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Abstract
This paper presents an evaluation of the global and regional consequences of climate change for heat
extremes, water resources, river and coastalflooding, droughts, agriculture and energy use. It presents
change in hazard and resource base under different rates of climate change (representative
concentration pathways (RCP)), and socio-economic impacts are estimated for each combination of
RCP and shared socioeconomic pathway.Uncertainty in the regional pattern of climate change is
characterised byCMIP5 climatemodel projections. The analysis adopts a novel approach using
relationships between level of warming and impact to rapidly estimate impacts under any climate
forcing. The projections provided here can be used to inform assessments of the implications of
climate change. At the global scale all the consequences of climate change considered here are adverse,
with large increases under the highest rates ofwarming. Under the highest forcing the global average
annual chance of amajor heatwave increases from5%now to 97% in 2100, the average proportion of
time in drought increases from7% to 27%, and the average chance of the current 50 yearflood
increases from2% to 7%. The socio-economic impacts of these climate changes are determined by
socio-economic scenario. There is variability in impact across regions, reflecting variability in
projected changes in precipitation and temperature. The range in the estimated impacts can be large,
due to uncertainty in future emissions and future socio-economic conditions and scientific
uncertainty in how climate changes in response to future emissions. For the temperature-based
indicators, the largest source of scientific uncertainty is in the estimatedmagnitude of equilibrium
climate sensitivity, but for the indicators determined by precipitation the largest source is in the
estimated spatial and seasonal pattern of changes in precipitation. By 2100, the range across socio-
economic scenario is often greater than the range across the forcing levels.

1. Introduction

This paper presents a multi-sectoral analysis of the
global and regional impacts of climate change through
the 21st century, using a set of indicators that are
directly relevant to policymakers at national and
international scales calculated using consistent climate

and socio-economic projections. It uses climate path-
ways representing seven levels of forcing describing
different emissions pathways defined by representative
concentration pathways (RCPs) (O’Neill et al 2016),
together with five socio-economic scenarios repre-
senting future exposure defined by shared socioeco-
nomic pathways (SSPs: O’Neill et al 2017). Scientific
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uncertainty in the translation of emissions forcing
to change in regional climate is represented by
(i) uncertainty in the estimated change in global mean
temperature as estimated by the MAGICC energy
balance model, and (ii) uncertainty in the spatial
variability in relevant climate variables as characterised
by 23 climatemodels.

The study uses around 20 indicators characterising
impacts on heat extremes, water resources, river and
coastal flooding, agriculture and energy use. It distin-
guishes explicitly between changes in the physical
hazard and resource base—which are dependent on
climate change—and socio-economic impacts which
are a function of both change in climate and change in
exposure. The paper uses a novel approach using rela-
tionships between level of warming (or sea level) and
impact derived from spatially-explicit impactsmodels,
which are then combined with probabilistic projec-
tions of increase in globalmean temperature to rapidly
estimate impacts under a wide range of alternative cli-
mate forcings. Whilst other studies have developed
relationships between level of forcing and impact (e.g.
Schleussner et al 2016, Seneviratne et al 2016, Arnell
et al 2016a, Arnell et al 2019), this is the first time that
such relationships have been combined with probabil-
istic temperature projections to estimate impacts
under different forcings.

The analysis develops on earlier work (Arnell et al
2013, 2016b, 2019), and uses more up-to-date climate
pathways, climatemodels and socio-economic scenar-
ios, probabilistic projections of global temperature
change, and additional indicators that characterise a
wider range of hazards and impacts. This paper pre-
sents summary charts of global and continental
impacts, whilst more comprehensive regional tables
and charts are presented in supplementary material is
available online at stacks.iop.org/ERL/14/084046/
mmedia. It does not itself explicitly assess or compare
impacts across sectors and regions or describe in detail
all impacts in all regions: such an assessment requires
an explicit judgement of the relative importance of dif-
ferent indicators and thresholds defining ‘significant’
change. However, it provides regional information
which will be directly relevant to such assessments,
including those made in the forthcoming IPCC 6th
Assessment Report. For example, the quantitative
indicators can be grouped into ‘severity classes’ based
on explicit thresholds, as is widely done in national
risk assessments. The projected quantitative indicators
of impact can also be combined with the qualitative
characterisations of drivers of future vulnerability (for
example as represented in the SSPs: O’Neill et al 2017)
to produce more nuanced narrative storylines suitable
for stress testing or strategic evaluations.

In recent years an increasing number of studies
have assessed the global scale impacts of climate
change.Most of these have concentrated on individual
sectors, including heat extremes (e.g. Dosio et al 2018,
Harrington et al 2018, Lehner et al 2018, Tebaldi

and Wehner 2018), drought (Smirnov et al 2016,
Naumann et al 2018), flooding (Arnell and Gosling
2016, Winsemius et al 2016, Alfieri et al 2017), water
resources (Arnell and Lloyd-Hughes 2014, Gosling
andArnell 2016) and agriculture (e.g. Ruane et al 2018,
Schleussner et al 2018, Tebaldi and Lobell 2018). A
small number have considered multiple impacts
across sectors (e.g. Schleussner et al 2016, Arnell et al
2016b, Betts et al 2018, Byers et al 2018, O’Neill et al
2018). Studies have used different climate pathways,
including RCP forcings and pathways consistent with
1.5 °C and 2 °C climate targets, and have used differ-
ent sets of climatemodels to define climate scenarios.

