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Abstract 

There has been an observed increase in dissolved organic carbon (DOC) concentrations in 

soil solutions and surface water bodies in acid sensitive areas of Europe and North America 

over the past four decades. This has been linked to changes in atmospheric chemistry and 

associated acid deposition, due to increased solubility of DOC in response to recovery from 

acidification. However, as DOC production (and consumption) is under biological control 

through the decomposition (and mineralisation) of organic material, there is uncertainty as 

to whether this increasing DOC trend is solely a chemical (solubility) response or whether 

there is a biological element also. In addition, there have been inconsistencies in DOC 

release from catchments receiving similar acid deposition loads, which suggests that 

differences in catchment characteristics may result in variations in the magnitude of 

response to acidification and recovery. Despite this and that fact that many catchments 

consist of peat and organo-mineral soil, much research has focused solely on peat. 

In order to investigate both the chemical and biological responses to changing acidity 

behind these DOC trends, an acidity manipulation field experiment was run over two 

National Parks with contrasting historical pollution levels, which included both peat and 

peaty podzol soil. The chemistry of pore water, as well as soil and surface litter extracts, 

were monitored alongside a decomposition experiment to separate out the changing 

solubility of DOC from the biological production through decomposition. Bacterial and 

fungal communities were also sequenced to assess how microbial communities were 

affected by changes in acidity. 

There was a clear chemically mediated DOC response to acidity in pore water, supporting 

previous findings and building on evidence of the pH-DOC hypothesis that recovery from 

acidification is increasing DOC solubility in organic soils. The DOC in the upper organic layer 

of peat and organo-mineral soil was found to be acid sensitive, but the surface litter DOC 

was not. However, overall there were limited responses of litter decomposition, Tea Bag 

Index (TBI) parameters and microbial diversity to acidity manipulations, and so there is little 

evidence that short-term changes in acidity effect microbial communities and biologically 

mediated processes (decomposition and associated DOC production).  
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Regardless of experimental insignificance, bacterial community diversity was found to be 

positively and significantly related to both soil pH and extract DOC, which suggests that 

there may be a functional response to changing acidity as well as changes in community 

structure. Further work is needed to assess the mechanistic functional response of bacteria 

in terms of DOC production and consumption in response to changing acidity. 
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Chapter 1 

1 
 

Chapter 1: Introduction 

1.1 Research context 

Upland moorland catchments dominated by organic soils are important stores of carbon, 

providing mitigation against climate change; hydrological services such as water quality and 

flood risk regulation; tourism, recreation and cultural heritage; and other important 

ecosystem services. These organic upland catchments usually consist of a mix of peat on 

shallow slopes and organo-mineral soil on sloped areas. Milne and Brown (1997) estimate 

raw peat soils to cover an area of 3568 km2 in England and Wales, and contain an estimated 

400,166 kt of carbon. Peaty podzols are a common organo-mineral soil present in upland 

bogs, and are estimated to cover 1,313 km2 and contain 25,400 kt of carbon in England and 

Wales. Peat and organo-mineral soils differ in their properties including hydrology, texture, 

and vegetation communities, all of which have been shown to correspond with dissolved 

organic carbon (DOC) concentrations in pore water (Dalva and Moore, 1991, Neff and Asner, 

2001, van den Berg et al., 2012). The key differences between peat and organo-mineral soils 

relates to hydrological properties. Peats form in areas with impeded drainage and so tend to 

have slow hydraulic conductivity and form in areas with high water tables, resulting in 

permanently saturated conditions. In contrast, podzols form on slopes and hills over mineral 

material which is more free-draining, allowing for aeration of the soil. In addition, unlike 

organic-rich peat, podzols have a mineral content, with the potential for sorption of DOC  

(Stutter et al., 2012). 

DOC also represents a major natural carbon export from peatlands and other organic rich 

peaty soils (Billett et al., 2004, Clark et al., 2007, Dinsmore et al., 2010, Hope et al., 1994). 

DOC is typically defined as organic carbon less than 0.45 μm in size (Thurman, 1985). DOC 

production is a biological process, either via the release of exudates from plants, or through 

microbial decomposition of polymeric particulate organic material.  Therefore, waters 

draining catchments comprised of organic rich soils such as peat and peaty podzols are 

associated with high concentrations of DOC released during the decomposition of organic 

material (Aitkenhead et al., 1999, Evans et al., 2006a). However, much of the literature 

focuses on DOC exported from peatland areas, with little investment into the role of 

organo-mineral soils on DOC dynamics in upland non-forested catchments. 
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There has been a considerable increase in DOC concentrations in terrestrial waters draining 

catchments dominated by organic soils in much of the Northern Hemisphere since the 

1980’s (Couture et al., 2012, Evans et al., 2005, Monteith et al., 2007, Oulehle and Hruška, 

2009, SanClements et al., 2012a). For instance, the Acid Waters Monitoring Network 

recorded a 91 % increase in DOC concentrations in surface waters between 1988 and 2003 

in acid sensitive areas of the UK (Evans et al., 2006a). There has also been an increase in the 

amount of high molecular weight, coloured DOC of an aromatic and refractory nature 

leaching from peatlands, contributing to the ‘brownification’ of many terrestrial waters 

(Watts et al., 2001, Worrall et al., 2003a). 

This increase in DOC export from peatlands and other organic soils not only affects carbon 

budgets (Dinsmore et al., 2010), but also creates expensive implications for water 

companies due to the removal of DOC through drinking water treatment processes (Ritson 

et al., 2014). In addition, greater DOC concentrations in terrestrial waters can also affect the 

functioning of aquatic ecosystems by influencing acidity (Eshleman and Hemond, 1985), 

bioaccumulation of organic chemicals (Haitzer et al., 1998), transport of trace metals 

(Lawlor and Tipping, 2003), nutrient (Stewart and Wetzel, 1981) and energy supply (Wetzel, 

1992) and light absorbance (Schindler, 1971) and photochemistry (Scully et al., 2003). 

Therefore there is a dire need to understand these changing carbon dynamics. 

Several explanations for this increasing DOC trend have been proposed in the literature and 

include changes in land management (Clutterbuck and Yallop, 2010), hydrology (Hejzlar et 

al., 2003, Tranvik and Jansson, 2002), increasing temperature (Freeman et al., 2001a), and 

nitrogen deposition (Aitkenhead and McDowell, 2000). However, there is now a large 

evidence base for the reduced deposition of sulphur as a major driver. From 1970 to 2013 

there has been a 94 % decline SO2 emissions in the UK (Defra, 2013). The UK Environmental 

Change Network highlights recovery from acidification as one of the three most significant 

long-term trends in the physical environment within the UK (Morecroft et al., 2009). This 

recovery from acidification as a result of reductions in atmospheric sulphur deposition, 

increases DOC solubility as soil pH recovers, releasing previously insoluble DOC from soils. 

This is widely supported by field (Ekström et al., 2011, Evans et al., 2008a, Evans et al., 2012, 

Moldan et al., 2012, Oulehle et al., 2013) and laboratory experiments (Clark et al., 2011, 

Palmer et al., 2013) as well as modelling (Evans et al., 2008a, Monteith et al., 2007, Rowe et 
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al., 2014, Sawicka et al., 2016) and field observations (Evans et al., 2006a, Oulehle et al., 

2011, Oulehle et al., 2017, Oulehle and Hruška, 2009). 

However, there have been discrepancies in rates of DOC release in areas receiving similar 

acidifying deposition loads, suggesting catchment specific properties may be a controlling 

factor in DOC production and release (Clark et al., 2010a). While organic catchments 

experiencing this increasing DOC release are comprised of peat and organo-mineral soils, 

the majority of research in this area has focused on peats only. Laboratory experiments 

have suggested that it is possible that the magnitude of response of peat and organo-

mineral soil to acidity may differ, and this may account for some of the discrepancies in DOC 

release between catchments (Clark et al., 2011). In addition, as soil pH is crucial to enzyme 

functioning (Fog, 1988), and is highly correlated with microbial community structure 

(Griffiths et al., 2011), acidification could alter mechanisms involved in microbial 

decomposition of organic material and the subsequent DOC released. Therefore, it is 

possible there may be an additional biological mechanism behind these changing trends in 

response to changing sulphur deposition and recovery from acidification.  We need to 

disentangle the role of biological processes controlling DOC production from chemical 

processes controlling DOC mobility. 

These significant increases in carbon fluxes have raised concerns over the future of 

terrestrial carbon stocks (Freeman et al., 2001a) as well as contributing to accelerated 

climate change (Moody et al., 2013). Therefore it is vital we have a complete understanding 

of the mechanisms behind DOC dynamics in upland organic catchments in order to 

accurately predict future carbon release and responses to environmental change. 

1.2 Aims and objectives 

Aim: To understand how changes in acidity have contributed to recent changes in carbon 

cycling in organic soils in terms of chemical vs biological controls. 

Objective 1: To assess how acidity effects DOC quantity and quality released from organic 

soils and surface litters across different sites representing a pollution deposition gradient. 

Objective 2: To assess how litter type and quality effects decomposition and subsequent 

DOC production over a pollution deposition gradient in peat and organo-mineral soils. 
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Objective 3: To assess how acidity impacts litter decomposition and the associated DOC 

produced in peat and organo-mineral soil. 

Objective 4: To evaluate whether microbial communities in peat and organo-mineral soil 

respond to acidification. 

1.3 Explanation of objectives 

Objective 1: To assess how acidity effects DOC quantity and quality released from organic 

soils and surface litters across different sites representing a pollution deposition gradient. 

Recent studies have suggested that, in intact systems, the age of DOC in surface waters is 

less than 40 years old (Evans et al., 2007, Palmer et al., 2001, Tipping et al., 2010), and 

hydrological studies have shown that the surface layers are better connected with stream 

water DOC concentrations than deeper soil pore water (Billett et al., 2006, Clark et al., 

2008). Radiocarbon 14C dating within peatland catchments have demonstrated that 

between 96 - 100 % of DOC in surface water was recently produced and derived from the 

peat surface layer (Tipping et al., 2010).  

While such field evidence shows that DOC flushed into water systems is recently formed and 

derives from the surface layer, it is not yet clear how DOC production is partitioned in this 

dynamic upper segment between decomposing surface litter and recently formed peat 

organic matter, and whether there is any difference in DOC properties and their sensitivity 

to environmental change such as acidification. In addition, much research to date has 

focused on peatlands, with less attention given to processes in freely-draining organo-

mineral soils in non-forested environments. By conducting an acidity manipulation field 

experiment and monitoring the sensitivity of pore water, peat and surface litter samples, 

the production and release of DOC from different components of the upper organic layer of 

peat and podzol in response to changing acidity were investigated. 

Objective 2: To assess how litter type and quality effects decomposition and subsequent 

DOC production over a pollution deposition gradient in peat and organo-mineral soils. 

Litter decomposition is a major biological source of DOC through the biodegradation of 

polymeric particulate organic material by extracellular enzymes. The decomposition and 

subsequent quantity and quality of DOC produced can differ between different vegetation 
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species (Moore et al., 2007, Pinsonneault et al., 2016). Vascular plants, such as Calluna, have 

been shown to produce more DOC than Sphagnum in peatland ecosystems (Armstrong et 

al., 2012, Ritson et al., 2014). In addition, the release of Calluna flower capsules provides a 

seasonal input of labile material, with a potential to decompose quickly and produce 

aromatic DOC which is persistent in waters (Ritson et al., 2016).  

Environmental factors can also influence the quality of litter and therefore decomposition 

and DOC production. Nitrogen accumulation in plant tissues has been observed in areas of 

high deposition (Berg and Matzner, 1997, Caporn et al., 2014, Van Vuuren and Van Der 

Eerden, 1992). For instance, Pitcairn et al. (1995) found Calluna to have a linear increase in 

tissue nitrogen of 0.045 mg g-1 kg-1 ha-1 year-1 of increased atmospheric nitrogen deposition. 

There is also evidence that vascular plants are more efficient at utilising nitrogen, and so 

providing decomposers with a greater nutrient availability and enhancing DOC production 

(Ritson et al., 2016).  

Here we investigate the decomposition and subsequent DOC produced from two litter types 

typical to upland organic catchments (Eriophorum and Calluna). As there are a lack of 

published studies presenting decomposition data for organo-mineral soil in a non-forested 

environment, the role of podzol soil and associated DOC production could be assessed here 

and compared to peat. A litter bag experiment was used to investigate decomposition over 

a 12 month period over a two sites with contrasting historical pollution deposition, and how 

this varied for each soil type. Therefore, the effect of pollution deposition on litter quality, 

and they subsequent effect this had on decomposition and DOC production for both soil 

types could also be investigated. 

Objective 3: To assess how acidity impacts litter decomposition and the associated DOC 

produced in peat and organo-mineral soil. 

To date, most attention has been given to understanding the chemical mobility of DOC 

within soils and surface waters. However, as recovery from acidification changes soil pH to 

more favourable conditions for biological activity, it is unclear to what extent increased DOC 

concentrations could have been driven by increased decomposition and, therefore, DOC 

production. Recent modelling analysis has indicated that increased nitrogen deposition 

could increase litter production, which in turn would stimulate DOC production (Sawicka et 
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al., 2017). The direct effects of acidity itself on DOC production from litter decomposition 

are poorly understood, with many studies focusing on nitrogen deposition effects (Berg and 

Matzner, 1997, Bragazza et al., 2012, Knorr et al., 2005, Lovett and Goodale, 2011, Manning 

et al., 2008) rather than acidification (Evans et al., 2008a). However, nitrogen deposition 

causes simultaneous acidification and this may be contributing to changing carbon dynamics 

(Oulehle et al., 2018), and yet there has been little attempt to separate out the individual 

responses of nitrogen enrichment and acidification. 

Of the little research there is on the effects of acidity on litter decomposition, results are 

conflicting. There is some evidence of shifts in microbial community structure and 

suppressed decomposition with acidity but these focus on forested ecosystems (Adams and 

Angradi, 1996, Baath et al., 1980, Dangles et al., 2004, Oulehle et al., 2018, Prescott and 

Parkinson, 1985). Suppression of decomposition of Calluna and Eriophorum litter has been 

observed in a peat monolith acidification experiment (Sanger et al., 1993), whilst no effects 

have been shown for Sphagnum in a poor fen environment (Rochefort et al., 1990). Other 

studies show acidity as having a minimal effect on decomposition with other abiotic factors 

being more influential such as soil moisture content (Donnelly et al., 1990, Rochefort et al., 

1990).  

Therefore to tackle these knowledge gaps, a decomposition study using litter bags and the 

Tea Bag Index (TBI) was incorporated into an acidity manipulation field experiment to 

investigate how acidity impacts the decomposition of five litter types common to upland 

organic catchments, and the resulting effect on the DOC produced, across two sites 

representing a pollution deposition gradient, for both peat and organo-mineral soil. 

Objective 4: To evaluate whether microbial communities in peat and organo-mineral soil 

respond to acidification. 

Despite there being evidence for the important role that microorganisms play in moorland 

functioning, there is little research into microbial community composition and their 

associated functioning (Littlewood et al., 2010), or how environmental change may 

influence these communities and functions (Thormann, 2006). There is further little 

research comparing communities between peat and organo-mineral soil, despite the fact 

that upland moorland catchments are typically comprised of both soil types. 
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As soil pH is crucial to enzyme functioning (Fog, 1988), and is highly correlated with 

microbial community structure (Griffiths et al., 2011), it is possible that acidification could 

alter mechanisms involved in microbial decomposition of organic material. Using a mixed-

effects model, Dawson et al. (2009) concluded that increased solubility of DOC alongside 

enhanced heterotrophic decomposition are behind increasing DOC trends for upland 

organic catchments in Scotland. Microbial community structure has been shown to be 

affected by acidity, with decreased bacteria and increased fungi in soils (Blagodatskaya and 

Anderson, 1998, Oulehle et al., 2018, Rousk et al., 2009), with bacterial growth rates being 

more sensitive (Walse et al., 1998). Reduced litter decomposition rates have been 

demonstrated under acidic conditions (Adams and Angradi, 1996, Baath et al., 1980, 

Dangles et al., 2004, Killham and Wainwright, 1981, Oulehle et al., 2017), including in peat 

(Sanger et al., 1993) and podzol soil (Brown, 1985), demonstrating reduced DOC production 

with acidity. In addition, particular inhibition of microbial decomposition has been noted at 

sites with high sulphur pollution (Brown, 1985, Prescott and Parkinson, 1985).  

Therefore, it is possible that changes in acidity may alter microbial communities and their 

functioning in terms of DOC production and consumption in organic catchments. In order to 

investigate further whether the increasing DOC trend may be due to a biological response to 

changing acidity, fungal and bacterial communities were sequenced from soils receiving acid 

and alkaline treatments, and correlations between changes in communities and soil extract 

DOC could be explored.  

1.4 Thesis structure 

This thesis is comprised of eight chapters. Chapter 2 is a review of the literature relevant to 

this research, and provides context and detailed discussion of relevant topics to-date. 

Chapter 3 is a detailed description of the field experiment underpinning each results 

chapters, including treatment applications, sample collections and site locations. Chapters 

4-7 are the results chapters, presented in journal paper form, that tackle each objective 

separately. As a result, they are intended to be stand-alone chapters to be submitted for 

publication, and so some repetition is apparent in the introduction and methods sections. 

Chapter 4 addresses Objective 1 by presenting the results of one year monitoring data from 

the field experiment for pore water, peat and surface litter samples. Both Chapters 5 and 6 

present data from a year-long litter bag experiment run as part of the field experiment. By 
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analysing litter decomposition and DOC production data of different litter types over a 

twelve month period, and presenting data from a litter bag translocation experiment, 

Objective 2 could be addressed within Chapter 5. The effects of acidity on litter 

decomposition and DOC production were then assessed in Chapter 6, and included both 

litter bag data and the utilisation of the Tea Bag Index to assess decomposition parameters 

in order to meet Objective 3. Finally, Objective 4 was addressed in Chapter 7 by presenting 

bacterial and fungal community data for soils collected from the field experiment. In 

Chapter 8, the key findings from each results chapter are drawn together and discussed, and 

conclusions and suggestions for future work are presented. 
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Chapter 2: The effect of acid deposition on dissolved organic carbon cycling in 

upland organic soils: Current understanding and key research gaps 

2.1 Upland moorland environments and environmental change 

2.1.1 Overview 

Areas of uplands are located across the UK, including vast areas of Wales, Scotland and 

Northern Ireland, and areas in England including the Pennines, Dartmoor and the North York 

Moors, but also across much of the Northern Hemisphere. These areas are dominated by 

moorland environments, defined as “open areas with acid or strongly base-deficient soils” 

(Holden et al., 2007), which are characterised by organic soils including saturated peats and 

freely draining organo-mineral soils, such as peaty podzols (see Section 2.2). 

In the UK, moorlands are predominantly used for low intensity grazing, but are also 

managed for grouse shooting or as wildlife reserves. Upland Moorlands provide a vast array 

of ecosystem services, from tourism, recreation and cultural heritage, to hydrological 

services such as flood risk regulation and water purification, to biodiversity protection, fire 

protection, and carbon regulation and climate change mitigation (Bonn et al., 2010). 

Despite the international importance of upland moorlands, particularly for carbon storage 

(Section 2.3.1), there are a number of pressures on these systems, including climate change, 

land management, nitrogen saturation, heavy metal pollution and acidification (Section 

2.5.2). Such pressures are causing severe damage, including soil erosion, flooding, poor 

water quality, biodiversity loss, nitrogen leaching and carbon destabilisation (Section 2.5.1) 

(Holden et al., 2007, Clark et al., 2010c, House et al., 2010, Caporn et al., 2011, Pilkington et 

al., 2005).  

In particular, there has been increases in concentrations of dissolved organic carbon (DOC) 

in surface waters draining organic catchments (Evans et al., 2005). There has also been an 

increase in the amount of high molecular weight, coloured DOC of an aromatic and 

refractory nature leaching from peatlands, contributing to the ‘brownification’ of many 

terrestrial waters (Watts et al., 2001, Worrall et al., 2003a) and creating problems for water 

treatment companies (Ritson et al., 2016). 
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Despite the fact that many upland moorland catchments consist of both peat and organo-

mineral soil (Figure 2.2), there has been a focus on peat and little work has been done on 

organo-mineral soils. As a result, there are few studies which assess and compare the 

impacts of such pressures for both soil types. Therefore, it is more important than ever that 

these pressures and their effects on carbon cycling and storage in these systems are fully 

understood, with scope for a fuller review of both soil types in these environments. 

2.2 Upland moorland soil types 

2.2.1 Peatland 

Peatlands are areas where peat naturally forms and accumulates. The process of 

paludification, or rather the geological accumulation of organic material, causes peat to 

extend across the landscape by the addition of organic material under saturated conditions 

(Laamrani et al., 2014, Wheeler and Proctor, 2000). In the UK this is mainly due to the build-

up of mosses, most commonly Sphagnum.  

Peatlands cover just 3 % of the global land surface area (Yu et al., 2010), with 80 % classed 

as northern peatlands situated in North America, Northern Europe and Russia (Gorham, 

1991) with an estimated store of 270 to 547 Pg of carbon (Gorham, 1991, Yu et al., 2010, 

Turunen et al., 2002). The UK holds between 9-15 % of Europe’s peatland area, which 

includes 13 % of the world’s blanket bog (Bain et al., 2011). 

There are various different types of peatlands, and the basis of classification can vary from 

topography, surface vegetation, chemical properties, physical characteristics and so on 

depending on the region (Andriesse, 1988). Within the UK alone there are discrepancies in 

peat classification based on a minimum depth threshold of surface organic matter (Figure 

2.1).  
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Figure 2.1: Diagram comparing the minimum depth and percentage organic matter content threshold used to 

define mineral, organo-mineral and peat soil in the Scottish, English and Welsh, and Northern Irish 

classification schemes (Joint Nature Conservation JNCC, 2011). 

In the UK hydrology and nutrient source play a big part in peatland type classification, with a 

traditional distinction between ombrotrophic and minerotrophic groups (Wheeler and 

Proctor, 2000). Minerotrophic peatlands are areas of peat which are highly influenced by 

ground and/or surface water supply, also known as ‘fens’. Alternatively, where the main 

influence of water supply stems from precipitation, peatlands are referred to as 

ombrotrophic, or ‘bogs’. Bog peatlands represent the most common UK peatland type (Joint 

Nature Conservation JNCC, 2011), and are generally more acidic (pH < 5.0) than fens (pH > 

6.0) (Wheeler and Proctor, 2000). 

The hydromorphological system is another form of classification based on the climatic 

conditions influencing the formation of that particular peatland type (Charman, 2002). For 

instance, bogs can be further subcategorised into ‘blanket bogs’ over a hilly landscape, and 

lowland ‘raised bogs’ on wet floodplains, in basins and sometimes on existing fen peats 

making them slightly raised compared to the surrounding landscape. The UK falls into the 

bioclimate zone for these types of bogs, with warmer temperatures (> 0 °C) and high 

precipitation (> 900 mm/yr), than peat plateaus for instance, occurring in subarctic regions 

encompassing low temperatures (< -5 °C) and low precipitation (< 400 mm/yr) (Wieder and 
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Vitt, 2006). A number of bioclimatic envelope models have been used to predict blanket 

peat cover, and changes in response to environmental change, based on a variety of 

thresholds for parameters such as precipitation and temperature in the UK (Gallego-Sala et 

al., 2010, Clark et al., 2010b) and globally (Gallego-Sala and Colin Prentice, 2012). As a result 

of this bioclimatic zone, blanket and raised bogs represent 95 % of peatland areas in the UK 

(Bain et al., 2011), and in upland areas blanket peats are the dominating peatland type. 

The development of the World Reference Base (WRB) is facilitating a more harmonised 

international classification system. Many European institutions are now adopting this 

system, which is similar to the UK diagnosis for peat, but differs for other soil types (Joint 

Nature Conservation JNCC, 2011). 

2.2.1.1 Peat 

Peat is a classification within the taxonomic group histosols under the World Reference 

Base. More specifically, this is defined as a soil with a thick organic layer either greater than 

10 cm depth and 20 % organic carbon content (directly overlying bedrock), or greater than 

40 cm within the top 100 cm of the soil (FAO, 2006). Other definitions of peat include 

‘Organic material consisting largely of undecomposed or slightly decomposed plant remains’ 

(Soil Survey Staff, 1999), or ‘Dead and partially decomposed plant remains that have 

accumulated in situ under water logged conditions’ under the Ramsar Convention (1971, 

1971).  

Peat does not have a mineral content, but is composed of organic matter and water  

(Charman, 2002). There are two distinctive layers within a peat profile; the acrotelm in the 

upper horizon comprising of roots and decomposing plant material, and the catotelm, 

consisting of dense peat (Holden and Burt, 2003a). 

Peat properties are typically defined by the environmental conditions governing its 

formation, and in particular those controlling decay and humification, as well as the input of 

organic material from vegetation. Peats have slow decomposition rates due to waterlogged 

conditions, resulting in a thick organic layer at least 40 cm thick (Burnham et al., 1980). 

Saturation inhibits aerobic decomposition, and instead anaerobic decomposition occurs 

which is a much slower process (Swift et al., 1979). This leads to an accumulation of partially 
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decomposed organic material as the rate of decay is slower than the rate of input through 

net primary production.  

Peat is heterogeneous with properties varying spatially between peatland sites to a scale of 

a few cm and throughout different depths. For instance, dry bulk density is greater at depth 

for some sites (Holden and Burt, 2003b) whilst the opposite has been observed at others 

(Frogbrook et al., 2009). Another example relates to preferential flow pathways, which can 

vary over a short distance creating hydraulic conductivity which differs both laterally and 

vertically (Holden and Burt, 2003b). 

A key property of peatland hydrological systems is the high water table. This, alongside high 

porosity and slow hydraulic conductivity result in a significant store of water at more than 

95 % (Charman, 2002). These factors create a positive feedback mechanism with permanent 

saturation and anoxic conditions impeding decomposition, further enhancing the organic 

matter content and water holding capacity of peat (Ise et al., 2008). Relationships between 

hydraulic conductivity and decomposition have been highlighted in models (Frolking et al., 

2010, Morris et al., 2011), whilst the molecular composition and chemical structure of 

organic matter has been shown to correlate well to hydrological properties (Grover and 

Baldock, 2013).  

Important components to the peatland hydrological system which may enhance flow 

include subsurface natural pipes, macropores, acrotelm stormflow and overland flow 

(Holden and Burt, 2003a). Hydrological properties can also vary with depth. Pore size and 

hydraulic conductivity has been observed to be much lower in deep and compact peats, 

whilst surface peats have a higher conductivity (Charman, 2002, Price, 2003), although 

others found no variation with depth (Chason and Siegel, 1986). 

Peatlands have unique and extreme environments compared to other ecosystems, and as a 

result are generally considered to be species poor. Plant community composition is heavily 

influenced by hydrology, nutrient input, climate and land management. As a result, 

communities differ considerably between bogs and fens. For instance, bogs are dominated 

by ericaceous shrubs, such as heather (Calluna vulgaris), some graminoids including cotton 

grass (Eriophorum vaginatum) and a large proportion of bryophytes such as Sphagnum 

mosses. Fens have more graminoids and non-ericaceous shrubs (Weltzin et al., 2000). The 
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distinction between bogs and fens were originally drawn on the basis of plant species 

present as an indicator of groundwater inputs (Wheeler and Proctor, 2000). 

Bryophytes dominate upland bog communities as they are well adapted to the wet, nutrient 

poor conditions (Hájek, 2014). Sphagnum mosses are not only well suited to this 

environment, but also contribute to creating and maintaining these conditions, and as a 

result actively out-compete other plant species (van Breemen, 1995). Acidification occurs 

when Sphagnum removes cations from solution, and replace them with hydrogen ions 

(Charman, 2002). Through their high water holding capacity and acidifying ability, 

Sphagnum mosses shape their habitat into an anoxic, acidic, nutrient poor environment, 

reducing its suitability for vascular plants (Rydin et al., 2006). In addition, the high C:N ratio 

of Sphagnum litter results in decomposers requiring more nitrogen and so decomposition 

and the release of carbon is reduced.  

Peatland communities can be significantly affected by environmental change, including 

climate change and inputs of nutrients and acidity. Degraded areas have been associated 

with reduced Sphagnum species and increased presence of purple moor grass (Molinia 

caerulea) (Swindles et al., 2016, Ferguson et al., 1978). Areas receiving high levels of 

pollution deposition have seen significant Sphagnum loss, such as in the Pennines (Ferguson 

et al., 1978). Nitrogen deposition is thought to shift communities, with vascular plants 

outcompeting Sphagnum (Berendse et al., 2001, Heijmans et al., 2001). In addition, climate 

change related weather events can have adverse effects on Sphagnum, with irreversible 

desiccation and death with heat waves (Bragazza, 2008), and reduced production with 

lowered water tables (Weltzin et al., 2001). 

2.2.2 Organo-mineral soils 

Blanket peatlands are largely dominated by peats, but often found in mosaic of different soil 

types that include peaty podzols and peaty-gleys depending on topography and drainage 

(Figure 2.2) (Charman, 2002).These shallow peaty soils usually surround areas of peats on 

hilly slopes, and make up a large proportion of the moorland landscape. Using England as an 

example, peatlands are estimated to cover 11 % of total land area, with 48 % classed as 

deep peat and 37 % being shallow peaty soils including podzols. The remaining areas of 
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peatlands are classed as soils with peaty pockets, or “Areas of mostly non-peat soils, 

supporting smaller pockets of deep peat” and make up 15 % (Natural England, 2010). 

 

Figure 2.2: Map of England illustrating the distribution of different classifications of peat soils in peatland areas 

(Natural England, 2010). 

Peaty podzols, or histic podzol termed under the World Reference Base taxonomic 

classification system (FAO, 2006), are classified by the subsurface B horizons where iron and 

aluminium sesquioxides, as well as other substances including organic matter and clay, have 

accumulated as a result of being leached through the soil (Burnham et al., 1980).  
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This process is podzolisation whereby soluble and suspended materials are leached down 

the profile through mechanical eluviation, resulting in acidic and nutrient deficient horizons 

higher up the profile (Burnham et al., 1980). The spodic B horizon develops below this due 

to illuvation of these suspended and soluble compounds leached from above, including DOC 

with sesquioxides (Dalsgaard et al., 2016). This illuvial B horizon ranges from red, darkish 

brown to black, and has a greater CEC (cation exchange capacity), clay and potentially the 

humic content than the above horizon (Wilding et al., 1983, Soil Survey Staff, 1999).  

A resulting overlaying bleached horizon may be present (E, A2, Ae), which has been heavily 

leached of organic compounds, clay, iron and aluminium, the mobilisation of which is 

promoted by organic acids moving vertically from the overlying organic layers (Wilding et 

al., 1983, Little, 1997). This eluvial layer is easily distinguishable by its whitish-grey 

colouring, although this is no longer relied upon as a key diagnostic feature as it can easily 

be disturbed and be intermittent (Wilding et al., 1983).  

A raw humus surface organic layer (Oi, Oe) may also be present as a peaty topsoil due to 

anoxic conditions which limit aerobic decomposition (Dalsgaard et al., 2016), and has the 

maximum organic matter content, CEC, total exchangeable bases and percentage base 

saturation values compared to other horizons present (Burnham et al., 1980, Little, 1997). 

The podzolisation process is mediated by climatic variables, including the rainfall-

evapotranspiration ratio, as well as vegetation, geography and topography which directly 

influence the hydrology and drainage capacity, and ultimately the acidity of the soil. The 

process may be accelerated by acid deposition and anthropogenic activities that increase 

soil exposure such as land clearance (Little, 1997). 

The hydrology of podzol soil can be complex dependent on topography, but podzols are 

generally characterised as free draining. Flow pathways have been shown to switch from 

the lower mineral layer during times of low flow, to the upper organic layer during times of 

high flow (Clark et al., 2008). In terms of the vegetation communitites on moorland podzolic 

areas, bryophytes are less common, with calcifugous grassland communities dominating 

including Festuca ovina and Juncus squarrosus. 
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2.2.3 Key differences between peat and organo-mineral soils 

A comparison in key characteristics between peat and podzol soil have been summarised 

below in Table 2.1. 

Table 2.1: Comparison of key properties between peat and podzol soils. 

Characteristic Peat Podzol 

Depth of organic layer Deep Shallow 

Mineral soil layers None Present 

Hydrology Impeded drainage 

Flow is always through 

organic layer. 

Freely drained 

Flow shifts from mineral to 

organic layer when high. 

Dominant vegetation Bryophytes 

Ericaceous shrubs 

Graminoids 

Calcifugous grassland 

communities 

Redox status Anoxic Oxic 

 

The key differences between peat and organo-mineral soils relates to hydrological 

properties. Peats form in areas with impeded drainage and so tend to have slow hydraulic 

conductivity and form in areas with high water tables, resulting in permanently saturated 

conditions. In contrast, podzols tend to form on slopes and hills over mineral material which 

is more free-draining, allowing for aeration of the soil. In addition, unlike organic-rich peat, 

podzols have a mineral content, with the potential for sorption of DOC, potentially 

increasing its residence time in the soil (Stutter et al., 2012).  

Hydrologic flows and therefore transport of DOC differs between peat and organo-mineral 

soils. In podzols, high flow moves through the upper organic layer and low flow through the 

mineral layer. In peats, high saturation and organic matter content results in flow moving 

through a thick organic layer regardless of changes in flow severity (Clark et al., 2007). 
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The contrasting abiotic differences between peat and organo-mineral soils result in different 

vegetation communities developing, which ultimately influences the quality and quantity of 

organic material entering the decomposition process. For instance, species more tolerable 

of saturated conditions dominate areas of peat, such as Sphagnum mosses, whilst 

calcifugous grassland communities including Festuca ovina and Juncus squarrosus are more 

common to the podzol areas of moorlands. 

In addition, different environmental conditions between peat and organo-mineral soils has a 

strong influence on the processing of organic material by microorganisms. Peatlands 

typically have a high water table, which alongside the ability to store large volumes of water 

due to large porosities in peat, creates anoxic conditions which impede aerobic 

decomposition (Ramchunder et al., 2009) resulting in anaerobic activity. In contrast, podzol 

soils are more freely draining allowing for more aerobic activity. 

It is important to note these differences in properties between peat and organo-mineral 

soils, as they may result in variations in DOC dynamics within a single moorland catchment, 

including microbial DOC production and consumption, as well as sorption and leaching.  

2.3 Carbon cycling in organic soils 

2.3.1 Carbon store 

Up to 80% of global peatlands are located in northern regions (Limpens et al., 2008), and are 

estimated to store between 270-547 Pg/C (Gorham, 1991, Turunen et al., 2002, Yu et al., 

2010). In comparison, the remaining 20 % of global peatlands store 89 Pg/C in tropical 

peatlands (Page et al., 2011) and 18 Pg/C in southern peatlands (Yu et al., 2010). In the UK, 

peatlands cover 15 % of land area, and store between 1.7-2.3 Pg/C (Billett et al., 2010, 

Joosten, 2009), much of which is concentrated in Scotland. There are huge uncertainties in 

estimating peat carbon stores, with figures being refined frequently. Peat depth is an 

essential element for calculating carbon accumulation and storage as well as for developing 

maps of carbon distribution. However, peat depth is not homogenous, making it difficult to 

establish carbon storage across whole catchments (Parry et al., 2014). There is much less 

research on the carbon stocks of organo-mineral soils. Natural England (2010) estimate that 

shallow peaty soils cover an area of 5,272 km2 in England and contain 58.5 megatonnes of 

carbon, this equating to 10 % of the total peatland carbon store.  
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2.3.2 Carbon balance 

The difference between the net accumulation and loss of carbon will result in either 

ecosystem being a source or sink of atmospheric carbon, influencing its contribution to or 

mitigation against global climate change. A variety of gaseous and fluvial fluxes are used to 

estimate the net ecosystem carbon balance (NECB), the measurements approaches of which 

are summarised in Figure 2.3.  Specifically: 

 

where NEE is net ecosystem exchange, FCO is carbon monoxide flux, FCH4 is net methane flux, 

FVOC is net volatile organic carbon flux, FDIC is net dissolved inorganic carbon flux, FDOC is net 

dissolved organic carbon flux, and FPC is the net lateral transfer for particulate carbon 

(Chapin et al., 2006). 
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Figure 2.3: Key measurements of carbon inputs and outputs which are routinely used to establish net 

ecosystem carbon balance (NECB) (Billett et al., 2010). 

Key carbon inputs in to moorlands are mainly from vegetation, which take in CO2 during 

photosynthesis to incorporate carbon into plant tissues, which is then added to soil as 

exudates or through the decomposition of dead material. Soil microbial biomass is also 

another source of carbon, as well as DOC deposited in precipitation (although this is 

insignificant compared to other fluxes) (Rowson et al., 2010). Net primary production (NPP) 

is the autotrophic respiration subtracted from gross primary production (GPP) and 

represents the carbon added to the system through litter production and is assumed to be 

equal to this input (Yu et al., 2010). However, management including burning and grazing 

can result in an imbalance between the carbon fixed from the atmosphere and the carbon 

added to the soil once the plant has died.  

Carbon outputs are through respiration from plants and soil microorganisms releasing CO2 

and CH4, and the fluvial export of gaseous, particulate and dissolved carbon. Ecosystem 

respiration (ER), which comprises of above (plants) and below ground (plants and microbial 

heterotrophs) respiration is considered the largest loss of carbon from an undamaged 

moorland system (Billett et al., 2010). Again, estimating this flux can be problematic as 

heterotrophic respiration results from litter decomposition, and so is affected by litter 

evenness (Ward et al., 2010) and quality (Limpens and Berendse, 2003). 

The exchange of CO2 is often measured by calculating net ecosystem exchange (NEE) from 

the sum of ER (positive flux) and photosynthesis (negative flux) in daylight (Rowson et al., 

2010). NEE has been shown to be the greatest flux of carbon in peatland catchments 

(Dinsmore et al., 2010). However, there are few studies which have measured NEE over a 

long term period spanning several years, and there is much variation annually as well as 

between sites, as well as minimal work on upland organo-mineral soils within the literature. 

For instance, a blanket bog in south west Ireland had an estimated NEE of 84.0 ± 4.8 g C m–2 

yr–1 in 2005, which decreased to –12.0 ± 3.4 g C m–2 yr–1 in 2006. Based on six years of 

monitoring at this site, the estimated mean annual cumulative NEE was –47.8 ± 30.0 (± 1 

SD) g C m–2 yr–1 (Koehler et al., 2011). 



Chapter 2 

21 
 

The fluvial flux is another important outsource of carbon from moorland systems. DOC 

fluxes represent a major natural outsourcing of carbon from organic soils. Reported values 

are variable and range from 1 – 50 g DOC m−2 yr−1 in forested peatland catchments (Dillon 

and Molot, 1997), representing 10% of total carbon loss (Limpens et al., 2008, Gorham, 

1995). However, this can be much higher for specific sites, particularly damaged peatlands. 

The south Pennines in the UK consists of a vast area of damaged and eroding peat which has 

a high fluvial flux of particulate and organic carbon draining into nearby reservoirs, with the 

potential to then become a gaseous export of carbon. The River Ashop peatland catchment 

in the South Pennines had an annual fluvial organic carbon loss of 29-106 Mg C km-2 

between late 2005 and early 2007, with more eroded areas being dominated by POC loss 

over DOC (Pawson et al., 2012). The River Kinder reservoir in the South Pennines received 

93 % more POC than DOC in 2012 and 2013 (Stimson et al., 2017). Complete carbon budgets 

for relatively undamaged peatlands also show the importance of the fluvial flux. DOC was 

shown to be the second largest exporter of carbon out of an ombrotrophic peatland in 

southern Scotland, equating to 24 % of carbon taken up through NEE based on two years of 

monitoring (Dinsmore et al., 2010). In addition, whilst much research focuses on monitoring 

the fluvial flux in peat, long term monitoring of DOC at three moorland catchments in the 

UK have shown that concentrations in podzol soil solution increased by 48 and 215 % for 

organic and mineral horizons between 1993-2007, whilst there were no changes in peat 

(Stutter et al., 2011). Such research highlights the importance of the fluvial flux in organo-

mineral soil for carbon stability of an upland moorland catchment. 

Carbon accumulation occurs due to slow decomposition rates which result in a build-up of 

organic material in saturated conditions. Accumulation rates have been estimated at an 

average of 18.6 g C m-2 yr-1 for northern peatlands, 22.0 g C m-2 yr-1 for southern peatlands 

and 12.8 g C m-2 yr-1 for tropical peatlands (Yu et al., 2010). However, there is much 

uncertainty in accumulation rate estimates, particularly as carbon balance calculations for 

individual peatlands are based on site specific monitoring and there is uncertainty 

surrounding the how representative these are for other peatlands. Also, there are few long 

term carbon budget monitoring studies, many spanning one or two years (Roulet et al., 

2007), as well as little work on upland organo-mineral soils.  
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There are many environmental controls influencing the mechanisms involved in carbon 

inputs and outputs from a moorland system. Controls which have the greatest influence on 

organic soil carbon cycling are temperature, hydrology, plant community and chemistry of 

organic inputs (plant tissue and peat) (Moore et al., 1998). Such controls can fluctuate 

temporally and spatially, resulting in shifts in carbon source and accumulation rates, which 

ultimately affect the accuracy of annual carbon budgets. Koehler et al. (2011) found that 

over a six year monitoring period for an Atlantic blanket bog peatland in Ireland, the site 

was a source of carbon for two years. However, estimates of carbon accumulation rates do 

offer a useful basis for comparing sites and region as well as changes over time. Peat has 

been a consistent sink of carbon since the last glacial period (Charman et al., 2013), but 

climate change may destabilise these systems resulting in them becoming an net source of 

carbon. For instance, accumulation rates are thought to be decreasing gradually over time 

for sites in the UK. Billett et al. (2010) showed that recent accumulation rates for two UK 

sites (-56 to -72 g C m-2 yr-1) are much lower than those seen over 150 years (-35 to -209 g C 

m-2 yr-1) in peat cores. However, unlike peat, there has been little research invested into 

measuring long term carbon accumulation rates in peaty podzol soils in upland moorland 

environments.   

2.3.3 Decomposition process 

2.3.3.1 Biodegradation 

Biodegradation is the decomposition of organic matter by microbial organisms, producing 

gases (CO2, CH4), DOC, humus and nutrients (both organic and inorganic) (Bragazza et al., 

2009). Below is an introduction to the mechanisms involved in the decomposition of organic 

matter. 

2.3.3.1.1 Biodegradation process 

Metabolism is an essential process and a key driver of decomposition and biogeochemical 

cycles, where elements are released from the breakdown of organic matter to be used as an 

energy source, enabling the sustenance of cellular life functions. A range of metabolic 

strategies can be adopted depending on environmental conditions. The availability of a 

terminal electron acceptor and organic substrates associated with a microbe’s ecological 
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niche will result in their ecological dominance and the type of metabolism which occurs 

(Hunter et al., 1998). 

