for each 

phytochemical at 9hr (exponential phase = highest OD reading). As for biofilm experiments, 

least square means for multiple comparisons was performed to compare between OD590 

readings of control vs. OD590 readings of inhibition of biofilm level for each phytochemical. 

For growth experiments, Pearson’s Chi-square test was performed to study the significance 

level between MIC value of each phytochemical among the E. coli strains, and to study the 

levels of biofilm production by different E. coli strains.  As for GC experiments, linear mixed 

model was performed to study the significance between control vs. production of each SCFA 

at sub-lethal concentrations of each phytochemical. Statistical analyses were performed using 

R i386 3.4.3 software. 
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3.3 Results 

3.3.1 Effect of different concentrations of aqueous phytochemicals on the growth of E. 

coli strains 

 

The effect of aqueous carvacrol and aqueous oregano on the growth of E. coli was investigated. 

OD600 measurements of growing broth cultures in the presence of increasing concentrations of 

aqueous carvacrol and oregano were taken over a 24hr incubation, and the results are shown in 

Table 3.1. These results were used to determine the MIC value under five different 

concentrations ranging from 0.1μg/ml to 0.5μg/ml in comparison with the control that lacked 

any phytochemical. The phytochemicals carvacrol and oregano showed concentration-

dependent bactericidal effects on all of the E. coli strains tested. The MIC was determined as 

the lowest concentration where no growth was noted. The E. coli strains reacted variously to 

the different concentrations of aqueous carvacrol, and the MIC values ranged from 0.2μg/ml 

to 0.5μg/ml. In general, the most resilient E. coli strain was T4 with aqueous carvacrol MIC 

value of 0.5μg/ml. With aqueous oregano, the most resilient E. coli strains were APEC 48, 

APEC 49, and C8 with MIC values of 0.5μg/ml. As a generalisation, aqueous oregano showed 

higher MIC values in comparison with aqueous carvacrol. However, when least square means 

for multiple comparisons was performed, it showed that there was a significant difference (P-

value < 0.0001) between OD600 readings of control vs. MIC level of aqueous carvacrol or 

aqueous oregano, but there were no significant differences (P-value = 0.9993) between MIC 

levels of aqueous carvacrol and aqueous oregano. This was supported by Pearson’s Chi-square 

test which showed that there was no significant difference (P-value = 0.1252) between MIC 

values of aqueous carvacrol and aqueous oregano.  

 

 

 



82 
 

The growth curves were plotted and clearly showed that carvacrol and oregano showed a 

concentration- dependent inhibition of growth. Representative examples of growth curves of 

APEC 7 strains (sharing the same carvacrol and oregano MIC value = 0.3µg/ml) are shown in 

Figures 3.1 and 3.2. From this data, it was possible to establish the MIC value.  

 
Figure 3.1 Representative growth curve showing the effect of different concentrations of 

aqueous carvacrol against strain APEC 7 (MIC = 0.3μg/ml). Results are expressed as means (n 

=3) with error bars. 
 

 
Figure 3.2 Representative growth curve showing the effect of different concentrations of 

aqueous oregano against strain APEC 7 (MIC = 0.3μg/ml). Results are expressed as means (n 

=3) with error bars. 
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Table 3.1 MIC values of aqueous carvacrol, and aqueous oregano against E. coli strains 

Code 

MIC value 

(μg/ml) 

Minimum value 

(μg/ml) 

Maximum value 

(μg/ml) 

Mean 

(μg/ml) 

C O C O C O C O 

7 0.3 0.3 

0.3 0.3 0.5 0.5 0.358 0.342 

14 0.3 0.3 

43 0.3 0.3 

45 0.4 0.4 

46 0.3 0.3 

47 0.4 0.3 

48 0.4 0.5 

49 0.4 0.5 

51 0.4 0.3 

52 0.3 0.3 

53 0.3 0.3 

54 0.3 0.3 

C1 0.3 0.3 

0.2 0.3 0.3 0.5 0.278 0.367 

C2 0.3 0.3 

C3 0.3 0.3 

C4 0.3 0.4 

C5 0.2 0.4 

C6 0.3 0.3 

C7 0.3 0.4 

C8 0.3 0.5 

C9 0.2 0.4 

T1 0.3 0.3 

0.2 0.3 0.5 0.4 0.280 0.330 

T2 0.2 0.4 

T3 0.2 0.3 

T4 0.5 0.3 

T5 0.2 0.3 

T6 0.3 0.4 

T7 0.2 0.4 

T8 0.3 0.3 

T9 0.3 0.3 

T10 0.3 0.3 

MG1655 WT 0.4 0.3       

MG1655 acrAB M 0.3 0.2       

Shaded cells refer to a high level of MIC values (greater than 0.3μg/ml). C, carvacrol; O, oregano. Results are 

expressed as means (n =3) ± STD = 0.00. 
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3.3.2 Effect of different concentrations of ethanol-based phytochemicals on E. coli biofilm 

An initial study of biofilm formation showed that aqueous phytochemicals (carvacrol, and 

oregano) by themselves when prepared by direct dissolution in broth gave a false positive 

biofilm result, namely the aqueous phytochemicals bound to the wall of the well that bound to 

the crystal violet. This process was independent of any bacterial growth as demonstrated by 

positive readings for biofilm in the medium control where no bacterial suspension was given. 

Thus, to overcome this issue, carvacrol or oregano was first dissolved in 70% ethanol and then 

diluted in broth. Controls showed that carvacrol or oregano dissolved this way did not cause 

false positive results for biofilm formation.  

 

Ethanol is a known inhibitor of bacteria, and it was considered possible even at the very low 

concentrations of ethanol in the ethanol - carvacrol or oregano mixture (max. 3.47%), the 

ethanol may impact on biofilm formation either more than or synergistically with carvacrol or 

oregano. Therefore, a control study was set up to test the impact of ethanol alone at the dilutions 

and a little above used in the phytochemical dilutions. The experiments were performed as 

described in materials and methods and the results are shown in Table 3.2. The data clearly 

showed that ethanol alone and at different concentrations used resulted in either stimulation or 

inhibition of biofilm formation. These experiments were repeated to generate statistical 

robustness in this analysis, with a significant P-value of less than 0.05. It was concluded that 

the concentrations of ethanol used to dissolve the phytochemicals were sufficient to stimulate 

biofilm formation in most strains. The collective data (Tables 3.2, 3.3, and 3.4) showed that 

biofilm was formed in the presence of different concentrations of ethanol, but it was 

significantly inhibited (P-value < 0.05) upon addition of different concentrations of ethanol-

based carvacrol or ethanol-based oregano. 
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A layer of biofilm was formed on the walls of the used 96 well plate in the absence of 

phytochemicals, of which 41.7% of the tested bacteria were defined as strong biofilm formers 

which were mostly APEC strains, and the remaining 58.3% were defined as weak biofilm 

formers (Tables 3.2, 3.3, and 3.4). The effect of both ethanol-based phytochemicals resulted 

in an inhibition of the E. coli biofilm upon increasing their concentrations (Tables 3.3 and 

3.4). There was a general trend in attenuating E. coli biofilm formation by ethanol-based 

carvacrol and ethanol-based oregano, but E. coli strains exhibited different inhibitory effects 

reflected by different concentrations of ethanol-based carvacrol and ethanol-based oregano. It 

was noted that the very high biofilm former APEC 7; required a very high concentration 

(0.5µg/ml) of ethanol-based carvacrol to inhibit its biofilm formation (Table 3.3), but its 

biofilm was inhibited upon addition of 0.2µg/ml of ethanol-based oregano (Table 3.4). 
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Table 3.2 Effect of different concentrations of ethanol on E. coli biofilm 

Code 

Ethanol (%) 

0 0.5 1 2 3 3.5 

Biofilm formation = OD590  – OD590 of LB broth 

7 3.263 ± 0.06 3.192 ± 0.00 3.192 ± 0.00 3.192 ± 0.00 0.000 ± 0.00* 0.000 ± 0.01* 

14 1.755 ± 1.64 3.123 ± 0.00 3.061 ± 0.07 2.600 ± 0.61 2.782 ± 0.12 2.993 ± 0.15 

43 3.168 ± 0.16 3.123 ± 0.91 3.088 ± 0.00 1.005 ± 1.67 1.692 ± 0.95 1.123 ± 0.00 

45 2.535 ± 0.39 2.895 ± 0.02 2.896 ± 0.01 2.879 ± 0.04 2.261 ± 0.21 1.561 ± 0.68 

46 1.782 ± 1.57 2.852 ± 0.09 2.883 ± 0.02 2.897 ± 0.01 2.904 ± 0.00 2.891 ± 0.02 

47 2.091 ± 1.81 2.187 ± 0.52 2.864 ± 0.07 2.904 ± 0.09 2.279 ± 1.08 2.904 ± 0.00 

48 1.347 ± 1.71 2.911 ± 0.02 2.919 ± 0.00 2.858 ± 0.07 2.508 ± 0.22 1.579 ± 0.70 

49 1.472 ± 1.45 2.891 ± 0.05 2.884 ± 0.03 2.919 ± 0.00 2.889 ± 0.05 2.919 ± 0.00 

51 2.529 ± 0.63 2.589 ± 0.44 2.994 ± 0.01 2.998 ± 0.09 2.505 ± 0.85 2.998 ± 0.00 

52 1.095 ± 0.96 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 3.002 ± 0.57 

53 2.170 ± 1.88 3.330 ± 0.00 3.330 ± 0.00  3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 

54 1.287 ± 1.21 0.569 ± 0.62 1.096 ± 1.48 1.013 ± 0.01 1.227 ± 0.20 1.350 ± 1.72 

C1 3.221 ± 0.14 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 

C2 1.508 ± 1.60 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 3.330 ± 0.00 

C3 3.287 ± 0.13 3.330 ± 0.00 3.330 ± 0.00 3.526 ± 0.86 3.330 ± 0.00 3.330 ± 0.00 

C4 1.796 ± 1.63 3.325 ± 0.00 3.321 ± 0.01 3.325 ± 0.00 3.292 ± 0.06 3.325 ± 0.00 

C5 0.829 ± 0.72 2.345 ± 0.87 3.023 ± 0.25 3.325 ± 1.21 2.020 ± 0.63 2.726 ± 0.65 

C6 1.523 ± 1.57 3.137 ± 0.23 3.180 ± 0.04 3.301 ± 1.36 3.219 ± 0.09 3.322 ± 0.01 

C7 3.260 ± 0.07 3.383 ± 0.00 3.350 ± 0.02 3.383 ± 0.00 3.333 ± 0.02 3.345 ± 0.03 

C8 0.793 ± 0.83 3.311 ± 0.13 3.153 ± 0.14 3.106 ± 0.63 3.235 ± 0.26 3.304 ± 0.13 

C9 1.671 ± 1.47 1.003 ± 0.00 1.104 ± 0.08 1.005 ± 0.00 1.238 ± 0.41 1.910 ± 1.71 

T1 0.023 ± 0.02 0.082 ± 0.01 0.105 ± 0.01 0.000 ± 0.14 0.000 ± 0.10 0.000 ± 0.12 

T2 0.003 ± 0.03 0.000 ± 0.09 0.002 ± 0.00 0.000 ± 0.11 0.000 ± 0.10 0.000 ± 0.11 

T3 1.479 ± 1.35 2.182 ± 0.26 2.349 ± 2.02 2.081 ± 0.20 1.755 ± 1.77 1.349 ± 0.00 

T4 0.000 ± 0.03 0.093 ± 0.05 0.066 ± 0.01 0.080 ± 0.05 0.041 ± 0.01 0.046 ± 0.01 

T5 1.984 ± 1.73 3.385 ± 0.02 3.397 ± 0.00 2.981 ± 0.57 3.397 ± 0.00 3.397 ± 0.00 

T6 0.024 ± 0.15 0.013 ± 0.00 0.060 ± 0.03 0.016 ± 0.00 0.123 ± 0.06 0.063 ± 0.04 

T7 0.119 ± 0.10 0.278 ± 0.04 0.190 ± 0.04 0.189 ± 0.10 0.164 ± 0.05 0.055 ± 0.03 

T8 0.000 ± 0.05 0.000 ± 0.00 0.076 ± 0.02 0.142 ± 0.19 0.056 ± 0.02 0.071± 0.02 

T9 0.064 ± 0.11 0.004 ± 0.02 0.081 ± 0.02 0.000 ± 0.01 0.072 ± 0.06 0.098 ± 0.05 

T10 0.000 ± 0.03 0.211 ± 0.05 0.350 ± 0.07 0.160 ± 0.14 0.071 ± 0.01 0.052 ± 0.02 

MG1655 WT 0.053 ± 0.02 3.225 ± 0.01 3.131 ± 0.03 3.336 ± 0.01 2.567 ± 0.01 2.366 ± 0.01 

MG1655 acrAB M 0.027 ± 0.01 0.053 ± 0.01 0.060 ± 0.01 0.014 ± 0.01 0.073 ± 0.01 0.154 ± 0.01 

Shaded cells refer to strong biofilm formers (greater than 1.500), considering 1.500 as a cut-off value. 

Values represent corrected OD readings at 590nm by subtracting the resulted OD readings from OD 

readings value of LB broth without salt as a negative control. Results are expressed as means (n =3). 
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Table 3.3 Effect of different concentrations of ethanol-based carvacrol on E. coli biofilm 

Code 

Carvacrol (μg/ml) (Ethanol %) 

0 (0%) 0.1 (0.7%) 0.2 (1.4%) 0.3 (2.1%) 0.4 (2.8%) 0.5 (3.4%) 

Biofilm formation = OD590  – OD590 of LB broth 

7 3.263 ± 0.06 3.335 ± 0.00 3.335 ± 0.00 3.335 ± 0.17 1.310 ± 0.12* 0.533 ± 0.09* 

14 1.755 ± 1.64 2.026 ± 1.30 2.363 ± 0.90 0.000 ± 0.03* 0.226 ± 0.30* 0.007 ± 0.02* 

43 3.168 ± 0.16 2.986 ± 0.21 2.764 ± 0.57 0.038 ± 0.07* 0.678 ± 0.27* 0.016 ± 0.03* 

45 2.535 ± 0.39 2.583 ± 0.69 1.964 ± 0.32 0.030 ± 0.08* 0.544 ± 0.89* 0.000 ± 0.01* 

46 1.782 ± 1.57 0.232 ± 0.09* 0.000 ± 0.00* 0.000 ± 0.00* 0.000 ± 0.00* 0.000 ± 0.01* 

47 2.091 ± 1.81 0.000 ± 0.07* 0.000 ± 0.06* 0.000 ± 0.06* 0.000 ± 0.07* 0.000 ± 0.07* 

48 1.347 ± 1.71 0.025 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.00* 

49 1.472 ± 1.45 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.01* 

51 2.529 ± 0.63 0.129 ± 0.26* 0.097 ± 0.24* 0.000 ± 0.01* 0.000 ± 0.02* 0.000 ± 0.00* 

52 1.095 ± 0.96 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.00* 0.000 ± 0.02* 0.000 ± 0.00* 

53 2.170 ± 1.88 0.052 ± 0.04* 0.009 ± 0.13* 0.000 ± 0.00* 0.000 ± 0.00* 0.000 ± 0.00* 

54 1.287 ± 1.21 0.010 ± 0.01* 0.012 ± 0.02* 0.019 ± 0.01* 0.000 ± 0.00* 0.000 ± 0.00* 

C1 3.221 ± 0.14 0.269 ± 0.89* 0.063 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.00* 

C2 1.508 ± 1.60 0.000 ± 0.01* 0.003 ± 0.01* 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.01* 

C3 3.287 ± 0.13 0.080 ± 0.04* 0.102 ± 0.04* 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.00* 

C4 1.796 ± 1.63 0.275 ± 0.08* 0.017 ± 0.02* 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.00* 

C5 0.829 ± 0.72 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.00* 0.000 ± 0.00* 0.000 ± 0.00* 

C6 1.523 ± 1.57 0.000 ± 0.02* 0.000 ± 0.03* 0.000 ± 0.01* 0.000 ± 0.00* 0.000 ± 0.00* 

C7 3.260 ± 0.07 0.865 ± 0.93* 0.128 ± 0.07* 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.01* 

C8 0.793 ± 0.83 0.058 ± 0.05* 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.01* 0.000 ± 0.00* 

C9 1.671 ± 1.47 0.216 ± 0.12* 0.203 ± 0.19* 0.000 ± 0.01* 0.004 ± 0.00* 0.000 ± 0.00* 

T1 0.023 ± 0.02 0.068 ± 0.01 0.000 ± 0.01 0.000 ± 0.00 0.000 ± 0.01 0.000 ± 0.00 

T2 0.003 ± 0.03 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.01 

T3 1.479 ± 1.35 0.027 ± 0.05* 0.653 ± 0.96* 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.01* 

T4 0.000 ± 0.03 0.000 ± 0.01 0.000 ± 0.03 0.000 ± 0.00 0.000 ± 0.01 0.000 ± 0.01 

T5 1.984 ± 1.73 0.000 ± 0.00* 0.000 ± 0.04* 0.000 ± 0.01* 0.000 ± 0.04* 0.000 ± 0.01* 

T6 0.024 ± 0.15 0.000 ± 0.01 0.000 ± 0.02 0.000 ± 0.02 0.000 ± 0.01 0.000 ± 0.02 

T7 0.119 ± 0.10 0.008 ± 0.01 0.054 ± 0.05 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.01 

T8 0.000 ± 0.05 0.000 ± 0.00 0.000 ± 0.01 0.000 ± 0.00 0.000 ± 0.01 0.000 ± 0.01 

T9 0.064 ± 0.11 0.038 ± 0.02 0.072 ± 0.09 0.000 ± 0.01 0.000 ± 0.01 0.000 ± 0.00 

T10 0.000 ± 0.03 0.000 ± 0.00 0.000 ± 0.02 0.000 ± 0.00 0.000 ± 0.01 0.000 ± 0.00 

MG1655 WT 0.053 ± 0.02 0.084 ± 0.01 0.029 ± 0.02 0.022 ± 0.01 0.036 ± 0.02 0.012 ± 0.02 

MG1655 acrAB M 0.027 ± 0.01 0.021 ± 0.01 0.000 ± 0.01 0.000 ± 0.01 0.000 ± 0.00 0.020 ± 0.01 

Shaded cells refer to strong biofilm formers (greater than 1.500), considering 1.500 as a cut-off value. 

Values represent corrected OD readings at 590nm by subtracting the resulted OD readings from OD 

readings value of LB broth without salt as a negative control. Results are expressed as means (n =3). 

 



88 
 

Table 3.4 Effect of different concentrations of ethanol-based oregano on E. coli biofilm 

Code 

Oregano (μg/ml) (Ethanol %) 

0 (0%) 0.1 (0.7%) 0.2 (1.4%) 0.3 (2.1%) 0.4 (2.8%) 0.5 (3.4%) 

Biofilm formation = OD590  – OD590 of LB broth 

7 3.263 ± 0.06 1.970 ± 1.08* 0.000 ± 0.15* 0.000 ± 0.09* 0.018 ± 0.13* 0.000 ± 0.00* 

14 1.755 ± 1.64 0.000 ± 0.08* 0.000 ± 0.10* 0.000 ± 0.11* 0.000 ± 0.08* 0.000 ± 0.07* 

43 3.168 ± 0.16 2.680 ± 1.73 0.000 ± 0.11* 0.000 ± 0.08* 0.000 ± 0.09* 0.000 ± 0.08* 

45 2.535 ± 0.39 0.000 ± 0.01* 0.000 ± 0.06* 0.000 ± 0.05* 0.000 ± 0.00* 0.000 ± 0.00* 

46 1.782 ± 1.57 1.465 ± 0.65 0.000 ± 0.11* 0.000 ± 0.08* 0.000 ± 0.09* 0.000 ± 0.08* 

47 2.091 ± 1.81 0.096 ± 0.15* 0.000 ± 0.10* 0.000 ± 0.10* 0.000 ± 0.08* 0.000 ± 0.08* 

48 1.347 ± 1.71 0.000 ± 0.12* 0.020 ± 0.13* 0.000 ± 0.08* 0.000 ± 0.09* 0.000 ± 0.08* 

49 1.472 ± 1.45 0.000 ± 0.00* 0.000 ± 0.13* 0.000 ± 0.10* 0.000 ± 0.09* 0.000 ± 0.09* 

51 2.529 ± 0.63 1.894 ± 1.16 0.034 ± 0.15* 0.000 ± 0.07* 0.000 ± 0.08* 0.000 ± 0.07* 

52 1.095 ± 0.96 0.000 ± 0.08* 0.000 ± 0.12* 0.000 ± 0.09* 0.000 ± 0.09* 0.000 ± 0.01* 

53 2.170 ± 1.88 1.487 ± 0.94 0.000 ± 0.15* 0.000 ± 0.01* 0.000 ± 0.11* 0.000 ± 0.09* 

54 1.287 ± 1.21 0.000 ± 0.14* 0.000 ± 0.12* 0.000 ± 0.00* 0.000 ± 0.10* 0.000 ± 0.11* 

C1 3.221 ± 0.14 2.208 ± 2.02 0.061 ± 0.16* 0.017 ± 0.01* 0.000 ± 0.07* 0.003 ± 0.00* 

C2 1.508 ± 1.60 0.016 ± 0.00* 0.000 ± 0.07* 0.018 ± 0.00* 0.000 ± 0.07* 0.003 ± 0.00* 

C3 3.287 ± 0.13 1.051 ± 1.19* 0.000 ± 0.10* 0.045 ± 0.01* 0.000 ± 0.09* 0.000 ± 0.08* 

C4 1.796 ± 1.63 0.359 ± 0.42* 0.285 ± 0.36* 0.131 ± 0.01* 0.000 ± 0.10* 0.000 ± 0.10* 

C5 0.829 ± 0.72 0.106 ± 0.23* 0.000 ± 0.10* 0.000 ± 0.09* 0.000 ± 0.09* 0.000 ± 0.07* 

C6 1.523 ± 1.57 0.124 ± 0.24* 0.024 ± 0.13* 0.000 ± 0.10* 0.000 ± 0.09* 0.000 ± 0.08* 

C7 3.260 ± 0.07 3.084 ± 0.07 1.382 ± 0.56* 0.133 ± 0.03* 0.057 ± 0.01* 0.000 ± 0.01* 

C8 0.793 ± 0.83 1.014 ± 1.06 0.191 ± 0.27* 0.017 ± 0.11* 0.000 ± 0.10* 0.000 ± 0.09* 

C9 1.671 ± 1.47 0.638 ± 0.67* 0.010 ± 0.10* 0.055 ± 0.01* 0.000 ± 0.08* 0.023 ± 0.00* 

T1 0.023 ± 0.02 0.276 ± 0.01 0.222 ± 0.04 0.229 ± 0.03 0.185 ± 0.01 0.195 ± 0.01 

T2 0.003 ± 0.03 0.000 ± 0.01 0.000 ± 0.04 0.000 ± 0.01 0.000 ± 0.01 0.000 ± 0.02 

T3 1.479 ± 1.35 0.237 ± 0.17* 0.000 ± 0.02* 0.000 ± 0.00* 0.000 ± 0.01* 0.000 ± 0.00* 

T4 0.000 ± 0.03 0.000 ± 0.01 0.000 ± 0.02 0.000 ± 0.01 0.000 ± 0.01 0.000 ± 0.01 

T5 1.984 ± 1.73 0.856 ± 0.00* 0.824 ± 0.06* 0.498 ± 0.34* 0.856 ± 0.00* 0.366 ± 0.34* 

T6 0.024 ± 0.15 0.000 ± 0.13 0.000 ± 0.01 0.000 ± 0.06 0.000 ± 0.04 0.000 ± 0.05 

T7 0.119 ± 0.10 0.000 ± 0.03 0.000 ± 0.03 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 

T8 0.000 ± 0.05 0.000 ± 0.02 0.000 ± 0.01 0.000 ± 0.02 0.000 ± 0.07 0.000 ± 0.01 

T9 0.064 ± 0.11 0.077 ± 0.03 0.051 ± 0.05 0.021 ± 0.01 0.000 ± 0.01 0.000 ± 0.01 

T10 0.000 ± 0.03 0.000 ± 0.00 0.000 ± 0.08 0.000 ± 0.10 0.000 ± 0.07 0.000 ± 0.09 

MG1655 WT 0.053 ± 0.02 0.014 ± 0.02 0.000 ± 0.01 0.005 ± 0.04 0.000 ± 0.00 0.000 ± 0.00 

MG1655 acrAB M 0.027 ± 0.01 0.013 ± 0.01 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.01 0.000 ± 0.01 

Shaded cells refer to strong biofilm formers (greater than 1.500), considering 1.500 as a cut-off value. Values 

represent corrected OD readings at 590nm by subtracting the resulted OD readings from OD readings value of 

LB broth without salt as a negative control. Results are expressed as means (n =3). 
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3.3.3 Effect of sub-lethal concentrations of aqueous phytochemicals on the production of 

SCFAs by E. coli strains 

 

Results showed that E. coli strains produce variable amounts of SCFAs (Tables 3.5 and 3.6) 

and there were subtle differences in the production of SCFAs among the three groups of E. coli 

strains. In general, the highest SCFA produced was lactate (fermentation by-product), and the 

lowest SCFA produced was succinate (respiration by-product), interestingly produced by 

APEC and chicken strains. Whereas, turkey strains produced acetate as the highest SCFA 

produced, and succinate as the lowest produced SCFA. Statistically speaking, there were no 

significant differences (P-value > 0.05) between each phytochemical and the production of 

each SCFA when performing linear mixed model. Also, there were no significant differences 

(P-value > 0.05) between each phytochemical and the production of SCFAs as respiration by-

products (propionate, butyrate, and succinate) against different types of E. coli strains.  