2.Methods

2.1.Overview of approach
Scenario-based climate change impact studies typi-
cally estimate impacts from climate scenarios con-
structed from climate model simulations, and these
impacts are therefore conditional on the forcings (such
as RCP) used to run the climate models. However, not
all climate models are run with all RCP forcings (and
forcing scenarios can be updated), and users may be
interested in impacts under different rates of forcing.
This study uses ‘damage functions’ relating impacts
(section 2.2) in a given year to a simple metric of
climate change (global mean surface temperature or
increase in sea-level rise) together with projections of
this metric under a defined level of forcing to estimate
impacts over time (figure 1). The different damage
functions (left panel) represent uncertainty in the
spatial pattern of change in climate variables, and
the distribution of change in temperature in a given
year (middle panel) represents the effects of uncer-
tainty in the climate system parameters driving
response to forcing (section 2.5).

The damage functions are constructed ‘bottom-
up’ using spatially-explicit impact models run with
scenarios representing specific changes in global mean
surface temperature or sea level. The damage func-
tions for the socio-economic indicators are contingent
on socio-economic scenario (section 2.3) and there-
fore time. In this application, the damage functions are
used to estimate impacts under the latest set of RCP
forcings defined in ScenarioMIP (O’Neill et al 2016),
although in principle could be used with any temper-
ature trajectories. There are some similarities with the
(independently-developed) method used by Hsiang
et al (2017) to estimate economic impacts in the USA,
although the details are different: most significantly
the damage functions used in the current study take
into account the spatial variability in change in climate
as represented by the 23 CMIP5 climate model
patterns.

It is assumed that each socio-economic scenario
can be combined with each level of climate forcing
(van Vuuren et al 2014), although in practice high
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levels of forcingmay not be plausible with some socio-
economic scenarios and achieving low levels of forcing
will be much more challenging under some than oth-
ers (Riahi et al 2017).

The period 1981–2010 is used to represent the
reference climate against which the effects of climate
change can be compared (the reference period sea level
is the average over 1986–2005).

2.2. Indicators of impact
Table 1 summarises the indicators of hazard, resource
base and impact, and specific definitions and details of
their calculation are given in supplementary material.
In each case, there are several plausible alternative
indicators, and indeed each global impact study tends
to use a different set of indicators for each area of
impact. The indicators can be interpreted as proxies
for change in hazard and impact. The hazard and
resource indicators are expressed in physical terms
(such as likelihood of occurrence of a specific magni-
tude event), and—with two exceptions—represent the
regional average value of the indicator at a point (the
two exceptions are the indicators calculating the
regional area exposed to a significant change in river
runoff and the area below the coastal 100 year flood
level). The regional average agri-climate hazard indi-
cators are calculated by weighting by cropland areas.
The other regional average hazard indicators are
calculated by weighting by grid cell area, excluding
grid cells with fewer than 1000 people in 2010. This
weighting is used because the focus here is on the
consequences of climate change relevant to people.

The impact indicators are all expressed as regional
aggregations of numbers of people, area of cropland or
energy use. The socio-economic indicators depend on
socio-economic scenario, and indicators are calcu-
lated for each combination of socio-economic sce-
nario and climate forcing.

The two heatwave magnitude indicators (defining
heatwaves as either two or more days with tempera-
tures greater than the 98th percentile of reference
period warm-season temperatures, or four or more
days with temperatures greater than the 99th percen-
tile) represent different size heatwaves, one which

currently has a 33% chance (approximately) of occur-
ring in a place, and the other a 5% chance. The indica-
tors based on average annual runoff represent
pervasive water resources scarcity, whilst the indica-
tors based on hydrological drought represent short-
term availability. Similarly, the agricultural drought
indicator represents short-term challenges to crop
production in general. The change in crop growth
duration is a proxy for crop yield (a shorter duration
for crop growth is associated with reductions in yield:
Challinor et al 2016), and the crop heat stress indicator
represents the effect of extreme events on yield
(Gourdji et al 2013). River flood hazard characterised
by the annual likelihood of the reference period
50 year (2%) flood, and coastal flood hazard is repre-
sented by the area of land under the 100 year flood
level. River flood impact is defined as the average
annual number of people exposed to reference period
the 50 year flood, but because the indicator does not
incorporate flood defences these people are not neces-
sarily actually flooded. One of the coastal flood impact
indicators is the average annual number of people esti-
mated to be actually flooded in events that exceed
flood defence standards, and this makes two different
assumptions about how flood defence standards
improve through time: the difference between the two
characterises the effect of adaptation. The second
coastal flood impact indicator is the number of people
living below the 100 year flood level, ignoring defence
levels.

