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Production of Astaxanthin by Xanthophyllomyces dendrorhous DSMZ 5626 using 

Rapeseed Meal Hydrolysates as Substrate 

Abstract 

Astaxanthin is one of the most important carotenoids in humans and has vast applications 

in the food, nutraceutical and aquaculture sectors. Currently, astaxanthin is primarily produced 

through chemical synthesis, whereas the microbial fermentation method for producing 

astaxanthin is hindered by its high production costs as compared to the synthetic route. 

Valorisation of rapeseed meal, a by-product of rapeseed oil processing industry holds potential 

to serve as an alternative route for the sustainable production of microbial astaxanthin. The aim 

of this thesis was to investigate the feasibility of producing microbial astaxanthin from rapeseed 

meal using a yeast species, Xanthophyllomyces dendrorhous DSMZ 5626 and its extraction 

strategies.  

The preliminary study of X. dendrorhous growth in semi-defined media revealed that the 

yeast can consume a wide range of carbon sources including glucose, fructose, xylose, 

cellobiose, galactose, arabinose and glycerol with biomass values ranging from 10.7 g/l up to 

13.3 g/l when 30 g/l of each carbon source was used individually. Suppression of astaxanthin 

production was observed when high glucose concentrations (> 30 g/l) were used due to Crabtree 

effects. The findings served as preliminary data to understand the biochemical behaviour of the 

selected yeast species. 

 

Proximate analysis of the rapeseed meal used in this study demonstrated that it contained 

high protein (25 %, w/w), lignin (18%, w/w) and total carbohydrate (34%, w/w) contents, with 

the latter consisting primarily of glucose (20%, w/w) and to lesser extent arabinose (6%, w/w), 

galactose (3%, w/w) and also uronic acids (3%, w/w). Four commercial enzymes, namely (i) 

Viscozyme L, (ii) Accellerase 1500, (iii) pectinase and (iv) cellulase (from Aspergillus niger) 

were tested at different concentrations (1 – 15 %, v/v) for the individual assessment of their 

ability to break down the cellulosic and hemicellulosic compounds of rapeseed meal into 

monomeric fermentable sugars. Specifically, Viscozyme L and Cellulase treatments exhibited 

the highest glucose recovery yields (47 – 52% yield for 15 % (v/v) of enzyme used) and 

rapeseed meal derived total sugar concentration (74-77 g/l). A thermal pre-treatment step (126 
oC, 30 min) prior to enzyme hydrolysis by Accellerase 1500 was also evaluated and was found 

to improve the hydrolysis rate of rapeseed sugars by 25%. Rapeseed meal hydrolysates were 

tested as fermentation media for microbial astaxanthin production using separate hydrolysis 

and fermentation (SHF) approach in batch and fed-batch fermentation modes. Batch 

fermentation with pectinase derived rapeseed meal hydrolysates supported both biomass (42 

g/l) and astaxanthin production (11 mg/l) as the presence of glycerol from the enzyme 

formulation acted as additional carbon source for yeast growth.  

 

Intracellular astaxanthin was extracted by using three cell disruption methods including 

glass beads, enzymatic cell lysis and supercritical fluid extraction. Results showed that highest 

astaxanthin extractability (>100 %) was obtained when enzymatic cell lysis with Glucanex, 

accompanied with acetone extraction was used under optimised conditions (pH 4.6 at 

temperature of 30.8 °C). Overall, the findings of the study can serve as basis towards the 

commercialisation potential of microbial astaxanthin using cheap and renewable substrate as 

fermentation feedstock (rapeseed hydrolysates) and gave useful insights on the extraction 

strategies that can be applied in future scaling up processes.  

 

Keywords: astaxanthin, X. dendrorhous, rapeseed meal, extraction  
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1 INTRODUCTION 

Carotenoids constitute a major class of natural pigments produced by plants, algae, 

fungi, bacteria and yeasts and can be classified into carotenes or xanthophylls depending on the 

presence of a hydroxyl group in their structure. Carotenes such as β-carotene, α-carotene and 

lycopene contain only carbon and hydrogen atoms in their structure whereas xanthophylls such 

as lutein, astaxanthin and zeaxanthin contain an additional keto or hydroxyl group (Sanchez et 

al., 2013). Carotenoids are important natural ingredients with a wide range of applications in 

various industries; for instance, β-carotene and astaxanthin have been used as natural food 

colourants. In addition, astaxanthin has been applied in the aquaculture industry where it is 

incorporated into feed formulations for salmon, shrimp and trout to produce a greater orange-

pink pigmentation in the flesh of the fish (Xiao, Jiang, Ni, Yang & Cai, 2015).  

In terms of producing carotenoids, humans and animals do not have the capability to 

metabolically synthesize them, and therefore these can only be sourced through their diet. In 

contrast, plants (vegetables and fruits) and microorganisms such as yeasts, microalgae, fungi 

and bacteria are capable of producing carotenoids. There are several species of red yeasts, 

including Rhodotorula sp. (Aksu and Eren, 2007), Rhodosporidium sp. (Enshaeieh, Abdoli, 

Nahvi, & Madani, 2013) and Sporidiobolus sp. (Valduga et al., 2014), that have been shown to 

produce a wide range of carotenoids such as astaxanthin, torulene and β-carotene. Focusing on 

astaxanthin, the yeast species Xanthophyllomyces dendrorhous (formerly known as Phaffia 

rhodozyma) is one of the major natural astaxanthin producers, with astaxanthin comprising 

about 90% of the total carotenoids produced. 

The focus of this study is to develop a sustainable route for producing microbial 

astaxanthin via a biotechnology approach using the yeast species, Xanthophyllomyces 

dendrorhous. One of the obstacles to commercialising natural astaxanthin is its high price 
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compared to the synthetically produced astaxanthin that is produced via the Wittig reaction. In 

order for natural astaxanthin to be able to compete with synthetically produced astaxanthin in 

the market, an approach of utilising lignocellulosic waste from agricultural industries, such as 

wheat straw, sugarcane molasses and corn fibre, is one of the options available to produce 

microbial astaxanthin at reduced cost. In addition, oilseed meals such as rapeseed meal, 

sunflower meal and soybean meal might become potential sources of substrate for microbial 

astaxanthin production.  

Rapeseed (Brassica napus L.) is an important crop that has many uses in the agriculture 

industry. The main product, rapeseed oil, is rich in omega-3 fatty acids, antioxidants and other 

phytonutrients that are beneficial for health. The increased demand for rapeseed oil has 

increased the production of rapeseed oil as well as the generation of by-products from the oil-

processing industry. The principal by-product of the rapeseed oil production process is rapeseed 

meal (or cake), which is generated in large quantities. In 2013, almost 33.6 million tonnes of 

rapeseed meal were produced worldwide (Carré & Pouzet, 2014). Rapeseed meal contains 

substantial amounts of protein and other nutrients such as carbohydrates and phenolics (Wang 

et al., 2010). It is regarded as a low-value by-product and is primarily used as animal feed for 

pigs, chickens, broilers and lambs (Rymer & Short, 2003; Wang et al., 2010). However, this 

by-product has a lot of potential to be explored for other purposes, for example as a fermentation 

feedstock in microbial bioconversion into high value-added bioproducts. Therefore, utilising 

rapeseed meal as a medium for microbial astaxanthin production in yeast is a sustainable option 

and, most importantly, it does not compete with the food supply chain for humans.  
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1.1 Aim and Objectives 

The overall aim of this study was to investigate the feasibility of utilising lignocellulosic 

by-product rapeseed meal for microbial conversion into natural astaxanthin by the yeast 

Xanthophyllomyces dendrorhous DSMZ 5626. The experimental work in this study was 

divided into two major parts: 1) investigation of the feasibility of using rapeseed meal for 

bioconversion into natural astaxanthin production by the yeast X. dendrorhous DSMZ 5626; 

and 2) the extraction of intracellularly produced astaxanthin pigment from the yeast.  

To achieve the overall aim, the following specific objectives were designed: 

1. To investigate the role of different carbon sources in semi-defined media for the 

microbial production of astaxanthin by X. dendrorhous in order to understand the 

biochemical behaviour of selected yeast species; 

2. To evaluate the effects of chemical inducers, such as ethanol, citric acid and hydrogen 

peroxide, on astaxanthin production in X. dendrorhous; 

3. To optimise the enzymatic hydrolysis of rapeseed meal using a variety of enzymes (e.g. 

Accellerase 1500, Viscozyme L and pectinase) to produce a nutrient-rich hydrolysate;  

4. To investigate the effects of thermal pretreatment as a pretreatment step on the 

efficiency of the subsequent rapeseed meal hydrolysis step;  

5. To investigate the effects of rapeseed meal hydrolysate as a growth medium for X. 

dendrorhous in flask fermentation; 

6. To scale up microbial astaxanthin production using selected rapeseed meal hydrolysates 

from shake flasks to a 2-litre stirred tank bioreactor; 

7. To develop a scalable and efficient method for extracting astaxanthin from yeast cells 

using different techniques, namely glass bead extraction, enzymatic cell lysis and 

carbon dioxide supercritical fluid extraction (CO2-SCFE). 
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1.2 Scope and Structure of the Thesis 

This thesis covers the production of natural astaxanthin from rapeseed meal as a 

fermentation feedstock. Chapter 2 presents a literature review in the area of interest, which 

includes topics such as carotenoids, rapeseed and its production, fermentation and downstream 

processing (extraction).  

Chapter 3 covers the experimental research for objectives 1 and 2. In this chapter, the 

growth of X. dendrorhous cultivated using different types of carbon sources is investigated 

using semi-defined medium in flasks fermentation. Also, the addition of chemical inducers such 

as ethanol, citric acid and hydrogen peroxide to improve astaxanthin pigmentation is evaluated 

in this chapter. The results in this chapter give an overview of yeast behaviour and show that 

subsequent rapeseed meal hydrolysis can be tailored to yeast preference.  

Chapter 4 presents the experimental research for objectives 3, 4 and 5. The chapter 

reports that enzymatic hydrolysis of rapeseed meal was conducted using different types of 

commercial enzymes, i.e. Viscozyme L, Accellerase 1500, pectinase and cellulase from the 

fungus Aspergillus niger. The effects of thermal pretreatment to improve enzymatic hydrolysis 

were also investigated. The produced hydrolysates were then tested for their ability to support 

yeast growth and astaxanthin production in shake flasks.  

Chapter 5 presents the results for objective 6. In this chapter, astaxanthin production 

was scaled up in a 2-litre stirred tank reactor. In the first part, a semi-defined medium was used 

to investigate the physical parameters (pH and agitation) of bioreactor fermentation that were 

optimum for yeast growth. The optimised parameters were then applied for fermentation using 

rapeseed meal hydrolysates as fermentation medium. Different approaches, including separate 
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hydrolysis and fermentation (SHF) and partial simultaneous saccharification and fermentation 

(pSSF), were investigated.  

Chapter 6 explores the different extraction strategies for intracellular astaxanthin 

extraction from X. dendrorhous. Methods including glass beads followed by solvent extraction 

with a range of solvents (e.g. ethanol, methanol), enzymatic cell lysis followed by acetone 

extraction and CO2-SCFE with ethanol as co-solvent were tested. A design of experiment (DoE) 

approach was applied in this study. Finally, Chapter 7 provides a general discussion and 

presents the conclusions drawn from the study. Suggestions for further studies are also included 

in this chapter.  
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2 Literature Review 

2.1 Carotenoids 

Carotenoids are tetraterpenoids organic pigments produced by various sources, such as 

plants, algae, fungi, yeasts and bacteria (Aksu & Eren, 2007; Sanchez, Ruiz, Nacional, & 

México, 2013), and numerous conjugated carbon double bonds present in their structure (Stahl 

and Sies, 2003). Although more than 600 different carotenoids have been identified, there are 

only a few carotenoids which are considered highly beneficial and have attracted extensive 

interest for their positive roles in plants, animals and humans. Among these carotenoids, β-

carotene, lutein, astaxanthin, zeaxanthin, capsanthin and lycopene are those which have been 

widely studied and characterised for their functions. Carotenoids are divided into two classes, 

namely carotenes and xanthophylls, according to their chemical structure. Carotenes (e.g., 

lycopene) contain only carbon and hydrogen atoms in their molecules. In comparison, 

xanthophylls have a more complex chemical structure than carotenes that includes an additional 

keto or hydroxyl group in their chain, such as astaxanthin and β-carotene (Berman et al., 2014).  

Plants, in particular, tomatoes, carrots, red capsicums and all the leafy green plants, are 

the main sources of carotenoids (Omayma & Abdel Nasser, 2013). Carotenoids are responsible 

for providing their host with red, yellow, purple and orange pigmentation (Ribeiro, Barreto and 

Coelho, 2011; Valduga et al., 2014), and act as photosynthetic pigments in plants (Gu et al., 

2008), oxygen scavengers in photosynthetic tissue and as structural determinants in plastid 

pigments (Bartley and Scolnik, 1995). Meanwhile, in non-photosynthesis tissues, they 

contribute to the colour of the plants.  

In humans and animals, carotenoids play essential roles as antioxidants and vitamin A 

precursors and potentially offer protection against cardiovascular diseases (Fassett & Coombes, 
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2011). Among these carotenoids, lycopene, lutein, zeaxanthin, astaxanthin, β-carotene and 

canthaxanthin are commercially important due to their specific applications in the food, 

pharmaceutical and cosmetics industries. In the food industry, they are primarily used as natural 

food colourants, mostly from plant extracts, and are responsible for a wide range of colours, 

including orange, red and yellow. Humans fulfil their intake of the major carotenoids via dietary 

consumption of fruits and vegetables that contain a high carotenoid content, such as tomatoes, 

carrots, oranges and corn (Ishida & Chapman, 2009). Carotenoids (β-carotene, astaxanthin, 

lutein, zeaxanthin) have also been commercialised as human supplements, due to their potential 

to increase human health. Meanwhile, in the cosmetic industries, carotenoids have been applied 

to formulate skin care products, aftershave lotions, bath products, hair conditioners and 

shampoos (Sanchez, Ruiz, Nacional & México, 2013).  

Due to the extensive use of carotenoids in various products, there is huge demand of 

these compounds. BBC Research (2011) reported that the market demand for carotenoids was 

estimated at US$ 1.2 billion in 2010, with the possibility of reaching $1.8 billion, in 2018. 

Nowadays, the supply of these carotenoids is dominated by synthetic production, due to 

limitations in scaling up the production of naturally produced carotenoids. The worldwide 

growing demand for carotenoids has triggered research focused on finding alternative ways of 

production, such as extraction from natural resources, synthesis from microorganisms, as well 

as proving the effectiveness of these carotenoids in various applications. Currently, the 

extraction of carotenoids from plants is limited, as a result of the low carotenoids yield, 

instability of the pigments when exposed to air and light, as well as the use of harsh solvents, 

such as acetone, in the recovery process (Thomas, Diebler & Barmore, 1998). 

The commercialisation of natural carotenoids produced from microbial technology has 

not been able to compete with the synthetic production, due to marketing and technical reasons, 
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such as the complexity of the fermentation process which is reflected by high production costs 

(Schmidt et al., 2011). Natural carotenoids are more expensive than their synthetic counterparts, 

driving the competition between the sources for market demand. For carotenoids derived 

naturally via the microbial technology route, a very limited number of products have penetrated 

the market and obtained a generally regarded as safe (GRAS) status, including astaxanthin 

sourced from algae (Haematococcus pluvialis) and yeast (Xanthophyllomyces dendrorhous) 

(Bhosale & Bernstein, 2005). The sections below provide more information on the different 

types of carotenoids which are β-carotene, lycopene, lutein, zeaxanthin and astaxanthin. 

2.1.1 β-Carotene 

β-carotene is a tetraterpene (C40H56) with a β-ring structure at both ends of the molecule 

(Sanchez, Ruiz, Nacional & México, 2013). It is the main source of pro-vitamin A, which can 

be converted to vitamin A, and is believed to be the most important carotenoid in human 

nutrition, due to its health promotion capabilities, including helping the vision, reproductive 

efficiency and epithelial tissue maintenance (Ribeiro, Barreto & Coelho, 2011). β-Carotene has 

also been applied in the food industry as a food colourant, ranging from yellow to orange 

(Figure 2-1). 

 

 

Figure 2-1: Chemical structure of β-carotene 
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The market value of β-carotene was estimated at US$ 250 million in 2007; it was further 

increased to US$ 261 million in 2010 and is expected to grow to US$ 334 million by 2018 

(BBC Research, 2011).  The supply of β-carotene is obtained by chemical synthesis, mostly via 

the Wittig reaction (Ernst, 2013). Among the natural sources rich in β-carotene are carrots, 

sweet potatoes, oil palm (Elaeis guineensis) and buriti (Mauritia vinifera) (Ribeiro, Barreto and 

Coelho, 2011).  

2.1.2 Lycopene 

Lycopene has the chemical formula C40H56, and a molecular weight of 536.85 Da 

(Figure 2-2). It is a lipophilic compound and is insoluble in water but is an effective oxygen 

scavenger and has good antioxidant activity. Lycopene is capable of quenching singlet oxygen 

(O2
-) and trapping peroxide radicals (ROO-) at a higher rate than β-carotene. This attribute is 

associated with the presence of 11 conjugated double bonds, as well as the opening of the β-

ionic rings in its structure that increase its quenching ability towards singlet oxygen compared 

to other carotenoids (Stahl & Sies, 2003; Stajčić et al., 2015).  

 

 

Figure 2-2 : Chemical structure of lycopene 
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Lycopene is present in fruits, vegetables and green plants, as part of photosynthetic 

mechanisms, which acts to absorb light and provide protection against photosensitisation in 

plant tissue. The main source of lycopene is tomatoes, although apricots, guava, watermelon, 

papaya and pink grapefruit also have high levels of this carotenoid. Lycopene is found to be 

responsible for the yellow, red and orange pigmentation of fruits and vegetables (Rao et al., 

2006).  

In the European Union (EU), lycopene (E160) is defined as a food additive (Directive 

94/36/EC) and can be produced either synthetically via the Wittig condensation reaction or 

extracted from red tomatoes (Ernst, 2013; Stajčić et al., 2015). Synthetic lycopene is not 

approved as a food colourant in the EU but is considered as GRAS in the US (GRAS notice No 

GRN 000119) (Bresson et al., 2008). Besides that, the fungi Blakeslea trispora and Phycomyces 

blakesleeanus have been investigated for the production of natural lycopene (Berman et al., 

2014; Chandi & Singh Gill, 2011). Generally, commercial lycopene can be found in the form 

of suspensions in edible oils or as water-dispersible powders where it is formulated to contain 

an antioxidant for stabilisation purposes. Lycopene has been applied mainly in food products, 

such as soups, pasta, sauces and spreads (Chandi & Gill, 2011).  

2.1.3 Lutein and Zeaxanthin 

Lutein (Figure 2-3) and zeaxanthin (Figure 2-4) are xanthophylls consisting of 40 

carbon atoms with nine conjugated double bonds in a polyene structure; both have the same 

chemical formula, i.e., C40H56. Zeaxanthin is a stereoisomer of lutein; the main difference is the 

position of the conjugated double bond in one of the hydroxyl groups. Zeaxanthin has a double 

bond at the 5’,6’ position, whereas, in lutein, the double bond migrates to position 4’,5’ (Bone 

et al., 1997). Although their structures are very similar to that of β-carotene, they do not possess 

the pro-vitamin A activity due to the presence of an oxygenated group in the terminal ionone 



28 

 

rings that results in the inability of a specific enzyme to cleave the 15–15’ bonds in the structure 

(Ma & Lin, 2010). However, the presence of a hydroxyl group on both ends of these two 

molecules makes them much more polar compared to other carotenoids (Krinsky & Johnson, 

2005).  

The intake of lutein and zeaxanthin by humans and animals relies directly upon dietary 

intakes. Good sources of these compounds include leafy vegetables such as spinach and 

cabbage as well as egg yolk (Krinsky & Johnson, 2005). Although lutein and zeaxanthin are 

not essential carotenoids for human health, they play a vital role in preventing certain serious 

eyes diseases such as cataracts (Ma & Lin, 2010) and exhibit protection against age-related 

macular degeneration (Perry, Rasmussen, & Johnson, 2009). These two carotenoids are the 

major pigments present in the human macula and retina (Sommerburg et al., 1998) where they 

function as blue light filters and as antioxidants, by protecting the eye tissue against free radicals 

(Ma & Lin, 2010). 

Figure 2-3: Chemical structure of zeaxanthin 

 

Figure 2-4: Chemical structure of lutein 
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2.1.4 Astaxanthin  

Astaxanthin (3,3’-dihydroxy-β, β-carotene-4,4’-dione) (Figure 2-5) is a keto-carotenoid 

pigment that has been used in the nutraceutical, cosmetic and feed industries, among others. 

The chemical formula of astaxanthin is C40H52O4, and it has a molecular mass of 596.84 Da. 

Astaxanthin contains two terminal rings which are joined by a polyene chain; it has two 

asymmetric carbons located at the 3,3’ positions of the β-ionone ring with a hydroxyl group (-

OH) on either end of the molecule (Ambati et al., 2014).  

Figure 2-5: Chemical structure of astaxanthin 

In aquaculture, astaxanthin is used as a feed additive as it contributes to the attractive 

colouration of the bodies of aquatic animals, like salmon, shrimps and crustaceans, as well as 

maintains their growth and survival (Ip, Wong, & Chen, 2004). One of the distinguishing 

features of salmon is the orange–pink flesh, representing the quality of the fish produce. This 

appealing look is attributed to astaxanthin that is also responsible for producing the luxurious 

appearance to the salmon (Baker & Günther, 2004). 

Besides its contribution to colour, astaxanthin acts as an antioxidant by inhibiting the 

oxidation of low-density lipoproteins (Berman et al., 2014). It also possesses other bioactivities, 

such as anti-inflammatory and could potentially act as a therapeutic agent against 
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cardiovascular diseases (Choi, Youn, & Shin, 2011; Fassett & Coombes, 2011; Visioli & 

Artaria, 2017).   

Since humans and animals lack the biochemical pathways that are responsible for the 

production of carotenoids, the supply of astaxanthin is fulfilled via the diet (Frengova & 

Beshkova, 2009). In the aquatic environment, the supply of astaxanthin is fulfilled by 

consuming the carotenoids producing microalgae, Haematococcus pluvialis, which is later 

being consumed by crustaceans, zooplankton and insects. As for farmed aquatic animals (fish 

and crustaceans), the access to natural source of astaxanthin is limited, hence the astaxanthin 

intake must be derived from their feed (Shah, Liang, Cheng, & Daroch, 2016) 

Currently, the high demand for astaxanthin is fulfilled by both synthetic and natural 

supplies. The value of market for synthetically produced astaxanthin is more than USD 200 

million per year and correspond to 130 metric tonnes of product (Shah et al., 2016). Nowadays, 

there are growing trends on using natural ingredients in food and nutraceuticals markets, due to 

increasing concern for consumer safety and regulatory issues over the introduction of synthetic 

chemicals into human food chain. Therefore, the market for natural astaxanthin derived from 

microbial sources has been increased owing to consumer awareness of its benefits. The value 

to for natural astaxanthin is high with about USD 2500–7000 /kg, depending on the purity of 

the substance as compared to the synthetically-produced astaxanthin at USD 2000 /kg. (Guerin, 

Huntley, & Olaizola, 2003; Panis & Carreon, 2016). Furthermore, natural astaxanthin is three 

to four times more valuable than the synthetic alternative in the nutraceutical and 

pharmaceutical industries (Shah et al., 2016). The high value of the natural astaxanthin 

compound has gain interest among researchers to investigate the possible way to improve its 

microbial production at reduced cost which is further discussed in section 2.1.6.  