 

There was a reduction in the production of lactate (fermentation by-product) in most APEC 

strains and some chicken strains incubated in sub-lethal concentrations of aqueous oregano in 

comparison with the control sets. Since lactate was the highest SCFA produced, there was a 

more focus on it. Linear mixed model showed that there was a significant difference between 

each phytochemical and production of lactate between APEC and turkey strains (P-value = 

0.011), and between chicken and turkey strains (P-value = 0.0028). The other by-product was 

acetate showed that there was a significant difference between each phytochemical and its 

production against APEC and turkey (P-value = 0.0002), and between chicken and turkey (P-

value = 0.0004), but there was no significant difference between APEC and chicken (P-value 

= 0.995). 
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Bacteria were grouped according to their MIC value of carvacrol, and this showed that bacteria 

with high MIC value had lower lactate production than bacteria with low MIC value. However, 

there was a direct relationship between amount of lactate production and oregano MIC value.  
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Table 3.5 Effect of sub-lethal concentrations of aqueous carvacrol and aqueous oregano (0.2µg/ml) on the production of SCFAs as respiration 

by-products 

Code 
Propionate Butyrate Succinate 

Control C O Control C O Control C O 

7 125.135±0.40 118.009±1.82 97.942±25.83 111.382±0.29 110.288±1.62 96.621±15.23 7.372±1.36 6.316±0.30 16.430±22.22 

14 167.340±6.57 166.460±1.75 161.040±4.42 149.804±5.42 149.455±0.67 146.953±2.48 4.765±0.20 5.361±0.13 4.847±0.33 

43 174.547±1.56 171.711±2.28 164.450±12.10 155.690±4.38 153.919±1.58 155.097±7.70 6.404±0.10 6.937±0.24 7.027±0.49 

45 149.099±4.18 154.595±0.13 103.480±0.13 130.163±0.13 137.055±0.13 91.857±0.13 5.427±0.14 6.710±0.15 3.613±3.13 

46 157.912±3.04 165.677±1.75 161.361±1.73 144.582±5.56 164.129±6.16 142.102±0.84 5.182±0.11 5.841±0.35 5.476±0.08 

47 166.831±8.66 165.352±1.05 175.824±6.51 144.694±7.55 149.040±1.42 158.487±6.60 5.362±0.31 5.264±0.14 5.823±0.09 

49 42.116±72.95 124.153±11.64 97.646±85.92 41.309±71.55 121.966±12.08 96.557±84.95 0.961±1.67 2.527±1.01 1.319±1.36 

51 120.008±15.13 34.585±59.90 122.196±22.24 119.408±15.36 34.904±60.45 122.020±19.72 2.417±1.30 0.253±0.44 7.958±10.67 

52 93.552±81.52 97.109±84.84 100.373±88.11 93.165±81.22 96.155±84.37 100.018±87.04 1.484±1.53 1.438±1.57 5.831±8.58 

53 151.237±4.55 102.046±88.67 149.550±15.88 156.835±6.66 103.037±89.75 148.972±13.07 3.707±0.88 2.150±2.05 3.168±1.45 

54 106.455±92.21 104.692±90.67 47.579±82.41 102.261±88.60 105.272±91.19 46.438±80.43 2.653±2.32 2.543±2.20 1.143±1.98 

C1 58.824±101.89 107.748±93.31 55.308±95.80 54.011±93.55 104.141±90.23 52.509±90.95 1.634±2.83 0.986±0.85 1.230±2.13 

C2 160.649±4.69 164.448±2.58 159.067±2.22 166.259±19.36 180.379±8.36 170.999±8.07 4.737±0.42 6.446±0.16 4.705±0.22 

C3 154.772±0.74 161.604±0.82 160.907±0.65 153.536±6.25 146.095±1.60 147.653±3.72 4.791±0.09 3.959±0.10 4.688±0.10 

C4 170.555±2.74 146.762±17.10 155.231±10.53 177.066±21.13 160.478±24.71 164.866±13.95 3.959±0.05 1.997±1.12 3.000±1.19 

C6 140.304±25.14 157.995±3.04 171.519±2.05 134.457±25.40 153.078±4.97 166.199±3.25 2.991±1.60 2.699±1.29 3.832±0.05 

C7 155.242±0.40 145.169±8.48 152.754±3.83 150.125±0.33 141.251±10.55 146.745±5.63 3.796±0.05 2.750±0.62 3.570±0.56 

C8 112.537±4.41 130.931±23.17 122.199±24.70 118.364±4.20 141.221±24.49 131.877±26.26 0.969±0.17 2.227±1.16 1.467±1.16 

T1 131.893±12.20 140.088±15.35 145.919±18.49 127.114±11.51 135.584±14.14 140.391±17.48 1.186±0.19 2.313±1.52 2.568±1.36 

T4 147.680±18.90 140.787±7.03 143.870±11.91 144.789±18.38 142.295±6.93 135.159±11.24 2.181±1.07 1.724±0.27 2.069±0.69 

T6 143.844±19.12 125.719±10.17 132.201±13.04 133.284±17.65 121.365±9.26 125.972±10.25 2.960±1.44 1.501±0.51 7.176±8.90 

T8 106.720±6.46 107.830±5.84 102.040±21.97 109.807±6.76 108.457±8.12 102.260±18.78 1.316±0.60 1.660±1.06 10.330±13.33 

T9 82.341±7.96 83.998±9.72 93.186±11.73 88.028±6.24 87.715±5.98 96.488±8.24 221.772±171.40 115.176±178.38 14.119±11.35 

T10 87.326±14.47 84.211±26.15 103.300±17.18 93.046±5.88 98.481±15.99 103.768±12.65 14.170±12.37 11.100±8.70 9.563±12.49 

MG1655 WT 60.377±52.85 272.533±0.23 171.221±46.25 63.116±54.67 263.671±23.63 184.929±19.76 7.733±12.66 20.206±23.49 30.566±24.68 

Numbers refer to an average of three values in millimolar (mM) unit. Control, refers to the E. coli production of SCFAs without phytochemicals. C, aqueous carvacrol; O, 

aqueous oregano. Results are expressed as means (n =3) ± STD. 
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Table 3.6 Effect of sub-lethal concentrations of aqueous carvacrol and aqueous oregano 

(0.2µg/ml) on the production of SCFAs as by-products of anaerobic pathway  

Code 
Acetate Lactate 

Control C O Control C O 

7 122.398±2.02 122.497±2.64 115.580±151.82 394.209±6.77 386.057±12.33 246.232±213.37 

14 160.081±5.85 160.034±3.37 149.599±7.85 348.927±14.23 353.877±10.38 320.683±23.03 

43 162.942±3.16 163.486±3.16 163.400±10.93 334.561±6.17 338.238±10.88 333.245±31.49 

45 144.031±3.61 151.725±2.59 100.310±86.89 244.553±2.44 255.243±1.83 171.256±0.15 

46 155.059±5.60 174.660±4.47 161.996±2.01 265.483±9.97 297.774±12.89 162.315±1.92 

47 173.510±7.79 175.550±1.76 184.409±5.26 181.182±5.24 179.510±2.63 187.656±1.64 

49 34.797±60.27 104.360±16.53 74.660±64.68 24.374±42.22 75.750±12.29 55.908±48.45 

51 103.661±21.08 23.731±41.10 101.865±30.79 131.794±36.26 31.834±55.14 118.351±25.12 

52 70.689±62.95 74.292±67.07 79.012±71.34 47.935±42.37 50.945±45.33 35.563±61.60 

53 120.209±8.48 81.155±71.10 118.461±26.19 127.911±9.21 85.668±75.29 107.809±10.88 

54 92.098±79.81 87.760±76.00 40.419±70.01 78.561±68.18 73.972±64.07 47.343±82.00 

C1 53.445±92.57 97.955±84.83 51.709±89.56 94.437±163.57 175.035±151.59 96.812±167.68 

C2 138.069±3.62 146.838±3.02 139.620±1.58 291.116±19.36 332.630±8.36 306.454±8.07 

C3 134.402±0.03 145.393±0.86 144.395±1.15 300.529±6.25 262.326±1.60 258.782±3.72 

C4 146.829±1.46 120.258±25.35 125.618±17.24 238.355±80.79 144.643±44.28 170.355±38.42 

C6 104.836±27.95 125.271±13.74 143.467±1.34 152.122±74.78 202.401±51.89 250.396±1.49 

C7 129.376±3.05 121.811±10.13 127.040±6.33 213.539±4.08 207.219±31.73 233.530±19.63 

C8 83.931±3.60 110.479±26.88 94.937±27.82 120.312±11.35 175.434±59.16 139.852±52.38 

T1 91.027±7.24 104.621±18.78 111.799±20.65 107.420±8.01 139.795±35.11 151.655±36.71 

T4 118.180±24.63 108.610±8.01 109.566±14.66 184.619±44.03 161.170±9.36 167.008±33.00 

T6 114.030±23.43 94.765±12.55 355.749±436.75 191.425±41.37 151.190±20.30 157.405±24.50 

T8 90.106±13.44 89.344±17.21 359.241±448.46 67.706±34.52 69.614±39.53 39.430±45.73 

T9 1071.762±553.28 774.934±534.78 560.872±424.57 0.000±0.00 28.519±49.40 31.535±54.62 

T10 669.569±384.59 471.660±356.20 481.924±72.09 29.271±50.70 24.554±42.53 52.195±64.49 

MG1655 

WT 
425.135±42.51 277.542±105.07 409.317±249.44 31.083±53.84 373.841±320.39 227.169±250.59 

Numbers refer to an average of three values in mM unit. Control, refers to the E. coli production of 

SCFAs without incubating it in phytochemicals. C, aqueous carvacrol; O, aqueous oregano. Results are 

expressed as means (n =3) ± STD. 
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3.4 Discussion 

 

MIC values for aqueous phytochemicals (carvacrol and oregano) were determined against 

APEC strains, commensal E. coli isolated from chicken and turkey, and E. coli MG1655 K12 

strains (Table 3.1). Aqueous carvacrol and aqueous oregano demonstrated their bactericidal 

activity against these E. coli strains. The MIC values of aqueous carvacrol varied between the 

different types of E. coli strains (Table 3.1), with APEC strains giving the highest MIC values. 

Whether there is a genuine correlation between relative insensitivity to carvacrol and/or 

oregano and their pathogenicity (e.g. APEC 48 has an MIC value of 0.4μg/ml and 0.5μg/ml, 

respectively) is open to question but is worthy of a wider population study. The resulting MIC 

values cannot be compared directly with values given in the scientific literature or from 

previous studies for reasons that relate largely to differing preparation methods of the 

phytochemicals: 1) extraction method of the essential oil; 2) essential oil content of the stock; 

3) preparation of stock in different solvents; 4) volume and number of bacterial in the inoculum; 

5) different bacterial cultures and broth media; 6) OD measurements at different wavelengths. 

However, irrespective of the differences in approaches and techniques, the data generated in 

this study and elsewhere in the literature suggest that the sensitivity of the E. coli towards these 

phytochemicals is promising for their potential use as control measures. 

 

The trend from the data generated in this study needs further investigation. The relative lower 

sensitivity of APEC compared with presumed poultry commensal strains is of concern, as 

APEC strains showed the highest MIC values. A question that could be asked is whether 

reduced sensitivity is related to virulence and possession of virulence factors associated with 

avian colibacillosis (Delicato et al., 2003). Many virulence factors such as fimbriae and other 

protein components of the cell wall structure may alter the properties of the cell membrane 

resulting in the relative insensitivity of APEC strains. It is possible that the use of these 
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phytochemicals at low level will select APEC and reduce commensals. This will need further 

investigation at the population level in caecal contents of broiler chickens which will be 

presented in Chapter 6. 

 

The mechanism of action of these phytochemicals is most likely related to their hydrophobic 

nature that allows them to diffuse through the cell wall structure (Sikkema et al., 1995a) and 

this represents the first target site within the bacterial cell. The exact mechanism of action of 

these phytochemicals is not well-known, so it is still not clear whether there might be single or 

multiple target sites within the bacterial cells such as cell membrane, and nucleoid structures. 

In order to interrogate the mechanisms of action, one set of future studies will be the derivation 

of mutants showing reduced susceptibility, selected by continuous exposure to sub-MIC level 

of phytochemicals in growth medium, in order to study mutational changes by WGS and 

thereby get a hint into the changes in genetic makeup which will be presented in the following 

Chapter 4. 

 

When comparing MIC values of aqueous carvacrol and aqueous oregano, results showed that 

aqueous carvacrol has a lower MIC than aqueous oregano against E. coli strains which agrees 

with previous research (Cosentino et al., 1999), even though both phytochemicals come from 

the same polyphenol group. This might be due to the differences in their chemical structures 

as it is known that the anti-bacterial activity and its mode of action of the essential oil is 

determined by its chemical structure (Dorman and Deans, 2000). However, when least square 

means for multiple comparisons was performed, it showed that there was a significant 

difference (P-value < 0.0001) between OD600 readings of control vs. MIC level of aqueous 

carvacrol or aqueous oregano, but there was no significant difference (P-value = 0.9993) 
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between MIC levels of aqueous carvacrol and aqueous oregano. This was supported by 

Pearson’s Chi-square test which showed that there was no significant difference (P-value = 

0.1252) between MIC values of aqueous carvacrol and aqueous oregano, even though carvacrol 

is the active ingredient of oregano oil, and that both phytochemicals are active in controlling 

E. coli strains (i.e. effective in inhibiting their growth). 

 

Results confirmed the bactericidal activity of the aqueous carvacrol and aqueous oregano at the 

concentrations ranges used against a variety of E. coli strains including those strains with multi-

antibiotic resistance, biofilm formation, and a variety of virulence genes isolated from poultry 

sources. This in vitro study provides promising data that the use of carvacrol and oregano may 

be potent against E. coli strains that inhabit poultry guts reared for human consumption.  This 

opens additional avenues in reducing the burden of antibiotic resistant E. coli strains in vivo 

with phytochemicals instead of antibiotics in poultry industry. However, as stated, there is a 

concern that removal of commensal E. coli strains may have a deleterious impact on 

performance, but this may outweigh by other benefits; better performance in broiler production 

(Personal communication, St. David’s Veterinary Practice).  

 

In the growth experiments 3.3.1, it was noted that phytochemicals were effective in inhibiting 

the growth of E. coli bacteria (Table 3.1 and Figure 3.1). Given the overall aim of this thesis, 

it was of interest to investigate whether carvacrol and oregano have any influence on biofilm 

formation too, as biofilm formation is a virulence factor associated with in vivo colonisation 

and associated with bacterial survival in the environment. Bacterial biofilms are known to be 

formed with a sophisticated architecture and comprise of the bacterial cells themselves with 

extensive bacterially-derived proteins, often fimbriae and flagellae, and exopolysaccharides, 

that can include cellulose for example (Costerton et al., 1987). Results showed that most of the 
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strong biofilm formers were APEC strains (Tables 3.2, 3.3, and 3.4), and this supports an 

earlier study that biofilm formation is one of the virulence determinants of APEC strains 

(Skyberg et al., 2007). Also, the data presented in Tables 3.3 and 3.4 demonstrated that ethanol-

based carvacrol and ethanol-based oregano display an anti-biofilm activity. 

 

Fimbriae and flagellae are proteinaceous biofilm components, and there is a possibility that 

interaction between carvacrol and these proteins will inhibit biofilm formation as suggested by 

the studies of Burt in Chromobacterium violaceum (Burt et al., 2014). If this is the case, the 

finding has implications on the ability of the E. coli to colonise poultry. Thus, bacterial biofilm 

formation and the effect of carvacrol, and oregano on biofilm formation were further 

investigated using the previously mentioned method of O’Toole and Kolter in 3.2.2. Ethanol-

based carvacrol, showed an ability to inhibit the biofilm formation of the E. coli strains, and 

this confirms a previous study that carvacrol mitigated bacterial biofilm formation at sub-lethal 

concentrations (Burt et al., 2014). This indicates that carvacrol which is of phenolic nature 

might disrupt biofilm formation, by binding and interfering with its key structures (flagella and 

curli fimbriae) that are proteinaceous in nature. Another study revealed that the interaction of 

carvacrol with bacterial surface proteins leads to exerting changes in their morphological 

structures, and thereby preventing initial attachment stage of biofilm formation (Nostro et al., 

2007).  

 

Oregano showed an increased ability to prevent biofilm formation of the tested E. coli strains 

in comparison with carvacrol. This is may be due to the differences in their chemical structures. 

The reason is that the anti-bacterial activity and its mode of action of the essential oil is 

determined by its chemical structure (Dorman and Deans, 2000). Also, the diffusion of oregano 

oil containing carvacrol and thymol through the exopolysaccharide matrix component of the 
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biofilm resulting in its destabilization and anti-bacterial activity (Nostro et al., 2007). As a 

conclusion to this in vitro study, the phytochemicals were successful in inhibiting biofilm 

formation of the previously characterised E. coli strains, but the exact mechanisms of these 

inhibitory actions are still unclear, but these phytochemicals maybe considered as a potential 

control measure. 

 

It is necessary to be aware of the evidence that suggests virulent APEC strains are better biofilm 

formers than the presumptive commensals at this level of investigation. Thus, any control 

measure that uses carvacrol or oregano might have an impact upon presumptive commensals 

than upon APEC. This may have consequences upon the host chicken, as oregano which is 

currently used extensively in poultry production (St. David’s Veterinary Practice, UK, personal 

communication) and this may select APEC in vivo. Another issue is that one APEC strain 

(APEC 7) was highly tolerant of carvacrol. This begs the question regarding the mechanism 

for comparative resistance. Hence, this strain is somewhat unique and perhaps WGS may give 

clues by identifying gene of regulatory mutations that have arisen to generate high biofilm 

formation capability. 

 

The production of SCFAs reflects how metabolically active these E. coli cells are and 

characterise them according to their type or group, and this might give us an insight into their 

metabolic profile. E. coli is a facultative anaerobe (Finegold et al., 1983a). Generally, results 

showed that there were higher fermentation by-products than respiration by-products, and this 

suggests that E. coli relies on both pathways to generate energy despite the anaerobic conditions 

of the gut.  
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Generally, the highest SCFA produced was lactate, and the lowest SCFA produced was 

succinate and these results were proven to be significant (P-value < 0.05), and this is in 

agreement with a previous study that E. coli produces acetate as a major fermentation by-

product and succinate as a minor fermentation by-product which proves performing mixed acid 

fermentation (Lee et al., 2005), and this may give an advantage to the E. coli strains in the real 

gut environment. Generally, the production of lactate was reduced in most APEC strains and 

some chicken strains incubated in sub-lethal concentrations of aqueous oregano in comparison 

with the control sets, and this may indicate that oregano as a mixture of essential oils containing 

carvacrol (Russo et al., 1998) is responsible for the reduction of fermentation levels in E. coli 

and may suppress its activity which was in agreement with this study (Varel, 2002). Aqueous 

carvacrol and aqueous oregano decreased the production of acetate in some turkey strains, 

which may suggest that one of their target sites works against the by-product of glycolysis and 

stops the tricarboxylic acid (TCA) cycle (Wolfe, 2005) and this may indicate one of their 

mechanisms of action. Reduction in the production of volatile fatty acids in response to the 

phytochemicals may lead to a stabilised intestinal pH, and this would enhance the activity of 

digestive enzymes (Jamroz et al., 2003). The previously mentioned comments were not proved 

statistically, as linear mixed model showed insignificant differences (P-value > 0.05) between 

production of SCFAs and each phytochemical. This may suggest that incubating the E. coli 

strains in sub-lethal concentrations of aqueous phytochemicals were more effective in 

inhibiting the anaerobic pathways which requires less energy in comparison with the aerobic 

pathways. To check whether the incubation period in sub-lethal concentrations of 

phytochemicals were important in suppressing the aerobic pathways of the E. coli strains, 

different time points representing different incubation periods must be included for future 

experiments. 
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In conclusion, carvacrol and oregano showed their ability in inhibiting growth and biofilm 

formation associated with virulence and survival mechanisms. Carvacrol and oregano showed 

their bactericidal activity at very low concentrations (MIC values ranging between 0.2 – 

0.5µg/ml) in comparison with antibiotics. However, at sub-MIC levels of carvacrol and 

oregano, these phytochemicals did not induce or show any metabolic changes among the E. 

coli strains. 
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CHAPTER 4: In vitro investigations into the  

anti-bacterial mechanisms of the phytochemicals 

 

 

4.1 Introduction 

Several studies have investigated the anti-bacterial properties and mechanisms of action of 

phytochemicals which have been mentioned in the previous chapter (see Chapter 3), but 

overall, they remain ill-defined. What has been proven already is the anti-bacterial properties 

of phytochemicals (Lambert et al., 2001, Lopez-Romero et al., 2015, Umaru et al., 2019) and 

the contribution of their chemical structure such as the hydroxyl group of carvacrol as an 

important requirement for that activity (Ben Arfa et al., 2006). The interaction between 

phytochemicals and bacteria at the cellular level is due to the hydrophobic nature of 

phytochemicals which enables their entry into the lipid bilayer of the cytoplasmic membrane; 

hence acting as a membrane destabilising agent (Sikkema et al., 1995b, Luz et al., 2014, Yuan 

et al., 2019), inducing structural changes that results in modifying the function of membrane 

proteins of the lipid bilayer. Examples of theses membrane proteins are heat shock proteins; 

universal chaperone proteins expressed under stressful conditions (Richter et al., 2010); GroEL 

and DnaK which are required for bacterial cell adaptation in response to environmental stress 

such as thermal stress (Di Pasqua et al., 2013). Moreover, GroEL plays a regulatory role in 

bacterial conjugation in response to stress (Zahrl et al., 2007).  

 

These phytochemicals can also affect the lipid moiety of the cell membrane and change 

properties of the cell membrane due to changes in its surface charge (Cristani et al., 2007) and 

that affects ion (H+ and K+) transport across the membrane (Ultee et al., 2002a). There are 

many other target sites inside the bacterial cell which could be affected by phytochemicals that 
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need to be thoroughly studied. To interrogate which components of the bacterial cell could be 

affected by phytochemicals, the approach chosen was training bacteria to grow at sub-MIC 

concentrations of phytochemicals to generate derivatives that have reduced sensitivity 

(increased resistance) to the phytochemicals. The purpose of this approach was to determine 

whether this resistance might be the result of a temporary physiological adaptation or a 

mutation. Genetic analysis of these trained strains should identify genes encoding cellular 

functions involved in response to the stress of phytochemicals. Recent results from previous 

PhD thesis showed that training E. coli strains to grow at sub-MIC levels of thymol (similar to 

carvacrol in chemical structure and its anti-bacterial activity) resulted in a non-sense mutation 

in acrR gene encoding for the AcrAB repressor which is a multi-drug efflux system 

(Alkhandari, 2017). Therefore, this chapter aimed at further investigations into the anti-

bacterial role of carvacrol and oregano at the genetic level, in order to fill the gaps and increase 

our understanding in the area of mechanistic studies. The testable hypotheses were: 1) Whether 

any changes will be detected suggesting a temporary adaptation to stress or not?, 2) Whether 

mutation(s) will be selected as a result of continuous exposure to sub-lethal concentrations of 

carvacrol and oregano or not?, 3) If mutation(s) did arise, what are the kind of changes at the 

genetic level?, 4) Whether mutant E. coli strains will result in different phenotypic changes 

under the presence of different concentrations of aqueous carvacrol or not?  
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The aims and objectives behind this chapter were: 

• To create selective pressure in result of continuous exposure to sub-lethal 

concentrations of phytochemicals to understand what is really happening at the cellular 

level of E. coli.  