Organic matter is full of polymeric structures, where repeating monomers form a chemical 

compound with a large molecular mass. Microbes use a technique termed depolymerisation 

in order to break down long chains to produce monomer structures which are then small 

enough to pass through the cell membrane, working simultaneously with metabolism 

(Blankinship et al., 2014). Enzymes (a catalyst of biochemical reactions) are the key tool 

used to achieve this. Extracellular enzymes bind to the reactants at active sites to catalyse 

the degradation of a polymer, whilst intracellular enzymes catalyse biochemical reactions 

occurring within the cell.  

For instance, cellulose is broken down exterior to the cell by the enzyme cellulase, to 

produce the oligomer cellobiose, which is further broken down to the monomer glucose by 

the enzyme β-glucosidase. Glucose is then small enough to cross the cell membrane, where 

it is used as the terminal electron donor (TED) and therefore oxidised during a redox 

reaction catalysed by intracellular enzymes for catabolic respiration. Oxygen is converted 

and H2O is released as a waste product of aerobic metabolism. Some of the energy released 

during this process is stored in adenosine triphosphate (ATP) bonds as electrons, where it is 

used for the sustenance of cellular life functions, such as the biosynthesis of cellular 

components during anabolism.  

2.3.3.2 Variation with soil depth 

Early stage decomposition occurs at the surface where oxygen is most available. This 

process is largely led by detritivores, which break litter down into smaller pieces ready for 

microbial processing. This is followed by chemical transformation by bacteria and fungi as 

described above, producing inorganic molecules such as phosphate, ammonia, water and 

CO2 (Swift et al., 1979, Aerts, 2006).  

During this process, microbes use oxygen as the terminal electron acceptor (TEA), releasing 

CO2 as a by-product. This process is the most efficient form of respiration and is more 

thermodynamically favoured by microorganisms (Keller et al., 2009). As organic material 

moves vertically into more saturated conditions, anaerobic activities take over, with the 

redox potential being reduced (Belyea, 1996). Microbes use alternative TEA’s for reductions, 
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processes of which include (in order of decreasing thermodynamic yield) denitrification, iron 

reduction, manganese reduction and sulphate reduction. Once these TEA’s are depleted, 

methanogenesis will take place (using carbon as TEA and releasing CH4 as a by-product)  

(Keller et al., 2009). During this step-wise shift in microbial processing of organic material, 

there is a decrease in decomposition rate (Beer and Blodau, 2007).  

 

2.3.3.3 Chemical transformation of organic matter 

Microbes are capable of degrading both humic and non-humic substances in soils. Microbial 

communities are thought to preferentially decompose material which is more labile and 

easier to degrade. Such material usually has a relatively short residence time, being 

preferentially consumed by soil microorganisms, and include sugars, carbohydrates, 

proteins, amino acids, peptides, low molecular weight organic acids, fats, waxes and so on.  

DOC molecules are continuously being decomposed, altered and produced by a variety of 

microorganisms, resulting in a substance which is more stable and has a higher molecular 

weight than the original product (Malik and Gleixner, 2013). These stable, recalcitrant 

products of late decomposition stages are thought to be the largest fraction of stable 

dissolved organic matter (Kalbitz et al., 2003b). For instance, humic substances are more 

resistant to microbial degradation, and therefore stable (Schnitzer, 1978). 

2.4 Dissolved organic carbon 

2.4.1 Definition and characteristics 

Dissolved organic matter (DOM), defined as organic compounds able to pass through a filter 

with a pore size of 0.45 µm (Thurman, 1985, Sleutel et al., 2009), makes up part of the SOM 

pool. DOM has various components which are not mutually exclusive of one another, 

including dissolved organic nitrogen (DON), phosphorous (DOP), and dissolved organic 

carbon (DOC). In summary, DOM derives from the exudation or decomposition of 

organisms, including microbial mass, plants and animals, which are further biodegraded to 

produce DOC (Evans et al., 2005). 

The soil organic matter pool (SOM) consists of a mixture of plant, faunal and microbial 

debris, residues and exudates, as well as soil biomass which primarily comprises of 

microorganisms and humus (Tipping, 2002). SOM is a continuum comprising of fresh litter 
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and exudates, alongside material in various stages of decomposition (Stockmann et al., 

2013). Plant biomass is the main source of SOM, supplying a complex mixture of many 

organic components, particularly lignin, polysaccharides, tannins and biopolymers (Kögel-

Knabner, 2002). Therefore SOM receives a considerable amount of polymers from plant 

material with a variety of turnover times (Trinsoutrot et al., 2000).  

The composition of DOC can be categorised into low and high molecular weight compounds, 

both of which differ in their lability. For instance, stable humic substances are complex, high 

molecular weight compounds including a mixture of aromatic and aliphatic hydrocarbon 

structures with attachments such as ketone, hydroxyl, carboxyl and other minor functional 

groups, which dominate DOC (Tipping, 2002, Evans et al., 2005, Leenheer and Croué, 2003). 

Whilst low molecular weight, non-humic compounds have simpler biochemical structures 

which are easier to identify, including carbohydrates, fats, waxes and amino acids (Tipping, 

2002, Evans et al., 2005). 

There are three main sources of DOC; root exudates, DOC leaching from fresh plant litter, 

and the resulting product from microbial DOM decomposition. This variety of sources 

means that DOC is not homogenous, indicated by the wide range of DOC concentrations 

conveyed within studies (Zsolnay, 1996, Kalbitz et al., 2003a). Correlations have been made 

between the flux of DOC in water systems, and the amount of organic matter in the 

catchment soil, with peat producing the greatest source of DOC (Hope et al., 1997). Soils 

generally have decreasing DOC concentrations with depth, as new material is continuously 

being added to the topsoil from plant litter and exudates (Michalzik et al., 2001, Kalbitz, 

2001). 

2.4.2 Pools of DOC  

As plants photosynthesise and harvest CO2 from the atmosphere, carbon is incorporated 

into plant material, which provides a key input of carbon into the SOM pool. Within 

peatlands, DOC is produced, modified and transported between different components of 

the soil system before it reaches terrestrial waters. These include living plant material, the 

aboveground decomposing plant material and belowground soil organic matter consisting of 

a solid phase, a solution phase and the biological biomass (Figure 2.4). 
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Figure 2.4: Illustration of the how carbon is transported around different components of a moorland 

environment. 

Carbon input into the SOM compartment can occur both above and below ground. Plants 

release DOC belowground by either producing root exudates, which are readily dissolvable 

in the solution phase, or via the decomposition of dead root material in the solid phase 

(Blodau et al., 2007, Neff and Asner, 2001, Chanton et al., 1995). Aboveground inputs 

include the shedding of exudates, which then leach into the soil as DOC, or through the 

decomposition of freshly senesced litter above the soil surface in the decomposing surface 

litter zone (Neff and Asner, 2001).  

In an undamaged peatland, much of the surface vegetation is not fully decomposed under 

the cool, wet climate, and anoxic and nutrient-deficient conditions, resulting in an 

accumulation of organic matter (Ise et al., 2008). Alternatively, podzol soils are more easily 

drained than peats, resulting in more aerated conditions and microbial activity (Cook and 
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Orchard, 2008, Howard and Howard, 1993), and so the material which enters this 

belowground solid phase is of a more processed nature (Berg, 2000). 

The solid phase of SOM (including partly decomposed plant inputs from aboveground, 

decomposing roots and humus) will continue to degrade in soil, continuously releasing DOC 

into the solution phase, until the most recalcitrant, aromatic fraction remains. Within the 

solution phase, DOC is also continuously transformed by microbial activity and is eventually 

either respired back into the atmosphere during mineralisation (Marschner and Bredow, 

2002), or reprocessed into more aromatic, recalcitrant DOC (Malik and Gleixner, 2013). 

However, microbial activity is limited under the anoxic conditions of peat compared to the 

more aerated podzol soil, resulting in slower processing of organic material belowground 

(Scanlon and Moore, 2000, Freeman et al., 2001b).  

2.4.3 DOC production 

2.4.3.1 Production and consumption 

Biological processes produce DOC from the recycling of organic material, primarily from 

plant and animal biomass. Microbial decomposition releases DOC through the action of 

extracellular enzymes, which depolymerize higher molecular weight organic matter of low 

solubility, creating lower molecular weight DOC monomers and oligomers.  DOC 

consumption is also a biological process: DOC compounds which are small enough (<~600 

Da) can be actively transported through microbial cell walls and enter the anabolic and 

catabolic reactions of microbial metabolism with catabolism resulting in the ultimate 

oxidation and release of DOC as CO2 (Blankinship et al., 2014). 

Radiocarbon dating of DOC draining from peatland catchments suggests that DOC is recently 

formed, suggesting it is the product of microbial degradation of fresh litter or peat (Palmer 

et al., 2001, Tipping et al., 2010). Once small enough to become soluble, DOC is either 

transport from the catchment (Clark et al., 2008), or consumed and respired by microbes 

(Moore and Dalva, 2001). The aqueous phase is essential for the mechanisms by which soil 

microorganisms utilise organic matter (Marschner and Kalbitz, 2003), and so the dissolved 

fraction is fundamental to degradation of soil organic matter and DOC production (Kalbitz et 

al., 2003b). This is supported where a CO2 efflux can be attributed to a decrease in water-
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extractable organic carbon during selective degradation and modification of DOC by 

microorganisms (Marschner and Bredow, 2002).  

DOC can also be produced from plants, where it is released as low molecular weight 

exudates. The priming effect of exudates is greater than with root mucilage or root residues 

(Mary et al., 1993). Such an input of fresh, labile material can stimulate microbial activity 

and therefore prime organic matter decomposition (Xiao et al., 2014, Blagodatskaya and 

Kuzyakov, 2008, Kuzyakov et al., 2000). Plants are thought to benefit from the 

decomposition of their exudates through the uptake of extra nutrients that have been 

released during mineralisation (Kuzyakov et al., 2000). For instance, during a controlled 

laboratory experiment, microbial activity was increased from the input of root exudates of 

Lolium perenne, which equated to additional decomposition of around 60 kg C ha−1 d−1 and 

the mineralisation of 6 kg N ha−1 d−1 (Kuzyakov et al., 2001). 

2.4.4 Controls on production 

2.4.4.1 Water table movement and aeration 

DOC produced through organic matter decomposition is noted to increase following water 

table draw down in peat soils (Clark et al., 2009, Tipping et al., 1999, Ritson et al., 2017). 

DOC concentrations have also been noted to increase following drought in peat due to 

recovery from drought-induced acidification and associated effects on DOC solubility (Clark 

et al., 2012, Clark et al., 2006, Clark et al., 2005). A high water table and saturated 

conditions inhibits the decomposition of organic matter, and lowering the water tables 

increases aeration of organic matter, stimulating the production of DOC.  By contrast, 

podzols are more freely drained and aerobic and water table fluctuations play less 

important roles in changes in DOC production. 

The aqueous phase is essential for the mechanisms by which soil microorganisms utilise 

organic matter (Marschner and Kalbitz, 2003). DOC located within aggregates or air filled 

pores would be inaccessible for microbial processing. Soil microbes are aquatic, and organic 

carbon dissolved in water is the most bioavailable form of substrate (Marschner and Kalbitz, 

2003). 

The redox reactions utilised by soil microorganisms is dependent on environmental 

conditions, particularly pore air to water ratio and therefore aeration, gaseous volume and 
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ease of exchange. The local hydrology controls the supply rates of inorganic nutrients, redox 

species and dissolved carbon, which in turn influences microbial activity and metabolism 

(Hunter, et al., 1998). Anoxic environments will result in anaerobic decomposition which is 

less thermodynamically favoured compared to aerobic activities, and so the decomposition 

rate and therefore production of DOC is much slower (Keller et al., 2009). 

An optimum soil moisture content of 60 % increases decomposition rates, particularly when 

coupled with warmer temperatures (e.g. 24 °C) (Donnelly et al., 1990). However, upland 

peat bogs are much colder and wetter. Howard and Howard (1993) demonstrated that 

increasing moisture content results in higher levels of respiration up to an optimum point, 

with organic soils experiencing the lowest rates of CO2 evolution, such as raw peat.  

2.4.4.2 Temperature 

Temperature as a limiting environmental factor has remained controversial within the 

scientific community, with disagreement over the sensitivity of soil carbon decomposition 

(Stockmann et al., 2013, Giardina and Ryan, 2000). Many studies agree that temperature is a 

key factor controlling SOM decomposition (Knorr et al., 2005, Kirschbaum, 1995, Trumbore 

et al., 1996, Andersson and Nilsson, 2001b, Craine et al., 2010, Curtin et al., 2012, Yuste et 

al., 2007), whilst some dispute this, concluding that temperature has a minimal effect 

(Giardina and Ryan, 2000, Liski et al., 1999).  

The range of organic compounds in soil are so vast, and therefore so are their physical 

properties, including their intrinsic temperature sensitivity to decompose, resulting in 

confusion in results between studies and arguments over the type of feedback that may be 

seen with temperature increases (Davidson and Janssens, 2006). Theoretically, the non-

labile pools should be more stable and therefore less sensitive to higher temperatures 

compared to recalcitrant pools of SOM, which is supported across multiple scales and soil 

types (Craine et al., 2010). However, most decomposition models apply a single relationship 

to all pools, which may be unrepresentative and unreliable to the in situ situation 

(Stockmann et al., 2013). It is even argued that the resistant pool is more temperature 

sensitive than labile organic material (Knorr et al., 2005), although other studies challenge 

this (Fang et al., 2006). 
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DOC production is thought to be sensitive to changes in temperature in organic soils, but 

less is known about the temperature sensitivity of DOC compared to that of gaseous carbon 

losses from organic soils (Billett et al., 2004, Chapin et al., 2006). There is still much 

confusion on the effect of temperature on decomposition in organic soils (Davidson and 

Janssens, 2006). A controlled laboratory experiment on peat cores showed that 

temperature and water table draw-down result in changes to DOC production, with a higher 

Q10 (i.e. rise in the rate of net DOC production over a 10°C range) with a lower water table 

(Clark et al., 2009). However, modelling suggests that temperature increases only explain 

around 12 % of the 78 % increase in DOC production observed at a monitoring site in the 

North Pennines, with suggestions that other factors may be more important such as land 

management or changes in enzyme activity (Worrall et al., 2004a). Phenol oxidase activity 

has been shown to increase with higher temperatures in peat, which may increase the 

proportion of phenolic compounds in the peat and impair the metabolism of DOC, resulting 

in a greater proportion of DOC available to leached into surface waters (Freeman et al., 

2001a).  

Temperature may also indirectly increase microbial decomposition through increased plant 

respiration and photosynthesis, resulting in a greater volume of root exudates being shed, 

stimulating microbial activity (Tang et al., 2005). If inputs exceeded microbial decomposition 

rates, a negative feedback to the carbon cycle would be reached. Alternatively, if higher 

temperatures increase decomposition, transferring carbon to the atmosphere, a positive 

feedback would be achieved (Davidson and Janssens, 2006). 

2.4.4.3 Organic matter substrate 

Availability, chemical composition and amount of substrate will ultimately impact the 

quantity and quality of DOC produced during the biodegradation of organic material. A 

negative relationship exists between the biodegradation and lability of DOC (Kalbitz et al., 

2003a). Biota consume more labile components of organic matter first (Boyer and 

Groffman, 1996), converting this to more refractory and aromatic compounds (Thurman, 

1985), whilst leaving recalcitrant material behind to be degraded further (Boyer and 

Groffman, 1996). Therefore, microbes will follow a consistent and predictable path, 

performing chemical and molecular change on organic material, which involves a variety of 

organisms working at different stages of decomposition under a particular environment 
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(Grandy and Neff, 2008). For example, Kalbitz et al (2003a) compared DOM extractions from 

different samples and measured biodegradation through CO2 efflux. Less humified organic 

material, such as straw, litter and fermentation layers of forest floors, had the greatest 

labile fraction (59-88 %), and the highest DOC mineralisation (61-93 %). In contrast, stable 

material such as DOM extracted from peats, had the smallest labile fraction (3-6 %), and the 

lowest measurement of DOC mineralisation (4-9%), whilst DOM obtained from agricultural 

soils had intermediate labile material (14-25 %) and mineralisation (17-32 %).  

However, there is evidence that other biological and environmental factors can be more 

influential over SOM decomposition than the molecular structure of the substrate (Schmidt 

et al., 2011, Thiessen et al., 2013, Stockmann et al., 2013). Compound-specific isotopic 

analysis has shown that the more stable molecules which should theoretically persist in soil, 

such as lignin and plant lipids, can decompose as quickly as more labile compounds, some of 

which can persevere for decades, including sugars (Marschner et al., 2008, Schmidt et al., 

2011). Acidity has been shown to suppress microbial activities. Rousk et al (2009) found 

microbial inhibition below a pH value of 4.5. The observed reduction in carbon 

mineralisation was attributed to the observed increase in fungal growth and decrease in 

bacterial grown with acidity.  

Conversely, other studies have found soil moisture content and temperature to be more 

influential on microbial biodegradation than acidity (Donnelly et al., 1990). The type of 

respiration and therefore microbial taxa dominating at a particular decomposition stage will 

depend on the environmental conditions, which in turn can influence the rate of 

decomposition of particular carbon fractions, resulting in the variation in organic matter 

structure and function between ecosystems (Grandy and Neff, 2008, Stockmann et al., 

2013). It is important to note that differences in sample preparation and method of analysis 

may contribute to the disparities between studies (Marschner and Kalbitz, 2003, Jones and 

Willett, 2006, Urbansky, 2001), and the controversy surrounding the key controls on 

biodegradation of different carbon fractions. 

On another note, substrate quality and biodegradation can vary with depth. Leaching of 

DOC containing fresh plant material transports labile DOC from the organic topsoil to the 

subsoil horizons (Andersson and Nilsson, 2001b), which are then either leached out of the 

profile to nearby water courses, or are utilised by microorganisms. Both HMW and LMW 
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DOC have been attributed to microbial processing, formation and stabilisation of organic 

matter, as well as plant root exudates (Malik and Gleixner, 2013). Therefore evidence 

increasingly suggests that DOC found at depth is derived from the processing of organic 

matter (Froberg et al., 2006, Sanderman and Amundson, 2008). 

2.4.5 Controls on DOC mobility 

Once DOC is produced, physico-chemical processes affect its mobility in soils and 

partitioning between solid and dissolved phases. In organo-mineral soils, DOC can be sorbed 

onto the mineral components within the soil. The process of podzolisation, where materials 

are leached from upper E horizon, to accumulate in the lower B horizon, is central to 

controlling DOC movement. Co-precipitation of sequioxides and organic matter occurs in 

the B horizon where DOC is stored (McDowell and Wood, 1984).  

Soil water chemistry is another key feature controlling DOC solubility and the 

sorption/desorption from solid phase. Acidity and ionic strength of a solution are key 

controls on DOC solubility. For instance, Clark et al. (2011) showed DOC released from 

organo-mineral O horizon and peats decreased by 21-60 % with sulphuric acid additions and 

associated changes in acidity and ionic strength. Acidity has been shown to reduce DOC 

solubility and mobility in peat and organo-mineral soils, particularly when exchangeable 

aluminium concentrations are greater and base saturation is lower (Clark et al., 2011). DOC 

release sensitivity to sulphur additions can be increased with aluminium in organo-mineral 

soils due to complexation and co-precipitation of DOC with aluminium (Jansen et al., 2003).  

The chemical composition of DOC can also influence it’s solubility. For instance, at pH <2 

humic acids will precipitate but fulvic acids will remain in solution (Thurman, 1985). This has 

been demonstrated in laboratory sulphur addition experiments, where the concentration of 

acid-sensitive coloured aromatic humic acids have been observed to decrease with acidity in 

soil pore water (Clark et al., 2011). In addition, DOC itself can influence the pH of a solution 

through the dissociation or protonation of H+ ions, meaning it is often referred to as a weak 

organic acid (Langmuir, 1997). The degree of dissociation depends on the solution pH; with 

a low pH and therefore high concentration of H+ ions, protonation occurs which increases 

pH, and with a higher pH and therefore fewer H+ ions, dissociation is higher, actively 

reducing pH (Thurman, 1985). 
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Biological and chemical processes result in changes to the pH of soils and waters in natural 

environments. For example, the removal of cations (such as through erosion) and the 

addition of anions (such as through precipitation) can also influencing the hydrogen balance 

in soils leading to acidification (De Vries and Breeuwsma, 1987, Edwards et al., 1985). In 

particular, the addition of sea-salt deposited on coastal areas results in the addition of Cl- 

which can be acidifying. Another example is the reaction of CO2 in soil gases with soil pore 

water to produce carbonic acid (H2CO3) (Reuss and Johnson, 1986). Soil acidification can also 

occur naturally through biogeochemical cycles which alter the ion balance. Ions can be 

produced or consumed as part of reactions performed by microorganisms (Helyar and 

Porter, 1989). 

2.4.5.1 Controls on hydrological transport 

DOC which is not bound by physio-chemical processes and has not been consumed during 

microbial metabolism may be controlled by hydrological processes. Key controls on 

hydrological transport relate to soil hydrology and associated flow paths. Hydraulic 

conductivity will dictate the movement and residence time of DOC in peat and organic soil. 

For instance, in peat, where the hydraulic conductivity is slow and saturation is high, DOC 

mobility is reduced and residence time is high. Both high and low flow move through the 

organic layer where DOC is mobile (Clark et al., 2008). Seasonal changes in the hydraulic 

head also result in patterns in DOC production and consumption and spatial redistribution 

of DOC throughout the peat profile (Waddington and Roulet, 1997).  

Pockets of organo-mineral soils on peatlands have different profile characteristics and 

therefore hydrological behaviour. Such behaviour is complex and has been poorly studied. 

In general, the hill slope topography which allows podzols to form enhances drainage, whilst 

the mineral content of podzols also enhances pore volume and size and allows for easier 

throughflow. DOC which is not sorbed onto mineral surfaces is easily leached away due to 

greater drainage capacity and faster hydraulic conductivity.  Flow pathways can shift during 

stormflow events from the main runoff pathway in the lower mineral layer, to the upper 

organic layer (McDowell and Likens, 1988, Clark et al., 2008). 
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2.5 Long term DOC trends and links to declining acid rain 

2.5.1 DOC trends 

DOC monitoring was limited to a few small sites prior to national monitoring programmes 

coming into force in the 1980’s. However, even within these early site-specific datasets, 

increases in DOC concentrations were apparent both in North Wales (Reynolds et al., 1997, 

Robson and Neal, 1996) and Scotland (Harriman et al., 2001). In England, early data is 

limited to monitoring changes in water colour, with water notably becoming darker in 

colour from the 1960’s in Yorkshire (Watts et al., 2001) and areas draining the Pennines 

(Worrall et al., 2003a). 

The Acid Waters Monitoring Network has been monitoring DOC concentrations in lakes and 

streams across the UK since 1988. All 22 sites, located in acid sensitive areas of the UK, have 

experienced on average a 91 % increase in DOC concentrations (Figure 2.5), all of which 

were significant and consistent (Evans et al., 2006a). Further monitoring of another 198 sites 

across the UK showed that 77 % had a significant upward trend in DOC concentration, whilst 

23 % did not have a significant trend, and no sites had a significant decrease in 

concentration (Worrall et al., 2004b). 
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Figure 2.5: Fitted trends in dissolved organic carbon for the 22 AWMN sites. Coloured sections of the trend line 

indicates periods of significant change (determined by derivative analysis) (blue = increase; red = decrease) (M. 

Kernan, 2010). 

In addition, there have been similar trends across Northern Europe and North America 

(Skjelkvåle et al., 2005, Driscoll et al., 2003, Hejzlar et al., 2003). The international UNECE 

programme (ICP Waters) monitored the impact of atmospheric deposition on surface 

waters, covering 12 geographical regions across Europe and North America. Data shows that 

DOC concentrations have increased across Nordic countries and the UK, but not across 

Central Europe (Skjelkvåle et al., 2005). Contrastingly, there is now much evidence of 

increased DOC concentrations in water bodies in the Czech Republic (Hejzlar et al., 2003, 

Oulehle and Hruška, 2009), as well as Sweden (Erlandsson et al., 2008) and Norway (de Wit 

et al., 2007). 

In the US, a study covering the period 1990 to 2000 monitored DOC trends across northern 

and eastern US. Overall, there was an average 10% increase in DOC concentrations at four 
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out of five sites (Stoddard et al., 2003). Increases have also been observed at sites in New 

York (1982) (Driscoll et al., 2003) and Quebec (1985 – 1993) (Bouchard, 1997). 

Monteith et al. (2007) summarised data on DOC trends across Europe and North America 

(Figure 2.6). It is clear from this review that there have been increases in DOC 

concentrations across much of the Northern Hemisphere between 1990 and 2004, with 

many of these increases being significant. 

 

Figure 2.6: Map showing summary of datasets collected from monitoring sites across the Northern 

Hemisphere, for Europe (upper panel) and North America (lower panel) between 1990 and 2004 (Monteith et 

al., 2007). 
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2.5.2 Deposition of acidifying pollutants 

Natural events and cycles can emit acidifying compounds into the atmosphere and onto 

terrestrial and aquatic environments, such as volcanic eruptions, sea sprays and the 

weathering of rocks. However, emissions of sulphur dioxide and oxides of nitrogen, as well 

as other pollutants, increased rapidly across developing areas of Western Europe and North 

America during the Industrial Revolution. Activities releasing these emissions include the 

combustion of fossil fuels, industrial processes, waste incineration, agricultural activities and 

even the use of explosives. This anthropogenic input of acidifying compounds into the 

atmosphere increased and quickly exceeded natural background levels (Badr and Probert, 

1994). 

Acidification of terrestrial and aquatic ecosystems has occurred largely as a results of NO 

and SO2 emissions from fossil fuel combustion, which is transformed into nitric and 

sulphuric acid and then deposited on terrestrial and aquatic ecosystems (Galloway, 2001), 

increasing the cation concentration in solutions (Reuss and Johnson, 1986). The UK 

Environmental Change Network highlights recovery from acidification as one of the three 

most significant long-term trends in the physical environment within the UK (Morecroft et 

al., 2009). 

There has been an awareness of precipitation contamination by atmospheric pollutants 

since the early Industrial Revolution (Smith, 1872). Analysis of peat cores have provided a 

useful environmental archive of pollution deposition rates over time, particularly for sulphur 

as natural and pollutant forms are isotopically distinct. Examination of cores from the 

Pennines show evidence of increases in sulphur deposition around 1400 AD, possibly 

reflecting inputs from small-scale lead smelting in local areas. Increases in lighter isotopic 

compositions towards the surface of the cores correlate with increased sulphur deposition 

loadings from 1750 onwards, corresponding with the beginning of the Industrial Revolution 

(Coulson et al., 2005). 

The term ‘acid rain’ was first stated in scientific literature in March 1972 by Likens et al (1972), 

followed by discussion at the United Nations Conference on the Human Environment in June 

1972; the first international conference focussing on environmental issues including air 

pollution and acid deposition. Action to tackle these issues were then outlined by the Geneva 
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Convention on Long-Range Transboundary Air Pollution in 1979, where a legally binding 

international agreement was established. This provided a basis for widespread action to 

monitor and reduce air pollution and acid deposition across Europe, including the 2008 EU 

Ambient Air Quality Directive, which set limits on concentrations of air pollutants, and was 

incorporated into UK law through legislation including the Air Quality Standards Regulations 

(2010) in England. 

The scientific literature generally agree that global sulphur emissions peaked around 1980 

followed by a decline (Figure 2.7), and that this decline was largely governed by 

environmental legislation, including fossil fuel use changes, controls on coal fired power 

plants such as the introduction of scrubbers, and the removal of sulphur from oil and non-

ferrous metals (Smith et al., 2004). 

 

Figure 2.7: Global sulphur dioxide emissions between 1850 and 2000 based on estimates from within the 

literature (Smith et al., 2004). 

When focusing on the sources of sulphur dioxide (Figure 2.8), it is clear that fossil fuel 

combustion emitted the most, with coal dominating followed by oil, and even with a 

reduction in all emissions from 1980 this still remained a dominant contributor in 2000. The 

third largest contributor is metal smelting, followed by ocean bunkers (fossil fuel used for 
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ocean shipping). Other sources include natural gas processing and combustion, land use and 

land use changes, traditional biomass combustion and other industrial processes. 

 

Figure 2.8: Global sulphur dioxide emissions estimates by source between 1850 and 2000 (Smith et al., 2004). 

However, it is important to note that whilst sulphur dioxide emissions have peaked and are 

in decline in Europe and North America, emissions are still increasing in many other areas of 

the world, particularly in Asia (Figure 2.9). Therefore whilst some regions are seeing the 

effects of recovery from acidification, others are currently experiencing acidification. This 

highlights the continued relevance and importance of research on the effects of acidification 

and recovery on a variety of ecosystems internationally. 
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Figure 2.9: Change (as difference between 2010 and 2005 emissions) in regional distribution of anthropogenic 

sulphur dioxide emissions (Klimont et al., 2013). 

Reductions in sulphur dioxide emissions in the UK can be seen from the 1970’s (the earliest 

date at which emission rates were monitored), with a steep decline in the 1990’s (Figure 

2.10). In total from 1970 to 2013 there has been a 94 % decline SO2 emissions in the UK. The 

largest source of emissions were and continue to be from electricity generation, followed by 

industrial combustion. Both have seen a dramatic decline in emissions over the last four 

decades. Emissions from residential and commercial combustion have also reduced 

significantly since 1970 (Defra, 2013). 
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Figure 2.10: Sulphur dioxide emissions in the UK (1970 – 2011) alongside 2010 NECD target (black line) and 

2020 Gothenburg Protocol emission reduction target (purple line) (Defra, 2013). 

Contrastingly to SO2 emissions, NOx emissions did not begin to decline in the UK until 1990 

(Figure 2.11). This reduction was largely due to vehicle regulations as part of Euro Standards 

which brought in enforcement of the three-way catalytic converter, and a shift from coal to 

natural gas power stations (Defra, 2013). 
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Figure 2.11: Oxides of nitrogen emissions in the UK (1970 – 2011) alongside 2010 NECD target and 2020 

Gothenburg Protocol emission reduction target (Defra, 2013). 

Data collected through the Acid Gas and Aerosol Network (AGANET) monitoring programme 

from sites across the UK in 2011 show SO2 (Figure 2.12) and NOx (Figure 2.13) emissions are 

associated with the location of industrial areas, including London, the Midlands and lower 

North of England, Cardiff in Wales, Belfast in Northern Ireland and Glasgow and Edinburgh 

in Scotland. However, wet deposition of non-seasalt sulphate and nitrate is mainly in rural 

areas of the UK, highlighting the transboundary transportation potential of atmospheric 

pollutants. 
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Figure 2.12: Data maps showing concentration of sulphur dioxide emissions (left) and wet deposition of non-

seasalt sulphate (right) across the UK in 2011 (CEH, 2015b).  
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Figure 2.13: Data maps showing concentration of nitrogen dioxide emissions (left) and wet deposition of nitrate 

(right) across the UK in 2011 (CEH, 2015a). 

Another monitoring programme, the Eutrophying and Acidifying Atmospheric Pollutants 

(UKEAP) network has been monitoring precipitation chemical composition at 41 sites across 

the UK since 1986. A clear relationship can be seen in the data between the reduction in 

emissions of sulphur dioxide and oxides of nitrogen, and reduced non-seasalt sulphate and 

nitrate concentrations in rainwater for the UK  (Conolly et al., 2016). The deposition of sulphur 

across the UK has also been widely documented in freshwater systems as part of the long 

term monitoring of the Acid Waters Monitoring Network (AWMN) (Figure 2.14). Between 

1988 and 2003, sulphate concentrations have been declining gradually and this has been 

linked to reduced sulphur deposition (Evans et al., 2006a). 
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Figure 2.14: SO4 concentrations for 10 lakes and 8 streams across the AWMN between 1988 and 2003 (Evans 

et al., 2006a). 

2.5.3 DOC physio-chemical response mechanism 

Marine and atmospheric sulphur have decreased over the last three decades, whilst DOC 

concentrations in surface waters draining organic catchments has been increasing (Figure 

2.15). The key hypothesis behind this relationship is that declining sulphur deposition has 

led to decreased acidity and ionic strength as soils recover, which has increased DOC 

solubility (Evans et al., 2006a). 

 

Figure 2.15: DOC and SO4 concentrations for 10 lakes and 8 streams across the AWMN between 1988 and 2003 

(Evans et al., 2006a). 
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During times of high acid deposition, the pH of soil solutions decreased, which lowered DOC 

solubility as organic compounds precipitated out of solution and coagulated together. As 

acid deposition decreased, pH of solutions increased as soils recovered towards pre-

pollution levels and a high DOC production state. In addition, the solubility of the previously 

locked away DOC increased, resulting in a significant release of DOC into nearby water 

systems. However, there have been discrepancies in the amount of DOC released from 

catchments receiving similar acid deposition loads, raising the question of the importance of 

catchment specific characteristics such as the proportion of peat and organo-mineral soils 

(Clark et al., 2010a). 

Electrical conductivity (measured as a proxy for ionic strength) is also increased with acidity, 

which may also retain DOC in peat. However, DOC solubility is more sensitive to changes in 

acidity than to conductivity (Clark et al., 2011). Variations in soil properties can also affect 

the extent to which this mechanism occurs and accounts for the differences in magnitude of 

DOC responses to acidity at different sites. This includes variations in soil acid/base status 

such as acidity buffering in peat, aluminium concentrations in organo-mineral soils resulting 

in co-precipitation with DOC and lower base saturation (Clark et al., 2011). 

2.5.3.1 Evidence of driving mechanism 

There are many theories which have been put forward to explain these increases in DOC 

concentrations. These include atmospheric carbon dioxide (Freeman et al., 2004), increased 

nitrogen deposition (Findlay, 2005), warmer temperatures (Freeman et al., 2001a), 

precipitation (Tranvik and Jansson, 2002), changes to land management (Clutterbuck and 

Yallop, 2010) and catchment hydrology (Erlandsson et al., 2008). 

However, there is a strong evidence base in the literature to supporting the pH-DOC 

hypothesis. Long term monitoring of DOC concentrations in terrestrial water bodies has 

been conducted across sites in the Northern Hemisphere since the 1980’s. The AWMN in 

the UK has shown a 91% increase in DOC concentrations in the water bodies monitored 

between 1988 and 2003, which correlate to a reduction in sulphur concentrations (41% 

reduction between 1988 and 1993 (Davies et al., 2005)) (Evans et al., 2006a). This 

relationship has also been observed across Europe and North America (Driscoll et al., 2003, 
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Skjelkvåle et al., 2005, Stoddard et al., 2003, Oulehle and Hruška, 2009, Oulehle et al., 2017, 

Oulehle et al., 2011). 

Numerous laboratory and field experiments have provided strong evidence for this pH-DOC 

link. For instance, acidity manipulation field experiments in both peatlands and forested 

environments have shown strong relationships between acidity and DOC mobility in peat 

and organo-mineral soils (Evans et al., 2012, Oulehle et al., 2013, Evans et al., 2008a, 

Moldan et al., 2012, Ekström et al., 2011). Laboratory experiments have been conducted on 

samples collected from peatland sites across the UK, which provides further evidence for 

this hypothesis (Clark et al., 2011, Palmer et al., 2013). For instance, Clark et al. (2011) 

showed DOC released from organo-mineral O horizon and peats decreased by 21-60 % with 

sulphuric acid additions.  

Studies involving models have also provided further support for this pH-DOC mechanism 

(Monteith et al., 2007, Rowe et al., 2014, Evans et al., 2008b, Sawicka et al., 2016). Sawicka 

et al. (2017) used the soil chemistry model MADOC and found that acidification from 

sulphur deposition was the dominant control on DOC trends, but suggests that the effects of 

nitrogen deposition on N-limited soils may have raised the ‘acid recovery DOC baseline’ to 

above pre-industrial levels. It is also suggested that changes in DOC leaching previously 

attributed to nitrogen deposition could be due to the simultaneous acidification of nitrogen 

pollutants (Evans et al., 2008a, Oulehle et al., 2018). 

2.6 Gaps in knowledge 

There has been inconsistencies in how different sites have responded to decreasing acidity 

and deposition, with some sites showing no significant increase in DOC. Whilst this may 

relate to variation in soil type and acid/base status between sites (Clark et al., 2011), there 

are still questions as to whether a biological mechanism may also be contributing to this 

disparity in magnitude of DOC changes at different sites.  

There is evidence that biological activity in terms of DOC production and consumption may 

have increased with decreasing sulphur deposition. Dawson et al. (2009) used a statistical 

mixed-effects model to analyse the mechanisms behind the increased DOC concentration 

and hydrophobic fraction observed over two decades of monitoring at two upland moorland 

catchments in Scotland. Results suggest that increased solubility of DOC alongside enhanced 
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heterotrophic decomposition are behind these trends. Alternatively, high sulphur inputs 

may increase bacterial sulphate reduction, which may increase consumption of labile DOC 

(Bartlett et al., 2005). 

It is important we fully understand the mechanisms behind increased DOC concentrations to 

further understand the implications for future carbon stores and accelerated climate 

change. There is a clear acceptance of the pH-DOC link within the scientific literature, and 

yet a knowledge gap exists in whether a biological mechanism may also be involved. In 

particular, how changing acidity might affect microbial communities and their functions, 

with a focus on DOC production and consumption. 

2.7 Conclusion 

Since the industrial revolution, fossil fuel combustion has resulted in an unintended field 

experiment spanning a momentum scale, resulting in acidification of terrestrial and aquatic 

ecosystems across much of the Northern Hemisphere. In recent decades, environmental 

legislation has led to a huge reduction in the emissions of acidifying pollutants, including a 

94 % drop in SO2 emissions (Defra, 2013). As a result, these environments are now in a state 

of recovery. The UK Environmental Change Network highlights recovery from acidification as 

one of the three most significant long-term trends in the physical environment within the 

UK (Morecroft et al., 2009).  

Over the same time scale, DOC concentrations in terrestrial waters has increased by more 

than 90 % in acid sensitive areas across the UK (Evans et al., 2005). Much of this DOC is 

leaching from catchments containing carbon rich peat and organo-mineral soils, leading to 

concerns over the future of these internationally important carbon stocks and climate 

change implications. Further work is needed to better understand the mechanisms behind 

this increased DOC trend. 
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Chapter 3: Field sites and experiment 

3.1 Description of study area 

Two experimental sites were set up in contrasting areas of historic pollution deposition in 

two National Parks in the UK (Figure 3.1). 

 

Figure 3.1: Map of UK illustrating the location of the two experimental sites (GoogleMaps, 2015). 

Migneint (Figure 3.2) is a large area of upland moorland (experimental plots at ~460 m 

above sea level (a.s.l.)) located in the Snowdonia region of North Wales (3°48.8′ W, 52°59.6′ 

N), dominated by extensive blanket peat (Table 3.1). Although the Migneint has experienced 

low levels of pollution (Section 3.1.1) and is considered to be in relatively good condition 

(Evans et al., 2012), this still exceeds critical loads for a blanket bog and has resulted in 

significant acidification of the catchment (Evans et al., 2006b), with increased DOC 

concentrations in surface waters. This has been observed from nearby Upland Water 

Monitoring Network (UWMN) sites (M. Kernan, 2010, Monteith et al., 2014). Llyn Llagi, 

located 13 km west of the experiment site, has seen an 89 % increase in annual mean DOC 

concentrations between 1989 and 2009; and Afon Gwy, situated 50 km south, has had an 

increase of 51 % over the same time period (Evans et al., 2012). 

Peaknaze 
Migneint 
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Figure 3.2: A photograph of the surrounding landscape at the Migneint field site. 

 

Peaknaze (Figure 3.3) (1°54.5′ W, 53°28.3′ N)  is located  in the upland moorland area 

(experimental plots at ~440 m a.s.l.) of the Peak District National Park, which encompasses 

the southern end of the Pennines located in the Midland / Northern area of England (Table 

3.1). Contrastingly to the Migneint, high levels of sulphur and nitrogen deposition (Section 

3.1.1) alongside intensive land management has led to peatland degradation, including 

Sphagnum loss and erosion (Oulehle et al., 2013, Tallis, 1987, Carroll et al., 2009). UWMN 

data indicates a rise in annual DOC concentration in nearby water courses, such as at the 

River Etherow (located 6 km from the study site) where a 194 % increase between 1989 and 

2009 has been observed (Evans et al., 2012). 
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Figure 3.3: A photograph of the surrounding landscape at the Peaknaze field site. 

 

 
Migneint Peak District 

Peat Podzol Peat Podzol 

Condition Good Degraded 

Water Table (2008-2011) 9 cm below surface 13 cm below surface 

Height Above Sea Level 460 m 486 m 440 m 440 m 

Annual  Average Rainfall 2400 mm/yr 1000 mm/yr 

Increase in annual mean DOC  Llyn Llagi River Etherow 

Concentration 1989-2009 89 % 194 % 

 

Table 3.1: A summary of the key characteristics at the two experimental sites. DOC concentrations are for two 

nearby Upland Waters Monitoring Network sites; River Etherow which is 6 km from Peaknaze, and Llyn Llagi 

located 13 km from Migneint (Evans et al., 2012). 

3.1.1 Pollution deposition 

Both sites have received very contrasting levels of pollution deposition (Table 3.2) which has 

strongly acidified soils and surface waters (Evans et al., 2000). The levels of pollution being 

experienced over these regions have significantly changed over the years. For instance, 
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between 1970 and 2007 there was an estimated 66 % reduction in sulphur deposition at the 

Migneint (as valued by the FRAME model), with 4.91 kg S ha-1 yr-1 of non-marine oxidised 

sulphur being deposited in 2014. Contrastingly, the Peak District represents an area also 

dominated by peat that has experienced much higher levels of sulphur deposition. Non-

marine sulphur deposition was measured at 6.31 kg S ha-1 yr-1 in 2014, following a 69 % 

decline in sulphur deposition between 1970 and 2005 (Dore et al., 2007, Evans et al., 2012, 

CEH, 2014). Despite the decline in sulphur deposition, nitrogen deposition remains much 

higher, with 17.98 kg N ha-1 yr-1 being measured near the Migneint experimental plots in 

2014, and 22.91 kg N ha-1 yr-1 near Peaknaze (CEH, 2014). 