31 

 

 Astaxanthin originates from yeast, Xanthophyllomyces dendrorhous dominates the 

market for natural astaxanthin supply in aquaculture. As for human consumption, microalgae 

derived astaxanthin has gain high demand in the market. Astaxanthin was first regulated in 1998 

by Directive 87/552/EC for use in salmon and trout feed at a maximum concentration of 100 

mg/kg. As for synthetically produced astaxanthin, the market for supply in aquaculture industry 

is dominated by BASF and Hoffman-La Roche. Hoffman-La Roche’s main astaxanthin product 

is named CAROPYLL® Pink and is specifically formulated for aquaculture feed formulation 

in the form of an encapsulated powder in maize starch. Currently, BASF commercialises 

Lucantin® Pink that contains 10% synthetic astaxanthin, aiming to expand into the aquaculture 

industry as well (Berman et al., 2014). However, synthetic astaxanthin is not approved for 

human consumption due to the difference in the molecular structure relative to the natural 

product. 

The United States Food and Drug Administration (US FDA) (60 FR 18738, 13 April 

1995) has approved the use of astaxanthin (E161) as a food colourant in animal and fish feed, 

and the European Commission (EC) also approved the use of natural astaxanthin as a food dye 

in 2003 (Panel, 2014).  

2.1.5 Microbial Production of Astaxanthin 

The microbial production of astaxanthin for human and animal uses has primarily been 

carried out commercially by the green microalgae H. pluvialis and yeasts (Panis & Carreon, 

2016; Shah et al., 2016). The process was first commercialised in the early 1990s by the 

AstaReal group (Fuji Chemical Industries Co., Ltd., Japan) using astaxanthin sourced from H. 

pluvialis for human consumption (Guerin, Huntley & Olaizola, 2003). Since then, a number of 

products have appeared in the market, all naturally produced through microbial technology with 

H. pluvialis, including AstaReal®, AstaTROL® (Fuji Chemical Industries Co., Ltd.), 
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Astaxanthin (Parry Nutraceuticals, India), and BioAstin™, JointAstin™ and EyeAstin™ (Pure 

Healing Foods, CA, USA).  

H. pluvialis can be cultured via several techniques, including closed systems, such as 

photobioreactors and open pond techniques (Olaizola, 2003). Domínguez-Bocanegra et al. 

(2007) investigated the effect of different environmental factors, such as light intensity, aeration 

and media composition on the growth of H. pluvialis and identified that using unaerated 

complex media with continuous illumination (345 µmol photon m-2 s-1) resulted in the highest 

astaxanthin production (98 mg/g) with 1 g/L sodium acetate. Ambati et al. (2014) reviewed 

astaxanthin production in H. pluvialis in the range of 2.7–3.8% on a dry weight basis discovered 

that depending on the strain, and reported that depending on the strain, astaxanthin production 

on a dry weight basis is in the range of 2.7–3.8%, higher than that produced by the yeast X. 

dendrorhous (0.5% of dry weight). However, the cultivation period of H. pluvialis is about 13 

days which is generally longer than X. dendrorhous, which is 5 days (Domínguez-Bocanegra, 

Ponce-Noyola & Torres-Muñoz, 2007). Besides H. pluvialis, Dunaliella salina and Chlorella 

vulgaris are among the microalgae species that have been exploited for the production of other 

carotenoids, including β-carotene and lutein (Guedes, Amaro & Malcata, 2011). 

In addition to microalgae, several species of red yeasts have also been found to produce 

a wide range of carotenoids. These include Rhodotorula sp. (Aksu & Eren, 2007), 

Rhodosporidium sp. (Enshaeieh et al., 2013), Sporidiobolus sp. (Valduga et al., 2014) and 

Sporobolomyces sp. (Ramírez et al., 2001; Yang et al., 2011), as well as Xanthophyllomyces 

dendrorhous, previously known as Phaffia rhodozyma, which has been reported to produce 

high concentrations of astaxanthin. Specifically, the astaxanthin in X. dendrorhous accounts for 

almost 80–90 % of the total carotenoids that are accumulated within the yeast cells (Tinoi, 

Rakariyatham & Deming, 2005). Rhodotorula sp., such as R. glutinis, R. rubra and R. 
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mucilaginosa, produce a wide range of carotenoids, such as β-carotene or astaxanthin (Aksu & 

Eren, 2005; Bhosale & Gadre, 2001; Buzzini & Martini, 1999; Frengova, Simova, & Beshkova, 

2004). 

2.1.5.1 Biochemical pathway for astaxanthin synthesis 

The biochemical synthesis of carotenoids occurs in the plastids of the cells via two 

different routes that both lead to the production of isopentyl diphosphate (IPP) and 

dimethylallyl diphosphate (DMAPP). Both IPP and DMAPP are required as the precursors for 

carotenoid production (Miao et al., 2011; Sanchez et al., 2013). The pathways that are 

responsible for the production of these compounds are the mevalonate (MVA) pathway and 2C-

methyl-D-erythritol 4-phosphate (MEP) pathway (Shumskaya & Wurtzel, 2013) (Figure 2-6). 

Yeasts and bacteria generally follow the MVA pathway, whereas plants can use both the MVA 

and MEP pathways.  

In X. dendrorhous, carotenoids are produced via the MVA pathway, where three acetyl-

coenzyme A (CoA) molecules which also serve as substrates for fatty acid synthesis, undergo 

condensation, yielding acetoacetyl-CoA. Subsequently, hydroxymethylglutaryl-CoA (HMG-

CoA) is produced which is then condensed to form MVA before transforming to IPP (Figure 

2-6). The condensation of IPP molecules leads to the production of geranylgeranyl 

pyrophosphate (GGPP). The first carotenoid, phytoene, is produced when two GGPP molecules 

are condensed. Subsequent dehydrogenation steps and one cyclisation step lead to the formation 

of β-carotene. Astaxanthin is derived from β-carotene and is the end-product of the synthesis 

pathway (Schmidt et al., 2011). Figure 2-7depicts the biosynthetic pathway of astaxanthin 

production in yeasts. 
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Figure 2-6: Mevalonate (MVP) and 2C-methyl-D-erythritol 4 phosphate pathway (MEP) 

pathways used for synthesis of IPP and DMAPP, which are precursors for carotenoids synthesis 

(Adapted from Sanchez et al., 2013). 
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Figure 2-7:  Biosynthetic pathway of astaxanthin synthesis in X. dendrorhous. Abbreviations: 

crtI (phytoene desaturase), crtYB (phytoene-β-carotene synthase, crtE (geranylgeranyl 

pyrophosphatase), crtS (astaxanthin synthase), crtR (cytochrome P450 synthase) and HDCO 

(3-hydroxy-3’,4’-didehydro-β-φ-carotene-4-one) (adapted from Contreras et al., 2013) 
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2.1.6 Research Trends in Carotenoids Production 

The production of carotenoids via microbial technology seems to be a suitable 

alternative to compete with chemically synthesised carotenoids due to its ability to produce a 

wide range of carotenoids at relatively high productivity (Frengova & Beshkova, 2009). 

However, as previously mentioned, until today, the production of natural carotenoids via 

microbial routes has not been developed sufficiently enough to compete with the synthetic route 

primarily due to technical issues (e.g., low production yields and productivities) and high 

production costs (Schmidt et al., 2011). To overcome these constraints, a significant amount of 

research has been undertaken on genetic modification of production strains, utilisation of low-

cost agricultural by-products (e.g., lignocellulosic residues) as fermentation feedstocks and 

implementation of effective extraction processes.  

Recombinant DNA technology has been applied to carotenoid-producing 

microorganisms, such as X. dendrorhous, to introduce novel or modify existing specific 

biochemical reactions responsible for carotenoid production (Contreras et al., 2013; Fang & 

Wang, 2002; Mata-Gómez, Montañez, Méndez-Zavala, & Aguilar, 2014). Various low-value 

agricultural by-products, including cane molasses, Eucalyptus woods, spent coffee ground and 

whey, have been investigated for their feasibility to support carotenoid production in various 

microorganisms, including yeast and microalgae (Liu, Huang, Jiang, & Chen, 2012; Mata-

Gómez et al., 2014; Petrik, Obruča, Benešová, & Márová, 2014; Vázquez, Santos, & Parajó, 

1998). Extraction of carotenoids from microbial sources is not a direct process since the 

pigments are located within the cells. Various cell disruption strategies are often applied, 

including glass beads, ultrasonication and enzymatic cell lysis, before solvent extraction 

(Machado et al., 2016; Michelon et al., 2012). Alternatively, technologies including 
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supercritical fluid extraction (SFE) and ionic liquids, show high potential to be explored for 

carotenoid extraction (Saini & Keum, 2018; da Silva, Rocha-Santos & Duarte, 2016). 

2.2 Rapeseed  

Rapeseed (Brassica napus L.) (Figure 2-8) is an important oil crop that has been planted 

across the world, with the major producing countries being the EU, Canada, China and India 

(Figure 2-9). In 2017, about 73 million tonnes of rapeseed was produced which is about 12% 

of the world’s total oilseed production (Krautgartner et al., 2017). There are mainly two types 

of rapeseed of rapeseed being grown, which are known as winter and summer rapeseed, 

respectively. In the EU and Asia, rapeseed is cultivated as a winter or semi-winter variety. The 

winter varieties have longer vegetation periods and produce a higher yield than the summer 

ones, but can only be grown in areas with a mild winter climate. Summer rapeseed is cultivated 

in comparatively cooler continental climates, in China, northern European countries, Canada 

and Australia (Szydłowska-Czerniak, 2013). The world production of rapeseed has not 

increased since 2013 due to bad weather and planting reduction in the EU (Figure 2-10). 

 

 
Figure 2-8: Rapeseed flower 
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Figure 2-9: World production of rapeseed worldwide in 2016/17.  

Source: (Krautgartner et al., 2017). 
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Figure 2-10: World production of major oilseeds. Source: (Krautgartner et al., 2017) 
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Rapeseed has been mainly cultivated for its high oil content (40–45%, w/w) since it has 

high nutritional value. Rapeseed oil contains a low amount of saturated fatty acids, which 

account for 5–7% (w/w), but is high in polyunsaturated fatty acids, containing about 7–10% α-

linolenic acid and 17–21% linoleic acid (Kramer, 2012). Several different varieties of rapeseed 

are cultivated for distinct purposes. For example, varieties that contain high levels of erucic 

acid (40–50%, w/w) and glucosinolates (> 30 µmol/g) are mainly used for non-edible purposes, 

such as for the production of biodiesel and engine lubricant as they are toxic to humans after 

prolonged exposure (Mintec, 2012). The oil extracted from these varieties also has a bitter taste, 

making it less favoured by consumers (Kramer, 2012). Due to all of the constraints, selective 

plant breeding approaches have been carried out leading to the generation of improved rapeseed 

cultivars that contain small amounts of glucosinolates (<30 µmol/g) and less than 2% erucic 

acid. This variety is found to be more suited for food purposes and ensured for its safety for 

consumers. In Canada, this edible variety is known as canola (Szydłowska-Czerniak, 2013). 

Nowadays, rapeseed oil is nutritionally desirable as a cooking ingredient, as it contains 

the lowest levels of saturated fatty acids, among the major commodity oils, such as soybean 

and sunflower oil. Rapeseed oil can be used as a salad dressing, for margarine production, as 

well as for frying purposes. The fatty acids composition also attracts interest of utilising the 

rapeseed oil as source of lubricant and chemical industries (Bockey, 2013). 

2.3 Rapeseed Structure 

Rapeseed which is the reproductive organ in rape, consists of the hull (seed coat), the 

endosperm and a large embryo (consisting of a radicle and 2 conduplicate cotyledons). The hull 

acts as a protective barrier for seeds during dormancy. It consists of an epidermal layer, a 

subepidermal layer, a thick palisade layer and a pigment layer. As for the endosperm, it consists 
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of an aleurone cell layer and a hyaline layer of crushed parenchyma cells (Yiu, Altosaar, & 

Fulcher, 1983). The structure of rapeseed is given in Figure 2-11. 

According to the requirements of different physiological process, nutrients and other 

metabolites are distributed and deposited in various seed organs. The seed coat is mainly 

composed of fibre (18%) with a high proportion of lignified material and lower amount of oil 

compared to the endosperm. In contrast, the endosperm that adheres to the inner of seed coat 

contains high proportions of oil bodies and protein bodies that make it rich in oil and protein 

content (Fang et al., 2012). In rapeseed, the total oil content can reach approximately 50% (w/w) 

(Fang et al., 2012). Besides that, tannins are found rich in the rapeseed hull as compared to in 

the embryo, whereas glucosinolates and phytate content are lower in the hull (Lammerskotter 

et al., 2017).  

The structural organization of rapeseed is mechanically disrupted during pressing 

process. Normally, the rapeseed meal that is produced as the by-product of de-oiling process is 

composed of both the seed coat part (brown in colour) and the oil cake, part which is yellow in 

colour, reflecting the yellow colour of the cotyledon. In some processing plants, the hull part of 

the rapeseed is separated from the seed part and is subjected to oil extraction, that is normally 

used as biofuel (Lammerskotter et al., 2017). Theoretically, the dehulling of oilseed improves 

the quality of the meal produced. However, this technique is rarely applied at industrial scale 

due to loss of oil in the hull, low oil extraction yield and high possibility of glucosinolates to 

accumulate in the dehulled meal (Carré, Citeau, Robin, & Estorges, 2016). 
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Figure 2-11: The structure of rapeseed. (A) The structural organisation of whole rapeseed. (B) 

Detail structural and microchemical organization of rapeseed. Adapted from Yiu et al. (1983). 
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2.4 Rapeseed Processing and By-Products 

The processing steps for the extraction of oil from rapeseed can vary, according to the 

practices of the individual manufacturer or the end use of the oil. Generally, the process starts 

with seed cleaning, followed by seed flaking where the cell wall is ruptured. Afterwards, the 

flakes are passed through steam or cookers, aiming to 1) denature hydrolytic enzymes, 2) adjust 

the moisture of the flakes, and 3) increase the oil viscosity to ease the oil collection process. 

This cooking process takes about 15–20 min at 85–105 °C. Once cooked, the flakes enter the 

pressing stage where the seed is pressed for the oil. At this stage of the process, the oil extraction 

yield is around 40% of the total oil initially present in rapeseed (Mintec, 2012).  

Depending on the purpose of the produced oil, the rapeseed meal (the residue after 

pressing) may undergo further solvent extraction process with hexane, to extract the remaining 

oil and provide an oil-free rapeseed meal (less than 1% w/w oil). Usually, if the extracted oil is 

targeted for biofuel purposes, this additional step of solvent extraction is therefore necessary to 

obtain high oil yields. However, the additional solvent extraction step has led to several 

problems, such as air pollution (Kumar et al., 2017). Due to differences in the extraction 

methods used, variations in the oil yield and nutritional quality often occur, mainly in terms of 

the fatty acid composition and total tocopherols and phenolics content (Ghazani, García-Llatas 

& Marangoni, 2014). The resultant oil is refined to remove compounds like phospholipids, free 

fatty acids and colour pigments and the meal is heated to strip off the solvent before being 

pelleted for further applications. Currently, rapeseed meal is being used as animal feed. A 

general schematic of the oil extraction process for rapeseed is depicted in Figure 2-12.  
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Figure 2-12 Common solvent extraction process for rapeseed oil (Source: Canola Council of 

Canada, 2014) 
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Another oil extraction method used is the cold pressing method. Generally, it is used to 

produce oil of high nutritional quality and is known as extra virgin or cold-pressed rapeseed oil, 

which is primarily used for cooking or dressing purposes. In this procedure, the seed is not 

exposed to high temperatures or chemicals, and the extraction is customarily carried out below 

40 °C, as at a higher temperature, the flavour and nutritional quality of extracted oil are 

compromised. Under these mild conditions, the nutritional quality of the extra virgin rapeseed 

oil is preserved. The extracted oil may retain its high content of tocopherols and phytosterols, 

which also act as antioxidants, improving the stability of the oil (Hoed et al., 2010). This 

procedure is usually used by small-to-medium sized companies targeting food applications, as 

the oil extraction yield is not as high as compared to the heat treatment extraction process. 

Pressed rapeseed meal contains substantial amounts of residual oil, usually over 19%. 

However, further solvent extraction, particularly by the biodiesel industry can potentially result 

in a meal with less than 2% residual oil (Wang et al., 2010). The rapeseed meal generated is 

rich in proteins and polysaccharides such as pectins, hemicellulose and cellulose (Wang et al., 

2010). Hemicellulose in rapeseed meal mainly consists of xyloglucans (Pustjens et al., 2013). 

The composition of the rapeseed meal varies according to genetic factors, climate, soil and the 

applied oil extraction process (Lomascolo et al., 2012).  

In 2016/17, about 39.5 million tonnes metric of rapeseed were generated as a result of 

increasing rapeseed production (Figure 2-13). The global production of rapeseed meal has been 

increasing since 2005, reaching a stable output since 2013 with a value of almost 39.5 million 

tonnes in 2016/17 (USDA, 2018). This increase is due to high amount of rapeseed grown to 

meet the increasing demand for vegetable oils. The rising trend of rapeseed meal suggests that 

considerable opportunities exist for developing alternative uses beyond animal feed for this 

readily available material (Lomascolo et al., 2012). 
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Figure 2-13: Worldwide production of rapeseed meal from 2005 to 2016 (USDA, 2017) 

Oil-free rapeseed meal typically contains 30% (w/w) protein, ~36% (w/w) total 

carbohydrates and 24% (w/w) lignin (Pustjens et al., 2013). Rapeseed meal has been 

traditionally utilised as a fertiliser and also as animal feed (as mentioned earlier in this section) 

as it contains a healthy balance of amino acids (El-Beltagi & Mohamed, 2010; Wang et al., 

2010). However, the utilisation of rapeseed meal as feed is limited compared to other oilseed 

meals such as soy and sunflower due to the presence of anti-nutritive components, such as 

phytic acid and erucic acid, and the presence of glucosinolates and phenols, which act as 

precursors for the formation of toxic compounds (Uçkun Kiran et al., 2012). Moreover, 

rapeseed meal protein is more suited for ruminants as it is not as easily digested by monogastric 

animals due to high content of cell wall polysaccharides (Pustjens et al., 2013) when compared 

to fish meal or soybean meal (Uçkun Kiran et al., 2012). Since the composition of rapeseed 

meal is rich in non-starch polysaccharides, utilisation of rapeseed meal as feed for monogastric 

animals is regarded not suitable as they lack the enzymes required to break down the cell wall 

polysaccharides of rapeseed meal. An additional step, such as enzyme pre-treatment is 
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necessary to improve the digestibility of rapeseed meal by monogastric animals such as pigs 

(Pustjens et al., 2012).  

The protein in rapeseed meal can be potentially isolated and used as an ingredient in 

high-value food products, such as food supplements and sports drinks (Chabanon et al., 2007). 

Moreover, due to its high carbohydrate content, rapeseed meal can potentially be used as a 

fermentation feedstock, namely, as a carbon and nitrogen source, for microbial bioconversions. 

However, most microorganisms cannot directly assimilate the complex carbohydrates present 

in rapeseed meal as they lack the necessary enzymes needed to break down the cellulosic and 

hemicellulosic components (Wang et al., 2010). Therefore, to be used for such application, 

rapeseed meal needs to be hydrolysed into its primary components, i.e., sugars, peptides, amino 

acids, before being utilised for microbial bioconversion purposes (Chatzifragkou et al., 2014).  

To design a multi-step process for the hydrolysis of lignocellulosic materials such as 

rapeseed meal and their subsequent utilisation for the production of a range of chemicals, it is 

important to have a good understanding of their proximal chemical composition. Figure 2-14 

depicts a general process scheme for the hydrolysis of the key macromolecules present in 

lignocellulosic materials. It is evident that the hydrolysis strategy should be designed with 

consideration of the composition of the lignocellulosic biomass as well as the capabilities of 

the microorganisms used for subsequent bioconversions. The hydrolysis strategy can be 

performed either by physical, chemical (e.g., acid, alkali) or enzymatic hydrolysis 

(Chatzifragkou et al., 2014; Sun & Cheng, 2002; Taherzadeh & Karimi, 2007). 
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Figure 2-14: Composition of lignocellulosic biomass and potential hydrolysis products 

(Adapted Sarip, Hossain, Azemi & Allaf , 2016). 

 

2.5 Pre-Treatment of Lignocellulosic Materials 

The complexity of lignocellulosic biomass hinders the efficient enzymatic hydrolysis of 

the macromolecules (polysaccharides and proteins) into their monomeric compounds (sugars 

and amino acids). Therefore, as mentioned in section 2.3, to increase the enzymatic hydrolysis 

of rapeseed meal, a pre-treatment step is necessary, with the primary aim to separate out the 

lignin and hemicellulose components from the biomass. This step will also reduce the cellulose 

crystallinity, as well as increase the porosity of the materials, which in turn facilitates the 

accessibility of the enzymes to cellulose (Taherzadeh & Karimi, 2007). A successful pre-

treatment step should be cost-effective to ensure that the fractionation/separation of the biomass 

has been effective and thus avoid the formation of sugar degradation products, such as furans 
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(hydroxymethylfurfural (HMF) and furfural), as these are inhibitory towards enzymes and 

microbes (Öhgren et al., 2007; Petrik, Kádár & Márová, 2013; Sun & Cheng, 2002).  

To achieve this, several processes including physical, chemical and biological processes 

have been applied as pre-treatment strategies, notably hydrothermal, chemical and enzymatic 

treatments (Sánchez and Cardona, 2008). Such a pre-treatment step will generally be followed 

by enzymatic treatment, targeting the hydrolysis of cellulose into its monomers. Figure 2-15 

depicts the changes in the biomass structure after different pre-treatments, while the subsequent 

sections discuss each of these pre-treatments in more detail.  

 

 

Figure 2-15: Schematic diagram depicting the changes in the biomass structure before and after 

pre-treatment (adapted from Mosier, 2005) 
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2.5.1 Chemical pre-treatments 

Acid pre-treatment has been applied to treat lignocellulosic material and improve 

subsequent enzymatic hydrolysis of biomass to release fermentable sugars (Kumar, Barrett, 

Delwiche & Stroeve, 2009). Strong acids, such as sulphuric acid (H2SO4) and hydrochloric acid 

(HCl), at mild concentrations (<4% v/v) under high temperatures (>120 °C), have been applied 

to pre-treat rapeseed by-products (straw and meal) in various studies (Castro et al., 2011; Chen, 

Zhang, Miao, Wei & Chen, 2011; Jeong et al., 2013; López-Linares et al., 2014). Dilute H2SO4 

(<4% v/v) pre-treatment on lignocellulosic materials results in a high reaction rate and improves 

cellulose hydrolysis, as well as effectively hydrolyses hemicellulose into dissolved sugars, with 

almost 100% hemicellulose hydrolysis yield. Once hemicellulose is removed, the digestibility 

of the cellulose in the residual solids is increased (Kumar et al., 2009).  