• To detect whether the trained isolates came from the same starting wild-type strains by 

checking their API 20E, AST, and PCR profiles. 

• To demonstrate the effect of continuous exposure to sub-lethal concentrations of 

phytochemicals on the growth of E. coli, antibiotic resistance profile using antibiotic 

disks, and virulence genes profiling using PCR. 

• To test the effect of different concentrations of aqueous carvacrol on different E. coli 

MG1655 strains with a single defined mutation using growth experiment, to further 

investigate the anti-bacterial role of carvacrol against efflux pump systems and cell wall 

synthesis. 

 

4.2 Materials and methods 

4.2.1 Training E. coli strains to tolerate sub-lethal concentrations of aqueous 

phytochemicals 

Three E. coli strains; APEC 7, C1, and T8 that share the same MIC value (0.3µg/ml) against 

aqueous carvacrol and oregano were selected for these studies. Each E. coli strain was grown 

overnight (10 – 12hr) in LB broth at 37ºC to yield approximately 109 CFU/ml (OD600 = 1.00). 

Three sets of tubes were prepared for these three strains: control containing E. coli strain in LB 

broth, a tube containing E. coli culture and 0.2µg/ml aqueous carvacrol, and a tube containing 

E. coli culture and 0.2µg/ml aqueous oregano. The tubes (Table 4.1) were incubated at 37ºC 

with gentle shaking. Bacterial growth in the form of turbidity was observed visually, and an 

aliquot of 100µl was sub-cultured into new sets of tubes containing the same media as described 
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above. These procedures were repeated continuously for two consecutive months until there 

was an obvious increase in turbidity with the incubation period being 48hr exposure to 

phytochemicals.  

 

Table 4.1 Components of each tube 

 

Starting concentration 

of each component 

 Final concentration of each treatment 

Control 0.2µg/ml carvacrol 0.2µg/ml oregano 

E. coli strain culture 

(109 CFU/ml) 
100µl 100µl 100µl 

5µg/ml carvacrol - 400µl - 

5µg/ml oregano - - 400µl 

LB broth 9.900ml 9.500ml 9.500ml 

Total volume 10ml 10ml 10ml 

Total volume of each tube was 10ml. 

 

4.2.2 Biochemical characterisation and AST profiling of the representative trained 

isolates 

After the period of two months of training, a volume of 100µl from each sample was spread on 

LB agar, and then a total of 36 representative colonies (Table 4.2) were picked, purified, 

stocked, and stored in cryotubes at -80ºC for further experiments. These trained isolates were 

cultured on MacConkey and EMB agar plates, biochemically characterised using catalase, 

oxidase, and API 20E strips; to ensure they are E. coli. Also, the 36 representative E. coli strains 

were used to determine their antibiotic susceptibility using the same protocol performed as 

mentioned earlier in Chapter 2; section 2.2.3.2. Representative strains (highlighted in blue) 

were chosen for further experiments. 
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Table 4.2 Biochemical characteristics of the representative trained isolates 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Representative strains (highlighted in blue) were chosen for further experiments. 

Trained strain Original strain Source / treatment 

1M APEC 7 Control 

2M APEC 7 Control 

3M APEC 7 Control 

4M APEC 7 Control 

5M C1 Control 

6M C1 Control 

7M C1 Control 

8M C1 Control 

9M T8 Control 

10M T8 Control 

11M T8 Control 

12M T8 Control 

13M APEC 7 0.2µg/ml carvacrol 

14M APEC 7 0.2µg/ml carvacrol 

15M APEC 7 0.2µg/ml carvacrol 

16M APEC 7 0.2µg/ml carvacrol 

17M APEC 7 0.2µg/ml oregano 

18M APEC 7 0.2µg/ml oregano 

19M APEC 7 0.2µg/ml oregano 

20M APEC 7 0.2µg/ml oregano 

21M C1 0.2µg/ml carvacrol 

22M C1 0.2µg/ml carvacrol 

23M C1 0.2µg/ml carvacrol 

24M C1 0.2µg/ml carvacrol 

25M C1 0.2µg/ml oregano 

26M C1 0.2µg/ml oregano 

27M C1 0.2µg/ml oregano 

28M C1 0.2µg/ml oregano 

29M T8 0.2µg/ml carvacrol 

30M T8 0.2µg/ml carvacrol 

31M T8 0.2µg/ml carvacrol 

32M T8 0.2µg/ml carvacrol 

33M T8 0.2µg/ml oregano 

34M T8 0.2µg/ml oregano 

35M T8 0.2µg/ml oregano 

36M T8 0.2µg/ml oregano 
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4.2.3 Determination of MIC values of the trained E. coli strains against aqueous 

phytochemicals 

Representative E. coli strains (13M, 19M, 22M, and 26M) were used to determine their MIC 

values against aqueous carvacrol and oregano. The same method was followed as described 

earlier in Chapter 3; section 3.2.1. The same procedure was repeated after two weeks, to ensure 

that the increase in MIC values was stable and not a result of an adaptational change.  

 

 

4.2.4 DNA extraction and detection of virulence genes in the trained E. coli strains by 

PCR 

Representative E. coli strains (22M and 26M) were used to detect their virulence genes as listed 

in Table 2.2 (see Chapter 2; sections 2.2.4.1 and 2.2.4.2) by PCR.  

 

4.2.5 WGS of the trained E. coli strains 

Representative trained E. coli strains from APEC group (13M and 19M) and commensal 

chicken strain (22M and 26M) with their original wild-type (APEC 7 and C1, respectively) 

were sent to MicrobesNG at the University of Birmingham for WGS. In silico serotyping 

analysis involved the following three genes (fliC, wzy, and wzx) (Joensen et al., 2015) and were 

performed using Serotype Finder 1.1 website (https://cge.cbs.dtu.dk/services/SerotypeFinder/). 

MLST analysis involved seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and 

recA) (Sepehri et al., 2009) and were performed using MLST 2.0 software according to the 

protocol mentioned in (https://pubmlst.org/). I am grateful to Geoffrey Woodward of the NHS, 

Southmead Hospital, Genetic Analysis Department for carrying out the bioinformatics 

analyses. 

 

 

 

https://pubmlst.org/
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4.2.6 Determination of MIC values of the E. coli K12 (MG1655 WT) and its mutant 

strains against aqueous carvacrol 

Representative mutant E. coli strains (generously provided by Dr. Kimon-Andreas Karatzas, 

University of Reading) were obtained from Keio collection and used to determine their MIC 

values against aqueous carvacrol. The representative mutant E. coli strains were picked from 

two different groups; multi-drug efflux pump genes (ΔacrA, ΔacrB, and ΔtolC) and genes 

encoding for penicillin-binding proteins (PBPs) (ΔmrcA, ΔmrcB, ΔampC, ΔampH, ΔpbpC, 

ΔpbpG, ΔdacC, and ΔdacD). The same method was followed as described earlier in Chapter 

3; section 3.2.1.  

 

4.2.7 Statistical analyses 

For growth experiments, least square means for multiple comparisons was performed to 

compare between OD600 readings of control vs. OD600 readings of MIC level for each 

phytochemical at 9hr (exponential phase = highest OD600 reading) using R i386 3.4.3 software. 

 

 

4.3 Results 

4.3.1 Biochemical characterisation of the trained isolates 

In order to make sure that the resultant trained isolates came from the same original strains, 

simple biochemical characterisation tests were done. API 20E (Table 4.3) indicated that these 

were all E. coli, but there were some very minor differences between the wild-type and trained 

strains. It is possible that these notable differences reflect the phenotype of the trained strains 

or the inaccuracy of the API test system as it is susceptible to technical variation. Subsequent 

tests were carried out to inform on the strain integrity. 
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Table 4.3 Biochemical characteristics of the trained isolates 

Trained 

strain 

Original 

strain 
Source 

API 20E /  

original strain 

API 20E /  

trained strain 

1M APEC 7 Control 1044572 1044553 

2M APEC 7 Control 1044572 1244572 

3M APEC 7 Control 1044572 1044572 

4M APEC 7 Control 1044572 1044553 

5M C1 Control 5044552 1044572 

6M C1 Control 5044552 1044572 

7M C1 Control 5044552 1044572 

8M C1 Control 5044552 1044552 

9M T8 Control 5044552 1044572 

10M T8 Control 5044552 1044553 

11M T8 Control 5044552 1044552 

12M T8 Control 5044552 1044572 

13M APEC 7 0.2µg/ml carvacrol 1044572 1044572 

14M APEC 7 0.2µg/ml carvacrol 1044572 1044572 

15M APEC 7 0.2µg/ml carvacrol 1044572 1044572 

16M APEC 7 0.2µg/ml carvacrol 1044572 1044572 

17M APEC 7 0.2µg/ml oregano 1044572 1044152 

18M APEC 7 0.2µg/ml oregano 1044572 1044572 

19M APEC 7 0.2µg/ml oregano 1044572 1044572 

20M APEC 7 0.2µg/ml oregano 1044572 1044572 

21M C1 0.2µg/ml carvacrol 5044552 1044552 

22M C1 0.2µg/ml carvacrol 5044552 1044152 

23M C1 0.2µg/ml carvacrol 5044552 1044152 

24M C1 0.2µg/ml carvacrol 5044552 1044552 

25M C1 0.2µg/ml oregano 5044552 1044552 

26M C1 0.2µg/ml oregano 5044552 1044552 

27M C1 0.2µg/ml oregano 5044552 1044552 

28M C1 0.2µg/ml oregano 5044552 1044152 

29M T8 0.2µg/ml carvacrol 5044552 1044553 

30M T8 0.2µg/ml carvacrol 5044552 1044552 

31M T8 0.2µg/ml carvacrol 5044552 1044553 

32M T8 0.2µg/ml carvacrol 5044552 1044553 

33M T8 0.2µg/ml oregano 5044552 1044553 

34M T8 0.2µg/ml oregano 5044552 1044552 

35M T8 0.2µg/ml oregano 5044552 1044553 

36M T8 0.2µg/ml oregano 5044552 1044552 
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4.3.2 Antimicrobial susceptibility profiling of the trained E. coli strains 

To confirm that the trained strains came from the same starting wild-type strains, and to study 

the effect of long-term and continuous exposure to sub-lethal concentrations of phytochemicals 

on the carriage of antibiotic resistance, AST was performed on the representative 36 trained E. 

coli strains. Two observations were noticed (Table 4.4); a change from R to I or S in control 

strains and this was observed in cefotaxime, nalidixic acid, colistin, and tetracycline, and 

change from R to I or S in the trained strains. Results in Table 4.4 A showed that there is a 

relative decrease (14M, 16M, 18M, and 20M) in ampicillin resistance (by changing from R to 

I) after exposure to sub-lethal concentrations carvacrol and oregano. This was observed in 

tetracycline too (changing from R to S) and on a larger number of strains (13M, 15M, 21M, 

24M, 25M, and from 29M to 36M), and in the control strains (no phytochemicals were added) 

as well (Tables 4.4 A, B and C).  

 

Table 4.4 Antimicrobial susceptibility profiling of the representative trained strains 

A) APEC 7 wild-type (originals strain) and its derivatives (trained strains) 

 

Trained 

strain 

Original 

strain 
Source 

CTX 

30μg 

NA 

30μg 

C 

30μg 

CT 

10μg 

SAM 

25μg 

S 

25μg 

TE 

30μg 

 APEC 7 Wild-type R R R R S S R 

1M APEC 7 Control S R S S R S S 

2M APEC 7 Control S S S S R S S 

3M APEC 7 Control S S S S R S S 

4M APEC 7 Control S R S R R S S 

13M APEC 7 0.2µg/ml carvacrol S R I S R S S 

14M APEC 7 0.2µg/ml carvacrol S R R S I I R 

15M APEC 7 0.2µg/ml carvacrol S R I S R I S 

16M APEC 7 0.2µg/ml carvacrol S R R S I I R 

17M APEC 7 0.2µg/ml oregano S R S S R I R 

18M APEC 7 0.2µg/ml oregano S R R S I I R 

19M APEC 7 0.2µg/ml oregano I R R S R I R 

20M APEC 7 0.2µg/ml oregano S R R R S S R 

Shaded cells indicate resistance. CTX, Cefotaxime; NA, Nalidixic acid; C, Chloramphenicol; CT, Colistin; SAM, 

Ampicillin; S, Streptomycin; TE, Tetracycline; R, resistant; S, sensitive; I, intermediate. Representative trained 

strains (highlighted in blue) were chosen for further experiments.  
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B) C1 wild-type (originals strain) and its derivatives (trained strains) 

 

Trained 

strain 

Original 

strain 
Source 

CTX 

30μg 

NA 

30μg 

C 

30μg 

CT 

10μg 

SAM 

25μg 

S 

25μg 

TE 

30μg 

 C1 Wild-type R R S R R I R 

5M C1 Control S S S S R S S 

6M C1 Control S S S S R S S 

7M C1 Control S S S S R S S 

8M C1 Control S R S S R S R 

21M C1 0.2µg/ml carvacrol S R S S R S S 

22M C1 0.2µg/ml carvacrol S R I S R S R 

23M C1 0.2µg/ml carvacrol S R S R R S R 

24M C1 0.2µg/ml carvacrol S R S R R S S 

25M C1 0.2µg/ml oregano I R S R R S S 

26M C1 0.2µg/ml oregano S R S S R S R 

27M C1 0.2µg/ml oregano S R S R R S R 

28M C1 0.2µg/ml oregano S R S R I I R 

Shaded cells indicate resistance. CTX, Cefotaxime; NA, Nalidixic acid; C, Chloramphenicol; CT, Colistin; SAM, 

Ampicillin; S, Streptomycin; TE, Tetracycline; R, resistant; S, sensitive; I, intermediate. Representative trained 

strains (highlighted in blue) were chosen for further experiments. 

 

 

C) T8 wild-type (originals strain) and its derivatives (trained strains) 

 

Trained 

strain 

Original 

strain 
Source 

CTX 

30μg 

NA 

30μg 

C 

30μg 

CT 

10μg 

SAM 

25μg 

S 

25μg 

TE 

30μg 

 T8 Wild-type R R S R R S S 

9M T8 Control S R S S R S S 

10M T8 Control S R S S R S S 

11M T8 Control S R S S R S S 

12M T8 Control S S S R R R S 

29M T8 0.2µg/ml carvacrol I R I R R S S 

30M T8 0.2µg/ml carvacrol S R S S R S S 

31M T8 0.2µg/ml carvacrol S R S R R S S 

32M T8 0.2µg/ml carvacrol S R S R R S S 

33M T8 0.2µg/ml oregano S R S R R S S 

34M T8 0.2µg/ml oregano S R S R R S S 

35M T8 0.2µg/ml oregano S R S R R S S 

36M T8 0.2µg/ml oregano S R S S R S S 

Shaded cells indicate resistance. CTX, Cefotaxime; NA, Nalidixic acid; C, Chloramphenicol; CT, Colistin; SAM, 

Ampicillin; S, Streptomycin; TE, Tetracycline; R, resistant; S, sensitive; I, intermediate. Representative trained 

strains (highlighted in blue) were chosen for further experiments. 
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4.3.3 Effect of different concentrations of phytochemicals on the trained E. coli strains 

To study the increased resistance (reduced sensitivity) to carvacrol that resulted from the 

training method, the representative E. coli strains (13M, 19M, 22M, and 26M) were used to 

determine their MIC values against aqueous carvacrol and oregano. The MIC values were 

increased from 0.3µg/ml to 0.6µg/ml to both phytochemicals (Table 4.5).  Least square means 

for multiple comparisons was performed and it showed that there was a significant difference 

(P-value < 0.0001) between OD600 readings of control versus MIC level of aqueous carvacrol 

or aqueous oregano. To ensure that the resultant increase was stable and was not a result of an 

adaptational change, the same procedure was done after two weeks, and the same MIC values 

were achieved. During these two periods, the isolates were stored in cryotubes and not exposed 

to the phytochemicals. 

 

Table 4.5 MIC values of phytochemicals against the starting original strains with their trained 

strains 

    Results are expressed as means (n =3) ± STD. 

 

 

 

 

 

 

 

Trained 

strain 

Original 

Strain 
Source 

Original  

MIC value 

(µg/ml) 

New  

MIC value 

 (µg/ml) 

13M APEC 7 0.2µg/ml carvacrol 0.3 ± 0.00 0.6 ± 0.00 

19M APEC 7 0.2µg/ml oregano 0.3 ± 0.00 0.6 ± 0.00 

22M C1 0.2µg/ml carvacrol 0.3 ± 0.00 0.6 ± 0.00 

26M C1 0.2µg/ml oregano 0.3 ± 0.00 0.6 ± 0.00 
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4.3.4 Detection of virulence genes in the trained strains 

This study involved two trained E. coli (22M and 26M) strains only, as they showed more 

reliable results based on WGS data. The same set of results (Table 2.6; see Chapter 2) were 

achieved after carrying out PCR, and this ensures that the trained E. coli strains (22M and 26M) 

came from the same starting original strains. There were no observed changes at all at 

chromosome and plasmid levels of the virulence genes included in this study.  

 

4.3.5 WGS of the trained E. coli strains 

After confirming the identity of the trained strains and their elevated MIC values, WGS was 

considered to complete this study. The main focus of this thesis was on APEC and commensal 

chicken strains, so representative strains from APEC group (APEC 7, 13M, and 19M) and 

commensal chicken strain (C1, 22M, and 26M) (Table 4.2) were sent for WGS, to study the 

genetic changes upon exposure to sub-lethal concentrations of phytochemicals for a long time 

and to link between genotype and phenotype. In silico serotyping analysis involved the 

following three genes (fliC, wzy, and wzx) (Joensen et al., 2015) was performed to ensure that 

the trained E. coli strains came from the same starting E. coli strains. Also, it was supported by 

MLST analysis which involved seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, 

and recA) (Sepehri et al., 2009). All of the trained strains showed the same in silico and MLST 

profiles in comparison with their wild-type except for 13M, and this could be due to possible 

contamination as a result of long period of training. The in silico profile of 13M showed 

different results in two genes (wzy, and wzx) and the MLST profile showed different results in 

the previously mentioned seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and 

recA). 
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Bioinformatics analysis showed that there were missense mutations detected in two genes; 

CadC which encodes for a transcriptional activator of cad operon (Küper and Jung, 2005) and 

marR which encodes for a repressor of mar operon (Cohen et al., 1993). The mutations resulted 

in an amino acid substitution and identified as a change from tyrosine to histidine at position 

504 base in CadC, and a change from arginine to histidine at position 94 base in marR. 

 

4.3.6 Effect of different concentrations of aqueous carvacrol on E. coli K12 (MG1655 WT) 

strain and its mutant strains with single defined mutation 

Based on recent results from previous PhD thesis (Alkhandari, 2017), mutant E. coli K12 

strains with mutations in efflux pump genes were considered. Also, β-lactam resistance in 

Enterobacteriaceae might be due to mutations in genes encoding for PBPs. Thus, to study the 

resistance effect of carvacrol on these specific mutations, growth experiments were performed 

in order to determine the MIC value and compare it with the reference strain MG1655 WT as 

an indirect way to investigate the mechanism of action of carvacrol and oregano. 

Representative strains with a specific single mutation from Keio library were used in this 

experiment. Results in Table 4.6 showed that there was a decrease in MIC values in E. coli 

strains with a mutation in multi-drug efflux pump genes (ΔacrA, and ΔtolC), and in E. coli 

strains with a mutation in genes encoding for PBPs (ΔampC, ΔampH, ΔpbpC, and ΔpbpG). 

Interestingly, the same MIC values or relatively higher MIC values were achieved in one E. 

coli strain with mutation in multi-drug efflux pump genes (ΔacrB), and in E. coli strains with 

a mutation in genes encoding for PBPs (ΔmrcA, ΔmrcB, ΔdacC, and ΔdacD). 

 

 

 



113 
 

Table 4.6 MIC values of aqueous carvacrol against the reference strain E. coli MG1655 WT 

and its mutant strains 

 

Type Strain 
Carvacrol MIC value  

(µg/ml) 

Wild-type MG1655 WT 0.4 ± 0.00 

E. coli strains with a 

mutation in multi-drug 

efflux pump genes 

ΔacrA 0.1 ± 0.00 

ΔacrB 0.4 ± 0.00 

ΔtolC 0.1 ± 0.00 

E. coli strains with a 

mutation in genes 

encoding for PBPs 

ΔmrcA 0.4 ± 0.00 

ΔmrcB 0.5 ± 0.00 

ΔampC 0.3 ± 0.00 

ΔampH 0.3 ± 0.00  

ΔpbpC 0.3 ± 0.00  

ΔpbpG 0.3 ± 0.00 

ΔdacC 0.5 ± 0.00 

ΔdacD 0.4 ± 0.00 

Results are expressed as means (n =3) ± STD. 

 

4.4 Discussion 

This chapter involved training representative strains from different groups (APEC 7, C1, and 

T8) in the presence of sub-lethal concentrations of aqueous carvacrol and oregano for 60 days 

until there was an obvious increase in turbidity. Simple plating methods were performed to 

pick representative colonies for further investigation, and this was followed by simple 

biochemical characterisation (Table 4.3) as a quick way to ensure that these colonies were E. 

coli strains and derived from the same starting strains.  

 

One of the issues tackled in this thesis is the carriage of antibiotic resistance in E. coli strains 

which is plasmid-based, and how can we control them using phytochemicals, so a simple AST 

method (Table 4.4) was performed to determine whether there was a change in their antibiotic 

resistance profile. Changes from R to I or S in control strains (no phytochemicals were added) 
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were observed in cefotaxime, nalidixic acid, colistin, and tetracycline, which indicates that the 

loss of the plasmid might be due to sub-culturing and not due to being exposed to sub-lethal 

concentrations of phytochemicals. This also indicates that the plasmid carrying these antibiotic 

resistances is less stable than the plasmid carrying ampicillin resistance, as there was a relative 

decrease in ampicillin resistance (changing from R to I) in four strains (14M, 16M, 18M, and 

20M) after exposure to sub-lethal concentrations of carvacrol and oregano. Also, there was a 

decrease in tetracycline resistance (changing from R to S) in thirteen strains (13M, 15M, 21M, 

24M, 25M, and from 29M to 36M). The loss of resistance trait was expected in plasmid-based 

antibiotic resistance, but not in chromosome-based antibiotic resistance as was observed in 

nalidixic acid which might be due to cross-contamination or the insensitivity of the AST test, 

as it is based on a scale measured in cm. Moreover, the loss of resistance trait was expected, 

but the gain of resistance (found in ampicillin in 13M which showed unreliable results based 

on WGS data later) was not, and this also could be due to cross-contamination or the 

insensitivity of the AST test.  

 

Four representative trained strains (13M, 19M, 22M, and 26M) were chosen randomly; two 

from each group, to determine their MIC values against carvacrol and oregano and ensure there 

was elevation in their MIC values before sending them for WGS.  Results in Table 4.5 showed 

there was two-fold increase in their MIC values from 0.3µg/ml to 0.6µg/ml towards both 

phytochemicals. This experiment was repeated after two weeks, to ensure that this increase was 

stable and not the result of physiological adaptation to the presence of sub-lethal concentrations 

of phytochemicals as a source of stress. If time permitted, it would be of value to repeat this 

experiment after longer term storage of the trained strains. However, as the WGS data analysis 

indicates (see below), the phenotypes were the result of a chromosomal mutation 
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(chromosomal genes; cadC  (Küper and Jung, 2005) and marR (Alekshun and Levy, 1997)) 

and thus this stability test may be considered redundant.  

 

WGS is a genetic approach that enabled linkage between phenotype and genotype (Feil, 2004). 