Waters draining from the catchments encompassing the experimental sites have shown a 

large decrease in sulphate and nitrate concentrations. Llyn Llagi, located 13 km from the 

Migneint experimental site, had a sulphate concentration of 62.9 kg S ha-1 yr-1 and a nitrate 

concentration of 10.4 kg N ha-1 yr-1 during UWMN baseline years (1988 – 1993), which has 

now fallen to 36.6 kg S ha-1 yr-1  and 6.4 kg N ha-1 yr-1  (2014 – 2015 data). Much higher 

concentrations were measured at the River Etherow, located 6 km from Peaknaze. During 

baseline years, the sulphate concentration was 295.3 kg S ha-1 yr-1 and the nitrate 

concentration was 44.8 kg N ha-1 yr-1. Although these have reduced considerably to 139.6 kg 

S ha-1 yr-1 and 29.4 kg N ha-1 yr-1 (2014 - 2015),  these are still high values depicting pollution 

deposition still remains high in this region (Shilland et al., 2016). In addition, when assessing 

the recent UKEAP (UK Eutrophying and Acidifying Network) dataset for wet and dry 

deposition as well as acid gas concentrations for nearby waters, we can see that the Peak 

District still has higher concentrations of pollutants compared to the Migneint area of 

Snowdonia (Table 3.2).  

Regardless of the lower levels deposited over the North Wales region in comparison to the 

Peak District, considerable acidification is suspected to have occurred (Evans et al., 2006a). 

This can be seen in the pH of precipitation collected in 2016, which was 0.32 units lower at 

Llyn Llagi than at the River Etherow (Defra, 2016b). Also, recent (2014) deposition data 

shows total acidity deposition was much higher near the Peaknaze experimental site at 1.83 

keq ha-1 yr-1 compared to 1.47 keq ha-1 yr-1 near the Migneint site (CEH, 2014). 
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Data Year Migneint Peaknaze 

Non-marine Sulphur Deposition  

(kg S ha-1 yr-1)1 

Historical 

(1970 – 2007) 

Decreased by 66% Decreased by 69% 

Total None-marine Oxidised Sulphur 

Deposition (kg S ha-1 yr-1)2 

2014 4.91 6.31 

Non-marine Wet Sulphate Deposition  

(kg S ha-1 yr-1)2 

2014 4.41 5.41 

Sulphur Dioxide Dry Deposition  

(kg S ha-1 yr-1)2 

2014 1.32 2.55 

Total Nitrogen Deposition (kg N ha-1 yr-1)2 2014 17.98 22.91 

Total Acidity Deposition (keq ha-1 yr-1)2 2014 1.47 1.83 

UWMN River Concentrations3  Llyn Llagi River Etherow 

Sulphate Concentrations  Baseline Years 62.9 295.3 

(μeq l-1) 2014 – 2015 36.6 139.6 

Nitrate Concentrations  Baseline Years 10.4 44.8 

(μg l-1) 2014 – 2015 6.4 29.3 

UKEAP Wet Deposition4  Llyn Llagi River Etherow 

Non-marine Sulphate as S in Precipitation 

(mg/L) 

2016 0.13 0.24 

Nitrate as N in Precipitation 

(mg/L) 

2016 0.17 0.37 

pH of Precipitation 2016 5.38 5.70 

UKEAP Acid Gases Concentrations5  Plas Y Brenith Lady Bower 

Sulphur Dioxide (μg/m3) 2016 0.31 0.42 

Nitric Acid (μg/m3) 2016 0.18 0.23 

Nitrous Acid (μg/m3) 2016 <0.002 <0.03 

UKEAP Particulate Deposition5  Plas Y Brenith Lady Bower 

Particulate Sulphate (μg/m3) 2016 0.90 0.82 

Particulate Nitrite (μg/m3) 2016 <0.05 <0.05 

Particulate Nitrate (μg/m3) 2016 1.19 1.62 
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Table 3.2: A summary of present and historical pollution deposition collected near experimental sites. Sources 

are as follows: 1) CEH moorland deposition data and estimates from the FRAME model (Evans et al., 2012); 2) 

UK deposition data downloaded from CEH website (CEH, 2014); 3) UWMN (Shilland et al., 2016). The mean 

between 1988 and 1993 is deemed the baseline; 4) UKEAP data of wet deposition at the UWMN sites (Defra, 

2016b) and 5) concentration of acid gases and particulate deposition at nearby Plas Y Brentih (29 km from 

Migneint)  and Lady Bower (23 km from Peaknaze) (Defra, 2016a). 

3.1.2 Soil type and vegetation 

The field experiment encompasses two different soil types at each site location. The first is 

blanket peat, or histosols under the FAO classification system (FAO, 2006). These dominate 

areas where rainfall is high with minimum relief. The second soil type is peaty podzols (histic 

podzol (FAO, 2006)) which is an organo-mineral soil typical to areas with high rainfall and 

moderate drainage (see Section 2.2). These represent two common soils types typical to UK 

upland organic catchments and which represent two slightly different moorland 

environments. At the Migneint, the peat is approximately 460 m a.s.l. with a mean water 

table depth of 9 cm (as measured between 2008-2011) and an average peat depth of 2.0 m 

across the study area (Figure 3.6). The NVC (National Vegetation Classification) code for this 

site is M19 (Calluna vulgaris – Eriophorum vaginatum blanket mire) (Rodwell, 1998b) with 

vegetation including Calluna vulgaris and Eriophorum vaginatum with some Cladonia spp. 

above a deep Sphagnum layer (Figure 3.4). A large diversity exists in Sphagnum species 

across the Migneint area. Alternatively, humic podzol soils are present on hilly areas (Figure 

3.5), the experimental plots being approximately 486 m a.s.l., emerging from a blanket bog. 

The peaty organic horizon is 5-18 cm deep, with a shallow stony E and B horizon underlying, 

followed by bedrock (Figure 3.6). Vegetation includes Festuca ovina and Juncus squarrosus 

with some Galium saxatile, Eriophorum vaginatum and Calluna vulgaris, as well as mosses 

such as Polytrichum commune and Pleurozium shreberi (Evans et al., 2012), with the NVC 

community U6 (Juncus squarrosus – Festuca ovina grassland (Rodwell, 1998a)). 
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Figure 3.4: A photograph of the peat plots located at Migneint. 

 

Figure 3.5: A photograph of the podzol plots located at Migneint. 
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Migneint  Peaknaze 

Peat Podzol  Peat Podzol 

Peat Peaty Organic 
Horizon 

 

 Peat Organic  
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Stony B Horizon 

 

 Bedrock   Bedrock 

     

 

Figure 3.6: Diagram of the horizon structures of two soil types at the two experimental locations (no scale 

applied). 

The experimental area of Peaknaze is mainly dominated by peat, with an average depth 

over the experimental area of 2.3 m. Amongst bare patches of exposed peat (Figure 3.7), 

degraded vegetation includes Eriophorum vaginatum, Calluna vulgaris and Vaccinium 

myrtillus with widespread mosses largely consisting of Pleurozium shreberi and some 

Caldonia spp. (Figure 3.8) (NVC M20b Calluna vulgaris – Cladonia spp. sub-community 

(Rodwell, 1998b)). The podzol soil has a 5-8 cm organic horizon overlying a 20-40 cm sandy E 

horizon and a stony B horizon (Figures 3.6 and 3.9). Vegetation community has been 

categorised as NVC U6 with Vaccinium myrtillus sub-community (Rodwell, 1998a), which 

largely consists of Festuca Ovina, Calluna vulgaris and extensive Vaccinium myrtillus, with 

some Eriophorum vaginatum and Juncus squarrosu. Mean water table depth is 13 cm (as 

measured between 2008-2011) (Evans et al., 2012). 

5-18 cm 

2.0 cm 

5-8 cm 

20-40 cm 

2.3 cm 
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Figure 3.7: A photograph taken near Peaknaze showing an exposed area of peat where extensive erosion has 

occurred. 

 

Figure 3.8: A photograph of the peat plots based at Peaknaze. 
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Figure 3.9: A photograph of the podzol plots based at Peaknaze. 

3.2 Field experiment  

3.2.1 Experiment design 

This research builds on an existing long-term pH manipulation field experiment established 

in 2007 (Evans et al., 2012). Plots consist of twelve 9 m2 plots at each of the four sites, with 

a randomised blocked design compromising of four replicates of control, acid and alkaline 

treatment plots at each location (Figure 3.10 and 3.11). Therefore for statistical analysis, 

there are two factors; sites (four levels), and treatments (three levels), the design being 

applicable for a Two-way ANOVA test to investigate significant differences in data. Two 

treatments (acid and alkaline) were applied to two soil types (peat as a sulphur reducing 

system; and podzol as a sulphur oxidising system) at each location (Migneint and Peaknaze) 

on a monthly basis with additional control plots receiving ambient rainfall only.  
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Figure 3.10: Illustration of field experiment layout, with three treatments organised in a randomised block 

design at two locations for two soil types. 

 

Figure 3.11: Photograph of the 3x3 m plots located at Migneint on peat soil. The corners of the plots are 

marked out with posts, colour coded in reference to treatment type (white is control, red is acid and blue is 

alkaline). 

 

 

 

 



Chapter 3 

60 
 

3.2.2 Treatment applications 

Treatments were applied initially from October 2008 until December 2012 (Evans et al., 

2012), and then re-established (using the same methods, treatments and plot allocations) 

from January 2015 until October 2016. Acid plots received a monthly dose of sulphuric acid 

(H2SO4) mixed with rainwater collected at the site with 20 L of rainwater using a watering 

can (Figures 3.12 and 3.13). The concentration applied was 50 kg S ha-1 yr-1 at the podzol 

sites and 100 kg S ha-1 yr-1 at the peat sites, the latter concentration being similar to the 

ambient sulphur deposition in the Peak District in the 1970’s. A higher dose was applied to 

peat plots to take account of the buffering effects of sulphur reduction. It should be noted 

that the aim of this experiment was to measure the effect in soil pH rather than simulate 

exact deposition loads. The original dose was 25 kg S ha-1 yr-1 in the early experimental 

years, which was increased to 50 kg S ha-1 yr-1 in January 2009, and again to 100 kg S ha-1 yr-1 

at the peat plots in September 2009 to represent an acceleration in the experiment and 

ensure measureable pH change could be captured against the sulphur reduction mechanism 

of peat. A 10 L rinse of rainwater followed application to ensure the treatment infiltrated 

into the soil and to minimise and direct toxicity effects on plant foliage.  

The same procedure was used for the alkaline plots with sodium hydroxide (NaOH) and 

potassium hydroxide (KOH). This was followed by a rinse containing magnesium chloride 

(MgCl2) and calcium chloride (CaCl2) to maintain base cation ratios similar to those observed 

in rainfall, as well as maintaining a Na:Mg ratio similar to sea-salt. The molar OH- 

concentration in the alkaline treatments was intended to be comparable to the H+ 

concentration in the acid treatments. In 2009 treatments dosages were increased in parallel 

to those at the acid plots. Control plots received 20 L of rainwater only. See Appendix in 

Chapter 4 for protocol on treatment solution preparation. 



Chapter 3 

61 
 

 

Figure 3.12: A photograph of treatment solutions for a site prior to being diluted with rainwater. 

 

Figure 3.13: A photograph showing alkaline treatment being applied to a plot at the Migneint peat site. 
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3.2.3 Sample collections 

3.2.3.1 Sample collection timing 

Prior to treatments recommencing in 2015, soil samples were collected from all plots in 

January and a chemical analysis was undertaken on soil extracts. In September 2015, 

monthly soil pore water collection began, and continued until October 2016 (Chapter 4). Soil 

samples were taken quarterly from January 2016 until October 2016 (Chapter 4). Litter was 

collected from a variety of vegetation species in September 2015 (Chapter 5 and 6) and 

three collections of decomposing surface litter were made in April, July and October 2016 

(Chapter 4). 

3.2.3.2 Soil sample collection 

A square ‘flap’ of approximately 10cm2 was cut through the vegetation using a serrated 

edge knife, including the top productivity layer, and the dead undecomposed layer below 

for peat. Using the knife and a trowel, the required quantity of soil or peat was removed 

(~30 g) from a depth of 10-20 cm (Figure 3.14), and placed into a plastic re-sealable bag. The 

flap was then put back in place and lightly pressed down, in order to restore the plot to its 

original condition and minimise disturbance as much as possible. Four soil samples were 

taken from each plot, 10-15 cm in from the edge to avoid impacts from compaction, and 

avoiding 15 cm around the gas chamber cylinders to avoid disturbance which may affect 

future gas flux readings.  
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Figure 3.14: A photograph of a peat sample being collected. 

3.2.3.3 Soil pore water sample collection 

Rhizon suction samplers (19.21.35, www.rhizosphere.com) were installed into plots to a 

depth of 10 cm below the surface at a slight angle during July 2015, with four rhizons per 

plot approximately 30-60 cm from each corner. For sample collection, a 20 ml syringe was 

inserted into the end of the rhizon (Figure 3.15), and a vacuum was created inside the 

syringe by pulling out the plunger and using a retainer to keep this in place. These were then 

left overnight and collected the following morning. Syringes were covered in silver tape to 

minimise direct sunlight and the potential for sample degradation. Samples were bulked by 

dispensing all four syringes into the relevant bottle for each plot. If less than 10 ml was 

collected in a syringe, the total volume was recorded on the field sheet. 
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Figure 3.15: A photograph of soil pore water being collected using a rhizon and syringe. 

3.2.3.4 Decomposing surface litter collection 

Prior to collecting a soil sample, the decomposing litter (Figure 3.16) directly on the soil 

surface was scraped away and placed inside a re-sealable plastic bag. A soil sample was then 

taken from this position. A total of four samples were taken per plot and bulked. 

 

Figure 3.16: A photograph of some decomposing surface litter being collected. 
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3.2.3.5 Litter collection 

Freshly senesced litter samples were collected at the end of the growing season during 

September 2015 when DOC production was at its highest. Vascular plants including 

Eriophorum vaginatum and Festuca ovina were collected as standing biomass using scissors 

to cut through the stem directly above the soil surface, whilst branches of Calluna vulgaris 

were also removed with scissors. Sphagnum was collected as whole blocks whilst 

Pleurozium schreberi was cut from the ground using scissors. All samples were placed into 

large re-sealable plastic bags. 

3.2.3.6 Storage and transport of samples 

Samples were stored in a cool box with ice blocks during transportation from the sites to 

CEH Bangor. Once at CEH, samples were stored at 4°C in a refrigerator prior to analysis, 

whilst soil subsamples were stored at -20°C destined for Next Generation Sequencing (NGS). 

3.2.4 Sample analysis overview  

The type of analysis performed on each sample type, and where this is presented in this 

thesis is summarised below in Table 3.3. 

Sample Type Type of Analysis Chapter 

Soil pore water Chemistry 4 

Soils Chemistry of extracts 

Microbial communities 

4 

7 

Decomposing surface litter Chemistry of extracts 4 

Litter Decomposition 

Chemistry of extracts 

5, 6 

6 

 

Table 3.3: Summary of analysis on each sample type, with reference to the chapters where this is detailed. 
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Chapter 4: How do acidity manipulations effect DOC quantity and quality in 

peatland soil extracts, pore water and surface litters across different sites? 

Abstract 

There has been an observed increase in dissolved organic carbon (DOC) concentration in soil 

solutions and surface water bodies over the past 30 years in acid sensitive areas of Europe 

and North America, which has been linked to recovery from acidification of soils in response 

to decreasing levels of atmospheric pollution. In addition, there is evidence from 

radiocarbon 14C dating that DOC in surface waters is from recently formed DOC in the upper 

organic layer of peat. The key aim of this study was to improve understanding of whether 

increases in DOC observed in surface waters in response to changing acid deposition are the 

result of increased export from surface litter or near surface peat. This research was built 

upon an existing long-term pH manipulation field experiment in contrasting areas of 

historical pollution; North Wales and the Peak District, UK. Here, we present analysis of one 

year monitoring data of peat pore waters and DOC extracts from surface litter and peat.  

When comparing DOC production in peat and litter within the upper organic layer, litter was 

the largest source with nearly 3 times more DOC, whilst peat had more aromatic DOC (as 

indicated by SUVA254) during July and April which significantly reduced during October. 

Organo-mineral soil was found to contain more aromatic DOC in the upper peaty layer than 

peat itself, which suggests that podzol areas of an organic catchment may release this 

coloured humic acid fraction of DOC during times of high flow. A theoretical pathway model 

has also been proposed for the production and movement of aromatic DOC through the 

different components of the surface layer. Finally, results show that pore water pH and DOC 

concentration are strongly correlated, and the reproducibility of results from a previous 

acidification experiment at these sites provide further support for the hypothesis that 

increasing DOC concentrations in surface waters is due to increasing solubility of DOC with 

recovery from acidification. This pH-DOC relationship was also seen in peat samples, but not 

in surface litter. 
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4.1 Introduction 

Dissolved organic carbon (DOC), which is typically defined as organic carbon less than 

0.45 μm in size (Thurman, 1985), represents a major natural carbon export from peatlands 

and other organic rich peaty soils (Clark et al., 2007, Dinsmore et al., 2010, Billett et al., 

2004, Hope et al., 1994). Therefore, waters draining catchments comprised of organic rich 

soils such as peat and peaty podzols are associated with high concentrations of dissolved 

organic matter (DOM) released during the decomposition of organic material (Evans et al., 

2006a, Aitkenhead et al., 1999). However, much of the literature focuses on DOC exported 

from peatland areas, with little investment into the role of organo-mineral soils on DOC 

dynamics in organic catchments. 

There has been a considerable increase in DOC concentrations in terrestrial waters draining 

catchments dominated by organic soils in much of the Northern Hemisphere since the 

1980’s (Evans et al., 2005, Monteith et al., 2007, Oulehle and Hruška, 2009, SanClements et 

al., 2012b, Couture et al., 2012). This has been largely attributed to recovery from 

acidification in many regions, with increased solubility of DOC with increasing pH, releasing 

previously suppressed DOC from soils. This is widely supported by field (Evans et al., 2012, 

Oulehle et al., 2013, Evans et al., 2008a, Moldan et al., 2012, Ekström et al., 2011) and 

laboratory experiments (Clark et al., 2011, Palmer et al., 2013) as well as modelling 

(Monteith et al., 2007, Rowe et al., 2014, Evans et al., 2008b, Sawicka et al., 2016) and field 

observations (Oulehle et al., 2017, Oulehle and Hruška, 2009, Evans et al., 2006a, Oulehle et 

al., 2011). With peatlands being a major store of carbon (Gorham, 1991), and with drastic 

changes in DOC export from these ecosystems, concerns have been raised over the future of 

carbon balances from these organic catchments (Freeman et al., 2001a). 

This increase in DOC export from peatlands and other organic soils not only affects carbon 

budgets (Dinsmore et al., 2010), but also creates expensive implications for water 

companies due to the removal of DOC through drinking water treatment processes (Ritson 

et al., 2014). In addition, greater DOC concentrations in terrestrial waters can also affect the 

functioning of aquatic ecosystems by influencing acidity (Eshleman and Hemond, 1985), 

bioaccumulation of organic chemicals (Haitzer et al., 1998), transport of trace metals 

(Lawlor and Tipping, 2003), nutrient (Stewart and Wetzel, 1981) and energy supply (Wetzel, 
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1992), and light absorbance (Schindler, 1971) and photochemistry (Scully et al., 2003). 

Therefore there is a dire need to understand these changing carbon dynamics. 

DOC is produced through the decomposition of both above and below ground plant 

material, as well as organic matter decomposition and the release of plant exudates. As a 

result of these diverse sources, DOC consists of a range of molecules with a variety of 

molecular weights and properties (Leenheer and Croué, 2003). It is likely that the dominant 

vegetation community of upland organic catchments will influence the quantity and quality 

of DOC produced and exported into water bodies. For example, Sphagnum has been shown 

to produce highly aromatic DOC during decomposition, as has peat, whilst vascular plants 

result in a greater quantity of DOC which is more labile in nature (Ritson et al., 2016, 

Armstrong et al., 2012).  The source of DOC and its chemistry, specifically the proportion of 

aromatic compounds will affect the sensitivity to changes in acidity (Clark et al., 2011, 

SanClements et al., 2012a). 

Recent studies have suggested that in intact systems the DOC in surface waters is less than 

40 years old (Palmer et al., 2001, Tipping et al., 2010, Evans et al., 2007), and that surface 

layers are better connected with stream water DOC concentrations than deeper soil pore 

water (Clark et al., 2008, Billett et al., 2006). Radiocarbon 14C dating within peatland 

catchments have demonstrated that between 96 - 100 % of DOC in surface water was 

recently produced and derived from the peat surface layer (Tipping et al., 2010). However, it 

is difficult to determine the relative role of litter compared to near surface peat as a source 

of DOC from these studies alone. 

There are uncertainties as to why increases in DOC concentrations have not been uniform 

across sites receiving similar deposition levels, possibly due to site specific catchment 

characteristics. Field evidence shows that DOC flushed into water systems is recently 

formed and derives from the upper layer of peat. However, there has been little effort 

invested into partitioning this dynamic upper segment to understand in detail the roles of 

decomposing litter and peat organic matter. Much research to date in the UK has focused 

on peatlands, with less attention given to processes in freely-draining organo-mineral soils. 

It is unclear to what extent the riverine DOC derives from surface litter or newly formed 

peat, and whether there is any difference in DOC properties and their sensitivity to 

environmental change such as acidification. Therefore, the key aim of this study is to 
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improve understanding of where in the surface layer DOC increases are likely to be 

originating by assessing the quantity and quality of DOC in surface litter and peat and their 

response to acidification and recovery. 

Specific objectives are: 

• To quantify, characterise and compare the direct measures of DOC in soil pore water 

with laboratory water extracts of decomposing surface litter and peat and organo-

mineral soil O horizon. 

• To assess how DOC quantity and quality differs among peat and organo-mineral soil, 

and across different sites representing a damaged and pristine moorland as well as a 

‘natural’ acidity gradient. 

• To assess the effect of acidity manipulations on DOC derived from soil pore water, 

litter extracts and soil extracts in terms of mobility and aromaticity. 

4.2 Methods 

4.2.1 Site description and experimental design 

This work is built upon an existing long-term acidity manipulation field experiment set up in 

2007, situated across two moorland locations with contrasting historic rates of acid 

deposition, and therefore present-day soil acidity (Evans et al., 2012).  At each site, 

replicated acidity manipulations were established within two soil types; blanket peat and 

peaty podzol, which are among the commonest soils present in the UK uplands, and which 

also occur extensively in other cool, humid temperate regions. 

The first study site, the Migneint (3°48.8’ W, 52°59.6’ N, 460 m a.s.l.), is a relatively 

undisturbed moorland area with historically low levels of pollution, based in North Wales. 

Peaknaze (1°54.5’ W, 53°28.3’ N, 440 m a.s.l.), Northern England, is a more disturbed region 

affected by relatively intensive land management and historically high levels of atmospheric 

pollution, which has led to degradation of the ecosystem including Sphagnum loss and 

erosion. More details for both sites can be found in Chapter 3 and (Evans et al., 2012). 
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4.2.2 Field experimental operation 

The experimental sites were established in August 2007 and consist of twelve 9 m2 plots at 

each of the four sites, with a randomised blocked design compromising four replicates of 

control, acid and alkaline treatments at each location. Treatments were applied initially 

from October 2008 until December 2012 (Evans et al., 2012), and then re-established for the 

purposes of this study (using the same methods, treatments and plot allocations) from 

January 2015 until October 2016. Acid plots received a monthly dose of sulphuric acid 

(H2SO4) mixed with rainwater (20L) collected at the site. The concentration applied was 50 

kg S ha-1 yr-1 at the podzol sites and 100 kg S ha-1 yr-1 at the peat sites, this concentration 

being similar to the ambient sulphur deposition in the Peak District in the 1970’s (a higher 

dose was applied to peat plots to take account of the buffering effects of sulphur reduction 

(Evans et al., 2012)). A 10 L rinse of rainwater followed to ensure the treatment infiltrated 

into the soil and to minimise any direct toxicity effects on plant foliage.  

The same procedure was followed for the alkaline plots with sodium hydroxide (NaOH) and 

potassium hydroxide (KOH), followed by a rinse containing Magnesium Chloride (MgCl2) and 

Calcium Chloride (CaCl2) to maintain base cation ratios similar to those observed in rainfall. 

The molar OH- concentration in the alkaline treatments was intended to be comparable to 

the H+ concentration in the acid treatments. Control plots received 20 L of rainwater only. 

All treatments and rinses were applied using a watering can. 

4.2.3 Sampling and analysis 

4.2.3.1 Pore water sampling 

Pore water samples were collected monthly from September 2015 until October 2016, 

approximately one week after treatments were applied. Samples were collected from a 

depth of 10 cm below the surface using syringes and rhizon suction samplers (part number 

19.21.35, www.rhizosphere.com), from four locations within the plot. These were then 

bulked into one sample per plot following the protocol from previous monitoring by Evans 

et al. (2012). 
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4.2.3.2 Peat and decomposing surface litter sampling 

Decomposing litter directly on the peat surface was scraped away and placed inside a re-

sealable plastic bag. A peat sample was then taken from this position as follows. A square 

‘flap’ of approximately 10cm2 was then cut through the vegetation using a serrated edge 

knife, including the top productivity layer, and the dead undecomposed layer below for 

peat. Using the knife and a trowel, the required quantity of soil or peat was removed (~30 g) 

from a depth of 10-20 cm, and placed into a plastic re-sealable bag. The flap was then put 

back in place and lightly pressed down, in order to restore the plot to its original condition 

and minimise disturbance as much as possible. Four decomposing litter and peat samples 

were taken from each plot, 10-15cm in from the edge to avoid areas impacted by 

compaction. Samples were collected during April, July and October 2016. 

4.2.4 Laboratory analysis 

Peat and litter samples were processed in the lab by cutting and/or chopping into 1 – 2 cm 

pieces and homogenising. Unwanted material such as stones, insects, thick roots and living 

plant material was removed. Using 4 g of sample and ultrapure water, samples underwent a 

cold water extraction on a horizontal shaker (30 rpm) at room temperature for 3 hours for 

peat (1:10 mass to volume ratio) and 24 hours for litter (1:20 mass to volume ratio). 

Samples were then centrifuged (3500 rpm for 20 minutes) and vacuum filtered through 0.45 

μm cellulose membrane filter paper. This extraction method was adapted from Ghani et al. 

(2003). 

Extracts and pore water samples underwent a chemical analysis which included pH, 

electrical conductivity, total organic carbon, and ultra-violet absorbance. A Thermalox TC-TN 

analyser (Analytical Sciences, Ltd., UK) was used to measure the concentration of DOC (by 

subtracting the amount of total inorganic carbon (TIC) from the amount of total carbon 

(TC)). 

DOC concentration in peat and litter extracts were expressed in terms of mg DOC extracted 

per g of dry material, as is standard practice for this measure. Pore water DOC 

concentrations were expressed in mg DOC/L as these samples were direct measures of DOC 

concentrations in situ.  To correct the extract data to mg DOC/g, the mean moisture content 

of Calluna vulgaris and Eriophorum vaginatum following three months of decomposition at 
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each site was used in the calculation for decomposing surface litter, and the moisture 

content of peat and organo-mineral soil was used to correct DOC concentrations in surface 

peat (Table 4.1). 

Table 4.1: Percentage moisture content used in the calculations for peat and surface litter, at each site. 

Site Peat Litter 

Migneint Peat 1298.23 913.45 

Migneint Podzol 604.85 531.74 

Peaknaze Peat 311.89 685.61 

Peaknaze Podzol 287.12 521.81 

 

Optical measures were used to define spectroscopic properties as a proxy measure of DOC 

quality. Samples were diluted to less than 1 au, as determined by measuring absorbance at 

240 nm. UV visible absorbance spectra were determined using UV transparent 96 well 

plates on a Spectromax M2e Microplate Reader (Molecular Devices, San Jose, CA) set to 

scan at wavelengths between 240 and 600 nm with a 1 nm increment. As absorbance data 

obtained by the microplate method is slightly lower than the cuvette method (due to the 

difference in absorbance between plastic and quartz), data was multiplied by correction 

factors (Tim Jones, pers comm). Specific ultraviolet absorbance at 254 nm (SUVA254) has 

been identified as being a useful proxy for measuring the aromatic fraction (Weishaar et al., 

2003) and molecular weight (Chowdhury, 2013) of DOC, as it is strongly linked to the 

hydrophobic organic acid fraction of DOM (Spencer et al., 2012). Therefore the SUVA254 

value was used as a measure of aromaticity and calculated by dividing the absorbance value 

at 254 nm by the DOC concentration (mg l-1) (Weishaar et al., 2003). 

4.2.5 Data Analysis 

Data was statistically analysed using R statistical package (RDevelopment CORE TEAM, 

2008). Data was assessed as to whether it met the assumptions of Analysis of Variance 

(ANOVA), including normality and equal variance, and transformations were applied where 

necessary. ANOVA was used to examine the effect of various factors and their interactions 

on sample chemical properties of pH, DOC concentration and SUVA254. When significance 

was apparent, a post hoc test was run using the ‘Tukey HSD’ function in R to confirm where 
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significant differences occurred between groups. In addition, Spearman’s Rank Correlation 

Coefficient was used to assess the significance, direction and strength of relationships 

between pH and DOC concentration. 

4.3 Results 

4.3.1 Characterising and comparing DOC in different samples 

4.3.1.1 Peat and litter comparison 

Significantly more DOC was extracted from litter than from peat during April (P = <0.001), 

July (P = <0.001) and October (P = <0.001) (Figure 4.1). Extract DOC increased from 2.4 mg/g 

during spring to 3.2 mg/g during autumn for litter (P = 0.039). However, extract DOC in peat 

remained similar across all months at ~1.0 mg/g. 

 

Figure 4.1: DOC extracted from peat and surface litter samples, collected from control plots only during April, 

July and October 2016. Letters signify where significant differences occur, obtained using a Posthoc analysis on 

an ANOVA test comparing site (four levels), sample (two levels) and month (three levels). Data was log 

transformed. 
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SUVA254 was used as a proxy for measuring the aromatic fraction of DOC. DOC was 

significantly more aromatic when extracted from peat samples than from litter samples, by 

0.67 L/mg C-1/m-1 during April (P = 0.017) and 1.2 L/mg C-1/m-1 during July (P = <0.001) 

(Figure 4.2). However, in October the SUVA254 value of peat is similar to that of litter. This is 

because of an apparent seasonal effect on DOC quality in peat samples, with a significantly 

lower SUVA254 in October than in April (by 0.82 L/mg C-1/m-1) (P = 0.033) and July (by 1.41 

L/mg C-1/m-1) (P = <0.001). The mean SUVA254 value remains similar for surface litter across 

all months at 2.3 - 2.6 L/mg C-1/m-1. 

 

Figure 4.2: SUVA254 of DOC in extracts from peat and surface litter samples, collected from control plots only 

during April, July and October 2016. Letters signify where significant differences occur, obtained using a 

Posthoc analysis on an ANOVA test comparing site (four levels), sample (two levels) and month (three levels). 

Data was log transformed. 
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4.3.1.2 Relationships in DOC released between different sources and 

methods 

There was no relationship between litter and peat DOC extracts (P = 0.114). There were also 

no significant relationships between the DOC concentration in pore water, and that in litter 

extracts (P = 0.376) and peat extracts (P = 0.442).  

There was a significant positive relationship between the SUVA254 in pore water with the 

amount extracted from peat (P = 0.002, Rho = 0.446) (Figure 4.3). However, the SUVA254 in 

surface litter was found not to correlate with that in pore water (P = 0.106) (Figure 3), but 

did correlate with that in peat (P = 0.005, Rho = 0.407) (Figure 4.4). 

 

Figure 4.3: SUVA254 of DOC in extracts from peat and surface litter samples plotted against direct 

measurements from pore water. Samples were collected from control plots only during April, July and October 

2016. Spearman’s Rank tests were used to assess the strength and significance of relationships. 
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Figure 4.4: SUVA254 of DOC in extracts from peat and surface litter samples. Samples were collected from 

control plots only during April, July and October 2016. Spearman’s Rank tests were used to assess the strength 

and significance of relationships. 

4.3.2 Influence of site and soil type on DOC in extracts and direct 

measurements in pore water 

Significantly more DOC was measured in the organic surface layer of peat than in organo-

mineral soil at both Migneint (1.65 and 0.94 mg/g for Migneint Peat and Migneint Podzol 

respectively) (P = <0.001) and Peaknaze (0.97 and 0.52 mg/L for Peaknaze Peat and 

Peaknaze Podzol respectively) (P = <0.001) (Figure 4.5). However, Migneint Podzol had a 

significantly greater concentration of DOC in surface litter (3.41 mg/g) than at Migneint Peat 

(2.46 mg/g) (P = <0.001), which reflects the higher net primary production (NPP) which 

occurs with organo-mineral soils compared to peat. Surface peat also contained more DOC 

at the Migneint compared to Peaknaze, when comparing both peat (difference in mean of 

0.68 mg/L) (P = <0.001) and podzol (difference in mean of 0.42 mg/g) (P = <0.001) sites. For 

surface litter, this site difference was only apparent at podzol sites, with Migneint Podzol 

having 0.77 mg/g more DOC than Peaknaze Podzol (P = 0.014). When assessing direct 

measurements of DOC concentration in pore water,  it is apparent there is considerably 

more DOC mobile in pore water at Peaknaze Peat at 80 mg/L, compared to just 24 - 34 mg/L 

at other sites. 
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Figure 4.5: DOC in extracts of peat and surface litter, and direct measurements of DOC concentration in pore 

water. Samples were collected from control plots only during April, July and October 2016. Letters signify 

where significant differences occurred, obtained using a Posthoc analysis on an ANOVA test comparing site 

(four levels) and month (three levels). Litter and peat data were log transformed, whilst pore water data was 

transformed using the square root. 
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SUVA254 was significantly higher at Peaknaze Peat than at Migneint Peat, for all sample types 

(soil P = <0.001; litter P = <0.001; pore water P = 0.016) (Figure 4.6). However, there was no 

difference in SUVA254 between podzol sites. Furthermore, SUVA254 was higher at Migneint 

Podzol than at Migneint Peat in both litter (P = <0.001) and soil (P = <0.001) extracts, but not 

pore water samples (P = 0.814). SUVA254 was also greater at Peaknaze Podzol compared to 

Peaknaze Peat for surface peat samples (P = 0.013), but not for litter extracts (P = 0.896) and 

pore water (P = 0.387) samples. 
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Figure 4.6: SUVA254 of DOC in pore water samples, and extracts of peat and surface litter. Samples were 

collected from control plots only during April, July and October 2016. Letters signify where significant 

differences occur, obtained using a Posthoc analysis on an ANOVA test comparing site (four levels) and month 

(three levels). Litter and peat data was transformed using the square root. 
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4.3.3 Effect of acidity on DOC 

4.3.3.1 Pore water thirteen month dataset 

Treatment applications have successfully altered the pH of pore water at all sites excluding 

Migneint Peat (Figure 4.7). The pH of pore water was reduced by 0.18 – 0.28 pH units with 

the application of acid treatments, and was increased by 0.23 – 0.68 pH units with alkaline 

treatments. The treatments have had the greatest effect at the Migneint Podzol site, with a 

pH range of 4.06 – 5.02 (based on mean of treatment plots). The most acidic site was 

Peaknaze Peat, which had a pH at control plots of 3.98 units, followed by Peaknaze Podzol 

with a pH of 4.11. Both Migneint sites had a similar pH at control plots of ~4.30 units. 

 

Figure 4.7: Mean pH of pore water samples with acid, alkaline and control treatments, collected monthly over 

a 13 month period. Letters signify where significant differences occur, obtained using a Posthoc analysis on an 

ANOVA test comparing site (four levels), treatment (three levels) and month (thirteen levels).  

There are some clear seasonal dynamics apparent with DOC mobility in pore water (Figure 

4.8). DOC concentration is lower during winter months (November through to February) at 

all sites except Peaknaze Peat. This site has the highest amount of DOC which is mobile in 

pore water for most of the experimental period. In addition, whilst other sites have a 

gradual increase or decrease in DOC concentration spanning several months, at Peaknaze 

Peat DOC mobility changes rapidly from one month to the next. For instance, in April the 
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concentration is 82 mg/L (mean of control plots), which then falls to 33 mg/L in June, and 

then rapidly increases again to 119 mg/L in July. 

In terms of acidity manipulations, the DOC concentration has responded to the acidity 

treatments at all sites excluding Migneint Peat, and this is consistent throughout the 

thirteen month experimental period despite the seasonal dynamics. In general, pore water 

DOC concentration has been lowered with the acidity treatments, and is greater with 

alkaline treatments. 

 



Chapter 4 

82 
 

 

Figure 4.8: DOC concentration in pore water samples, collected monthly from September 2015 until October 2016.  
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There are many fluctuations in the concentration of the aromatic fraction (SUVA254) of pore 

water DOC over the thirteen month experimental period at all sites (Figure 4.9). Overall, 

there is no clear seasonal trend in DOC aromaticity other than a decrease in SUVA254 

between July and October at all sites except Migneint Peat. This mirrors the difference in 

the aromatic fraction of DOC indicated by a higher SUVA254 also seen in peat samples 

between July and October, confirming that this is a seasonal response rather than an 

artefact of sampling those individual months. 

The response of SUVA254 and so the aromatic fraction of DOC to acidity treatments is 

dependent on month (P = 0.014). In some months, such as August, September and October 

2016, SUVA254 appears to respond to acidity manipulations, with less aromatic DOC being 

mobile with acid treatments, and more with alkaline treatments. However, such a response 

is not apparent during many other months at all sites.  
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Figure 4.9: SUVA254 of DOC in pore water samples, collected monthly from September 2015 until October 2016.  
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The DOC concentration in pore water have responded to acidity manipulations at all sites 

except Migneint Peat (Figure 4.10). There was a significantly lower DOC concentration in 

pore water with acidity treatments, with a reduction in the range of 7-12 mg/L (mean of 

thirteen month dataset, per site and treatment, excluding Migneint Peat), and an increased 

DOC concentration in the range of 9-21 mg/L with alkaline treatments.  

Peaknaze Peat had a significantly higher DOC concentration compared to other sites. 

Peaknaze Podzol also had significantly more DOC mobile in pore water than Migneint Podzol 

(P = <0.001). Finally, at Peaknaze there is a difference in the DOC concentration in pore 

water between soil types, with much more DOC mobile in peat compared to podzol (P = 

<0.001). Unlike at Peaknaze, there was no significant difference in the concentration of DOC 

in the pore water in peat and podzol at Migneint (P = 0.973). 

At podzol sites, alkaline treatments resulted in a greater SUVA254, and so a higher proportion 

of aromatic DOC was mobile in pore water, whilst acidity resulted in less aromatic DOC 

(Figure 4.10). However, statistical significance only occurred between control and acid plots 

at Migneint Podzol, and control and alkaline plots at Peaknaze Podzol. There were no 

significant differences in SUVA254 between treatments at peat sites. As with DOC 

concentration, pore water from Peaknaze Peat had a significantly greater concentration of 

the aromatic fraction of DOC at 4.4 L/mg C-1/m-1 at control plots compared to other sites 

which had a mean of ~3.7 L/mg C-1/m-1 at control plots. 

 

Figure 4.10: Mean DOC concentration and SUVA254 of DOC in pore water samples, collected monthly over a 13 

month period. Letters signify where significant differences occur, obtained using a Posthoc analysis on an 

ANOVA test comparing site (four levels), treatment (three levels) and month (thirteen levels).  
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4.3.3.1.1 Relationship between pH and DOC change 

When assessing pore water data collected from all sites over a 13 month period, we see a 

strong relationship between pH and DOC concentration (Figure 4.11). As pH increases, so 

does the DOC concentration, with a significant correlation coefficient of 0.82 signifying a 

strong positive relationship (P = <0.001). 

 

Figure 4.11: Scatterplot comparing change in pH and percentage DOC for each treatment compared to the 

control, based on pore water data collected monthly over 13 months. 

4.3.3.2 Pore water, peat and litter (3 month dataset) 

When focusing on the three month dataset for comparison with soil and litter data, the 

treatment effect on pore water pH is still apparently, and is largely significant at all sites 

except Migneint Peat (Figure 4.12). For soil and litter extracts, there is little significance in 

terms of the pH of each treatment with respect to the control, suggesting that the 

treatments were not as successful in altering the pH of these samples. For surface litters, 

both acid and alkaline treatments were significantly different to the control at Peaknaze 

Peat, and there was a significant increase in pH with alkaline treatments at the podzol sites 

(which is also apparent in peat samples), but there were no significance differences at 

Migneint Peat. 
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Figure 4.12: Mean pH of DOC in extracts of peat and surface litter samples, and pore water samples. Samples 

were collected during April, July and October 2016.  Letters signify where significant differences occur, 

obtained using a Posthoc analysis on an ANOVA test comparing site (four levels), treatment (three levels) and 

month (three levels). Peat and pore water data were transformed using boxcox transformation. 
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When assessing the effect of treatments on DOC extracted from peat and litters, the 

interaction between sites (four levels) and treatments (three levels) was found not to be 

significant for peat samples (P = 0.296) (Figure 4.13). However, this was significant for litter 

extracts (P = 0.045), but when investigated further with a Posthoc test extract DOC between 

treatments at each site were found not be significant. For pore water samples, DOC 

concentrations were only significantly different between acid and alkaline plots at all sites 

except Migneint Peat, where DOC concentrations remained the same regardless of 

treatment. There is however considerably more DOC mobile in Peaknaze Peat pore water at 

68 – 102 mg/L (range in mean of treatment plots), compared to just 21 – 35 mg/L at 

Migneint sites and 27 – 50 mg/L at Peaknaze Podzol. 
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Figure 4.13: Mean DOC concentration of peat and surface litter samples, and pore water samples. Samples 

were collected during April, July and October 2016.  Letters signify where significant differences occur, 

obtained using a Posthoc analysis on an ANOVA test comparing site (four levels), treatment (three levels) and 

month (three levels). All data was log transformed.   
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The aromatic fraction of DOC as indicated by SUVA254 was not effected by treatments for 

either litter extracts (P = 0.073), or soil extracts (P = 0. 591) during the monitoring period of 

April, July and October 2016. However, an ANOVA on pore water data showed a significant 

P value for treatments (0.006), but when investigated further with a Posthoc analysis, there 

were no significant differences of interest. 

4.3.3.2.1 Relationship between pH and DOC change 

The effect of treatments on pH were apparent for pore water and peat extracts, with a 

reduction in pH with the acid treatment, whilst alkaline treatments increased pH (Figure 

4.14). Both soil extracts and pore water show a strong and significant positive relationship 

with increasing DOC with increasing pH (Figure 4.14). However, there was no such 

relationship with surface litter (P = 0.885).  
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Figure 4.14: Scatterplots comparing change in pH and percentage DOC for each treatment compared to the 

control, for litter and peat extracts, and pore water samples. Samples were collected during April, July and 

October 2016. Significance (P value) and strength of relationship (Rho value) were obtained using Spearman’s 

Rank. 
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4.4 Discussion 

4.4.1 Peat and litter DOC production 

Surface litter produced more DOC relative to the dry mass of substrate than peat, regardless 

of sampling month. This highlights the importance of substrate for DOC production and 

potential transport. DOC released from litter increased from 2.4 mg/g to 3.2 mg/g between 

April and October. This reflects the seasonal cycle in the build-up of the quality of the litter 

pool over the year, from increased NPP through the summer months and production of 

organic material, to the seasonal senescence of plant material during autumn that adds 

additional decomposing litter on the peat surface. This seasonal change in the quality of 

litter driven by the seasonal cycle of NPP increased the quantity of DOC produced in this 

surface layer per unit mass of substrate. Similar values of DOC released from litters through 

water extracts are reported in the literature for peat at ~1 mg/g, and various litters 

including Calluna (<6 mg/g), Eriophorum (<5 mg/g) and Sphagnum (<3 mg/g) (Ritson et al., 

2016, Mastný et al., 2018).  Few studies are available that compare the effect of seasonality, 

so further work on this is needed to better understand the relationship between seasonal 

litter quality, NPP and DOC release. 