Even though concentrated acids are powerful agents for cellulose and hemicellulose 

pre-treatment, they are toxic, corrosives and can be hazardous. Specialised reactors are also 

required that resist corrosion against acid such as glass-based reactors (Sivers & Zacchi, 1995). 

Moreover, strong acid hydrolysis results in the formation of compounds, such as furfural from 

xylan degradation, which can be inhibitory to microbial growth (Jung, Yu, Eom & Hong, 2013; 

Kumar et al., 2009). Jeong et al., (2013) compared several strategies for pectin extraction from 

rapeseed meal hydrolysis, including mild acid treatment (1% HCl), enzymatic hydrolysis and 

solvent extraction using alcohol–benzene mixtures. Results showed that samples pre-treated 

with mild acid yielded less pectin when compared to enzyme hydrolysis and solvent extraction. 

It suggests that mild acid treatment was too harsh on pectin and caused hydrolysis of 

galacturonic acid. Therefore, it can be said that the suitability of mild acid pre-treatment 

depends on the aims of the study.  



50 

 

Apart from acid pre-treatment, alkali can be used to pre-treat lignocellulosic materials 

which acts by removing the lignin and a part of the hemicellulose that lowers the accessibility 

of enzymes to the cellulose structure (Silverstein et al., 2006). The commonly used alkali 

reagents are sodium hydroxide (NaOH), calcium hydroxide, potassium hydroxide and 

ammonium salts (Taherzadeh & Karimi, 2008). Alkali pre-treatment is usually performed at 

ambient temperature and pressure unlike acid hydrolysis (Kumar & Sharma, 2017). Dilute 

alkali pre-treatment results in degradation of side-chain esters and glycosides, leading to 

structural modification of lignin and swelling of the cellulose in the lignocellulosic material. 

The swelling of cellulose further leads to an increase in the internal surface area, a decrease in 

the degree of polymerisation and cellulose crystallinity as well as the disruption of the 

lignocellulosic structure (Kumar & Sharma, 2017; Sun & Cheng, 2002; Taherzadeh & Karimi, 

2008).  

Han et al., (2012) investigated the use of dilute NaOH as a pre-treatment strategy prior 

to enzymatic hydrolysis of wheat straw under various conditions, including NaOH amount 

(0.2–1.5 % w/v) and reaction time (0.5–2.5 h) at fixed substrate concentration. The authors 

found that under optimised conditions (1% NaOH for 1.5 h) the cellulose content of wheat straw 

increased by 44% while the contents of hemicellulose and lignin decreased by 44 and 43%, 

respectively. Significant changes in the microscopic structure of wheat straw after alkali pre-

treatment suggests that cellulose was more accessible to cellulase. Even though alkali is 

considered a good pre-treatment strategy, it requires an additional neutralisation step to remove 

salts from the biomass before being used in further stages, including enzymatic hydrolysis of 

cellulose and the subsequent fermentation process (Kumar & Sharma, 2017; Sun & Cheng, 

2002). Furthermore, this strategy is found to be more effective towards agricultural residues 

and herbaceous crops than wood materials (Silverstein et al., 2006).  
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2.5.2 Hydrothermal pre-treatment 

Hydrothermal pre-treatment, also known as cooking of lignocellulosic materials under 

high temperature (>150 °C) in liquid hot water and pressure (up to 5 MPa), is considered the 

most common pre-treatment strategy to treat biomass (Taherzadeh & Karimi, 2008). During 

this process, autohydrolysis occurs, where acids are formed by solubilisation of acidic 

compounds and de-esterification of ester groups (acetate) in hemicellulose occurs, producing 

weak acids, such as formic acid, acetic acid and glucuronic acids. The acids produced then act 

on the hemicellulose structure, resulting in the solubilisation and hydrolysis of hemicellulose 

to its monomeric sugars (e.g., xylose, arabinose, galactose) (Kumar & Sharma, 2017). During 

the hydrothermal process, no chemicals are added to the reaction; hence, the pre-treatment relies 

on the autohydrolysis that occurs. This process increases the surface accessibility for enzymatic 

hydrolysis, promotes cellulose decrystallisation and reduces the content of recalcitrant lignin 

(Sarip et al., 2016). It has been shown that the cellulose exposed by hydrothermal treatment of 

the biomass is markedly more susceptible to enzymatic activity (Yoon, 1998). 

Hydrothermal pre-treatment can be performed in three different ways, based on the 

direction of flow between water and biomass. In the first strategy, both biomass and water are 

heated to the required temperature and held for a set period before being cooled. This method 

is known as concurrent pre-treatment. Another technique, known as counter-current pre-

treatment, involves pumping hot water against the biomass in a controlled manner. Finally, in 

the flow-through pre-treatment, the biomass acts as a stationary bed, hot water flows through 

the biomass, and the hydrolysed fraction is carried out of the reactor (Kumar & Sharma, 2017; 

Mosier et al., 2004).   
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Pińkowska, Wolak & Oliveros (2013) investigated the effects of hydrothermal pre-

treatment on rapeseed straw for the generation of xylose- and glucose-rich hydrolysates using 

an experimental design approach. They proposed a 3-stage hydrothermal treatment involving 

an initial stage performed at a relatively low temperature (195–212 °C) with short exposure 

times (9.5–16.5 min), in which solubilisation and acid hydrolysis of hemicellulose occur, but 

with most of the cellulose remaining in the residue. In the second stage, relatively higher 

temperature (245–267 °C) at shorter treatment time (11-6 min, respectively) is applied to 

hydrolyse the cellulose. Furfural and HMF are also formed in this step. Finally, lignin is 

decomposed by applying heat treatment at 330 °C for 60 min. In a different study, a 1-step 

hydrothermal pre-treatment of sunflower stalks was undertaken at an optimised temperature 

(180 °C), favouring the extraction of both hemicellulosic and cellulosic derived sugars while 

limiting the HMF formation (Jung, Yu & Eon, 2013). Data showed that the pre-treatment prior 

to enzymatic hydrolysis resulted in a higher hemicellulosic sugars recovery (xylose, mannose 

and galactose, 75%) compared to glucose (67%) (Jung et al., 2013). These studies suggested 

that hydrothermal pre-treatment can be tailored to suit the final applications. 

2.6 Enzymatic Hydrolysis 

Enzymes can also be used for the hydrolysis of lignocellulosic biomass and assist its 

conversion into a hydrolysate that could then serve as a generic feedstock for microbial 

bioconversions (Kiran et al., 2012). Such enzymatic treatments are advantageous as they are 

more environmentally-friendly compared to chemical hydrolysis (e.g., acid hydrolysis). 

Moreover, they are usually carried out under mild reaction conditions (e.g., ~30–50 °C), 

minimising the formation of degradation products such as furfural and HMF (Rodrigues, 

Carvalho & Rocha, 2014). 
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Cellulose is a linear polymer of glucose monomers linked together by β-1,4-glycosidic 

bonds. Saccharification of this material can be achieved using cellulase enzyme for the 

production of glucose. Commercial cellulase enzymes are usually mixtures of enzymes that 

have endoglucanase, exoglucanase and β-glucosidase activities and they work synergistically 

to ultimately break down the cellulose into glucose (Taherzadeh & Karimi, 2007). 

Endoglucanase attacks the low crystallinity region of cellulose producing a sugar-free chain 

end. Exoglucanase then works from the non-reducing end to degrade the sugar chain, releasing 

cellobiose which is an intermediate of cellulose depolymerisation. β-Glucosidase then acts to 

cleave the cellobiose unit into two molecules of glucose. The enzymatic hydrolysis of cellulosic 

compounds into its monomers in 5 steps: 1) the enzymes are transferred from the aqueous phase 

to the surface of the cellulose particles; 2) the enzymes are absorbed to the particles and form 

an enzyme–substrate complex; 3) cellulose is hydrolysed; 4) the products of hydrolysis, 

including cellodextrins, glucose and cellobiose are transferred to the aqueous phase; and 5) 

cellobiose is further hydrolysed by β-glucosidase, to produce glucose from the non-reducing 

end of the oligosaccharides (Sajith, Priji, Sreedevi & Benjamin, 2016; Taherzadeh & Karimi, 

2007). The schematic diagram for the hydrolysis of cellulose is given in Figure 2-16. 
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Figure 2-16: Schematic diagram of lignocellulosic biomass hydrolysis by cellulase mixtures 

(adapted by Sajith, Priji, Sreedevi & Benjamin, 2016). 

 

The enzymatic conversion of rapeseed meal can be accomplished either via solid-state 

fermentations which involve fungal strains, such as Aspergillus oryzae or by adding particular 

enzymes such as cellulases and proteases (Jeong et al., 2014). A. oryzae is a well-known 

producer of proteolytic enzymes, as well as phytase, cellulase, xylanase and amylolytic 

enzymes (Chatzifragkou et al., 2014). Some commercial or developmental enzymes can be 

potentially used in this approach. Rodrigues et al., (2014) evaluated three commercial 

carbohydrases (Viscozyme L, Cellucast and Pectinex Ultra SP-L), independently, for their 

efficiency of rapeseed meal hydrolysis and was shown that Viscozyme L could produce protein-

rich hydrolysates, containing more than 68% total protein and 80% total reducing sugars. Sari 

et al., (2013) evaluated the feasibility of using commercial proteases to extract protein from 
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several oilseed meals, including soybean, rapeseed and microalgae meal. They obtained almost 

50–80% protein yield in rapeseed meal when combining alkali treatment with the different 

types of proteases. Overall, the hydrolysis of meals was influenced by pH, and the types of 

biomass and enzymes used. 

Enzymatic hydrolysis offers several advantages compared to chemical and thermal 

methods, eliminating the use of chemicals and resulting in a more environmentally-friendly 

process. It is also done under comparatively milder conditions, which minimises the formation 

of sugar degradation products (HMF and furfural) (Rodrigues, Carvalho & Rocha, 2014). 

However, the enzymatic hydrolysis of lignocellulosic biomass is relatively slow (>24 h), and 

without any pre-treatment of the biomass, it is unlikely to result in high yields. The reason is 

most likely due to the dense structure of the biomass and the fact that linkages between the 

lignin, cellulose and hemicellulose cannot be accessed by enzymes which are used to hydrolyse 

the polysaccharides. Therefore, the application of alternative pre-treatment methods such as the 

chemical (section 2.4.1) and physical (section 2.4.2) methods are necessary to enhance the 

susceptibility of lignocellulosic biomass to hydrolytic enzymes (Brodeur et al., 2011). 

2.7 Production of Astaxanthin by Fermentation Using Xanthophyllomyces dendrorhous 

As mentioned in section 2.1.5, X. dendrorhous is a promising microorganism for the 

production of astaxanthin by fermentation. In designing such fermentation process, several 

factors need to be considered, including the strain used, the fermentation substrate and the 

effects of pH, agitation, aeration and inducers. These factors are discussed in more detail in the 

following sections.     
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2.7.1 Xanthophyllomyces dendrorhous  

X. dendrorhous (asexual stage, P. rhodozyma) was first isolated from wounds of birch 

trees by Herman Phaff in the late 1960s, in Japan and Alaska. Phaffia species can synthesize 

carotenoids, and this biotechnological process attracts considerable scientific interest. The 

species belong to the Basidiomycetes class and has no sexual cycle (Roy, Chatterjee & Sen, 

2008).  X dendrorhous is the teleomorphic state of P. rhodozyma (Globulev, 1995). The sexual 

stage of X. dendrorhous is unique as it involves a holobasidia with terminal basidiospores 

formed after mother–daughter cell conjugation (Roy, Chatterjee & Sen, 2008). Table 2-1 shows 

the classification of X. dendrorhous.  

 

  Table 2-1: Classification of Xanthophyllomyces dendrorhous 

Division Basidiomycota 

Subdivision Agaricomycotina 

Class Tremellomycetes 

Subclass Tremellomycetidae 

Order Cystofilobasidiales 

Family Cystofilobasidiaceae 

Genus Xanthophyllomyces 

Anamorph Phaffia rhodozyma 
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The main pigment produced by X. dendrorhous is astaxanthin that accounts for about 

83–87% of the total carotenoids produced intracellularly. The astaxanthin production in X. 

dendrorhous is well established, and it follows the MVA pathway, described in section 2.1.5.1 

(Schmidt et al., 2011). X. dendrorhous is an aerobic organism; its primary metabolism is 

dependent on oxygen supply in the culture system. However, it can undergo fermentative 

catabolism of glucose, leading to ethanol and acetic acid production, even under aerobic 

conditions; this is called the Crabtree effect and takes place particularly when the concentration 

of hexose sugars present in the media is above its threshold values (Liu, Wu & Ho, 2006; 

Rodríguez-Sáiz, Luis De La Fuente & Barredo, 2010). This yeast has an advantage since it is 

capable of fermenting a wide range of sugars, including glucose, xylose and arabinose. The 

optimal growth conditions for X. dendrorhous are between pH 5–6 at 15–22 °C (Roy, Chatterjee 

and Sen, 2008). Figure 2-17 presents the macro- and microscopic images of X. dendrorhous. 

The colonies of X. dendrorhous can be observed as orange–pink pigments with a smooth 

spherical shape when cultured on yeast malt agar.  

 

Figure 2-17: Images of X. dendrorhous: scanning electron microscopy image (A) and colonies 

on yeast and malt agar (YM agar) (adapted from Lin et al., (2012) and JCM catalog; 

http://jcm.brc.riken.jp/en/)  
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The wild strain of X. dendrorhous DSMZ 5626 was first isolated from Fagus crenata 

tree in 1989. Generally, wild-type X. dendrorhous is known to produce low quantities of 

astaxanthin (200–500 µg/g dry yeast), whereas biotechnologically improved strains result in 

higher values of 6000–15000 µg/g dry yeast (Lin et al., 2012). 

2.7.2 Fermentation Substrates 

The production of carotenoids, astaxanthin and β-carotene using a diverse range of 

substrates has been extensively studied. As mentioned in section 2.6.1, X. dendrorhous supports 

astaxanthin production and can utilise a wide range of carbon sources including hexoses such 

as glucose but particularly pentoses, such as xylose and arabinose, as well as disaccharides such 

as cellobiose (Kusdiyantini et al., 1998; Montanti, Nghiem & Johnston, 2011; Parajo, 1998). 

Apart from refined sugars, glycerol has also been used as a carbon source for several yeast 

strains, mainly from the genus Rhodotorula and Xanthophyllomyces, for converting glycerol 

into many different types of valuable metabolites (Aksu and Eren, 2005; Kusdiyantini et al., 

1998). Table 2-2 summarises the previous literature research on refined sugars as the carbon 

source for microbial astaxanthin production. The cultivation of X. dendrorhous has been tested 

on a small-scale (e.g., flasks), benchtop-scale (e.g., 2-5 L fermenters and batch, fed-batch mode) 

and large-scale (>20 L bioreactors), and proved to support astaxanthin production in the cells.  

As previously mentioned, agri-food wastes and by-products, as well as lignocellulosic 

biomass, can be potentially hydrolysed and used as fermentation feedstocks for the production 

of a variety of chemicals, including carotenoids. Extensive research has been undertaken using 

various feedstocks, including dried distillers grains with soluble (DDGS), palm oil waste, 

molasses, cereal straws and woody residues to produce chemicals such as biofuels, bioplastics, 

platform chemicals (e.g., succinic acid) and carotenoids (Aksu & Eren, 2005; Cui et al., 2014; 

Petrik et al., 2014). However, a limited number of studies (Table 2-3) have focused on 
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astaxanthin production by X. dendrorhous using agricultural wastes such as date juice and 

lignocellulosic biomass like wood hydrolysates. It must be noted that for lignocellulosic 

biomass, the polysaccharides present in the matrix need to be hydrolysed first into simple 

sugars, such as glucose, xylose, galactose and arabinose (refer to section 2.4) which can support 

good cell growth of X. dendrorhous. The results from the studies presented in Table 2-3 

demonstrate that lignocellulosic hydrolysates are potentially good feedstocks for astaxanthin 

production. In particular, the astaxanthin yields which range from 0.38–0.99 mg/g of dry yeast 

depending on the yeast strain and cultivation method, are similar to those obtained using semi-

defined media (Table 2-2) (Jirasripongpun, Pewlong, Natsathmonthra & Suthiyaporn, 2007; 

Vázquez et al., 1998). The lignocellulosic hydrolysates may also contain some other sugars, 

such as galactose and sucrose, depending on the type of lignocellulosic material used. Overall, 

an important aim during the production process is to ensure that the pre-treatment and 

hydrolysis steps release the fermentable sugars at high yields so as to improve the efficiency of 

the overall process.  
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Table 2-2: Summary of research works investigating the production of astaxanthin by fermentation of X. dendrorhous in semi-defined media containing 

refined sugars as the carbon source 

Species Carbon source Process Yield  

(mg/g of dry weight) 

 

Reference 

X. dendrorhous AS 2.1557 Glucose 

Sucrose 

Xylose 

Glucose + soy bean oil 

Batch -flask 0.72 

0.69 

0.37 

0.84 

 

(Wu & Yu, 2013) 

P. rhodozyma UCD-FST- 67-385 Glucose + ethanol Batch -flask 0.52 (Gu, An & Johnson, 1997) 

 

P. rhodozyma UCD 67-210 Glucose 

Cellobiose 

L-arabinose 

Batch -flask 0.42 

0.65 

0.38 

 

(Lewis, 1979) 

X. dendrorhous ZJUT 46 Glucose Fed-batch – 200 L bioreactor 

 

0.49 (Hu et al., 2007) 

 

X. dendrorhous ZJUT 003 Glucose Batch -50L bioreactor 0.53 (Zheng et al., 2006) 

 

P. rhodozyma Glycerol Batch – 2L bioreactor 13.1 (Kusdiyantini et al., 1998) 
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Table 2-3: Summary of research works investigating the production of astaxanthin by fermentation of X. dendrorhous in low cost agri-food 

substrates. 

Species Carbon sources Cultivation mode Yield  

(mg/g of dry 

weight) 
 

Reference 

P. rhodozyma ATCC 24202 

 

Sugar cane juice Fed-batch-continuous 

feeding 

0.38 (Moriel et al., 2005) 

 

  Fed-batch- pulse feeding 0.30  

X. dendrorhous 25-2 Yucca fillifera, date juice Fed-batch  0.60 (Ramírez, Obledo, Arellano &  

Herrera, 2006) 

     

P. rhozozyma NRRL Y-17268 Eucalyptus wood 

hydrolysates 

Fed-batch 

(continuous feeding) 

0.78 (M Vázquez, Santos & Parajó, 

1998) 

 

  Fed-batch 

(intermittent feeding) 

 

0.99  

X. dendrorhous GM807 Molasses Batch -flasks 0.45 (Jirasripongpun et al., 2007) 
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2.7.3 Effects of Agitation and Aeration 

The oxygen transfer rate (KLa) is a major factor in determining the success of aerobic 

microbial growth, including astaxanthin production by X. dendrorhous. To achieve a good 

oxygen transfer, the agitation speed and the aeration rate play an important role. In shake flask 

fermentation, oxygen is supplied via adequate mixing and shaking with the culture volume also 

influencing the process. Usually, high shaking speed and low culture volume will enhance the 

agitation, thereby improves the oxygen transfer (Liu, Wu & Ho, 2006). Additionally, the 

agitation provides uniform mixing of the medium components within flasks/vessels, allowing 

increased dispersion of the cells and nutrients. It also facilitates the removal of gasses from the 

microenvironment of the cells (Rodmui, Kongkiattikajorn & Dandusitapun, 2008) which, in the 

case of X. dendrorhous, facilitates a high oxygen transfer from the microenvironment to the 

cells and removal of carbon dioxide from the vessel. 

In stirred tank bioreactors, oxygen is supplied by sparging the air into the vessel. The 

agitation is provided by impellers, to allow homogenous distribution of the oxygen throughout 

the culture medium as well as ensure good mass and heat transfer. However, agitation will 

create shear forces that might affect the morphology and variation in growth as the product 

forms, so studies in optimising the agitation feed applied are important in bioreactor 

fermentation (Rodmui, Kongkiattikajorn & Dandusitapun, 2008).  

Research has shown that high levels of oxygen supply are advantageous for the growth 

of X. dendrorhous and astaxanthin production. Wang & Yu (2009) demonstrated that at a high 

initial volumetric coefficient (KLa) of 148.5 h-1, the maximal yeast growth was observed (19.4 

g/L) and 18.1 mg/L of astaxanthin was produced. These outcomes were reduced to 4.5 g/L of 

yeast and 2.5 mg/L of astaxanthin when the KLa value was lowered to 21.5 h-1, suggesting that 

high oxygen is required to support both yeast growth and astaxanthin production. Even though  
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lack of oxygen supply is known to affect cell growth, cellular morphology and metabolite 

intake, to date, few works have examined the influence of oxygen supply on the growth of X. 

dendrorhous, highlighting this area as a topic of interest to be explored (Yamane et al., 1997). 

Since X. dendrorhous is an aerobic yeast, investigating oxygen requirement in each strain is 

one of the critical parameters that affects yeast growth and subsequently, astaxanthin 

production.  

2.7.4 Effects of Inducers 

Addition of inducers or molecules that can act to stimulate carotenoid synthesis can be 

applied to enhance carotenoid production in yeasts, including X. dendrorhous. Several such 

molecules have promoted the carotenogenesis in yeast, including acetic acid, ethanol (Gu et al., 

1997) and mevalonic acid (Calo et al., 1995). The mechanisms for each chemical to induce 

carotenogenesis in X. dendrorhous are different. For ethanol, the induction of carotenogenesis 

might be related to alteration of the microorganism’s respiratory metabolism and formation of 

reactive oxygen species, as well as the possibility to induce specific enzymes involved in the 

MVA pathway such as the P-450 systems and oxidases (Gu et al., 1997). Induction of 

carotenogenesis by acetate occurs due to inhibition of glycolate bypass, resulting in an increased 

level of acetyl-CoA which is the starting material for the MVA pathway. Similar mechanisms 

arise when mevalonate acid is added to the system, such as an increase in MVA concentration 

and subsequently, an increase in key intermediate precursors in the MVA pathway (Calo et al., 

1995). It was shown that the yield of astaxanthin increased up to 400% when 0.1% mevalonate 

acid was added to the media as compared with the control (Calo et al., 1995). However, the use 

of this precursor is not applicable to large-scale production due to the high cost.   

Liu & Wu (2006) tested several hydrocarbon liquids such as n-hexane, toluene, n-

decane and n-dodecane, aiming to improve the oxygen uptake rate by the yeast. The 
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experiments proved that adding 9% (v/v) n-hexadecane to the culture media significantly 

enhanced the production of astaxanthin by 58% and the oxygen uptake rate by 90%. The 

addition of oxygen vectors such as n-hexadecane, increases the oxygen levels present in the 

culture media and thereby increases the oxygen uptake rate (KLa) by the yeast. Thus, it 

represents an alternative to applying high aeration and high agitation rate, which might become 

limitations when scaling up.  