Looking at the genomic variations among the strains of interest might benefit us and give us 

more information from an evolutionary point of view (Bryant et al., 2012). As these genetic 

variations are bacterial strategies to adapt in new environments which come in result of 

mutation(s) mostly and recombination of these resulted mutations (Tenaillon et al., 2001). 

WGS data analysis revealed the presence of a missense mutation in two genes; cadC and marR.  

 

The cad operon is one of the survival mechanism systems in E. coli that is triggered in response 

to unfavourable acidic conditions (Gale and Epps, 1942). This system is composed of a 

cytoplasmic protein (CadA) and two transmembrane proteins (CadB and CadC) (Watson et al., 

1992). CadC has a dual function as a transcriptional activator of the cad operon in E. coli  

(Küper and Jung, 2005) and as a sensor to external changes in pH in the environment (Dell et 

al., 1994). The missense mutation in cadC gene resulted in a substitution in amino acid from 

tyrosine which is partially hydrophobic with an aromatic side chain to histidine which is 

hydrophilic (Betts and Russell, 2003). Thus, this mutation might be a non-silent one with an 

effect on the Cad system.  

 

The mar operon is responsible for chromosome-mediated multiple antibiotic resistance as a 

protective mechanism in response to environmental stresses such as presence of antibiotics and 

oxidative stress (Ariza et al., 1994). This operon which is short for multiple antibiotic resistance 

consists of four genes; marA (encoding for the activator protein of mar operon), marR 

(encoding for a repressor protein of mar operon) (Cohen et al., 1993), marB and marC (with 
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unknown function) (Alekshun and Levy, 2004). It was first found in resistant E. coli to low 

concentrations of tetracycline or chloramphenicol of chromosome origin. The presence of the 

mar operon is the reason behind increased resistance in E. coli strains to different classes of 

antibiotics involving tetracycline, chloramphenicol, β-lactams, and fluoroquinolones (George 

and Levy, 1983). This resistance is the result of the pumping out of these antibiotics in 

association with and dependent upon outer membrane porins (Cohen et al., 1988). Interestingly, 

the MarR repressor in E. coli found in the gut of animal hosts has another function which is 

detecting phenolic compounds of plant products (Sulavik et al., 1995). The detected missense 

mutation in marR gene was a substitution in amino acid from arginine which is of amphipathic 

nature to histidine which is of hydrophilic nature (Betts and Russell, 2003). Given the 

resistance phenotype of the E. coli strains, this amino acid substitution is probably a non-silent 

mutation resulting in an increased activity of the mar efflux system due to repressor failing to 

repress the mar operon, and therefore an increase in its resistance nature as was recently 

discovered (Chueca et al., 2018).  

 

This was a single training study, so future experiments might be improved by: 1) repeating the 

training experiment again to determine whether the same mutations arise again or not?, 2) 

repeating training experiment again but at different concentrations of phytochemicals and 

check the genetic variations among these strains. To confirm the previously mentioned results, 

it would be essential to make these mutations in a test strain and undertake complementation 

studies to verify the phenotypes and their recovery. However, this will take long time, so the 

shortcut step was to use representative strains from Keio library of E. coli that will enable us 

to perform a wider study of phytochemical sensitivity studies as discussed below. 
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Further investigations at the genetic level involved screening the effect of different 

concentrations of carvacrol on E. coli strains with a mutation in multi-drug efflux pump genes 

(ΔacrA, ΔacrB, and ΔtolC) and in E. coli strains with a mutation in genes encoding for PBPs 

genes (ΔmrcA, ΔmrcB, ΔampC, ΔampH, ΔpbpC, ΔpbpG, ΔdacC, and ΔdacD) in comparison 

with the reference strain E. coli MG1655 WT. This was a reverse way to determine the 

mechanisms of action of carvacrol, and one of the common approaches used currently to study 

the resultant phenotypic changes based on specific mutations (Rainey et al., 2017).  

 

The decreased MIC values as shown in Table 4.6 in efflux pump genes (ΔacrA and ΔtolC) 

determined that the disrupted efflux pump system cannot pump carvacrol out of the cell, 

because acrAB is the main efflux pump system in E. coli with the aid of TolC (Ma et al., 1993), 

and that any disturbance in one of the three components (acrA, acrB, and TolC) of this system 

will result in susceptibility of E. coli to antibiotics and other toxic chemicals (Okusu et al., 

1996). The decreased MIC value was an indicator of the susceptibility of these E. coli strains. 

However, there was an exception and it was observed in the E. coli with ΔacrB showing an 

increased MIC value in comparison with the other efflux pump mutations, but the same MIC 

value with the control strain (MG1655 WT), and this is due to its regulatory function in 

maintaining the structure of acrA (Pagès and Amaral, 2009). 

 

 The decreased MIC value in genes encoding for PBPs (ΔampC, ΔampH, ΔpbpC, and ΔpbpG) 

showed that carvacrol may inhibit cell wall synthesis in E. coli causing cell lysis and death 

which is similar to the mechanism of action of β-lactam antibiotics (Zeng and Lin, 2013), and 

that disruption in some of the PBPs will affect cell morphology (Vijayan et al., 2014). However, 

the phenotype generated by other genes (ΔacrB, ΔmrcA, ΔmrcB, ΔdacC, and ΔdacD) was not 



118 
 

affected, suggesting that the target site of carvacrol is specific and limited to some of the genes 

but not all of them. Interestingly, the results from previous PhD thesis (Alkhandari, 2017) and 

the results in this chapter showed that similar phytochemicals (thymol and carvacrol) have 

similar functions against antibiotic resistance, but different genes were responsible for this 

change. Thus, in order to study all the possible mechanisms of actions of these phytochemicals, 

all of the mutants included in the Keio collection must be involved in this study, as this will 

enable us to start classifying different phytochemicals according to their mechanisms of action 

as antibiotics are classified. 

 

In conclusion, the possible anti-bacterial roles of these phytochemicals were investigated and 

were associated with missense mutations in genes responsible for multiple antibiotic resistance 

(marR) and survival mechanisms under unfavorable acidic conditions (cadC), and possible 

mutations associated with efflux pumps genes (acrA and TolC) and genes associated with cell 

wall inhibition (ampC, ampH, pbpC and pbpG) as bacterial strategies to overcome antibiotics. 
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CHAPTER 5: Effect of combined treatment of sub-lethal concentrations of 

carvacrol and ampicillin on the growth, antibiotic resistance, and 

metabolism of ampicillin-resistant E. coli strains 
 

 

5.1 Introduction  

The discovery of the first natural β-lactam antibiotic, penicillin, by Alexander Fleming in 1928 

paved the way for the use and development of antibiotics in various personal and industrial 

uses (Bennett and Chung, 2001). Overuse of antibiotics for prophylactic or therapeutic reasons 

has led to the emergence and spread of antibiotic-resistance bacteria, and loss in the value of 

using antibiotics especially in treating persistent infections (Reilly and Rombeau, 1993). 

Bacteria evolved survival strategies to antibiotic treatment and acquired resistance by different 

mechanisms such as HGT which involves transfer of resistance through 1) plasmids by a 

conjugation process, 2) gene exchange by bacteriophages, and 3) DNA uptake by a 

transformation process (Frost et al., 2005).  

 

The most commonly emerging type of resistance among Gram-negative bacteria is due to the 

production of ESBLs (Bush and Jacoby, 2010), which are β-lactamase enzymes able to resist 

the anti-bacterial mechanisms of several natural and synthetic β-lactam classes of antibiotics 

(Lee et al., 2012). Also, these β-lactamase enzymes have the ability to inhibit the biological 

activity of transpeptidase or penicillin-binding proteins (PBPs) involved in the final stages of 

bacterial cell wall synthesis (Kelly et al., 1986). The rapid emergence of ESBL resistance 

acquired by large plasmids encoding for ESBLs production (Eckert et al., 2004), led to the 

failure of the development of novel synthetic antibiotics such as the first, second, third and 

fourth-generation ESBL which only provided a temporary solution (Docquier and Mangani, 

2017). Currently, plasmid-mediated ESBL resistance is the most widely spread resistance 
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among bacteria coming from poultry sources (Dierikx et al., 2010). ESBL and AmpC-

producing bacteria usually inhabit the GIT of animals (Carattoli, 2008), and high levels of E. 

coli harbouring ESBL resistance were isolated from poultry (Brinas et al., 2005). Certainly, 

efforts to develop new structures out of the original antibiotics to enhance their activity has 

become limited (Wong et al., 2006). Thus, other approaches to look for alternative novel 

products is essential (Barrow, 1992). Phytochemicals are natural plant products produced as 

secondary metabolites of which some possess antimicrobial effects (Metabolhtes, 2004), and 

therefore, may present a promising alternative strategy to antibiotics especially against 

antibiotic-resistant bacteria (Wong et al., 2006).  

 

In poultry production, the rising issue of bacterial antibiotic resistance has prompted a search 

for alternatives to control diseases (Si et al., 2006). In order to investigate the application of 

phytochemicals as a potential alternative to antibiotics on the gut bacteria, in vitro gut models 

in the form of batch cultures were established to help in the study of gut bacteria in terms of 

their interaction and metabolism (Macfarlane and Macfarlane, 2007). These models simulate 

the conditions of different parts of the gut, as certain parameters such as gas phase, pH, 

temperature can be controlled by, and therefore permit to interrogate what may happen in vivo 

(Van den Abbeele et al., 2010). The guts of different species can be studied depending on the 

added broth medium that supplies the bacterial communities with nutritional substrates 

required for their metabolism (Lei et al., 2012). Previous studies looked at the effectivity of 

phytochemicals focusing specifically on oregano to control bacterial pathogens in broilers, but 

all of them were narrow approaches as they looked at certain parameters: 1) daily feed intake, 

weight and FCR (Ertas et al., 2005), 2) weight, FCR and percentage of mortality (Karimi et al., 

2010), 3) FCR, carcass characteristics, villus height, crypt depth and ratio of villus height to 
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crypt depth (Peng et al., 2016). In this section, the intention was to undertake preliminary 

studies that evaluate the impact of carvacrol on a simple three strains batch culture model.  

 

The emergence of MDR bacteria requires a combination approach; the use of more than one 

antibiotic to broaden the scope of inhibitory mechanism of action by affecting different target 

sites within the bacterial cells or different pathways within the same target site (Fischbach, 

2011) in order to mitigate the resistance phenotype (Michel et al., 2008). In this chapter, the 

combination approach was the use of both carvacrol and ampicillin together and testing their 

efficacy in comparison with the efficacy of carvacrol alone which was demonstrated earlier in 

Chapter 3. Previous in vitro studies have demonstrated the effectiveness of combined 

phytochemicals with antibiotics when antibiotics become impractical (Palaniappan and Holley, 

2010, Yap et al., 2013). But to be more specific to our area of investigation, very limited 

knowledge is available on the effect of combined treatment of polyphenols and ampicillin 

against β-lactam resistant bacterial strains (Gallucci et al., 2006). Ampicillin is known to inhibit 

bacterial cell wall synthesis by preventing peptide cross-linking of peptidoglycan units (Wise 

and Park, 1965), whereas carvacrol affects the structure and function of bacterial membranes 

as previously mentioned in Chapter 4.  Thus, the testable hypotheses of this chapter were: 1) 

whether the combined treatment of carvacrol and ampicillin will increase the efficacy of 

ampicillin in controlling ampicillin-resistant E. coli strains or not?, 2) whether the combined 

treatment will result in synergistic or antagonistic interaction between carvacrol and ampicillin 

against ampicillin-resistant E. coli strains, 3) whether the combined treatment will affect the 

biochemicals reactions, AST profiling, and presence of antibiotic-resistant plasmids or not?, 4) 

whether the combined treatment will decrease the antibiotics residue in broiler chickens or not 

after long-term treatment, 5) whether the application of sub-lethal concentrations of carvacrol 

(the active ingredient of oregano) will have an inhibitory effect on a mixed E. coli culture 
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composed of a single APEC strains and two commensal strains, and 6) whether the application 

of combined treatment of sub-lethal concentrations of carvacrol and ampicillin will increase 

the efficacy of ampicillin given the fact that carvacrol is a phenolic compound that affects the 

permeability of cell wall and cell membrane structures.  

 

The aims and objectives behind performing this study were the following: 

• To study the different effect of each treatment and see how different they are from each 

other, and which one is more effective than the other. 

• To study the effect of combined treatment of carvacrol and ampicillin on the growth 

and metabolic activities of very high ampicillin-resistant E. coli strains.  

• To assess whether sub-MIC concentrations of carvacrol in the presence of ampicillin 

(70µg/ml) is inhibitory whilst carvacrol and ampicillin alone are not. 

• To study the relative fitness of two commensal chicken E. coli strains and a single 

APEC strain using simple three strains batch culture, how they will interact with each 

other, and whether there will be any competition between them. 

• To study the effect of combined treatment of carvacrol and ampicillin and test whether 

it is an alternative way to control or decrease the residues of very high ampicillin-

resistant E. coli strains in the chicken gut and enhance the activity of ampicillin. 

• Will the single APEC strains be able to survive and grow at a higher rate than the two 

commensal strains?  

• To determine and compare between the efficacy and selectivity of each treatment (sub-

lethal concentrations of carvacrol and ampicillin; combined and separately) on a larger 

scale in terms of their inhibitory or modulatory effects. 
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5.2 Materials and methods  

5.2.1 Determination of bacterial number in terms of OD600 of ampicillin-resistant E. coli 

strains in the presence of combined treatment of sub-lethal concentrations of carvacrol 

and ampicillin  

 

A) 96 well plate format 

The same protocol was followed as described earlier in Chapter 3; section 3.2.1. The E. coli 

strains included in this study were of moderate and high carvacrol MIC values (MIC values of 

0.3µg/ml and 0.5µg/ml; see Chapter 3; Table 3.1) and highly ampicillin resistant (MIC value 

more than 70µg/ml). Each well of a 96 well plate had 225µl of LB broth containing carvacrol 

and ampicillin at sub-lethal concentrations were added together and 75µl of bacterial 

suspension, so that the total final volume was 300µl in each well. OD600 readings were 

measured at 9hr of the exponential phase when the highest OD600 reading was achieved. 

 

B) Tube format 

Four ampicillin-resistant E. coli strains with MICs of higher than 70 µg/ml (APEC 46, APEC 

48, and commensal E. coli strains; C2, and T4) were selected for this study. These candidates 

were chosen based on certain criteria in terms of carvacrol MIC values: APEC 46 and C2 had 

an intermediate MIC value of 0.3µg/ml, and APEC 48 and T4 had a high MIC value of 

0.4µg/ml and 0.5µg/ml, respectively (see Chapter 3; Table 3.1). Each of the strains were 

genetically distinct possessing different ampicillin resistance plasmid profiles (see Chapter 2; 

Table 2.9). Overnight cultures of the four E. coli strains were given OD600 of 0.9 (109 CFU/ml) 

in 10ml LB broth (Sigma Aldrich, UK) and incubated at 37ºC with gentle shaking. Four 

treatments (Table 5.1) were included in this study at sub-MIC levels of carvacrol and 

ampicillin and tubes were incubated again overnight at 37ºC with gentle shaking. Samples were 

taken to measure OD600 readings using spectrophotometer and spread on LB agar (Sigma 

Aldrich, UK) to monitor the changes in bacterial numbers (CFU/ml) in each treatment. 
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Representative colonies were picked, purified, and used for AST test as mentioned earlier in 

Chapter 2; section 2.2.3.2. 

 

Table 5.1 Components of each tube 

 

Starting concentration 

of each component 

Final concentration of each treatment 

Control 0.2µg/ml C 70µg/ml A 

Combined treatment 

(0.2µg/ml C 

+ 

70µg/ml A) 

E. coli strain culture  

(109 CFU/ml) 
100µl 100µl 100µl 100µl 

5µg/ml carvacrol - 400µl - 400µl 

1000µg/ml ampicillin - - 700µl 700µl 

LB broth 9.900ml 9.500ml 9.200ml 8.800ml 

Total volume 10ml 10ml 10ml 10ml 

C, carvacrol; A, ampicillin. Total volume of each tube was 10ml. 

 

 

5.2.2 Screening for metabolic by-products using gas chromatography-mass spectrometry 

(GC-MS)  

 

Overnight cultures (10 – 12hr) of the three E. coli strains (APEC 46, and commensal E. coli 

strains; C2, and T4) were given OD600 of 0.9 (109 CFU/ml) in 10ml LB broth and incubated at 

37ºC with gentle shaking. Four treatments (Table 5.1) were included in this study at sub-MIC 

levels of carvacrol and ampicillin and tubes were incubated again at 37ºC with gentle shaking. 

Each treatment was carried out in triplicate set for each E. coli strain. A volume of 5ml of each 

sample was transferred into a head-space vial, and 100µl of 0.1ppm of internal standard (IS = 

dichlorobenzene) added to it, and then placed in a 7890A GC-MS system (Agilent 
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Technologies, UK) using DB-Wax column 0.25µm film thickness (30m x 0.25mm) for the 

determination of SCFAs, alcohol and indole. The column temperature was set to be at 35ºC for 

5min and then increased to 220ºC at 10ºC/min, the carrier gas was helium with flow rate of 

1.5ml/min, and the electron ionisation was at 70eV. I am thankful to Dr. Stephen Elmore of the 

Flavour Centre, for guidance with this technique.  

 

5.2.3 In vitro batch cultures set-up  

Three starting E. coli strains (APEC 46, and commensal E. coli strains; C2, and C4) were 

selected for this study. These candidates were chosen based on certain criteria in terms of 

ampicillin resistance: APEC 46 and C2 were highly ampicillin resistant with MICs of higher 

than 70µg/ml, and C4 had an intermediate MIC value of 25µg/ml. Sub-lethal concentrations of 

both carvacrol and ampicillin were used, because carvacrol may disrupt the outer membrane 

permitting greater access of ampicillin and perhaps reduce the efficiency of periplasmic 

penicillinases. Each of the strains was genetically distinct possessing different virulence gene 

profiles and ERIC-PCR profiles (see Chapter 2) but sharing the same MIC value (0.3µg/ml) 

against carvacrol. Overnight cultures (10 – 12hr) of the three E. coli strains that were grown 

separately in VL medium, as this medium was designed to reflect poultry gut luminal content 

(Lei et al., 2012). All of the chemicals and ingredients were prepared in VL medium. Four 

vessels (Table 5.2) were included in this study; vessel 1 (V1) contained the control of the 

mixture of the three E. coli strains (100µl of each strain with 107 CFU/ml) completed with 

Viande-Luvre (VL) medium to 20ml, vessel 2 (V2) contained the same strains mixture in 

addition to sub-lethal concentration of ampicillin treatment (20µg/ml), vessel 3 (V3) contained 

the same strains mixture in addition to sub-lethal concentration of carvacrol (0.2µg/ml), and 

vessel 4 (V4) contained the same strains mixture in addition to combined treatment of both 

ampicillin (20µg/ml) and carvacrol (0.2µg/ml). The set conditions of the 20ml vessels were 
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controlled throughout the 48hr period as such; anaerobic conditions (80% N2, 10%H2, and 10% 

CO2), pH value in between 5.8 to 6.0 monitored by pH meter, and a temperature of 41°C 

maintained by water bath. The batch cultures were grown for 48hr and samples of 1.5ml were 

collected at three different time points of 0, 24, and 48hr. Serial dilutions of the samples were 

spread on LB agar to monitor the change in bacterial numbers during the study from which 

representative colonies were picked and then purified by sub-culturing on MacConkey and 

EMB agar. DNA from 36 purified strains was extracted for ERIC-PCR and detection of certain 

virulence genes (iss and astA) for quick differentiation and identification purposes (see 

Chapter 2). I am grateful to Dr. Vasiliki Kachrimanidou for her help in setting up the batch 

culture. 

 

Table 5.2 Components of each batch culture vessel 

Starting concentration of 

each component 

Final concentration in each vessel 

V1 

(Control) 

V2 

(20µg/ml 

ampicillin) 

V3 

(0.2µg/ml 

carvacrol) 

V4 

(20µg/ml ampicillin  

and 

0.2µg/ml carvacrol) 

APEC 46 

 strain culture  

(107 CFU/ml) 

100µl 100µl 100µl 100µl 

Commensal C2 

strain culture 

 (107 CFU/ml) 

100µl 100µl 100µl 100µl 

Commensal C4  

strain culture  

 (107 CFU/ml) 

100µl 100µl 100µl 100µl 

1000µg/ml ampicillin - 400µl - 400µl 

5µg/ml carvacrol - - 800µl 800µl 

VL broth 19.700 ml 19.300 ml 18.900ml 18.500ml 

Total volume 20ml 20ml 20ml 20ml 

Total volume of each vessel (V) was 20ml. 
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5.2.4 Statistical analyses 

For growth experiments in 96 well plate, least square means for multiple comparisons was 

performed to compare between OD600 readings of control vs. OD600 readings of sub-MIC level 

for each treatment at 9hr (exponential phase = highest OD600 reading). As for growth 

experiments in the tube format, least square means for multiple comparisons was performed to 

compare between CFU/ml of control vs. CFU/ml of sub-MIC level for each treatment. Linear 

model was performed to study the significance difference between effect of each treatment on 

the number of bacterial strains vs. control, and to study the effect of each treatment on the 

bacterial numbers between different time points. Statistical analyses were performed using R 

i386 3.4.3 software. 