2.3. Socio-economic scenarios
This assessment uses five SSPs (O’Neill et al 2017),
which are based on five different narrative storylines
for the future development of societies, economies
and governance. They are plausible projections, rather
than predictions. National population projections, by
age, for each SSP are described by Samir and Lutz
(2017), and this analysis uses the population projec-
tions downscaled to the 0.5°×0.5° resolution by
Jones and O’Neill (2016). The five SSPs differ in their
assumptions about fertility and mortality, rates of
urbanisation and international migration. Projections
of national Gross Domestic Product are taken from

Figure 1. Illustration of themethodology. Damage functions showing impact in a given year against increase in globalmean
temperature (1a) are combinedwith the distribution of the increase in temperature in that year (1b) to produce a distribution of
impacts in that year (1c). The individual lines in (1a) are the damage functions constructed fromdifferent climatemodel patterns.
The dotted vertical lines in (1c) show the 10th and 90th percentiles, and the solid vertical line shows themedian.
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Table 1.Hazard, resource and impact indicators.

Hazard/resource indicator Impact indicator Additional information

Heat extremes

Heatwave frequency: annual% chance of

experiencing at least one at a given

location(p)

Aheatwave is a period of at least two days

with dailymaximum temperature

greater than the 98th percentile of warm

season temperatures, at a given location

Average annual population exposed

to at least one heatwave:

millions yr−1

Major heatwave frequency: annual% chance

of experiencing at least one at a given

location(p)

Aheatwave is a period of at least four days

with dailymaximum temperature

greater than the 99th percentile of warm

season temperatures, at a given location

Average annual population exposed

to at least onemajor heatwave:

millions yr−1

Heatwave duration: average annual number

of heatwave-days at given location(p)
Aheatwave is a period of at least two days

with dailymaximum temperature

greater than the 98th percentile of warm

season temperatures, at a given location

Average annual population exposed

to heatwaves:million people-

days/year

Water

Areawith increase or decrease in average

annual runoff:%of area

A significant increase or decrease in runoff

ismore than twice the standard deviation

of 30 yearmean runoff

Population living inwatersheds that

becomewater-stressed, or cease to

bewater-stressed:millions

Awater-stressedwatershed has average annual runoff less than 500m3/capita/year

Duration of hydrological drought:%of time

in drought at a given location(p)
Hydrological drought occurs when the

12-month accumulated Standardised

Runoff Index (SRI: Shukla and
Wood 2008) is less than−1.5

Average annual population exposed

to drought:millions yr−1

A drought is a period of at least sixmonthswith 12-month SRI less than−1.5

Floods

Frequency of reference period 50 year (2%)
river flood: annual% likelihood at a given

location(p)

Flood frequency is estimated by fitting a

Generalised ExtremeValue (GEV)
distribution to simulated river flows

(Arnell andGosling 2016)

Average annual population exposed

to riverflooding:millions yr−1

Population living in identified riverfloodplainsmultiplied by the average annual

likelihood of experiencing a flood greater than the reference 50 year flood

Area of coastal land below the 100 year coastal

flood level: thousand km2

100 year return period coastalflood level

estimated using theDIVAmodel

(Vafeidis et al 2008)

Coastal population living below the

100 year flood level:millions

100 year return period coastal flood level estimated using theDIVAmodel, ignoring

coastalflood defences

Average annual number of people

flooded in coastalfloods:

millions yr−1

Flood levels estimated usingDIVA,with two assumptions about changing levels of

coastal defences
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Table 1. (Continued.)

Hazard/resource indicator Impact indicator Additional information

Agriculture

Duration of agricultural drought:%of time in

drought at a given location(c)
Agricultural drought occurs when the 6

month accumulated Standardised Pre-

cipitation Evaporation Index (SPEI:
Vicente-Serrano et al 2010) is less
than−1.5

Average annual area of cropland

exposed to drought: thousand

km2 yr−1

A drought is a period of at least threemonthswith 6 month SPEI less than−1.5

Change in average annual crop growth dura-

tion: days at a given location(c)
Crop growth duration is based on the time

to accumulate reference period thermal

degree-days, with thresholds varying

between five crops:maize, winter wheat,

springwheat, rice and soybean

Average annual area of cropland

with reduction in average crop

growth duration of at least 10

days: thousand km2 yr−1

Cropland area differs between thefive crops

Frequency of damaging hot spells during crop

reproductive season: annual% chance at a

given location(c)

The temperature threshold and timing of

reproductive season varies between the

five crops:maize, winter wheat, spring

wheat, rice and soybean

Average annual area of cropland

experiencing a damaging hot

spell: thousand km2 yr−1

Cropland area differs between thefive crops

Energy

Cooling degree days: days/year (p) Average annual cooling-degree days relative

to 18 °C, in a given location.
Cooling energy demands: PJ Average annual residential cooling energy demands (Isaac and vanVuuren 2008)

Heating degree days: days/year(p) Average annual heating-degree days relative

to 18 °C, in a given location.
Heating energy demands: PJ Average annual residential heating energy demands

Cooling and heating energy

demands: PJ

Sumof residential cooling and heating demands

See supplementarymaterial formore details and references.
(p)Regional averages weighted by grid cell area, omitting grid cells with fewer than 1000 people in 2010.
(c)Regional averages weighted by cropland area.
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Dellink et al (2017) and downscaled to the 0.5°×0.5°
resolution by assuming that each grid cell in a country
has the same GDP per capita. GDP is used in the
energy and coastal flood impact indicators. Figure 2
shows the global total population and GDP through
the 21st century under the five SSPs.