2.7.5 Effect of pH 

The pH of the culture media plays an important role in the production of products and 

growth of microorganisms. Typically, the pH influences the cell growth and product 

accumulation, but the effects vary according to differences in the strain, medium composition 

and fermentation condition. In X. dendrorhous, the yeast growth and astaxanthin pigmentation 

occur at pH in the range of 3.8–7.5, depending on the strain used (Johnson, Villa & Lewis, 

1980). Hu, Zheng, Wang & Shen (2006) identified that the optimum pH for yeast growth and 

for astaxanthin pigmentation differed in X. dendrorhous strain 46. More specifically, in shake 

flask fermentations, the optimal pH for yeast growth occurred at pH 6 (17.21 g/L) while 

astaxanthin production was highest at pH 5 (20.5 mg/L). The same authors further demonstrated 

that pH control is more significant in bioreactor studies, as it was shown that the specific growth 

rates increased from 0.033 h-1 at pH 4 to 0.049 h-1 at pH 6. This result is supported by Dias et 

al., (2015) who reported a similar observation in the yeast species Rhodosporidium toruloides 

NCYC 921, whereby the optimum pH for carotenoid production (pH 4) differed from that for 

biomass yield (pH 5).  

These findings led to an improved approach to controlling the pH, to suit the optimum 

condition for both yeast growth and product accumulation. The pH-shift strategy was applied 

by varying the pH control during the initial fermentation period and product formation stage 
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(Dias et al., 2015). Since carotenoids are produced during the late exponential growth phase of 

yeast kinetics, the pH was then shifted to the optimum pH required for carotenoids production. 

This pH-shift does not affect the yeast growth as they are already in the late exponential growth 

phase. This strategy was implemented during batch fermentation of X. dendrorhous, where 

astaxanthin production was maximised by controlling the fermentation at pH 6 for 80 h and 

then shifting it to pH 4. An increase of 24.1% astaxanthin production, i.e. to 2.7 mg/L, was 

achieved as compared to a constant pH control strategy, in the bioreactor (Hu et al., 2006). To 

date, there are not many reports available that focus on the pH control during fermentation of 

X. dendrorhous. Hence, further studies in this area are important to maximise astaxanthin 

production in yeast, as the control of the pH is an important target in achieving the maximum 

yield for the product of interest. 

2.8 Process Strategies for the Hydrolysis and Fermentation of Lignocellulosic Materials 

The bioconversion of lignocellulosic materials into value-added products can be 

accomplished using various approaches including simultaneous saccharification and 

fermentation (SSF), separate hydrolysis and fermentation (SHF), and pre-hydrolysis and 

simultaneous saccharification and fermentation (pSSF) (Taherzadeh & Karimi, 2008; Verardi, 

Bari, Ricca & Calabrò, 2012). These types of strategies could be potentially applied for the 

production of astaxanthin from X. dendrorhous and are discussed in more detail in the following 

sections. 

2.8.1 Separate Hydrolysis and Fermentation (SHF) 

SHF is one of the most common methods used for the bioconversion of lignocellulosic 

material. It involves two sequential steps in which the enzymatic hydrolysis of the 

lignocellulosic material (either with or without pre-treatment) is performed in a separate vessel 
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before the fermentation process. After that, the hydrolysates are separated from the biomass by 

centrifugation or filtration and then sterilised to be used as a fermentation substrate (Figure 

2-18). The main advantage of this process is that the enzymatic hydrolysis step is conducted at 

its optimum temperature which is typically between 45–55 °C for cellulase hydrolysis but this 

also depends on the enzyme used (Taherzadeh & Karimi, 2007). In contrast to the high 

temperature during enzymatic hydrolysis, X. dendrorhous has a lower optimum temperature for 

growth (15–22 °C) (Roy, Chatterjee and Sen, 2008). 

However, the main drawback of this process is that cellulase activity might be inhibited 

due to product inhibitions, i.e. by glucose and cellobiose (Taherzadeh & Karimi, 2008). This 

phenomenon was demonstrated by Xiao, Zhang, Gregg and Saddler (2004) who studied the 

degree of inhibitory effect of glucose on cellulase activity by supplying additional glucose at 

concentrations ranging from 0–100 g/L. A significant reduction of cellulase activity was noted 

even with 20% glucose supplementation. Another drawback is the high risk of microbial 

contamination during the hydrolysis step of the SHF process due to the long hydrolysis period 

and the moderately high temperature (45–55 °C). In practice, it is generally difficult to filter 

sterilise large quantities of enzymes and autoclaving is not an option due to enzyme deactivation 

at high temperatures (Taherzadeh & Karimi, 2007). 

Currently, there is a limited number of studies which involve the use of lignocellulosic 

materials as substrates for microbial astaxanthin production by the yeast X. dendrorhous. 

Parajó, Santos, Vázquez and Cruz, (1997) applied the SHF approach for X. dendrorhous 

growth, utilising Eucalyptus wood hydrolysates as the fermentation substrate for astaxanthin 

production. Moreover, peat hydrolysate was used as the fermentation substrate for microbial 

astaxanthin production in P. rhodozyma ATCC 24202 (Vázquez & Martin, 1998). In that study, 

instead of enzymatic hydrolysis, 1.5% H2SO4 was used to hydrolyse peat at a ratio of 20 g 
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peat/100 g acid solution, followed by autoclaving at 121 °C for 2 h. The peat hydrolysates 

produced were then filtered prior to the fermentation process (Vázquez & Martin, 1998). This 

approach is commonly applied for the production of other bioproducts from lignocellulosic 

material. For instance, in SHF experiments, rapeseed straw was converted into ethanol by 

Saccharomyces cerevisiae, generating up to 39.9 g/L of ethanol (López-Linares et al., 2014).  

 

Figure 2-18: Schematic diagram for separate hydrolysis and fermentation process (SHF). 

 

2.8.2 Simultaneous Saccharification and Fermentation (SSF) 

The SSF method is commonly applied in biomass utilisation. In this procedure, both the 

biomass hydrolysis and microbial fermentation occur simultaneously in the same bioreactor. 

The schematic diagram for this process is given in Figure 2-19. This process overcomes the 

cellulase inhibition seen in SHF because the enzymatic hydrolysis products (glucose and 

xylose) are consumed simultaneously by the microorganism during the process and are 
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therefore maintained at low concentrations in the bioreactor (Kádár, Szengyel & Réczey, 2004; 

Öhgren et al., 2007; Taherzadeh & Karimi, 2008). This strategy may also reduce the 

requirement for high enzyme doses and thus lower the production costs (Kádár, Szengyel & 

Réczey, 2004). SHF has been successfully used for bioethanol production from lignocellulosic 

biomasses such as corn stover (Chu et al., 2012), pine (von Sivers & Zacchi, 1995) and wheat 

straw (Petrik, Kádár & Márová, 2013). 

Nonetheless, there are several drawbacks to this strategy, including the different optima 

of temperature for the enzymatic hydrolysis of lignocellulosic biomass and microbial 

fermentation. Cellulase enzymes commonly have an optimum temperature between 45–55 °C, 

depending on the producer. In contrast, most carotenoid-producing microorganisms require a 

lower operating temperature, as exemplified by X. dendrorhous, which has an optimal operating 

temperature of 15–22 °C. Due to the substantial temperature difference between the two, it 

might not be a suitable strategy, in this instance. In some cases, this problem could be overcome 

by utilising a highly thermostable microorganism that can withstand the high temperatures 

during the hydrolysis step. In a study by Kádár et al. (2004), thermotolerant yeast strains were 

used for ethanol production using the SSF strategy. The temperature was set at 40 °C to achieve 

both the hydrolysis of the industrial waste as well as ethanol production in yeast and resulted 

in 55–60% cellulose conversion. 

Another problem associated with this strategy is the presence of biomass solids in the 

bioreactor which can complicate the downstream processing, especially when the target product 

is located intracellularly as in the case of astaxanthin produced from X. dendrorhous. For this 

reason, SHF is preferred to SSF for intracellularly-produced products. However, for 

extracellularly-secreted products, such as bioethanol, SSF is preferred.  
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Figure 2-19: Schematic diagram of simultaneous saccharification and fermentation process 

(SSF). 

 

2.8.3 Pre-Hydrolysis and Simultaneous Saccharification and Fermentation (pSSF) 

The pSSF method has been designed to overcome the problems encountered in the SSF 

strategy. This process involves two steps that are both carried out in the bioreactor vessel. Initial 

enzymatic hydrolysis is done at its optimum temperature, allowing for high enzyme activity 

and thus a high sugar conversion. The second stage involves reducing the temperature to the 

optimum values required for the microbial fermentation process to enable high biomass and 

product formation. By following this strategy, the viscosity of the mixture is reduced as the 

lignocellulosic biomass is hydrolysed during the first stage (López-Linares et al., 2014). 

Reducing the viscosity of the mixture allows for mixing and hence, improves the mass and heat 

transfer inside the vessel. The method is schematically illustrated in Figure 2-20. 
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Figure 2-20: Schematic diagram of pre-hydrolysis and simultaneous saccharification and 

fermentation (pSSF). 

 

The pSSF method is commonly employed for the bioconversion of lignocellulosic 

material into ethanol. As an example, Öhgren et al. (2007) applied pSSF to steam pre-treated 

corn stover, yielding 33.8 g/L ethanol, corresponding to 80.2% of the theoretical total glucose 

conversion. In this instance, the initial enzymatic hydrolysis involved using commercial 

enzymes from Novozymes before yeast inoculation (S. cerevisiae) (Öhgren et al., 2007). To our 

knowledge, this method has not been evaluated for the production of astaxanthin in X. 

dendrorhous using lignocellulosic materials. 

López-Linares et al. (2014) compared the three different approaches (SHF, SSF and 

pSSF) for the valorisation of rapeseed straw to ethanol production by fermentation using S. 

cerevisiae. They revealed that SHF is the best strategy to obtain high ethanol production (39.9 

g/L) compared to SSF and pSSF. As for microbial astaxanthin production using lignocellulosic 

materials, the strategy of using SHF has been applied with materials including wood 

hydrolysates and cassava residues (Parajó et al., 1997; Yang et al., 2011).  
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2.9 Downstream Processing: Extraction and Separation of Astaxanthin 

Downstream processing is an important part in the production of carotenoids from 

microbial cells. Carotenoids are mostly lipophilic compounds that are insoluble in aqueous 

media, except in certain cases where highly polar functional groups are present in their structure 

(Oberholster, 2012). Norbixin, a carotenoid with a dicarbonyl acid structure, is one of the 

soluble carotenoids present in nature (Perera & Yen, 2007). The instability of carotenoids to 

light, heat and high oxygen environments also means that additional steps are needed during 

the extraction process to ensure that the carotenoids do not degrade (Saini & Keum, 2018). In 

this context, the extraction process needs to be performed as quickly as possible, to ensure a 

high extraction yield, as well as the stability of the product. Given that carotenoids are produced 

intracellularly within microbial cells, the main extraction methods that could be potentially used 

for the extraction of astaxanthin from X. dendrorhous are solvent extraction, either on its own 

or in combination with a physical or biological treatment, such as bead milling or enzyme 

treatment, as well as supercritical fluid extraction (SFE). These methods are discussed in more 

detail in the subsequent sections, after a detailed discussion on the yeast cell wall composition 

and structure. 

2.9.1 Architecture of Yeast Cell Wall 

The knowledge of the yeast cell structure helps in determining the efficacy of the 

extraction strategy. Yeast cells exhibit a great diversity of cell size, shape, cell wall structure 

and composition and colour. These attributes are affected by the species, the fermentation 

conditions, including cultivation temperature, pH, and oxygen, as well as the composition of 

the growth medium (Liu, Ding, Sun, Boussetta & Vorobiev, 2016). Different species of yeast 

will potentially exhibit differences in cell wall structure and cell composition. However, in this 
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section, the yeast structure of Saccharomyces cerevisiae, a well-studied yeast species is used as 

a yeast model to represent the general composition of the yeast cell wall (Figure 2-21).   

The yeast cell wall consists mainly of mannoprotein and fibrous β-1,3-glucans, with 

some branches of β-1,6-glucans. These glucans are responsible for providing strength and 

elasticity to the cell wall. The β-1-3-glucan–chitin complex is the major component in the inner 

cell wall where it forms a fibrous scaffold. The mannoproteins present on the outer surface of 

the cell wall are densely packed, limiting the permeability of solutes (Salazar, 2008). β-1-6-

Glucan action is to link the inner and outer cell wall components. Mannans are a polymer of 

mannose residues with α-(1-6) linkages and present short oligosaccharide side-chains. All these 

compounds are covalently linked to form a macromolecular complex. Chitin is a polymer of N-

acetylglucosamine present in small quantities (2–4% of dry weight) in the cell wall and is 

mainly located in bud scars. Proteins are present in the inner part of the cell wall and provide 

the cell shape. Other components present in variable quantities are lipids and inorganic 

phosphate. The plasma membrane (~7 nm thickness) consists of a thin semi-permeable lipid 

bilayer, formed mainly by proteins and lipids that protect the integrity of the cell and separate 

the cytoplasm from the extracellular environment. The periplasmic space in yeast is a thin 

region between the plasma membrane and the cell wall that consists of large molecules of 

mannoproteins (Liu et al., 2016). Astaxanthin can be found in the cytoplasmic region of the 

yeast cell wall (Johnson & Schroeder, 1996). The complex structure of the yeast cell wall 

hinders the implementation of simple processes for the extraction of intracellular pigments from 

yeast cells. The rigid cell wall of yeast is remarkably thick (100–200 nm) and represents about 

20–25% of the total dry weight of yeast (Liu et al., 2016). Overall, understanding the 

complexity of the yeast cell wall is important for selecting strategies for astaxanthin extraction 

from yeast cells (Duarte et al., 2017). 
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Since the complexity of the yeast cell wall limits the extraction of astaxanthin extraction, 

an initial treatment step is required to break the cell wall structure and render the intracellular 

components, such as astaxanthin, available for extraction. The key methods (i.e., physical, 

chemical and enzymatic) are usually carried out in combination, as described below for the 

extraction of astaxanthin from yeast cells.  

 

  

Figure 2-21: Structure of yeast cell wall [adapted from Speers & Forbes (2015) and Talavera et 

al. (2013)]. 
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2.9.2 Solvent Extraction  

Organic solvent extraction is commonly used for recovering carotenoids from microbes 

and plant materials. The use of organic solvents for carotenoid extraction from microbial cells, 

such as yeast cells, is a slow process that requires large amounts of chemical solvents. 

Depending on the solvent used, it can potentially be harsh and relatively toxic, as well as 

contribute significantly to the overall cost of the extraction process (Saini & Keum, 2018). 

Moreover, after the recovery of the carotenoids from either microbial or plant sources, an 

additional liquid–liquid extraction step is necessary to remove the organic solvent from the 

carotenoid-rich extract. The selection of the organic solvent used for the extraction of 

carotenoids depends on the characteristics of the carotenoids source (e.g., yeast cells, plants), 

as well as the properties of the target carotenoid, particularly its solubility. Normally, acetone 

is commonly used, due to its polarity and the ability to maintain pigment stability. Other suitable 

solvents are methanol, ethanol, diethyl ether, hexane, either individually or in combination 

(Monks et al., 2012; Saini & Keum, 2018). 

The mechanism of organic solvent extraction of non-polar pigments, such as 

astaxanthin, from microbial cells is suggested to occur in 5 steps, which are depicted in Figure 

2-22. When cells are exposed to a non-polar organic solvent, the solvent penetrates through the 

cell wall into the cytoplasm (step 1) and interacts with the neutral lipids located in the cytoplasm 

using van der Waals forces (step 2) to form an organic solvent–pigments complex (step 3). 

Driven by a concentration gradient, this complex then diffuses out of the cell wall (step 4) and 

through the static organic solvent film surrounding the cells (step 5) into the bulk organic 

solvent. A static organic solvent film is formed around the yeast wall, due to the interaction 

between the organic solvent and cell wall that remains intact even under solvent flow and 
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agitation. As a result, the pigments are extracted out of the cells and remain dissolved in the 

non-polar organic solvent (Halim, Danquah & Webley, 2012).  

As mentioned in section 2.8.1, the extraction of astaxanthin from yeast cells, such as X. 

dendrorhous, is challenging due to the presence of a thick cell wall that renders the cell resistant 

to penetration by many solvents (Liu et al., 2016). For this reason, additional steps, involving 

either mechanical or chemical pre-treatments are required to degrade the cell wall prior to the 

solvent extraction process. Sedmak and Weerasinghe (1990) proposed the use of pre-heated 

dimethyl sulfoxide (DMSO) to rupture the cell wall of P. rhodozyma before solvent extraction 

using hexane:ethyl acetate (1:1) mixtures. Moreover, Valduga et al. (2014) used liquid nitrogen 

to freeze the yeast cell before maceration with a pestle and mortar and then added DMSO to 

break the cell wall of Sporidiobolus pararoseus for carotenoid extraction, which gave 

promising results.  

 

Figure 2-22: Schematic diagram depicting the steps taking place for the extraction of pigments 

from yeast cells using organic solvents (adapted from Halim et al., 2012). 
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2.9.3 Bead Milling in Combination With Solvent Extraction 

The use of mechanical abrasion to break the yeast cells, coupled with solvent extraction 

has been investigated on a small-scale using glass beads (size 0.25 mm) in acetone, by vigorous 

shaking of P. rhodozyma cell suspensions (Fonseca et al., 2013; Johnson, Villa & Lewis, 1980). 

Glass beads extraction acts by disrupting the beads collision zones by compaction or shear force 

with energy transfer from the beads to the cells. Utilising small beads enhanced the disruption 

efficiency of yeast, due to increasing the bead–bead collisions, resulting in an increased cell 

disruption rate (Liu et al., 2016). It is considered as a feasible method for scaling up purposes 

and usually gives high extraction yield for carotenoids, at least in small-scale operations, i.e., 

45–48% astaxanthin extractability in P. rhodozyma NRRL Y-17268 (Michelon et al., 2012). It 

needs to be noted that such a process is non-selective, as all polar/non-polar compounds present 

in both the cell wall and cytoplasm are extracted due to almost complete cell disruption, 

depending on the solvent used. Therefore, an effective purification process needs to be designed 

for the subsequent purification of the target carotenoid from the mixture.  

2.9.4 Enzyme Hydrolysis in Combination With Solvent Extraction 

The enzyme-assisted approach for degrading the yeast cell wall for carotenoid 

extraction is not yet well-reported in the literature. On the other hand, this approach is 

commonly used for the production of yeast extract and lipid extraction from yeast species, like 

S. cerevisiae (Milic, Rakin and Siler-Marinkovic, 2007) and R. toruloides (Jin et al., 2012). In 

this approach, the synergistic effects of different enzymes, including β-1,3-glucanase, 

mannanase, protease, β-1,6-glucanase and chitinase, is exploited to achieve yeast cell wall lysis 

(Salazar, 2008). These enzymes attack the mannoprotein complex and the glucan backbones of 

the yeast cell wall, without destroying the integrity of the cell wall (Liu et al., 2016). The 

mechanism of yeast cell lysis can occur in three steps, starting with the binding of the lytic 
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protease to the outer mannoprotein of the cell wall that results in the opening of the protein 

structure. In this step, the cell wall proteins and mannans are released, and glucan surface is 

exposed (step 1). Next, glucanase attacks the inner wall and solubilises the glucans (step 2). 

Finally, under the osmotic pressure difference, the cell bursts and releases its periplasmic 

contents into the media (step 3) (Liu et al., 2016; Prokopakis & Liu, 1997; Salazar, 2008). 

Organic solvents are used for the extraction of carotenoids, in step 3, as the opening up of the 

structure of the yeast cell wall facilitates the penetration of solvents into the cells (Michelon et 

al., 2012). 

A few enzyme formulations are commercially available for yeast cell lysis. Most of 

these enzymes are used to retrieve yeast extract (usually containing mixtures of intracellular 

components, including amino acids, peptides and carbohydrates, which are commonly used as 

a component of fermentation media). Commercial enzymes include Zymolase, Lysozyme and 

Glucanex. Michelon et al. (2012) tested various strategies for cell lysis before extraction of 

carotenoids from P. rhodozyma NRRL Y-17268. They reported that by utilising a commercial 

enzyme formulation (Glucanex) for cell lysis, followed by solvent extraction with acetone, 

~101% carotenoid extractability was achieved compared to a control, involving acetone 

extraction without the enzymatic cell lysis step. Furthermore, the combination of glass beads 

treatment with Glucanex treatment increased the extractability to 122 %, indicating that this 

particular approach was better than the standard chemical extraction method. Although the 

enzymatic lysis approach seems to provide high yields of carotenoids and is a more selective 

approach than mechanical disruption of the yeast cells, the high cost of the lytic enzymes 

currently limits its large-scale application (Liu et al., 2016).    
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2.9.5 Supercritical Fluid Extraction (SFE) 

SFE is an emerging technology that has been applied in the food industry as an 

alternative to the traditional solvent extraction of natural products from a variety of materials. 

A fluid is termed as ‘supercritical’ when the temperature and pressure of the fluid are above 

their critical values (Halim et al., 2011). At this point, the fluid has distinctive properties as 

compared to liquid and gas, including high compressibility, high diffusivity, low viscosity and 

low surface tension. Due to these properties, supercritical fluid has greater ability to diffuse into 

matrices than the conventional fluid, improving the extraction yield of the desired products 

from their sources (Lim et al., 2002). The pressure and temperature phase diagram illustrating 

the supercritical fluid region of carbon dioxide (CO2) is presented in Figure 2-23.  

 

 

Figure 2-23: Pressure and temperature phase diagram for CO2, showing the supercritical region 

(adapted from Halim et al, (2012)). 
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Several fluids have been used as supercritical fluids, including CO2, ethane, ethene, 

methanol, n-butene and water (da Silva, Rocha-Santos & Duarte, 2016). However, SFE with 

CO2 as the solvent offers considerable advantages over other fluids, as it is a non-toxic gas that 

is readily available, low-cost and considered as GRAS (Sharif et al., 2014). Besides, CO2 has a 

low critical point, low flammability and low reactivity, making it suitable for the extraction of 

sensitive compounds, like carotenoids (Careri et al., 2001; Halim, Danquah & Webley, 2012). 

However, due to the non-polar nature of CO2, this method is not suitable for the extraction of 

polar compounds, due to its poor solvating power of the fluid and insufficient interaction 

between SFE-CO2 and the matrix (Careri et al., 2001). Therefore, the use of co-solvents as 

modifiers, such as methanol, ethanol or toluene, may help in extracting polar compounds, by 

enhancing the CO2 affinity towards polar compounds (Oberholster, 2012). A major drawback 

of this method is that the cost of capital investment required is considerably high compared to 

other methods (e.g., solvent extraction), which hinders the scaling up of this process, despite 

the low price of CO2 (Yen et al., 2015). 