 

 

5.3 Results 

 

5.3.1 Effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin on the OD600 readings of ampicillin-resistant E. coli strains 

 

Carvacrol alone inhibited bacterial growth when provided in concentrations at MIC level (see 

chapter 3; Table 3.1). All the ampicillin-resistant E. coli strains (MIC higher than 70µg/ml) 

used in this study had an MIC to carvacrol in the region between 0.3 to 0.5µg/ml. However, 

this preliminary study on the effects of carvacrol and ampicillin was performed at sub-MIC 

levels. The aim here is to compare between OD600 readings at 9hr and at sub-MIC levels of 

carvacrol and ampicillin, separately and in combination. There were two observations in this 

experiment when comparing OD600 readings in the presence of 70µg/ml ampicillin alone, and 

in the presence of combined treatment of 0.2µg/ml carvacrol and 70µg/ml ampicillin (Table 

5.3). There was either a significant decrease (P-value < 0.0001) in OD600 readings and this was 

found in eleven strains (45, 46, 51, 52, C1, C2, C6, T1, T4, T6 and T8) or insignificant decrease 

(P-value > 0.05) in the OD600 readings in the remaining six strains (48, C3, C7, C8, T9 and 
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T10). Also, there were two observations when comparing OD600 readings in the presence of 

0.2µg/ml carvacrol alone, and in the presence of combined treatment of 0.2µg/ml carvacrol and 

70µg/ml ampicillin (Table 5.3). There was a significant decrease (P-value < 0.0001) in OD600 

readings in all strains except for C2. However, when comparing the results of all strains 

together, there were: 1) significance (Overall P-value < 0.0001) between using 0.1µg/ml 

carvacrol treatment and combined treatment of 0.1µg/ml carvacrol and 70µg/ml ampicillin, 2) 

significance (Overall P-value < 0.0001) between using 0.2µg/ml carvacrol treatment and 

combined treatment of 0.2µg/ml carvacrol and 70µg/ml ampicillin, 3) significance (Overall P-

value = 0.0290) between using 70µg/ml ampicillin treatment and combined treatment of 

0.1µg/ml carvacrol and 70µg/ml ampicillin, 4) significance (Overall P-value < 0.0001) 

between using 70µg/ml ampicillin treatment and combined treatment of 0.2µg/ml carvacrol 

and 70µg/ml ampicillin. Overall, there seem to be a synergistic inhibitory effect with combined 

treatment which might be effective in controlling highly ampicillin-resistant strains. 
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Table 5.3 Effect of combined treatment of sub-lethal concentrations of carvacrol and ampicillin 

on the growth of ampicillin-resistant E. coli strains 

 

Code 

OD600 reading at 9hr of the exponential phase 

Control A C C + A C C + A 

0 70 0.1 0.1 + 70 0.2 0.2 + 70 

45 1.667 ± 0.00 0.863 ± 0.01 1.432 ± 0.06 0.845 ± 0.04 0.812 ± 0.10 0.402 ± 0.13* 

46 1.602 ± 0.06 0.953 ± 0.06 1.553 ± 0.05 0.931 ± 0.06 1.116 ± 0.18 0.376 ± 0.11* 

48 1.408 ± 0.04 0.265 ± 0.02 1.355 ± 0.04 0.318 ± 0.01 1.027 ± 0.19 0.290 ± 0.02* 

51 1.704 ± 0.03 0.857 ± 0.02 1.553 ± 0.03 0.839 ± 0.04 1.241 ± 0.03 0.667 ± 0.06* 

52 1.576 ± 0.02 0.448 ± 0.01 1.338 ± 0.01 0.495 ± 0.02 1.067 ± 0.04 0.220 ± 0.02* 

C1 1.762 ± 0.06 0.760 ± 0.04 1.613 ± 0.01 0.882 ± 0.10 1.307 ± 0.07 0.423 ± 0.28* 

C2 1.547 ± 0.01 0.866 ± 0.06 1.535 ± 0.02 0.911 ± 0.04 0.680 ± 0.41 0.608 ± 0.10 

C3 1.364 ± 0.05 0.679 ± 0.03 1.314 ± 0.05 0.793 ± 0.03 1.230 ± 0.05 0.659 ± 0.01* 

C6 1.657 ± 0.02 0.951 ± 0.01 1.586 ± 0.01 0.995 ± 0.09 1.212 ± 0.03 0.559 ± 0.11* 

C7 1.699 ± 0.09 0.783 ± 0.04 1.515 ± 0.03 0.838 ± 0.04 1.063 ± 0.23 0.623 ± 0.05* 

C8 1.795 ± 0.04 0.853 ± 0.07 1.624 ± 0.01 0.902 ± 0.05 1.414 ± 0.02 0.679 ± 0.02* 

T1 1.524 ± 0.00 0.736 ± 0.06 1.357 ± 0.04 0.730 ± 0.02 0.993 ± 0.11 0.340 ± 0.08* 

T4 1.754 ± 0.10 0.813 ± 0.06 1.503 ± 0.04 0.875 ± 0.04 1.168 ± 0.16 0.409 ± 0.08* 

T6 1.598 ± 0.03  0.807 ± 0.03 1.573 ± 0.02 0.892 ± 0.05 1.447 ± 0.15 0.580 ± 0.10* 

T8 1.587 ± 0.02 0.844 ± 0.03 1.487 ± 0.02 0.931 ± 0.05 1.331 ± 0.09 0.629 ± 0.03* 

T9 1.607 ± 0.00 0.835 ± 0.01 1.565 ± 0.04 0.916 ± 0.03 1.491 ± 0.04 0.752 ± 0.04* 

T10 1.580 ± 0.01  0.909 ± 0.06 1.581 ± 0.03 0.951 ± 0.04 1.448 ± 0.02 0.760 ± 0.03* 

A, ampicillin at 70µg/ml; C, carvacrol at 0.1 and 0.2µg/ml. Numbers refer to average of triplicate 

values (n =3). * indicates significant decrease in growth when comparing control to each treatment. 
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5.3.2 Effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin on the number of ampicillin-resistant E. coli strains in terms of OD600 and 

CFU/ml 

 

Four representative ampicillin-resistant E. coli strains (APEC 46, APEC 48, and commensal E. 

coli strains; C2, and T4) were selected to be studied further. First, bacterial counting was 

measured using two ways; taking OD600 readings and then plate counts to generate CFU/ml, 

and from those plates, representative colonies were randomly picked to be used later. 

Generally, bacterial counting in terms of OD600 and CFU/ml (Table 5.4) in control were similar 

to 70µg/ml ampicillin treatment, and this was anticipated, because these bacteria were 

ampicillin-resistant with an MIC above the concentration used in this study. There were lower 

bacterial counts in the treatment containing 0.2µg/ml carvacrol and the combined treatment 

which showed similar counts. This would suggest that the inhibitory effect of carvacrol resulted 

in lower number of bacterial cells which is also observed in bigger volume (10ml volume).  

 

Overall, bacterial numbers in terms of CFU/ml in all strains was: 1) significantly reduced 

(Overall P-value < 0.0001) in 0.2µg/ml carvacrol treatment in comparison with the control, 2) 

insignificantly reduced (Overall P-value = 0.3116) in 70µg/ml ampicillin treatment in 

comparison with the control, 3) significantly reduced (Overall P-value < 0.0001) in combined 

treatment in comparison with the control. Also, there was significant reduction (Overall P-

value < 0.0001) in bacterial numbers in treatment containing carvacrol or combined in 

comparison with ampicillin treatment.  
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Table 5.4 Effect of combined treatment of sub-lethal concentrations of carvacrol and ampicillin on the bacterial numbers in terms of OD600 

readings and CFU/ml 

 

Starting 

strain 

Control 70µg/ml A 0.2µg/ml C 

Combined treatment 

(0.2µg/ml C 

+ 

70µg/ml A) 

OD600 CFU/ml OD600 CFU/ml OD600 CFU/ml OD600 CFU/ml 

46 0.927 2.0x109 ± 11.79 0.972 2.1x109 ± 18.56 0.660 7.7x108 ± 51.79* 0.729 7.0x108 ± 60.70*  

48 0.878 1.8x109 ± 8.89 0.887 1.5x109 ± 19.43 0.435 4.3x108 ± 40.51* 0.422 4.2x108 ± 33.53* 

C2 0.704 1.7x109 ± 13.58 0.725 1.3x109 ± 13.75 0.533 5.6x108 ± 10.02* 0.475 4.8x108 ± 7.00* 

T4 0.780 2.0x109 ± 18.33 0.742 1.8x109 ± 3.21 0.390 4.6x108 ± 43.11* 0.395 4.2x108 ± 23.90* 

                A, ampicillin; C, carvacrol. Numbers refer to either OD readings of a single value (n =1) or CFU/ml as a mean of triplicate values (n =3). 

                        *indicates significant decrease in growth when comparing control to each treatment. 
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5.3.3 Effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin on the antibiotic resistance profile of ampicillin-resistant E. coli strains 

 

Representative colonies were picked after bacterial counting and purified to be used in AST 

test (Table 5.5). It was a very quick way to check any changes in their antibiotic susceptibility 

profile in result of different treatments. AST results showed that there was a change from R to 

I or S in cefotaxime mostly and in ampicillin in all treatments. Cefotaxime resistance in T4 was 

confirmed by the presence of CTX-M15 plasmid (see Chapter 2; Table 2.9), but the changes 

from R to I or S in all treatments including control may suggest that the loss of CTX-M15 

plasmid was due to sub-culturing and not because of the effect of each treatment. Ampicillin 

resistance in 46 was confirmed by the presence of TEM plasmid (see Chapter 2; Table 2.9), 

but changes from R to I were not anticipated in ampicillin treatment and would be the result of 

cross-contamination. Also, ampicillin resistance C2 was confirmed by the presence of TEM 

plasmid (see Chapter 2; Table 2.9), but changes from R to I were found in all treatments 

suggesting the loss of TEM plasmid was in result of sub-culturing and not because of treatment. 
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Table 5.5 Effect of combined treatment of sub-lethal concentrations of carvacrol and ampicillin 

on the antibiotic resistance profile 

 

Starting 

strain 
Source 

AST 

CTX 

30µg 

CT 

10µg 

SAM 

25µg 

46 

Wild-type S R R 

Control – A & B R R R 

Control - C I R R 

0.2µg/ml carvacrol – A, B & C I R R 

70µg/ml ampicillin - A I R R 

70µg/ml ampicillin - B I R I 

70µg/ml ampicillin - C I  S I 

Combined treatment – A, B & C R R R 

48 

Wild-type I R R 

Control – A, B & C S R I 

0.2µg/ml carvacrol – A, B & C S R R 

70µg/ml ampicillin – A & B S R I 

70µg/ml ampicillin - C I R R 

Combined treatment – A & C I R R 

Combined treatment - B S R I 

C2 

Wild-type R R R 

Control – A, B & C S R I 

0.2µg/ml carvacrol – A, B & C S R I 

70µg/ml ampicillin - A S R I 

70µg/ml ampicillin - B S R R 

70µg/ml ampicillin - C I R I 

Combined treatment - A S R I 

Combined treatment – B & C I R I 

T4 

Wild-type R R R 

Control – A, B & C I R R 

0.2µg/ml carvacrol – A & B I R R 

0.2µg/ml carvacrol - C S R R 

70µg/ml ampicillin – A & B I R R 

70µg/ml ampicillin - C S R R 

Combined treatment - A I R R 

Combined treatment – B & C S R R 

Shaded cells indicate resistance. CTX, Cefotaxime; CT, Colistin; SAM, Ampicillin; R, resistant; S, 

sensitive; I, intermediate. This table shows the comparison between antibiotic resistance profile in the 

original strains vs. the effect of each treatment on the loss of cefotaxime, colistin and ampicillin 

plasmids using antibiotic disks. Results are expressed as n = 1. 



134 
 

5.3.4 Effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin on the production of metabolic by-products in ampicillin-resistant E. coli 

strains 

 

Representative E. coli strains (APEC 46, and commensal E. coli strains; C2, and T4) were used 

in this experiment for metabolic screening in order to detect any changes in the production of 

metabolic by-products in different treatments. The detected metabolic by-products were carbon 

dioxide (CO2), ethanol, thymol, acetate, and indole in all treatments. However, acetate peak 

was not visible in Figure 5.1 at this level, but it was visible upon zooming in the chromatogram. 

Results in Figure 5.1 (showing APEC 46 as a representative example) were presented in 

chromatograms according to different treatments. All of the representative strains showed the 

same chromatogram in all treatments. The only difference was the presence of thymol in 

samples containing carvacrol and combined treatment which was absent in the remaining 

samples.  
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Figure 5.1 Chromatograms of metabolic by-products of APEC 46 in the presence of combined treatment of sub-lethal concentrations of carvacrol 

and ampicillin.
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5.3.5 Effect of combined treatment of sub-lethal concentrations of carvacrol and 

ampicillin on a mixed E. coli culture  

 

As shown in a previous chapter (see Chapter 3), carvacrol inhibited the growth of E. coli 

strains in a dose-dependent manner, and here the data set was expanded to study the impact of 

carvacrol on a mixed E. coli culture as well. The findings in Table 5.6 showed there was a 

general increase in the total number of viable E. coli in all vessels after 48hr. The batch culture 

system was left to run for 48hr and samples were taken at different time points (0, 24, and 

48hr), cultured, and 36 purified representative E. coli strains (Table 5.7) were randomly chosen 

for further characterisation such as ERIC-PCR (Figure 5.2), and detection of virulence genes 

by PCR (Table 5.8) in order to establish the relative fitness value for each starting strain (APEC 

46, C2, and C4), and study the effectivity of each treatment. Linear model showed that there 

was a significant difference (P-value < 0.05) between bacterial numbers at different time points. 

However, it was not possible to study the effect between each treatment on the bacterial 

numbers because of the limited numbers of the vessels used (n = 1) for each treatment.  

 

Table 5.6 Bacterial counting (total viable counts) on LB agar from the collected samples 

 

Vessel / Time 0hr 24hr 48hr 

V1 3x106 ± 1.53 3x108 ± 5.03 1x109 ± 16.80 

V2 1x105 ± 1.00 6x108 ± 5.29 2x109 ± 19.50 

V3 1x106 ± 11.93 1x108 ± 4.73 7x108 ± 10.60 

V4 4x105 ± 2.00 2x108 ± 4.58 8x108 ± 5.69 

           Numbers refer to CFU/ml of triplicate values (n =3). 
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Table 5.7 Representative E. coli strains isolated from each fermentation vessel at different time 

points 

No. Code Sample 

1 V1A0 Vessel 1 at 0hr 

2 V1B0 Vessel 1 at 0hr 

3 V1C0 Vessel 1 at 0hr 

4 V2A0 Vessel 2 at 0hr 

5 V2B0 Vessel 2 at 0hr 

6 V2C0 Vessel 2 at 0hr 

7 V3A0 Vessel 3 at 0hr 

8 V3B0 Vessel 3 at 0hr 

9 V3C0 Vessel 3 at 0hr 

10 V4A0 Vessel 4 at 0hr 

11 V4B0 Vessel 4 at 0hr 

12 V4C0 Vessel 4 at 0hr 

13 V1A24 Vessel 1 after 24hr 

14 V1B24 Vessel 1 after 24hr 

15 V1C24 Vessel 1 after 24hr 

16 V2A24 Vessel 2 after 24hr 

17 V2B24 Vessel 2 after 24hr 

18 V2C24 Vessel 2 after 24hr 

19 V3A24 Vessel 3 after 24hr 

20 V3B24 Vessel 3 after 24hr 

21 V3C24 Vessel 3 after 24hr 

22 V4A24 Vessel 4 after 24hr 

23 V4B24 Vessel 4 after 24hr 

24 V4C24 Vessel 4 after 24hr 

25 V1A48 Vessel 1 after 48hr 

26 V1B48 Vessel 1 after 48hr 

27 V1C48 Vessel 1 after 48hr 

28 V2A48 Vessel 2 after 48hr 

29 V2B48 Vessel 2 after 48hr 

30 V2C48 Vessel 2 after 48hr 

31 V3A48 Vessel 3 after 48hr 

32 V3B48 Vessel 3 after 48hr 

33 V3C48 Vessel 3 after 48hr 

34 V4A48 Vessel 4 after 48hr 

35 V4B48 Vessel 4 after 48hr 

36 V4C48 Vessel 4 after 48hr 

A total of 3 representative strains were picked randomly from spread plates from each vessel at each time point. 
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Figure 5.2 A dendrogram showing bacterial diversity of the representative E. coli strains 

isolated from batch culture based on UPGMA cluster analysis. The three original strains 

(APEC 46, C2 and C4) are marked in a red rectangle. 

 



139 
 

ERIC-PCR provides a quick tool to differentiate between the E. coli strains, so in theory, there 

should be three or four discrete nodes reflecting three representative strains coming from each 

treatment and/or reflecting strains adapting to different treatments because of a possible 

recombination event. However, Figure 5.2 which demonstrated the variability of the results of 

ERIC-PCR analysis (Table 5.7) with the original strains used in this study showed different 

results. Even though, APEC 46 clustered in a different clade than the commensal chicken 

strains (C2 and C4) which comes in agreement with the results of ERIC-PCR from Chapter 2. 

Unfortunately, strains coming from different vessels clustered together in the same node. Thus, 

it was not possible to cluster strains coming from the same vessel in the same node sharing 

similar characteristics of the starting strains. ERIC-PCR was partly successful in showing how 

different the strains are, but it was not an effective technique in differentiating between the 

starting strains and representative strains, and between each vessel in order to understand which 

strains came from which vessel. 

 

In order to differentiate between the E. coli strains effectively, detection of virulence genes (iss 

and astA) by PCR was used as a marker of the starting strains. Table 5.8 showed that all of the 

E. coli strains were able to grow throughout the study, but at different fitness values. Despite 

the limitation of this study, C2 was detected at a higher rate than the other two strains with a 

percentage of 47.22% (17/36), followed by C4 with a percentage of 36.11% (13/36). However, 

APEC 46 was the strain which was the least detected strain, and at a very low percentage of 

11.11% (4/36).  

 

 

 



140 
 

Table 5.8 Detection of virulence genes by PCR for the representative E. coli strains 

No. Code iss astA Expected strain 

1 V1A0 + - C2 

2 V1B0 + - C2 

3 V1C0 + - C2 

4 V2A0 - + C4 

5 V2B0 - + C4 

6 V2C0 + - C2 

7 V3A0 - - - 

8 V3B0 + - C2 

9 V3C0 - + C4 

10 V4A0 + - C2 

11 V4B0 + - C2 

12 V4C0 - + C4 

13 V1A24 + - C2 

14 V1B24 + - C2 

15 V1C24 - - - 

16 V2A24 - + C4 

17 V2B24 + - C2 

18 V2C24 + + APEC 46 

19 V3A24 + - C2 

20 V3B24 + + APEC 46 

21 V3C24 - + C4 

22 V4A24 + - C2 

23 V4B24 - + C4 

24 V4C24 - + C4 

25 V1A48 + - C2 

26 V1B48 - + C4 

27 V1C48 + + APEC 46 

28 V2A48 + - C2 

29 V2B48 - + C4 

30 V2C48 + + APEC 46 

31 V3A48 - + C4 

32 V3B48 - + C4 

33 V3C48 + - C2 

34 V4A48 + - C2 

35 V4B48 - + C4 

36 V4C48 + - C2 

37 APEC 46 (Amp R) + + APEC 46 

38 C2 (Amp R) + - C2 

39 C4 (Amp I) - + C4 

Shaded cells refer to the original E. coli strains used in this study. Results are expressed as n = 1. 
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5.4 Discussion 

An interesting question posed in this section of the thesis was whether carvacrol will work 

synergistically or antagonistically with ampicillin to control highly ampicillin-resistant E. coli 

strains (MIC higher than 70µg/ml). These interactions might result from affecting different 

target sites within the bacterial cell due to different mechanisms of action (Esimone et al., 

2006). The approach used was a checkerboard method (carvacrol concentration vs. ampicillin 

concentration), OD600 readings taken during 9hr of the exponential phase, and on a miniaturized 

(96 well plate) version of the original growth protocol (Table 5.3). This preliminary study 

showed an overall synergistic effect of carvacrol when combined with ampicillin at sub-lethal 

concentrations of 0.1µg/ml or 0.2µg/ml and 70µg/ml, respectively, but in only 11 strains out 

of the 17 strains. These eleven strains had MIC values of 0.3µg/ml in the following eight strains 

(46, 52, C1, C2, C6, T1, T6, and T8), 0.4µg/ml in two bacterial strains (45 and 51), and 

0.5µg/ml in T4 only.  

 

Synergy is when the effect of combined treatment of two chemicals is greater than the effect 

of each chemical separately (Rand et al., 1993). In the present study (Table 5.3), the synergistic 

effect was identified as a significant decrease (Overall P-value < 0.0001) in OD600 readings 

when using combined treatment of 0.1µg/ml or 0.2µg/ml of carvacrol and 70µg/ml ampicillin 

in comparison with each separately across all strains. This combined treatment might be 

effective in controlling highly ampicillin-resistant E. coli strains coming from poultry sources, 

and hence it should be evaluated in a batch culture model using mixed E. coli cultures (see 

Chapter 5), and chicken caecal contents (see Chapter 6). However, at this point, one cannot 

predict what might happened in such an interaction. Possible scenarios include: 1) Carvacrol 

may bind to the β-lactamase binding site instead of the β-lactamase as a result of competitive 

inhibition, 2) Carvacrol may bind to the β-lactamase enzyme and modifying its structure 
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making it less effective or inactive (Eliopoulus and Moellering, 1996) and allowing ampicillin 

activity, or 3) Metabolic burden (creating metabolic stress in the bacterial cell as a result of 

presence of high copy numbers of plasmids (Silva et al., 2012)) might result from the activities 

of both chemicals (carvacrol and ampicillin) at the same time, or 4) Carvacrol increases the 

permeability of the bacterial membrane (Ultee et al., 2002a) allowing more ampicillin to enter 

the cell (Johny et al., 2010) and perhaps causing burden on the activity of trans-peptidase 

enzyme. Thus, it is not clear what the physiological changes are that resulted from the addition 

of both chemicals together. So, a future experiment might include training these strains at 

different sub-MIC levels of carvacrol and ampicillin and then carry out WGS. This would be 

novel work and will provide more information of what are the genetic changes that might be 

selected in this study. Also, to expand this study, more antibiotics from different classes should 

be included to identify whether this synergy effect is limited or not. 

 

Ampicillin is often the first antibiotic of choice in response to many clinical signs in poultry 

where a bacterial infection is considered to be the likely cause of disease or loss of productivity. 

However, we have data suggesting that 70.97% of the E. coli isolates made from poultry (see 

Chapter 2; Table 2.6) are already highly resistant to ampicillin rendering this treatment non-

viable. The data of this initial study suggests that even a resistant strain may be susceptible to 

treatment when sub-lethal doses of carvacrol and ampicillin are administered at the same time, 

and this is in agreement with a previous study which synergy was identified using fractional 

inhibitory concentration (FIC) index (Palaniappan and Holley, 2010). This is an area for deeper 

exploration both in terms of application of carvacrol in the poultry industry and the mechanism 

of bacterial number reduction. This might suggest decreasing the ampicillin dose of that used 

regularly when administered with carvacrol to chickens as feed additives or use carvacrol alone 

and in turn this may decrease the ampicillin resistance E. coli and its ampicillin residue in 
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poultry gut in the long term. In vitro (see Chapters 5 and 6) and in vivo studies need to be 

performed in order to confirm these observations on a larger scale. This represents a new 

avenue by which carvacrol can control highly ampicillin-resistant E. coli strains and may 

increase their sensitivity to ampicillin in poultry industry.  

 

In the tube format, bacterial counting was measured using two methods; taking OD600 readings 

and then CFU/ml. Determining CFU is a basic standard in microbiology laboratories, which 

counts the viable cells only (Miller, 1972). Though taking OD600 readings is also commonly 

used, but it measures viable and non-viable cells (Hazan et al., 2012). Thus, using both methods 

will increase the level of accuracy, and allow us to compare between the two measurements. 

Results in Table 5.4 showed that the significant decrease (P-value < 0.05) in bacterial numbers 

in the presence of carvacrol and combined treatment was due to the inhibitory effect of 

carvacrol when compared to the control and ampicillin treatment.  

 

Both of 96 well plate and tube format showed significant decrease (P-value < 0.05) in OD600 

readings in carvacrol and combined treatment. However, when comparing results in Table 5.3 

and Table 5.4, there were differences in some OD600 readings in different treatments, and this 

may be due to the following: 1) difference in surface area in the 96 well plate and 15ml tube 2) 

differences in sensitivity of the microplate reader (96 well format) and spectrophotometer (tube 

format), 3) differences in shaking speed in the microplate reader and tube shaker, 4) 

measurements of OD readings were taken at different times (9hr in 96 well plate, and after 12hr 

in tube format), 4) differences in number of repeats (n=3 in 96 well plate, and n=1 in tube 

format).  
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Considering the differences in bacterial numbers in each treatment, it was of interest to pick 

colonies and use AST as a quick way to detect any changes in antibiotic susceptibility profile. 

AST results in Table 5.5 were not successful in determining the effect of each treatment on the 

phenotypic changes of antibiotic susceptibility profile in the representative strains. The reason 

for focusing on cefotaxime, colistin, and β-lactams was because they showed resistance among 

the representative strains, and they gave the highest percentage of resistance among all of the 

32 strains (see Chapter 2; Table 2.6), and moreover, ampicillin is the first antibiotic of choice 

in poultry. Changes from R or I to S would be anticipated as result of loss of plasmid in case 

of plasmid-mediated antibiotic resistance. However, changes from S to I or R would be the 

result of cross-contamination or conjugal transfer or the insensitivity of the AST test such as in 

control strains (A & B) and combined treatment (A, B, & C) derived from APEC 46 strain. 

These experiments were done only once and after overnight incubation, so this needs more 

repeats and more strains in order to determine whether there was any treatment effect or not. 

AST test is an inaccurate measurement of antibiotic resistance, so in order to determine the loss 

of plasmid responsible for antibiotic resistance, this should be investigated using WGS 

approach and then detected using PlasmidSeeker tool or using agarose gel electrophoresis 

approach. 

 

GC-MS is an analytical technique to thoroughly investigate the metabolomic profile of the host 

or any biological sample, which became an important tool to understand the link between 

genotype and phenotype (Bino et al., 2004). As a method, GC-MS was able to detect some of 

the metabolic by-products such CO2, ethanol, thymol, acetate and indole, which are normally 

produced by E. coli strains except for thymol. The added carvacrol in carvacrol and combined 

treatments was detected as thymol, due to their similarities in chemical structure. However, GC 

was not successful in detecting any changes in the production of each metabolic by-product in 
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comparison with GC method (see Chapter 3). Indole is a signaling molecule associated with 

regulation of biofilm formation (Di Martino et al., 2003) and stability of multi-copy plasmids 

in E. coli (Chant and Summers, 2007). Thus, it was of interest to check whether there is an 

effect of carvacrol or combined treatment on the production of indole. However, at different 

treatments, all of the chromatograms showed the same profile and in all E. coli strains (Figure 

5.1). There might be an increase or decrease in the metabolic by-products, but they were not 

be detectable by this semi-quantitative method. Thus, it could be coupled with GC method 

which was shown to be a quantitative method or use a different protocol using GC-MS, to 

quantify these changes in concentrations.  