For the agricultural indicators, it is assumed that
the areas of cropland (total and by crop: supplemen-
tary material) remain constant through the 21st
century.

2.4. Calculation of damage functions
For the terrestrial indicators (section 2.2), damage
functions are constructed using climate scenarios
from 23 atmosphere-ocean general circulation model
patterns scaled, using ClimGEN (Osborn et al
2016, 2018), to defined increases in global mean
temperature and applied to a reference period clima-
tology. These scaled scenarios were constructed using
pattern-scaling rather than time-slicing (James et al
2017) in order to eliminate the effects of year-to-year
and decade-to-decade variability on differences
between scenarios at different levels of warming.
Twenty-three patterns for each climate variable (pre-
cipitation, precipitation variability, temperature,
humidity and net radiation)were constructed from 23
CMIP5 climate models (listed in supplementary mat-
erial), allowing the construction of 23 damage func-
tions for each indicator, time period and socio-
economic scenario. All 23 patterns are assumed to be
equally plausible and independent. The changes in
monthly climate were applied to the CRU TS4
0.5°×0.5° 1981–2010 climatology (Harris et al 2014)
using the delta method in ClimGen (Osborn et al
2016, 2018) to produce perturbed 30 year time series
representing specific increases in global mean surface
temperature. For precipitation, changes in monthly
variability projected by climate models are also
diagnosed and used within ClimGen to perturb the
observed variability to represent the increased or
decreased variability simulated by each climate model
(see Osborn et al 2016, for more details). This is

important for those indicators that depend on climate
variability as well as the mean climate. The climate
scenarios do not incorporate the effects of naturally-
forced multi-decadal variability on departures around
the climate change trend, which would add to the
range in projected impacts. The impacts models are
applied at the 0.5°×0.5° resolution and results
averaged or aggregated to the regional and global
scales.

The damage functions for the coastal indicators
(section 2.2) are constructed differently because
impact in a given year is a function of sea-level rise
rather than temperature increase, and the relationship
between temperature increase in a given year and sea
level rise depends on the rate of change in temper-
ature. The coastal damage functions relating impact to
global average sea level rise were therefore developed
by running the Dynamic Interactive Vulnerability
Assessment (DIVA)model (Vafeidis et al 2008, Hinkel
et al 2014) with a range of sea-level rise scenarios
describing change through the 21st century and plot-
ting estimated impacts in a given year against sea-level
rise in that year. The coastal indicators are calculated
for coastal segments (which vary in length) and are
aggregated to the regional and global levels.

2.5. Climate forcings and increases in temperature
and sea level
The ScenarioMIP initiative (O’Neill et al 2016) has
defined a series of climate forcings for use by the
climate modelling community to drive global climate
model experiments, representing different trajectories
of future greenhouse gas emissions. These include
revisions to earlier RCPs (RCP2.6, RCP4.5, RCP6.0
and RCP8.5) and three new pathways with radiative
forcing at 2100 of 1.9, 3.4 and 7.0Wm−2 (another
overshoot pathway is not considered here). The new
pathways are designed to fill gaps in the original range,
and the revised pathways differ from the previous
versions primarily through (i) the socio-economic
scenarios used to define emissions of different green-
house gases and aerosols, and (ii) the use of more

Figure 2.Global total population andGDPunder thefive shared socioeconomic pathways (SSPs).
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up-to-date historical emissions and harmonisation
between observations and scenarios. Impacts were
calculated under all seven of the pathways (see
supplementary material for full results), but the plots
here focus for clarity on RCPs 2.6, 4.5 and 8.5.
ScenarioMIP does not define a ‘business-as-usual’
emissions scenario, because ‘business-as-usual’
depends on socio-economic assumptions. The IPCC
Fifth Assessment Report (Clarke et al 2014) concluded
that emissions scenarios with no specific assumptions
about emissions reductions produced forcings
between 6.0 and 8.5Wm−2 by 2100. RCP8.5 is here
used in the plots as an illustrative upper limit even
though it may only arise under a relatively narrow set
of circumstances (Riahi et al 2017), for two primary
reasons. First it continues to be widely used for climate
model simulations, and second it is consistent with
calls for the presentation of the consequences of high-
impact and ‘worst-case’ scenarios (King et al 2015,
Sutton 2018).