The lack of correlation in DOC concentration between sample types may be an artefact of 

the experiment. It may be particularly difficult to detect signals with the limited sampling 

months used in this study (April, July and October). It is also possible there are more 

influential mechanisms on the concentration of DOC in pore water, peat and surface litter, 

and so it is not possible to detect relationships between each sample type. For instance, 

DOC concentration in pore water is controlled by acidity and ionic strength (Evans et al., 

2012, Thurman, 1985), whilst aluminium can influence the solubility of DOC to acidity in 

organo-mineral soils through complexation and co-precipitation with aluminium (Jansen et 

al., 2003). 

DOC released from peat had a greater proportion of aromatic DOC as measured by SUVA254 

during April and July of >3 L/mg C-1/m-1 compared to ~2.3 L/mg C-1/m-1 in litter. Ritson et al. 

(2017) also observed a higher SUVA254 value for peat compared to Calluna litter based on 

samples collected in May. This is likely due to the build-up of more microbially degraded 

products in peat from the biodegradation of organic material in litter and peat. Soil 

microorganisms are thought to preferentially decompose labile material, and much of this 
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fraction of the freshly senesced litter at the surface is decomposed and released as CO2, 

leaving the more recalcitrant aromatic material (Kalbitz et al., 2003a, Saadi et al., 2006, 

McDowell et al., 2006) which may enter the peat layer below. This is further supported by 

the significant and positive relationship in SUVA254 and so the concentration of aromatic 

DOC between the surface litter and peat below. This material is continuously decomposed 

and altered into a substance which is more stable and has a higher molecular weight than 

the original product (Malik and Gleixner, 2013), as well as an increased aromaticity as 

indicated by the SUVA value (Hur et al., 2009). These stable, recalcitrant products of late 

decomposition stages in peat, such as humic acids, are more resistant to microbial 

degradation and are thought to be the largest fraction of stable dissolved organic matter 

(Kalbitz et al., 2003b, Schnitzer, 1978), meaning they are an essential component of the 

carbon pool in these systems.  

The aromatic humic and fulvic acid fraction of DOC, which is estimated to make up 50-75 % 

of DOC in water and is strongly related to a brown colouring in water (Worrall et al., 2003a, 

Tipping et al., 1988, Hongve et al., 2004, Grieve, 1990), has been shown to be sensitive to 

acidity (Clark et al., 2011, SanClements et al., 2012a). Therefore this coloured and persistent 

DOC is also likely to increase with recovery from acidification. This problem of 

‘brownification’ of waters draining peatland areas in the Pennines is well documented 

(Chapman et al., 2010, Worrall et al., 2003b, Watts et al., 2001). Therefore based on this 

SUVA254 data, peat derived DOC may be more sensitive to changes in acidity than litter 

derived DOC during April and July. 

During October, there is a decline in the SUVA254 by 1.4 L/mg C-1/m-1 in peat making values 

similar to that in litter. This reduction also occurs in pore water samples at all sites except 

Migneint Peat, suggesting that this change in the aromatic DOC pool in peat is a response to 

seasonal variation rather than a random artefact of sampling surface peat during those 

specific months. In addition, when looking at pore water DOC concentrations, there is a 

reduction in winter months with concentrations ranging from 8-24 mg/L from November till 

February, to 21-43 mg/L in summer months (mean of control plots across different sites 

excluding Peaknaze Peat). Clark et al. (2005) reported similar seasonal values for pore water 

from blanket peat over a 10 year period, at <20 mg/L during winter months, and ~25 – 40 

mg/L during the summer. These seasonal variations in DOC concentrations have also been 
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observed in rivers draining organic catchments in the Pennines, with values reported as 5 

mg/L in winter months, increasing to 20 mg/L in late summer/early autumn (Scott et al., 

1998). 

DOC concentration is usually higher during summer months due to greater NPP, and the 

influence of temperature driving biological activity and therefore DOC production compared 

to the winter months (Dawson et al., 2008). There is also less rainfall volume and frequency, 

and higher evapotranspiration rates. The water table is typically lower during the summer, 

which is apparent for sites when looking at the pH of pore water, which is more acidic 

during July, and increases by 0.1-0.52 units depending on site between July and October. A 

lower water table results in reduced hydraulic conductivity and therefore removal of DOC. 

The reduced flux and lower volume of water increases concentrations in summer, and once 

more frequent rain events occur, this summer store is depleted in the winter months, 

reducing DOC concentration and increasing the proportion of hydrophobic DOC (Scott et al., 

1998). This Autumnal release of DOC from peatlands into water systems creates seasonal 

implications for water companies (Ritson et al., 2016). 

There are some interesting relationships in DOC quality between the different elements of 

the upper peat layer, which provide some insights into the production and movement of 

aromatic DOC within peat systems. There is a positive and significant relationship in SUVA254 

between surface litter and peat, and between peat and pore water. The latter may be an 

artefact of measuring the SUVA254 on peat extract, which is also measuring SUVA254 on the 

pore water within the field moist peat sample. However, if this were the case, we would 

also expect to see a similar magnitude of pH and DOC concentration response to treatments 

in peat as with pore water, which we do not. 

These relationships suggest there is a process by which aromatic DOC is produced and 

moves through the upper peat system into pore water, where it then becomes mobile and is 

able to leach from the peatland system into water bodies. Here a theoretical pathway 

model on the production and movement of aromatic DOC is proposed below based on the 

evidence of this research (Figure 4.15). 
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Figure 4.15: Theoretical pathway model showing the movement of aromatic DOC through the different 

components of the upper surface layer of peat into terrestrial waters. The SUVA254 value (L/mg C-1/m-1), which 

is a proxy for measuring the aromatic fraction of DOC, is given for pore water, and litter and peat extracts 

(mean of control plots at each site) as an indication of quality. 

To begin with, aboveground exudates and freshly senesced litter is added to the peat 

surface, where it begins decomposition by macro, meso and micro organisms. This litter 

layer contributes to the input of aromatic DOC into the peat. However, it’s important to 

note that the decomposability of litter, and therefore the release of decomposition products 

such as CO2 and DOC is dependent on vegetation type (Neff and Hooper, 2002). Other 

studies have shown vegetation type to be an important factor for the release of aromatic 

DOC in peatlands (Ritson et al., 2016, Pinsonneault et al., 2016).  

DOC produced in this layer can be transported directly into water systems through overland 

flow (Clark et al., 2007). Alternatively, the partly decomposed organic material and aromatic 

DOC may enter the peat system below as more litter is added above. In both peat and pore 

water, organic material is continuously decomposed, altered and produced by a variety of 

microorganisms, resulting in a substance which is more stable and has a higher molecular 

weight than the original product (Malik and Gleixner, 2013). This is supported by the higher 

concentration of aromatic DOC in peat and pore water compared to litter. 

The material which has become small enough to be dissolvable can move into pore water, 

where it can potentially be transported through hydrological processes into terrestrial water 

bodies (Clark et al., 2008). This is supported by the simultaneous changes in concentration 

between both sample types, such as the reduction in the concentration of aromatic DOC 

during October in both peat and pore water samples. Dissolvable material can also move 
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out of solution, again becoming part of the peat complex, such as with precipitation and 

coagulation with acidity (Thurman, 1985). 

4.4.2 Variations across sites and soil types 

The degraded peatland site, Peaknaze, had a much greater mean concentration of total DOC 

in peat pore water at 80 mg/L. This is higher than the mean pore water value measured at 

this site during the previous monitoring period of 60 mg/L, but it is not surprising that such 

high DOC concentrations are recorded at this site. A survey of surface waters in the South 

Pennines in 1998 produced DOC concentrations in the range of 117 – 1296 mg/L in waters 

(Evans et al., 2000). This site also had the highest SUVA254 value in pore water, and whilst 

this was not significant, it is consistent with the problem of ‘brownification’ of waters 

draining peatland areas in the Pennines (Chapman et al., 2010, Worrall et al., 2003b, Watts 

et al., 2001). 

This area has experienced significant damage, including previously high sulphur deposition 

which has seen a 69 % reduction between 1970 and 2005 (Dore et al., 2007, Evans et al., 

2012), with a significant store of sulphur still being present in the South Pennine peats 

(Daniels et al., 2008), and significant acidification (Evans et al., 2000). In addition, this areas 

has experienced previous and current high levels of nitrogen deposition and saturation 

(Helliwell et al., 2007, Curtis et al., 2005, Evans et al., 2000), intensive land management 

(Clutterbuck and Yallop, 2010), all of which have contributed to extensive Sphagnum loss, a 

lowering of the water table and peat erosion (Oulehle et al., 2013, Tallis, 1987, Carroll et al., 

2009, Noble et al., 2018). It is possible that the drier conditions in peat have resulted in 

more rapid decomposition and therefore DOC production (Mitchell and McDonald, 1992). 

However, there is also evidence that aerobic conditions can stimulate CO2 production, and 

therefore microbial consumption of DOC, which would reduce concentrations (Freeman et 

al., 2004, Pastor et al., 2003).  

An alternative explanation for high DOC concentrations in the pore water at Peaknaze Peat 

is the response to recovery from acidification. This area is currently in a state of recovery 

following some of the highest sulphur deposition levels in Europe, and previously 

suppressed DOC is being released as solubility increases with increasing pH (Evans et al., 

2012, Ekström et al., 2011, Oulehle et al., 2017, Clark et al., 2011, Evans et al., 2006a). 
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Neither peat nor surface litter samples at Peaknaze Peat have significantly higher DOC or 

aromatic DOC concentration compared to other sites, which suggests there’s no difference 

in substrate. This implies that the high DOC concentrations in pore water is therefore not 

the result of recently produced DOC, but from the release of previously retained DOC at this 

site. On the other hand, higher density and greater DOC concentrations compared to other 

sites have been recorded nearby at the River Etherow, and so it is possible that more peat 

may simply result in more DOC (Clark et al., 2012).  

In the upper organic peaty layer, there is consistently more DOC in peat samples than in 

podzol. However, barring the Peaknaze Peat site, pore water samples show no difference in 

the concentration of total or aromatic DOC (as indicated by SUVA254) between peat and 

organo-mineral soil. There are few studies which have compared DOC concentrations in 

peat and podzol soils in a non-forested area. van den Berg et al. (2012) reported pore water 

DOC values as 46 mg/L for histosols (average of 8 sites) and 27 mg/L for podzols (average of 

15 sites, of which one podzol site occurred in a moorland environment). Alternatively, a 

survey of the literature reporting DOC values show there is more DOC in podzol pore water 

(39 mg/L) than in peat (22 mg/l) (van den Berg et al., 2012), which suggests that podzols are 

as important as a source of DOC as peat, yet more research has been done on peat. This 

discrepancy in DOC concentration in podzol, with a greater amount in the upper organic 

layer but a similar concentration in pore water compared to peat, is likely due to the 

influence of the mineral component of podzol. In organo-mineral soil, the mineral horizon 

has been shown to control the concentration of DOC in pore water through sorption onto 

mineral surfaces (Kennedy et al., 1996).  

Despite there being more DOC concentration in the surface organic layer of peat compared 

to podzol, there is more aromatic DOC, as indicated by SUVA254, in the surface organic layer 

of podzol. This is consistent with findings from the Pennines which have shown waters to be 

browner in colour when a greater contribution of flow originates from the mineral soil 

horizons rather than peat dominated run off (Chapman et al., 2010). Furthermore, the 

podzol surface litter layer at the undamaged site (Migneint) contains both more DOC and 

more aromatic DOC compared to the surface litter at the peat site. This suggests that the 

greater aromatic fraction of DOC found in the podzol organic layer originates from the 
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decomposition of the litter above, which is further supported by the significant and positive 

relationship in aromatic DOC between peat and litter. 

This holds important implications for the store of carbon in these soils and transport into 

terrestrial waters. Some studies based in Canadian catchments have shown a positive 

relationship between discharge and DOC concentrations in streams draining podzol soils, 

whilst there is no such significant relationship with waters draining peats (Hinton et al., 

1998). Other studies have also found a correlation between DOC concentrations in organo-

mineral catchments and stream flow (McDowell and Likens, 1988, Hope et al., 1994, 

Dawson et al., 2002, Boyer et al., 1997, Hornberger et al., 1994). 

Water typically travels through the mineral layer in podzol soil where DOC is retained by 

mineral sorption during times of low flow. However, around 36 % to more than 50 % of 

annual DOC flux have been shown to occur during peak discharge over short periods of time 

(Clark et al., 2007, Inamdar et al., 2006, Buffam et al., 2001, Hinton et al., 1997). During 

times of high flow, the hydrological pathway switches to the organic layer, which, according 

to the results of this study, contain significantly more aromatic DOC in the organic peaty 

material than in peat. Overland flow may well increase also, transporting again more 

aromatic DOC but also a greater proportion of total DOC from the above surface litter 

compared to peat. 

As a result of the potential increase in frequency and magnitude of rainfall events predicted 

with climate change (Tebaldi et al., 2006, Meehl et al., 2005), there may be an increase in 

flux and concentration of DOC and aromatic DOC from organo-mineral soils (Clark et al., 

2008). This provides insights into the temporal and spatial transport of DOC out of these 

catchment systems comprising of peat and organo-mineral soils. It also provides 

implications for modelling and predicting the production and movement of persistent 

aromatic DOC into water systems. 
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4.4.3 How does DOC respond to acidity treatments? 

Firstly, it is apparent that treatments were successful in altering the pH of pore water over 

the 13 month experimental period. Treatments generated a pH range of at least 0.2 pH units 

to a maximum range of 0.9 units (when comparing means for acid and alkaline plots at each 

site). This is comparable to the change in pH observed in the Countryside Survey broad 

habitats between 1978 and 2007 (Evans et al., 2012).  

There was a strong and significant relationship between pore water pH and change in DOC 

concentration, suggesting that pore water DOC concentrations are consistently sensitive to 

changes in acidity. In addition, the results from this experiment are similar to that of a 

previous acidity manipulation experiment at these sites (Evans et al., 2012), showing 

reproducibility and providing a strong support base for the hypothesis that increased DOC 

concentrations in terrestrial waters are due to increased solubility with recovery from 

acidification in organic soils. This change in solubility of DOC in soil solution is related to the 

degree of dissociation of organic acids (Oulehle et al., 2013) and is simultaneously related to 

changes in ionic strength (Clark et al., 2005). 

DOC in both peat and podzol soil pore water responded to acid and alkaline treatments at 

Peaknaze, whilst only the podzol soil respond at the Migneint site. The lack of response of 

pore water pH and DOC concentration at the Migneint Peat site has been observed before 

in a prior acidity manipulation experiment at this site (Evans et al., 2012) and has been 

attributed to the wetter conditions which a) dilutes any treatment solutions applied, and b) 

enhances sulphate reduction which buffers against acidity change and therefore response in 

soil solution chemistry (Oulehle et al., 2013). Sulphate reduction occurs at wetter sites and 

this explains why the DOC trends of waters draining drier peat sites are greater, such as at 

the Peak District, or streams draining better drained organo-mineral soils such as in the 

Pennines (Chapman et al., 2010). 

However, at the Migneint Podzol site, which achieved the greatest pH increase with the 

alkaline treatment of 0.68 pH units, only an increase of 9 mg/L of DOC was achieved in pore 

water. Migneint had a higher baseline pH of pH 4.3 compared to ~pH 4 at Peaknaze, and yet 

despite the high pH increase at this site there was only a marginal increase in DOC 

suggesting that there is a pH threshold at which solubility controls DOC concentration, a 
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trend which was also observed by Evans et al. (2012). They suggested that this shift from 

‘solubility control’ to ‘supply control’ on DOC leaching could have implications on the future 

of DOC release from peatlands as sensitivity to processes influencing DOC production 

increase, such as climate change and land management. For instance, DOC release from 

organo-mineral soils (Christ and David, 1996) and peat have been shown to increase with 

increased temperature. Increases in temperature may also increase enzyme activity and 

consequently DOC release from organic soils (Freeman et al., 2001a), whilst the sensitivity of 

different vegetation species to DOC production may increase with changes in climate, 

particularly for Calluna (Ritson et al., 2014). 

At Peaknaze, which is situated in the strongly acidified area of the Peak District, the increase 

in DOC in response to the alkaline treatment was particularly large (13 – 22 mg/L for peat 

and podzol sites respectively). There was a smaller response to the acid treatment (decrease 

of 9 – 12 mg/L), likely due to the highly acidified baseline state of peat (3.98 units) and 

podzol (4.11 units) and so further additions had a limited effect on DOC solubility.  

When assessing the response of pore water, peat and surface litter over April, July and 

October, there is less of a response of pH and DOC concentration to treatments. For 

instance, whilst a significant change in pH was achieved in pore water at podzol sites, it was 

not possible to achieve a significant decrease in pH with acid plots at Peaknaze Peat, whilst 

no change in pH was achieved at Migneint Peat. This is to be expected due to the low 

baseline pH at Peaknaze Peat, making further reductions undetectable when taking the 

mean over three months spanning three seasons. Also, the lack of response was seen at 

Migneint Peat when taking a mean of the 13 month dataset, for reasons mentioned above. 

The change in DOC concentration and strength of relationship with pH was not as strong as 

when taking the mean of the 13 month dataset, which again is to be expected due to 

increased error and seasonal variability when taking the mean of three months spanning 

three different seasons. There was however a decrease in DOC concentration with acid 

treatments, and an increase with alkaline treatments, although this change was not 

significant to the control.  

There was no significant change in peat DOC production in response to acidity treatments, 

whilst the extracts showed there was some change in pH at all sites except Migneint Peat. 

For litter, as the treatment applications were being applied directly to the litter surface, it 
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was to be expected that they would achieve a greater magnitude of pH change than with 

the peat below, despite the effort of rinses. However, there were no responses of litter and 

peat DOC released in water extracts to treatments, which, considering the lack of pH 

response, is to be expected. This suggests that either a) this is an artefact of the minimum 

sampling period of three months, which is supported by the significant relationship between 

pH and DOC change in peat, or b) changes in deposition chemistry has a minimal effect on 

the hydrogen ion concentrations of these samples, and thus does not influence the 

production of DOC for either peat or litter in the surface layer of peat and organo-mineral 

soil, and instead the pH effect on DOC solubility is mediated within the upper peat horizons 

through in situ soil processes and buffering. 

The sensitivity of SUVA254 to acidity has been demonstrated in the literature (Clark et al., 

2011, SanClements et al., 2012a), yet peat and litter extract SUVA254 did not respond to 

treatments, and the response of pore water SUVA254 was dependent on month and not 

consistently apparent throughout the 13 month monitoring period. Clark et al. (2011) found 

that a change in pH of more than half a unit resulted in a response in SUVA254. Peat and 

podzol O-horizon extracts experienced a change in pH of 0.73-1.08 units with acid 

treatments and 0.59-0.92 with alkaline treatments. However, in this study samples 

experienced a lower magnitude of change in pH. Acid treatments reduced pH by 0.11-0.47 

units (mean of all sampling months at individual sites) in litter extracts, 0.16-0.70 units in 

peat and podzol O-horizon extracts, and 0.17-0.47 units in pore water, whereas alkaline 

treatments increased pH by 0.25-0.82 units in litter extracts, 0.03-0.62 units in peat and 

podzol O-horizon extracts and 0.09-0.72 units in pore water. Therefore it is likely that the 

limited response of SUVA254 is due to the lower magnitude of change in pH. In addition, 

unlike Clark et al. (2011) which was based on a controlled laboratory experiment, it is likely 

that there is environmental variation which may limit the response of SUVA254 to 

treatments. A longer acidity manipulation field experiment with more replication is needed 

to see the effects of long term acidification and recovery, and therefore a greater 

magnitude of change in pH, on the quality of DOC released from organic catchments. 

In summary, litter is a greater source of DOC, which is less aromatic (as indicated by 

SUVA254), whilst peat produced less DOC which is more aromatic. Whilst there was no 

significance of treatments on SUVA254  in this study, the sensitivity of the aromatic fraction 
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of DOC has been demonstrated in the literature (Clark et al., 2011, SanClements et al., 

2012a), suggesting that this acid sensitive fraction in peat is likely to become mobile during 

recovery from acidification. The relationship between peat and pore water supports this 

movement and suggests that the acid sensitive fraction of DOC is transported through 

leaching in the upper peat layer. In addition, the poor correlation in SUVA254 between pore 

water and litter suggests that aromatic DOC produced in the surface litter layer is 

transported to waters directly through overland flow.  

4.5 Conclusion 

This research provides insights into the seasonal dynamics of both DOC quantity and quality 

within the different components of the upper surface layer of typical organic catchment 

soils, and therefore the temporal and spatial transport of DOC out of catchment systems 

comprising of both peat and organo-mineral soils. It also creates implications for modelling 

and predicting the production and movement into water systems. A theoretical pathway 

model has also been proposed for the production and movement of acid sensitive aromatic 

DOC through the different components of the surface layer, identifying sources and 

potential pathways. Finally, it is highly likely that increased solubility of DOC in pore waters 

due to recovery from acidification has contributed to the increase in DOC concentration in 

surface waters. Furthermore, there is limited evidence from this study that DOC production 

from litter and peat decomposition is sensitive to acidity, and so further work is needed to 

assess the impact of DOC production with recovery from acidification on DOC release from 

these sources. 
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Appendix 

 

Protocol of treatment solution preparation 

Equipment  

• 6x small glass beaker 

• 4 x medium glass beaker 

• 4 x 1 L beaker 

• 1 x 1 L measuring cylinder 

• 1 x small measuring cylinder (50-100ml) 

• 1 x glass rod 

• 1 x plastic pipette 

• 1 x spatula 
 

1. Acid solution 

1a. Peat 

• Half fill the 16 red acid bottles with distilled water 

• Add 11g of concentrated H2SO4 to each bottle 

• Add more distilled water to the bottle so it is reasonably full  

1b. Podzol 

• Half fill the 16 red acid bottles with distilled water 

• Add 5.5g of concentrated H2SO4 to each bottle 

• Add more distilled water to the bottle so it is reasonably full  

 

2. Alkaline solution  

2a. Peat 

• Add 400 ml of distilled water to a 1 L beaker 

• Weigh out 135.58 g of NaOH and 3.76 g of KOH and add to the 1L beaker  

• Add another 400 ml of distilled water to the beaker and mix with a glass rod until 

compound has dissolved 

• Divide this solution into the 16 blue Alkaline 1 bottles, each containing 50 ml 

2b. Podzol 

• Add 400 ml of distilled water to a 1 L beaker 

• Weigh out 135.58 g of NaOH and 3.76 g of KOH and add to the 1 L beaker  

• Add another 400 ml of distilled water to the beaker and mix with a glass rod until 

compound has dissolved 

• Divide this solution into the 16 blue Alkaline 1 bottles, each containing 50 ml 
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3. Alkaline rinse solution 

3a. Peat 

• Weigh out 39.37 g of MgCl2 and 8.74 g of CaCl2 and add to a dry 1 L beaker 

• Slowly add 400 ml of distilled water to the beaker (compounds will fizz and react 

rapidly) and mix with a glass rod until all compound has dissolved 

• Divide this solution into the 8 blue Alkaline 2 bottles, each containing 50 ml 

3b. Podzol 

• Weigh out 22.15 g of MgCl2 and 4.92 g of CaCl2 and add to a dry 1 L beaker 

• Slowly add 400 ml of distilled water to the beaker (compounds will fizz and react 

rapidly) and mix with a glass rod until all compound has dissolved 

• Divide this solution into the 8 blue Alkaline 2 bottles, each containing 50 ml
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Chapter 5: Assessing the impacts of litter type and quality on decomposition 

in peat and organo-mineral soils during a one-year, multi-scale incubation 

experiment. 

Abstract 

With evidence that carbon sequestration in peatlands is slowing, and with the observed 

increase in DOC concentrations in waters draining organic catchments over the past 30 

years, it is vital the mechanisms behind carbon storage and release, and the responses to 

environmental change in these sensitive ecosystems are fully understood. In addition, 

despite their presence in many organic catchments and importance for carbon storage, 

there is relatively little research on upland organo-mineral soils and even few studies which 

compare them directly to peat. Therefore the main aims of this research were to investigate 

moorland litter decomposition and how this varies with respect to underlying soil type (peat 

and humic podzol), and different acid deposition loads between two sites over a nitrogen 

(N) deposition gradient. A litter bag experiment was run using two common moorland 

species; Calluna vulgaris and Eriophorum vaginatum, to investigate decomposition over a 12 

month period. In addition, the extent to which changes in N deposition have altered litter 

quality and associated decomposition of Calluna were investigated through a translocation 

experiment. 

Results show that decomposition is faster in podzols than in peat, and is suppressed where 

N and acid deposition is high. N content of Calluna from the polluted site was significantly 

higher, suggesting that deposited nitrogen has accumulated in plant tissue. Furthermore, 

litter quality in terms of N content and C:N ratio did not influence the decomposition of 

Calluna at most sites. However, the Calluna which had significantly more N accumulated in 

tissue decomposed significantly less at the most polluted peat site. This may be an artefact 

of the experiment, or due to the interactions between high N and lignin content, the 

mechanisms of which are discussed in this chapter. More work is needed assessing the 

potential interacting effects of high N in plant tissues and organic material, and lignin 

content on the decomposition of Calluna in a moorland environment. This research provides 

insights into the spatial and temporal variations on the decomposition of common litters in 

an upland organic catchment comprising of peat and organo-mineral soil over a 12 month 

period. 
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5.1 Introduction 

5.1.1 Why is litter decomposition important for DOC dynamics? 

Peatlands are estimated to store 20-30 % of the total global carbon (C) stock (Gorham, 

1991). In England and Wales this has been estimated at 400,166 kt of C for an area of 3568 

km2 (Milne and Brown, 1997). Organo-mineral soils are also present on the sloped areas of 

these organic upland catchments, and are also an important component of the catchment C 

store, with an estimated 25,400 kt of carbon for an area of 1,313 km2 in England and Wales. 

Dissolved organic carbon (DOC) represents a major natural C export from upland organic 

soils (Clark et al., 2007, Billett et al., 2004, Hope et al., 1994, Dinsmore et al., 2010, Roulet et 

al., 2007, Nilsson et al., 2008). 

Litter decomposition is a major source of DOC and so plays a vital role in C dynamics, 

stabilisation and transport in soils (Don and Kalbitz, 2005, Kalbitz et al., 2000).  Radiocarbon 

studies, for instance, show that the vast majority of DOC in surface waters is recent, 

typically less than 40 years old in undisturbed systems (Tipping et al., 2010, Evans et al., 

2007, Palmer et al., 2001). Other studies also show a correlation between DOC in surface 

layers of peat and DOC in stream water (Clark et al., 2008, Billett et al., 2006). Such evidence 

suggests that DOC in stream water likely derives from litter and soil decomposition. 

There is a huge diversity in the quantity and quality of DOC produced by different vegetation 

species in a peatland ecosystem (Pinsonneault et al., 2016). Moore et al (2007) conducted a 

long-term litterbag experiment and found litter type to be the most dominant control on 

litter decomposition over site differences. Vascular plants, such as Calluna, have been 

shown to produce more DOC than Sphagnum in peatland ecosystems (Ritson et al., 2014, 

Armstrong et al., 2012). In addition, the release of Calluna flowers capsules provides a 

seasonal input of labile material, with the potential to decompose quickly and produce 

aromatic DOC which is persistent in waters (Ritson et al., 2016). There is also evidence that 

vascular plants are more efficient at utilising N, and so providing decomposers with a 

greater nutrient availability and enhancing DOC production (Ritson et al., 2016).  

Sphagnum has been consistently shown to produce a lower quantity of DOC compared to 

vascular plants (Pinsonneault et al., 2016, Armstrong et al., 2012), which has been 

attributed to the initial labile property of Sphagnum, resulting in less DOC being produced 
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which is of a more aromatic nature once processed by microorganisms (Ritson et al., 2016). 

Sphagnum is a key peat building bryophyte with a high phenolic content (Rasmussen et al., 

1995), which suppresses biodegradation, contributing to a slow decomposition rate 

(Verhoeven and Toth, 1995, Fenner et al., 2004). Therefore a peatland ecosystem with a 

higher proportion of vascular plants will produce more DOC of a more labile nature leading 

to a greater loss of carbon, whilst a Sphagnum dominated peatland will produce less DOC of 

an aromatic nature and increase the soil C pool (Ritson et al., 2016). 

Peatlands represent one of the largest stores of C in the UK soil C pool, containing an 

estimated 3.2 billion tonnes (Bain et al., 2011). Changes in the sink/source dynamics can 

result from the destabilisation of the C pool which may have major impacts on climate 

change feedback systems, both directly (through the atmospheric pathway) or indirectly (by 

means of the aquatic pathway) (Billett et al., 2007). There has been an observed increase in 

DOC concentrations in surface waters draining from catchments dominated by organic soils 

since the 1980’s, across large areas of the Northern Hemisphere (Evans et al., 2005, 

Monteith et al., 2007, Oulehle and Hruška, 2009, SanClements et al., 2012b, Couture et al., 

2012). Such significant changes in C fluxes have raised concerns over the future of terrestrial 

C stocks (Freeman et al., 2001a).  

Most research on this issue to date has focused on examining soil processes, such as the 

physico-chemical response of DOC to acidification, with few studies looking at the 

potentially changing role of litter and DOC production. Also, despite the proximity of peaty 

podzols to areas of reported increases in DOC concentrations in surface waters, organo-

mineral soils are much less understood compared to peatlands (Stutter et al, 2011). 

Additionally, whilst acid deposition progresses towards background levels, future climate 

change scenarios depict changes in temperature and hydrological processes with unclear 

consequences on DOC quality and quantity (Dieleman et al., 2016). In addition, there are 

suggestions that the DOC baseline is being shifted to above pre-industrial levels as a result 

of nitrogen fertilisation (Sawicka et al., 2017). All of this presents much uncertainty in the 

response of DOC production to environmental change, creating implications for predicting 

future climate change scenarios, as well as creating possible future impacts on the drinking 

water industry (Ritson et al., 2016). In this study we aim to improve knowledge of the 
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sources of DOC and factors influencing production rates in order to better understand there 

changes in C fluxes. 

5.1.2 Variation in DOC across different soils and pollution gradients 

5.1.2.1 Peat and organo-mineral soil 

Catchments vary in their characteristics and therefore may respond differently to 

environmental change. For instance, there have been discrepancies in rates of DOC release 

in areas receiving similar acidifying deposition loads, suggesting catchment specific 

properties may be a controlling factor in DOC production and release (Clark et al., 2010a). 

Upland organic catchments consist of a combination of both peat and organo-mineral soils. 

These shallow organic soils, usually peaty podzols, surround areas of peats on hilly slopes, 

and make up a large proportion of upland carbon-rich landscapes. Therefore the topography 

of the catchment is a determining factor in the proportion of peat and peaty podzol present 

within the catchment. Peat and organo-mineral soils differ in their properties including 

hydrology, texture, and vegetation communities, all of which have been shown to 

correspond with DOC concentrations in pore water (Dalva and Moore, 1991, Neff and Asner, 

2001, van den Berg et al., 2012). 

Peatland UK BAP Priority Habitats are estimated to cover a total area of 2,287,665 ha in the 

UK, of which 2,208,553 ha are classed as blanket peat (JNCC, 2011). Milne and Brown (1997) 

estimated an area of 356,800 ha of peat to contain 400,166 kt of C in England and Wales. 

Peat typically has slow decomposition rates due to waterlogged conditions, resulting in the 

accumulation of a thick organic layer of partially decomposed material at least 40 cm thick 

(Burnham et al., 1980). The high water table results in a slow hydraulic conductivity and 

therefore a significant store of water at more than 95 % (Charman, 2002). Such properties 

allow peat to hold a large C store, which has been correlated with concentrations and fluxes 

of DOC in surface waters (Aitkenhead et al., 1999, Hope et al., 1997). 

Peaty podzols are a common organo-mineral soil present in upland bogs, estimated to cover 

131,300 ha and contain 25,400 kt of carbon in England and Wales (Milne and Brown, 1997). 

Pockets of peaty podzol soils on upland organic catchments have different profile 

characteristics, hydrological behaviour, plant communities and therefore DOC dynamics to 

peat. Such behaviour is complex and has been poorly studied in non-forested environments. 
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In general, the hill slope topography which allows podzols to form enhances drainage, whilst 

the mineral content of podzols improves pore volume and size and allows for easier 

throughflow as well as sorption of DOC onto mineral particles in the mineral horizons 

(Stutter et al., 2012). In addition, flow pathways can shift during stormflow events from the 

main runoff pathway in the lower mineral layer, to the upper organic layer where DOC is 

mobile (McDowell and Likens, 1988, Clark et al., 2007). 

Peat and organo-mineral soil have different plant communities. For instance, peatland areas 

are typically dominated by ericaceous shrubs, such as heather (Calluna vulgaris), some 

graminoids including cotton grass (Eriophorum vaginatum) and a large proportion of 

bryophytes such as Sphagnum mosses over peat areas. In contrast, podzol areas consist of 

some Ericaceous shrub and graminoids, but are dominated by grasses including Festuca 

ovina and rushes such as Juncus squarrosus. As DOC characteristics are related to vegetation 

type (van den Berg et al., 2012, Pinsonneault et al., 2016), it is likely that these different 

plant communities will produce DOC with different properties.  

5.1.2.2 Environmental factors 

Environmental factors can also influence decomposition and therefore the quantity and 

quality of DOC produced. Litter chemistry may be a product of the concentration of 

nutrients in the ecosystem, which may ultimately affect its degradability. In areas with 

higher N deposition, greater foliar N concentrations have been measured in dwarf shrub 

and bryophyte species (Caporn et al., 2014). For instance, in areas receiving an historic 

increase in atmospheric N deposition, Sphagnum has been found to contain higher N 

concentrations, resulting in a higher decay rate (Aerts et al., 2001, Limpens and Berendse, 

2003). Pitcairn et al. (1995) found Calluna to have a linear increase in tissue N of 0.045 mg g-

1 kg-1 ha-1 year-1 of increased atmospheric N deposition.  

Alternatively, the plant community structure may itself be impacted by the atmospheric 

chemistry and pollution deposited on the ecosystem, such as reduced species richness 

(Caporn et al., 2014, Payne et al., 2017, Caporn et al., 2011). Vascular plants, which release 

more labile DOC (Del Giudice and Lindo, 2017), outcompete Sphagnum in areas with 

increased N deposition (Berendse et al., 2001). Therefore the change in deposition 

chemistry can result in a shift in plant community composition and, thereby the potential to 

affect the quantity and quality of DOC produced. 
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Other environmental conditions likely to influence litter decomposition and the resulting 

DOC quantity and quality is changes in abiotic conditions in peat and organo-mineral soil. 

For instance, soil chemical properties can affect how bioavailable DOC is, such as pH and 

ionic strength (Clark et al., 2010a). Also, the hydrological properties of different soils will 

affect DOC residence time and decomposition rates. Temperate and boreal peatlands 

generally have low rates of net primary production (Moore et al., 2002) alongside slow 

decomposition (Moore et al., 2007) which could increase with increased incidence of 

drought with climate change (Fenner and Freeman, 2011). 

5.1.3 Objectives of this study 

This research assesses litter decomposition in both common soil types across a pollution 

gradient, and therefore improves knowledge on the spatial difference in DOC production 

across a peatland catchment in response to environmental change. The main aims of this 

study were to investigate litter decomposition and how this varies with respect to 

underlying soil type, and different acid deposition loads between two sites over a nitrogen 

deposition gradient. The specific objectives were: (1) to determine the impacts of site and 

soil type on the decomposition of Calluna vulgaris and Eriophorum vaginatum using litter 

native to each field location; and (2) Determine to extent to which changes in N deposition 

have affected litter quality and associated decomposition of Calluna through a translocation 

experiment. Work will build on an established acidity manipulation field experiment (Evans 

et al., 2012). 

5.2 Methods 

5.2.1 Site description and experimental design 

This work was built upon an existing long-term acidity manipulation field experiment set up 

in 2007, comprising of four replicated sites situated across two moorland locations with 

contrasting historic rates of acid deposition (see Chapter 3 for further detail) (Evans et al., 

2012). The first study site, the Migneint (3°48.8’ W, 52°59.6’ N, 460 m a.s.l.), is a relatively 

undisturbed blanket bog area in North Wales with historically low levels of pollution. 

Peaknaze (1°54.5’ W, 53°28.3’ N, 440 m a.s.l.), Northern England, is a more disturbed region 

affected by relatively intensive land management and historically high levels of atmospheric 
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pollution, which has led to degradation of the ecosystem including extensive Sphagnum loss 

and erosion (Carroll et al., 2009, Noble et al., 2018, Tallis, 1987) (Table 5.1). 

Table 5.1: A summary of present and historical pollution deposition data collected near experimental sites. 

Sources are as follows: 1) CEH moorland deposition data and estimates from the FRAME model (Evans et al., 

2012); 2) UK deposition data downloaded from CEH website (CEH, 2014). 

Data Year Migneint Peaknaze 

Non-marine Sulphur Deposition  

(kg S ha-1 yr-1)1 

Historical 

(1970 – 2007) 

Decreased by 

66% 

Decreased by 

69% 

Total None-marine Oxidised Sulphur 

Deposition (kg S ha-1 yr-1)2 

2014 4.91 6.31 

Non-marine Wet Sulphate Deposition  

(kg S ha-1 yr-1)2 

2014 4.41 5.41 

Total Nitrogen Deposition (kg N ha-1 yr-1)2 2014 17.98 22.91 

Total Acidity Deposition (keq ha-1 yr-1)2 2014 1.47 1.83 

 

At each site, two soil types were investigated (blanket peat and humic podzol) which are 

among the commonest soils present in the UK uplands, and which also occur extensively in 

other cool, humid temperate regions. This study focuses on ambient deposition treatments 

within the control plots of this field experiment only, which received 20 L monthly 

applications of local rainwater without pH adjustment. 

5.2.2 Litter bag experiment 

The litter bag technique was used to measure the decomposition of litter in the field 

(Beyaert and Fox, 2007). Calluna vulgaris and Eriophorum vaginatum litter samples were 

harvested at the end of the growing season during autumn when DOC production from litter 

is typically at its greatest.  Eriophorum and Calluna were chosen because they were common 

vegetation types to both sites and soils types. 

The vascular plants were collected as dead standing biomass, were sorted to remove other 

material and processed by cutting into 2 cm long pieces and homogenised. A commonly 

used pre-treatment procedure was applied to the samples (followed by several studies 

including (Bragazza et al. (2007), Moore et al. (2007))). This involved air drying to a constant 
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mass at ambient temperature. The dry mass equivalent of 3 g were added to the litter bags, 

all of which were buried at a depth of 5 cm in October 2015. Pre-sown 10 x 10 cm litter bags 

made of polyamide monofil were used (Filtrations Technik, Germany). Subsamples of litter 

were ball milled and analysed for carbon and nitrogen content using a Thermo Flash 2000 

Carbon Nitrogen analyser (Thermo Fisher Scientific, Massachusetts, USA). 

Mesh size has been found to significantly influence what community of decomposers are 

exposed to the litter based on faunal size classes (Bradford et al., 2002). A mesh size as small 

as 74 μm has been used for sphagnum studies, and whilst this prevents the loss of litter 

pieces, it excludes many meso and macro-faunal decomposers (Limpens and Berendse, 

2003). Alternatively much larger mesh sizes have been used such as 1-2 mm to encourage 

macrofaunal decomposition (Moore et al., 2007, Latter et al., 1997), but there is a risk that 

litter may be lost, particularly Sphagnum which becomes very crumbly when dry. Therefore 

a mesh size of 0.5 mm was chosen to allow decomposers into the bag, whilst minimising loss 

of fine litter particles (Bragazza et al., 2007). Litters were then sorted in to two groups to 

reflect different experiments (1) native litter to site and (2) litter translocation from other 

site (Figure 5.1).  Litter bags were buried in the field at a depth of 5-10 cm in October 2015. 
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Figure 5.1: Illustration of which litters from each group were buried at each site. Group 1 represents two litter 

types (Eriophorum and Calluna) which are common at all sites, to investigate how decomposition is influenced 

by different sites and soils over a 12 month period. All were harvested from the site where they were buried. 

Group 2 contains Calluna from the opposing site to test the hypothesis of whether site, soil or litter quality is 

more influential on decomposition after 12 months of incubation. For instance, Calluna harvested from 

Peaknaze was buried at Migneint, and vice versa.  

Collections occurred quarterly (January, April, July and October 2016) to assess how 

decomposition rate changed over time. Once retrieved, litters were processed by removing 

all ingrown material and soil invertebrates, and litter was weighed. To determine DOC 

production potential for another study, a cold water extraction was then performed with a 

1:20 litter to water ratio using ultrapure water with a horizontal shaker for 24 hours. 

Extracts were centrifuged (3500 rpm, 10 minutes) and filtered through 0.45 μm cellulose 

membrane filter paper. The litter was then reweighed to establish a post-extraction weight 

and oven dried at 70 °C for 48 hours and weighed again for an oven dry mass.  

5.2.3 Data analysis 

A simple negative exponential decay model was used to express the mass loss over time 

(Olson, 1963, Pandey et al., 2007): 
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𝑰𝒏 (
𝑿𝒕
𝑿𝟎
) = −𝑲𝒕 

where t is time (year), k is the decomposition rate (year-1), X0 is original litter mass (g) and Xt 

is the mass of litter remaining at time t (g). 

Data were statistically analysed using R statistical package (RDevelopment CORE TEAM, 

2008). Data were assessed as to whether it met the assumptions of Analysis of Variance 

(ANOVA), including normality and equal variance, and transformations were applied where 

necessary. When significance was apparent, a post hoc test was run using the ‘Tukey HSD’ 

function in R to confirm where significant differences occurred between groups. 

5.3 Results 

5.3.1 Group 1: Native litters 

The decomposition rates of litters at different sites after 12 months of decomposition are 

presented below in Table 5.2. 

Table 5.2: Mean (± SE) litter decomposition rates (k) of Calluna and Eriophorum at each site based on 12 

months of decomposition.  