The extraction of carotenoids from yeast cells with high yields using SFE-CO2, relies 

on the optimisation of various factors, including pressure, temperature, modifier addition, as 

well as the CO2 flow rate. SFE-CO2 has been shown to extract a wide range of natural 

compounds, such as essential oils, lipids and pigments, from various sources, including plants, 

yeast and organic waste (Halim et al., 2011; Mushtaq et al., 2015; Shilpi, Shivhare, and Basu, 

2013; Sovová et al., 2010). Lim et al. (2002) used SFE-CO2 to extract astaxanthin from P. 

rhodozyma, initially disrupted by bead milling and spray drying. Under optimised conditions 

(50 g CO2, 40 °C and 500 bar), about 90% astaxanthin was extracted from the yeast cells. 

Moreover, ethanol (15% v/v) was found to enhance astaxanthin extraction by 24% at 60 °C and 

500 bar (Lim et al., 2002).  
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Careri et al. (2001) implemented an experimental design procedure to investigate the 

extraction of carotenoids (β-carotene, zeaxanthin and β-cryptoxanthin) from Spirulina 

platensis. The experimental variables assessed were temperature, pressure, extraction time and 

ethanol as the modifier. The study revealed the individual carotenoids had different optimal 

conditions for extraction, suggesting that SFE-CO2 has different selectivity for different target 

product. It was also reported that the conventional solvent extraction process yielded more β-

carotene (120 mg/100 g) as compared to SFE-CO2 (118 mg/100 g) (Careri et al., 2001). 

Although published works on astaxanthin extraction from X. dendrorhous yeast are scarce, 

SFE-CO2 could be a promising method for such a purpose.   
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3 Investigation of Different Carbon Sources and Inducers on Microbial 

Astaxanthin Production by Xanthophyllmyces dendrorhous DSMZ 5626 

Abstract 

Microbial astaxanthin production by the yeast, Xanthophyllomyces dendrorhous, has 

tremendous potential for commercialisation and fulfilment of the demand for natural 

astaxanthin. In this study, the influence of different carbon sources (glucose, xylose, galactose, 

arabinose, cellobiose and fructose) and inducers (citric acid, hydrogen peroxide and ethanol) 

on Xanthophyllomyces dendrorhous DSMZ 5626 growth and astaxanthin production using 

semi-defined media in flask fermentations was investigated. The utilisation of glucose (10-70 

g/l) as a carbon source was found capable of supporting yeast growth (6.8 – 12 g/l). However, 

the suppression of astaxanthin yield on biomass (Yp/x) was clearly observed as the values were 

reduced from 255 µg/g when 30 g/l of glucose was used to 156 µg/g or lower when high glucose 

concentrations were applied. X. dendrorhous DSMZ 5626 was found to undergo Crabtree 

effects when high initial glucose concentration was present in the media as ethanol was 

produced during fermentation in these cases. However, it was observed that low concentrations 

of ethanol were consumed by the yeast as a carbon source when available sugars were nearly 

exhausted in the media. Glycerol was found to be able to support yeast growth and astaxanthin 

production in X. dendrorhous. The highest astaxanthin yield on biomass was observed when 10 

g/l of glycerol was used (402 µg/g). Other refined sugars including fructose, xylose, cellobiose, 

galactose and arabinose (30 g/l) highly supported yeast growth with values ranging from 10.7 

g/l to 13.3 g/l. High astaxanthin production (P) was observed in media containing cellobiose 

(4.24 mg/l), xylose (3.76 mg/l) and fructose (3.5 mg/l) with no significant different in yield 

(Yp/x) values (294 - 319 µg/g). The addition of chemicals (ethanol, citrate and hydrogen 

peroxide) induced astaxanthin pigmentation in X. dendrorhous at optimised doses and feeding 

times. Overall, this study provided preliminary data to understand the biochemical behaviour 
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of the yeast, Xanthophyllomyces dendrorhous in semi-defined media, targeting astaxanthin as 

the primary metabolic product. 

Keywords: Xanthophyllomyces dendrorhous, carbon source, inducers, astaxanthin, flask 

fermentation  
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3.1 Introduction 

Astaxanthin (3,3’-dihydroxy-β, β-carotene – 4,4’-dione) is a keto carotenoid pigment 

that falls into the xanthophylls group and is one of the most important carotenoids in humans 

and animals along with β-carotene, lutein, zeaxanthin and torulene. It has been widely applied 

as a feed additive in aquaculture as it contributes to the attractive colouration in salmon, shrimps 

and crustaceans as well as to maintain their growth and survival. However, aquatic animals lack 

the biochemical pathway that enables the synthesis of carotenoids. Therefore, they need to 

obtain astaxanthin through what they consume, by means of natural consumption of algae or 

through the inclusion of carotenoids in the feed formulation.  

Currently, the commercial demand for astaxanthin is fulfilled by its synthetic production 

(petroleum derived) via the Wittig reaction and Grignard condensation strategies (EFSA 

FEEDAP Panel, 2014). However, natural astaxanthin has been reported to have higher stability 

due to its esterified nature that prevents oxidation and contributes to the prolonged shelf life of 

astaxanthin (Bhatt, Ahmad, & Panda, 2012). Natural sources of astaxanthin constitute marine 

microalgae, such as Haematococcus pluvialis and yeasts, such as Xanthophyllomyces 

dendrorhous. These natural astaxanthin producers face a competitive market price compared to 

chemically derived astaxanthin due to the complexity of the production process that includes 

long cultivation time which directly relates to the high cost and low productivity of astaxanthin, 

particularly in wild strains (Gu et al., 1997). 

Xanthophyllomyces dendrorhous, one of the best candidates available, could potentially 

fulfil the demand for natural astaxanthin production. Astaxanthin is the major pigment produced 

intracellularly in X. dendrorhous, accounting for more than 90% of the total carotenoids. In 

terms of yeast cultivation, it does not require light for growth and pigmentation. In addition, it 

is able to utilise a wide range of carbon sources including monosaccharides, disaccharides and 
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alcohols (Schmidt et al., 2011). Besides that, the shorter growth cycle (5 days), as compared to 

microalgae (2 weeks), provides additional advantages for the yeast (Yamane et al., 1997). 

Astaxanthin biosynthesis in X. dendrorhous is carried out via the mevalonate pathway as a 

secondary metabolite and its production is affected by other primary and secondary metabolites 

including ethanol, proteins and fatty acids, which may significantly impact cell growth as well 

as astaxanthin production in the yeast. Several yeast species, including X. dendrorhous, have 

been reported to undergo alcoholic fermentation; a phenomenon wherein yeast produces 

ethanol even in aerobic conditions (Crabtree effect) (Yamane et al., 1997). This phenomenon 

could affect both biomass and astaxanthin production and can occur when the concentration of 

hexoses during fermentation is above a threshold value, which is usually strain-dependent.  

There are several obstacles that hinder the commercialisation of microbial astaxanthin 

by X. dendrorhous such as high production costs and low astaxanthin productivity in wild 

strains (Gu et al., 1997). Several attempts have been made to overcome these limitations, 

including the addition of inducers to stimulate pigmentation such as fungal elicitors (Wang et 

al., 2006), n-hexadecane (Liu & Wu, 2006), α-ketoglutarate, mevalonic acid (Calo et al., 1995) 

and acetic acid. Additionally, attempts have been made to reduce the production costs of 

astaxanthin via media optimisation and cultivation in low-cost substrates such as agricultural 

wastes and by-products as a way to avoid the utilisation of refined sugars (Cruz & Parajo, 1998).  

The overall aim of this thesis was to develop a culture medium derived from 

lignocellulosic material, focusing on rapeseed meal as the starting material with a view to render 

the astaxanthin production economically more favourable. However, the produced rapeseed 

meal hydrolysates are composed of several sugars (glucose, galactose, xylose and arabinose). 

Hence, a detailed investigation on astaxanthin production by Xanthophyllomyces dendrorhous 

DSMZ 5626 using semi-defined media in shake flasks through the evaluation of various sugars 
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types and concentrations is key to understand the biochemical behaviour of the strain. In the 

end, the pre-treatment process of lignocellulosic material (rapeseed meal) can be tailored 

accordingly to optimise astaxanthin production in X. dendrorhous according to the results 

generated in this study. 

3.2 Materials and Methods 

3.2.1 Microorganism and Culture Conditions 

The yeast strain Xanthophyllomyces dendrorhous DSMZ 5626 that was used in this study 

was purchased from the Leibniz Institute DSMZ. The strain was proliferated and maintained in 

a Yeast and Mold (YM) media containing (in g/l): yeast extract, (3.0); malt extract, (3.0); 

peptone from soybean, (5.0); glucose, (10.0) and agar (15). The stock of yeast cultures was 

stored at -80 °C until further use.  

For the preparation of the inoculum, a loopful of yeast stock cultures were inoculated on 

the commercial YM agar (Sigma Aldrich, UK) and incubated at 20 °C for 5 days. After that, a 

single colony of yeast X. dendrorhous was transferred into 30 ml of YM medium containing a 

similar composition to the one mentioned above for cell proliferation and was incubated for 3 

days prior to inoculation in semi-defined media to a final optical density (OD) of 0.1, measured 

using a Biomate 3 UV/VIS Spectrophotomer (Thermo Spectronic, NY). These yeast cultures 

acted as inoculum for all experiments that were conducted in this chapter.  

3.2.2 Fermentation With Semi-Defined Media 

The cultivation of X. dendrorhous was performed in 250ml shake flasks filled with 50 ml 

of semi-defined media. The composition of semi-defined media was as follows (in g/l): yeast 
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extract (2.0), malt extract (2.0), KH2PO4 (7.0), (NH4)2SO4 (1.0), MgSO4.7H2O (1.5), 

FeCl3.6H20 (0.15), ZnSO4.7H2O (0.02), MnSO4.H2O (0.06), CaCl2.2H2O (0.15). The types and 

concentration of carbon sources used in this study are as follows; glucose (10, 20, 30, 40, 60 70 

g/l), xylose (30 g/l), galactose (30 g/l), arabinose (30 g/l) and glycerol (10, 30, 60, 75 g/l). 

Shake flasks fermentation were performed on an orbital shaker (GFL 3015, SciQuip, 

UK) controlled at 250 rpm and temperature at 20 °C for 5 days. In the case of yeast 

fermentation, samples of 2 mL were withdrawn at several times in intervals of up to 5 days of 

the fermentation period.  

3.2.3 Addition of Inducers 

Three chemicals with two different concentrations were tested for their ability to induce 

microbial pigmentation in X. dendrorhous in shake flasks. Ethanol (0.5 and 1.5 g/l), citric acid 

(10 and 30 mM) and hydrogen peroxide (10 and 20 mM) were added to the shake flask cultures 

at two different time points (0 and 24 h), respectively, corresponding to the initial growth phase 

and early exponential growth phase. The fermentation conditions were similar to those 

described in section 3.2.2. 

3.2.4 Analytical Methods 

2 ml of the samples were withdrawn from the shake flasks at regular intervals. From 

there, an aliquot of 1 ml of sample was added into a pre-dried tube (24 h in a drying oven at 

100°C) and centrifuged at 10845 x g for 10 min. The supernatant was collected for sugar 

composition and ethanol analysis. The pellet was washed twice using distilled water. The tubes 

were then kept frozen at -20°C prior to the freeze-drying process for 2 days (Virtis, UK). When 

dried, the tubes were then reweighed for its dried weight. The dry weight of yeast biomass was 
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calculated as the difference between the weight of the tubes before and after use. The freeze-

drying method that was used in this study aimed to preserve the astaxanthin against degradation 

under high temperatures with normal drying techniques. 

Sugars (glucose, xylose, galactose and arabinose), glycerol and ethanol were analysed 

by high-performance liquid chromatography (HPLC) using an Agilent Infinity 1260 system 

(Agilent Technologies, USA) with Aminex HPX-87H column (Bio-rad, CA) coupled to a 

differential refractometer and a DAD detector. Operating conditions were as follows: Sample 

volume: 20µl; Mobile phase: 0.5 mM H2SO4; Flow rate: 0.6 ml/min; Column temperature: 

65°C. The quantification of each chromatogram was achieved on the basis of the standard curve, 

which was conducted using standard solutions. 

Astaxanthin extraction was carried out using the following method for total carotenoids 

extraction by Sedmak et al (1990). 1 mL of dimethyl sulfoxide (DMSO) was briefly preheated 

at 55 °C and added to the freeze-dried biomass. This was followed by vortexing for 30-40 sec. 

Subsequently, 0.2 mL of 20 % sodium chloride (NaCl) and 1.0 mL of acetone were added to 

the mixture to extract the intracellular carotenoids. The aqueous and organic phases were 

separated by centrifugation at 5423 x g for 5 min. The extraction process was repeated until a 

colourless biomass was obtained. The organic phases were pooled together, and their 

absorbance was measured at 480 nm in a Biomate 3 UV/VIS Spectrophotomer (Thermo 

Spectronic, NY). The equation for total carotenoids concentration is given in the equation 

below: 

 𝐶𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝜇𝑔 𝑔⁄ ) =  
𝐴 × 𝑉 (𝑚𝐿) ×  104

𝐴1𝑐𝑚
1%  × 𝑃 (𝑔)

 Eq 3-1 
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Where A is the absorbance at 480 nm, V is the volume, 𝐴1𝑐𝑚
1%  is the coefficient (2150) 

and P is the weight of biomass. 

3.3 Results and Discussion 

3.3.1 Glucose-Based Semi-Synthetic Media 

Perious studies demonstrated that several yeast species including X. dendrorhous are 

prone to alcoholic fermentation even in aerobic conditions in the presence of high initial glucose 

ceoncentrations in the media; this is often called the Crabtree effects (Reynders, Rawlings, & 

Harrision, 1997; Xiao et al., 2015; Yamane et al., 1997). Therefore, this preliminary 

investigation was performed to determine the threshold of glucose concentration upon which 

alcoholic fermentation (Crabtree effect) could be initiated by the particular yeast strain. The 

proliferation of X. dendrorhous in batch cultures using semi synthetic media was carried out in 

order to investigate the effect of initial glucose concentrations on yeast growth and astaxanthin 

production. 

Figure 3-1 and Figure 3-2 depict the growth profile of X. dendrorhous cultivated at 

different glucose concentration ranging from 10 to 70 g/l of glucose, in semi-defined media. 

Table 3-1 summarizes the main fermentation data for the above experiments. Results showed 

that an increase in initial glucose concentration from 10 to 40 g/l of glucose, enhanced cell 

biomass production from 7 g/l to 12.6 g/l, respectively. Furthermore, an increase in the initial 

glucose concentration resulted in slight cell growth suppression, indicating that it may impose 

suppression effects on yeast growth. This finding was also supported by Yamane et al. (1997) 

who reported that in batch fermentations with glucose concentration from 10 – 30 g/l, X. 

dendrorhous exhibited increasing cell biomass production under aerobic conditions. However, 

when the glucose concentration was increased to 70 g/l, biomass concentration was suppressed. 
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There is a possibility that this occurs due to the Crabtree effect that was initiated when 

high initial glucose concentrations were present. Under these metabolic conditions X. 

dendrorhous tends to change its metabolism towards alcoholic fermentation and produce 

ethanol even under adequate oxygen supply. Several by-products apart from ethanol are also 

produced including acetic acid and carbon dioxide. It was observed that about 1.5 g/l of ethanol 

were present at the 24th hour of fermentation which was later consumed once glucose was 

depleted from the media. The Crabtree effect was clearly observed in media containing > 40 g/l 

of initial glucose concentration. About 8 g/l of ethanol were detected and later consumed by 

yeast. However, not all of the ethanol was consumed leaving an excess of ethanol at the end of 

fermentation. Likewise, 13 g/l of ethanol were detected at 120 h of fermentation when 70 g/l of 

glucose was used. Significant implications of the Crabtree effect were observed in media 

containing 60 and 70 g/l of glucose, where biomass yield on glucose (Yx/s) was significantly 

reduced from 0.72 g/g in 10 g/l of glucose to < 0.19 g/g when 60 g/l of glucose were used. 

However, in media with less than 30 g/l of glucose, all the produced ethanol was consumed by 

the cells contributing towards both biomass and astaxanthin production in X. dendrorhous. 

According to Liu & Wu (2008), ethanol was found to increase yeast growth but resulted in 

adverse effects on astaxanthin biosynthesis in X. dendrorhous ENM5.  

 Based on these results, it is evident that for this particular strain, the threshold of the 

initial glucose concentration to prevent the Crabtree effect is lower than 10 g/l. This is in 

agreement with Yamane et al., (1997) who reported that the Crabtree effect can occur in X. 

dendrorhous strains when cultivated in synthetic media containing 10 g/l of glucose.             

As depicted in Table 3-1, astaxanthin production (P) and astaxanthin yield on biomass 

(Yp/x) were obviously influenced by the initial glucose concentration. Both the P and Yp/x values 

decreased when cells were cultivated in media containing > 40 g/l of glucose. This further 
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suggested that the Crabtree effect did not only affect biomass production but astaxanthin 

accumulation as well. Similarly, biomass yield on glucose consumed (Yp/s) showed a reduction 

when glucose concentrations were increased. As for Yp/x, the highest values were observed to 

be at 30 g/l of glucose with 255 µg/g. However, at 70 g/l of glucose, 12 g/l of biomass were 

produced but the intracellular astaxanthin production was low (Yp/x = 105 µg/g).                                           

In the growth experiments with different glucose concentrations, even though X. 

dendrorhous produced ethanol when cultivated in glucose-based media, it is interesting to note 

that astaxanthin continued to accumulate with time. It was observed that astaxanthin production 

in X. dendrorhous is a partially growth associated product, with its production being initiated 

at the exponential growth phase and continuing to accumulate during stationary phase. One 

possible explanation is that once glucose was depleted from the media (after 40 h), the yeast 

started to consume ethanol as a carbon source, indicating the presence of active alcohol 

dehydrogenase, which is responsible for ethanol conversion into acetate. In the presence of 

energy (ATP), acetate can be converted into acetyl CoA, which is the major precursor for both 

the tricarboxylic acid (TCA) cycle and the mevalonate pathway, which is responsible for 

carotenoids production (Thomson et al., 2005). However, a high concentration of ethanol has 

reverse effects on biomass production as it can suppress yeast growth as well as subsequent 

astaxanthin production. 
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Figure 3-1: X. dendrorhous growth profile, sugar consumption, ethanol and astaxanthin 

production in during growth in shake flasks in semi-defined media containing different 

concentrations of glucose. (A): 10 g/l, (B): 20 g/l, (C): 30 g/l . Fermentation condition as follows; 

temperature (20°C), agitation (200rpm), initial pH (pH 6). Symbols represents ●- glucose (g/l), 

□- ethanol (g/l), ∆ – dry cell weight (g/l), ▲- astaxanthin (µg/ml). 
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Figure 3-2: X. dendrorhous growth profile, sugar consumption, ethanol and astaxanthin 

production in during growth in shake flasks in semi-defined media containing different 

concentrations of glucose. (A): 40 g/l, (B): 60 g/l, (C): 70 g/l . Fermentation condition as follows; 

temperature (20°C), agitation (200rpm), initial pH (pH 6). Symbols represents ●- glucose (g/l), 

□- ethanol (g/l), ∆ – dry cell weight (g/l), ▲- astaxanthin (µg/ml). 
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Table 3-1: Experimental results of flask fermentation with X. dendrorhous cultivated in semi-defined media using different concentrations of glucose controlled 

at 20 °C under shaking (250 rpm).  

Glucose (g/l) Time  

(h) 

Cell biomass (g/l) P  

(mg/l) 

Y p/x (µg/g) Y p/s  

(µg/g) 

Y x/s  

(g/g) 

10 117 6.78 (1.2) 1.52 (0.2) 247 (39) 0.15 (0.02) 0.72 (0.00) 

20 117 8.00 (0.36) 1.99 (0.02) 249 (14) 0.09 (0.01) 0.40 (0.00) 

30 117 9.13 (0.67) 2.32 (0.03) 255 (15) 0.08 (0.01) 0.28 (0.01) 

40 120 12.55 (0.2) 2.30 (0.01) 156 (4) 0.06 (0.00) 0.30 (0.01) 

60 120 11.1 (0.8) 1.73 (0.75) 153 (55) 0.02 (0.01) 0.19 (0.02) 

70 120 11.95 (0.5) 1.25 (0.12) 105 (6) 0.03 (0.01) 0.16 (0.02) 

* Values in bracket represent standard deviation.  

P (mg/l) = product concentration  

Yp/x (µg/g) = product conversion yield on biomass concentration 

Yp/s (ug/g) = product conversion yield on substrate concentration 

Yx/s (g/g) = biomass production on substrate consumption 
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Table 3-2 summarises the main fermentation parameters for the above experiments. 

Results showed that X. dendrorhous was able to grow in media containing glycerol and was 

able to inhibit the occurrence of the Crabtree effect. Results show that increasing glycerol 

concentration from 10 g/l to 75 g/l resulted in an increase in the amounts of biomass from 4 g/l 

to 17 g/l, respectively. When compared with glucose as a carbon source, higher biomass 

production was observed in glucose-based media (6 g/l) as compared to glycerol at similar 

concentrations (10 g/l).  

At the same time, the astaxanthin production (P) followed a similar trend with that of 

biomass production. However, as for astaxanthin yield per biomass (Yp/x), a negative correlation 

was observed as glycerol concentration increased. Results also show that astaxanthin yield per 

substrate (Yp/s) was reduced as higher glycerol concentrations were applied. Kusdiyantini et al. 

(1998) reported that increasing the glycerol concentration from 9.4 to 38 g/l resulted in 

increased cellular astaxanthin yield (Yp/x) from 1.4 mg/l to 1.8 mg/l. Furthermore, they reported 

that astaxanthin production (P) increased with increasing the initial glycerol concentrations, a 

fact which suggested that it was directly correlated with a constant increase in biomass 

production. 

According to Klein et al. (2017), there are two possible pathways for glycerol 

catabolism in yeasts. One of them is phosporylative glycerol catabolic pathway, also known as 

the catabolic G3P pathway. Via this pathway, two main enzymes are involved; a glycerol kinase 

and FAD-dependent glycerol 3-phosphate dehydrogenase. This catabolic pathway is more 

likely to occur in yeast. Another possible pathway is the catabolic DHA pathway which 
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involves the oxidation of glycerol to dihydroxyacetone (DHA) via NAD+-dependent glycerol 

dehydrogenase.  

Silva et al. (2012) investigated the application of glycerol as an additional carbon source 

for astaxanthin production in X. dendrorhous NRRL Y-17268 in flask fermentation. They 

reported that a maximum of 8.9 g/l of biomass with 20 mg/l of astaxanthin when 40 g/l of pure 

glycerol was used as a carbon source. When approached more broadly, the utilisation of 

glycerol as a carbon source for yeast growth has been reported for metabolic products such as 

lipids and carotenoids by Rhodotorula glutinis (Liang et al. (2010), as well as in the case of 

strains of Yarrowia lipolytica (Papanikolaou & Aggelis, 2002) and Cryptococcus curvatus 

(Saenge, Cheirsilp, Suksaroge, & Bourtoom, 2011). The ability of X. dendrorhous to assimilate 

glycerol as the main carbon source shows a high potential for further studies.  
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Figure 3-3: X. dendrorhous growth profile, glycerol consumption and astaxanthin production in flask fermentation in synthetic media consist of different 

concentrations of glycerol. A: 10 g/l, B: 30 g/l, C: 60 g/l, D: 70 g/l. Symbols represents: ×- glycerol (g/l); ∆- dry cell weight (g/l); ▲- astaxanthin (mg/l). 
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Table 3-2: Experimental results of flask fermentation with X. dendrorhous cultivated in synthetic media using different concentrations of glycerol controlled 

at 20 °C under shaking (250 rpm). 