Projections of the increase in global mean surface
temperature for each of the RCP forcings (figure 3(a))
were made using a probabilistic implementation of
version 4.2 of the MAGICC energy balance model
(Lowe et al 2009, Lowe and Bernie 2018). This prob-
abilistic implementation samples across 1863 combi-
nations of feasible values of equilibrium climate
sensitivity (ECS), ocean diffusivity and carbon cycle
feedback strength to produce 1863 projections of glo-
bal mean temperature over time (each with a relative
probability derived from the probability distributions
of the ocean diffusivity and carbon cycle feedback
strength parameters). The ECS values used are taken
from the CMIP5 climate models assessed in the IPCC
Fifth Assessment Report (Flato et al 2013, Forster
2013), and assumed to be equally plausible.

Impacts are estimated in each year (for a given
socio-economic scenario) by combining the projected
changes in temperature with the 23 equally-plausible
damage functions (in practice percentiles from the dis-
tribution of temperature change in each year were

used rather than the individual projections). The range
in estimates of impact in each year under a specific cli-
mate and socio-economic pathway therefore repre-
sents uncertainty in (i) the increase in temperature in
that year, which depends on ECS, ocean diffusivity and
carbon cycle feedback strength, and (ii) the spatial and
seasonal distribution of change in relevant climate
variables. The magnitude of impacts is characterised
by the median, and the range is represented by the
10th and 90th percentiles of the distribution of
impacts in each year (but should be interpreted as
‘low’ and ‘high’ rather than specific percentiles).

Sea level rise scenarios corresponding to the temp-
erature forcings (figure 3(b)) were constructed from
the projected temperature changes using an empirical
relationship between accumulated global temperature
increase since 1985 and sea level rise relative to the
1986–2005 average level (supplementary material).
This empirical relationship emulates the increase in
sea level as presented in the IPCC AR5 (Church et al
2013). The scenarios are globally uniform. For each
emissions scenario, a central estimate of sea level rise is
calculated from the time series of the median increase
in temperature, and low and high sea level scenarios
are calculated from the time series of the 10th and 90th
percentile temperature changes. The range in esti-
mated impacts in a year under a specific climate and
socio-economic pathway just represents uncertainty
in the sea-level rise by that year. The median sea level
rise assumed here for RCP8.5 is similar to that pro-
jected by Kopp et al (2014) and slightly lower than the
estimate produced by Vousdoukas et al (2018). The
range here is between Kopp et al’s (2014) ‘likely’
and ‘very likely’ ranges, but smaller than the range in
Vousdoukas et al (2018). Several projections of sea
level rise made since AR5 have suggested larger high-
end increases than presented in AR5 (Bamber et al
2019), but there is considerable uncertainty over the
effect of ice sheet melt. The high-end increases in sea
level used in this study should therefore be regarded as

Figure 3. Increase in globalmean surface temperature and globalmean sea level, under the seven forcing scenarios. For temperature,
the solid line represents themedian estimate and the shaded area the 10th to 90th percentiles. For sea level, the solid line represents a
central estimate and the shaded area the range between a ‘low’ and ‘high’ estimate.
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conservative: coastal impacts could be considerably
higher.

3. Results

3.1. Changes in hazard
Figure 4 shows the global-scale hazard indicators
through the 21st century (tables in supplementary
material), under the seven RCP forcings. At the global
aggregate scale, heatwave frequency increases (but at a
different rate for the two heatwave definitions),
drought frequency increases, flood frequency

increases, the crop growth duration decreases (imply-
ing reduced yields), the likelihood of hot spells
damaging to crops increases, and cooling degree-days
increase: all these are adverse consequences of climate
change. Heating degree-days decrease, which is a
potential benefit of climate change. Figure 4 shows the
wide range in estimated future hazard, particularly for
the indicators based on precipitation, but the range
shown here does not suggest climate change could
result in a reduction in hazard at the global scale for
any of the indicators. The figure also demonstrates the
large difference in future hazard occurrence between
the different climate forcings, with the difference

Figure 4.Global hazard indicators to 2100, under RCP2.6, RCP4.5 andRCP8.5. The bars on the right show impacts in 2100 under
seven RCPs. The dotted line shows the value of the indicator under the 1981–2010 climate (1986–2005 sea level). The solid line
represents themedian and the shaded area the range between the 10th and 90th percentiles (‘low’ and ‘high’ for the coastal indicator).
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increasing after around 2040. Some of the hazard
indicators level off at high levels of forcing. For the
heatwave frequency indicator this is simply because
everywhere experiences a heatwave every year. The
runoff change indicator is—unlike the other indica-
tors—just defined on the basis of whether or not a
threshold is crossed, and this levels off with high levels
of forcing as fewer and fewer additional areas exceed
the threshold.