Litter Site k 

Calluna 

Migneint Peat 1.080 ± 0.063  
 

Migneint Podzol 0.861 ± 0.047  
 

Peaknaze Peat 1.400 ± 0.106  
 

Peaknaze Podzol 1.012 ± 0.068   

Eriophorum 

Migneint Peat 0.771 ± 0.029   

Migneint Podzol 0.684 ± 0.046   

Peaknaze Peat 1.367 ± 0.162 

  

Peaknaze Podzol 0.800 ± 0.041   

 

There was a clear and significant effect of soil type on the decomposition of Eriophorum. 

Mass loss was lower in peat compared to podzols and this was consistent for both sites 

(Migneint P = 0.001; Peaknaze P = <0.001) and throughout the 12 month experimental 
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period (Figure 5.2). Decomposition was also higher at Migneint than at Peaknaze, this site 

difference being significant between peat sites (P = <0.001) but not for podzol sites (P = 

0.956). 

 

Figure 5.2: Percentage mass loss of Eriophorum from litter bags collected at quarterly intervals over a 12 

month period. An ANOVA test was run on this data comparing sites (4 levels) and month (4 levels). 

 

The decomposition of Calluna litter responded in a similar way to that of Eriophorum litter 

at different sites and soil types (Figure 5.3). Soil is significantly influential on mass loss for 

both sites (Migneint P = 0.004; Peaknaze P = <0.001) although there was less variation 

between treatment groups than with Eriophorum. Litter generally decomposed more when 

incubated in podzol soil than in peat at both sites. As with Eriophorum, decomposition was 

greater at the Migneint when comparing peat sites (P = <0.001), yet after 12 months of 

decomposition in podzol soils decomposition was greatest at Peaknaze (P = <0.001). 
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Figure 5.3: Percentage mass loss of Calluna from litter bags collected at quarterly intervals over a 12 month 

period. An ANOVA test was run on this data comparing sites (4 levels) and month (4 levels). 

For both litter types, decomposition rates occurred in the following order at sites from 0-9 

months of incubation: Migneint Podzol > Migneint Peat ≈ Peaknaze Podzol > Peaknaze Peat. 

By 12 months of incubation, for Eriophorum this changed to Peaknaze Podzol > Migneint 

Podzol > both peat sites, and for Calluna this changed to Peaknaze Podzol > Migneint sites > 

Peaknaze Peat. Therefore, by 12 months both litter types decomposed the most at 

Peaknaze Podzol due to an increase in decomposition rates at this site between July and 

October. During this time there was a change in mass loss of 16 % for Eriophorum and 27 % 

for Calluna at Peaknaze Podzol, compared to just 2-5 % at Migneint sites for Eriophorum and 

3-15 % at all other sites for Calluna. Decomposition also increased rapidly between July and 

October at Peaknaze Peat for Eriophorum, with a change in mass loss of 21 %. Regardless, 

Peaknaze Peat had the lowest rate of decomposition across the experimental period for 

both litters, with a mass loss of 51 % for Eriophorum and 37 % for Calluna after 12 months of 

decomposition. 

 Soil type appears to be the dominating factor on decomposition, with consistently more 

decomposition in podzol soil than in peat. By 12 months, Eriophorum litter had a 7-14 % 

greater mass loss at podzol sites than at peat sites, and Calluna had a 31 % greater mass loss 
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in Peaknaze Podzol than in Peaknaze Peat, with an insignificant difference between 

Migneint sites. Also, for both litter types decomposition is greatest at the undamaged site 

(Migneint) compared to the degraded site (Peaknaze) for most of the experimental period. 

5.3.2 Litter quality 

For both litter types decomposition is greatest at the relatively undisturbed site (Migneint) 

compared to the degraded site (Peaknaze), suggesting a possible impact of the pollution 

deposition gradient between the two sites. The C and N content of litter were analysed in 

order to assess the role of litter quality as a factor affecting site variation. Significant 

differences in quality of litter between sites was assessed with a paired 2-sample t-test, or a 

Wilcoxon matched-pairs test when distributions were not normal (see Table A5.1 in 

appendix). 

There was no significant difference in the quality of Eriophorum between the sites (Table 

5.3). For N and C:N ratio, this is possibly due to an error in the lab, as one replication had to 

be excluded from analysis due to a malfunction with the C:N Analyser during the analysis of 

N content, and so only two replications were available for N. However, for Calluna, there 

was significantly more N in litter harvested from Peaknaze than from Migneint (P = 0.027), 

as well as a lower C content (P = 0.046). This resulted in a significantly lower C:N ratio in 

litter harvested from Peaknaze (P = 0.011). 

Table 5.3: Table illustrating the mean (± standard error) carbon and nitrogen content, and C:N ratio of Calluna 

and Eriophorum collected from each of the two sites. Due to an instrumental error during the analysis of 

Eriophorum N content for one replication, the mean of N is based on two replications only. 

Litter Site N % C % C:N 

Eriophorum 
Migneint 2.71 ± 1.29 47.15 ± 0.14 22.56 ± 10.78 

Peaknaze 1.47 ± 0.01 47.45 ± 0.22 32.19 ± 0.38 

Calluna 
Migneint 0.82 ± 0.02 51.57 ± 0.50 63.26 ± 0.64 

Peaknaze 0.93 ± 0.02 50.15 ± 0.16 54.02 ± 1.31 
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5.3.3 Group 2: Translocated Calluna 

 

Calluna which was harvested from Peaknaze (Calluna PN) was more N enriched than Calluna 

harvested from the Migneint (Calluna M). However, when comparing how native and 

translocated Calluna decomposed at each site, there was only a significant difference at 

Peaknaze Peat (P = 0.002) (Figure 5.4). Here, 34 % of Calluna M had decomposed after 12 

months of incubation, whilst 27 % of Calluna PN had decomposed. Therefore at the most 

acidic site, the Calluna with highest N content which was native to that site decomposed the 

least. 

When comparing how each litter decomposed across the different sites and between peat 

and organo-mineral soil, there was no significant difference for Calluna M between any of 

the four sites. There was also no significant difference in Calluna PN decomposition 

between sites (peat sites P = 0.068; podzol sites P = 0.496). However, Calluna PN 

decomposed significantly more in podzol soil than in peat at both locations (Migneint P = 

<0.001; Peaknaze P = <0.001). Therefore soil type is a dominating factor in litter 

decomposition when N content is greater and C:N ratio in lower.  

 

 

Figure 5.4: Percentage mass loss of Calluna from litter bags collected from different sites after a 12 month 

incubation period. An ANOVA test was run on this data comparing litter (2 levels), sites (4 levels) and month (4 

levels). Letters signify where significant differences occur, obtained using a Posthoc analysis. 
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5.4 Discussion 

5.4.1 How do litters decompose in peat and organo-mineral soil? 

Litters decomposed more when incubated in podzol soil than in peat, with 5-9 % more mass 

loss for Calluna and 7-13 % for Eriophorum (mean difference for all months). This suggests 

that soil type is a dominating factor on litter decomposition in an organic catchment. The 

organic horizon of podzol has been shown to contain a large amount of DOC which has been 

attributed to microbial decomposition (Stutter et al., 2012), as well as more aromatic DOC 

(Stutter et al., 2012) (Chapter 4), which is also associated with microbial transformation (Hur 

et al., 2009). This suggests that the organic upper peaty layer of podzol may be an important 

source of DOC when flow shifts from the mineral to the organic horizon where DOC is 

mobile during times of high flow (Clark et al., 2007).  

This difference in decomposition between peat and podzol is likely due to the moisture 

content differences. Undrained peats almost are permanently saturated which creates 

anoxic conditions and inhibits aerobic decomposition (Ramchunder et al., 2009) resulting in 

anaerobic activity which is a much slower process (Swift et al., 1979, Keller et al., 2009). In 

contrast, podzol soils are more freely draining allowing for more aerobic activity. 

Furthermore, NPP is greater at podzol areas compared to peat areas, and so there is a 

greater input of organic material from litter above, which arguably could result in a more 

biologically active and primed microbial community, resulting in faster decomposition (Xiao 

et al., 2014, Kuzyakov et al., 2000). 

Much of the literature has focused on either decomposition in peat, or on podzols in 

forested environments. However, FTIR analysis indicates that less decomposition occurs in 

the upper organic layer of peat and peaty podzols in a moorland environments than in 

forested podzols, likely due to the drier conditions under the forest canopy (Chapman et al., 

2001). Such evidence suggests that podzols behave differently in forested and moorland 

environments. Coulson and Butterfield (1978) compared decomposition in peat and mineral 

soils at Moor House (a moorland area in North Pennines, UK) and generally found little 

difference for most plants, and slightly more decomposition of young Calluna shoots in peat 

than in podzol, this being the opposite to the findings of this study. However, no other such 

studies have been found in the literature, which highlights the lack of studies on moorland 

organo-mineral soils and comparisons with peats. 
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5.4.2 Decomposition at different sites over a pollution deposition gradient 

Between 0-9 months of incubation between October and July, litters decomposed the most 

at the less disturbed site (Migneint) for both peat and podzol soil, suggesting that 

decomposition is being suppressed at Peaknaze. This area has experienced high sulphur 

deposition which has seen a 69 % reduction between 1970 and 2005 (Dore et al., 2007, 

Evans et al., 2012), with a substantial store of sulphur still being present in the South 

Pennine peats (Daniels et al., 2008), and significant acidification of soils and waters (Evans et 

al., 2000). In addition, this areas has received previous and current high levels of N 

deposition and consequently has a high level of ecosystem N saturation (Helliwell et al., 

2007, Curtis et al., 2005, Evans et al., 2000).  

Acidification could alter mechanisms involved in microbial decomposition of organic 

material, particularly as soil pH is crucial to enzyme functioning (Fog, 1988), and is highly 

correlated with microbial community structure (Griffiths et al., 2011). Suppression of 

decomposition of Calluna and Eriophorum litter has also been observed in a peat monolith 

acidification experiment (Sanger et al., 1993), whilst no effects have been shown for 

Sphagnum in a poor fen environment (Rochefort et al., 1990). Acidity has been shown to 

suppress microbial activities. Rousk et al (2009) found microbial inhibition below a pH value 

of 4.5 units. The observed reduction in C mineralisation was attributed to the observed 

increase in fungal growth and decrease in bacterial grown with acidity. In a wooded podzolic 

soil environment, acid treatments have reduced microbial activity and the decomposition of 

bracken litter (Brown, 1985). In a spruce forested system, sulphur additions have been 

shown to reduce microbial biomass and soil respiration, as well as alter fungal:bacterial 

ratios and enzyme activities (Oulehle et al., 2018). However, soil respiration has been shown 

to be unaffected by acidity in other forested environments (Cronan, 1985, Oulehle et al., 

2018). Such evidence suggests that acidification may be suppressing decomposition, and if 

so with recovery there will be an increase in decomposition and therefore release of C from 

such sites. 

The high level of N deposition and saturation may also be affecting mechanisms involved in 

microbial decomposition at the Peaknaze site. Microbial community structure is thought to 

be disturbed with high N additions, and biodegradation of cellulose material is enhanced 

leading to an accumulation of more recalcitrant lignocellulose, all of which suppress 
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decomposition (Fog, 1988). Reduced phenol oxidase activity and therefore the 

decomposition of phenolic compounds has been demonstrated in moorland sites with high 

N deposition (Caporn et al., 2014). There is also an argument for the abiotic stabilisation of 

organic material with N inputs, such as phenolic compounds being polymerised by nitrogen 

bridges (Nommik and Vahtras, 1982) which are resistant to biodegradation (Janssens et al., 

2010), or from the condensing of amino compounds with polyphenols and some 

decomposition products, leading up a build-up of inhibitory products which suppress 

decomposition (Fog, 1988). 

In addition, the “microbial nitrogen mining” theory may explain lower decomposition rates 

under high N conditions. Under low N conditions, microbes maintain the functionality to 

mineralise carbon through shifts in enzyme synthesis and activity towards preferential 

decomposition of labile sources in order to acquire N from more recalcitrant sources. With 

increasing N supply, mineral N is more readily available and so decomposition is reduced 

(Craine et al., 2007, Janssens et al., 2010, Carreiro et al., 2000). 

Such effects have been shown to be dependent on decomposition stage. In the early stage, 

decomposition of cellulose and soluble compounds in fresh litter is stimulated, particularly 

where N has accumulated in plant tissues. In later stages, such as in humus, decomposition 

is regulated by the lignin degradation rates, and additional N further suppresses 

decomposition (Berg and Matzner, 1997). This is supported by an inverse relationship 

between N concentration and microbial respiration in the late decomposition stage of 

humus (Berg and Matzner, 1997, Michel and Matzner, 2002).  

As acidification also occurs in areas where N deposition is high, it is difficult to determine 

whether suppressed decomposition is a response to either or both forms of environmental 

change. However, in a nitrogen and sulphur addition experiment in a forested environment 

in the Czech Republic, sulphur additions were found to alter microbial functioning the most, 

suggesting that such responses previously attributed to nitrogen deposition could also be 

due to the simultaneous acidification effect (Oulehle et al., 2018). Furthermore, 

decomposition of litters in a sub-artic bog in response to N additions has been found to be 

species-specific, with no effect on the decomposition of Eriophorum (Aerts et al., 2006), 

suggesting that slow decomposition of Eriophorum at Peaknaze Peat may be due 

acidification from previous sulphur deposition. 
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Much of the previously published research focuses on forested environments, and so once 

again there is a need for research separating the effects of acidity and N deposition on litter 

decomposition in upland organic soils. In addition, as organic upland catchments often 

contain both peat and organo-mineral soil, and with very little research on peaty podzol 

soils, there is a need for further research into such effects on both soil types. 

5.4.3 Decomposition stages and seasonal dynamics 

Limiting environmental factors on decomposition of litter include soil moisture content, soil 

aeration and temperature (Marschner and Bredow, 2002) all of which change over the year 

and influence biotic elements of the ecosystem. The effect of time on decomposition is 

highly complex with abiotic and biotic variables and their interconnectivity changing over 

the year which ultimately influences how organic material is processed (Kalbitz et al., 2000, 

Solinger et al., 2001). 

The decomposition for both litters was fastest between 0-3 months of incubation despite 

this occurring during late autumn/early winter when seasonal influences mean 

decomposition rates are at their lowest rate, with a mass loss of 22-39 % for Eriophorum 

and 19-25 % for Calluna across all sites. This is likely to be due to preferential decomposition 

of in the early decomposition stage. Freshly senesced litter contains compounds which are 

readily degradable and of a labile and soluble nature. Soil microorganisms are thought to 

preferentially decompose labile material, and much of this fraction of the freshly senesced 

litter at the surface is decomposed and released as CO2, leaving the more recalcitrant 

aromatic material which is less labile, such as lignin (Kalbitz et al., 2003a, Saadi et al., 2006, 

McDowell et al., 2006, Don and Kalbitz, 2005, Nordén and Berg, 1990). Between 3-9 months 

of incubation, through winter and spring, decomposition of Calluna and Eriophorum slowed, 

reflecting the potential decrease in proportion of labile material from earlier decomposition, 

and a greater proportion of more recalcitrant material which is more difficult to decompose 

(Moore et al., 2007). 

During 9-12 months of incubation (July to October) decomposition rates increased at 

Peaknaze by 8-27 % for Calluna, and 16-21 % for Eriophorum, and by 3-15 % and 2-5 % 

respectively at Migneint. During late summer conditions are typically warmer which may 

increase biological activity. Early autumn is also when peak litterfall occurs, including a 
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seasonal flux of Calluna flower capsules (Ritson et al., 2016, Cormack and Gimingham, 

1964). This seasonal input of labile material, some of which may be in dissolved forms, 

combined with more favourable abiotic conditions of higher temperatures are likely to 

stimulate biological activity and decomposition (Mitchell and McDonald, 1992). However, 

the discrepancy in increases between sites during this period is unclear and reflects the 

differences in responses to seasonality. For instance, Migneint is much more saturated and 

so may be more able to buffer against increasing temperatures, whilst the drier more 

degraded site of Peaknaze may experience more severe evapotranspiration and so greater 

aeration of peat and podzol soil, increasing decomposition rates during this period. 

The large decomposition rate experienced by both litters during late autumn/early winter, 

and the lower decomposition rate despite rising temperatures from late winter until 

summer, suggests that litter quality in terms of the proportion of labile and recalcitrant 

compounds associated with the decomposition stage is more influential than seasonal 

controls. However, from late summer into autumn decomposition increases at some sites 

suggesting that the interaction of climatic variables on the biology is boosting 

decomposition (such as high temperature, litterfall including dissolved forms which 

stimulate microbial activity, and reduced soil moisture content), despite the fact that litter is 

now in a much later decomposition stage with the lowest amount of labile material. Overall, 

this suggests that litter quality is the main control on decomposition, but this is dependent 

on the time of year, with a shift to other controls associated with seasonality being 

dominant during late summer and early autumn. However, this appears to be site 

dependent, with a particular increase at the degraded site of Peaknaze during this period. 

5.4.4 Control of litter quality on decomposition 

Calluna harvested from Peaknaze had a greater N content and lower C:N ratio, than at the 

Migneint. N deposition over the Peak District is currently exceptionally high and has been 

for decades, with evidence of N saturation in the soil (Helliwell et al., 2007, Curtis et al., 

2005, Evans et al., 2000). N accumulation in plant tissues has been noted in the literature 

(Berg and Matzner, 1997, Van Vuuren and Van Der Eerden, 1992, Caporn et al., 2014). 

Pitcairn et al. (1995) found Calluna to have a linear increase in tissue N of 0.045 mg g-1 kg-1 

ha-1 year-1 of increased atmospheric N deposition. Such evidence suggests that Calluna at 
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Peaknaze has accumulated N in the plant tissue in response to high and long term 

deposition. 

Despite having different quantities of N in plant tissue, there was no difference in how the 

two Calluna litters decomposed at three of the sites (Migneint Peat, Migneint Podzol and 

Peaknaze Podzol). This suggests that N content is not a controlling factor on decomposition. 

This was also seen with Van Vuuren and Van Der Eerden (1992) who enriched Calluna with 

15N and found Calluna took in the added N, and the litter retained and released N 

simultaneously, but the rate of decomposition of Calluna leaves was unaffected. 

Migneint Calluna decomposed the same amount regardless of site or soil type. This does not 

support the ‘home-field advantage’ theory in this case, whereby plants promote 

communities of decomposers which create optimum decomposition of their litter, meaning 

litter will decompose more in their native soil (Austin et al., 2014, Ayres et al., 2009). 

At Peaknaze Peat, Calluna which was more N enriched decomposed the least compared to 

Calluna from the Migneint. It is possible that the more favourable microbial community 

from the low pollution site may have been translocated with Migneint Calluna, but we 

would also expect to see a greater decomposition of Migneint Calluna at Peaknaze Podzol 

also if this were the case. Alternatively, as this is the most acidic site, it is possible that 

acidity is suppressing decomposition (Oulehle et al., 2018). However, we would expect the 

decomposition of both Calluna litters to be suppressed if this were the case. Alternatively, it 

may be possible that the excessive N at this site may be suppressing decomposition of N 

enriched litter in some way. This is discussed below in more detail. 

Litter quality, particularly the composition of labile and aromatic compounds, affects how 

easily it can be broken down by the microbial community. A litter containing a high amount 

of aromatic material such as lignin may have a slower decomposition rate than a highly 

labile litter material (Moore et al., 2007). Alternatively, studies have found that C:N ratio is 

strongly correlated with decomposition (Szumigalski and Bayley, 1996) and DOC (Ritson et 

al., 2016, Soong et al., 2014, Aitkenhead and McDowell, 2000), although Moore et al (2007) 

found lignin content to be more influential. There is evidence in the literature that plants 

produce more lignin when under stress (Moura et al., 2010), and so it is possible that 

Calluna from this site also had a higher proportion of lignin in plant tissue, which inhibits 
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decomposition (Bragazza et al., 2007). If this is the case, then lignin may have accumulated 

in the peat, which may be another factor influencing suppressed decomposition at Peaknaze 

Peat. Furthermore, there is evidence that interactions between N and lignin content may 

create decay resistant compounds which actually slows decomposition (Fog, 1988, Berg and 

Matzner, 1997) and in fact causes stabilisation into humus (Prescott, 2010), which would 

explain why Peaknaze Calluna had suppressed decomposition at Peaknaze Peat only. 

Nitrogen enrichment has been shown to slow the loss of lignin from decomposing litters, 

which further suppresses decomposition (Xia et al., 2017). Also, N has been found to reduce 

activity of lignin degrading extracellular enzymes of litters with a high lignin content 

(Waldrop and Zak, 2006, Sinsabaugh et al., 2002). Whether N or lignin controls 

decomposition is dependent on litter quality. Litters with a high lignin content are controlled 

by lignin:N ratio, but when lignin content is lower, C:N ratio is more influential on 

decomposition (Taylor Barry et al., 1989). For instance, litter decomposition in litter with a 

high lignin content can be suppressed with exogenous N availability through the N 

condensation with phenolic compounds (Waldrop Mark et al., 2004, Bridgham and 

Richardson, 2003).  

This mechanism may be particularly important when considering peat (which naturally 

contains more phenolic compounds), and may explain why there is not a difference in 

decomposition of the Calluna litters at Peaknaze Podzol, but such a vast difference at 

Peaknaze Peat. Bragazza et al. (2007) also found the decomposition of Calluna litter to be 

negatively related to the high lignin content of its litter in a peat environment. Therefore it 

is possible that the differences in litter decomposition at Peaknaze Peat are due to the 

interaction between high nitrogen deposition and accumulation of N in litter, and the high 

lignin content associated with the woody parts of Calluna, which may have been increased 

as a plant response mechanism to stress. Such evidence suggests suppression of Peaknaze 

Calluna litter decomposition in a high deposition area, and preferential decomposition of 

Migneint Calluna with a lower N content where fewer decay resistant compounds are 

created from the interaction with high litter N and lignin.  

There are many mechanisms in the literature assessing decomposition in response to 

nitrogen deposition, many of which have contradictory results (Knorr et al., 2005). Despite 

the importance of decomposition in organic catchments for carbon storage and release, and 
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with N deposition remaining high, there are a lack of studies looking at interactions between 

N deposition, plant N accumulation and lignin accumulation on decomposition of litter in 

both peat and podzol soil in an organic environment. Therefore more work is needed to fill 

this gap in the literature. 

Overall, both Calluna and Eriophorum litters decompose more in podzol soils than in peat, 

which suggests that soil type is a major control on decomposition, and that there is spatial 

heterogeneity in litter decomposition within a moorland catchment. There is variation in 

how litters decompose over the course of 12 months which is associated with different 

controls dominating. Litter decomposition rates are initially high, reflecting the preferential 

biodegradation of labile material, and then slows as bioavailable material is depleted. 

During this period (0-9 months), decomposition was significantly suppressed at the 

Peaknaze site, reflecting the influence of chronic acidification and N saturation at this site. 

However, between late summer and early autumn decomposition increased at Peaknaze, 

suggesting there is potentially a switch from the controls associated with decomposition 

stage progression and pollution deposition, to seasonality such as increased temperatures 

and the priming effect of increased litter fall. Finally, N content and C:N ratio were found 

not to influence decomposition of Calluna litter except at the most polluted peat site. At this 

site, the litter with the higher N content decomposed the least, possibly due to the 

interacting effects of high N content and exogenous available N, and high lignin content 

associated with the woody parts of Calluna litter and accumulation as a plant response 

mechanism to stress. 

5.5 Conclusion 

This research provides insights into the spatial and temporal variations in the decomposition 

of two key upland organic catchment litters; Calluna and Eriophorum, over a 12 month 

period. Results show that, as expected, decomposition is faster in podzols than in peat, and 

is suppressed in areas of chronic N deposition and acidification. Furthermore, litter quality 

in terms of N content and C:N ratio does not influence the decomposition of Calluna at most 

sites. However, the Calluna which had significantly more N accumulated in tissue 

decomposed significantly less at the most polluted peat site. More work is needed assessing 

the potential interacting effects of high N deposition and accumulation in plant tissue and 
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peat, and lignin content and accumulation in plant tissue, on the decomposition of Calluna 

in organic soils.  
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Appendix 

Table A5.1: P values results from comparison of N, C and C:N ratio content of Eriophorum and Calluna litter 

between different sites, using either 1Paired t-test (when data was normal), or 2 Wilcoxon matched-pairs test 

(when data was not normal). 

Litter N C C:N 

Eriophorum 1.0002 0.3531 1.0002 

Calluna 0.0271 0.0461 0.0111 

 

Table A5.2: P values results from Anova comparing Calluna litter (2 levels), sites (4 levels) and month (4 levels). 

Factors P Value 

Litter 0.043 
Site <0.001 
Month <0.001 
Litter:Site <0.001 
Litter:Month 0.659 
Site:Month <0.001 
Litter:Site:Month 0.032 

 

Table A5.3: P value results from Posthoc performed on Anova test comparing Calluna litter (2 levels), sites (4 

levels) and month (4 levels) (Table A5.2). 
  

Calluna M Calluna PN   
M Peat M Pod PN Peat PN Pod M Peat M Pod PN Peat 

Calluna M M Pod 0.235 
      

PN Peat 1.000 0.315 
     

PN Pod 0.100 1.000 0.142 
    

 
Calluna PN 

M Peat 0.962 0.013 0.923 0.004 
   

M Pod 0.001 0.404 0.001 0.751 <0.001 
  

PN Peat 0.003 <0.001 0.002 <0.001 0.068 <0.001 
 

PN Pod 0.175 1.000 0.241 1.000 0.008 0.496 <0.001 
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Chapter 6: Acid deposition impacts on litter decomposition and DOC 

production within peat and organo-mineral soils. 

Abstract 

There has been an observed increase in dissolved organic carbon (DOC) concentrations in 

soil solutions and surface water bodies over the past 30 years in acid sensitive areas of the 

Northern Hemisphere, which has been linked to recovery from acidification of soils in 

response to decreasing levels of atmospheric pollution. However, it is unclear to what 

extent increased DOC concentrations could have been driven by increased decomposition 

and therefore DOC production, as recovery from acidification changes soil pH to more 

favourable conditions for biological activity. A decomposition study using litter bags and the 

Tea Bag Index (TBI) was incorporated into an acidity manipulation field experiment across 

two sites representing a pollution deposition gradient, for both peat and organo-mineral 

soils, to investigate how acidity impacts the decomposition of five litter types common to 

upland moorland catchments, and the resulting effect on the DOC produced. 

Only Eriophorum litter decomposition responded to acidity treatments, which may be 

related to the higher nitrogen content within plant tissue compared to other litters. Acidity 

had no effect on the TBI. This suggests that controls on litter decomposition could be limited 

by nitrogen availability, such that acidity effects were only seen where litter had sufficient 

nitrogen availability. Soil type was found to be highly influential on litter decomposition and 

DOC production. Decomposition rates were greater on podzol soil than peat. Greater 

decomposition on podzols was associated with more DOC release (with Eriophorum) and a 

higher SUVA254 value indicating more aromatic DOC (with Eriophorum and Calluna) being 

extracted, compared to the same litter decomposing on peat. This suggests that litter has 

the potential to decompose faster in podzol soil than in peat, and after one year of 

decomposition this results in more DOC being produced which is of a more aromatic nature 

due to the later decomposition stage reached compared to peat. Such research provides 

insights into the spatial variable and limiting factors on litter decomposition and DOC 

production in an upland organic catchment encompassing both organo-mineral soil and 

peat. Further research is needed to unpick the interactions between nitrogen limitation and 

acidity on decomposition processes. 
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6.1 Introduction 

6.1.1 Why is litter decomposition important for DOC dynamics? 

Upland soils hold a significant fraction of the UK’s soil carbon pool (Billett et al., 2010), 

consisting primarily of peats, but also organo-mineral soils including gleys, podzols and 

leptosols (Howard et al., 1995). DOC fluxes represent a major natural outsourcing of carbon 

from moorland catchments dominated by organic soils. Dinsmore et al. (2010) monitored a 

peatland catchment in southern Scotland over two years, and found the amount of carbon 

lost through DOC export (25 g DOC m−2 yr−1) equated to nearly a quarter of the carbon taken 

in through net ecosystem exchange. Alternatively, some catchments can act as either 

carbon sources or are carbon neutral when loss of total organic carbon in waters is equal to 

or greater than net carbon uptake on land (Billett et al., 2004). Blodau et al. (2007) used an 

in-situ incubation experiment to further estimate production, storage and export of carbon, 

and found turnover to be dominated by pore water DOC, which was produced and 

consumed at greater rates than CH4 or CO2 in an ombrotrophic temperate peatland. Studies 

have shown differences in DOC quality between peat and organo-mineral soils, with organo-

mineral soils containing more aromatic DOC compared to peat (Chapman et al., 2010).  

Differences in quality can be attributed to changes in desorption in the mineral horizons 

with changes in acid sulphur deposition (Chapman et al., 2010), particularly as flow shifts 

from the mineral to the organic horizon during times of high flow (Clark et al., 2007). Such 

studies highlight the importance of DOC fluxes for carbon storage in both peat and organo-

mineral soil, and the different processes that operate in organo-mineral and peat soils 

within an upland moorland catchments dominated by organic soils. 

DOC originates from different sources, including ancient groundwater, mineral soils and 

newly formed DOM with an average age of 5 years within the peat surface (Tipping et al., 

2010). The newly formed DOC derives from peat in the surface layer, and litter. This newly 

formed DOC in the surface peat layer is transported to streams through a combination of 

weak sorptive retention being exerted by the peat solids, and with precipitation largely 

passing through the upper surface (Clark et al., 2008, Holden and Burt, 2003b). This is 

supported by correlations between DOC in surface layers of peat and DOC in stream water 

(Clark et al., 2008, Billett et al., 2006). Further studies investigating radiocarbon (14C) levels 

of DOC suggests that fresh DOC may derive more from litter than the surface peat (Evans et 
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al., 2014, Evans et al., 2007). Therefore litter decomposition is a major source of DOC and 

plays a vital role in C dynamics, stabilisation and transport in organic soils (Don and Kalbitz, 

2005, Kalbitz et al., 2000). Litter decomposition is commonly measured using litter bags, 

whereby the mass loss of litter can be measured and compared between litter types under 

different experimental conditions (Graça et al., 2005). Alternatively, the Tea Bag Index (TBI) 

is a standardised method of measuring decomposition of established litter types which is 

comparable to other studies and experiments (Keuskamp et al., 2013). 

There has been an observed increase in DOC concentrations in surface waters draining 

catchments dominated by organic soils since the 1980’s, across large areas of the Northern 

Hemisphere (Evans et al., 2005, Monteith et al., 2007, Oulehle and Hruška, 2009, 

SanClements et al., 2012b, Couture et al., 2012). Such significant increases in carbon fluxes 

have raised concerns over the future of terrestrial carbon stocks (Freeman et al., 2001a) as 

well as contributing to accelerated climate change (Moody et al., 2013). This highlights the 

need for a greater understanding of the mechanisms behind carbon dynamics in upland 

catchments, and in particular their response to environmental change (Tipping et al., 2007). 

The UK Environmental Change Network highlights recovery from acidification as one of the 

three most significant long-term trends in the physical environment within the UK 

(Morecroft et al., 2009). There is now much evidence that this increasing trend in DOC 

concentrations is due to recovery from acidification as a result of air pollution controls and 

reduced deposition of acidifying pollutants. A physio-chemical mechanism controlling DOC 

movement with high acidity is supported by field (Evans et al., 2012, Oulehle et al., 2013, 

Evans et al., 2008a, Moldan et al., 2012, Ekström et al., 2011) and laboratory experiments 

(Clark et al., 2011, Palmer et al., 2013) as well as modelling (Monteith et al., 2007, Rowe et 

al., 2014, Evans et al., 2008b, Sawicka et al., 2017) and field observations (Oulehle et al., 

2017, Oulehle and Hruška, 2009, Evans et al., 2006a, Oulehle et al., 2011).  
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6.1.2 What are the known effects of acidity on DOC production through 

litter decomposition? 

To date, most attention has been given to understanding the chemical mobility of DOC 

within soils and surface waters. The direct effects of acidity itself on DOC production from 

litter decomposition are poorly understood, with many studies focusing on nitrogen 

deposition effects (Manning et al., 2008, Berg and Matzner, 1997, Knorr et al., 2005, 

Bragazza et al., 2012, Lovett and Goodale, 2011) rather than acidification (Evans et al., 

2008a). Nitrogen fertilization may also be changing the soil acid-base status (Evans et al., 

2008a, Chen et al., 2015), and yet there has been little attempt to separate out the 

individual responses to acidification and nitrogen deposition. Oulehle et al. (2018) 

concluded that carbon accumulation which has previously been attributed to nitrogen 

deposition may also be a response to the simultaneous acidification, based on results of a 

nitrogen and sulphur addition field experiment in a forest stand.  Recent modelling studies 

have indicated that nitrogen deposition may have contributed to increased DOC production 

in nitrogen limited systems by stimulating primary productivity and the production of litter 

(Sawicka et al., 2017). 

Changes in plant community structure in response to acidification may indirectly influence 

DOC release from organic catchments. A combination of acidification, nitrogen deposition 

and drainage has already resulted in widespread loss of bryophyte species in UK moorlands, 

such as the severe Sphagnum loss seen in the Peak District which has been largely 

attributed to high levels of sulphur dioxide and associated acid deposition (Carroll et al., 

2009). Loss of Sphagnum species alongside increasing acidification has been recorded in 

other UK bogs (Hogg et al., 1995, Lee, 1998). Lichens have also experienced a widespread 

loss in species richness in many habitats where acid deposition has been high (NEGTAP, 

2001). Acidification has also been attributed to a loss of other species in UK bogs, including a 

decline in birch in forested areas (Hogg et al., 1995). In addition, Molina has expanded in 

areas of high acidification (Hogg et al., 1995).  

Moorland vegetation varies in quality, decomposability and production of DOC. Sphagnum 

in particular has a high phenolic content (Rasmussen et al., 1995). Phenolic compounds are 

from plant metabolites including phenolic acids, lignin, tannins and so on, which have more 

than one aromatic ring with at least one hydroxyl functional group, which suppress 
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decomposition (Verhoeven and Toth, 1995, Fenner et al., 2004). Sphagnum mosses are 

consistently shown to have the slowest decomposition rates, produce the least amount of 

DOC which is most resistant to biodegradation compared to other vegetation types 

(Pinsonneault et al., 2016, Armstrong et al., 2012, Moore et al., 2007, Ritson et al., 2016, 

Ritson et al., 2014). Vascular plants, which release more labile DOC (Del Giudice and Lindo, 

2017), have been reported to outcompete Sphagnum in areas with increased N deposition 

(Berendse et al., 2001). In general, vascular plants are found to decompose faster, produce 

more DOC, and more labile DOC than mosses in peatland ecosystems, such as Calluna 

(Armstrong et al., 2012, Ritson et al., 2016). Therefore a peatland ecosystem dominated by 

Sphagnum will likely produce less DOC of an aromatic nature, whilst a higher proportion of 

vascular plants will produce more DOC of a more labile nature leading to a reduced soil C 

pool and greater loss of C (Ritson et al., 2016).  

There is little research on decomposition of vegetation in organo-mineral soils in moorland 

environments. In peaty podzol soil, the typical vegetation consists of grasses and dwarf 

shrubs with few bryophytes, and so a dominance of vascular plants may result more labile 

and therefore less stable DOC being produced compared to bryophyte dominated peat. 

Also, there are more suitable aerobic conditions for microbial activity, which may result in 

faster and more complete decomposition (Kalbitz and Kaiser, 2008). 

It is unclear to what extent increased DOC concentrations could have been driven by 

increased decomposition and, therefore, DOC production, as recovery from acidification 

changes soil pH to more favourable conditions for biological activity (Andersson and Nilsson, 

2001a). Therefore, a decomposition study using litter bags was incorporated into an acidity 

manipulation field experiment to investigate how acidity impacts the decomposition of 

litters common to upland organic catchments, and the resulting effect on the DOC 

produced. As well as in situ treatment applications being applied, two locations with 

contrasting historical pollution deposition levels and therefore baseline pH were used to 

investigate the effect of a ‘natural’ acidity gradient. Two organic soil types typical to UK 

moorland ecosystems were also used, building upon the experimental framework presented 

by Evans, et al., (2012). As such, a study of this kind that focuses solely on the effects of 

acidification on litter decomposition, with an attempt to dissect biological production from 
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the solubility effects of DOC in an upland organic catchment in the UK, has not been 

published before to our knowledge. 

6.1.3 Objectives of this study 

The specific objectives of this work were: 

- To investigate the effect of acidity on the decomposition of different moorland 

litters, and the quantity and quality of DOC produced in peat and organo-mineral 

soils and across two sites representing a ‘natural’ acidity gradient. 

- To assess acidity effects on decomposition processes generally using standard litters 

from the Tea Bag Index across different soils at different sites. 

6.2 Methods 

6.2.1 Site description and experimental design 

This work built upon an existing long-term acidity manipulation field experiment set up in 

2007, comprising four replicated plot-scale experiments situated across two peatland 

locations with contrasting historic rates of acid deposition, and therefore present-day soil 

acidity (Evans et al., 2012).  At each site, replicated acidity manipulations were established 

within two soil types; blanket peat and peaty podzol, which are among the commonest soils 

present in the UK uplands, and which also occur extensively in other cool, humid temperate 

regions. 

The first study site, the Migneint (3°48.8’ W, 52°59.6’ N, 460 m a.s.l.), is a relatively 

undisturbed peatland area with historically low levels of pollution in North Wales. Peaknaze 

(1°54.5’ W, 53°28.3’ N, 440 m a.s.l.), Northern England, is a more disturbed region affected 

by relatively intensive land management and historically high levels of atmospheric 

pollution, which has led to degradation of the ecosystem including Sphagnum loss and 

erosion. More details for both sites can be found in Chapter 3 and (Evans et al., 2012). 

6.2.2 Field experimental operation 

The experimental sites were established in August 2007 and consist of twelve 9 m2 plots at 

each of the four sites, with a randomised blocked design compromising four replicates of 

control, acid and alkaline treatments at each location. Treatments were applied initially 

from October 2008 until December 2012 (Evans et al., 2012), and then re-established (using 

the same methods, treatments and plot allocations) from January 2015 until October 2016. 
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Acid plots received a monthly dose of sulphuric acid (H2SO4) mixed with rainwater collected 

at the site with 20 L of rainwater using a watering can. The concentration applied was 50 kg 

S ha-1 yr-1 at the podzol sites and 100 kg S ha-1 yr-1 at the peat sites, this concentration being 

similar to the ambient sulphur deposition in the Peak District in the 1970’s (a higher dose 

was applied to peat plots to take account of the buffering effects of sulphur reduction 

(Evans et al., 2012)). A 10 L rinse of rainwater followed to ensure the treatment infiltrated 

into the soil and to minimise any direct toxicity effects on plant foliage.  

The same procedure was followed for the alkaline plots with sodium hydroxide (NaOH) and 

potassium hydroxide (KOH), followed by a rinse containing magnesium chloride (MgCl2) and 

calcium chloride (CaCl2) to maintain base cation ratios similar to those observed in rainfall. 

The molar OH- concentration in the alkaline treatments was intended to be comparable to 

the H+ concentration in the acid treatments. Control plots received 20 L of rainwater only. 

6.2.3 Sampling and analysis 

6.2.3.1 Litter bag experiment 

The litter bag technique was used to measure the decomposition of litter in the field 

(Beyaert and Fox, 2007). Litter samples were harvested at the end of the growing season 

during autumn when DOC production from litter was at its greatest and included Calluna 

vulgaris, Eriophorum vaginatum, Festuca ovina, Pleurozium schreberi and Sphagnum spp.. 

These were categorised into two groups (Table 6.1). Calluna and Eriophorum litters are 

common in upland organic catchments and are categorised as Group 1. Group 2 captures 

dominant vegetation species specific to each of the four sites. For instance Festuca is 

common at the podzols sites whilst mosses characterise peat sites, with a distinction 

between the Sphagnum dominated Migneint site and the Pleurozium dominated degraded 

Peaknaze site. This captured the dominant vegetation community specific to each site (for 

more details see Chapter 3). The quality of litter in terms of percentage carbon and nitrogen 

content, and C:N ratio for each litter harvested from each site is presented below in Table 

6.2. 
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Table 6.1: Summary of litters buried at each site. All were harvested from the site where they were buried. 

Site Group 1 Group 2 

Migneint Peat Eriophorum, Calluna Sphagnum 

Migneint Podzol Eriophorum, Calluna Festuca 

Peaknaze Peat Eriophorum, Calluna Pleurozium 

Peaknaze Podzol Eriophorum, Calluna Festuca 

 

Table 6.2: Mean (± standard error) carbon and nitrogen content, and C:N ratio of litters collected from the 

Migneint and Peaknaze. Due to a problem during the analysis of nitrogen content of Eriophorum from 

Migneint, results from one replication have been excluded and so the mean of this sample is based on two 

replications. 

Litter Site N % C % C:N 

Eriophorum 
Migneint 2.71 ± 1.29 47.15 ± 0.14 22.56 ± 10.78 

Peaknaze 1.47 ± 0.01 47.45 ± 0.22 32.19 ± 0.38 

Calluna 
Migneint 0.82 ± 0.02 51.57 ± 0.50 63.26 ± 0.64 

Peaknaze 0.93 ± 0.02 50.15 ± 0.16 54.02 ± 1.31 

Festuca 
Migneint 0.42 ± 0.01 46.29 ± 1.18 109.53 ± 1.79 

Peaknaze 0.49 ± 0.01 46.99 ± 0.63 96.53 ± 1.79 

Sphagnum Migneint 0.77 ± 0.02 42.89 ± 0.82 55.76 ± 0.23 

Pleurozium Peaknaze 1.15 ± 0.05 43.65 ± 0.20 37.99 ± 1.66 

 

Vascular plants were collected as standing biomass, whilst whole blocks of Sphagnum were 

collected. Samples were then sorted to remove other material and processed by cutting into 

2 cm long pieces and homogenised. It is not possible to establish the starting point of 

decomposition for Sphagnum as this is a continuous process, so following protocols adopted 

by other studies (Aerts et al., 2001, Moore et al., 2007, Bragazza et al., 2007) the capitulum 

(2-4 cm below the tip) of each individual was removed, as this is likely to be living and 

photosynthesising. Therefore only freshly senesced litter was used.  

A commonly used pre-treatment procedure was applied to the samples (Moore et al., 2007, 

Bragazza et al., 2007). This involved air drying the samples to a constant mass at ambient 
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temperature. The dry mass equivalent of 3 g of Calluna, Eriophorum and Festuca, and 1 g of 

Sphagnum and Pleurozium (a lower amount was used due to the low density of these 

species) were added to the litter bags, all of which were buried at a depth of 5 cm in 

October 2015. Pre-sown 10 x 10 cm litter bags made of polyamide monofil were used 

(Filtrations Technik, Germany). Subsamples of litter were ball milled and analysed for carbon 

and nitrogen content using a Thermo Flash 2000 Carbon Nitrogen analyser (Thermo Fisher 

Scientific, Massachusetts, USA). 