Glycerol (g/l) Time (h) X (g/l) P (mg/l) Y p/x (µg/g) Y p/s (µg/g) Y x/s (g/g) 

10 100 4.2 (0.56) 1.67 (0.13) 402 (8.5) 0.29 (0.02) 0.69 (0.01) 

30 88 8.55 (0.21) 2.88 (0.01) 337 (5.0) 0.16 (0.01) 0.57 (0.02) 

60 88 11.6 (0.14) 3.21 (0.02) 276 (1.5) 0.09 (0.01) 0.56 (0.02) 

75 88 17.1 (0.21) 3.96 (0.01) 232 (3.5) 0.07 (0.01) 0.97 (0.06) 

* Values in bracket represent standard deviation. 

P (mg/l) = product concentration  

Yp/x (µg/g) = product conversion yield on biomass concentration 

Yp/s (ug/g) = product conversion yield on substrate concentration 

Yx/s (g/g) = biomass production on substrate consumption 
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3.3.2 Semi-Synthetic Media with Alternative Sugars  

The aim of this particular experiment was to investigate the capability of X. dendrorhous 

DSMZ 5292 growing in different types of other carbon sources including galactose, cellobiose, 

xylose and arabinose (30 g/l) (Figure 3-4 and Figure 3-5). This would also demonstrate whether 

other sugars besides glucose would trigger a Crabtree effect. The hypothesis was that in the 

case of pentoses there should be no Crabtree effect, due to their assimilation via a different 

pathway (the pentose phosphate pathway).  

X. dendrorhous was able to consume the different types of sugar tested in this study. 

Despite that, the growth rate and astaxanthin production were rather different. The yeast was 

able to consume cellobiose, xylose and fructose, with the concomitant accumulation of 

astaxanthin. The results showed that almost 11 g/l of cell biomass was produced when X. 

dendrorhous was cultivated in 30 g/l of fructose and 30 g/l of cellobiose as the carbon source. 

In media containing 30 g/l of xylose, 8.3 g/l of cell biomass was produced.  

By comparing the performance of the yeast when various carbon sources were used, it 

can be deduced that astaxanthin accumulation by X. dendrorhous in fructose-, xylose- and 

cellobiose-based media was higher than in glucose-based medium. The highest astaxanthin 

yield (4.26 ug/ml) with 11 g/l of biomass was observed when 30 g/l of cellobiose was used. It 

was observed that cellobiose was hydrolysed into its monomers (glucose) during fermentation 

(Figure 3-4C) by the action of β-glucosidase. As a result, the consumption of cellobiose was 

carried out at a much slower rate than in glucose or fructose media, as 52 h were needed for the 

cellobiose to be exhausted. The slow consumption rate and the fact that the glucose levels in 

the fermentation medium were very low, most likely prevented the occurrence of the Crabtree 

effect, up that time point. However, after 52 h of fermentation, ethanol was detected in the 
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media (0.9 g/l) containing cellobiose as a carbon source. At this time point, the presence of 

glucose was detected in the media. In media containing 30 g/l of fructose, a maximum of 1.4 

g/l of ethanol was produced after 27 h. Once fructose was exhausted in the medium (30 h), the 

cells started to consume the ethanol leading to astaxanthin production. Fructose, being a hexose, 

undergoes the same catabolic pathway as glucose.  

As for pentose sugars (xylose), high biomass was produced with 13.6 g/l of dry biomass 

with 3.8 mg/l of astaxanthin produced after 92h of fermentation. In this fermentation medium, 

ethanol was not detected during fermentation, indicating that the Crabtree effect was 

suppressed. The metabolic pathways of hexoses and pentoses catabolism in yeasts are 

completely different. Pentoses are catabolised via the pentose phosphate pathway in yeasts; in 

the case of xylose, this is converted into D-xylulose-5-phosphate by a xylose transporter and 

subsequently enters the pentose phosphate pathway (Jeffries, 2006). Parajo et al. (1998) 

reported that X. dendrorhous NRRL-Y-17268 cultivated with xylose as a carbon source was 

able to support astaxanthin production, with maximal values of 5.2 mg/l. This finding contrasts 

what Wu & Yu (2013) reported. They studied the microbial astaxanthin production by X. 

dendrorhous strain AS 2.1557 cultivated in different types of carbon sources (glucose, sucrose 

and xylose) and found out that xylose is the least suitable carbon source for both cell biomass 

(4.4 g/l) and astaxanthin production (1.6 mg/l).  
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Figure 3-4: X. dendrorhous growth profile, glycerol consumption and astaxanthin production in 

flask fermentation in synthetic media consist of different types of sugars. A: xylose (xyl), B: 

fructose (fru), C: cellobiose (cello). Symbols represent: ∆- dry cell weight, ▲- astaxanthin, ■- 

xylose, ◊ - fructose,   - cellobiose, □- ethanol 
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Figure 3-5: X. dendrorhous growth profile, glycerol consumption and astaxanthin production in 

flask fermentation in synthetic media consist of different types of sugars. A: arabinose (ara), B: 

galactose (galac). Symbols represent: ∆- dry cell weight, ▲- astaxanthin, ▼- arabinose, ◆- 

galactose. 

 



 

 

With regards to arabinose and galactose, the adaptation phase was long. Only 3.2 g/l of 

arabinose were consumed after 45 h of fermentation. However, rapid consumption of arabinose 

occurred afterwards, yielding 10.7 g/l of biomass and complete consumption of arabinose at the 

end of fermentation. Galactose was the least favoured sugar by X. dendrorhous as only 1.5 g/l 

of galactose were consumed during 75 h of adaptation phase. However, at the end of 

fermentation (115 h), 13 g/l of biomass was produced with 23 g/l of galactose remaining in the 

fermentation media.  

In terms of astaxanthin production (Pmax), the highest astaxanthin was produced in 

media containing cellobiose (4.26 mg/l) and the least in media with galactose (0.36 mg/l). It is 

interesting to note that even when high biomass production was obtained (13.3 g/l) after 115 h 

in galactose-containing media, the astaxanthin concentration was very low (0.5 mg/l). The 

highest astaxanthin yield per biomass (Yp/x) was obtained in media containing cellobiose (349 

µg/g of biomass). Carotenoid pigmentation in X. dendrorhous follows the same trend regardless 

of the sugars used. Astaxanthin started to accumulate during the late exponential phase and 

continued in the stationary phase. This is in agreement with previous studies that reported 

astaxanthin production in X. dendrorhous is a partially growth dependent product.  

 

 

 

 

 



 

 

 

Table 3-3: Experimental results of flask fermentation with X. dendrorhous cultivated in synthetic media using different types of carbon sources controlled at 

20 °C under agitation (250 rpm). 

Carbon source       

(30 g/l) 
Time (h) X (g/l) P (mg/l) Y p/x (µg/g) Y p/s (µg/g) 

Cellobiose 120 13.3 (0.21) 4.24 (0.22) 319.70 (11.8) 0.14 (0.01) 

Xylose 112 12.8 (0.2) 3.76 (0.19) 294.67 (10.1) 0.15 (0.01) 

Fructose 112 11.1 (0.00) 3.47 (0.02) 312.38 (2.07) 0.13 (0.01) 

Arabinose 115 10.7 (1.2) 1.87 (0.02) 174.75 (1.23 0.07 (0.01) 

Galactose 115 13.3 (1.27) 0.57 (0.04) 46.51 (3.23) 0.12 (0.01) 

* Values in bracket represent standard deviation.  

P (mg/l) = product concentration  

Yp/x (µg/g) = product conversion yield on biomass concentration 

Yp/s (ug/g) = product conversion yield on substrate concentration 



 

 

X. dendrorhous has been reported to be capable of assimilating different types of carbon 

sources including monosaccharides, disaccharides and alcohols (Schmidt et al., 2011). This 

study agrees that X. dendrorhous DSMZ 5626 was able to grow and produce astaxanthin on a 

wide range of simple sugars. Moreover, cellobiose, fructose and xylose were found to be 

suitable for astaxanthin production in X. dendrorhous. Considering the aim of this project, 

which is to use rapeseed meal hydrolysate as a fermentation feedstock, this study gave an 

overview of the performance of the yeast in complex media. Based on the obtained results, it 

can be estimated that X. dendrorhous should be able to consume cellobiose, glucose and xylose 

from the available sugars in rapeseed meal. The results also indicated that targeting the 

hydrolysis of rapeseed meal towards cellobiose rather than glucose could be an advantageous 

strategy to employ. 

3.4 Addition of Inducers 

3.4.1 Ethanol  

In order to investigate the effect of ethanol addition on astaxanthin production, two 

different concentrations of ethanol (0.5 g/l and 1.5 g/l) were added to the fermentation media at 

two different time points: at the beginning of the fermentation, and once the sugars were 

completely exhausted (48h). Figure 3-6 shows the effect of ethanol addition into the 

fermentation media on the biomass and astaxanthin production in X. dendrorhous.  

Increasing the concentration of ethanol from 0.5 g/l to 1.5 g/l negatively affected the 

biomass production regardless of the feeding point. It was observed that a significant reduction 

of biomass production occurred when 1.5 g/l of ethanol were added to the fermentation media 

as compared to control. About 4.2 g/l of biomass was produced when 1.5 g/l of ethanol was 

added at the beginning of the fermentation. However, when lower ethanol concentrations (0.5 
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g/l) were added into the media, it was observed that biomass production increased slightly as 

compared to control. This shows that high ethanol concentrations during the early stage of the 

fermentation suppressed biomass production but at lower concentrations, it assisted the biomass 

production.  

As for astaxanthin yield per biomass (Yp/x), significant high amounts of astaxanthin 

were produced (379 µg/g of biomass) when ethanol was added after 48 h of fermentation, 

compared to control (300 µg/g). This demonstrated that ethanol addition after the available 

sugars was depleted in the media assisted in astaxanthin production. Gu et al (1997) reported 

that the addition of ethanol at different stages of growth caused an increase in the total amount 

of carotenoids in Phaffia rhodozyma UCD-FST-67-385. The mechanism involved where 

ethanol is converted into acetate by aldehyde oxidase may have produced superoxide radicals. 

As a defensive mechanism in yeast against superoxide radical formation, the synthesis of 

carotenoids was induced. Alternatively, the produced acetate was channelled towards the 

generation of acetyl coenzyme A, which later served as a precursor in the mevalonate pathway. 

According to Marcoleta et al. (2011), the addition of ethanol (0.2% w/v) resulted in a significant 

increase in the expression of genes involved in astaxanthin synthesis through the mevalonate 

pathway in X. dendrorhous, fortifying carotenoid production in the cells. This positive effect of 

ethanol in terms of carotenoids production has also been reported for other yeast species apart 

from X. dendrorhous; Bhosale (2004) reported that 20 g/l of ethanol supplementation stimulated 

β-carotene and torulene formation in a carotenoid-producing yeast, Rhototorula glutinis.  
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Figure 3-6: Effects of ethanol addition (0.5 and 1.5 g/L) at different feeding time (0 and 48h) 

during X. dendrorhous fermentation in semi-defined media. (A): Dry cell weight, DCW (B): 

Astaxanthin yield on biomass (µg/g) and (C): Astaxanthin concentration (µg/ml). Fermentation 

conditions: Temperature (20 °C), pH (not controlled) and agitation (250 rpm). Abbreviations: 

Yp/x (µg/g)- Yield of astaxanthin on biomass, P (mg/l)- astaxanthin concentration. 
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3.4.2 Citric Acid 

Figure 3-7 shows the effects of citrate addition into semi-defined media for astaxanthin 

production in X. dendrorhous. Generally, the addition of citrate enhanced the cell growth. The 

biomass production increased by 21% against the control when 10 mM of citric acid were added 

to the fermentation media at the beginning of the fermentation. As for the astaxanthin yield, it 

was observed that the addition of 20 mM of citric acid during fermentation increased the 

astaxanthin production up to 330 µg/g biomass. On the other hand, the astaxanthin yield (Yp/x) 

increased at least 27 % in media added with 10 mM citric acid as compared to control. 

Citrate supplementation has been reported to assist in carotenoid production in X. 

dendrorhous (Flores-Cotera & Sanchez, 2001). Citric acid acts as a precursor for the 

biosynthesis of carotenoid molecules in the cells, as an intermediate of the TCA cycle. The 

stimulation of citric acid on the TCA cycle might occur due to the fact that the key enzymes 

involved in the carotenoids biosynthesis pathway are affected by the TCA cycles intermediates 

and subsequently enhance carotenoid production. The other possible explanation is that citric 

acid increases the acetyl coA concentration and promotes pigmentation via the mevalonate 

pathway. Previous studies have reported that TCA intermediates supplementation helps to 

induce carotenoid production in several microorganisms including yeast (X. dendrorhous) and 

bacteria (Dietza natronolimnea) (Liu, 2006; Nasrabadi & Razavi, 2010).  

In addition, previous studies have shown that supplementation of a-ketoglutarate, 

oxaloacetate and succinate have the greatest stimulatory effects on canthaxanthin production in 

Dietza natronolimnaea HS-1 (Nasrabadi & Razavi, 2010). Zeaxanthin production in 

Flavobacterium sp. was stimulated by the supplementation of citrate, α-ketoglutarate and 

oxaloacatetae (Alcantara & Sanchez, 1999). This current study indicates that supplementation 

of citric acid to fermentation media helps astaxanthin accumulation in X. dendrorhous.  
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Figure 3-7:  Effects of citric acid addition (10 and 30 mM) at different feeding time (0 and 24h) 

during X. dendrorhous fermentation in semi-defined media controlled at 20 °C under agitation 

(250 rpm). (A): Dry cell weight, (B): Astaxanthin yield on biomass (µg/g) and (C): Astaxanthin 

concentration (µg/ml).  Abbreviations: Yp/x (µg/g)- Yield of astaxanthin on biomass, P (mg/l)- 

astaxanthin concentration 
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3.4.3 Hydrogen Peroxide (H2O2) 

Astaxanthin is known for having a high antioxidant capacity which may have protective 

effects on the microorganisms against oxidative damage (Fassett & Coombes, 2011; Guerin, 

Huntley, & Olaizola, 2003; Wang, Yang, Yan, & Yao, 2012). Therefore, introducing oxygen 

to the fermentation media is one way to improve carotenoid accumulation in the yeast by 

stimulating the oxidative stress response of H2O2 on the cells.  

X. dendrorhous in flask cultures were exposed to 10 and 20 mM H2O2 at two different 

stages (0 and 24h) of fermentation (Figure 3-8). Generally, results showed that H2O2 addition 

negatively affected the biomass production with more notable cell suppression occurring when 

H2O2 was introduced at the beginning of fermentation (0 h). However, astaxanthin yield per 

biomass was enhanced with H2O2 supplementation, (355 µg/g) compared to control (276 µg/g). 

The addition of H2O2 was found to increase catalase activity in X. dendrorhous which is 

expected to subsequently be used for the conversion of H2O2 into liquid oxygen in the cell. 

However, the limitation is that the catalase activity in X. dendrorhous is lower than in other 

yeast species such as Saccharomyces cerevisiae (Schoreder and Johnson, 1993). The addition 

of reactive oxygen, H2O2, resulted in the creation of a stressful and toxic environment. The 

yeast will then display a defence mechanism to protect the cells from cellular damage which 

occurs due to the presence of H2O2. Feeding reactive oxygen into the fermentation media is  a 

simple way to increase astaxanthin accumulation in the cells (Kobayashi et al., 1997; Liu, Wu, 

& Ho, 2006)  
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Figure 3-8: Effects of hydrogen peroxide addition (10 and 20 mM) at different feeding time (0 

and 24h) during X. dendrorhous fermentation in semi-defined media. (A): Dry cell weight, (B): 

Astaxanthin yield on biomass (µg/g) and (C): Astaxanthin concentration (µg/ml). Fermentation 

conditions: Temperature (20 °C), pH (not controlled) and agitation (250 rpm). Abbreviations: 

Yp/x (µg/g)- Yield of astaxanthin on biomass, P (mg/l)- astaxanthin concentration 
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3.5 Conclusions 

This study has shown that the selection of carbon sources and their respective 

concentrations can lead to substantial changes in biomass and astaxanthin production in X. 

dendrorhous. High yeast growth and astaxanthin production were observed when cellobiose, 

xylose and fructose (30 g/l) were used with astaxanthin production > 3 mg/l. Utilising glucose 

as a carbon source (>40 g/l) clearly shows inhibitory effects on astaxanthin production as well 

as suppression of yeast growth due to the occurrence of the Crabtree effect. However, high 

biomass concentration did not always correlate to high astaxanthin production as observed in 

the media containing galactose and arabinose as carbon sources. To improve astaxanthin 

production in yeast, selected chemicals (citric acid and hydrogen peroxide) showed positive 

effects on astaxanthin yield on biomass (Yp/x) when added at suitable doses and time points. 

The application of these chemicals to induce astaxanthin production should provide a simple 

and inexpensive strategy to increase astaxanthin yield in X. dendrorhous. Finally, this study 

gave an initial overview on the yeast behaviour in a media containing various sugars and the 

subsequent rapeseed meal hydrolysis in the next chapters will be tailored based on the preferred 

carbon source for the yeast, X. dendrorhous DSMZ 5626.  

 

 

 

 

  



112 

 

4 Valorisation of Rapeseed Meal as Substrate for the Microbial 

Production of Astaxanthin 

 

Abstract 

Rapeseed meal, which is a by-product of the oil processing industry, was evaluated as 

a substrate for the microbial production of astaxanthin using the yeast strain Xanthophyllomyces 

dendrorhous DSMZ 5626. The meal demonstrated high protein (25%, w/w), lignin (18%, w/w) 

and total carbohydrate (34%, w/w) contents, with the latter consisting primarily of glucose 

(20.0%, w/w) and to lesser extent arabinose (6.0%, w/w), galactose (2.9, w/w) and also uronic 

acids (3.2%, w/w). During the experiment, four commercial enzymes, namely (i) Viscozyme 

L, (ii) Accellerase 1500, (iii) pectinase and (iv) cellulase (from Aspergillus niger) were tested 

at different concentrations (1 – 15 %, v/v) for the individual assessment of their ability to break 

down the cellulosic and hemicellulosic compounds of rapeseed meal into monomeric 

fermentable sugars. Specifically, Viscozyme L and Cellulase demonstrated the highest glucose 

recovery yields (47 – 52% yield for 15 % (v/v) of enzyme used) and rapeseed meal derived 

total sugar concentration (74-77 g/l). A thermal pre-treatment step (126 oC, 30 min) prior to 

enzyme hydrolysis by Accellerase 1500 was also evaluated and was found to improve the 

hydrolysis rate of rapeseed sugars by 25%, which can be associated with the highly dispersed 

rough surface obtained after the thermal treatment, as demonstrated by electron scanning 

microscopy. All hydrolysates were tested as substrates for the growth of X. dendrorhous in 

shake flasks and it was demonstrated that the pectinase and Accellerase hydrolysates (with and 

without thermal treatment) supported best cell growth and astaxanthin production, thereby 

leading to astaxanthin concentrations of 6.7 mg/l in the former and approximately 3 mg/l in the 

latter case, with astaxanthin yields (Yp/x) ranging from 258 to 332 µg per g of biomass. The 
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higher astaxanthin production in the case of the pectinase hydrolysate was attributed to the 

presence of high amounts of glycerol (originating from the enzyme formulation) which served 

as energy and carbon source for the cells. Overall, this research demonstrated that rapeseed 

meal hydrolysate, produced through the use of specific enzymes, is a nutrient rich medium that 

can support optimum X. dendrorhous growth without the need for additional supplements and 

could potentially be used as a fermentation feedstock for the efficient microbial production of 

astaxanthin.      

Keywords: Rapeseed meal, Astaxanthin, Hydrolysate, Xanthophyllomyces 

dendrorhous, Pre-treatment 
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4.1 Introduction 

Oilseed crops are extensively cultivated for their oil, similar to the planting of rapeseed, 

sunflower and soybean. The European Union (EU) is the largest producer of rapeseed with a 

reported total production of 32 million tonnes in 2015/16 and these figures are expected to 

increase annually (Krautgartner et al., 2017). In the United Kingdom (UK), rapeseed (Brassica 

napus) is a major oilseed crop, which is cultivated alongside sunflower with a reported total of 

579 kHa of land planted in 2016 (Department for Environment, Food and Rural Affairs, 2016). 

Among rapeseed cultivars, some varieties are not suitable for human consumption as they 

contain high amounts of erucic acid (> 60%, w/w) and also glucosinolates that are responsible 

for the bitter taste of the oil. However, in the UK, rapeseed is cultivated mainly for cooking 

purposes with the use of improved cultivars that contain lower than 2% (w/w) erucic acid. 

Generally, rapeseed contains about 40-45% (w/w) of oil, which is low in saturated fatty acids 

(7-10%, w/w) but high in monounsaturated fatty acids (oleic acid). Rapeseed oil has also as a 

well-balanced ratio of n-6 to n-3 fatty acids (2.3-2.1%) as well as high phytosterol (4.5-11.3 

g/kg) and tocopherols (430-2680 mg/kg) contents (Rekas et al., 2015). In the EU countries, 

non-edible varieties of rapeseed are cultivated as  starting material for non-edible products such 

as grease, lubricants and biodiesel (Szydłowska-Czerniak, 2013). Large-scale extraction of 

rapeseed oil involves several steps including seed cleaning, dehulling, flaking and mechanical 

extraction via pressing end extrusion, which is often followed by solvent extraction 

(Dworakowska, Szczepan, & Bogdal, 2011). However, the method of using a single or double 

step cold-pressing process without the solventing step has gained increasing interest, due to the 

superior nutritional and sensory characteristics of the final product (oil). The cold-pressed 

method involves mild extraction temperatures that yield high-quality oils which do not require 

a refining step. However, the oil extraction yields are usually low, in the range of 40% (w/w). 

The oil extraction process leaves behind a solid residue, known as rapeseed meal, which is 



115 

 

generally underutilised and considered as a low value by-product (Wang et al., 2010). The 

world production of rapeseed meal in 2016/17 was reported at an estimated 40 million tonnes, 

with 13.9 million tonnes generated in the EU (Krautgartner et al., 2017). Currently, rapeseed 

meal is used as an organic fertiliser and as a supplement in livestock feeds due to its high protein 

content (26-31%) (Jeong et al., 2013; Pustjens et al., 2013). However, the rapeseed meal protein 

is not easily digested by monogastric animals compared to other protein sources such as soy 

meal, thus rendering it less valuable as a feed component (Kiran et al., 2012). Moreover, 

rapeseed meal may contain anti-nutritional compounds such as glucosinolates, erucic acid and 

phenols, thus making it less favourable by animals (El-Beltagi & Mohamed, 2010; Lomascolo 

et al., 2012). 