The variation in aggregated hazard indicator by
continent in 2100 is shown in figure 5 (variation across
regions is shown in supplementary material, which
also includes plots showing each hazard indicator by
region). The height of the individual bars represents
scientific uncertainty (section 3.2). For the indicators
dependent on temperature, the bars typically do not
overlap, indicating that uncertainty in the rate of for-
cing is large relative to the scientific uncertainty; for

Figure 5.Hazard indicators across continents in 2100: RCP2.6, RCP4.5 andRCP8.5. The solid black lines show indicators under the
1981–2010 climate (1986–2005 sea level). The solid line represents themedian and the shaded area the range between the 10th and
90th percentiles (‘low’ and ‘high’ for the coastal indicator).
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the precipitation-based indicators, the bars overlap
indicating that scientific uncertainty is large relative to
emissions uncertainty.

There is greater variability between continents
with the major heatwave indicator than for the more
moderate heatwave indicator (because this saturates at
100% with high emissions), and even more variability
with the heatwave duration indicator. This indicator
shows the greatest increase in heatwave duration in
Africa, South America, Asia (especially south east Asia)
andAustralasia.

Hydrological drought frequency increases in each
continent, but with low climate forcing there could be
very little change in Asia andNorth America.With the
highest forcing, the greatest increase in hydrological
drought frequency is in Europe, South America (espe-
cially central America and Brazil), theMiddle East and
North Africa, and Australasia, but with wide uncer-
tainty between climate model patterns. Agricultural
drought frequency increases in every continent under
all scenarios, but the difference between regions is less
marked.

The greatest increase in river flood frequency is
in Asia (especially south and south east Asia) and
Africa, with relatively small change with low forcings
in Europe and North America (and frequency could
decrease).

Europe and North America see the greatest reduc-
tions in crop growth duration—and therefore poten-
tially yield—for all crops (to the least extent for winter
wheat). Maize and winter wheat hot spell frequencies
increase most in Europe and North America (espe-
cially the USA), but the frequency of hot spells for soy-
bean, spring wheat and rice increases most in Africa
and Asia: Europe and North America are relatively
unaffected.

The absolute changes in cooling degree days are in
Asia and Africa, but the greatest relative increases are
in Europe and North America. The greatest absolute
decreases in heating degree days are in Asia, Europe
and North America, but the greatest relative decreases
are in Africa.

3.2. Sources of uncertainty
The plots in figures 4 and 5 show the median estimate,
plus the range between ‘low’ and ‘high’ hazard
indicator for each climate forcing. For a given level of
climate forcing, the range for an indicator represents
uncertainty in (i) the change in global mean temper-
ature (a function of ECS, ocean diffusivity and carbon
cycle feedback) and (ii) the spatial pattern of change in
temperature and precipitation. Figure 6 shows the
relative importance of each of these sources of
uncertainty for each hazard indicator (except for the
coastal indicator) under the highest level of forcing
(RCP8.5) and at the global scale. The maximum
uncertainty for each indicator is shown when the
uncertainty contributions sum to 100% in figure 6.

The uncertainty range of most indicators increases
over time and reaches its maximum in 2100. The
uncertainty ranges of the two heatwave and the rice
heat stress indicators peak earlier in the century and
then decline because at large changes in climate
everywhere is impacted under all parameter combina-
tions so uncertainty reduces. The plots show that
uncertainty in the ECS is much more important than
uncertainty in the strength of the carbon cycle feed-
back or ocean diffusivity, but that for the indicators
determined by precipitation change the scientific
uncertainty is dominated by the uncertainty in the
spatial distribution of change in rainfall as represented
by different climate models. The selection of models
used to estimate impacts therefore has a greater effect
on the estimated uncertainty range.

3.3. Socio-economic impact
Figure 7 shows the global socio-economic impact of
changes in hazard indicators in 2050 and 2100 (tables in
supplementary material). The figure focuses for clarity
on three climate forcings (RCP2.6, RCP4.5 and RCP8.5)
and for the population indicators shows impact under
all five socio-economic scenarios (the agricultural indi-
cators are all expressed in terms of area of cropland
affected, which is assumed to remain constant over
time). In 2050 there is relatively little difference in
impact between the three levels of forcing, but by 2100
the difference is much greater. Again, the height of the
individual bars represents scientific uncertainty.

Even by 2050, however, there is a difference in
impact between the five socio-economic scenarios,
and this difference increases further by 2100. Scenario
SSP3 has the highest total population, so has the high-
est impact on heatwaves, floods, droughts and the
population living in watersheds which cease to be
water-stressed. More people live in watersheds that
become water-stressed under SSP2 than the other sce-
narios, and this is because of the geographical distribu-
tion of the increase in population.

By 2050, the range in impact across the climate for-
cings is greater than the range across the socio-economic
scenarios for major heatwaves, heatwave duration, and
the population exposed to river flooding (supplemen-
tarymaterial). The range across socio-economic scenar-
ios is greater than the range across the climate forcings
for heatwave impacts (possiblyhere because of the satur-
ation at high levels of forcing noted above), energy
demand, exposure to water resources scarcity and
coastalflood exposure. By 2100, the range across climate
forcings is greater than the range across socio-economic
scenarios only for major heatwaves and heatwave dura-
tion impacts, and the greater range across socio-eco-
nomic scenarios ismore apparent than in 2050.