Mesh size has been found to significantly influence what community of decomposers are 

exposed to the litter based on faunal size classes (Bradford et al., 2002). A mesh size as small 

as 74 μm has been used for sphagnum studies, and whilst this prevents the loss of litter 

pieces, it excludes many meso and macro-faunal decomposers (Limpens and Berendse, 

2003). Alternatively much larger mesh sizes have been used such as 1-2 mm to encourage 

macrofaunal decomposition (Moore et al., 2007, Latter et al., 1997), but there is a risk that 

litter may be lost, particularly Sphagnum which becomes very crumbly when dry. Therefore 

a mesh size of 0.5 mm was chosen to allow decomposers into the bag, whilst minimising loss 

of fine litter particles (Bragazza et al., 2007). 

Bags were collected after 12 months of incubation in October 2016. Once retrieved, litters 

were processed by removing all ingrown material and soil invertebrates, and litter was 

weighed. A cold water extraction was then performed with a 1:20 litter: water ratio using 

ultrapure water with a horizontal shaker for 24 hours, followed by centrifuging (15 minutes 

at 3500 rpm) and filtering through 0.45 μm cellulose membrane filter paper. The litter was 

then reweighed to establish a post-extraction weight and oven dried at 70 °C for 48 hours 

and weighed again for an oven dry mass.  

The Tea Bag Index (TBI) is a standardised method to establish a decomposition rate (k) and 

stabilisation factor (S) of soil which is comparable to other studies. Two types of tea were 

buried (Green and Rooibos, both Lipton Tea Bags), which have contrasting decomposition 

rates. Green tea is more labile whilst Rooibos tea is more recalcitrant, meaning once the 

labile fraction of Green tea has been consumed by decomposers, the decomposition of the 

labile fraction of the more recalcitrant Rooibos tea still continues. Therefore, by comparing 

the mass loss, it is possible to estimate the decomposable fraction of Green tea and 

decomposition rate constant of Rooibos tea. From this the stabilisation factor of soil can be 
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calculated, which is the inhibiting effect of environmental conditions on the decomposition 

of the labile fraction. Three sets of bags were incubated in each plot for 90 days and 

received three treatment applications. The bags were then retrieved and the mass loss was 

established, allowing the decomposition rate (k) and stabilisation factor (S) to be calculated 

following the method outlined by Keuskamp et al. (2013). 

6.2.4 Laboratory analysis 

Litter extracts were analysed for pH, electrical conductivity, DOC, and absorbance. The 

extracts indicate the quantity and quality of DOC produced at the stage of decomposition 

reached after twelve months, whilst the mass loss of litters were used to indicate 

decomposition rate. 

The Thermalox TC-TN analyser (Analystical Sciences, Ltd., UK) was used to measure the 

concentration of dissolved organic carbon (DOC) (by subtracting the amount of total 

inorganic carbon (TIC) from the amount of total carbon (TC)). Optical measures were used to 

define spectroscopic properties of filtrate DOC. Samples were diluted to less than 1 au, as 

determined by measuring absorbance at 240 nm. Ultraviolet (UV) visible absorbance spectra 

were determined using UV transparent 96 well plates on a Spectromax M2e Microplate 

Reader (Molecular Devices, San Jose, CA) set to scan at wavelengths between 240 and 600 

nm with a 1 nm increment. As absorbance data obtained by the microplate method is 

slightly lower than the cuvette method (due to the difference in absorbance between plastic 

and quartz), data was multiplied by correction factors (Tim Jones, pers comm). The specific 

ultraviolet absorbance (SUVA) value has been identified as being a useful proxy for 

measuring the aromatic fraction (Weishaar et al., 2003) and molecular weight (Chowdhury, 

2013) of DOC, as it is strongly linked to the hydrophobic organic acid fraction of DOM 

(Spencer et al., 2012). Therefore the SUVA254 value was used as a measure of aromaticity 

and calculated by dividing the absorbance value at 254 nm by the DOC concentration (mg l-

1) (Weishaar et al., 2003). 
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6.2.5 Data analysis 

Data were statistically analysed using R statistical package (RDevelopment CORE TEAM, 

2008). Data were assessed as to whether it met the assumptions of Analysis of Variance 

(ANOVA), including normality and equal variance, and transformations were applied where 

necessary. When significance was apparent, a post hoc test was run using the ‘Tukey HSD’ 

function in R to confirm where significant differences occurred between groups. 

Different Anova tests were run on the data for different litters based on the number of 

factors. For instance, Eriophorum, Calluna and Teabags were buried at all plots, and so a 

two-way Anova was used to compare how decomposition and extract chemistry varied over 

different sites, soils (combined to create four levels) and treatments (three levels). However, 

Pleurozium and Sphagnum were buried in peat at one site only, and so it was only possible 

to investigate how these litters responded to treatments (three levels) (one-way Anova). 

Festuca were incubated in podzol soil only, but at both sites and so a two-way Anova was 

used to compare treatments (three levels) and sites (two levels). Significant differences in 

the percentage carbon and nitrogen content, and C:N ratio between litter were assessed 

using a Two-Way Anova comparing sites (two levels) and litter (five levels). 

6.3 Results 

6.3.1 How effective were treatments at changing sample pH? 

The pH of most of the litter extracts were more acidic when litters received acid treatments, 

and had a higher pH when they received the alkaline treatment (Figure 6.1), ranging from 

pH 4.93-5.10 for acid to 5.59-6.11 units for alkaline and 5.06-5.34 units for control (based on 

mean of plots for each litter type, excluding Sphagnum). The exception was Sphagnum, 

where the pH of extracts were similar regardless of treatments at ~5.60 units (P = 0.755). 

The extractant pH of litters from alkaline plots differed significantly from acid and control 

treatments for all litters (Table 6.3). However only Calluna extracts had a significantly lower 

pH for acid treatments when compared to the control (P = 0.032). Overall, this shows the 

persistence of the pH effect at the depth the bags were buried (~5 cm), as with soil extracts 

and pore water samples taken at a depth of 5-10 cm (Chapter 4).  
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Figure 6.1: Mean pH (pooled for all sites) of extracts from different litters which received acid, alkaline and 

control treatments. Anova results of significance are represented in the legend (***P = <0.001, **P = 0.001 – 

0.010, *P = 0.010 – 0.050). For full Anova results, see Table A6.1 in Appendix. Post hoc results are below in 

Table 6.3. 

Table 6.3: P value results of Post hoc test, comparing treatments for the pH of litter extracts. For full Anova 

results, see Table A6.1 in Appendix. Data transformations to meet assumptions of Anova are stated in table. 

 Eriophorum 
Boxcox 

Calluna 
log 

Festuca 
log 

Pleurozium 
^4 

Con & Acid 0.192 0.032 0.314 0.348 

Con & Alk <0.001 <0.001 0.011 0.005 

Acid & Alk <0.001 <0.001 <0.001 <0.001 

 

6.3.2 Does acidity influence the decomposition of different litters, and 

ultimately to quantity and quality of DOC produced? 

6.3.2.1 Group 1: Common Litters 

The mass loss of Eriophorum litter was found to be significantly affected by treatments (P = 

0.035) (Figure 6.2). Litters decomposed more when incubated in alkaline plots compared to 

acid plots (P = 0.029). However, neither treatments were significantly different to the 

control (acid P = 0.355; alkaline P = 0.406). Decomposition of Calluna was similar across all 

treatments (P = 0.877). There was also no significant interaction between treatments and 
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sites (Eriophorum P = 0.379; Calluna P = 0.148), suggesting that the effect of treatment did 

not depend on site or soil type. 

 

Figure 6.2: Mean percentage mass loss (pooled for all sites) of Eriophorum and Calluna litter after 12 months 

of incubation with different treatments. Error bars represent standard error of the mean, whilst letters 

indicate where significant differences occur based on results of a Posthoc test on an Anova comparing sites 

(four levels) and treatments (three levels). 

Litters decomposed more in podzol soil than in peat, with 62 % (mean of control plots at 

both sites) mass loss of Eriophorum (P = 0.024 for Migneint and P = 0.006 for Peaknaze) and 

59 % mass loss of Calluna (P = <0.001) when incubated in podzol soil after 12 months of 

decomposition, compared to 51 % and 43 % mass loss respectively when incubated in peat 

(Table 6.4). However, there was no significant difference in decomposition for Calluna 

between soil types at Migneint (P = 0.557) with a mass loss of ~50 %. The only site 

difference in mass loss of litter was for Calluna, which decomposed the most at Peaknaze 

Podzol when compared to Migneint Podzol (P = <0.001), whilst there was no difference in 

how Eriophorum decomposed between sites. 

Significantly more DOC was extracted from Eriophorum litter which was incubated in podzol 

than in peat. A total of 3.86 mg/g (mean of 12 plots) of DOC was extracted from Eriophorum 

when incubated at Migneint Podzol compared to 2.06 mg/g at Migneint Peat (P = 0.010), 

and 3.90 mg/g when incubated at Peaknaze Podzol compared to 2.57 mg/g at Peaknaze 

Peat (P = 0.028). Conversely, for Calluna, more DOC was extracted from litter incubated in 
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peat (2.93 mg/g) than in podzol (1.90 mg/g) at Migneint (P = 0.026), whilst there was no 

difference between soils at Peaknaze (P = 0.623). The only difference in DOC extracted from 

litter incubated at different sites was between podzol soils (1.90 mg/g at Migneint Podzol 

and 3.28 mg/g at Peaknaze Podzol) for Calluna (P = 0.005). Treatments had no effect on the 

extracted DOC relative to the dry mass of litter for both Eriophorum (P = 0.338) and Calluna 

(P = 0.722). Treatment effect was also found not to be dependent on site (Eriophorum P = 

0.369; Calluna P = 0.767). 

There was a significantly higher extractant SUVA254 value for litters which were incubated in 

podzol soil compared to peat at both Migneint (Calluna P = <0.001; Eriophorum P = 0.001) 

and Peaknaze (Calluna P = 0.002; Eriophorum P = <0.001), which is an indication of the 

quality of DOC in terms of the concentration of the aromatic fraction (Weishaar et al., 2003). 

For instance, more aromatic DOC was extracted from Eriophorum, with a SUVA254 value of 

2.77 L/mg C-1/m-1 in podzol compared to 2.49 L/mg C-1/m-1 in peat. Calluna extracts also had 

a higher SUVA254 from litter incubated in podzol (1.80 L/mg C-1/m-1) compared to peat (1.26 

L/mg C-1/m-1). 

Overall, this suggests that litter decomposes faster in podzol, and this results in more DOC 

(in the case of Eriophorum) and more aromatic DOC being produced (for both Calluna and 

Eriophorum) from this litter earlier. However, in peat, decomposition and therefore DOC 

production is suppressed. However, SUVA254 was unaffected by treatments for both Calluna 

(P = 0.692) and Eriophorum (P = 0.767), and this was not dependent on site or soil type 

(Calluna P = 0.522; Eriophorum P = 0.116). 
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Table 6.4: Mean and standard error (SE) of mass loss, water-extractable DOC concentration and SUVA254 values for Eriophorum and Calluna litter extracts, incubated at 

different sites with different treatments. ‘M’ refers to Migneint, ‘PN’ refers to Peaknaze and ‘pod’ is podzol soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Treatment 

Eriophorum Calluna 

  M Peat M Pod PN Peat PN Pod M Peat M Pod PN Peat PN Pod 

Mass Loss (%) 

Acid 50.22 60.26 41.35 59.14 43.93 50.39 41.02 66.90 

SE 1.66 5.88 4.03 4.39 3.38 2.98 4.69 0.71 

Control 51.68 58.98 51.10 65.09 53.27 49.33 36.48 67.78 

SE 3.86 2.51 1.87 1.76 5.18 2.21 2.47 2.21 

Alkaline 54.91 72.74 54.84 58.17 42.38 49.70 47.82 66.64 

SE 3.44 6.71 5.74 0.27 5.16 2.79 5.93 1.26 

DOC 

(mg/g) 

Acid 2.13 3.51 2.40 3.54 2.50 2.19 2.66 3.40 

SE 0.22 0.88 0.25 0.59 0.20 0.19 0.30 0.90 

Control 2.01 4.72 2.14 4.58 3.51 2.09 2.69 3.12 

SE 0.04 0.85 0.18 0.78 1.06 0.32 0.40 0.35 

Alkaline 2.02 2.54 2.97 2.94 2.94 1.50 2.73 3.36 

SE 0.14 0.42 0.72 0.24 0.48 0.16 0.39 1.16 

SUVA254 

(L/mg C-1/m-1) 

Acid 2.06 2.79 1.55 3.05 1.06 2.35 1.21 1.88 

SE 0.19 0.19 0.45 0.10 0.14 0.05 0.17 0.30 

Control 1.87 2.75 2.32 2.78 1.45 1.83 1.15 1.76 

SE 0.45 0.12 0.28 0.30 0.10 0.19 0.13 0.12 

Alkaline 1.97 3.04 1.88 3.20 0.86 1.97 1.46 2.18 

SE 0.13 0.13 0.27 0.07 0.15 0.33 0.19 0.10 



Chapter 6 

144 
 

6.3.2.2 Group 2: Site specific litters 

Acidity treatment had no significant effect on the decomposition of Sphagnum (P = 0.209), 

Pleurozium (P = 0.281) or Festuca (P = 0.085) after 12 months of incubation (Figure 6.3). 

Furthermore, Festuca, which unlike Sphagnum and Pleurozium was incubated at two sites, 

had a similar mean mass loss at Migneint and Peaknaze of 54 and 57 % (mean of 12 plots) (P 

= 0.162), and the effect of treatment was found not to be dependent on site (P = 0.793). 

 

Figure 6.3: Mean percentage mass loss of Sphagnum, Pleurozium and Festuca (pooled mean of two sites) litter 

after 12 months of incubation with different treatments. Error bars represent standard error of the mean, 

whilst letters indicate where significant differences occur based on results of a Posthoc test on an Anova 

comparing treatments (three levels) for Sphagnum and Pleurozium, and site locations (two levels) and 

treatments (three levels) for Festuca. 

More DOC was extracted from Festuca which was incubated at Peaknaze Podzol at 3.61 

mg/g than when litter was incubated at Migneint Podzol at 2.21 mg/g (P = <0.001), whilst 

the SUVA254 value of DOC did not differ between sites (P = 0.595). Treatments had no effect 

on the quantity of DOC extracted from Sphagnum (P = 0.566), Pleurozium (P = 0.121) and 

Festuca (P = 0.066), or on the quality of DOC in terms of the SUVA254 value (Sphagnum P = 

0.548; Pleurozium P = 0.784; Festuca P = 0.454) (Table 6.5). Furthermore, there was no 

significant interaction between site and treatment for both DOC (P = 0.620) and SUVA254 (P 

= 0.412) on Festuca extracts.  
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Table 6.5: Mean and standard error (SE) of water-extractable DOC concentration and SUVA254 values for 

Sphagnum, Pleurozium and Festuca litter extracts, incubated at different sites with different treatments. ‘M’ 

refers to Migneint, ‘PN’ refers to Peaknaze and ‘pod’ is podzol soil. 

 

 

6.3.2.3 Effect of treatments on the TBI at different sites and soils 

types 

The effect of treatment on the S factor was found to be insignificant (P = 0.379) (Figure 6.4), 

as was the interaction with sites (at four levels) (P = 0.878). However, the S factor did differ 

significantly between sites (P = <0.001). This is due to the Peaknaze Peat site having the 

highest S factor of 0.24 (mean of control plots) compared to 0.17 at Migneint Peat (P = 

<0.001), 0.14 at Migneint Podzol (P = <0.001), and 0.11 at Peaknaze Podzol (P = <0.001). 

 

 
Treatment 

Sphagnum Festuca Pleurozium Festuca 
 

M Peat M Pod PN Peat PN Pod 

DOC 

(mg/g) 

Acid 3.76 2.32 4.73 4.24 

SE 0.79 0.22 0.29 0.83 

Control 3.60 2.57 3.86 3.58 

SE 0.37 0.44 0.14 0.18 

Alkaline 4.57 1.60 4.42 3.01 

SE 0.99 0.43 0.25 0.08 

SUVA254  

(L/mg C-1/m-1) 

Acid 0.56 2.14 1.49 2.20 

SE 0.09 0.47 0.34 0.36 

Control 0.49 2.25 1.56 2.37 

SE 0.04 0.04 0.24 0.38 

Alkaline 0.46 2.23 1.28 1.58 

SE 0.07 0.13 0.13 0.11 
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Figure 6.4: Stabilisation factor (S) calculated as part of the Tea Bag Index. Tea bags were incubated at different 

sites receiving acid, control and alkaline treatments. 

Both S and k values are similar to comparable ecosystems based on values presented by 

Keuskamp et al. (2013), particularly for the peat sites (Figure 6.5). Mean Migneint Peat 

values were similar to those obtained from an undisturbed raised bog in central Ireland 

(Clara Bog), whilst the degraded Peaknaze Peat values were similar to a disturbed raised bog 

also in Ireland (also Clara Bog area). Podzol sites had a lower S value and a slightly greater k 

value compared to the peat sites. Migneint Podzol is most similar to the Netherlands 

pasture ecosystem, whilst Peaknaze Podzol S and k values are most comparable with the 

Netherlands wet forest. 
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Figure 6.5: A comparison of the Tea Bag Index parameters S and k with data for other ecosystems as presented by Keuskamp et al. (2013). Data presented for the four 

experiment sites for this study are based on the mean from control plots only. 
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As with the S factor, treatments had no effect on the k value (P = 0.151) (Figure 6.6), and 

this was not dependent on site (P = 0.093). The k value was found to be significantly lower 

at Peaknaze Peat (0.011, mean of control plots) than at Migneint Podzol (0.012) (P = 0.030) 

and Peaknaze Podzol (0.013) (P = 0.028). 

 

Figure 6.6: Decomposition rate (k, day-1) calculated as part of the Tea Bag Index. Tea bags were incubated at 

different sites receiving acid, control and alkaline treatments. 

6.4 Discussion 

6.4.1 Decomposition and DOC production in peat and organo-mineral soil 

over a pollution deposition gradient 

This difference in decomposition and DOC release between peat and podzol is likely due to 

the moisture content differences and their effect on soil aeration. Podzol soils are more 

freely draining allowing for more aerobic activity, whilst peats are permanently saturated 

which creates anoxic conditions and inhibits aerobic decomposition (Ramchunder et al., 

2009) resulting in anaerobic activity which is a much slower process (Swift et al., 1979, Keller 

et al., 2009). Furthermore, net primary production is greater at podzol areas compared to 

peat, and so there is a greater input of organic material from litter above, which arguably 

could result in a more biologically activity and primed microbial community, resulting in 

faster decomposition (Xiao et al., 2014, Kuzyakov et al., 2000). 
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The decomposition and subsequent production of DOC from Eriophorum litter was similar 

between the two sites by 12 months of incubation in podzol soil and peat. This is also the 

case for Calluna decomposition and DOC production in peat. However, Calluna did 

decompose more at Peaknaze than at Migneint in podzol soil, and this resulted in slightly 

(yet significantly) more DOC being extracted. Interestingly, results from quarterly sampling 

of Calluna and Eriophorum litter bags from control plots at these sites over the same 

experimental period show that litter decomposed more at Migneint than at Peaknaze for 

both soil types between 0-9 months incubation (Chapter 5). This was followed by a rapid 

increase in Calluna litter decomposition at Peaknaze Podzol between July and October (9-12 

months). This suggests that decomposition of Calluna was suppressed at Peaknaze and then 

increased in the more productive podzol soil in response to seasonal variables (see Chapter 

5), releasing more DOC. However, when comparing the decomposition and DOC production 

of Calluna and Eriophorum litter across the experiment sites, overall soil type is more 

influential on decomposition than site differences (and therefore the influence of pollution 

deposition). 

For the TBI, Peaknaze Peat had a significantly high S value and low k value, suggesting that 

there are environmental factors at this site which are inhibiting the decomposition of the 

labile fraction of organic material (Keuskamp et al., 2013). This is supported by results from 

Chapter 5 whereby decomposition of Calluna and Eriophorum litter was slowest at Peaknaze 

Peat between 0-9 months incubation. This area has experienced high sulphur deposition 

which has seen a 69 % reduction between 1970 and 2005 (Dore et al., 2007, Evans et al., 

2012), with a substantial store of sulphur still being present in the South Pennine peats 

(Daniels et al., 2008). Soils and waters in this area have also experienced significant 

acidification (Evans et al., 2000). In addition, this area has received previous and current 

high levels of nitrogen (N) deposition and saturation (Helliwell et al., 2007, Curtis et al., 

2005, Evans et al., 2000). Heavy metal pollution is also paramount, with concentrations of 

lead in near-surface peat recorded at 1000 mg kg-1 in the Peak District (Rothwell et al., 

2005). N (Knorr et al., 2005) and sulphur deposition (Prescott and Parkinson, 1985), the 

associated acidification (Sanger et al., 1993), as well as heavy metal pollution (Cotrufo et al., 

1995, Berg et al., 1991) have been shown to suppress litter decomposition. Such results 

from the TBI and Chapter 5 suggests that pollutants deposited on organic soils could be 
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contributing to suppression of decomposition in early stages during the biodegradation of 

labile material, and litter bag data from Calluna, Eriophorum and Festuca litters suggest that 

by 12 months there are other factors such as soil type which are more dominant. However, 

further work is needed to unpick these different drivers further. 

6.4.2 The effect of changing acidity on litter decomposition and DOC 

production 

Mass loss did not differ between treatments for any litters other than Eriophorum, which 

decomposed significantly less with acid treatments than with alkaline treatments, but 

neither treatments were significantly different to the control. Furthermore, the DOC 

extracted from litter, which represents the DOC produced during the decomposition stage 

reached by 12 months, did not differ between treatments. This is was also the case for the 

SUVA254 value of extracted DOC, which is associated with the aromatic fraction of DOC 

(Weishaar et al., 2003), and so represents the aromatic fraction of DOC produced. In 

addition, the TBI S and k values were also unaffected by treatments. Interestingly, 

respiration and enzyme activity also did not respond to treatments during a previous 

acidification manipulation experiment at these sites (Oulehle et al., 2013). 

There are few studies assessing the impact of acidification on litter decomposition. Donnelly 

et al. (1990) found microbial biomass, lignin and cellulose decomposition to be unaffected 

by acidity in a forested environment. Alternatively, suppression of decomposition of Calluna 

and Eriophorum litter has been observed in a peat monolith acidification experiment 

(Sanger et al., 1993), whilst no effects have been shown for Sphagnum in a poor fen 

environment (Rochefort et al., 1990), although a much lower annual treatment dose was 

applied of 18 kg S ha-1 yr-1. In addition, the aerobic and anaerobic decomposition of glucose 

has been shown to be reduced in naturally acidic conditions (4.3 pH units) of surface peat 

dominated by Sphagnum, compared to experimentally increased pH (6.8 pH units) 

(Bergman et al., 1999). Such literature suggests that litter decomposition can be suppressed 

by acidity, which supports the results from this study for Eriophorum. 

Acidity can affect decomposition by altering the quantity, community structure and 

functioning of decomposers. Little is known regarding soil faunal responses to acidity, but 

evidence suggests that community structure as well as the vertical distribution of faunal 
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groups may be impacted by acidity, which may affect functions such as decomposition (Wei 

et al., 2017). This may be more relevant in aerobic organo-mineral soils than in saturated 

peat. Furthermore, acidification could alter mechanisms involved in microbial 

decomposition of organic material, particularly as soil pH is crucial to enzyme functioning 

(Fog, 1988), and is highly correlated with microbial community structure (Griffiths et al., 

2011). Such literature again supports the suppression of decomposition seen in this study 

for Eriophorum litter. 

Although treatments were not significant to the control, Eriophorum decomposition did 

show signals of being affected by acidity. In contrast, the decomposition of other litters did 

not respond to treatments. It is possible that this disparity in response to treatments 

between Eriophorum and other litters is due to the quality of the litter. Eriophorum had 

significantly more nitrogen within plant tissue, with a difference of 0.82-1.51 % nitrogen 

content compared to other litters (based on mean of both sites), and a lower C:N ratio, with 

a difference of 10-75 C:N ratio compared to other litters. Eriophorum also decomposed the 

most after 12 months of incubation, with a mass loss of 58 % (mean of control plots from all 

sites) compared to 55 % for Festuca, 51 % for Calluna, 35 % for Sphagnum and 28 % for 

Pleurozium. Therefore it is possible that Eriophorum decomposition was not limited by N, 

and so instead the inhibition effect of acidity was controlling decomposition. However, with 

other litters, N content is lower and so decomposition may be limited by N, meaning that 

even when there is an optimum pH for microbial activity, decomposition is still suppressed.  

However, if this were the case we would expect to see more decomposition of these low N 

litters at Peaknaze, where N deposition and saturation is high. In contrast, whilst Calluna 

decomposes more at Peaknaze Podzol than at Migneint Podzol, there is no difference 

between peat sites, and Festuca also had a similar mass loss between podzol sites. However, 

there are other environmental constraints at Peaknaze which may limit decomposition, and 

therefore decomposition of lower N content litters is not enhanced but in fact suppressed. 

For instance, heavy metal pollution have been shown to suppress litter decomposition 

(Cotrufo et al., 1995, Berg et al., 1991). Also, Calluna litter decomposition has been shown 

to be negatively related to the high lignin content of its litter in a peat environment 

(Bragazza et al., 2007). There is evidence that interactions between N and lignin content 

may create decay resistant compounds which actually slows decomposition (Fog, 1988, Berg 
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and Matzner, 1997). Therefore whilst we might expect higher N deposition at Peaknaze Peat 

to increase decomposition, actually the interaction with the lignin associated with the 

woody components of Calluna may suppress decomposition at this site. 

Therefore whether decomposition is limited by acidity or nitrogen availability is complex 

and may depend on litter quality, whilst other environmental variables may become more 

dominant. Of the literature that is present, there are many contradictions on what the 

controlling factors are on litter decomposition. More work is needed to assess how recovery 

from acidification may be effecting the decomposition and the subsequent DOC produced 

from different litters in a controlled laboratory experiment where other variables such as 

litter tissue N content, heavy metal pollution and lignin content can be excluded, or 

interactions can be explored.  

6.4.3 Limitations of study 

It is possible that the minimal treatment response seen in this experiment could be a 

methodological problem. A possible reason may be due the pH of litter samples. Direct 

measurements from pore water as well as peat extracts of samples collected from 5-10 cm 

depth showed that treatments had successfully altered pH at the depth at which bags were 

buried (Chapter 4). The pH of extracts from litters also reflected the treatments they 

received, barring Sphagnum which had a similar pH between treatments. Extracts of litters 

retrieved from acid plots had a reduction in pH compared to the control by up to 0.33 pH 

units, whilst pH was higher when alkaline treatments had been applied, with an increase of 

up to 0.77 pH units. However, litters were also less acidic than peat, with the mean pH from 

control plots of peat extracts being 4.89-5.59 pH units for peat (the highest value being at 

Migneint Peat where treatment effect was difficult to establish in peat and pore water) and 

4.74-4.89 pH units for podzol (Peaknaze and Migneint respectively) compared to 4.9-5.69 

pH units for litter. Therefore the litter material itself had potentially not reached a pH low 

enough for acidity to influence microbial activity and therefore decomposition.  

Another methodological problem may be the length of incubation time. Whilst there has not 

been a litter bag experiment conducted on a peatland specifically assessing the effects of 

sulphur on DOC production from litter decomposition, some peatland litter bag studies have 

been conducted over a period of two (Scheffer et al., 2001, Ward et al., 2015, Thormann et 
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al., 2001) and three (Bragazza et al., 2010, Moore et al., 2007) years. Mosses such as 

Sphagnum are consistently shown to have slow decomposition rates compared to other 

vegetation types (Pinsonneault et al., 2016, Ritson et al., 2014, Armstrong et al., 2012, 

Moore et al., 2007). Sphagnum also has a high phenolic content (Rasmussen et al., 1995), 

which suppresses biodegradation and contributes to its slow decomposition (Verhoeven and 

Toth, 1995, Fenner et al., 2004).  

Oulehle et al. (2018) detected a suppression effect of sulphuric acid treatments on teabag 

decomposition after 6 months of incubation in a forested podzol soil. In this experiment, 

teabags were only buried for 3 months. Keuskamp et al. (2013) state that in environments 

where decomposition is slow, incubation time should be extended (> 90 days). Furthermore, 

the lack of differences in the TBI variables between soil types may be due to the differences 

in incubation time, with tea bags being buried for 3 months and litter bags for one year. It 

may be possible that the labile fraction of green tea had not completely decomposed and so 

S may have been overestimated in peat, making it difficult to detect differences in soil types. 

Overall, this may explain why treatment responses were not seen, and it may be possible 

that a longer incubation period was necessary to see any influences of acidity. Further work 

is needed to test this idea. 

6.5 Conclusion 

Only Eriophorum litter decomposition showed signals of responding to acidity treatments, 

which may be related to the higher nitrogen content within plant tissue compared to other 

litter types, meaning that nitrogen availability is not limiting decomposition and so acidity 

controls become apparent. This suggests that controls on litter decomposition can be 

limited by acidity or nitrogen availability and this is dependent on litter quality.  

The lack of significant difference between treatments and the control with Eriophorum litter 

mass loss may be due to the short incubation time of 12 months. More work is needed to 

assess how recovery from acidification may be effecting the decomposition and the 

subsequent DOC produced from different litters with a) a longer term field experiment, and 

b) in a controlled laboratory experiment where other variables such as litter tissue N 

content, heavy metal pollution and lignin content can be excluded, or interactions can be 

explored.  
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The TBI suggests that decomposition at the most degraded and polluted site (Peaknaze 

Peat) has environmental factors that are limiting the decomposition of the labile fraction of 

organic material, supporting findings from Chapter 5. By 12 months of incubation of litter, 

soil type was more influential on decomposition, with more mass loss of litter when bags 

were incubated in podzol soil than in peat. This resulted in more DOC (Eriophorum) and a 

higher SUVA254 value indicating more aromatic DOC (Eriophorum and Calluna) from 

extractions. This suggests that litter has the potential to decompose faster in podzol soil 

than in peat, and after one year of decomposition this results in more DOC being produced 

which is of a more aromatic nature due to the later decomposition stage reached compared 

to peat. Eriophorum was found to produce DOC which was of a more aromatic nature, as 

indicated by SUVA254, compared to other litter types. 
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Chapter 7: How do microbial communities in peat and organo-mineral soil 

respond to acidification? 

Abstract 

There has been an observed increase in dissolved organic carbon (DOC) concentration in soil 

solutions and surface water bodies over the past 30 years in acid sensitive areas of Europe 

and North America, which has been linked to recovery from acidification of soils in response 

to decreasing levels of atmospheric pollution. It has been hypothesized that this increase in 

DOC is a result of increased solubility of DOC in response to recovering pH. However, as DOC 

production (and consumption) is under biological control through the decomposition (and 

mineralization) of organic material, there is uncertainty as to whether the increase in DOC 

concentrations is solely a chemical (solubility) response or whether there is a biological 

element also, with increased microbial DOC production, or reduced DOC consumption, with 

acidification recovery. Therefore the aim of this research was to investigate how microbial 

communities respond to soil acidification and recovery in peat and organo-mineral soils, as 

well as assessing relationships with soil pH and DOC. Fungal and bacterial communities from 

soil in an existing long-term pH manipulation field experiment in contrasting areas of 

historical pollution; North Wales and the Peak District, UK, were characterized by 16S rDNA- 

and ITS-based amplicon sequencing. 

The alpha diversity of fungal communities was found to be significantly (P = <0.05) greater in 

podzol soils than in peat, whilst bacterial communities were strongly influenced by site 

differences, with less diversity at the polluted site in the Peak District. Acidity manipulations 

did not influence bacterial alpha diversity, but did increase the abundance of core 

Acidobacteria taxa. Therefore biological responses to experimental treatments were not 

detected using broad community metrics, which highlights the importance of focusing on 

indicator taxa. Finally, despite the insignificance with experimental treatments, bacterial 

community diversity was found to be positively and significantly related to both soil pH and 

soil extract DOC, which suggests that there may be a functional response to changing acidity 

as well as biological. Further work is needed to assess the mechanistic functional response 

of bacteria in terms of DOC production and consumption in response to changing acidity. 
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7.1 Introduction 

Peatlands are a valuable store of carbon, containing an estimated 20-30 % of the total global 

carbon stock (Gorham, 1991). However, there have been recent drastic changes in carbon 

release from these ecosystems, raising concerns over the future of peatland carbon 

balances (Freeman et al., 2001a). Considerable increases in dissolved organic carbon (DOC) 

concentrations have been observed in terrestrial waters draining catchments dominated by 

organic soils across acid sensitive areas of the Northern Hemisphere since the 1980’s (Evans 

et al., 2005, Monteith et al., 2007, Oulehle and Hruška, 2009, SanClements et al., 2012b, 

Couture et al., 2012). This has been largely attributed to recovery from acidification as a 

result of reductions in atmospheric sulphur deposition in many regions, with DOC solubility 

increasing as soil pH recovers, releasing previously insoluble organic carbon as DOC from 

soils. This is widely supported by field (Evans et al., 2012, Oulehle et al., 2013, Evans et al., 

2008a, Moldan et al., 2012, Ekström et al., 2011) and laboratory experiments (Clark et al., 

2011, Palmer et al., 2013) as well as modelling (Monteith et al., 2007, Rowe et al., 2014, 

Evans et al., 2008b, Sawicka et al., 2016) and field observations (Oulehle et al., 2017, 

Oulehle and Hruška, 2009, Evans et al., 2006a, Oulehle et al., 2011). There has also been an 

increase in the amount of high molecular weight, coloured DOC of an aromatic and 

refractory nature leaching from peatlands, contributing to the ‘brownification’ of many 

terrestrial waters (Watts et al., 2001, Worrall et al., 2003a). 

When the pH of soil is more acidic, the chemical solubility of DOC is reduced as organic 

material precipitates out of solution and coagulates with acidity, which leads to a lower 

concentration of DOC in pore water. Acid deposition has the greatest effect on DOC 

solubility when soil pH is 4-5 units (Thurman, 1985, Evans et al., 2006a). Clark et al. (2011) 

also showed a positive correlation between coloured aromatic humic acid concentrations 

and acidity, suggesting that the solubility of aromatic DOC is also acid sensitive and may be 

increasing with recovery. Reduced atmospheric pollution deposition can also lead to 

increasing ionic strength of soil-water and stream water which again can increase DOC 

solubility (Hruška et al., 2009). 

However, there is evidence suggesting there may also be a biological mechanism behind 

these changing trends in response to reduced sulphur deposition and the subsequent 

recovery from acidification. Dawson et al. (2009) used a statistical mixed-effects model to 
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analyse the mechanisms behind the increased DOC concentration and aromatic fraction 

observed over two decades of monitoring at two upland organic catchments in Scotland. 

Results suggest that increased solubility of DOC alongside enhanced heterotrophic 

decomposition in responses to recovery from acidification are behind these trends. 

Alternatively, high sulphur inputs may increase bacterial sulphate reduction, which may 

increase consumption of labile DOC (Bartlett et al., 2005). 

Soil microbes play a considerable role in the regulation, retention and release of carbon in 

peatland systems. DOC production is a biological process, either via the release of exudates 

from plants, or through microbial decomposition of polymeric particulate organic material. 

Microbial decomposition releases DOC through the action of extracellular enzymes, which 

depolymerize higher molecular weight organic matter of low solubility, creating lower 

molecular weight DOC monomers and oligomers.  DOC consumption is also a biological 

process: DOC compounds which are small enough (<~600 Da) can be actively transported 

through microbial cell walls and enter the anabolic and catabolic reactions of microbial 

metabolism with catabolism resulting in the ultimate oxidation and release of DOC as CO2 

(Blankinship et al., 2014). As microbes preferentially decompose and consume labile DOC, 

the remaining by-product is the high molecular weight, aromatic and refractory DOC which 

is harder to break down (Kalbitz et al., 2003b, Malik and Gleixner, 2013). 

It is possible that changes in acidity may alter DOC production in organic catchments. There 

is little research on the production of DOC from plants specific to peatlands and organic 

upland soils, let alone the effect of changing acidity on this DOC source (Fenner et al., 2004, 

Basiliko et al., 2012). However, as soil pH is crucial to enzyme functioning (Fog, 1988), and is 

highly correlated with microbial community structure (Griffiths et al., 2011), it is possible 

that acidification could alter mechanisms involved in microbial decomposition of organic 

material. There is evidence that acidity can slow biological processes involved in DOC 

production. Increases in soil pH with liming has been shown to stimulate microbial activity in 

terms of respiration, and mineralisation, alongside increases in DOC in peat and organo-

mineral soils in both laboratory (Ivarson, 1977, Persson et al., 1989, Andersson et al., 2000, 

Andersson et al., 1994) and field experiments (Shah et al., 1990, Andersson and Nilsson, 

2001a, Nilsson et al., 2001). This suggests that as soil pH changes to more favourable 

conditions for biological activity with recovery from anthropogenic acidification, DOC 
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production may increase as a result. Reduced litter decomposition rates have been 

demonstrated under acidic conditions (Killham and Wainwright, 1981, Adams and Angradi, 

1996, Dangles et al., 2004, Baath et al., 1980, Oulehle et al., 2017), including in peat (Sanger 

et al., 1993) and podzol soil (Brown, 1985), demonstrating reduced DOC production with 

acidity. Particular inhibition of microbial decomposition has been noted at sites with high 

sulphur pollution (Prescott and Parkinson, 1985, Brown, 1985).  

Changing acidity may influence microbial activities and taxa competitiveness, which may 

alter microbial communities and therefore functions such as DOC production and 

consumption. The soil microbial abundance and community structure is also an important 

limiting factor on DOC production. The decomposer community (microorganisms and larger 

decomposers) present has been shown to regulate changes in litter chemistry during 

decomposition, and ultimately the production of DOC including its quality and stability 

(Wickings et al., 2012). A relationship has been highlighted in a forest ecosystem between 

the bacterial community in particular and C-biochemistry, whilst fungi community is more 

influential on nutrient dynamics (Liu et al., 2016). 

Soil microbial community structure has been shown to differ in soils with different pH 

(Frostegård et al., 1993, Griffiths et al., 2011, Hartman et al., 2008). Acidic conditions 

decrease bacteria and increase fungi in soils (Blagodatskaya and Anderson, 1998, Rousk et 

al., 2009, Oulehle et al., 2018), with bacterial growth rates showing a greater sensitivity 

(Walse et al., 1998). Rousk et al (2009) found microbial inhibition in terms of carbon 

mineralisation below a pH value of 4.5 units which was attributed to increased fungal 

growth and decreased bacterial growth with acidity.  

Therefore it is possible that the observed trend of increasing DOC concentrations with 

acidification recovery could be partly due to changes in microbial communities and 

associated functions and DOC production, alongside the chemical mechanism which is 

demonstrated strongly in the literature. However, other studies show acidity as having a 

minimal effect on decomposition (and therefore DOC production) with other abiotic factors 

being more influential such as soil moisture content (Donnelly et al., 1990, Rochefort et al., 

1990). For instance, Thormann et al. (2003) found that there are different fungal 

assemblages associated with decomposing different litter types in peatland ecosystems, and 

concluded that litter quality variables, such as total carbon and nitrogen, determined the 
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fungal community present more than pore water chemistry or physical variables. This raises 

uncertainty over the extent that a biological mechanism may be contributing to increased 

DOC concentrations in response to changing acidity, and highlights the need for research in 

this area. 

Despite their critical role in the turnover of DOC, there is a lack of knowledge surrounding 

taxonomic composition and diversity of soil microbes in peatlands, and their community 

structural and functional responses to environmental change (Hartman et al., 2008). If 

community structure is shown to change in response to environmental change, this leads to 

the next debate as to whether the altered community has different functions with respect 

to DOC production and consumption. We need an improved understanding of ecological 

responses of soil biota to environmental change, such as acidification and recovery, to 

understand the potential relationships with peatland functions, critically the carbon cycle. 

There is uncertainty as to whether the increase in DOC concentrations in terrestrial waters is 

solely a chemical response due to increased solubility with recovering pH, or whether there 

is a biological element also, with increased microbial DOC production, or reduced DOC 

consumption, with acidification recovery. 

The main aim of this chapter is to tackle part of this knowledge gap by assessing how 

microbial communities respond to soil acidification and recovery in peat and organo-mineral 

soils, building upon the experimental framework presented by Evans, et al., (2012). 

Specific objectives are: 

• To investigate how microbial diversity (in terms of alpha diversity indices 

incorporating eveness, and beta diversity assessing variation in species composition) 

differs between soils typical to UK upland organic catchments (peat and peaty 

podzol), and across different sites representing an acidity/pollution gradient. 

• To establish whether microbial diversity is significantly affected by acidity treatments 

at these different sites for peat and organo-mineral soil. 

• To assess whether the abundances of core microbiome taxa respond to acidity 

treatments within different soils and across different sites. 

• To establish whether alpha diversity is significantly related to soil pH and extracted 

DOC. 



Chapter 8 

160 
 

7.2 Methods 

7.2.1 Site description and experimental design 

This work is built upon an existing long-term acidity manipulation field experiment set up in 

2007, situated across two moorland locations with contrasting historic rates of acid 

deposition, and therefore present-day soil acidity (Evans et al., 2012).  At each site, 

replicated acidity manipulations were established within two soil types; blanket peat and 

peaty podzol, which are among the commonest soils present in the UK uplands, and which 

also occur extensively in other cool, humid temperate regions. During the rest of this 

chapter, ‘site’ will refer to the four individual experimental sites (Migneint Peat, Migneint 

Podzol, Peaknaze Peat, Peaknaze Podzol), ‘site location’ will refer to either Peaknaze or 

Migneint, and ‘soil’ will refer to peat and podzol. 

The first study site, the Migneint (3°48.8’ W, 52°59.6’ N, 460 m a.s.l.), is a relatively 

undisturbed moorland area with historically low levels of pollution, based in North Wales. 

Peaknaze (1°54.5’ W, 53°28.3’ N, 440 m a.s.l.), Northern England, is a more disturbed region 

affected by relatively intensive land management and historically high levels of atmospheric 

pollution, which has led to degradation of the ecosystem including Sphagnum loss and 

erosion. More details for both sites can be found in Chapter 3 and (Evans et al., 2012). 

7.2.2 Field experimental operation 

The experimental sites were established in August 2007 and consist of twelve 9 m2 plots at 

each of the four sites, with a randomised block design comprising of four replicates of 

control, acid and alkaline treatments at each location. Treatments were applied initially 

from October 2008 until December 2012 (Evans et al., 2012), and then re-established (using 

the same methods, treatments and plot allocations) from January 2015 until October 2016. 