There is significant potential for the valorisation of rapeseed meal, particularly as a 

substrate for microbial bioconversions, as besides protein, it also contains large amounts of 

carbohydrates (34-36%, w/w) (Jeong et al., 2014; Pustjens et al., 2013) as well as minerals such 

as calcium, phosphorous and iron (Pustjen et al., 2013.; Chatzifragkou et al., 2014). The 

utilisation of rapeseed meal in microbial bioconversions is not a single step process, which can 

be attributed to the fact that most microorganisms lack the necessary enzymes for catalysing 

cellulose hydrolysis. As such, the transformation of rapeseed meal into a fermentation feedstock 

requires the application of physicochemical and/or enzymatic approaches, aiming to break 

down the complex structure of the biomass and concurrently generate sugar and nitrogen 

components that are directly assimilable by microorganisms (Kiran et al., 2012; Chatzifragkou 

et al., 2014). The soybean hydrolysate can be potentially used for several microbial conversions, 

including for the production of platform and speciality chemicals, biopolymers and natural 

colourants.  
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Astaxanthin belongs to the xanthophyll group of carotenoids and is a powerful 

antioxidant, which acts by donating the electrons from the conjugated double bonds and reacts 

with free radicals to produce high stability products and terminate the free radical chain reaction 

in a wide range of living organism (Ambati et al., 2014). It also possesses anti-inflammatory 

activities and has potential as a therapeutic agent against cardiovascular diseases in humans 

(Fassett & Coombes, 2011). Additionally, in aquaculture, astaxanthin is used as feed additive 

because it contributes to the attractive colouration in the bodies of salmons, shrimps and 

crustaceans as well as maintains their growth and survival (Ip et al., 2004; Baker & Günther, 

2004). Currently, the commercial demand for astaxanthin is met by its synthetic production 

(petroleum derived) via the Wittig reaction and Grignard condensation strategies (Panel, 2014). 

However, natural astaxanthin is more favourable as it has been reported to possess high stability 

due to its esterified nature, which prevents oxidation and thus contributes to prolonged shelf 

life (Chandra Bhatt et al., 2012).  The natural source of astaxanthin has been approved to be 

used as food colouring (E161j) in the EU. Currently, the naturally produced astaxanthin by 

microalgae (Haematococcus pluvialis) and yeasts (Xanthophyllomyces dendrorhous) face a 

competitive market price compared to synthetically produced astaxanthin due to the complex 

production process.  

Trials to extract rapeseed protein have been conducted using various methods such as 

commercial cellulolytic enzymes (Rodrigues et al., 2014) as well as the use of proteolytic fungi, 

Aspergillus oryzae (Chatzifragkou et al., 2014). However, studies involving carbohydrates 

hydrolysis from rapeseed meal are scarce in comparison to protein hydrolysis (Rodrigues et al., 

2014; Sari et al., 2013). The aim of this study was to enzymatically hydrolyse the lignocellulosic 

structure of rapeseed meal to produce a nutrient-rich hydrolysate, which was subsequently 

evaluated for its potential to be used as a fermentation substrate for the astaxanthin production 

by the yeast X. dendrorhous DSMZ 5626.  
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4.2 Materials and Methods 

4.2.1 Microorganism and Growth Medium 

The yeast strain Xanthophyllomyces dendrorhous DSMZ 5626 was used in this study and 

was purchased from the Leibniz Institute DSMZ, Germany. The strain was proliferated and 

maintained in Yeast and Mold (YM) media containing (in g/L): Yeast extract, (3.0); malt 

extract, (3.0); peptone from soybean, (5.0); glucose, (10.0); and agar (15).  

4.2.2 Materials 

The rapeseed meal that was used in this study was kindly provided by Stainswick Farm 

(Oxfordshire, UK) and was generated via the cold pressing oil extraction process. Rapeseed 

meal samples were grinded using a dry-grinder and sieved to obtain uniform sized particles (< 

850 µm). The oil was removed using a supercritical CO2 extraction rig (SciMed, UK) at 60 °C 

and 300 bar pressure for 1 hr, with ethanol (10%, v/v) as co-solvent. The residual defatted meal 

was kept at 4 °C prior to use. 

4.2.3 Enzymatic Hydrolysis 

The enzymatic hydrolysis of rapeseed meal was performed using four different 

commercial enzymes, namely Accellerase 1500 (DuPont), Viscozyme (Novozymes), Cellulase 

from Aspergillus niger (Sigma-Aldrich) and pectinase (Novozymes) (Table 4-1). Enzymatic 

hydrolysis was carried out in 2 ml Eppendorf tubes containing 0.150 g rapeseed meal with 

different enzyme concentrations (1-15%, v/v). Optimum temperatures for each enzyme and 

adequate mixing (1600 rpm) were maintained in a thermomixer F 1.5 (Eppendorf, Germany). 

The reaction time varied from 2 hrs to 24 hrs and the reactions were terminated by incubation 
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at 95 °C for 10 mins. The mixtures were then centrifuged at 10 845 x g (Heraeus Multifuge 

X3R, Thermo Fisher, USA) for 10 mins and the supernatants were collected and analysed for 

sugar composition.  

 

Table 4-1: Details of the industrial enzymes used in the study 

 

4.2.4 Rapeseed Meal Pre-Treatment 

The thermal pre-treatment of rapeseed meal was carried out prior to enzymatic 

hydrolysis by the commercial enzyme Accellerase 1500. Various substrate loadings (10-50%, 

w/v) were prepared in 30 ml of distilled water and subjected to autoclaving at different 

temperatures (126 and 135 °C, pressure ~2 bar) for 30 min. Once the heat treatment was 

completed, 10% (v/v) of enzyme (Accellerase 1500) was added to the mixture and hydrolysis 

was carried out at 50°C for 24 hrs under continuous stirring (250 rpm) in an orbital shaker 

(GFL, 3015, SciQuip, UK). 

Enzyme Source Main Activity Side activities Activity 
Stabiliser/ 

Protectant 

Viscozyme L 
Aspergillus 

aculeatus 
Endoglucanse 

Xylanase 

Cellulase 

Hemicellulase 

100 FBG/g 
Sucrose, 

NaCl 

Cellulase 
Aspergillus 

niger 
Endo-glucanase - ~ 0.8 unit/mg Not given 

Pectinase 
Aspergillus 

aculeatus 
Polygalacturonase 

Cellulase, β-

Galactosidase 
≥ 3800 unit/ml Glycerol 

Accellerase 

1500 

Trichoderm

a reesei 

Exoglucanase, 

Endoglucanase and β-

Glucosidase 

Hemicellulases 
2200-2800 

CMC unit/g 
Not given 
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4.2.5 Microbial Fermentations 

In order to investigate the suitability of the rapeseed meal hydrolysates as substrates for 

X. dendrorhous growth, flask experiments were conducted. Rapeseed meal hydrolysates were 

prepared using different enzymes under identified optimised conditions. The produced 

hydrolysates were subsequently filter-sterilised using 0.25 µm Millipore stericup filters, prior 

to the fermentation. Suspensions of X. dendrorhous pre-cultures were then aseptically added to 

the 50 ml of hydrolysates in 250 ml conical flasks in order to obtain an initial OD of ~0.1. All 

flask fermentations were carried out for 5 days at 20 °C under constant agitation (250 rpm), in 

duplicate. Data shown are the mean values of these measurements.  

4.2.6 Analytical Methods 

The carbohydrate content of the rapeseed meal was analysed according to the 

experimental work of Sluiter et al., (2004). Briefly, 300 mg of rapeseed meal were pre-

hydrolysed with 3 ml of 72 % (v/v) H2SO4 at 30 °C for 1 hr. Subsequently, 84 ml of distilled 

water were added to the mixture in order to dilute the sulphuric acid content to 4 % (v/v) and 

further in an autoclave, hydrolysis was carried out at 121 °C for 30 mins. On the completion of 

hydrolysis, the mixtures were neutralised with calcium carbonate to pH 5-6. The samples were 

then analysed using a High Performance Anion Exchange Chromatography with Pulsed 

Amperometric Detection (HPAEC-PAD) system (Dionex, Thermo, UK). In this step, the 

samples were passed through a CarboPac PA1 column (4 x 250mm) at a flow rate of 1 ml/min 

and the mobile phase consisted of 0.016 mM of sodium hydroxide (NaOH) (eluent A) and 0.5 

mM of sodium acetate (NaOAc) (eluent B) in a gradient method. Operating conditions were as 

follows: Sample volume: 20µl; mobile phase: 0.5 M NaOH, 0.1 M NaOAc; column 

temperature: 65°C; flow rate: 0.6 ml/min; gradient conditions: T0-40, 100% A, T41-50, 60% A, 

40% B, T51, 100% A. 
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The protein and fat content were measured by the Kjeldahl and Soxhlet method, 

respectively (AOAC, 1990). The lignin content was determined according to Sluiter et al. 

(2011). Briefly, after hydrolysis with 72 % (w/w) H2SO4 for 1 hr at 30°C, samples were 

hydrolysed with 1.0 M H2SO4 at 121 °C for 30 mins in an autoclave. Samples were then filtered 

and the filtrate was measured for acid soluble lignin spectrophotometrically at 240 nm. Acid 

Soluble Lignin (ASL) was calculated according to the formula below (Eq. 4-1). The washed 

residue was dried at 100 °C for 18 hrs. Subsequently, the dried samples were placed in a furnace 

(500 °C; 5 h) and the ash was weighed and classified as ASL. Total lignin was calculated as the 

sum of acid soluble and acid insoluble lignin. 

𝐴𝑆𝐿 =
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)

𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 × 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔)
 

 
Eq. 4-1 

 

In the case of yeast fermentations, samples of 2 ml were periodically withdrawn at 

regular time intervals. 1 ml of sample was added into a pre-weigh tube and centrifuged at 10845 

x g for 10 min. The supernatant was collected for sugar and ethanol analysis via HPLC. The 

pellet was washed twice with distilled water and kept frozen at -20 °C prior to freeze drying 

(Virtis Sentry 2.0, UK). Biomass was measured by weight difference. The sugar composition 

of the hydrolysates was determined by HPLC analysis (Agilent 1260 Infinity) with an Aminex 

HPX-87H column coupled to a differential refractometer and a diode array detector. Operating 

conditions were as follows: Sample volume: 20µl; mobile phase: 5 mM H2SO4; flow rate: 0.6 

ml/min; column temperature: 65 °C. Quantitation of monosaccharides (glucose, galactose, 

xylose, arabinose), uronic acids and ethanol were achieved on the basis of standard curves, 

which were conducted using standard solutions.  
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Total carotenoid extraction was carried out according to the experimental work of 

Sedmak et al. (1990). Briefly, 1 ml of Dimethyl Sulfoxide (DMSO) was preheated at 55 °C and 

added to the freeze dried biomass, followed by vortexing for 30-40 secs. Subsequently, 0.2 ml 

of 20 % Sodium Chloride (NaCl) and 1.0 ml of acetone were added to the mixture to extract 

the intracellular carotenoids. The aqueous and organic phases were separated by centrifugation 

at 5423 x g for 5 mins. The extraction process was repeated until a colourless biomass was 

obtained. The organic phases were then pooled together, and the absorbance measured at 480 

nm in a spectrophotometer. Values were then divided by the extinction coefficient of 2150. The 

equation for total carotenoids concentration is given below: 

𝐶𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝜇𝑔 𝑔⁄ ) =  
𝐴 × 𝑉 (𝑚𝑙) × 104

𝐴1𝑐𝑚
1%  × 𝑃 (𝑔)

 Eq. 4-2 

 

Where, A is the absorbance at 480 nm, V is the volume, 𝐴1𝑐𝑚
1%  is the coefficient (2150) 

and P is the weight of biomass.  

4.2.7 Scanning Electron Microscopy 

The structure of rapeseed meal samples after pre-treatment and enzymatic hydrolysis was 

analysed by environmental scanning electron microscope (FEI Quanta FEG 600). All samples 

were subjected to freeze drying in order to remove the moisture prior to the imaging. The freeze-

dried cells were deposited on carbon tape, fixed on stubs and then coated with gold. To ensure 

reproducibility, a large number of images (~10) were captured.  



122 

 

4.3   Results and Discussion 

4.3.1 Compositional Analysis of Rapeseed Meal 

In cold pressing, rapeseed undergoes a mild oil extraction process (< 40 °C) without the 

use of solvents. Approximately 50-60 % of the initial oil is normally extracted from the seed 

and in line with this, the rapeseed meal used in this study contained substantial amounts of oil 

(16.7 ± 0.1 %). Table 4-2 shows the composition of the rapeseed meal on a dry basis. The 

rapeseed meal was rich in protein and carbohydrates, accounting for 26 % and 35 % (w/w) of 

each, respectively. The protein content was lower than that reported by Pustjens et al. (2013) 

(i.e., 30 %, (w/w)), possibly due to differences among rapeseed cultivars as well as due to 

differences in the oil extraction process (Leming and Lember, 2002).  

The carbohydrate content was similar to that reported by Pustjens et al. (2013), 

accounting for 36 % (w/w). The monosaccharide composition indicated that the main 

polysaccharides present in the rapeseed meal were cellulose, hemicellulose and pectin. Glucose 

was the most abundant monosaccharide, i.e., equal to 20.2 % (w/w). The arabinose content was 

~ 6 % (w/w), the highest among the other sugars that are normally present in hemicellulose, 

namely galactose and xylose. This finding is similar to the works of Pustjen et al., (2013) who 

found that arabinose is the major hemicellulosic-derived sugar present in rapeseed meal. It 

suggests the presence of arabinans, which might be attached on the side chains of pectin. 

Moreover, the presence of xylose and arabinose could also originate from the arabinoxylan 

present in rapeseed meal. Arabinoxylan is a hemicellulose consisting of a linear backbone of β-

1,4 xylose residues with arabinose substitution (Butardo & Sreenivasulu, 2016).  

The presence of galactose (2.9 %, w/w) could indicate the presence of galactomannan 

and arabinogalactan in the rapeseed meal. Moreover, the presence of galacturonic acid (2.5 %, 
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w/w) and glucuronic acid (0.6 %, w/w) further supported the presence of pectin in the rapeseed 

meal. Pectins have been reported as major polysaccharides in rapeseed meal apart from 

hemicellulose and cellulose (Bell, 1984; Pustjens et al., 2013). Small amounts of fructose (0.3 

% w/w) were detected in the acid treated fraction of the rapeseed meal, in agreement with Bell 

(1984) and Lomascolo et al. (2012). In the water soluble fractions of rapeseed meal, which was 

extracted using hot water, sucrose was also detected (data not shown). Sucrose and fructose 

have been previously reported in the water soluble fractions of rapeseed meal and they normally 

act as an energy reserve in plants (Lomascolo et al., 2012; Pustjens et al., 2013).  

The analysis indicated the presence of ~ 18 % (w/w) of total lignin, consisting of 1.9 ± 

0.1 % (w/w) of acid soluble lignin and 16.1 ± 4. 6% (w/w) of Klason lignin. The amount of 

total lignin in rapeseed meal was similar to the values (~16 %) reported by studies investigating 

the production of biodiesel from rapeseed meal (Briones et al., 2012;  Egües et al., 2010).  
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Table 4-2: Chemical composition of rapeseed meal 

Composition Percentage (%, w/w) 

Oil 16.7 ± 0.1 

Protein 25.3 ± 0.2 

Lignin 18.0 ± 4.6 

Ash 5.3 ± 0.1 

Moisture 6.8 ± 0.1 

Sugars (% carbohydrate) 34.2 ± 6.2 

Glucose 20.2 ± 2.3 

Galactose 2.9 ± 0.5 

Arabinose 5.9 ± 0.7 

Xylose 1.6 ± 0.2 

Fructose 0.3 ± 0.2 

Fucose 0.2 ± 0.1 

Glucuronic acid 0.4 ± 0.3 

Galacturonic acid 2.8 ± 0.1 
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4.3.2 Enzymatic Hydrolysis of Rapeseed Meal 

4.3.2.1 Effect of Enzyme Concentration 

The rapeseed meal contained high amounts of carbohydrates and protein, however, most 

microorganisms cannot directly assimilate these compounds due to inability to produce protease 

and cellulase enzymes (Chatzifragkou et al., 2014, Wang et al, 2010). Therefore, commercial 

enzymes were employed in this study, targeting the conversion of cellulose and hemicellulose 

into their monomeric sugars (glucose, galactose, xylose and arabinose). The generated 

hydrolysates were subsequently tested for their capability to support astaxanthin production by 

the yeast X. dendrorhous.  

Figure 4-1 shows the effect of different enzyme concentrations on the sugars released 

after 24 hrs of hydrolysis using four different commercial enzymes (cellulase, pectinase, 

Viscozyme L and Accellerase 1500). The highest glucose yield (g of glucose released after 

hydrolysis per g of glucose in rapeseed meal) was observed when Viscozyme L (53 %, w/w), 

followed by cellulase (47 %, w/w), pectinase (41.8 %, w/w) and Accellerase 1500 (30 %, w/w) 

were used. Viscozyme L is a multi-enzyme complex containing mixtures of cellulases, 

hemicellulases and xylanase and has also a proteolytic activity (Guan & Yao, 2008; 

Hanmoungjai, Pyle, & Niranjan, 2002; Rodrigues et al., 2014). Hence, the synergistic effect of 

these enzymes rendered the rapeseed meal structure more accessible to enzymatic attack, 

thereby resulting in the production of a hydrolysate rich in cellulose- and hemicellulose-derived 

monomeric sugars. Galactose and arabinose were obtained at their highest yields when 

Viscozyme L was used, equal to 74 % (w/w) and 79 % (w/w), respectively (Figure 4-1A). 
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Figure 4-1a: Effect of different enzyme concentrations on the total sugars released after 24 hrs of hydrolysis of 10% (w/v) rapeseed meal using four different 

commercial enzymes [Viscozyme (A), pectinase (B)]. Line graph represents the sugars yield (%), whereas the bar graph represents the concentration of sugars 

in rapeseed meal hydrolysates. Symbols represent:  ●- glucose, ■- xylose, ▼- arabinose, ♦- galactose, -glucose (g/l) - galactose (g/l), - 

xylose (g/l), - arabinose (g/l),  - glycerol (g/l) and - fructose (g/l). * Sugars yield is calculated based on the sugar present in the hydrolysates 

after deducting the initial sugars that were present in the enzyme solution per total sugar before the treatment. 
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Figure 4-1b: Effect of different enzyme concentrations on the total sugars released after 24 hrs of hydrolysis of 10% (w/v) rapeseed meal using four different 

commercial enzymes [cellulase (C) and Accellerase 1500(D)]. Line graph represents the sugars yield (%), whereas the bar graph represents the concentration 

of sugars in rapeseed meal hydrolysates. Symbols represent:  ●- glucose, ■- xylose, ▼- arabinose, ♦- galactose, -glucose (g/l) - galactose (g/l), 

- xylose (g/l), - arabinose (g/l) and - fructose (g/l). * Sugars yield is calculated based on the sugar present in the hydrolysates after deducting 

the initial sugars that were present in the enzyme solution per total sugar before the treatment. 



 

 

According to the manufacturer’s datasheet (Sigma Aldrich), Cellulase contained mainly 

endo- and exo- cellulases, thus their documented synergistic activities led to the effective 

hydrolysis of cellulose and β-glucans (Taherzadeh & Karimi, 2007; Yoo, 2012). Endo-

cellulases attack the β-1,4-glycosidic bonds randomly, targeting the amorphous region along 

the cellulose structure and produce either cellobiose or glucose. As for exo-cellulases, they act 

on the linkages from the non-reducing end of cellulose releasing cellobiose as the main reaction 

product (Yoo, 2012). Similar patterns to those obtained for glucose were observed for the 

hemicellulose-derived monosaccharides during the experiment. Generally, increased enzyme 

concentrations resulted in increased amounts of galactose, xylose and arabinose in the 

hydrolysate. Xylose was detected in all hydrolysates except for those with Cellulase activity 

(Figure 4-1C).  

In terms of the sugar concentrations in the hydrolysates, glucose and galactose were 

mainly present. In the case of Viscozyme L hydrolysates (Figure 4-1A), the total sugar 

concentration when high enzyme loadings (15 %, v/v) were used was ~74 g/l, with glucose 

being ~ 26 g/l and fructose ~ 17 g/l. It must be noted that approximately ~16.5 g/l of glucose 

and ~17 g/l of fructose were derived from the enzymatic hydrolysis of sucrose that was present 

in the Viscozyme L formulation and is generally used as a preservative for enzyme 

formulations. In the case of pectinase (Figure 4-1B), the total concentration of monomeric 

sugars in the hydrolysates accounted for approximately 20 g/l, with glucose and galactose being 

the principle sugars. However, 66 g/l of glycerol was also detected in the hydrolysates that 

originated from the enzyme formulation itself, which could potentially act as an additional 

carbon source for microbial fermentation. As for Cellulase (Figure 4-1C), the total sugar 

concentration was ~76 g/l, the majority of which was glucose (71 g/l), although ~64 g/l of 

glucose were attributed to the enzyme formulation. In Accellerase 1500 hydrolysates, 11 g/l of 

total sugars were present, with glucose (~ 6 g/l) and galactose (~4 g/l) being the most prominent 
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sugars. Due to the absence of additional preservatives in the formulation, the Accellerase 1500 

enzyme was chosen for further investigation, as the composition of its hydrolysate is a direct 

reflection of the activities of the commercial enzyme.  

The synergistic action of enzyme mixtures assists in the further break down of 

carbohydrate polymers, as indicated by the action of pectinase on rapeseed meal. This was 

depicted by the higher hydrolysis yield of rapeseed meal as 41 % of glucose was extracted using 

pectinase enzyme, which contains mixtures of activities including cellulases as well as 

hemicellulases. Comparing to Accellerase 1500 treatment, which did not contain the side 

activity of pectinase, this extraction yielded lower glucose yields (30 %, w/w). This suggests 

that selecting the right enzymes for rapeseed meal hydrolysis is important to obtain high 

hydrolysis yield. 