The socio-economic impacts of climate change are
—at the global scale—adverse for most, but not all the
socio-economic indicators. Residential heating energy
requirements decline with higher temperatures, and
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by 2050 the global total residential heating and cooling
demands are lower than they would be without cli-
mate change under all the climate forcings and socio-
economic scenarios. By 2100, however, the increases
in cooling energy demand outstrip the reductions in
heating demand in three of the socio-economic sce-
narios (SSP1, SSP2 and SSP5), so total demands are
increased. At the global scale, more people live in
watersheds that ceased to be water-stressed than live in
watersheds that become water-stressed, particularly

under the high population SSP3 and increasingly
through the 21st century. This is different to the dis-
tribution of change in runoff (figure 4), because the
areas with an increase in runoff are more populous
than areas with a decrease. Note that the drought indi-
cator represents a different dimension towater resour-
ces stress, as droughts can occur in regions that are not
water-stressed.

The variation in impact between continents and
regions can be expressed in two ways. Expressing

Figure 6.Relative importance of different sources of scientific uncertainty in the projected hazard indicators: RCP8.5, global scale.
The plots show the contribution of uncertainties in equilibrium climate sensitivity (ECS), carbon cycle feedback, ocean diffusivity and
climatemodel pattern to the total uncertainty in the projected impacts in each year. Uncertainty is characterised by the average
variance in the distribution of estimated impacts in a year across each source of uncertainty. The contributions of each source are
expressed as a%of themaximum total sumof the variances across all years: this is usually 2100.
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impacts in absolute terms—people, area of cropland
and energy use—gives an indication of the absolute
magnitude of impact in a region and the contribution
of a region to the global total impact. Expressing
impacts in relative terms—as a proportion of popula-
tion or cropland, for example—gives an indication of
the relative significance of an impact in a region. A
third approach would be to show impacts as a propor-
tional change from a reference period. Each is policy
relevant. The distribution of absolute socio-economic

impact in 2100 across continents by indicator is shown
in figure 8 (just for SSP2 for the population indicators:
the variation between continents is broadly similar
with the other SSPs. Supplementary material also
shows distribution by region and allows the calcul-
ation of impacts in relative terms). The plots show the
indicators in 2100with the value for 2100 assuming no
climate change, and give an indication of the effect of
climate change relative to the reference climate. The
river flooding and cropland indicators also show the

Figure 7. (a)Global impact indicators in 2050: RCP2.6, RCP4.5 andRCP8.5. The solid line represents themedian and the shaded area
the range between the 10th and 90th percentiles (‘low’ and ‘high’ for the coastal indicator). The horizontal grey and black lines are
impacts in 2010 and 2050 respectively with the 1981–2010 climate (1986–2010 sea level). The five bars for eachRCP represent thefive
shared socio-economic pathways. The vertical axis limits for the cropland indicators are determined by total cropland area. (b)Global
impact indicators in 2100.
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total floodplain population and cropland area, and
therefore give an indication of the relative importance
of the impact in each region.

In absolute terms, the greatest impact of climate
change on people exposed to heatwaves is in Asia (espe-
cially south and east), followed by Africa. The greatest
number of people exposed to an increase inwater scarcity
are in (west)Africa, andmost people exposed to river and
coastal flooding are in Asia, especially south Asia. Asia
also sees the largest number of people living in water-
sheds that cease to be defined as water-scarce by 2100
(mostly in south Asia). Africa and Asia have the greatest

number of people exposed to hydrological drought. The
greatest absolute cooling energy requirements by 2100
are in (south) Asia and (west) Africa, whilst heating
energy requirements are concentrated in (east)Asia, Eur-
ope and North America but are projected to decrease
sharply with greater climate warming. The greatest abso-
lute areas of cropland exposed to drought are in Asia and
Europe. Large areas of maize and winter wheat across all
continents see a reduction in crop growth duration of at
least 10 d, but extensive areaswith reductions in duration
for soybean and spring wheat are concentrated in North
America and Asia. Large proportions of the rice-growing

Figure 7. (Continued.)
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areas in Asia see reductions in duration of at least 10 d.
The greatest proportion of maize-growing areas affected
by damaging hot spells is in North America (USA), and
an increasing frequency of damaging hot spells for soy-
bean is most widespread in south Asia. Winter wheat
growing areas are more affected by damaging hot spells
than spring wheat areas (except for south Asia). The rice
growing areas in west Africa, south and south east Asia
aremost affectedbyhot spells: eastAsia is little affected.

3.4. A summary:multiple indicators across a region
The previous figures have shown each indicator
separately, across each continent (figures 5 and 8) and
region (supplementary material). Figures 9 and 10
show all the hazard and impact indicators together
for each continent (by region in supplementary
material). This form of presentation allows an evalua-
tion of how a region is affected by change in each
indicator.