Acid plots received a monthly dose of sulphuric acid (H2SO4) mixed with rainwater collected 

at the site with 20 L of rainwater using a watering can. The concentration applied was 50 kg 

S ha-1 yr-1 at the podzol sites and 100 kg S ha-1 yr-1 at the peat sites, this concentration being 

similar to the ambient sulphur deposition in the Peak District in the 1970’s (a higher dose 

was applied to peat plots to take account of the buffering effects of sulphur reduction 

(Evans et al., 2012)). A 10 L rinse of rainwater followed to ensure the treatment infiltrated 

into the soil and to minimise any direct toxicity effects on plant foliage.  
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The same procedure was followed for the alkaline plots with sodium hydroxide (NaOH) and 

potassium hydroxide (KOH), followed by a rinse containing magnesium chloride (MgCl2) and 

calcium chloride (CaCl2) to maintain base cation ratios similar to those observed in rainfall. 

The molar OH- concentration in the alkaline treatments was intended to be comparable to 

the H+ concentration in the acid treatments. Control plots received 20 L of rainwater only. 

Peat and organo-mineral soils samples were collected and processed as described in 

Chapter 4. Samples were stored at -20°C until extraction of DNA could be performed. 

7.2.3 DNA Extraction 

DNA was extracted from 0.25 g of soil samples (plus two blanks) based on the 

manufacturer’s instructions with a PowerSoilTM DNA isolation kit (MO BIO Laboratories, 

Carlsbad, CA). In summary, samples were added to Powerbead Tubes containing a buffer 

solution of guanidine thiocyanate, allowing the dispersal of soil particles, protection of 

nucleic acids from degradation, and dissolving of humic acids. The detergent sodium lauryl 

sulphate was then added (60 µl) to aid cell lysis. Tubes were then vortexed using the 

TissueLyser II (QIAGEN, Germany), set at 30 Hz/S for 1 minute, enabling mechanical cell lysis 

and homogenisation. Following centrifugation (10,000 rcf for 30 seconds), 250 µl of Inhibitor 

Removal Technology ® (IRT) was added, tubes were centrifuged again (10,000 rcf for one 

minute) and the supernatant was removed from the resulting pellet. This allowed non-DNA 

organic and inorganic material that may reduce DNA purity to precipitate out of solution, 

including cell debris, proteins and humic substances. The extraction with IRT was repeated, 

and the supernatant was then mixed with a salt solution and passed through a silica 

membrane. Finally, the captured DNA was washed with an ethanol solution to remove 

contaminants such as humic acids, and then eluted using 10mM tris buffer for downstream 

analysis. 

7.2.4 DNA amplification and sequencing 

A two-step Polymerase Chain Reaction (PCR) procedure was used for amplification of the 

section of DNA of interest, including the rDNA 16S (bacteria and archaea) and fungal 

Internal Transcribe Spacer (ITS) region. The procedure is based around the use of DNA 

primers, also known as DNA olionucleotides, and Taq polymerase, a heat-stable enzyme 

which synthesises a new DNA strand from nucleotides. Using a multichannel pipette in a 
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sterile PCR cabinet, 1 µl of DNA was transferred into a 96 well PCR plate with a solution 

containing the Taq polymerase (Sigma Taq for 16S and Q5 Taq for ITS), deoxynucleotide 

(dNTP) and primers. Bacterial 16S rDNA were amplified with forward (515f, sequence 

GTGYCAGCMGCCGCGGTAA) and reverse (806rB, sequence GGACTACNVGGGTWTCTAAT) 

primers targeting the V4 region (Walters et al., 2016), and the fungal ITS region were 

amplified using forward (ITS7, sequence GTGARTCATCGAATCTTTG) and reverse (ITS4, 

sequence TCCTCCGCTTATTGATATGC) primers targeting the ITS2 region (Ihrmark et al., 

2012). This created amplicon fragments of approximately 380 base pairs.  

The first PCR step consisted of cycles of denaturing, annealing and extended DNA strands. 

The programme differed for ITS and 16S and is summarised below in Table 7.1. This step 

allows the primers to target the region of interest and create amplicons.  

Table 7.1: Summary of the first PCR step programme used for 16S and ITS amplification, involving six steps 

with samples being held at different temperatures for different amounts of time. Steps 2-4 were repeated 25 

times. Samples were stored at a low temperature in stage 6 until the plate was retrieved.   

Analysis 1 
2 3 4 

5 6 
x25 

16S 95°C 95°C 55°C 72°C 72°C 4°C 

02:00 00:15 00:30 00:30 10:00 - 

ITS 95°C 95°C 52°C 72°C 72°C 10°C 

03:00 00:15 00:30 00:30 10:00 - 

 

Gel electrophoresis with agarose gel was used to check that DNA had amplified correctly 

during PCR. Post-cycle sequencing reaction contaminants including enzymes and dNTPs 

were removed from DNA samples using the ZR-96 DNA Sequencing Clean-up Kit™ (Zymo 

Research, USA). The cleaned PCR product (1 µl) was then added to a solution containing 

Sigma Taq polymerase, dNTP and primers. During the second PCR step (the programme of 

which is summarised in Table 7.2), the amplicons are given individual ‘barcodes’ to 

determine which sequence belongs to which sample during sequencing. 

Table 7.2: Summary of the second PCR step programme used for 16S and ITS amplification, involving six steps 

with samples being held at different temperatures for different amounts of time. Steps 2-4 were repeated 8 

times. Samples were stored at a low temperature in stage 6 until the plate was retrieved.   
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Analysis 1 
2 3 4 

5 6 
X8 

16S & ITS 
95°C 95°C 55°C 72°C 72°C 4°C 

02:00 00:15 00:30 00:30 10:00 - 

 

Gel electrophoresis was once again used to check for correct amplification of the second 

PCR product. Amplicon purification and normalisation of the product was then performed 

following instructions from the Applied Biosystems SequalPrep Normalization Plate (96) Kit 

(Thermo Fisher Scientific, USA). The quantity of DNA in the resulting pooled samples were 

then assessed using the Quibit 3.0 Fluorometer (Invitrogen, Thermo Fisher Scientific, USA). 

Based on this assessment, DNA was diluted to 0.21 ng/ml using elution buffer from the 

normalisation kit to create a final volume of 400 µl. The resulting pooled diluted sample was 

then vacuum concentrated to 40 µl. For both 16S and ITS, 55 µl mixed with 10 µl of loading 

buffer were loaded onto a 2 % agarose gel containing 5 ml of SYBR™ Safe DNA gel stain 

(Invitrogen, Thermo Fisher Scientific, USA). Gel electrophoresis proceeded at 80 volts for 35 

minutes, after which the DNA was cut out of the gel and weighed into an Eppendorf tube. 

Finally, the DNA was purified following the QIAquick Gel Extraction Kit (QIAGEN, Germany) 

instructions, and then analysed with Illumina MiSeq (Illumina, UK). 

7.2.5 Bioinformatics  

Bioinformatics were perform using R Statistical Software and the Dada2 package (Callahan 

et al., 2016) following the amplicon workflow: filtering; dereplication; sample inference; 

chimera identification; and merging of paired-end reads. During the first filtering step, 

forward and reverse reads were truncated based on the interpretation of quality profile 

plots. After truncation, readings with higher than expected errors were discarded. 

Identical sequences were then combined into ‘unique sequences’ during dereplication, 

which retains the quality information of each unique sequence to inform the error 

parameters. The sample inference step then applied the core sequence-variant inference 

algorithm to the data. Finally, forward and reverse reads which overlapped were merged. 

Chimeras were removed using the ‘removeBimeraDenovo’ function. The number of reads 

passing through each step in the workflow are summarised below in Table 7.3 for a random 
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selection of samples. Microbial sequences were identified by comparing them to 

Greengenes (DeSantis et al., 2006) and UNITE (Kõljalg et al., 2013) sequence classifier 

databases.   

Table 7.3: Number of reads obtained following each amplicon workflow step using DADA2 package. 

Analysis Sample Input Filtered Merged Chimera 

16S 

PN Peat 1 93978 82184 77761 77482 

M Peat 12 93072 86331 75629 75258 

PN Pod 12 110240 101540 95457 95346 

PN Pod 11 69518 63518 57897 57636 

ITS 

PN Peat 1 229 182 169 0 

M Peat 12 30950 23478 22724 22724 

PN Pod 12 102822 92193 88683 88674 

PN Pod 11 87282 78750 77206 77050 

 

7.2.6 Data analysis 

Data was analysed using Microbiome Analyst (http://www.microbiomeanalyst.ca) (Dhariwal 

et al., 2017) and R Statistical Software. Data was uploaded onto Microbiome Analyst and 

underwent a data filtering step. Samples with zero or low reads were removed manually 

prior to this. Unfortunately, this step removed a total of 15 samples for ITS, meaning many 

replications were removed and the effect of treatment could not be assessed. The optimum 

filtering parameters which removed data noise whilst retaining key taxa were identified. 

Variables with low abundance features were removed and so features remaining after the 

filtering step had a minimum count of two with 15% prevalence for 16S, and a minimum 

count of two with a 10% prevalence for ITS. This removed a total of 5147 low abundance 

features for 16S (873 remained) and 3384 for ITS (238 remained). In order to address the 

variability within data and allow for biologically meaningful comparisons so that 

communities between groups could be compared, data was normalised by applying 

cumulative sum scaling (CSS) (Paulson et al., 2013, Weiss et al., 2017). 

Alpha diversity indices (Shannon, Simpson and Chao1) were calculated in Microbiome 

Analyst. A two-Way analysis of variance (ANOVA) was performed in R using site (four levels) 
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and treatments (three levels) as factors for 16S and a One-way Anova on ITS data comparing 

sites (four levels). Where ANOVA revealed a significant effect, further analysis was 

performed using ‘Tukeys HSD’ post hoc test.  

Beta diversity was also calculated using the Bray-Curtis distance matrix to quantify the 

compositional dissimilarity between sites and treatments. Principle coordinates analysis 

(PCoA) was used to visually represent the distance matrix data over a two-dimensional 

space using Microbiome Analyst. The core microbiome was also obtained by setting 

abundance thresholds on relative abundance data in Microbiome Analyst (see section 

7.3.3). The relative abundance of each member of the core microbiome was compared 

between sites (four levels) and treatments (three levels) using a Two-Way ANOVA in R for 

16S data, and site locations (two levels) and soil type (two levels) for ITS data. Finally, 

relationships between alpha diversity indices (both 16S and ITS) with soil extract pH and 

DOC concentrations were assessed using scatterplots and Spearman’s Rank statistical test.  

Analysis of both 16S and ITS data was done at three taxonomic levels for comparison. For 

16S these levels were phylum, order and genus, and for ITS these were order, genus and 

species as more taxa groups were identified at lower taxonomic levels.  

7.3 Results 

7.3.1 Community composition 

7.3.1.1 Bacterial and archaeal composition 

A total of 2,301,849 raw reads were obtained from 48 samples for 16S rRNA gene 

amplicons. After quality filtering, a total of 1,982,396 sequences were acquired which 

ranged from 13,519 to 90,679 sequences per sample, after two samples were removed from 

analysis due to low reads (Migneint Podzol Control plot 2, Peaknaze Podzol Acid plot 8).  

Composition is shown for four taxonomic levels below; phylum, order, genus and species 

(Figure 7.1). A total of 26 taxonomic groups were identified at phyla level (Figure 7.1a). Soil 

bacterial and archaeal taxonomic composition were similar between all sites. The most 

common phyla groups were Acidobacteria, Proteobacteria and Verrucomicrobia, accounting 

for 86-95% of abundance depending on site. Relative abundance of some bacterial groups 

varied slightly between soil types. For example, podzol sites had a higher abundance of 

Acidobacteria than peat sites, but a lower abundance of Verrucomocribia. Some taxonomic 
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groups also varied slightly between Peaknaze and Migneint. For instance, Nitrospirae were 

present at Migneint peat (~1 %), but not at other sites. Proteobacteria were also more 

abundant at Peaknaze peat (26 %), yet had a similar abundance across other sites (~ 17 %). 

A total of 82 taxonomic groups were identified at order level (Figure 7.1b). Again, the most 

common taxa were Acidobacteriales, which were more prevalent at Peaknaze (49 % at both 

soil types) than at Migneint (29-36 % at podzol and peat sites respectively). Other common 

taxonomic groups included Solibacterales (6-9 %), Pedosphaerales (4-10 %) and Ellin6513, of 

which were more abundant at podzol sites (5 % at Peaknaze and 22% at Migneint) than at 

peat sites (1 % at Peaknaze and 6 % at Migneint) 

A total of 48 taxonomic groups were identified at genus level (Figure 7.1c), the most 

abundant of which were unnamed groups (g_) and comprised 79-86 % relative abundance. 

Common taxa groups included Candidatus koribacter (2-6 %) and Candidatus solibacter (3-5 

%). There were no apparent differences in community composition between different site 

locations and soils other than a slightly higher abundance of unnamed taxa (g_) at podzol 

sites than at peat sites. At species level (Figure 7.1d), unnamed taxa (s_) comprised 95-98 % 

relative abundance, and NA (unknown taxa) comprised <4 % relative abundance. All nine 

identified taxa at this level had a relative abundance of <1 % at each site. Due to the small 

amount of taxa identified, further analysis was not performed at this level. 
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Figure 7.1: Percentage relative abundance of bacterial and archaeal taxa at phyla (a), order (b), genus (c) and 

species (c) taxonomic levels for each site. ‘M’ refers to Migneint, ‘PN’ refers to Peaknaze and ‘Pod’ refers to 

podzol soil. 

 

 

 

c) 

d) 
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7.3.1.2 Fungal composition 

For ITS amplicons, a total of 1,768,795 raw reads were obtained from 48 samples. Fifteen 

samples were removed for having zero or low reads (Migneint Podzol plot 2 (control), 3 

(control), 10 (alkaline); Peaknaze Peat plot 1 (control), 2 (control), 4 (control), 7 (acid), 8 

(acid), 10 (alkaline); Peaknaze Podzol plot 2 (control), 6 (acid), 10 (alkaline)). After quality 

filtering, a total of 1,448,105 sequences were acquired which ranged from 302 to 82,104 

sequences per sample. 

At phyla level, 11 taxonomic groups were identified (Figure 7.2a). The main dominating taxa 

were Ascomycota, which were more abundant in peat (>70 %) than in podzols (<20 %), and 

Basidiomycota which were more abundant in podzols (40-60 %) than in peat (<15 %). A total 

of 37 taxonomic groups were identified at order taxonomic level (Figure 7.2b), the dominant 

of these being Helotiales which were more abundant in peat (57-78 %) than in podzols (<15 

%), Geminibasidiales, which were more abundant at podzol sites (>20 %) than in peat (<1 

%), and Mortierellales, which were slightly more abundant in podzols (~12 %) than in peat 

(<10 %). There were also some rarer taxa groups which were specific to podzol sites only 

including Filobasidiales (~3 %) and Pezizales (~3 %). 

At genus level, a total of 68 taxonomic groups were identified (Figure 7.2c). The most 

common ITS taxa category was non-assigned taxa, which made up to 29-40 % of community 

composition depending on site. There were some key similarities between common taxa 

groups and soil type. For instance, taxa which were common in peat soils included 

Meliniomyces (28-36 %) and Pezoloma (~9 %), whilst taxa more common in podzol soils 

included Basidioascus (19-26 %) and Solicoccozyma (~3 %). Migneint Podzol also had a 

higher abundance of Hypochnicium (7 %) and Gliophorus (17 %). 

At species level, there were 6 taxa identifications (Figure 7.2d). Non-assigned taxa made up 

a large amount of proportion of the relative abundance at each site (50-80 %). There were 

some clear differences in taxa community composition between peat and podzol soils. For 

instance,  Undulatus was highly abundant at podzol sites (19-26%) but had an abundance of 

< 1 % at peat sites. Equally, Ericae was more abundant in peat sites (8 %), but less so at 

podzol sites (<4 %). There were some more site specific taxa also, including Xylopini and 
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Megaspora at Peaknaze Podzol (both at 3 % abundance), Cylichnium at Peaknaze Peat (12 

%) and Albostramineum at Migneint Peat (7 %). 

 

 

 

a) 

b) 
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Figure 7.2: Percentage relative abundance of fungal taxa at phyla (a), order (b), genus (c) and species (c) 

taxonomic levels for each site. ‘M’ refers to Migneint, ‘PN’ refers to Peaknaze and ‘Pod’ refers to podzol soil.  

 

 

 

c) 

d) 
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7.3.2 Diversity 

7.3.2.1 Alpha diversity 

7.3.2.1.1 Bacterial and archaeal alpha diversity 

Alpha diversity is a measure of taxa richness and abundance within a sample, and is a way of 

comparing total diversity in different communities (Lozupone and Knight, 2008). There are 

three indices which have been used to measure alpha diversity, each reflect a different 

element of alpha diversity. Chao1 measures richness (Chao, 1984), Shannon’s index 

measures both richness and eveness of taxa (Ludwig and Reynolds, 1988), as does 

Simpson’s, which reflects the probability of two individuals of the same taxa being randomly 

chosen (Simpson, 1949, Lemos et al., 2011). Data was assessed with a Two-way Anova 

comparing alpha diversity between sites (four levels) and treatments (three levels). As the 

effect of treatment on diversity was found to be insignificant, and so data is only presented 

below for sites across all treatments.  

At phyla level, bacterial alpha diversity was found to be significantly different between sites 

for all diversity indices assessed using a Two-way ANOVA (Chao 1 P = <0.001; Shannon P = 

<0.001, Simpson’s P = <0.001). Further analysis with Tukey’s Posthoc showed a significant 

difference between peat sites for all indices (Chao1 P = <0.001, Shannon P = <0.001, 

Simpson P = 0.001) (Figure 7.3a), with a higher diversity at Migneint Peat than at Peaknaze 

Peat (Figure 7.3). Shannon’s Index was also significantly different between podzol sites (P = 

0.008). 

However, diversity did not differ between soil types at each site location for any of the 

indices used. In addition, when comparing treatments, Simpson’s and Shannon’s index had a 

significant P value (P = 0.012; P = 0.016) but further investigation with a Tukey Posthoc 

showed no significant differences of interest between treatment plots at individual sites. 

Treatments were also shown to be insignificant in influencing diversity under Chao1 (P = 

0.326). Finally, the treatment effect was found not to be dependent on site location or soil 

type (Chao1 P = 0.766; Shannon P = 0.386; Simpson’s P = 0.555). 

At order level, both Shannon and Simpson’s diversity indices, which both account for 

eveness as well as richness, show there was a significant difference in diversity between site 

locations, with more diversity at Migneint both for peat (Shannon P = <0.001; Simpson’s P = 
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<0.001) and podzol (Shannon P = <0.001; Simpson’s P = <0.001) soils than at Peaknaze 

(Figure 7.3b). Chao1 shows that diversity was significantly greater at Migneint compared to 

Peaknaze for peat sites (P = 0.037), but not for podzol sites (P = 0.862).  

There was a significant difference in diversity between soils types at Peaknaze (Chao1 P = 

0.043; Shannon P = 0.002; Simpson’s P = 0.034), with a greater diversity in podzol than in 

peat, but diversity was similar between soils at Migneint (Chao1 P = 0.953; Shannon P = 

0.848; Simpson’s P =0.784). Treatments were found to be significant for both Shannon (P = 

0.042) and Simpson’s (P = 0.001), but there were not significant differences between 

treatment plots at each site when investigated further with a Post hoc test. 

At genus level, all indices show there was significantly more diversity at Migneint peat than 

at Peaknaze peat (Chao1 P = 0.005; Shannon P = <0.001; Simpson’s P = <0.001) (Figure 7.3c). 

Only Shannon show a significant site location difference between podzol sites (P = 0.037). 

Finally, as with order level, there was significantly more diversity in podzol than in peat at 

Peaknaze only with Shannon (P = 0.009) and Simpson’s (P = 0.041) indices. Treatment was 

found to be significant for Shannon (P = 0.045) but there were no significant differences 

between treatment plots at each site when investigated further with a Post hoc test. 
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Figure 7.3: Boxplots of 16S alpha diversity indices (Chao1, Shannon and Simpson’s) based on phyla (a), order 

(b) and genus (c) taxonomic levels, for each site. Letters show where statistically significant differences 

occurred, as determined using a post hoc test of a Two-Way ANOVA (comparing sites (4 levels) and treatments 

(3 levels)). 

7.3.2.1.2 Fungal alpha diversity 

There was significantly more fungal diversity in podzol soils compared to peat at both 

Migneint (Chao1 P = <0.001; Shannon P = <0.001; Simpson’s P = 0.007) and Peaknaze (Chao1 

P = <0.001; Shannon P = <0.001; Simpson’s P = <0.001) at order level (Figure 7.4a). At lower 

taxonomic levels (Figures 7.4b & c), this difference in diversity between peat and podzols 

becomes less apparent, with significance occurring between Migneint soils with Chao1 

a) 

b) 

c) 
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diversity index at genus (P = 0.006) and species (P = 0.031) level. There were no significant 

differences in fungal diversity between site locations for any of the taxonomic levels 

investigated or any of the diversity indices used. 

 

 

 

Figure 7.4: Boxplots of ITS alpha diversity indices (Chao1, Shannon and Simpson’s) based on order (a), genus 

(b) and species (c) taxonomic levels, for each site. Letters show where statistically significant differences 

occurred, as determined using a post hoc test of a One-Way Anova (comparing sites (4 levels)). 

The effect on treatment could not be tested as part of a Two-way ANOVA with sites, due to 

the amount of replications lost from the dataset due to low reads. However, all samples 

from Migneint Peat were retained, resulting in four replications per treatment at this site. A 

One-way ANOVA was performed on all alpha diversity indices and treatment was found to 

a) 

b) 

c) 
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be insignificant at Migneint Peat for order (Shannon P = 0.251; Simpson’s P = 0.188; Chao1 P 

= 0.788), genus (Shannon P = 0.522; Simpson’s P = 0.571; Chao1 P = 0.595), and species 

(Shannon P = 0.555; Simpson’s P = 0.608; Chao1 P = 0.564) taxonomic levels. 

7.3.2.1.3 Alpha diversity summary 

There was more diversity at Migneint than at Peaknaze regardless of soil type for bacterial 

and archaeal data. There were also some soil differences, with more diversity in podzol soil 

than in peat. However, this was only apparent at Peaknaze and at higher taxonomic levels. 

This suggests that bacterial and archaeal diversity are most sensitive to site location 

differences, which in this case represents a ‘natural’ pollution deposition gradient. 

Alternatively, fungal diversity did not differ between site locations, but was more sensitive 

to soil differences, in this case diversity being greater in podzol soil than in peat. Neither 

fungal nor bacterial diversity responded to acidity treatments (see Figures A7.1-A7.6 in 

Appendix). 

7.3.2.2 Beta Diversity 

7.3.2.2.1 Bacterial and archaeal beta diversity 

Beta diversity is the diversity between habitats, or rather the ratio between local (alpha) and 

regional diversity. It is often used to measure a change in diversity along environmental 

gradients (Lozupone and Knight, 2008). Bray-Curtis distance matrix was used to quantify the 

compositional dissimilarity between sites and treatments. Principal coordinates analysis 

(PCoA) was used to visually represent the distance matrix data over a two-dimensional 

space, in an attempt to visualise shifts in bacterial community composition between sites 

and treatments. The significance and strength of sample groupings based on distance matrix 

was analysed statistically using ANOSIM (analysis of similarities). 

When comparing sites using Bray-Curtis for 16S data results from ANOSIM statistical test 

were highly significant (P = <0.001), with an R value of 0.929, suggesting a significant 

difference in bacterial community composition between the four experimental sites. In 

addition, there were no significant dissimilarities in bacterial community diversity between 

treatments (P = 0.989). PCoA plots at phyla level (Figure 7.5a) show a clear clustering of 

samples from Peaknaze Peat which are distinct from Migneint sites, with a slight crossover 

with Peaknaze Podzol, suggesting that bacterial composition at Peaknaze Peat is dissimilar 
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to the other sites. In contrast, there is no clustering for treatments, suggesting there is no 

significant dissimilarity in bacterial community composition between treatments.  

At both order and genus taxonomic levels (Figures 7.5b & c) there was a greater distance 

between site locations, with individual clusters for each site location being distant from each 

other with minimal overlap, and a clear separation between experimental sites at Peaknaze 

and experimental sites at Migneint. As with phyla level, Peaknaze Peat is the most dissimilar 

site.  
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Figure 7.5: PCoA plot for 16S beta diversity at phyla (a), order (b) and genus (c) taxonomic levels using Bray-

Curtis distance matrix. Results of ANOSIM test are stated (P and R values). Left panel is groupings for sites and 

right panel is groupings for treatments for all sites. 
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7.3.2.2.2 Fungal beta diversity 

When comparing sites using Bray-Curtis for ITS data, results from ANOSIM statistical test 

were significant (P = <0.001), with an R value of 0.740, suggesting a significant difference in 

fungal community composition between experimental sites. PCoA plots show similar 

clustering between peat sites, which are separate from podzol sites, at all taxonomic levels 

(Figure 7.6). This suggests that fungal community composition is different between peat and 

podzol soils, but that there is little difference in fungal communities between Peaknaze and 

Migneint.  
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Figure 7.6: PCoA plots for ITS beta diversity at three taxonomic levels (order, genus and species) using Bray-Curtis distance matrix. Results of ANOSIM test are stated (P and 

R values). Plots have been annotated to show differences in groupings between soil types. 
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7.3.2.2.3 Beta diversity summary 

The PCoA ordination plots show a clear separation in clustering of samples from different 

site locations for 16S data, whilst ITS data show separate clustering of samples for soil type. 

This suggests that community diversity for bacteria and archaea are different between 

Migneint and Peaknaze, whilst fungal diversity are different between peat and podzol soils 

regardless of site location. 

7.3.3 Abundance of core microbiome and rare taxa 

7.3.3.1 Bacterial and archaeal core microbiome 

The core microbiome consists of the most abundant taxa across a high proportion of 

samples. A total of ten core taxa were identified at phyla level with detection thresholds set 

at 0.2 % relative abundance and a sample prevalence of 80 %. Therefore these taxa had a 

relative abundance of at least 0.2 % in 80 % of samples. As expected, the core consisted of 

the most common taxa, as presented in Table 7.4, with Acidobacteria, Proteobacteria and 

Verrucomicrobia having the greatest prevalence in samples. At genus level, the relative 

abundance threshold was reduced to 0.1 % with an 80 % sample prevalence, which resulted 

in seven taxa being identified as the core. The most prevalent of these included the 

unnamed group (g_), Candidatus solibacter and Candidatus koribacter. 

A two-way ANOVA test was run on core microbiome taxa comparing their actual abundance 

between sites (four levels) and treatments (three levels) (Table 7.4) for each taxonomic 

group, at two taxonomic levels (phylum and genus). Treatments had no significant effect on 

abundance of any taxa at any taxonomic level, baring Candidatus Koribacter (P = 0.010). 

Interestingly, there was a significant interaction between site and treatment for 

Acidobacteria at phyla level, suggesting that abundance may be affected by treatments and 

this is dependent on site. This was also the case for an unnamed group and Candidatus 

Koribacter abundances at genus level. All taxa differed significant between sites at both 

taxonomic levels, suggesting that there are environmental variables associated with the 

different soils and site locations which are influencing abundance. 
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Table 7.4: P value results from a Two-way ANOVA, comparing sites (four levels) and treatments (three levels), 

performed on actual abundance data for 16S core microbiome taxa at phyla and genus taxonomic levels. Any 

transformations applied to data to meet assumptions of Anova are stated. 

Taxonomic Group Taxa Site Treatment Site:Treatment 

Phylum 

Acidobacteria (log) <0.001 0.249 0.026 

Actinobacteria (sqrt) <0.001 0.405 0.542 

Bacteroidetes <0.001 0.421 0.507 

Chlamydiae (log) <0.001 0.559 0.515 

Crenarchaeota (log) 0.024 0.615 0.425 

FCPU426 0.024 0.425 0.425 

Planctomycetes (sqrt) <0.001 0.479 0.127 

Proteobacteria 0.003 0.759 0.129 

Verrucomicrobia <0.001 0.405 0.542 

WPS_2 (log) <0.001 0.141 0.082 

Genus 

g_ (unamed) <0.001 0.844 0.039 

Candidatus solibacter (log) <0.001 0.516 0.002 

Candidatus koribacter (log) <0.001 0.010 0.075 

Rhodoplanes <0.001 0.771 0.987 

Opitutus <0.001 0.133 0.181 

Candidatus 

Rhabdochlamydia <0.001 0.459 0.671 

Herminiimonas <0.001 0.176 0.229 

 

7.3.3.1.1 Acidobacteria taxa 

Acidobacteria abundance were greater at Peaknaze than at Migneint, although this was only 

significant for podzol sites (P = 0.016) and not for peat (P = 0.182) when comparing control 

plots (Figure 7.7). Abundance did not differ between treatment plots at any site other than 

Migneint Podzol, where abundance was significantly greater for acid plots compared to 

alkaline (P = 0.026), but this difference was barely significant when compared to the control 

(P = 0.076). 
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Figure 7.7: Mean of actual abundance of Acidobacteria at different sites and receiving different treatments. 

Data was log transformed to meet the assumptions of Anova. Error bars represent standard error. Letters 

show where statistically significant differences occurred, as determined using a post hoc test of a Two-Way 

Anova (comparing sites (four levels) and treatments (three levels)). 

Within the Acidobacteria phyla taxonomic group, there were four taxa identified at genus 

level. Three of these were part of the core microbiome at genus level (unnamed group 

(g__), Candidatus Koribacter and Candidatus Solibacter), and Telmatobacter was a rare taxa 

with few data points and site specific to Peaknaze Peat (Table 7.4). 
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Table 7.4: Mean (± standard error) of actual abundance of Telmatobacter at different sites and receiving 

different treatments.  

Site Acid Control Alkaline 

M Peat 
0.00 5.50 0.00 

± 0.00 ± 5.50 ± 0.00 

M Podzol 
0.00 0.00 0.00 

± 0.00 ± 0.00 ± 0.00 

PN Peat 
18.00 59.00 41.00 

± 11.27 ± 28.62 ± 21.86 

PN Podzol 
0.00 0.00 0.00 

± 0.00 ± 0.00 ± 0.00 

 

Abundances of C. Koribacter and C. Solibacter were greater at Peaknaze than at Migneint, 

with a difference in actual abundance of 2324 (when comparing mean of control plots) and 

1181 respectively for peat, and a difference of 1874 and 1811 for podzol soil (Figure 7.8). 

However, this difference between control plots was only significant when comparing 

abundances of C. Solibacter between Migneint Podzol and Peaknaze Podzol (P = 0.001). 

Acidity treatments had no effect on abundances of either taxa at the acidic site of Peaknaze, 

or at the Migneint Peat site where soil and pore water pH did not respond to treatments 

(Chapter 4). However, at the Migneint Podzol site, there is an increase in abundance of 2753 

for C. Koribacter and 1193 for C. Solibacter with the acid treatment compared to the 

control, although this was only significant for C. Solibacter (P = 0.020), and barely significant 

for C. Koribacter (P = 0.079). 



Chapter 8 

185 
 

 

Figure 7.8: Mean of actual abundance of Candidatus Koribacter (left panel) and Candidatus Solibacter (right 

panel) at different sites and receiving different treatments. Both datasets were log transformed to meet the 

assumptions of Anova. Error bars represent standard error. Letters show where statistically significant 

differences occurred, as determined using a post hoc test of a Two-Way Anova (comparing sites (four levels) 

and treatments (three levels)). 

7.3.3.1.2 Other 16S taxa groups 

Other phylum taxonomic groups were also assessed as to whether they responded to 

treatments using a Two-way Anova comparing sites (4 levels) and treatments (3 levels) 

(Table 7.5). The only group which showed any statistical indication of responding to acidity 

treatments was TM6, which although there was an insignificant P value associated with 

treatments (P = 0.221), the interaction between sites and treatments was found to be 

significant (P = 0.005), suggesting that abundance may be responding to acidity at a 

particular site. 

 

 

 

 

 

 

 



Chapter 8 

186 
 

Table 7.5: Table of P value results from a Two-way Anova performed on 16S phyla taxonomic groups, 

comparing sites (four levels) and treatments (three levels). 

Taxa Site Treatment Site:Treatment 

AD3 <0.001 0.910 0.742 

Armatimonadetes 0.077 0.903 0.635 

Chlorobi <0.001 0.375 0.278 

Chloroflexi 0.094 0.538 0.746 

Cyanobacteria <0.001 0.661 0.865 

Eluximicrobia <0.001 0.453 0.806 

Euryarchaeota 0.039 0.232 0.478 

Fibrobacteres <0.001 0.989 0.663 

GAL15 <0.001 0.257 0.276 

Gemmatimonadetes <0.001 0.516 0.241 

Nitrospirae <0.001 0.928 0.999 

OD1 0.026 0.990 0.998 

Parvarchaeota <0.001 0.754 0.930 

Spirochaetes 0.004 0.252 0.658 

TM6 0.046 0.046 0.026 

TM7 <0.001 0.320 0.631 

Non-assigned <0.001 0.550 0.468 

 

When investigated further with a Poshoc test (Figure 7.9), abundance of TM6 in acid plots 

was significantly higher than in control (P = 0.045) and alkaline (P = 0.019) plots at the 

Migneint Podzol site. This suggests that abundance was significantly lower at the Migneint 

Podzol site (~1 compared to 55-134 at other sites), and then increased with acid treatments 

to 87 at this site, making abundance similar to other sites. At lower taxonomic levels, 

individual taxa have not been assigned to groups and so it was not possible to investigate 

which taxa were responding to treatments at this site further. 
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Figure 7.9: Mean of actual abundance of phyla taxa group TM6 at different sites and receiving different 

treatments. Data was transformed (sqrt) to meet the assumptions of Anova. Error bars represent standard 

error. Letters show where statistically significant differences occurred, as determined using a post hoc test of a 

Two-Way Anova (comparing sites (four levels) and treatments (three levels)). 

7.3.3.2 Fungal core microbiome 

The core microbiome was obtained for ITS data at family taxonomic level. A total of five core 

taxa were identified with detection thresholds set at 0.2 % relative abundance and a sample 

prevalence of 80 %, which included a group of non-assigned taxa (these being the most 

prevalent). The identified core taxa groups were assessed as to whether abundances 

differed between different site locations and soil types (Table 7.6). The abundance of three 

groups were found to differ significantly between peat and podzol soil (Leotiaceae P = 

0.003; Helotiaceae P = <0.001; Helotiales fam Incertae sedis P = 0.002). For the abundance 

of Leotiaceae, this was found to depend on site location (P = 0.019). In addition, the 

abundance of Helotiales fam Incertae sedis was found to also differ between site locations 

(P = 0.028). 
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Table 7.6: P value results from a Two-way Anova, one comparing site locations (two levels) and soil type (two 

levels), performed on actual abundance data for ITS core microbiome taxa. Transformations that were applied 

to meet the assumptions of Anova are also stated in the table. 

Family Group Site Soil Site:Soil 

Leotiaceae (sqrt) 0.190 0.003 0.019 

Mortierellaceae 0.614 0.499 0.163 

Helotiaceae (sqrt) 0.051 <0.001 0.096 

Helotiales fam Incertae sedis (sqrt) 0.028 0.002 0.699 

Hyaloscyphaceae (sqrt) 0.502 0.088 0.407 

 

When investigated further with a Posthoc analysis (Figure 7.10), abundance of all taxa was 

found to be lower at Migneint Podzol compared to other sites, with an abundance of just 89 

for Leotiaceae, 25 for Helotiaceae, and 375 for Helotiales fam Incertae sedis. This difference 

in abundance at Migneint Podzol was significantly different to all other sites for Leotiaceae 

and Helotiaceae, but only significantly different to Peaknaze Peat for Helotiales fam Incertae 

sedis. Abundance of all taxa groups was also lower at Peaknaze Podzol compared to 

Peaknaze Peat, although this was only significant for Helotiaceae (P = 0.013). 

 

Figure 7.10: Mean (of all plots) of actual abundance of family taxa groups at different site locations and soil 

types. Error bars represent standard error. Letters show where statistically significant differences occurred, as 

determined using a post hoc test of a Two-Way Anova (comparing site locations (two levels) and soil type (two 

levels)). 
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7.3.3.2.1 Leotiaceae taxa 

Two taxa groups were identified at species level within the taxa group of Leotiaceae. Ericae 

was the most abundant taxa with a maximum mean abundance of 3795 (measured at 

Migneint Peat) (Figure 7.11). This is similar to the maximum mean abundance of 3622 for 

the Leotiaceae taxa group at family level. Abundance of Ericae is significantly lower at 

Migneint Podzol, at 150 compared to an abundance of 1862-4373 at other sites. This was 

also the case for Leotiaceae, and so this suggests that Ericae accounts for the soil 

differences seen in the Leotiaceae family group. Ciliifera is site specific to Peaknaze, with a 

mean abundance of 557, whilst it was not detected at other sites. 

 

Figure 7.11: Mean (of all plots) of actual abundance of Ericae and Ciliifera taxa groups at species level, at 

different site locations and soil types. Error bars represent standard error. Letters show where statistically 

significant differences occurred, as determined using a post hoc test of a Two-Way Anova (comparing site 

locations (two levels) and soil type (two levels)). 

7.3.3.2.2 Helotiaceae taxa 

Within the Helotiaceae family, there were four taxa identified at species level (Figure 7.12). 

Cylichnium had the greatest abundance compared to other taxa within the Helotiaceae 

family, with a maximum mean abundance of 3529, whilst other groups were rare with very 

low mean maximum abundances of 31 for Tetracladius, 27 for Torta and 32 for Variabilis. As 

the maximum mean abundance of the Helotiaceae group at family taxonomic level was 

14423, a large proportion of this group is non-assigned taxa at species level, suggesting that 
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there are other unidentified groups which are contributing to this difference in abundance 

between soil types. 

Cylichnium was only detected at Peat sites and abundance was significantly higher at 

Peaknaze. Torta was only measured at Peaknaze, with higher abundances measured at the 

podzol site, whilst due to the high variability in the data and the low abundances measured, 

there were no significant differences between site locations. This was also the case for 

Variabilis. Finally, Tetracladius was site specific to Migneint Podzol. 

 

Figure 7.12: Mean (of all plots) of actual abundance of Cylichnium, Tetracladius, Torta and Variabilis taxa 

groups at species level, at different site locations and soil types. Error bars represent standard error. Letters 

show where statistically significant differences occurred, as determined using a post hoc test of a Two-Way 

Anova (comparing site locations (two levels) and soil type (two levels)). 
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7.3.3.2.3 Helotiales fam Incertae sedis taxa 

For the Helotiales fam Incertae sedis taxonomic group, only three taxa were identified at 

species level, all of which had very low abundances of up to 61, compared to a maximum 

mean abundance of 3817 for Helotiales fam Incertae sedis which suggests there are other 

unidentified taxa at species level which are contributing to differences in abundance 

between soil types (Figure 7.13). Panicicola had significantly higher abundance at Peaknaze 

Podzol compared to other sites, whilst Floriformis was only detected at Migneint Podzol. 

Humicola was only measured at Peaknaze, with a significantly higher abundance at the 

podzol site. 

 

Figure 7.13: Mean (of all plots) of actual abundance of Panicicola, Floriformis and Humicola taxa groups at 

species level, at different site locations and soil types. Error bars represent standard error. Letters show where 

statistically significant differences occurred, as determined using a post hoc test of a Two-Way Anova 

(comparing site location (two levels) and soil type (two levels)). 

7.3.3.2.4 Fungal core microbiome taxa summary 

The core microbiome which occupy most sites was identified at family level, and differences 

in abundance across site locations and soil types was assessed. Within the core, there were 

three taxa family groups which had significant soil differences (Leotiaceae, Helotiaceae, and 

Helotiales fam Incertae sedis). There was generally a lower abundance in podzol soil than in 

peat, with abundances being lowest at Migneint Podzol for all taxa. The taxa within these 

family groups was identified at species level, and these were assessed to see whether 

individual taxa contributing to these soil differences could be identified. Within the 

Leotiaceae family, Ericae accounted for much of the soil differences seen, whilst a rarer taxa 

which was specific to Peaknaze Peat was identified (Ciliifera). Mostly rare taxa with low 
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abundances were identified for the Helotiaceae and Helotiales fam Incertae sedis family 

groups, and so there were unidentified taxa which were contributing to the soil differences 

seen within these taxa groups. 

7.3.4 Microbial community relationship with soil parameters 

This section investigates whether there is a statistically significant relationship between 

microbial communities and soil parameters, with a focus on pH and DOC concentration. To 

do this scatterplots have been used to visualise relationship and Spearman’s Rank to assess 

significance at 95 % certainty and strength of relationship. 

7.3.4.1 Bacterial and archaeal alpha diversity 

At genus taxonomic level, all diversity indices for bacterial and archaeal alpha diversity were 

found to be positively and significantly related to both soil extract pH and DOC (Figure 7.14). 

In addition, relationships were also found to be significant at phylum and order taxonomic 

levels, barring Chao1 at order level for pH (P = 0.085) and DOC (P = 0.629) (see Figures A7.7 

& 9, and Tables A7.3 & 4 in Appendix). Relationships with pH were also found to have high 

Rho values with a range of 0.416-0.735, suggesting relationships were strong. Relationships 

with soil DOC were weaker with a range in Rho values of 0.259-0.443. 
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Figure 7.14: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with soil extract pH (top panel), and extracted DOC (lower panel), for 16S data at 

genus taxonomic level.
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7.3.4.2 Fungal alpha diversity 

In contrast to bacterial and archaeal data, fungal diversity was found not to be significantly 

related to soil extract pH (see Table A7.5 in Appendix). Chao1 diversity index was 

significantly related to soil DOC at all taxonomic levels, although Rho values suggest 

relationship were weak, particularly at lower taxonomic levels (see Table A7.6 in Appendix). 

Shannon and Simpson’s indices were only significantly related to soil DOC at order 

taxonomic level. All relationships were negative, suggesting that fungal diversity is lower 

when soil DOC is greater (Figure 7.15). However, when studying this relationship further 

with, there is a clear divide in DOC concentration between soil types, with more DOC and 

lower diversity in peat, and less DOC but more diversity in podzol. 

 

Figure 7.15: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with extracted DOC, for 

ITS data at order taxonomic level. 

7.4 Discussion 

7.4.1 How does microbial community diversity vary between peat and 

organo-mineral soil? 