 

To evaluate the efficacy of carvacrol as a phytochemical, we investigated initial parameters 

such as total viable counts of bacteria upon addition of sub-lethal concentrations of ampicillin 

and carvacrol. Results of bacterial counting (Table 5.6) showed a general increase in total 

viable counts after 48hr in all vessels, and this was proved to be statistically significant (P-

value < 0.05) between different time points. V1 showed a gradual increase in E. coli total 

counts, and this was expected. This also, confirms the validity of using VL medium to grow E. 

coli batch culture, as it encompasses nitrogen and sugar sources needed as substrates for E. coli 

metabolism (Lei et al., 2012). Moreover, the continuous increase in bacterial numbers in V2 

containing sub-lethal concentration of ampicillin was anticipated, because two of the added 

strains (APEC 46 and C2) were highly ampicillin resistant with MIC value of more than 

70µg/ml. Being highly resistant, it may be reasoned that there was sufficient β-lactamase 

enzyme activity to inactivate the ampicillin allowing the third strain C4 to survive and grow 

despite being ampicillin intermediate. Also, it was noted that there was a possible trend in the 

total viable counts in V1 and V2 in comparison with V3 and V4, which suggests that there is a 

slightly slower growth in V3 and V4 after 48hr (Table 5.6), but without multiple repeats and 
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robust statistics, these differences are very marginal and insufficient to suggest that carvacrol 

may show a trend to a relatively reduced growth. Therefore, it was not possible to study the 

efficacy of each treatment due to the limited number of vessels for each treatment (n =1), and 

so we could not confirm whether carvacrol was more effective than ampicillin on a mixed 

culture of APEC and commensal E. coli strains or not. Also, the hypothesis that exposure to 

sub-lethal concentrations of carvacrol may increase sensitivity to ampicillin by membrane and 

enzyme disruption even in resistant strains was shown unfounded, and at the concentrations 

used in this experiment. As no obvious effects were seen, this study was not taken any further. 

 

ERIC-PCR data was not successful in placing the different E. coli strains in different 

nodes/clades (Figure 5.2), and it was not possible to relate which starting strain was better able 

to grow in a certain vessel or not. Though ERIC-PCR is rapid, it would appear to be extremely 

unreliable in generating consistent profiles reflecting major genomic re-arrangements in the 

different E. coli strains used, given they were grown for 48hr in batch cultures supplied with 

different treatments. This might be solved through including more characterisation tests such 

as plating on different selective media based on their phenotypic characteristics, so we can 

easily differentiate between them and know which starting strain was better able to grow in a 

certain vessel and the efficacy of each treatment. As this will reveal the efficacy of each 

treatment and how E. coli strains might change throughout the course of each treatment.  

 

Virulence gene profiling of iss and astA genes (Table 5.8) showed the ability to differentiate 

the representative strains based on the profile of the original starting E. coli strains used in this 

study. These virulence genes are located in plasmid and chromosome respectively, and 

generally iss plasmid could be spread by conjugation at a higher rate (58.33%: 21/36) than astA 
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gene (47.22%: 17/36) among the representative strains. Regardless of the limitation of this 

study, interestingly, C2 and C4 were detected more frequently than APEC 46, and this may 

suggest that the commensal strains have higher fitness value than the APEC strain. Whether 

this observation indicates the ability of the commensal strains to outcompete the APEC strain 

is open to question and requires more repeats in order to confirm this very preliminary finding. 

Moreover, this method was not able to reveal the ability of each treatment to stop or encourage 

the dissemination of the two virulence genes and their mobility between the strains. Whether 

these observations were really true or happened randomly, this requires further investigation.  

 

Collectively, the simple three strains batch culture model could not demonstrate the ability 

carvacrol to decrease or suppress the growth of a mixed E. coli culture at sub-lethal 

concentrations in comparison with the control and ampicillin treatment. Generally, from these 

initial data of the representative 36 strains (Table 5.7), commensal strains (C2 and C4) were 

found at a higher rate than the APEC 46 strain (Table 5.8), and this may suggest the ability of 

these commensal strains to maintain normobiosis, as the number of commensal strains were 

higher than the APEC strain. Moreover, E. coli may enter viable but non-culturable (VNC) 

state (Van Elsas et al., 2011), and this will affect the true number of isolates in each vessel.  

These are only speculations, due to the limited number of vessels (n = 1 for each treatment) 

and small sample size of representative E. coli strains (n = 36), as it was impossible to cover 

all the strains. This initial study could have been improved by: 1) including more vessels for 

each treatment, and therefore result in larger number of strains, 2) detecting the presence of 

AMR genes beside virulence genes to monitor the effect of each treatment on the carriage of 

antimicrobial resistance mediated plasmids, 3) labelling the starting E. coli strains with 

fluorescence labelling and then track them, but this method might create extra stress on the 

cellular level on top of the treatment stress.  
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This was a preliminary study that opens the door to future studies and set a baseline to Chapter 

6 and for other experiments such as: 1) the effect of each treatment at different combinations 

of sub-lethal concentrations, 2) the effect of each treatment on E. coli population from chicken 

caecal content, as this will increase our understanding on what happens inside the actual 

chicken gut (see Chapter 6), 3) the effect of each treatment on the bacterial population of the 

chicken gut, as carvacrol might cause dysbiosis resulted from the decrease in E. coli population 

(see Chapter 6) , 4) the effect of each treatment on the number of Gram-positive and Gram-

negative bacterial population in the chicken gut, 5) the effect of each treatment on the bacterial 

growth rate vs. bacterial growth yield. These in vitro studies were performed because they have 

to be carried out before going to in vivo experiments for ethical and safety reasons (Van den 

Abbeele et al., 2010). In vivo studies come at the last step after making sure that these 

treatments are safe to be used on animal models.  

 

In conclusion, synergistic interactions between carvacrol and ampicillin were observed at sub-

MIC levels to control the growth of ampicillin-resistant E. coli strains. However, it was not 

possible to detect any changes in the metabolic by-products of these E. coli strains in the 

presence of the combined treatment of sub-lethal concentrations of carvacrol and ampicillin. 

Taken these results into a simple three strains batch culture model, there was a significant 

increase (P-value < 0.05) in the total viable numbers of E. coli strains over time in all 

treatments. Therefore, it was not possible to observe the synergistic effect on a mixed E. coli 

culture. 
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CHAPTER 6: Effect of combined treatment of sub-lethal concentrations of 

carvacrol and ampicillin on E. coli isolated from 

 caecal contents of broiler chicken 
 

 

6.1 Introduction  

The chicken gut is colonised directly after hatching (Brisbin et al., 2008) predominantly with 

environmental facultative anaerobes from the phylum Proteobacteria, but this population 

changes rapidly over time to become predominant with anaerobic Firmicutes after two weeks 

of age (Ballou et al., 2016). The gut microbiota has important roles in digestion and may be 

included in maintaining normobiosis state and contributing to the health of the host (Stanley et 

al., 2014). The chicken caecum is one of the main locations for colonisation by commensal 

bacteria (Fuller and Turvey, 1971), where they occur in large numbers, giving a dense bacterial 

ecosystem, ranging from 107 to 1011 bacteria per gram of caecal content (Apajalahti et al., 

2004).  Caeca are a pair of tubes (right and left), located at the intersection of ileum and colon 

(McLelland, 1989), and are considered to be the first part of large intestine (Nasrin et al., 2012). 

They are commonly present among avian species, but absent in some, and come in different 

sizes and shapes (Clench and Mathias, 1995). They are very adaptable in terms of their size; 

they increase in size as a result of high metabolic products included in the diet, and this affects 

their functionality (Pulliainen and Tunkkari, 1983). Though the full function of caeca is not 

well understood, they are responsible for being the location for important roles such as 

absorption of electrolytes and water (Thomas and Skadhauge, 1989), digestion of cellulose, 

proteins, and carbohydrates (JøRgensen et al., 1996), vitamin synthesis and absorption (Coates 

et al., 1968).  
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Caeca have a slower passage rate in comparison to the remaining gastrointestinal tract of 

poultry (Pan and Yu, 2014), which results in large numbers of bacteria accumulating with a 

consequence being that the caeca are the major location for microbial fermentation (Józefiak 

et al., 2004), mostly by anaerobic bacteria (Barnes and Impey, 1972). The production of SCFAs 

as the end products of fermentation lowers the pH of the caeca (Józefiak et al., 2004) and this 

prevents pathogenic bacteria from colonising (Apajalahti, 2005). Moreover, the caecal 

microbiota plays an important role in the bird’s health status (Dunkley et al., 2009) by 

establishing a protective immunity against bacterial infections (Barrow, 1992). However, the 

microbiota is affected by a number of intrinsic factors such as the bird’s age (Knarreborg et al., 

2002), genetics (Zhao et al., 2013) and gender (Lee et al., 2003b), and extrinsic factors such as 

diet, antibiotic use (Knarreborg et al., 2002), presence of infection (Kimura et al., 1976), feed 

additives (Lee et al., 2003b), housing (Zhao et al., 2013) and other environmental factors such 

as build-up of ammonia in the atmosphere of the house (Apajalahti and Vienola, 2016). 

 

Phytochemicals are natural sources of feed additives and have been proven to be GRAS 

(Hashemi et al., 2008). They provide an effective alternative to synthetic products, and they 

have shown to improve animals’ well-being and increase productivity (Wray and Davies, 

2000). Previous studies have demonstrated the in vivo efficacy of oregano as feed additives in 

broiler chickens (Ertas et al., 2005, Karimi et al., 2010, Peng et al., 2016) but without in-depth 

investigation of what is happening at the gut microbiota level. An in vitro batch culture study 

on the effect of carvacrol on caecal microbiota showed that using high concentrations of 

carvacrol affected fermentation processes performed by the gut microbiota due to its anti-

bacterial role on growth and metabolism (Grilli et al., 2006), but without investigating the 

totality of the microbial population or their metabolic by-products.  
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In this chapter, the aim was to study the impact of the combined treatment of carvacrol with 

ampicillin, which to our knowledge has not been investigated before. Also, this study was 

performed to assess wider impacts on the microbiota that was not possible to test in a pure and 

mixed pure culture experiments (see Chapter 5). The testable hypotheses of the current study 

were: 1) Whether the use of sub-lethal concentrations of carvacrol (the active ingredient of 

oregano) will have a modulatory effect on a mixed population found in pooled caecal contents 

challenged with an APEC strain or not?, 2) Whether the added APEC strain will be suppressed 

or dominate the growth, and suppress the beneficial effects of the bacterial community 

irrespective of the treatments, and 3) Whether the application of the combined treatment of 

sub-lethal concentrations of carvacrol and ampicillin on pooled caecal contents challenged with 

an ampicillin-resistant APEC strain will increase the efficiency of ampicillin or not? 

 

The aims and objectives of this study were: 

• To test whether there is an observable effect of sub-lethal concentrations of carvacrol 

and ampicillin separately and in combination on the E. coli population and whole 

bacterial community present in chicken caecal content. 

• To study the effect of each treatment upon the ampicillin-resistant APEC strain added 

to the healthy caecal content, and whether this strain can be recovered or not using 

whole population sequencing data. 

• To test whether carvacrol inhibit/modulate the growth of the whole bacterial 

community resulting in a shift in the total bacterial caecal community or does it work 

selectively against certain bacterial population?  

• To determine whether carvacrol fit into the criterion of a feed additive by its ability to 

suppress pathogenic bacteria and nourish the growth of beneficial bacteria? 
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• To demonstrate whether the combination of carvacrol and ampicillin increases the 

efficacy of ampicillin among ampicillin-resistant bacteria? 

• To test the effect of each treatment on the production of SCFAs using GC. 

 

 

6.2 Materials and methods 

6.2.1 In vitro batch culture set-up  

Fresh caecal contents were collected from five 28 days-old male broiler chickens slaughtered 

and handled at CEDAR farm (University of Reading) by the University veterinary officer 

following approved ethical standards and procedures. The farm premises and prodecures were 

regulated and in comply with the Home Office (Animal Procedures Act). Prior to killing, the 

chickens were housed and fed a standard commercial diet of corn-soy and fresh water ad 

libitum and handled according to the recommendations mentioned in the Code of 

Recommendations for the Welfare of Livestock: Meat chickens and breeding chickens 

(https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69372/pb727

5meat-chickens-020717.pdf) and the Ross Broiler Management Handbook 

(http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-Broiler-Handbook-2014i 

EN.pdf). Birds/chickens were selected randomly for this experiment. The caecal samples were 

collected in sterile vials and stored on ice until they were transported to the laboratory, where 

they were used to prepare a pooled caecal slurry (1:10) dilution in VL medium to inoculate the 

system. Also, an overnight culture (10 – 12hr) of the APEC 46 strain was diluted to OD600 of 

0.01 (107 CFU/ml) in fresh VL broth, and then added to each vessel (separately and after caecal 

slurry inoculation step) to give a final concentration of 105 CFU/ml in the 20ml vessel. VL 

broth was used as this medium was designed to reflect poultry gut luminal content (Lei et al., 

2012). All of the chemicals and ingredients were prepared in VL medium. Eight vessels (Table 

6.1) were included in this study; vessels 1 (V1) and 2 (V2) contained the control of the caecal 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69372/pb7275meat-chickens-020717.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69372/pb7275meat-chickens-020717.pdf
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slurry and 100µl of APEC 46 strain completed with VL medium to 20ml, vessels 3 (V3) and 4 

(V4) contained the same mixture in addition to sub-lethal concentration of ampicillin treatment 

(20µg/ml), vessels 5 (V5) and 6 (V6) contained the same mixture in addition to sub-lethal 

concentration of carvacrol (0.2µg/ml), and vessels 7 (V7) and 8 (V8) contained the same 

mixture in addition to combined treatment of both ampicillin (20µg/ml) and carvacrol 

(0.2µg/ml). The set conditions of the 20ml vessels were controlled throughout the 72hr as such; 

anaerobic conditions (80% N2, 10%H2, and 10% CO2), pH value in between 5.8 to 6.0 

monitored by pH meter, and a temperature of 41°C maintained by water bath. The system was 

left to run for 72hr, and a total sample of 1.5ml was collected at 4 different time points of 0, 

24, 48, and 72hr. I am grateful to Dr. Vasiliki Kachrimanidou for her help in setting up the 

batch culture. 

 

Table 6.1 Components of each batch culture vessel 

Starting concentration 

of each component 

Final concentration in each treatment 

V1 &V2 

(Control) 

V3 & V4 

(20µg/ml 

ampicillin) 

V5 & V6 

(0.2µg/ml 

carvacrol) 

V7 & V8 

(Combined treatment of 

20µg/ml ampicillin & 

0.2µg/ml carvacrol) 

APEC 46 strain culture 

(107 CFU/ml) 
100µl 100µl 100µl 100µl 

Caecal slurry (1:10) 2ml 2ml 2ml 2ml 

1000µg/ml ampicillin - 400µl - 400µl 

5µg/ml carvacrol - - 800µl 800µl 

VL broth 17.900ml 17.500ml 17.100ml 16.700ml 

Total volume of each vessel (V) was 20ml. 
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6.2.2 Simple plate counting of E. coli   

Samples of 300µl collected at 3 different time points of 0, 24, and 48hr were serially-diluted 

and spread on MacConkey agar and MacConkey agar containing 50µg/ml ampicillin. The 

plates were incubated overnight (10 – 12hr) at 37ºC, to monitor the changes in E. coli numbers 

and count the numbers of ampicillin-resistant E. coli during the study.  

 

6.2.3 Production of SCFAs by GC   

A volume of 1.2ml from each sample collected from 4 different time points of 0, 24, 48, and 

72hr was centrifuged, and then 1ml of the supernatant was used for SCFAs analysis by GC 

using Richardson’s protocol as described earlier in Chapter 3; section 3.2.3. 

 

6.2.4 Whole population profiling using next generation sequencing (NGS) technology   

The pellet from section 7.2.3 above was retained and 200µl of the pellet was used for DNA 

extraction of whole bacterial community using DNeasy PowerSoil Kit (Qiagen®, UK) 

according to the manufacturer’s recommendations, and samples of 50µl at 10ng/µl were sent 

to the Animal and Plant Health Agency (APHA) in Surrey for whole bacterial community 

sequencing using Illumina sequencing technology. The extracted DNA was used for 

amplification of V4 and V5 regions of the 16S rRNA gene using forward primer U515F (5’-

GTGYCAGCMGCCGCGGTA-3’) and reverse primer U927R (5’-

CCCGYCAATTCMTTTRAGT-3’); universal primers to target bacterial and archaeal 

ribosomal RNA gene regions at a high taxonomic resolution  (Wang and Qian, 2009). Fusion 

primers with overhang adapter; forward primer (5’- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) and reverse primer (5’- 

GTCTCGTGGGCTCGGAGATGTGTAATAAGAGACAG-3’) were used for barcoding. 
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PCR was performed using FastStart HiFi DNA polymerase (Roche Diagnostics Ltd, UK) with 

the following program: 3 min initial denaturation at 95°C, followed by 25 cycles of 30 sec 

denaturation at 95°C, 35 sec annealing at 55°C, 1 min extension at 72°C, and final extension 

of 72°C for 8 min. The amplified 16S rRNA gene products were purified using 0.8 volumes of 

Ampure XP magnetic beads (Beckman Coulter). Then, each sample was tagged with a unique 

pair of indices and sequencing primers by Nextera XT v2 Index Kits and 2x KAPA HiFi 

HotStart ReadyMix using the following program: 3 min initial denaturation at 95°C, followed 

by 12 cycles of 30 sec denaturation at 95°C, 30 sec annealing at 55°C and 30 sec extension at 

72°C, and final extension of 72°C for 5 min. The index-tagged amplified 16S rRNA gene 

products were further purified using 0.8 volumes of Ampure XP magnetic beads (Beckman 

Coulter). The concentration of each sample was quantified using PicoGreen fluorescent assay 

(Invitrogen). Concentrations were normalised before pooling all samples, each of which would 

be later identified by its unique code of Merchant Identification Number (MID). Sequencing 

was performed on the Illumina MiSeq system with 2 x 300 base reads according to the 

manufacturer’s instructions (Illumina, Cambridge, UK). 

 

6.2.5 Bioinformatics analyses 

Raw data were submitted to the bioinformatics services team provided by the University of 

Reading. I thank Dr. Bajuna Salehe from School of Biological Sciences for performing 

bioinformatics analyses and their associated statistical analyses using the Quantitative Insights 

Into Microbial Ecology (QIIME) 2 platform. 

 

 

 

 



156 
 

6.2.6 Statistical analyses 

Linear mixed model was performed to study the significance of differences between the effect 

of each treatment on the number of bacterial strains vs. control, to study the effect of each 

treatment on the bacterial numbers, and to study the significance between control vs. 

production of each SCFA at sub-lethal concentrations of each treatment. Statistical analyses 

were performed using R i386 3.4.3 software. 

 

6.3 Results 

6.3.1 Total viable counts of E. coli 

The first parameter involved in this study was to look at the differences in numbers of E. coli 

using a simple plating technique as described above and the counts are shown in Figures 6.1 

and 6.2. It would appear that a very large proportion of E. coli or possibly even all of the E. 

coli were ampicillin-resistant at the beginning of the experiment, as the number of the added 

APEC strain would result in a similar number of E. coli at time 0hr. The findings in Figures 

6.1 and 6.2 showed that there was a significant increase (P-value < 0.05) in the total number of 

viable E. coli and ampicillin-resistant E. coli after 48hr in all vessels. Linear mixed model 

showed that there was a significant difference (P-value < 0.05) between numbers of E. coli and 

ampicillin-resistant E. coli at different time points (0hr and 24hr, 0hr and 48hr) in Figures 6.1 

and 7.2. However, there was an insignificant difference (P-value > 0.05) on the effect of each 

treatment on the numbers of E. coli and ampicillin-resistant E. coli (Figures 6.1 and 6.2). 
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Figure 6.1 Total viable counts of E. coli on MacConkey agar from the collected samples 

(Numbers refer to log scale of CFU/ml of duplicate values). 

 

 

 

 
Figure 6.2 Total viable counts of E. coli on MacConkey agar containing 50µg/ml ampicillin 

from the collected samples (Numbers refer to log scale of CFU/ml of duplicate values). 

 

 

 

 

 

 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

V1 V2 V3 V4 V5 V6 V7 V8

B
ac

te
ri

al
 n

u
m

b
er

 (
lo

g
 s

ca
le

)

Vessels at different time points

0 24 48

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

V1 V2 V3 V4 V5 V6 V7 V8

B
ac

te
ri

al
 n

u
m

b
er

 (
lo

g
 s

ca
le

)

Vessels at different time points

0 24 48



158 
 

6.3.2 Production of SCFAs using GC 

 

The second measurement was to look at the effect of each treatment on the production of 

SCFAs (Table 6.2A) and (Table 6.2B), and this was monitored at four time points (0, 24, 48 

and 72hr). Generally, lactate was the highest SCFA produced, followed by butyrate and 

propionate in all vessels. At time 0hr, all of the SCFAs were available in high concentrations 

(except for succinate) in all the vessels irrespective of the treatment, but changes were noticed 

after different time points. However, there were noticeable variations in the concentrations of 

SCFAs present at time 0hr: 1) lower concentrations of propionate in V7 and V8 in comparison 

with the remaining vessels (Table 6.2A), 2) lower concentrations of succinate in V4 and V7 in 

comparison with the remaining vessels (Table 6.2A), 3) higher concentration of acetate in V8 

in comparison with the remaining vessels (Table 6.2B), 4) lower concentrations of lactate in 

V7 and V8 in comparison with the remaining vessels  (Table 6.2B), all of which should have 

yielded similar concentrations as all vessels were inoculated with the same pooled sample. 

These variations might be due to technical errors and the picture may have been improved with 

more technical repeats. Unfortunately, there were limited resources and lack of time to do this. 