Figure 8. Impact indicators for each continent in 2100: RCP2.6, RCP4.5 andRCP8.5. SSP2 socio-economic scenario for the
population indicators. The solid line represents themedian and the shaded area the range between the 10th and 90th percentiles (‘low’
and ‘high’ for the coastal indicator). For the cropland indicators, the green lines show the total regional cropland area, and for the river
flood indicator the green line shows the total regional river floodplain population.
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4.Discussion

There are, of course, several caveats with this study.
The temperature scenarios incorporate current best
estimates of uncertainty in climate sensitivity, carbon
cycle feedbacks and ocean diffusivity, and these

estimates change as more evidence becomes available.
The climate scenarios were constructed using pattern-
scaling and the delta method and making specific
assumptions about disaggregating monthly climate
data to the daily scale: other methods are available. It
was assumed that each of the CMIP5 climate model

Figure 9.Overview of continental hazard indicators: 2100: RCP2.6, RCP4.5 andRCP8.5. The solid line represents themedian and the
shaded area the range between the 10th and 90th percentiles (‘low’ and ‘high’ for the coastal indicator). The axis limits for each
indicator are shown at the top of each column. The axis limits vary across continents.
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patterns of change was equally plausible and indepen-
dent, and can be matched with any increase in global
mean temperature. A different ensemble of model

runs—for example using higher resolution models—
could give a different spread of results. The sea level
rise scenarios use an empirical relationship between

Figure 10.Overview of continental impact indicators: 2100: RCP2.6, RCP4.5 andRCP8.5. SSP2 socio-economic scenario for the
population indicators. The solid line represents themedian and the shaded area the range between the 10th and 90th percentiles (‘low’
and ‘high’ for the coastal indicator). The axis limits for each indicator are shown at the top of each column. The axis limits vary across
continents. For the cropland indicators the limits are the total regional continental cropland area, and for the river flood indicator the
limits are the total regional river floodplain population.
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accumulated temperature and sea level rise tuned to
results from the IPCC AR5, and assume that sea level
rise is globally-uniform. The study uses a series of
indicators that represent the consequences of climate
change for future hazards and socio-economic
impacts, but do not describe actual impacts: these will
depend on current and future adaptation decisions.
Different global-scale studies have used different
indicators of similar dimensions of hazard and impact,
hindering comparisons of results between the different
studies. The impacts as defined by the different socio-
economic indicators are not directly comparable,
because they are expressed—for practical reasons—in
different units (numbers of people, numbers of people
per year etc). Even where the units are the same, it is
not necessarily straightforward to compare themagni-
tude of impacts. Is one person exposed to flooding
equal to one person exposed to drought equal to one
person exposed to heatwave, for example?

Nevertheless, the study has determined in a con-
sistent way multiple indicators of hazards, resource
base and impacts across regions, sectors, climate for-
cings and socio-economic scenarios. The supplemen-
tary material includes information presented in
different formats. The study provides the foundation
for more nuanced assessments of implications for the
distribution of impact across regions and for the devel-
opment of narrative storylines describing implications
of climate change for, for example, resilience, supply
chains and security. The study shows the wide uncer-
tainty range in estimated changes in hazard and
impact. For the water-related indicators, this is pri-
marily due to uncertainty in the projected change in
precipitation across space. This wide range, together
with the observation that the estimated shape of the
distribution of potential consequences in a year is not
necessarily uni-modal, demonstrates that the selection
of climate models for an assessment can have a major
effect on the estimated range—and potentially even
direction—in change.

5. Conclusions

This paper has used a consistent set of climate and
socio-economic scenarios to present changes in a wide
range of indicators of hazard and socio-economic
impact at regional and global scales through the 21st
century. It incorporates uncertainty in future emis-
sions and socio-economic scenarios, alongside the
effects of scientific uncertainty. It provides a quantita-
tive foundation (in the paper and in supplementary
material) both for risk assessments based on explicit
categories of impact and for more nuanced qualitative
assessments of the consequences of climate change
using narrative characterisations of changes in key
drivers such as governance and policy.

At the global scale, all the aggregated consequences
of climate change considered here are adverse, with

the exception of requirements for heating energy.
However, the uncertainty range is large, primarily due
to uncertainty in the projected regional change in pre-
cipitation, and the ‘high end’ consequences under
each of the climate forcings considered can be much
greater than the median estimate. For example, by
2100 and under RCP8.5 the median estimate of the
global average proportion of time in hydrological
drought is 27%, but the high-end estimate is 36%; the
median estimate of the global average return period of
the current 50 year flood is 14 years (7% likelihood),
but the high-end estimate is nine years (11%
likelihood).

The uncertainty range for a few of the precipita-
tion-related indicators (floods and droughts) in some
regions includes both adverse and beneficial con-
sequences, reflecting regional variability in the direc-
tion of change in rainfall. There is a clear difference in
hazard and impact under the different levels of climate
forcing, with the difference varying across the indica-
tors. Even under the lowest forcing there are sub-
stantial changes in hazard and impact by 2100. The
assumed future socio-economic scenario has a very
large effect on the estimated impacts of a given level of
forcing, and for most socio-economic indicators the
range in impact is greater across the socio-economic
scenarios than the climate forcings. This highlights the
strong dependence of future impacts of climate change
on socio-economic change.
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