For bacterial and archaeal communities (16S rRNA gene amplicons), differences in alpha 

diversity metrics between peat and organo-mineral (podzol) soils within a particular site 

were only apparent at lower taxonomic levels at Peaknaze, where diversity (according to 

Chao, Shannon and Simpson’s at order level and Shannon and Simpson’s at genus level) was 

greater in podzol soil. For beta diversity, when assessing the PCoA plots, which allows for a 

visual comparison of communities between groups, it was only possible to see distinct 

differences in communities between soil types at genus level, whilst communities from 



Chapter 8 

195 
 

different soil types were similarly grouped at higher taxonomic levels. Overall, this suggests 

that bacterial and archaeal community diversity is similar between soil types. 

The difference in community diversity between soil types was most apparent for fungi. 

Alpha diversity was greatest in podzol soil compared to peat, this being consistent at both 

site locations at order level for all indices, but was only significant for Chao1 at Peaknaze at 

lower taxonomic levels. This suggests that Chao1 is a better indicator of fungal alpha 

diversity in organic soils. In addition, PCoA plots of beta diversity show a clear separation 

between communities in peat and podzol soil at all taxonomic levels examined. Overall, this 

suggests that fungal community diversity is inherently different between peat and organo-

mineral soils. Heterotrophic fungi are a main decomposer of litter in acidic soils, with 

decomposer and mycorrhizal fungi synthesising extracellular enzymes which degrade 

organic matter, and therefore play a key role in the cycling of carbon and nutrients (Killham, 

1994, Thormann, 2006). 

The core microbiome at family level was examined to assess how these differences in 

diversity between soil types may be affecting abundances of key taxa. Three taxa groups 

were found to differ significantly between soil types; Leotiaceae, Helotiaceae and Helotiales 

fam Incertae sedis. These taxa typically had a higher abundance in peat, and a lower 

abundance in podzol soil, which was lowest at Migneint Podzol. Unfortunately, mostly rare 

taxa have been assigned to these groups at species level, with a large proportion of 

abundance of these groups being unidentified taxa. (Artz et al., 2007, Thormann, 2006) also 

found a lack of identification of OTU’s (operational taxonomic units) from peat to at least 

order level, and argued that the lack of representation of fungal taxa from peat in public 

databases reflects the uniqueness of fungal communities in peatlands compared to other 

ecosystems. The results of this study suggests that this argument may also be applied to 

peaty podzols from upland organic catchments as well as peats. Of the taxa from these core 

groups which had abundances of >1000, Clyichnium (from Helotiaceae family group), was 

found only in peat soils, and was particularly abundant at Peaknaze Peat, and Ericae 

(Leotiaceae family) was significantly less abundant at Migneint Podzol compared to other 

sites, suggesting there are other taxa which are outcompeting this taxa at this site. 

Alpha diversity is higher in podzol, for instance by 31-38 % at Migneint (based on mean of 

each diversity index for each soil type at order level) and 36-45 % at Peaknaze, whilst the 
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abundance of the three core taxa examined at family level is lowest in podzol, for instance 

by 82 % to nearly 100 % at Migneint. A key environmental variable which makes peat 

distinct from podzols is moisture content. Peats are permanently saturated which creates 

anoxic conditions and inhibits aerobic decomposition (Ramchunder et al., 2009) resulting in 

anaerobic activity which is a much slower process (Swift et al., 1979, Keller et al., 2009). In 

contrast, podzol soils have mineral components and are more freely draining allowing for 

more aerobic activity, which arguably could result in a lack of hydrological connectivity and 

therefore spatial isolation and reduced physical opportunities for species to interact. This in 

turn may reduce competition and therefore allow a greater diversity of fungal taxa in podzol 

soils to co-exist without being competitively excluded (Torsvik and Øvreås, 2002). 

Alternatively, this soil difference in fungal community diversity and abundance of core taxa 

may be due to the differences in vegetation communities between peat and organo-mineral 

soil. Both peat sites are dominated by Eriophorum vaginatum and Calluna vulgaris, but 

differ in bryophyte cover with Sphagnum dominating Migneint Peat (National Vegetation 

Classification (NVC) code M19) whilst Pleurozium shreberi dominates Peaknaze Peat (NVC 

M20b). Alternatively, the plant communities at podzol sites are classified as subcategories 

within the NVC U6, and are characterised by Festuca ovina and some Juncus squarrosu, but 

differ in that Migneint Podzol largely consists of grasses, whilst Peaknaze Podzol has a large 

proportion of Vaccinium myrtillus. 

There is evidence of a linkage between peatland vegetation composition and fungal 

communities. For instance, Artz et al. (2007) sequenced the ITS region along a gradient of 

regenerating peatland vegetation, and found fungal community composition structure was 

related to the composition of vegetation at each site. Fungal abundance in soil has been 

shown to be strongly influenced by plant diversity (Zak et al., 2003). Thormann et al. (2003) 

found that there are different fungal assemblages associated with decomposing different 

litter types in peatland ecosystems, and concluded that litter quality variables, such as total 

carbon and nitrogen, determined the fungal community present more than pore water 

chemistry or physical variables. There is also an argument for plant selection of 

belowground microbial communities through rhizodeposits, which promote beneficial 

microbial populations, such as symbiotic fungi (Hartman et al., 2008). For instance, changes 
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in below-ground carbon relating to host specificity have been noted as potential drivers of 

fungal diversity (Artz et al., 2007, Thormann et al., 2004, De Boer et al., 2006). 

The greater abundance of ericoid mycorrhizal fungi at peat sites is likely due to the 

presence of Calluna host plants. Calluna also contribute lignin compounds into the peat, 

and ericoid mycorrhizal fungi within the Helotiaceae family have been shown to produce 

lignin-degrading enzymes such as phenol oxidases (Burke and Cairney, 2002). Futhermore, 

some Helotiaceae fungal species have been identified as bryophilous pathogens and are 

associated with the Sphagnum microbiome, where they exploit its dispersal mechanisms for 

releasing sexual propagules by replacing spores with the fungal anamorph (Redhead and 

Spicer, 1981, Davey and Currah, 2006, Kostka et al., 2016). Again, this may explain why 

Helotiaceae had a greater abundance in peat sites where bryophytes are dominant. 

Overall, this research suggests that soil type is resulting in a selection of fungal taxa, which 

may be important for understanding differences in soil processes and biogeochemical cycles 

between peat and organo-mineral soils in an organic upland catchment. 

7.4.2 How does microbial community diversity differ between different sites 

representing a ‘natural’ acidity/pollution deposition gradient? 

For alpha and beta analysis, when comparing within soil type, there were no apparent 

differences in fungal diversity between site locations for either soil type. However, both 

alpha and beta diversity showed a clear difference in bacteria and archaeal community 

diversity between site locations. Diversity was significantly greater at Migneint compared to 

Peaknaze for both soil types, as shown with at least one alpha diversity index at all 

taxonomic levels. Site location differences in diversity were significant for Shannon diversity 

index at all taxonomic levels studied and for both soil types, suggesting that Shannon is the 

most effective diversity index for detecting differences in diversity in bacterial and archaeal 

communities. 

The Pennines where Peaknaze is situated has experienced high sulphur deposition which 

has seen a 69 % reduction between 1970 and 2005 (Dore et al., 2007, Evans et al., 2012), 

with a substantial store of sulphur still being present in the South Pennine peats (Daniels et 

al., 2008). Soils and waters in this area have also experienced significant acidification (Evans 

et al., 2000). Recent pore water measurements showed mean pH to be 3.98 units (mean 
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from control plots over 13 months) at the peat site and 4.10 units at the podzol site, 

compared to ~4.3 units respectively at Migneint (Chapter 4). In addition, this area has 

received previous and current high levels of nitrogen deposition and saturation (Helliwell et 

al., 2007, Curtis et al., 2005, Evans et al., 2000). Heavy metal pollution is also paramount, 

with concentrations of lead in near-surface peat recorded at 1000 mg kg-1 in the Peak 

District (Rothwell et al., 2005). Intensive land management in the form of grazing and 

management for grouse shooting has also contributed to degradation of the Pennines 

(Ward et al., 2007, Clutterbuck and Yallop, 2010). Such pollution deposition, acidification 

and degradation of this area may have contributed to a reduction in soil biodiversity in this 

area. 

Microbial activity and community composition in soil has been shown to be negatively 

affected by heavy metal pollution (Müller et al., 2001, Wang et al., 2007). Sites in the South 

Pennines which have high levels of bioavailable metals have been shown to contain a 

greater proportion of bacteria taxa able to live in extreme environments, such as acidophilic 

and sulphur utilising bacteria (Linton et al., 2007). In polluted podzol soils in forested 

environments, heavy metal concentrations have been shown to negatively affect Chao1 

diversity, although soil pH was found to be more influential (Chodak et al., 2013). 

It may be possible that diversity is lower at Peaknaze as taxa which are suited to the harsher 

conditions have thrived and outcompeted other taxa which are less suited. The core taxa 

analysed in more detail in this study was Acidobacteria, which is known to be highly 

responsive to pH (Sait et al., 2006), and has been suggested as a potential indicator taxa for 

measuring restoration of wetlands and trophic status (Hartman et al., 2008). Acidobacteria 

was significantly more abundant at Peaknaze than at Migneint for both soil types. (Elliott et 

al., 2015) compared microbial communities between sites which were degraded or in a state 

of restoration in the South Pennines, and also found the degraded site to have higher levels 

of Acidobacteria. Interestingly, Fierer et al. (2012) found Acidobacteria abundance to 

decrease in response to nitrogen fertilisation, which suggests that the increased abundance 

at Peaknaze is due to chronic historical acidification rather than nitrogen deposition. In 

addition, although not always significant, Candidatus Koribacter and Candidatus Solibacter, 

which are members of the Acidobacteria taxa group and contribute to the core microbiome 

at genus level, were more abundant at Peaknaze than at Migneint. In addition, 
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Telmatobacter, a rare taxa also part of the Acidobacteria taxa group, was only present at 

Peaknaze Peat. 

7.4.3 Are microbial communities impacted by acidification? 

Fungal diversity was not affected by the acidity treatments, and there was also no 

relationship between fungal diversity and soil pH. Bacterial and archaeal diversity was also 

not effected by acidity manipulations, with no significant difference apparent between 

treatments at any site. However, when investigating individual core taxa, Acidobacteria was 

found to be more abundant with acidity treatments at the Migneint Podzol site. Hartman et 

al. (2008) found Acidobacteria abundance to be strongly correlated with soil pH in peat. 

Contrastingly, there was no difference in abundance between treatment plots at Migneint 

Peat. This was unsurprising as there was little success in changing soil and pore water pH at 

this site with treatment applications, likely due to the high water table and associated 

dilution, and sulphur reduction potential at this site (Chapter 4). There was also little 

response at Peaknaze for both soil types, and yet this site is already highly acidified so it was 

unlikely that communities would respond to further acidification when the baseline pH was 

already so low. Bardhan et al. (2012) also found soil microbial diversity to be unaffected by 

acidity along an acid deposition gradient of a spruce-fir forest. This area had also received 

heavy levels of acid deposition and pH of soil samples were very acid (< 4.0 pH units). 

When taxa within the Acidobacteria group were investigated at genus level, two genera 

were also found to have a higher abundance with acidity at the Migneint Podzol site, with 

an increase in abundance of 78 % for Candidatus Koribacter and 76 % for Candidatus 

Solibacter when compared to the control. Such results suggest that the abundance of 

members of the Acidobacteria can be positively influenced by acidification. Furthermore, a 

rare taxa (abundance < 200) was found to also respond to acidity at Migneint Podzol (TM6, 

phyla level), with an increase in abundance of 76 % with the acid treatment.  

Even though it was not possible to detect treatment effects on alpha diversity, it was 

possible to see a relationship between pH and diversity when data from all locations and 

soils was combined; when comparing alpha diversity indices to soil extract pH, there was a 

positive and significant relationship. This shows that in more acidic conditions, the diversity 

of bacterial and archaeal communities reduces in peat and peaty podzol soil, and that with 
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acidification recovery, diversity is also likely to increase. Other studies have found pH to be 

an important factor in influencing microbial community structure (Rousk et al., 2009) and 

diversity (Chodak et al., 2013, Hartman et al., 2008, Griffiths et al., 2011). Soil pH has been 

shown to be amongst the most important soil variables for controlling soil microbial 

communities in peat (Hartman et al., 2008) and podzol (Chodak et al., 2013) soils. 

7.4.4 Correlations between microbial communities and DOC 

Fungal communities were negatively correlated with soil extract DOC, although these 

relationships corresponded more with soil differences in DOC concentration. For instance, 

podzol soils had less extracted DOC and also a higher fungal diversity, whilst more DOC was 

extracted from peat which also had a lower diversity for fungal communities. Therefore 

both fungal diversity and soil extract DOC are likely both a function of plant communities 

and soil type, and so not necessarily directly correlated. 

Interestingly, the diversity of bacterial and archaeal communities was positively and 

significantly related to soil extract DOC. There is a lack of knowledge surrounding the 

functions of the well-studied microbial taxa in organic soils, and the relationships between 

functions with microbial community structure, and so it is difficult to determine the cause 

and effect relating to microbial diversity and DOC production and consumption. Three 

potential scenarios behind this observed relationship have been suggested below. 

The first scenario is that as pH increases to more favourable conditions, microbial diversity 

increases. The positive link between pH and microbial diversity has been demonstrated 

many times before by previous studies (Chodak et al., 2013, Hartman et al., 2008, Griffiths 

et al., 2011). However, net DOC production does not change in response to the increase in 

microbial diversity. This might be because additional taxa that are gained as pH increases 

are functionally redundant, such that the net DOC production function is already maximised 

by the lower diversity present in the more acidic soils. Simultaneously, DOC solubility also 

increases with increasing pH, and so there is an indirect relationship between microbial 

diversity and soil DOC, which favours the chemical control hypothesis behind increasing 

DOC trends. 

The second scenario is that as recovery from acidification changes soil pH to more 

favourable conditions for biological activity (Andersson and Nilsson, 2001a), diversity is 
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increased and this results in a more biologically active community, and so decomposition of 

organic matter and therefore DOC production is enhanced. Therefore this relationship 

between pH and diversity may reflect a diversity control signal superimposed on the 

chemical control. However, there is a lack of knowledge linking changes in microbial 

community structure with functional responses (Torsvik and Øvreås, 2002, Nannipieri et al., 

2003). Many studies demonstrate a change in microbial communities with acidity 

(Blagodatskaya and Anderson, 1998, Rousk et al., 2009, Oulehle et al., 2018) with bacterial 

growth rates being more sensitive than fungal growth rates (Walse et al., 1998). Rousk et al 

(2009) found microbial inhibition below a pH value of 4.5 units due to decreased bacterial 

grown with acidity. Acidity has also been shown to reduce microbial activity, including litter 

decomposition (Brown, 1985, Oulehle et al., 2018), as soil pH is crucial to enzyme 

functioning (Fog, 1988). Such evidence suggests that acidity suppresses decomposition of 

organic material and slows growth rates of bacteria, and if so with recovery and associated 

increase in pH there will be an increase in bacterial diversity, and activities such as 

decomposition and DOC production. 

The final scenario is that DOC solubility and therefore bioavailability is increasing in 

response to increasing pH (Evans et al., 2012, Marschner and Kalbitz, 2003), and this 

increased substrate primes microbial communities, increasing growth and diversity, and 

decomposition of organic material (Fontaine et al., 2003), and so DOC production is also 

increased. This suggests that diversity is responding to elevated DOC concentrations, but are 

not controlling it. 

7.4.5 Limitations of study 

Despite the literature suggesting that microbial communities respond to acidity, we found a 

lack of significant relationships with treatments. Acidic conditions have been shown to 

decrease bacteria and increase fungi in soils (Blagodatskaya and Anderson, 1998, Rousk et 

al., 2009, Oulehle et al., 2018), with bacterial growth rates showing a greater sensitivity 

(Walse et al., 1998). This sensitivity of bacterial communities to soil pH may explain why 

relationships, when examined across the different locations and soils, were seen for 

bacteria and archaeal communities, but not for fungi. Furthermore, the effect of acidity on 

bacterial and archaeal diversity was not found to be significant with treatments, whilst a 

significant relationship was apparent between diversity and pH. This could be due to the 
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environmental variation associated with the field experiment, and perhaps there were not 

enough replications to overcome environmental heterogeneity and detect biological 

responses. Alternatively, the magnitude of change in pH achieved with treatment 

applications was less than the range of pH observed between plots across all experiment 

sites. For instance, the difference between maximum and minimum pH of soil extracts 

between treatment plots at each site ranged from 0.20-0.64 units (based on mean of four 

sampling months), whilst the difference in pH across all 48 plots was 1.9 units. It would be 

useful if a controlled acidity manipulation laboratory experiment was run to assess the 

response of bacterial and archaeal community diversity, as well as the response of individual 

taxa, to acidity in peat and organo-mineral soils. The magnitude of change in pH at which 

diversity is affected could then also be investigated. 

The amount of taxa identified at lower taxonomic levels for both ITS and 16S datasets was 

limited at lower taxonomic levels. This suggests that taxa from upland organic catchment 

soils are underrepresented in public databases, and this reflects the uniqueness of these 

microbial communities compared to well-studied ecosystems. This has previously been 

concluded by (Artz et al., 2007, Thormann, 2006) for peat, and the results of this study 

suggests that this argument may also be applied to peaty podzols from upland organic 

catchments. 

A final problem with this study was the amount of samples excluded from analysis of fungal 

communities due to having low or zero reads. This resulted in many treatment replications 

being lost and so the effect of acidity manipulations on fungal communities could not be 

examined in detail. This could be due to the large amount of PCR inhibitors such as humic 

acids in peat and organo-mineral soil, and although attempts were made to remove these 

from samples, it is possible that some remained and disrupted amplification of DNA using 

the ITS primers (Schrader et al., 2012). Another explanation is that fungal communities were 

virtually absent in those samples. 

7.5 Conclusion 

Despite there being evidence for the important role that microorganisms play in peatland 

functioning, there is little research into microbial community composition and their 

associated functioning (Littlewood et al., 2010), or how environmental change may 
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influence these communities and functions (Thormann, 2006). There is further little 

research comparing communities between peat and organo-mineral soil, despite the fact 

that organic catchments are comprised of both soil types. This research provides some 

insight into microbial community composition and diversity, as well as relationships with soil 

extract DOC, at different taxonomic levels for both peat and peaty podzol from an upland 

organic catchment. 

The diversity of fungal communities was found to be significantly greater in podzol soils than 

in peat, whilst bacterial and archaeal communities were strongly influenced by site 

differences, with more diversity at Migneint compared to the degraded site of Peaknaze. 

Acidity manipulations did not influence the diversity of bacterial and archaeal communities. 

However, Acidobacteria abundance was found to be greater at the acidified site of 

Peaknaze, as well as with acid treatments at the Migneint Podzol site. When investigated 

further at lower taxonomic levels, two core Acidobacteria taxa, Candidatus Solibacter and 

Candidatus Koribacter, were found to also have a higher abundance at Peaknaze, and at 

acidified plots at Migneint Podzol. This suggests that assessing broad community metrics is 

not enough to detect biological responses to experimental treatments in the field, but by 

focusing on specific indicator or core taxa it is possible to see biological responses. 

Finally, despite the insignificance with experimental treatments, bacterial and archaeal 

community diversity was found to be positively and significantly related to both soil pH and 

soil extract DOC when relationships were examined across all locations, soils and 

treatments. The relationship between biological response to pH and functional response in 

terms of DOC production, as well as the implications for recovery of acid sensitive areas 

from acidification and the associated DOC release, have been discussed. 
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Appendix 

Table A7.1: P value results of Two-way Anova performed on each 16S alpha diversity index measure at each 

taxonomic level, comparing sites (4 levels) and treatments (3 levels). 

Taxonomic Level Diversity Index Site Treatment Site:Treatment 

Phyla 

Chao1 <0.001 0.326 0.766 

Shannon <0.001 0.016 0.386 

Simpson’s <0.001 0.012 0.555 

Order 

Chao1 0.036 0.499 0.520 

Shannon <0.001 0.004 0.703 

Simpson’s <0.001 0.001 0.791 

Genus 

Chao1 0.009 0.109 0.800 

Shannon <0.001 0.045 0.939 

Simpson’s <0.001 0.066 0.981 
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Figure A7.1: Diversity indices of 16S data at phylum level, of samples from different sites receiving treatments. 

Error bars represent standard error around the mean. 
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Figure A7.2: Diversity indices of 16S data at order level, of samples from different sites receiving treatments. 

Error bars represent standard error around the mean. 
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Figure A7.3: Diversity indices of 16S data at genus level, of samples from different sites receiving treatments. 

Error bars represent standard error around the mean. 
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Figure A7.4: Bulked mean of treatment plots from all sites of diversity indices of ITS data at order level. Error 

bars represent standard error around the mean. 

 

Figure A7.5: Bulked mean of treatment plots from all sites of diversity indices of ITS data at genus level. Error 

bars represent standard error around the mean. 

 

Figure A7.6: Bulked mean of treatment plots from all sites of diversity indices of ITS data at species level. Error 

bars represent standard error around the mean. 
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Table A7.2: P value results of One-way Anova performed on each ITS alpha diversity index measure at each 

taxonomic level, comparing sites (4 levels). 

Taxonomic Level Diversity Index Site 

Order 

Chao1 <0.001 

Shannon <0.001 

Simpson’s <0.001 

Genus 

Chao1 (log) 0.002 

Shannon 0.016 

Simpson’s 0.111 

Species 

Chao1 0.008 

Shannon 0.072 

Simpson’s 0.187 

 

Table A7.3: Results (P and Rho values) of Spearman’s Rank test comparing soil extract pH with 16S diversity 

index values, at three taxonomic levels. 

Taxonomic 

Level 
Diversity Index P Value Rho Value 

Phylum 

Chao1 <0.001 0.504 

Shannon <0.001 0.650 

Simpson’s <0.001 0.539 

Order 

Chao1 0.085 0.260 

Shannon <0.001 0.735 

Simpson’s <0.001 0.672 

Genus 

Chao1 0.005 0.416 

Shannon <0.001 0.678 

Simpson’s <0.001 0.609 
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Table A7.4: Results (P and Rho values) of Spearman’s Rank test comparing soil DOC (mg/g) with 16S diversity 

index values, at three taxonomic levels. 

Taxonomic 

Level 
Diversity Index P Value Rho Value 

Phylum 

Chao1 0.035 0.312 

Shannon 0.011 0.371 

Simpson’s 0.002 0.443 

Order 

Chao1 0.629 -0.073 

Shannon 0.013 0.365 

Simpson’s 0.004 0.419 

Genus 

Chao1 0.083 0.259 

Shannon 0.013 0.364 

Simpson’s 0.026 0.328 

 

 

Figure A7.7: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with soil extract pH (top 

panel), and extracted DOC (lower panel), for 16S data at phylum taxonomic level. 
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Figure A7.8: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with soil extract pH (top 

panel), and extracted DOC (lower panel), for 16S data at order taxonomic level. 

Table A7.5: Results (P and Rho values) of Spearman’s Rank test comparing soil extract pH with ITS diversity 

index values, at three taxonomic levels. 

Taxonomic 

Level 
Diversity Index P Value Rho Value 

Order 

Chao1 0.972 0.006 

Shannon 0.710 0.067 

Simpson’s 0.662 0.078 

Genus 

Chao1 0.700 0.068 

Shannon 0.867 0.029 

Simpson’s 0.937 -0.014 

Species 

Chao1 0.517 0.115 

Shannon 0.780 0.050 

Simpson’s 0.811 -0.043 
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Table A7.6: Results (P and Rho values) of Spearman’s Rank test comparing soil DOC (mg/g) with ITS diversity 

index values, at three taxonomic levels. 

Taxonomic 

Level 
Diversity Index P Value Rho Value 

Order 

Chao1 0.015 -0.408 

Shannon 0.030 -0.366 

Simpson’s 0.024 -0.381 

Genus 

Chao1 0.020 -0.385 

Shannon 0.079 -0.297 

Simpson’s 0.061 -0.316 

Species 

Chao1 0.016 -0.225 

Shannon 0.194 -0.225 

Simpson’s 0.110 -0.275 

 

 

 

 

Figure A7.9: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with soil extract pH, for 

ITS data at order taxonomic level. 



Chapter 8 

213 
 

 

Figure A7.10: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with soil extract pH (top 

panel), and extracted DOC (lower panel), for ITS data at genus taxonomic level. 

 

Figure A7.11: Relationships between diversity indices (Chao1, Shannon and Simpson’s) with soil extract pH (top 

panel), and extracted DOC (lower panel), for ITS data at species taxonomic level. 
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Chapter 8: Summary 

8.1 Thesis summary with respect to aim and objectives 

Upland organic catchments comprising of both peat and organo-mineral soil are an 

important global store of carbon. However, many of these catchments in acid sensitive 

areas of the Northern Hemisphere have experienced increasing carbon losses in the form of 

dissolved organic carbon (DOC), concentrations of which have been increasing in the surface 

waters over the past four decades (Evans et al., 2005; Monteith et al., 2014). Whilst there is 

much debate surrounding the cause of this increased DOC trend, there is empirical evidence 

linking increasing DOC concentrations to changing atmospheric chemistry and associated 

acid deposition (Clark et al., 2011; Evans et al., 2012; Monteith et al., 2007; Oulehle et al., 

2011; Palmer et al., 2013). Although there is strong evidence of a chemical control on DOC 

solubility (Ouhlehle et al., 2013), there is uncertainty as to whether there is also a biological 

mechanism behind this trend. Litter and peat decomposition is a major biological source of 

DOC, and yet it is unclear how this responds to changing acidity.  

In addition, there have been inconsistencies in DOC release from moorland catchments 

receiving similar acid deposition loads, which suggests that differences in catchment 

characteristics may result in inconsistencies in the magnitude of response to acidification 

and recovery. Upland moorland catchments typically consist of both peat and organo-

mineral soil, the development of which is dependent on site topography, and yet much of 

the literature has focused on either peatland areas, or podzols in forested environments. 

Therefore, we do not fully understand how both chemical and biological responses to 

changing deposition chemistry can vary in magnitude across an organic non-forested 

catchment consisting of both peat and organo-mineral soil. 

It is important we understand in full the mechanisms behind this increasing DOC trend in 

response to changing acid deposition, and how these responses vary for different soils 

typical to organic catchments, in order to understand some of the variability and future 

response of specific catchments. With global climate change progressing at an accelerated 

rate due to anthropogenic activities, it is critical such information is available to allow 

models to accurately predict the storage and loss of carbon from these sensitive carbon rich 
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catchments, particularly in relation to changing quality of raw drinking water sources from 

many upland areas (Ritson et al., 2014). 

In this thesis, a number of experiments were carried out as part of a long-term acidity 

manipulation field experiment, encompassing both peat and organo-mineral soil at two sites 

representing a pollution deposition gradient. The aim was to investigate both chemical and 

biological responses to changing acidity behind the increasing DOC trend in these different 

soil types. By using a field experiment, realistic responses to acidity that might be 

experienced under true acid deposition could be examined for two upland catchment areas. 

Overall, the key findings of this work were: 

• A clear chemically mediated DOC response to acidity in soil pore water. This supports 

previous findings and builds on evidence of the pH-DOC hypothesis that recovery 

from acidification is increasing DOC solubility in organic soils. 

• The DOC in the upper organic layer of peat and organo-mineral soil was acid 

sensitive, but the decomposing surface litter DOC was not. 

• Responses to treatments were limited for litter decomposition, Tea Bag Index (TBI) 

parameters and microbial diversity, and therefore there is little evidence that short-

term changes in acidity effect microbial communities and biologically mediated 

processes (decomposition and associated DOC production). 

An extended summary of the findings addressing this aim in relation to each objective is 

given below. 

8.1.1 Objective 1: To assess how acidity effects DOC quantity and quality 

in peatland soil extracts, surface litters and pore water at different 

sites representing a pollution deposition gradient. 

The results of one year of experimental manipulation and measurement, building upon an 

existing long-term pH manipulation field experiment, were presented in Chapter 4 to 

investigate different sources of DOC in the upper organic layer of peat and organo-mineral 

soil. This enabled the sensitivity of different sources to acidity to be assessed in realistic field 

conditions, for different soils typical to upland organic catchments and across a pollution 

deposition gradient. 
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Organo-mineral soil was found to contain more aromatic DOC in the upper peaty layer than 

peat itself. This suggests that podzol areas of an organic catchment may release this 

coloured humic acid fraction of DOC during times of high flow when flow shifts from the 

mineral layer, where DOC is sorbed onto mineral surfaces, to the organic layer where DOC is 

mobile. Litter produced more DOC than peat, but this was less sensitive to acidity (as 

indicated by a lower SUVA254 and associated aromaticity). By contrast, peat generated larger 

peaks of aromatic DOC during the peak of the growing season which is more sensitive to 

acidity. Pore water DOC responded strongly to acidity treatments, with lower 

concentrations observed at higher levels of acidity. This was further supported by pH-DOC 

relationships, also seen in peat samples, but not in surface litter. This provides supporting 

evidence for the hypothesis that increasing DOC concentrations in surface waters is due to 

increasing solubility of DOC with recovery from acidification, and that DOC solubility in pore 

water and peat is acid sensitive whereas DOC production in surface litter is not.  

Therefore there is strong evidence for the chemical solubility control on DOC with acidity, 

which supports previous findings, and this is consistent within the soil for both peat and 

organo-mineral soil, but not for surface litter. Such information is important for modelling 

how carbon budgets of organic catchments may be affected by environmental change such 

as acidification and recovery. 

8.1.2 Objective 2: To assess how litter type and quality effects 

decomposition and subsequent DOC production over a pollution 

deposition gradient in peat and organo-mineral soil. 

In response to Chapter 4 which concluded that DOC production from mixed surface litter 

was not acid sensitive, the decomposition and subsequent DOC production of two individual 

litter types typical to organic catchments (Eriophorum and Calluna) were assessed to see if 

this differed over a pollution deposition gradient for different soils. As part of this, a 

translocation experiment involving Calluna litter was used to investigate the effect of litter 

quality. This involved a litter bag experiment in Chapter 5, with quarterly sampling over a 12 

month period to assess the temporal decomposition and subsequent production of DOC. 

Decomposition was faster in podzols than in peat, and was suppressed at the most polluted 

site where nitrogen deposition, heavy metal pollution and acidification are greatest. 
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Nitrogen content of Calluna from the polluted site was significantly higher, suggesting that 

deposited nitrogen has accumulated in plant tissue. However, litter quality in terms of 

nitrogen content and C:N ratio did not influence the decomposition of Calluna at most sites.  

However, the Calluna which had significantly more nitrogen accumulated in plant tissue 

decomposed significantly less at the most polluted peat site. The reasons behind this are 

unclear, but may be due to the interactions between high exogenous and tissue content of 

nitrogen, and tissue lignin content of Calluna.  

As well as raising important questions on the controls of decomposition at polluted peatland 

sites, this research also provides insights into the temporal variations on the decomposition 

of common litters, and how this varies across an organic catchment comprising of both peat 

and organo-mineral soil, comparisons of which are lacking in the literature. 

8.1.3 Objective 3: To assess how acidity impacts litter decomposition and 

the associated DOC produced in peat and organo-mineral soil. 

It is unclear to what extent increased DOC concentrations could have been driven by 

increased decomposition and therefore DOC production, as recovery from acidification 

changes soil pH to more favourable conditions for biological activity (Andersson and Nilsson, 

2001)(Andersson and Nilsson, 2001a)(Andersson and Nilsson, 2001a). As Chapter 4 

concluded that DOC release from mixed surface litter was not acid sensitive, an acidity 

manipulation litter bag experiment was assessed in Chapter 6 to further understand if the 

decomposition and subsequent production of DOC from individual plant species was 

effected by acidity. The TBI was also incorporated in order to assess the decomposition rate 

(k) and stabilisation factor (S) of different soils and sites, and whether effects of acidity were 

consistent across these. This also meant that TBI parameters could be compared with other 

studies and ecosystems.  

Soil type was found to be highly influential on litter decomposition and DOC production. 

There was significantly more mass loss of litter when bags were incubated in podzol soil 

than in peat. This resulted in more DOC (as with Eriophorum) and a higher SUVA254 value 

indicating more aromatic DOC (as with Eriophorum and Calluna) being extracted. This 

suggests that litter has the potential to decompose faster in podzol soil than in peat, which 

is to be expected, and that after one year of decomposition this resulted in more DOC being 
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produced compared to peat.  Also, the same litter produced more aromatic DOC when 

decomposing in a more aerated environment (podzol soil), possibly due to the later 

decomposition stage reached resulting in a product which is more stable due to microbial 

processing (Malik and Gleixner, 2013). 

Only decomposition of Eriophorum litter showed signals of responding to acidity 

treatments, which may be related to the higher nitrogen content within plant tissue 

compared to other litters. In short, the decomposition of this litter may not be limited by 

nitrogen availability as others may be, and so acidity becomes a dominant control. This 

suggests that controls on litter decomposition can be controlled by nitrogen availability or 

suppression with acidity, and this is dependent on litter quality. We would therefore expect 

other litter which had a lower tissue nitrogen content to have decomposed more at the site 

with highest nitrogen deposition, which was not observed in Chapter 5. However, as the TBI 

S factor suggests that there are environmental factors at this site which are suppressing the 

decomposition of the labile fraction of organic material, it is possible there are other 

environmental variables at this site which are acting as a further dominant control on 

decomposition. However, further investigation is needed. 

This research provides insights into how different litters decompose and release DOC in peat 

and organo-mineral soil, and therefore the spatial variation across an upland organic 

catchment comprising of both soil types, information of which is important for modelling. It 

has also highlighted some of the limiting factors on litter decomposition and DOC 

production that need to be explored. Further work is needed to understand under what 

conditions acidity may become a dominant control on decomposition, and which 

environmental variables may outweigh this as the main control (see Section 8.2).  

8.1.4 Objective 4: To evaluate whether microbial communities in peat and 

organo-mineral soil respond to acidification. 

As DOC production through the decomposition of organic material is a biological process, 

there is uncertainty as to whether the increase in DOC concentrations is solely a chemical 

response due to increased solubility with recovering pH, or whether there is a biological 

element also, with increased microbial DOC production, or reduced DOC consumption, with 

acidification recovery. The soil microbial community response to acidity was investigated in 
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Chapter 7, with attempts to link these to functional responses in terms of DOC production 

and consumption. Fungal and bacterial communities were sequenced from peat and 

organo-mineral soil in an existing long-term pH manipulation field experiment in contrasting 

areas of historical pollution. From this, diversity of communities as well as abundances of 

core taxa were assessed, and potential relationships with soil extract DOC were 

investigated.  

The diversity of fungal communities was found to be significantly greater in podzols than in 

peat. Bacterial communities were strongly influenced by site differences, with less diversity 

at the polluted site in the Peak District. Acidity manipulations did not influence the diversity 

of bacterial communities, but acidity did increase the abundance of core Acidobacteria taxa. 

Bacterial community diversity was found to be positively and significantly related to both 

soil pH and soil extract DOC. Such a correlation suggests that there could be a functional 

response to changing acidity as well as a response in community structure.  

Therefore bacterial communities were more sensitive to acidity than fungi, whilst soil type, 

and potentially the associated plant community, were more influential on fungal 

communities. In addition, as biological responses to experimental treatments were not 

detected using broad community metrics, the importance of focusing on indicator taxa 

when detecting microbial responses to environmental change has been highlighted.  

This research provides one of the first insights into microbial community composition and 

diversity at different taxonomic levels, for both peat and peaty podzol soil at different sites 

representing a pollution deposition gradient. However, a controlled laboratory experiment 

with more replications is needed to detect community response to the treatments. As it is 

difficult to unpick whether a) communities are responding to changing pH and this is causing 

a biological functional increase in DOC, or whether b) both diversity and DOC are 

simultaneously responding to changing pH, further work is also needed to assess the 

mechanistic functional response of bacteria in terms of DOC production and consumption in 

response to changing acidity in organic soils. 
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8.2 Wider implications and further research 

This research set out to investigate the effect of acidity on the chemical and biological 

controls on DOC production in upland organic catchments. There was clear and consistent 

evidence that changing soil pH alters DOC solubility in organic soils, which supports previous 

findings, but that this effect does not extend to fresh litter. In contrast, there was little clear 

evidence that short-term changes in pH lead to changes in biologically mediated processes 

(decomposition and associated DOC production), or microbial community composition.  

Finally, there is good evidence that a range of intrinsic (e.g. soil type, moisture content) and 

historic (e.g. N, S and metal pollution, management) environmental factors affect 

decomposition processes and DOC production either directly (by facilitating or inhibiting 

processes) or indirectly (by determining plant and microbial community composition). 

Acidity plays a key part in this, but probably as one of a number of interlinked variables. 

As a result, a number of key areas where further research is needed have been raised. These 

are: 

1. Linking responses of microbial communities to acidity to functional responses in terms of 

DOC production and consumption. 

2. The effect of acidity on litter decomposition in a controlled laboratory experiment. 

3. Establish under what conditions does acidity become a dominating control on 

decomposition. 

These are discussed in more detail below, and a series of experiments have been suggested 

in order to fill the gaps raised during this thesis. 

1. It was difficult to detect a response in microbial communities to acidity using broad 

community metrics for this field experiment, although responses for particular indicator 

taxa (Acidobacteria) were found to respond in terms of their abundance. However, bacterial 

and archaeal diversity was significantly and positively correlated with soil extract pH, 

suggesting that diversity does respond to changes in pH, but that this was not detected 

under field experimental conditions. There are a number of possible reasons for why 

communities were not significantly different between treatment plots. In particular, it is 
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possible that plant and microbial communities are adapted to long-term changes in acidity 

but don’t adjust to short-term pH changes, and so the length of field experiment may have 

contributed to the lack of significant results. Other possible reasons include treatment 

frequency, sampling time, and other environmental variables which may also influence 

microbial communities. Furthermore, bacterial and archaeal diversity was also significantly 

and positively correlated with soil extract DOC, but it is difficult to establish whether this 

was due to a functional response of microbes to changing pH, particularly as a treatment 

response for litter decomposition was also not clear. Therefore a controlled laboratory 

experiment investigating acidity responses in both community structure and also function, 

whilst excluding other environmental confounding variables, would be valuable.  

A possible experiment which could be used to answer these questions could be based on a 

dilution to extinction approach similar to (Wertz et al., 2006). This is based around the idea 

that although soils are very diverse environments, there are high levels of functional 

redundancy, and that functions are performed by specialised microbial groups. Therefore a 

reduction in diversity may not actually influence function, but function is affected when the 

diversity of specialised microbial groups are altered. Two experiments based around these 

ideas are suggested below: 

 

1a)        A controlled laboratory experiment similar to the field experiment run during this 

research, in order to exclude environmental heterogeneity and detect treatment responses 

using broad community metrics as well as identifying which taxa groups are responding. This 

could involve microcosms with treatments to manipulate pH of peat and organo-mineral 

soil, and sequencing of the communities. 

 

1b)        Using the removal approach described by (Wertz et al., 2006),  sterile peat and 

organo-mineral soil are inoculated with communities and species which were not found to 

be acid sensitive under 1a are removed preferentially, whilst function is measured including 

respiration and DOC production.  

 

2. The effect of acidity on litter decomposition was only detected for one litter type 

(Eriophorum) out of five during this research, whilst TBI parameters were also unaffected. It 
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is possible that only Eriophorum decomposition was acid sensitive, or that this was the 

result of statistical coincidence. However, there are a number of issues with the experiment 

itself which may have resulted in a lack of response to treatments for other litter types. 

These include frequency of treatment applications, length of field experiment and 

incubation of litter, and general environmental factors and variation which may have also 

effected decomposition rates and made treatment responses difficult to detect. 

Therefore it is suggested that a controlled laboratory experiment is used to investigate the 

effect of acidity on litter decomposition further. A possible approach could follow on from 

experiments 1a and 1b, whereby taxa which are shown to respond to acidity and which 

show a functional response in terms of carbon cycling, could be inoculated in 14C labelled 

sterile litter samples. By excluding soil, any interactions with soil minerals or older organic 

material can be eliminated, and so the effects of decomposition on fresh litter only can be 

assessed. Samples then receive acidity manipulation treatments, and the decomposition of 

litter types by particular microbial groups under different pH environments can be 

investigated by tracking 14C isotopes, measuring final mass loss of litter, DOC production and 

respiration. 

3. The effect of acidity on litter decomposition was found not to be simple during the 

course of this research, and it is suggested that there may be other variables which 

influence the magnitude of effect that acidity may have on litter decomposition and 

therefore DOC production, such as plant species and litter quality, as well as other forms of 

pollution including nitrogen and heavy metals. A summary of the suggested scenarios at 

which particular variables control decomposition has been presented below in Table 8.1, 

based on research for Objectives 2 and 3 and evidence in the literature. 
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Table 8.1: Theoretical scenarios at which variables dominate control on litter decomposition are suggested and 

explained. 

Scenario Dominating control on decomposition 

High-lignin litter 

from polluted site 

(Calluna) 

Calluna produces more lignin as a stress response to pollution. 

Calluna also incorporates more nitrogen (N) into plant tissue. The 

interaction of high exogenous N, high litter tissue N and high lignin 

content results in inhibition of decomposition.  

Low-lignin litter 

with lower N 

content 

Microbial decomposition is limited by N availability, and this 

overrides acidity effect (low N in litter and soil causes reduced 

decomposition, regardless of pH). However, increased N deposition 

does not increase decomposition of these litters where other 

pollutants (possibly heavy metals) are present, as these become the 

dominant control on decomposition. 

Low-lignin litter 

with higher N 

content 

(Eriophorum) 

Microbes have enough N from litter, and so decomposition is not 

limited by N availability, but instead is suppressed by acidity. 

 

Whilst the experiment discussed under 2. would establish whether acidity effects the 

decomposition and DOC production of particular litters, this may not necessarily occur in 

situ, and so it is important to fully understand how acidity controls may be influenced when 

interacting with other variables that might be occurring in the field. By establishing the 

magnitude of response of litter decomposition and DOC production that might occur under 

acidification and recovery under different field conditions, this would provide vital 

information for modelling for particular catchments, and may explain some of the disparity 

in DOC release between different catchments receiving similar acid deposition loads. Again, 

multi-factor controlled laboratory experiments are needed to explore these interactions 

further. 
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8.3 Final thoughts  

Organic soils are diverse and a valuable store of carbon. In an era of anthropogenically 

induced global climate change and its associated economic, social and environmental risks, 

it is vital we understand in full the earth’s carbon dynamics and responses to environmental 

change. This thesis has demonstrated how recovery from acidification results in an increase 

in DOC solubility and release, and highlights the importance of considering organo-mineral 

soils as well as peats when assessing carbon dynamics of upland organic catchments. In 

addition, the complexity surrounding the biological mechanisms behind this increasing DOC 

trend with recovery have also been highlighted, and a number of research areas where 

future work could focus to further explore the role of microorganisms in DOC dynamics in 

organic soils experiencing acidification and recovery have been raised. 
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