Notwithstanding the variability at time 0hr, a linear mixed model showed that there was no 

overall significant difference (P-value > 0.05) between SCFAs production by treatment except 

for lactate, which was noticed between carvacrol and combined treatment vessels at 0hr (P-

value = 0.0029). However, there was significant increase (P-value < 0.05) in the production of 

propionate and butyrate over time, on the other hand, there was no significant increase (P-value 

> 0.05) in the production of succinate, acetate, and lactate over time. 
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Table 6.2A Effect of combined treatment of sub-lethal concentrations of carvacrol (0.2µg/ml) and ampicillin (70µg/ml) on the production of 

SCFAs as by-products of metabolic pathways 
 

Vessels 
Propionate Butyrate Succinate 

0hr 24hr 48hr 72hr 0hr 24hr 48hr 72hr 0hr 24hr 48hr 72hr 

V1 (Control) 107.177* 98.773* 142.443* 135.449* 115.074* 129.456* 155.836* 143.121* 1.900 0.000 0.000 0.344 

V2 (Control) 102.016* 116.054* 139.779* 149.667* 111.548* 134.537* 148.123* 156.487 0.964 0.000 0.000 0.291 

V3 (20µg/ml ampicillin) 99.064* 109.092* 130.850* 138.309* 103.861* 136.256* 159.531* 167.730* 1.487 0.000 0.335 0.479 

V4 (20µg/ml ampicillin) 106.514* 124.377* 133.440* 133.379* 110.999* 117.637* 153.167* 153.065* 0.376 0.000 0.000 0.000 

V5 (0.2µg/ml carvacrol) 109.932* 121.625* 134.058* 111.688* 115.031* 122.196* 148.282* 122.758* 2.269 0.000 0.000 0.000 

V6 (0.2µg/ml carvacrol) 99.836* 124.081* 136.408* 140.608* 105.252* 123.336* 148.826* 149.745* 7.419 0.000 0.000 0.489 

V7 (Combined treatment) 85.119* 79.447* 126.373* 126.025* 118.246* 83.386* 126.130* 110.919* 0.358 0.000 7.193 0.000 

V8 (Combined treatment) 74.780* 131.478* 137.086* 118.530* 107.894* 152.086* 153.306* 132.288* 1.702 0.000 0.000 0.000 

Numbers refer to a single value (in mM unit) from a single sample (n =1). * indicates significant increase (P-value < 0.05) in the production of propionate and 

butyrate over time. 
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Table 6.2B Effect of combined treatment of sub-lethal concentrations of carvacrol (0.2µg/ml) and ampicillin (70µg/ml) on the production of 

SCFAs as by-products of metabolic pathways  

 

Vessels 
Acetate Lactate 

0hr 24hr 48hr 72hr 0hr 24hr 48hr 72hr 

V1 (Control) 86.169 99.948 146.511 126.322 244.151 106.310 206.695 272.827 

V2 (Control) 78.197 119.755 130.556 163.512 202.243 151.162 183.400 188.822 

V3 (20µg/ml ampicillin) 74.213 116.519 149.472 161.540 190.186 123.359 54.954 146.575 

V4 (20µg/ml ampicillin) 84.614 94.145 143.567 173.918 236.494 126.246 60.628 33.218 

V5 (0.2µg/ml carvacrol) 91.380 99.120 132.512 93.363 340.132 237.756 132.932 163.286 

V6 (0.2µg/ml carvacrol) 82.233 98.965 131.282 133.468 307.912 161.106 104.100 288.945 

V7 (Combined treatment) 80.914 444.217 120.646 108.867 113.412 168.457 79.537 285.180 

V8 (Combined treatment) 151.518 122.419 132.131 117.617 27.192 128.784 211.592 94.676 

                         Numbers refer to a single value (in mM unit) from a single sample (n = 1)
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6.3.3 Whole population profiling using NGS technology 

6.3.3.1 Alpha diversity (changes at species level within each vessel) 

A total of 66 pools of DNA sequences collected from 33 samples were clustered according to 

their similarity and used to construct alpha rarefaction curves according to two variables: 1) 

treatment, and 2) time point, using two indices (chao1 and observed OTUs). Alpha diversity of 

the bacterial communities in different treatments was measured using chao1 (Figure 6.3) and 

observed operational taxonomic units (OTUs) (Figure 6.4) indices, to show bacterial diversity 

and richness at species level in each treatment. Kruskal-Wallis of all groups and pairwise 

comparisons showed insignificant difference (P-value > 0.05) in bacterial communities among 

different treatments. Moreover, alpha diversity of the bacterial communities at different time 

points was measured using chao1 (Figure 6.5) and OTUs (Figure 6.6) indices, to show 

bacterial diversity and richness at each time point. Kruskal-Wallis of all groups and pairwise 

comparisons showed significant difference (P-value < 0.05) in bacterial communities at 

different time points. Overall, alpha diversity results showed that changes in bacterial 

communities were due to the effect of time and not treatment.  
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Figure 6.3 Alpha rarefaction curve of the bacterial communities in different treatments using chao1 index.
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Figure 6.4 Alpha rarefaction curve of the bacterial communities in different treatments using observed OTUs index (based on 99% similarity 

threshold).
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Figure 6.5 Alpha rarefaction curve of the bacterial communities at different time points using chao1 index. 
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Figure 6.6 Alpha rarefaction curve of the bacterial communities at different time points using observed OTUs index (based on 99% similarity 

threshold). 
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6.3.3.2 Beta diversity (changes at species level among vessels) 

Principal coordinates analysis (PCoA) profiles were constructed based on two variables: 1) 

treatment, and 2) time point, to show bacterial diversity among vessels. PCoA analysis profile 

of the bacterial communities across different treatments was measured using unweighted 

(qualitative) UniFrac distance metric (Figure 6.7) and Bray-Curtis dissimilarity (Figure 6.8) 

indices, but significance using Permutational multivariate analysis of variance 

(PERMANOVA) could not be calculated because of technical problem with QIIME 2 and how 

it reads the treatment column values. However, results in Figure 6.7 showed that the samples  

clustered into four distinct groups as mentioned in the following: 1) the control strain APEC 

46 clustered close to vessels containing combined treatment, 2) control and carvacrol treatment 

vessels were more similar to each other than the rest of the treatments, 3) ampicillin and 

combined treatment vessels were more similar to each other than the rest of the treatments, and 

4) the remaining control, ampicillin, and combined treatment vessels. Moreover, PCoA 

analysis profile of the bacterial communities at different time points was measured using 

unweighted (qualitative) UniFrac distance metric (Figure 6.9) and Bray-Curtis dissimilarity 

(Figure 6.10) indices. PERMANOVA of all groups showed significant differences of the 

bacterial communities at different time points (overall P-value = 0.001), and significant 

differences (P-value < 0.05) between 0hr and all time points (24hr, 48hr, and 72hr), and 

between 24hr and 72hr when performing pairwise comparisons. Overall, beta diversity results 

showed that changes in bacterial communities across samples or vessels were due to the effect 

of time and not treatment.  
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Figure 6.7 PCoA analysis profile of the bacterial communities across different treatments using unweighted (qualitative) UniFrac distance metric 

index.
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Figure 6.8 PCoA analysis profile of the bacterial communities across different treatments using Bray-Curtis dissimilarity index.
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Figure 6.9 PCoA analysis profile of the bacterial communities at different time points using unweighted (qualitative) UniFrac distance metric 

index.
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Figure 6.10 PCoA analysis profile of the bacterial communities at different time points using Bray-Curtis dissimilarity index.
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6.3.3.3 Taxonomic profiling at phylum level 

Taxonomic profiles were constructed based on two variables: 1) treatment, and 2) time point, 

to show changes in bacterial composition at phylum, class, order, family, and genus levels. 

Figure 6.11 showed that there were six different phyla (Firmicutes, Proteobacteria, 

Tenericutes, Bacteroidetes, Cyanobacteria, and Actinobacteria) in all treatment vessels, but 

Firmicutes was the most abundant phylum (93% as the highest percentage in V5). Figures 6.11 

and 6.12 showed that Firmicutes was the most abundant phylum (relative frequency of ~80%) 

in all treatments and at different time points. The second phylum in its abundance; 

Proteobacteria was increased in its relative frequency to 83% in the combined treatment vessels 

(Figure 6.11) but maintained its relative frequency after 0hr at a low percentage (less than 

20%) (Figure 6.12). Proteobacteria which includes our bacterium of interest (E. coli) showed 

its relative sensitivity to carvacrol treatment in comparison with ampicillin treatment (Figure 

6.11), and that its number was increased to 20% after 72hr (Figure 6.12). 

 

6.3.3.4 Taxonomic profiling at family level 

Family-level taxonomic bar plot in Figure 6.11 showed the presence of different families in 

all vessels irrespective of the treatment. The most abundant phylum; Firmicutes showed the 

presence of different families, and Ruminococcaceae was the most abundant family followed 

by Lachnospiraceae in all vessels. The third most abundant family; Enterobacteriaceae which 

includes E. coli showed its relative sensitivity to carvacrol treatment in comparison with other 

treatments (Figure 6.11), but it was able to maintain its growth but at low level throughout 

different time points (Figure 6.12). 
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Figure 6.11 Taxonomic bar plot showing family level of the bacterial communities in different 

treatments. 
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Figure 6.12 Taxonomic bar plot showing family level of the bacterial communities according 

to different time points. 
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6.3.3.5 Taxonomic profiling at genus level 

Genus-level taxonomic bar plot in Figure 6.13 showed the presence of different genera in all 

vessels irrespective of the treatment. The most abundant family; Ruminococcaceae showed the 

presence of different genera, and Oscillospira was the most abundant genus in all vessels. The 

added APEC 46 strain (E. coli-Shigella sp.) was present in all vessels, but at 24hr, its abundance 

was decreased in carvacrol treatment (6.5% in V5 and 6.9% in V6) in comparison with 

ampicillin treatment (17.3% in V3 and 16.5% in V4) and combined treatment (63.5% in V7 

which was considered an outlier and 13.6% in V8) vessels (Figure 6.13).  According to time 

points, it was able to survive throughout the experiment, but at low percentage (Figure 6.14). 
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Figure 6.13 Taxonomic bar plot showing genus level of the bacterial communities in different 

treatments. 
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Figure 6.14 Taxonomic bar plot showing genus level of the bacterial communities according 

to different time points. 
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6.3.3.6 Taxonomic profiling at species level 

Species-level taxonomic bar plot in Figure 6.15 showed the presence of different species in all 

vessels irrespective of the treatment. The added APEC 46 strain (E. coli-Shigella sp.) was 

present in all vessels, but its abundance was the highest in the combined treatment vessel V7 

which was considered an outlier (Figure 6.15). At 24hr, this strain showed its sensitivity to 

carvacrol treatment (6.5% in V5 and 6.9% in V6) in comparison with ampicillin treatment 

(17.3% in V3 and 16.5% in V4) and combined treatment vessels (63.5% in V7 and 13.6% in 

V8). According to time points, it was able to survive throughout the experiment, but at low 

percentage (Figure 6.16).  

 

According to different treatments, the other noticeable changes (Figure 6.16) were in the 

following: 1) At 24hr, Lactobacillus sp. was present in higher percentage in control (12.5% in 

V1 and 17.2% in V2) and carvacrol (19.3% in V5 and 15% in V6) in comparison with 

ampicillin (2.4% in V3 and 3.3% in V4) and combined (2.1% in V7 and 3.1% in V8) treatment 

which was proven to be significant (P-value < 0.05) by the analysis of composition of 

microbiome (ANCOM), 2) At 24hr, Lactobacillus salivarius was present in higher percentage 

in control (9% in V1 and 6.3% in V2) and carvacrol (10.8% in V5 and 9.2% in V6) in 

comparison with ampicillin (less than 0.1% in V3 and 0.1% in V4) and combined (less than 

0.1%  in V7 and 0.1% in V8) treatment which was proven to be significant (P-value < 0.05), 

3) At 72hr, Streptococcus sp. was present in higher percentage in control (17% in V1 and 17% 

in V2) and carvacrol (16.3% in V5 and 15.3% in V6) in comparison with ampicillin (0.5% in 

V3 and 0.5% in V4) and combined (0.3% in V7 and 0.5% in V8) treatment which was proven 

to be significant (P-value < 0.05), 4) At 72hr, Coprococcus sp. was present in higher percentage 

in control (8.4% in V1 and 9.2% in V2) and carvacrol (11.6% in V5 and 9.4% in V6) in 

comparison with ampicillin (2.1% in V3 and 2.3% in V4) and combined (0% in V7 and 2% in 
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V8) treatment which was proven to be significant (P-value < 0.05), 5) At 72hr, Proteus sp. was 

present in higher percentage in combined (9.2% in V7 and 0% in V8) in comparison with 

control (0.7% in V1 and V2), carvacrol (0.1% in V5 and 0.2% in V6) and ampicillin (0% in 

V3 and 0.2% in V4) treatment. 
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Figure 6.15 Taxonomic bar plot showing species level of the bacterial communities according 

to different time points. 
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Figure 6.16 Taxonomic bar plots showing major changes in some bacterial species due to 

treatment effect at different time points. 
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6.3.4 Combining GC and NGS results 

In order to link between bacterial species and their metabolic by-products, Figure 6.17 was 

constructed. These were the bacterial species found in the pooled caecal samples and as 

identified by 16S rRNA sequencing results, and which were associated with SCFAs profile. 

However, at this point, it was not possible to determine which bacterial species made the 

greatest contribution to the produced SCFAs. 

Figure 6.17 Major metabolic pathways of carbon metabolism in the chicken caeca with the 

major bacterial species responsible for their production. Adapted from (Józefiak et al., 2004). 
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6.4 Discussion 

The previous chapter (Chapter 5) showed that three E. coli strains grew and survived in batch 

culture with sub-lethal carvacrol and/or ampicillin treatments suggesting the stresses applied 

were insufficient to control these three microorganisms. There are two issues to be considered: 

1) the dose of the treatments was calculated to be the likely doses that would reach the caecum 

in the bird given current therapeutic dosing with ampicillin and oregano supplementation as 

used on farm, 2) the study in the previous chapter (Chapter 5) involved pure cultures of E. coli 

that were not exposed to the complexity of caecal contents in terms of biochemical and 

microbiological diversity. Thus, the study in this chapter involved exposing one APEC strain 

(APEC 46) to a more complex environment (pooled caecal contents) in the presence of a mixed 

bacterial community. Three measurement parameters were monitored in this study; total viable 

counts of E. coli, production of SCFAs, and changes of bacterial population at different 

taxonomical levels to assess the impact of different treatments.  

 

To assess the modulatory effect of sub-lethal concentrations of carvacrol on caecal contents 

challenged with an APEC 46 strain, the total viable number of E. coli and ampicillin-resistant 

E. coli present was achieved by simple culturing method. Results in Figures 6.1 and 6.2 

showed that there was a significant increase (P-value < 0.05) in the total number of viable E. 

coli and ampicillin-resistant E. coli by time in all vessels, indicating that the E. coli grew over 

the course of the experiment and were not suppressed by treatment or by the rest of the 

microbial community. This increase in E. coli numbers does not reflect the E. coli numbers in 

the actual chicken gut given the age of the birds. While this confirms that VL medium supports 

the growth of E. coli (Lei et al., 2012), there was an insignificant difference (P-value > 0.05) 

by each treatment on the numbers of E. coli, and ampicillin-resistant E. coli (Figures 6.1 and 

6.2). This suggests that the E. coli being counted were either APEC 46 or APEC 46 and a 
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resident ampicillin-resistant Gram-negative bacterial strains found in the pooled caecal 

contents. Given the final concentration of the added APEC 46 strain (105 CFU/ml in the 20ml 

vessel), it is likely that the numbers of the E. coli equated to the input APEC strain dose and 

not to resident E. coli strains. This could have been confirmed by genetic testing for similarities 

e.g. MLST, but it was not an essential addition to the study as the treatment failed to suppress 

any E. coli.  

 

There were differences in the counting (two log difference) at 0hr between treatments, which 

should have all been the same, but these counts were significantly increased (P-value < 0.05) 

by time and there were no significant differences (P-value > 0.05) between treatments at 24hr 

and 48hr. This technical issue stems from the fact that the nature of cecal content is very 

condensed, so it was not be easily mixed in VL medium resulting in precipitation of big clumps, 

and this may explain the differences of counting at 0hr in the vessels. It may be concluded that 

differences in starting numbers of E. coli were not proven to be a contributing factor here. 

However, in order to validate these data sets and confirm the lack of effect of each treatment 

on the E. coli numbers, this experiment should be repeated several times with an extra vessel 

for each treatment. The lack of anti-bacterial effect of carvacrol on the E. coli numbers might 

be due to the use of a very low concentration of carvacrol (0.2µg/ml) which was not enough to 

cause E. coli suppression, as it was shown by a previous batch culture study suggesting the 

efficacy of carvacrol on gut microbiota but at higher concentrations (Lei et al., 2012). Of 

course, the impact of higher concentrations on other bacteria would need to be assessed as well 

and considering possible impacts on the host cells would also need evaluation.  
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The gut environment contains substrates such as simple sugars and starch which are used by 

the bacteria colonising epithelium layer of the intestine to provide energy for its host (Stevens 

and Hume, 2004). Therefore, it was important to understand the carbon metabolism of bacterial 

population in the chicken gut that was challenged with an APEC strain and this was done by 

interrogating production of SCFAs as part of bacterial metabolic profiling. Generally, the 

highest produced SCFAs was lactate which can be formed as a by-product from multiple 

pathways. Also, this reflects the actual environment they came from where anaerobic 

conditions stimulate fermentation processes, and that the caeca represent the major site for 

fermentation with the highest numbers of bacteria. Bacterial population and type and quantity 

of the substrates entering the caeca determine the type of fermentation (Annison et al., 1968).  

However, one must consider that the results in Table 6.2A and 6.2B are only an estimate of 

the residual SCFAs in the chicken caeca, as these SCFAs can be utilised by other bacteria in 

different and/or distant parts of the GIT away from the caecum (Apajalahti et al., 2002), and 

moreover, the caecal samples were diluted in VL broth medium. 

 

Propionate, butyrate, and acetate are the major SCFAs produced in the caeca with an important 

role in the establishment of gut microbiota during chicken growth (Ricke, 2003). The results 

in Table 6.2A demonstrate the presence of propionate and butyrate which was proven to be 

significantly increased (P-value < 0.05) over time, suggesting the abundance of propionate and 

butyrate-producing bacteria which may be causing an inhibitory effect on other bacteria 

producing other SCFAs (acetate, lactate, and succinate) or due to the effect the batch culture 

system. Propionate has anti-bacterial properties with the ability to inhibit colonisation of 

salmonellae infection in chicks (Nisbet et al., 1996). Butyrate has higher anti-bacterial 

properties when it is in the form of an undissociated acid (Lesson, 2007) and takes on an 

important part in the development of the intestinal epithelial cells (Brouns et al., 2002). Also, 



185 
 

the presence of very low concentrations of succinate in comparison with propionate and 

butyrate might be explained by the conversion of succinate to propionate, hence the decrease 

in succinate and in result, the increase in propionate concentration. Succinate is part of the 

Krebs cycle and its reduction suggests that there is a metabolic shift from respiration to 

fermentation (Picone et al., 2013). In terms of treatment, a linear mixed model showed that 

there were no significant differences (P-value > 0.05) between SCFAs production and the effect 

of each treatment, except for lactate, which was proven to be significantly different (P-value = 

0.0029) between carvacrol and combined treatment vessels at 0hr only, which might be due to 

the changes from in vivo to in vitro conditions. This is a curious finding as much as it would 

be anticipated that every vessel should have had identical starting compositions, but it is 

possible that the initial exposure to the treatments even at sub-lethal concentrations for at least 

E. coli may have induced metabolic responses by the population. 

 

Whole population profiling by 16S sequencing approach was considered an appropriate 

technique for use in this study to observe any changes in bacterial populations that may explain 

the interesting differences shown in SCFAs profile and/or show treatment effect. Previous 

experiments relied on culture-dependent techniques which involved laborious plating and 

classical or phenotypic procedures, but population profiling is a culture-independent method 

to qualify and quantify the bacterial population in the batch cultures derived from pooled caecal 

contents. Conventional methods allow only a small measurement of microbial populations with 

known culturing methods and rarely can determine their species (Apajalahti et al., 2003, Oliver, 

2005). Therefore, it was essential to introduce effective and efficient technologies such as NGS 

to look at a better and clearer picture of the bacterial community in a non-biased way without 

worrying about the issues of classical methods (Apajalahti et al., 2004). In this chapter, the 

intention was to look at the changes of bacterial communities at different taxonomic levels with 
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a focus on the added APEC 46 strain using different treatments and at different time points. 

The caecal contents showed the dominance of Firmicutes as the first phylum followed by 

Proteobacteria, which is in agreement with many previous studies (Lan et al., 2002, Wei et al., 

2013, Shaufi et al., 2015). The predominance of Firmicutes was not affected by treatment nor 

time, and this probably explains the significant increase of butyrate over time (Table 6.2A) as 

it is produced by Firmicutes (Eeckhaut et al., 2011), and as shown by different Firmicutes 

members in Figure 6.17. The second most abundant phylum; Proteobacteria which includes 

facultative anaerobic E. coli was present in all vessels during the course of the experiment but 

at low percentages, and this might be due to the chicken age (Ballou et al., 2016). This 

comparatively low percentage of Proteobacteria in the vessels at the start of the experiment 

was increased in the ampicillin and combined treatment in comparison with control and 

carvacrol treatment. The presence of the remaining phyla (Tenericutes, Bacteroidetes, 

Cyanobacteria, and Actinobacteria) was documented by a previous study (Corrigan et al., 

2015), but were present in very low percentages throughout the course of the experiment. 

 

At the family level, the cecal contents were predominated by Ruminococcaceae followed by 

Lachnospiraceae which are Firmicutes and this is in agreement with a previous study 

(Danzeisen et al., 2011), which harbour butyrate-producing anaerobic bacteria (Antharam et 

al., 2013). The third most abundant family; Enterobacteriaceae which includes E. coli, was 

present but in a low percentage, as it was noticed that the high levels of the SCFAs (propionate 

and butyrate in specific) decrease the total viable count of Enterobacteriaceae in chicken caeca 

(van der Wielen et al., 2000). 
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Generally, the caecal contents showed the presence of diverse bacterial communities which 

included different genera and species which confirms the finding of previous studies (Amit-

Romach et al., 2004, Bjerrum et al., 2006, Gong et al., 2007). The predomination of 

Oscillospira sp. was documented in a previous study (Wang et al., 2016) which is a butyrate-

producing bacterium (Gophna et al., 2017) as shown in Figure 6.17. Other bacterial species 

were present but in lower percentage such as Lactobacillus sp., Streptococcus sp., and 

Clostridium sp., which is similar to what was found in a previous study (Lu et al., 2003), and 

they might be responsible for the presence of high concentrations of lactate (Józefiak et al., 

2004) in comparison with the remaining SCFAs as shown in Figure 6.17.  

 

Overall, the added APEC 46 strain with CFU of 107 per ml as this is the required concentration 

to cause an infection (Maturana et al., 2011). As a strain, it was able to survive throughout the 

course of this experiment (0hr to 72hr) but at low percentage (Figure 6.14), but it was not 

possible to know its source; whether it came from the added APEC 46 strain or from the caecal 

sample. This might be solved by using E. coli specific primers with fluorescent labelling to 

track it. However, by looking at the species level, only two bacterial species were detected 

from the family Enterobacteriaceae which involved E. coli-Shigella sp. and Proteus sp. 

(Figure 6.15). This might explain that the source of E. coli-Shigella sp. came from the added 

APEC 46 strain and not the pooled caecal contents. The relative abundance of E. coli-Shigella 

sp. was decreased at 24hr in carvacrol treatment in comparison with ampicillin treatment and 

combined treatment vessels, and this may show the efficacy of sub-lethal concentration of 

carvacrol to control the numbers of E. coli-Shigella sp. present in pooled caecal contents.  
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Other changes were noticed at the species level in carvacrol treatment, but at different time 

points. At 24hr, carvacrol treatment showed a significant increase (P-value < 0.05) in 

Lactobacillus sp. and Lactobacillus salivarius which then decreased at 72hr. Lactobacillus sp. 

is a beneficial probiotic strain which is proven to be responsible for prevention of Salmonella 

colonisation in chickens (Pascual et al., 1999). Also, it might be responsible for prevention of 

APEC 46 strain (E. coli-Shigella sp.) to colonise and start an infection. At 72hr, carvacrol 

treatment showed a significant increase (P-value < 0.05) in Streptococcus sp. and Coprococcus 

sp. in comparison with the remaining treatments. Streptococcus sp. is an anaerobic bacterium 

present mostly in the chicken caeca (Barnes et al., 1977), increases in number as part of the 

mature microbiota after 40 days (Coloe et al., 1984), and might be exhibiting anti-salmonella 

activity in young chicks along with other anaerobic bacteria (Barnes et al., 1979). Coprococcus 

sp. is also an anaerobic bacterium found in chicken caeca with an anti-Salmonella activity in 

young chicks (Barnes et al., 1979). Thus, carvacrol treatment showed modulatory effect on the 

bacterial population inhabiting chicken caeca challenged with an APEC strain in result of an 

increase in beneficial probiotic bacteria and bacteria with anti-Salmonella activity. These 

promising results might support the idea that carvacrol as a feed additive (used at a very low 

concentration of 0.2µg/ml) might enhance avian gut health and might be a good substitute to 

antibiotics in poultry industry. However, this needs to be repeated several times to confirm 

these results and eventually be tested in vivo as well. 

 

Ampicillin and combined treatment showed an increase in E. coli-Shigella, and Oscillospira 

sp. at 24hr and decrease in the previously-mentioned beneficial bacteria. This was anticipated 

as the administration of antibiotics including ampicillin was proven to decrease the number of 

Lactobacillus sp. (Guban et al., 2006). Also, this confirms that the use of antibiotics causes 

dysbiosis (Atterbury et al., 2007) which is a challenging problem in animal production. This 
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shift in microbiota may result in an increase in the harmful or pathogenic bacteria and a 

decrease in the beneficial bacteria which might be associated with intestinal diseases (Lupp et 

al., 2007). On the other hand, Proteus sp. which is a facultative anaerobic bacterium isolated 

from caeca of pathogen-free chickens (Coloe et al., 1984) was noticed at a higher percentage 

at 24hr and in the combined treatment in comparison with the remaining treatments. As a 

bacterial species, it can also cause deadly infection such as yolk sac infection or omphalitis in 

post-hatched young chicks (Iqbal et al., 2006), and one of the causative agent of UTI in animals 

and humans (Jones et al., 1990). The adverse effect of carvacrol when added with ampicillin is 

a cause of concern and does not reflect an overall synergistic effect as proven earlier (see 

Chapter 5). This might be due to the use of very low concentration of carvacrol (0.2µg/ml) in 

comparison with ampicillin concentration (20µg/ml). In vivo studies are required to confirm 

these findings in broiler production systems. 

 

The previously mentioned observations reflect what happened in vitro and it might be different 

from what is happening in vivo for the following reasons: 1) closed batch culture system which 

is different from the actual chicken gut, 2) focusing on caecal contents and ignoring the 

remaining chicken gut system which are connected to each other, 3) transportation of samples 

from farm to laboratory might led to the loss of bacterial population, 4) effect of different 

intrinsic and extrinsic factors on avian gut health which are neglected here. 

 

This in vitro study provides introductory information that can inform the design of more 

complex ones such as 1) effect of each treatment before and after continuous addition of sub-

lethal concentrations of carvacrol and ampicillin on a daily basis, 2) in vitro chicken gut model, 

and with different combinations of sub-lethal concentrations of ampicillin and carvacrol, and 
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at the same pH and at different pH values to mimic different parts of the chicken GIT system, 

in order to determine their effect in a successional or dose-dependent manner, 3) in vivo study 

include challenging healthy chickens with an APEC strain, and then study the effect of each 

treatment, and what might happen throughout the life cycle of the chickens, 4) in vivo study to 

look at the chicken gut microbiota in chickens fed diet supplied with oregano herbs.  

 

In conclusion, sub-lethal concentration of carvacrol treatment showed modulatory effect on the 

bacterial populations inhabiting the chicken caeca challenged with an ampicillin-resistant 

APEC strain. Thus, carvacrol as a feed additive might enhance avian gut microbiota and may 

be used in novel ways to control potentially pathogenic and antibiotic-resistant APEC strains 

and provide alternative strategies to the use of synthetic antibiotics. 
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CHAPTER 7: General discussion 
 

 

Antibiotics have become less effective in supporting poultry health and productivity and in 

controlling bacterial pathogens responsible for current issues in the poultry industry, because 

over- and inappropriate-use has selected ARBs. These ARBs might disseminate and colonise 

the human gut eventually (Schjørring and Krogfelt, 2011). Resistance has emerged through 

various mechanisms including chromosomal mutations such as gyrA mutants giving rise to 

quinolone resistance and the accumulation of horizontally transmissible elements such as 

transposons and plasmids that encode resistance genes. Thus, the overall aim of this thesis was 

to establish the potential role of certain phytochemicals as plant-based dietary supplements to 

promote poultry health and productivity and by assessing their anti-bacterial properties to 

control bacterial pathogens such as APEC including antibiotic-resistant APEC in animal 

production. A primary aim was to assess whether certain phytochemicals may reduce the 

burden on antibiotic use for pathogen control with APEC as an exemplar pathogen. In order to 

support these aims, the general testable hypotheses of this thesis were the following: 1) whether 

it is possible to control APEC pathogens responsible for current issues in poultry production 

using phytochemicals or not? 2) whether it is possible to use phytochemicals to decrease the 

antibiotics residue in poultry production or not? 3) whether it is possible to mitigate antibiotic 

resistance in poultry using phytochemicals or not? 

 

Of the five main groups of phytochemicals (Martins et al., 2016), polyphenols have been shown 

to have nutritional values contributing to chicken welfare (Surai, 2014) and human health 

(Dueñas et al., 2015), and furthermore, polyphenols in the form of essential oils, such as 

carvacrol and oregano, showed inhibitory effect on many micro-organisms including 

antibiotic-resistant E. coli strains, which are widespread among the guts of poultry raised for 
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human consumption (Linton et al., 1977b). The focus of this study was upon poultry production 

for several key reasons. First, this is the most rapidly growing animal production sector, 

particularly white meat production that is used extensively and increasingly as a source of 

protein in human diets (Speedy, 2003). Second, poultry is a known source of major zoonotic 

pathogens including Salmonella enterica and Campylobacter jejuni, for which control 

measures are urgently needed (Hong et al., 2003). Third, the incidence of antibiotic resistance 

in poultry production is very high (Apata, 2009, Fuh et al., 2018, Amador et al., 2019), and 

considered to be a potential source of resistant micro-organisms entering human via poultry 

products (Smith et al., 2002). Fourth, poultry production suffers from several common bacterial 

diseases such as avian colibacillosis caused by APEC strains (Sojka and Carnaghan, 1961), 

necrotic enteritis caused by Clostridium perfringens Type A or C (Keyburn et al., 2008), 

ulcerative enteritis caused by Clostridium colinum (Berkhoff, 1985), and swollen head 

syndrome caused by the combination of two agents; rhinotracheitis virus and E. coli (Morley 

and Thomson, 1984) which need to be controlled by means other than antibiotics. Fifth, E. coli 

which is one of the first bacteria to colonise the gut (Hudault et al., 2001), is the most common 

carrier of ESBLs-producing antibiotic resistance (Donachie and Begg, 1970). Sixth, E. coli is 

one of the best studied bacteria in laboratories, have commensal and pathogenic types (Hobman 

et al., 2007), and is responsible for most cases of UTIs in humans (Stamm and Hooton, 1993) 

with suggestion that UTI are caused by zoonotic APEC.  

 

Chapter 2 aimed at studying the behaviour and setting differential criteria different APEC and 

commensal E. coli strains using different biochemical and genetic markers in order to use them 

as representatives of the poultry gut to study the anti-bacterial roles of phytochemicals. The 

reasons behind this is because: 1) there is no clear definition that separates APEC from 

commensal E. coli, as there are two definitions for APEC strains according to Nolan laboratory 
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(Johnson et al., 2008) and Woodward laboratory (Cordoni et al., 2016), 2) poultry gut usually 

harbours both commensal and pathogenic strains which some of them might be zoonotic 

(Stanley et al., 2014), and under the state of normobiosis, commensal strains outnumber 

pathogenic strains (Floch, 2011), 3) healthy broiler chickens gut can serve as a reservoir for 

APEC strains harbouring virulence genes similar to commensal E. coli strains isolated from 

chickens of the same flock or of faecal sources (Kemmett et al., 2013), 4) commensal E. coli 

strains might be opportunistic pathogens with the possibility of causing colibacillosis disease 

under certain stresses (Wigley, 2015), 5) commensal bacteria or commensal E. coli strains of 

AMR nature might facilitate the transfer of AMR genes to the pathogenic strains (Andremont, 

2003, Blake et al., 2003). Most importantly what came out from this chapter was that APEC 

strains were able to utilise more sets of sugars, possess more set of virulence and antimicrobial 

resistance genes, and thereby most of the APEC were able to cluster separately from the 

commensal chicken and turkey strains. Also, chicken strains clustered in between APEC and 

turkey strains which as discussed are likely to be a mixture of commensal and pathogenic types, 

and that turkey strains seemed to be distinct and using the challengeable criteria of this study 

maybe considered the “most commensal” types of the three groups. This might give them 

advantages to colonise the gut and compete with the commensal strains, and therefore higher 

chance of survival in the presence of sub-lethal concentrations of phytochemicals. These 

studies were only initial studies which included limited number of strains (APEC = 12 strains, 

commensal chicken strains = 9 strains and commensal turkey strains = 10 strains) and therefore 

future studies should include more in-depth studies such as WGS approach in order to fully 

understand the genetic make-up of each criterion, and also more strains should be included to 

establish powerful set of data.  
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Chapter 3 looked at the ability of the two phytochemicals (carvacrol and oregano) to act as 

anti-bacterial agents by looking at their ability to inhibit E. coli growth, to form biofilm, and to 

produce SCFAs through aerobic and anaerobic pathways. Results showed that these 

phytochemicals were able to inhibit their growth at very low concentrations in comparison with 

antibiotics. However, the effect of sub-lethal concentrations of phytochemicals did not show 

any changes in affecting aerobic and anaerobic pathways of E. coli strains by looking at the 

GC results. Also, these phytochemicals were effective in inhibiting biofilm formation that is 

associated with virulence and survival mechanisms, provides a protective layer against 

penetration of antibiotics (Fux et al., 2005) and facilitates transfer of ARGs through 

conjugation (Hausner and Wuertz, 1999). Thus, future experiments should include the 

following: 1) transcriptomic studies by looking at the mRNA profile of the genes encoding for 

production of acetate and lactate to understand the genetic basis behind it, 2) competitive index 

studies to demonstrate whether chicken or turkey isolates will be selected by chicken or turkey 

hosts. More studies are needed to support these observations, as to our knowledge, this is the 

first study to include the effect of sub-lethal concentrations of phytochemicals on the 

production of SCFAs as part of the carbon metabolism of the E. coli strains of commensal and 

pathogenic types. This might be achieved by considering a more holistic approach such as 

nuclear magnetic resonance (NMR) metabolomics which is needed in order to understand the 

effect of these phytochemicals on other metabolic pathways occurring at the E. coli cell level.  

 

Chapter 4 investigated the possible mechanisms of actions of these phytochemicals, as there 

is limited knowledge in literature. Using WGS approach to link between phenotype and 

genotype, the trained strains showed changed phenotypic behaviours featured by an increase 

in MIC value. This was associated with genetic changes due to the presence of missense 

mutations in genes responsible for antibiotic resistance (marR) and survival mechanisms under 
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unfavourable acidic conditions (cadC). These behavioural changes were detected after long 

period of training (60 days) which might indicate that E. coli strains cannot easily develop 

resistance against these phytochemicals which is contrary to the case of antibiotics. This needs 

to be investigated again using the same experiment set-up to confirm these findings including 

higher number of strains. Collectively, these mutations did arise in genes associated with 

different roles; antibiotic resistance and defence or survival mechanisms in E. coli strains. Also, 

this needs to be investigated in vivo to confirm these results, as oregano is now used 

commercially as a feed additive and yet no studies have been reported that cover the possible 

shift in microbiota or emergence of adapted strains.  

 

Growth experiments were performed using E. coli mutants obtained from Keio library which 

were limited in the first instance to mutants in efflux pumps and PBPs genes. Results showed 

that carvacrol might have specific target sites in the cell wall to inactivate certain antibiotic 

resistance mechanisms: 1) affecting acrA and tolC of the acrAB of the efflux pump system, 2) 

affecting ampC, ampH, pbpC, and pbpG of the β-lactamase enzyme responsible for ampicillin 

resistance. The anti-bacterial activity of carvacrol on the efflux pump system of E. coli bacteria 

was demonstrated in a previous study but without investigating which efflux system was 

affected (Miladi et al., 2016). On the other hand, the role of carvacrol as a cell wall synthesis 

inhibitor was investigated here for the first time. Though, at this level of investigation, it was 

not possible to know exactly what happened to the either efflux pump system or the β-lactamase 

enzyme. Therefore, in order to know the exact binding site of carvacrol, it might be tackled by 

using radioactive tracer approaches to identify its exact binding site or by using mutant E. coli 

strains with certain mutations.  
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Chapter 5 investigated the in vitro effect of sub-lethal concentrations of carvacrol and 

ampicillin, separately and combined, on single pure cultures of ampicillin-resistant E. coli 

strains and on a mixed E. coli culture composed of an APEC strain and two commensal E. coli 

strains. This combination approach was considered, as it might help in increasing the efficacy 

of ampicillin when administered with carvacrol to solve the issue of ampicillin resistance, as 

this was supported by a previous study that demonstrated the synergistic interactions of 

different phytochemicals and antibiotics to control plasmid-mediated antibiotic resistance in E. 

coli strains (Yap et al., 2013). The focus here was on ampicillin, because plasmid-mediated 

ESBL resistance is widely spread among E. coli bacteria of avian sources (Ewers et al., 2012, 

Kluytmans et al., 2012). This study showed an overall synergistic effect of the combination 

therapy on growth experiments, but AST and GC-MS were not successful in detecting changes 

in antibiotic resistance profiling and metabolic activities. These issues might be tackled in the 

future by using more sophisticated approaches such as real-time PCR and NMR. The second 

experiment was not successful in showing the inhibitory effect of carvacrol on a mixed E. coli 

culture and very limited as it included a single vessel for each treatment. Thus, it did not give 

us good data to decide whether carvacrol was a good growth inhibitor of APEC versus 

commensal E. coli strains, and whether the combined treatment of carvacrol and ampicillin was 

effective in controlling ampicillin-resistant E. coli strains, as there was a general increase in 

the total viable numbers of E. coli over time in all treatments. Therefore, this study should be 

improved in the future by including more vessels for each treatment and by including more sets 

of different combinations of the combined treatment, to establish good dataset and evaluate the 

efficacy of each treatment. Negating the limitations of this study, it was an important 

experiment to be included, in order to set bases to perform future complex experiments to 

support further in vitro studies (see Chapter 6). 
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Chapter 6 explored the in vitro effect of sub-lethal concentrations of carvacrol and ampicillin, 

separately and combined, on chicken caecal content challenged with an ampicillin-resistant 

APEC strain which to our knowledge has not been investigated before. This study which 

involved duplicate vessels for each treatment also showed that E. coli population grew over 

time in all treatments, and GC did not explain any treatment effect but only a time effect. In 

terms of the techniques used which was a weakness of this study was that counting was done 

using simple plating technique, and this can be improved by using a more robust technique 

such as fluorescent in situ hybridisation (FISH). Also, GC can be replaced with NMR in order 

to screen more metabolic outputs. However, 16S sequencing results showed some beneficial 

carvacrol treatment effects based on an increase in probiotic strains (Lactobacillus sp. and 

Lactobacillus salivarius) and other beneficial bacteria with anti-Salmonella activity 

(Streptococcus sp. and Coprococcus sp.) and decrease in opportunistic bacteria (E. coli-

Shigella, Proteus sp., and Oscillospira sp.), which ampicillin and combined treatment showed 

the opposite. This study was performed one time and on a small sample size number of caecal 

contents collected from five broiler chickens only. Therefore, this study should be repeated 

using triplicate vessels for each treatment and using different combinations of sub-lethal 

concentrations of carvacrol and ampicillin. 

 

In conclusion, these collective set of studies aimed at setting preliminary findings which should 

be taken further in order to justify the use of oregano in the poultry industry. Oregano in the 

form of fresh or dried leaves or essential oil is being currently used in different doses as a feed 

additive in the poultry industry, but with minimal or limited information available on its 

beneficial role which was only observed in terms of an increased chickens’ weight (Bozkurt et 

al., 2009), improved FCR (Alp et al., 2012), increased in intestinal villi height (Fonseca-García 

et al., 2017), enhanced immune responses (Silva-Vázquez et al., 2018), and improved meat 
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quality (Botsoglou et al., 2002), but knowledge is lacked on its effect on the chicken gut 

microbiota or microbiome level.  

 

Future studies 

Future studies should include in vivo studies to expand our knowledge in evaluating the effect 

of different sub-lethal concentrations of carvacrol (to determine the optimum dose of carvacrol) 

and by collectively involving comprehensive carvacrol evaluation on: 

1) Chicken’s health and performance in terms of weight, feed consumption, FCR, body 

fat, percentages of mortality and liveability, and carcass characteristics.  

2) Chicken tissues to study the safety of carvacrol and to identify any changes in the 

physiology of the GIT in terms of villus height and crypt depth. This can be performed 

by collecting samples of intestinal epithelial tissues supported by electron microscopy 

examination.  

3) Chicken gut microbiome to include eukaryotic and prokaryotic microorganisms rather 

than focusing on prokaryotic bacteria only. This can be achieved by performing 18S 

and16S whole population sequencing. 

4) Bacterial populations inhabiting the chicken gut by including samples from other parts 

of the chicken GIT such as ileum, gizzard, and duodenum rather relying on caecal part 

only, given the differences in their condition. 

5) Chicken faecal microbiome to identify any fluctuations in the gut microbiome. This can 

be investigated using 18S and 16S whole population sequencing. 

6) Prevalence of antibiotic resistance genes found in the chicken faeces. This can be 

explored using real-time PCR. 

7) Colonisation of gut bacteria by performing 16S pyrosequencing and WGS. 
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APPENDIX 

 

Media recipes 

 

Nutrient agar (NA) / broth (NB)                                                  

Ingredients Gram per litre 

Peptic digest of animal tissue 5.0g 

Beef extract 3.0g 

Agar (if agar) 15.0g 

Final pH at 25⁰C 6.8 +/- 0.2 

 

 

MacConkey agar / broth                                                            

Ingredients Gram per litre 

Peptone 20.00g 

Lactose 10.0g 

Bile salts 5.0g 

Sodium chloride 5.0g 

Neutral red 0.075g 

Agar (if agar) 15.0g 

Final pH at 25⁰C 7.4 +/- 0.2 

 

 

Eosin-methylene blue (EMB) agar 

Ingredients Gram per litre 

Peptone 10.0g 

Lactose 10.0g 

Dipotassium mono-hydrogen phosophate 2.0g 

Methylene blue 0.065g 

Eosine Y 0.4g 

Agar 15.0g 

Final pH at 25⁰C 7.1 +/- 0.2 
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M9 minimal medium 

Ingredients Gram per litre 

Potassium phosphate 15.0g 

Sodium phosphate 64.0g 

Sodium chloride 2.5g 

Ammonium chloride 5.0g 

1M Magnesium sulphate 0.24g 

1M Calcium chloride 0.02g 

Agar 15.0g 

Added after autoclaving  

Sugar (e.g. sucrose) 2.0g 

Thiamine (if E. coli K12) 0.025g 

 

 

 

Luria-Bertani (LB) agar / broth 

          

 

 

 

 

 

 

MacConkey agar containing 50μg/ml ampicillin 

Ingredients Gram per litre 

Peptone 20.00g 

Lactose 10.0g 

Bile salts 5.0g 

Sodium chloride 5.0g 

Neutral red 0.075g 

Agar 15.0g 

Final pH at 25⁰C 7.4 +/- 0.2 

Added after autoclaving  

100µg/ml Ampicillin 500μl 

 

 

 

 

 

 

 

 

Ingredients Gram per litre 

Tryptone (pancreatic digest of casein) 10.0g 

Yeast extract 5.0g 

Sodium chloride 5.0g 

Agar (if agar) 15.0g 

Final pH at 25⁰C 7.0 +/- 0.2 
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Modified Congo Red agar 

 

 

 

 

 

 
 

 

 

LB broth without salt               

Ingredients Gram per litre 

Tryptone (casein) 10.0g 

Yeast extract 5.0g 

Final pH at 25⁰C 7.0 +/- 0.2 

 

 

Viande-Leuvre (VL) medium 

Ingredients Gram/micro-litre/millitre per litre 

Meat extract 2.5g 

Glucose 2.5g 

Tryptose 10.0g 

Yeast extract 5.0g 

Sodium chloride 5.0g 

Haemin 0.05g 

Vitamin K 10μl 

L-Cysteine hydrochloric acid (HCl) 0.6g 

Resazurin solution (0.025g in 100ml) 4.0ml 

 

 

 

 

 

 

 

 

Ingredients Gram per litre 

Congo Red  0.04g 

Coomassie brilliant blue  0.02g 

Yeast extract 5.0g 

Tryptone (casein) 10.0g 

Agar 7.50g 
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Chemicals recipes 

Aqueous carvacrol /oregano in LB broth (5µg/ml) 

Ingredients Micro-litre/millilitre per 10ml 

Carvacrol/ oregano  50µl 

LB broth 9.95ml 

Final pH at 25⁰C 7.0 +/- 0.2 

 

 

Ethanol-based carvacrol /oregano (5µg/ml) 

Ingredients Micro-litre/ milli-litre per 10ml 

Carvacrol/ oregano  50µl 

LB broth 5ml 

70% ethanol 4.95ml 

 

 

100mg/ml Ampicillin 

Ingredients Gram per 10ml 

Ampicillin/ cefotaxime 1g 

Sterile-distilled water 10ml 

 
 

0.5X Tris-borate EDTA (TBE) buffer 

Ingredients per 500ml 

10X TBE buffer 25ml 

Distilled water 475ml 

 

 

GC external standard 

Ingredients per 10ml 

1M Acetate (57.3µl in 942.7µl H2O) 1ml 

1M Butyrate (91.4µl in 908.6µl H2O) 1ml 

1M Formate (39.73µl in 960.3µl H2O) 1ml 

1M Propionate (74.6µl in 925.4µl H2O) 1ml 

1M Lactate (87.7µl in 912.3µl H2O) 1ml 

Sterile-distilled water 5ml 
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Conference: Microbiology Research Day at the University of Reading, August 2016. 
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Conference: N8 AgriFood International Conference 2017: Food Production for the Future at 

Durham University, July 2017. 
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Conference: 4th Annual European Microbiome Congress at London, UK, November 2018. 
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treat      number          timepoint 

 V1:3   Min.   :1.000e+05   0hr :4    

 V2:3   1st Qu.:2.500e+06   24hr:4    

 V3:3   Median :2.500e+08   48hr:4    

 V4:3   Mean   :4.754e+08             

        3rd Qu.:7.250e+08             

        Max.   :2.000e+09             

 

Analysis of Variance Table 

Response: lognum 

          Df  Sum Sq Mean Sq F value Pr(>F) 

treat      3  0.2871 0.09569  0.0306 0.9922 

Residuals  8 25.0125 3.12656                

> mt<-lm(lognum~timepoint) 

> anova(mt) 

Analysis of Variance Table 

 

Response: lognum 

          Df  Sum Sq Mean Sq F value    Pr(>F)     

timepoint  2 23.6839 11.8419  65.964 4.203e-06 *** 

Residuals  9  1.6157  0.1795                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> pairs(lsmeans(mt,~timepoint)) 

 contrast      estimate        SE df t.ratio p.value 

 0hr - 24hr  -2.6192803 0.2996004  9  -8.743  <.0001 

 0hr - 48hr  -3.2425092 0.2996004  9 -10.823  <.0001 
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 24hr - 48hr -0.6232289 0.2996004  9  -2.080  0.1491 

 

Analysis of Variance Table 

Response: number 

          Df  Sum Sq Mean Sq F value Pr(>F) 

treat      3  655133  218378  0.5354 0.6709 

Residuals  8 3263100  407888                

> mt<-lm(number~timepoint) 

> anova(mt) 

Analysis of Variance Table 

Response: number 

          Df  Sum Sq Mean Sq F value   Pr(>F)    

timepoint  2 2710728 1355364  10.102 0.005007 ** 

Residuals  9 1207505  134167                     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> pairs(lsmeans(mt,~timepoint)) 

 contrast     estimate       SE df t.ratio p.value 

 0hr - 24hr   -298.875 259.0051  9  -1.154  0.5075 

 0hr - 48hr  -1123.875 259.0051  9  -4.339  0.0048 

 24hr - 48hr  -825.000 259.0051  9  -3.185  0.0271 

 

P value adjustment: tukey method for comparing a family of 3 estimates  

> pairs(lsmeans(mt,~timepoint)) 

 contrast     estimate       SE df t.ratio p.value 

 0hr - 24hr   -298.875 259.0051  9  -1.154  0.5075 

 0hr - 48hr  -1123.875 259.0051  9  -4.339  0.0048 
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 24hr - 48hr  -825.000 259.0051  9  -3.185  0.0271 

 

P value adjustment: tukey method for comparing a family of 3 estimates  

> pairs(lsmeans(mt,~timepoint)) 

 contrast     estimate       SE df t.ratio p.value 

 0hr - 24hr   -298.875 259.0051  9  -1.154  0.5075 

 0hr - 48hr  -1123.875 259.0051  9  -4.339  0.0048 

 24hr - 48hr  -825.000 259.0051  9  -3.185  0.0271 

 

P value adjustment: tukey method for comparing a family of 3 estimates  

> pairs(lsmeans(mt,~timepoint)) 

 contrast     estimate       SE df t.ratio p.value 

 0hr - 24hr   -298.875 259.0051  9  -1.154  0.5075 

 0hr - 48hr  -1123.875 259.0051  9  -4.339  0.0048 

 24hr - 48hr  -825.000 259.0051  9  -3.185  0.0271 

 

P value adjustment: tukey method for comparing a family of 3 estimates  

> pairs(lsmeans(mt,~timepoint)) 

 contrast     estimate       SE df t.ratio p.value 

 0hr - 24hr   -298.875 259.0051  9  -1.154  0.5075 

 0hr - 48hr  -1123.875 259.0051  9  -4.339  0.0048 

 24hr - 48hr  -825.000 259.0051  9  -3.185  0.0271 

 

 