Monitoring the hydrolysis kinetics of rapeseed meal by Accellerase 1500 (Figure 4-2) 

demonstrated that after 24 hrs of hydrolysis period, the sugars released during hydrolysis 

reached a plateau with no further significant increase. Therefore, the enzymatic hydrolysis of 

rapeseed meal in this study was performed up to 24 hrs. As expected, glucose was the principal 

sugar, released during enzymatic hydrolysis with Accellerase 1500, accounting for 6 g/l after 

24 hrs of hydrolysis. This value correlates with the composition of carbohydrates in rapeseed 

meal, which primarily consisted of glucose, at ~20 % (w/w). 
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Figure 4-2: Kinetics of enzyme hydrolysis of rapeseed meal by Accellerase 1500. Experimental 

conditions: Temperature (50°C), enzyme concentration (15%, v/v) and substrate concentration 

(10%, w/v). Symbols represent: Glucose (●, g/l), xylose (■, g/l), galactose (♦, g/l) 

 

The enzymatic hydrolysis of rapeseed meal has been widely reported for the extraction 

of proteins rather than of carbohydrates. Chen et al. (2011), tested three different enzymes 

(Celluclast, Viscozyme and Pectinase G), both singly and in combination, in order to hydrolyse 

dilute acid pretreated rapeseed meal that was subsequently used for succinic acid production by 

Actinobacillus succinogenes. They reported that about 28.6 g/l of total sugars were released 

from rapeseed meal after Pectinase G (2 %, w/w) hydrolysis consisting of sucrose, glucose, 

fructose and arabinose. In a different study, Viscozyme L was found to assist in the protein 

hydrolysis of rapeseed meal with high protein yield (68 %) and total carbohydrates yield (80 % 

of total reducing sugars) (Rodrigues et al., 2014).  
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4.3.2.2  Effect of Thermal Pretreatment on Rapeseed Meal 

Lignocellulosic materials have complex structures, due to the presence of 

polysaccharides (cellulose, hemicellulose, pectin), lignin and structural proteins. Previous 

studies have shown that lignin and pectin hinder the hydrolysis of cellulose and hemicellulose 

in lignocellulosic biomass (Chen et al., 2011; Sun and Cheng, 2002; Taherzadeh & Karimi, 

2008). The presence of lignin may cause non-productive adsorption of cellulase (Düsterhölt, 

Engels & Voragen 1993; Taherzadeh & Karimi, 2007) and hinders the accessibility of cellulase 

to cellulose content (Cui et al., 2014). Generally, thermal treatment has been acknowledged as 

a choice of pre-treatment method for lignocellulosic materials as it does not require catalysts 

and does not cause corrosion issues (Jönsson & Martín, 2016). The presence of heat and water 

disrupts the hydrogen bonds that hold together the crystalline structure of cellulose and lignin 

matrices, resulting in swelling of the biomass and disruption of the cellulose matrix. The 

increase in the solubility of the lignin regions allows a greater accessibility of enzymes into the 

polymer structure (Brodeur et al., 2011; Wan & Li, 2011). Additionally, a neutralisation step is 

not required as no harsh chemicals are used and the generated liquid fraction could also be used 

for further applications such as microbial bioconversions (Brodeur et al., 2011).  

In this study, a thermal pre-treatment step was carried out to evaluate its effectiveness 

in enhancing the enzymatic hydrolysis of rapeseed meal. Table 4-3 presents the composition of 

rapeseed meal hydrolysates following the heat pre-treatment and enzymatic digestion by 

Accellerase 1500 (10 % v/v). Heat pre-treatment at 126 °C for 30 mins was found to 

significantly increase (p < 0.05) the glucose hydrolysis yield by 17 % compared to control (no 

pre-treatment). However, higher temperature conditions (135 °C for 30 mins) resulted in lower 

sugar yields compared to those at 126 °C. This was most likely due to the more prominent 

degradation of glucose to furfural and 5-hydroxymethyl-2-furaldehyde (HMF) under the higher 
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temperature in the presence of mild acid conditions (Li et al., 2015). The acidic environment 

was generated due to the partial acetylation of hemicellulose, leading to the hydrolysis of acetyl 

ester bonds into acetic acid during the heat pre-treatment process (Sun et al., 2015). Similar to 

glucose, the recovery of the hemicellulosic-derived sugars also decreased in the case of higher 

pre-treatment temperature.  

 

 

 

 

 

 



 

 

 

Table 4-3: Effect of thermal pre-treatment (at 126 oC and 135 °C) of a rapeseed meal suspension (10 %, w/v) followed by 15% (v/v) of Accellerase 1500 

treatment for 24 hrs on hydrolysis yield and sugar concentrations. 

 

Temperature 

(T°C) 

 Time 

(min) 
Hydrolysis Yield (%) Concentration (g/l) 

Glu Xyl Gal Glu Xyl Gal 

Control 

(no pre-treatment) 

29.82 (0.31)a 19.82 (0.36)a 79.28 (1.43)a 6.01 (0.06)a 0.95 (0.02)a 3.81 (0.07)a 

126  15 37.37 (0.22)cd 15.59 (0.32)a 62.37 (1.27)a 7.54 (0.04)cd 0.74 (0.02)a 2.97 (0.06)a 

126  30 40.44 (2.12)bc 16.97 (0.82)b 67.88 (3.27)b 8.15 (0.43)bc 0.81 (0.04)b 3.24 (0.16)b 

126  60 34.25 (0.15)c 16.67 (0.09)b 66.69 (0.36)b 6.91 (0.03)c 0.79 (0.01)b 3.18 (0.02)b 

135  15 38.06 (0.66)b 16.74 (0.33)b 66.95 (1.32)b 7.67 (0.13)b 0.80 (0.02)b 3.19 (0.06)b 

135  30 38.46 (0.31)b 15.72 (0.16)a 62.89 (0.63)a 7.75 (0.03)b 0.75 (0.01)b 3.00 (0.01)b 

Different letters (a-c) represent significant differences among the data in the same column (p<0.05) 



 

 

Figure 4-3 shows the scanning electron microscope images of rapeseed meal before and 

after pre-treatment/ hydrolysis. Each process stage resulted in structural changes in the rapeseed 

meal. The untreated sample (Figure 4-3A) showed a firm, smooth, flat and highly ordered 

surface. Treatment with Accellerase 1500 (Figure 4-3B) mildly changed the surface of the 

rapeseed meal rendering it slightly rougher compared to the non-treated sample. Thermal pre-

treatment (126 °C, 30 min) resulted in a highly dispersed structure with a rough surface (Figure 

4-3C), indicating that the open and rough surface of the rapeseed meal could be more 

susceptible to enzymatic hydrolysis. The combination of heat and enzymatic treatment lead into 

the highly porous surface of the rapeseed meal (Figure 4-3D), indicating a greater degree of 

cellulosic disruption under these treatment conditions.  
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Figure 4-3: Scanning electron microscopy images of rapeseed meal: A) untreated; B) after 

treatment with 10% Accellerase 1500 for 24 hrs; C) after thermal pre-treatment (126 °C; 30 

mins); and D) after thermal pre-treatment (126°C; 30 mins) followed by enzymatic hydrolysis 

with 10 % (v/v) Accellerase 1500. 
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The effect of the solid substrate on the enzymatic hydrolysis of rapeseed meal is 

depicted in Figure 4-4. Overall, an increase in the substrate concentration resulted in lower 

sugar yield for both the control and the pretreated samples. More specifically, as the rapeseed 

meal concentration increased from 10 to 40 % (w/v) the glucose hydrolysis yield decreased 

gradually, reaching a value of 24 % (w/w) for the 40 % w/v sample. In the case of the 50 % 

(w/v) rapeseed meal concentration, it was noted that the liquid of the reaction mixture was 

absorbed and retained by the solids, resulting in low water activity. Consequently, inadequate 

enzymatic hydrolysis with 18 % (w/w) of glucose yield was obtained for pretreated samples. 

These findings are in accordance with the study by López-Linares et al. (2014) who reported 

that increasing the solid/liquid ratio (from 20 to 30 %) resulted in decreased of enzymatic 

efficiency (by ~10%)  in rapeseed straw, which could be attributed to enzyme inhibition by 

glucose released (product inhibition). Furthermore, increased substrate concentration might 

lead to insufficient mixing and thus heat and mass transfer limitations, particularly with the use 

of greater than 20 % (w/v) of substrate (Kristensen et al., 2009). It is important to note that even 

though increasing the substrate concentration resulted in lower sugars recoveries, high substrate 

loadings (e.g. > 30 % w/v) could be considered as an option to increase the sugar concentrations 

in the produced hydrolysates (Wanderley, Martín, Rocha, & Gouveia, 2013).  
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Figure 4-4: Effect of substrate concentration on the enzymatic hydrolysis of pretreated rapeseed 

meal using 10 % (w/v) of Accellerase 1500. Conditions of pre-treatment: Temperature (126 

°C), pressure (~2 bar) for 30 mins. Conditions of Accellerase hydrolysis: Temperature 50°C for 

24 hrs. Symbols: Glucose (●, g/l), xylose (■, g/l), galactose (♦, g/l). The same symbols on the 

dotted line represent the same sugars following pre-treatment at 121°C for 30 mins. 

  

4.3.3 Microbial Production of Astaxanthin in Rapeseed Meal Hydrolysates 

A key objective of this study was to investigate the suitability of rapeseed meal 

hydrolysates as potential fermentation media for the microbial production of astaxanthin. 

Therefore, rapeseed meal hydrolysates produced by the action of the four commercial enzymes 

were initially tested in flask cultures for their capability to support X. dendrorhous growth and 

astaxanthin production.  

As shown in Table 4-4, significantly different cell biomass and astaxanthin production 

values were obtained depending on the hydrolysate. In terms of cell and astaxanthin 

concentrations, the best substrate was the pectinase hydrolysate (~26 g/l of cell biomass, 6.7 g/l 

of astaxanthin) and the worst was the Viscozyme hydrolysate (~3 g/l of cell biomass, 0.4 g/l of 
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astaxanthin).  In terms of astaxanthin yield on biomass (Yp/x), the highest value (332 µg/g) was 

obtained when Accellerase 1500 hydrolysate was used. In the pectinase hydrolysate, the Yp/x 

value was 258 µg/g, whereas, lower values were obtained for the Viscozyme hydrolysate (156 

µg/g) and the cellulase hydrolysate (71 µg/g). The low astaxanthin concentrations obtained in 

the Viscozyme and cellulase hydrolysates were most likely associated with the relatively high 

hexose concentrations (> 50 g/l). Such high sugar concentrations can initiate the Crabtree effect 

in X. dendrorhous which changes the yeast metabolism from respiration to alcoholic 

fermentation, leading to ethanol production, which inhibits cell growth and astaxanthin 

accumulation in the cells (Liu, 2006; Marova, Certik, & Breierova, 2011; Yamane et al., 1997). 

Indeed, in the case of the Cellulase hydrolysate the highest amount of ethanol was produced 

(6.9 g/l) and the second highest in the case of Viscozyme (3.8 g/l). In the former, the high 

glucose concentration of the hydrolysate (45 g/l) benefited cell biomass production (14 g/l) but 

compromised the production of astaxanthin during secondary metabolism (1.1 mg/l); a similar 

trend was observed in the latter. 

However, in the case of the pectinase hydrolysate, no ethanol was detected, indirectly 

indicated that the Crabtree effect was suppressed as glycerol was the predominant carbon source 

in the medium rather than hexose sugars. In the case of Accellerase 1500 hydrolysis, two types 

of rapeseed meal samples were used (untreated samples and thermal pretreated samples). 

Between these two samples, different fermentation results were obtained with pretreated 

samples resulting in higher biomass (12 g/l) and astaxanthin production (3.2 mg/l). It is 

interesting to note that the maximum ethanol detected in this fermentation was in very small 

amounts (< 1 g/l).  
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Table 4-4:  Growth of X. dendrorhous and astaxanthin production in different rapeseed meal 

hydrolysates at 20 oC  

Rapeseed meal 

hydrolysates 

Time (h) Biomass (g/l) P 

(mg/l) 

Yp/x 

(µg/g) 

EtOHmax (g/l) 

Viscozyme L 115 3.07 ± 0.07 0.4 ± 0.03 156 ± 11.75 3.8 ± 0.13 

Cellulase 115 14.63 ± 0.64 1.10 ± 0.18 71 ± 11.4 6.92 ± 0.00 

Pectinase 120 25.83 ± 1.52 6.71 ± 0.44 258 ± 1.83 - 

Accellerase 1500 118 8.2 ± 0.01 2.69 ± 0.05 332 ± 12 2.02 ± 0.15 

Thermal treated 

(126 oC, 30 min) 

plus Accellerase 

1500 

140 11.95 ± 0.35 3.2 ± 0.4 271 ± 26.4 0.5 ± 0.01 

Yp/x: Yield of astaxanthin on biomass produced. 

EtOHmax: Maximum ethanol concentration produced during the fermentation 

P: Astaxanthin production (mg/l) 

 

Figure 4-5 depicts the kinetic profile of X. dendrorhous in the Accellerase 1500 

hydrolysate of the thermally pretreated rapeseed meal. The total initial sugar concentration of 

the hydrolysate accounted for 16 g/l (in the form of glucose, galactose and xylose). The 

adaptation period for the yeast in this hydrolysate was rather long (~ 68 hrs) before the cells 

started to consume the available sugars. This probably could be attributed to the presence of 

growth inhibitors that most likely had accumulated in the hydrolysate during the thermal pre-

treatment step, such as HMF and furfural, as shown previously for lignocellulosic materials 

(Sun and Cheng, 2002). During the exponential phase (68 hrs - 92 hrs), the cells consumed all 

sugars simultaneously and in parallel to cell growth also produced astaxanthin, which continued 

to be produced during the stationary phase (93 hrs - 140 hrs). During the exponential phase, a 

small amount of ethanol was produced (~2 g/l), which was later consumed during the stationary 
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phase after all the available sugars were exhausted. Whilst high ethanol concentrations are 

undesirable during the initial fermentation stages as it inhibits the yeast growth, low ethanol 

concentrations have been reported to stimulate astaxanthin pigmentation in yeast (Gu et al., 

1997; Marcoleta et al., 2011).  

Marcoleta et al. (2011) suggested the involvement of two possible mechanisms in the 

induction of pigmentation by ethanol. The first proposed mechanism involves the enzyme 

aldehyde oxidase that generates superoxide radicals, which are responsible for the induction of 

carotenoid synthesis. The second mechanism is the conversion of ethanol by alcohol 

dehydrogenase to acetate; in the presence of energy (ATP), acetate can then be converted to 

acetyl CoA, which is the major precursor for both the tricarboxylic acid (TCA) cycle and the 

mevalonate pathway, the latter being responsible for carotenoid production (Marcoleta et al., 

2011; Thomson et al., 2005). In addition, ethanol might induce the production of pigments by 

inducing the expression of phytoene β-carotene synthase (crtYB) and astaxanthin synthase 

(crtS) genes, which are responsible for the production of carotenoids in the mevalonate pathway 

(Marcoleta et al., 2011). The observed decrease in the ethanol concentration indicated the 

presence of alcohol dehydrogenase in this particular X. dendrorhous strain and the generated 

acetyl-CoA was used for astaxanthin synthesis (hence the increase in astaxanthin concentration 

during the stationary phase) rather than for the production of biomass through the TCA cycle.  
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Figure 4-5 : Kinetic profile of (A) carbon sources consumption and (B) product formation 

during X. dendrorhous growth in pectinase rapeseed meal hydrolysate. Symbols represent: (●, 

g/l), galactose/xylose concentration (◆, g/l), dry cell weight (DCW) (Δ, g/l), ethanol 

concentration (EtOH) (○, g/l), astaxanthin concentration, P (▲, mg/l) and astaxanthin yield on 

biomass, Yp/x (□, μg/g of ); Enzymatic hydrolysis conditions: Thermal pre-treatment of rapeseed 

meal (10 % w/v) at 126 oC for 30 mins, followed by Accellerase 1500 treatment (10% v, v) for 

24 hrs at 50°C. Fermentation conditions: Temperature, 20°C; agitation, 250rpm. 
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Figure 4-6 depicts the kinetic profile of X. dendrorhous cultivated in the pectinase 

hydrolysate. The hydrolysate consisted of ~15.7 g/l of sugars (glucose, galactose, xylose and 

arabinose) as well as 40 g/l of glycerol, which was originally present in the enzyme formulation. 

All sugars were utilised by the cells, with glucose being the most preferred one (hence utilised 

first), followed by the hemicellulose derived sugars. Once all sugars were exhausted, glycerol 

was utilised as an energy and carbon source. In contrast to the Accellerase 1500 hydrolysate, 

the cells did not experience a lag phase in the pectinase hydrolysate (as the rapeseed meal was 

not thermally treated in this a case). The cells continued to grow for the whole of the 

fermentation period (1 hr - 120 hrs) and showed a growth pattern similar to diauxic growth, 

reflecting the sequential consumption of sugars and glycerol. The cell biomass achieved in the 

case of the pectinase hydrolysate was the highest amongst all hydrolysates (~ 26 g/l). This was 

due to the relatively low sugar concentration and the fact that glycerol, which was present in 

high amounts does not initiate a Crabtree effect. Astaxanthin was produced throughout the 

fermentation, including during the glycerol consumption phase. The astaxanthin concentration 

at the end of the fermentation was 6.7 mg/l, significantly higher than in the case of the two 

Accellerase 1500 hydrolysates (2.7 and 3.2 mg/l) although the astaxanthin yield was slightly 

lower (Figure 4-6). The reason for this could be the fact that in the case of the Accellerase 1500 

hydrolysates, small amounts of ethanol were produced which (as discussed above) can 

potentially stimulate astaxanthin production, whereas in the pectinase hydrolysate fermentation 

ethanol was not detected. Another reasoning for the lower astaxanthin yield could be the 

absence of certain minerals, which are important for carotenoid production in the pectinase 

hydrolysate (Sanpietro, 1998). More specifically, several metals including zinc, iron, copper 

and magnesium have been reported to act as carotenoid inducers in certain yeast species such 

as Rhodotorula glutinis and Rhodotorula graminis (Mata-Gómez et al., 2014). Moreover, Wang 

et al. (2000) suggested that high levels of antinutritional components such as glucosinolates and 

phenols, which are present in rapeseed meal might also inhibit carotenoid synthesis. 
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To our knowledge, no analogous works are currently available in the literature 

investigating the use of rapeseed meal for the growth of X. dendrorhous. However, previous 

studies have reported that X. dendrorhous was able to grow well on enzymatic hydrolysates of 

wood supplemented with glucose and produce under optimised conditions approximately 1.8 

mg of total carotenoids/l (Parajó et al., 1997). In this study, the rapeseed meal hydrolysates 

were able to support higher astaxanthin production concentration and yields, indicating that this 

medium had the sufficient nutrients present for optimal cell growth. In a different study, 5% 

molasses supplemented with urea (30 g/l) and sodium phosphate (4.5 g/l) were used to cultivate 

X. dendrorhous GM807 in shake flasks. Results showed that the use of molasses demonstrated 

positive effects on yeast growth (3.5 g/l), but not on the astaxanthin formation (105 µg/g) 

(Jirasripongpun et al., 2007). In a study by Ramírez et al., (2006) it was reported that a mutant 

strain of Xanthophyllomyces dendrorhous was cultivated in a Yucca plant-based medium 

supplemented with date juice in a fed-batch fermentation system and resulted to very high cell 

biomass (39 g/l), astaxanthin production (24 mg/l) and astaxanthin yield (600 µg/g). This 

indicates the potential to genetically engineer X. dendrorhous strains in order to achieve high 

conversion yields, which will render the potential commercialisation of the microbial 

production of astaxanthin from low value agri-food materials such as rapeseed meal more 

economically viable.   
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Figure 4-6 : Kinetic profile of (A) carbon sources consumption and (B) product formation 

during X. dendrorhous growth in pectinase rapeseed meal hydrolysate. Symbols represent: 

Glucose (●, g/l), arabinose (▼, g/l), yield of astaxanthin on biomass Yp/x (□, µg/g), 

galactose/xylose (♦, g/l), astaxanthin production P (▲, mg/l), dry cell weight (∆, g/l), glycerol 

(×, g/l). *Galactose and xylose are indicated as one in the graph due to similar retention time 

when analysed using HPLC (Aminex HPX-87H column). 
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4.4 Conclusions 

The rapeseed meal by-product generated from the rapeseed oil processing industry has 

the potential to be used for the microbial production of astaxanthin. Thermal treatment of the 

meal followed by treatment with specific enzymes can result in a nutrient rich medium that is 

able to support high growth of X. dendrorhous and astaxanthin production. Controlling the 

sugar levels in the rapeseed meal hydrolysate through an effective selection of the primary 

processing steps is critical to ensure the prevention of the Crabtree effect. This approach offers 

a sustainable alternative to chemically synthesise astaxanthin and can stimulate the circular 

bioeconomy through the utilisation of low value abundant resources.  
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5 Bioconversion of Rapeseed Meal into Astaxanthin by 

Xanthophyllomyces dendrorhous DSMZ 5626 in a 2-Litre Stirred Tank 

Bioreactor 

 

Abstract 

Rapeseed meal, a by-product of oil seed processing industry, was evaluated as an 

alternative, low-cost substrate for microbial astaxanthin production in yeast Xanthophyllomyces 

dendrorhous DSMZ 5626. This study is divided into two parts; the first part aimed to investigate 

the effect of processing fermentation parameters (pH and agitation) using semi-defined media. 

These defined the basis for the second part that involved the use of enzymatically produced 

rapeseed meal hydrolysates as fermentation media. In semi defined media, the effect of 

controlling pH and agitation were evident as significant reduction in both biomass and 

astaxanthin production was observed when the culture pH was not controlled and low agitation 

speed was applied. By combining pH control at 6 and agitation speed at 250 rpm, the yeast 

produced 8 g/l of biomass and 2 mg/l of astaxanthin. When agitation speed was increased to 

600 rpm, significant increase in biomass (16.4 g/l) and astaxanthin production (3.6 mg/l) was 

obtained due to efficient mixing that ensured better oxygen supply as well as maintained 

satisfactory levels of heat and mass transfer inside the reactor during fermentation. In the second 

part of study, rapeseed meal hydrolysates were tested as fermentation media for microbial 

astaxanthin production using separate hydrolysis and fermentation (SHF) approach in batch and 

fed-batch fermentation modes. Batch fermentation with pectinase derived rapeseed meal 

hydrolysates supported both biomass (42 g/l) and astaxanthin production (11 mg/l) as the 

presence of glycerol from the enzyme formulation acted as additional carbon source for yeast 

growth. In Accellerase 1500 derived hydrolysates, 14 g/l of biomass were produced with 3.6 
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mg/l of astaxanthin. However, the astaxanthin yield on biomass (Yp/x) did not differ 

significantly (242-251 µg/g) between these two hydrolysates. In fed-batch fermentations using 

Accellerase 1500 derived hydrolysates supplemented with 13 g/l of glycerol, astaxanthin 

production was lower (3.2 mg/l), indicating that glycerol addition to the fermentation resulted 

in adverse effects on astaxanthin metabolism. Overall, this study demonstrated that rapeseed 

meal has a potential as fermentation medium in supporting yeast growth and astaxanthin 

production in X. dendrhorhous DSMZ 5626.    

Keywords: rapeseed meal hydrolysate, SSF, batch, fed-batch, bioreactor, astaxanthin, X. 

dendrorhous, yeast 
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5.1  Introduction 

Carotenoids are pigments that are responsible for orange, yellow, red and purple colours 

in a wide variety of plants, animals and microorganisms. β-Carotene, lycopene, astaxanthin and 

lutein are among the most prominent carotenoids reported. The growing demands for 

carotenoids in various industries such as aquaculture, feed, pharmaceutical, cosmetics, food and 

pet food industries has gained interest among researchers to increase the natural production of 

these compounds.  

Among carotenoids, astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione; C40H52O4) 

belongs to xanthophylls group and has high demand in the market for its colouring and 

antioxidant properties as well as its health benefits (Rodríguez-Sáiz et al., 2010). It is an orange-

pinkish pigment that can be found in a wide range of animals including fish (salmon, trout), 

shrimp and bird’s feather (flamingo) (Guerin et al., 2003). The demand of astaxanthin is high 

as animals do not have the ability to synthesize astaxanthin and as such, astaxanthin is added 

into their feed. The market values for astaxanthin were $369 million in 2014 and are forecasted 

to reach $423 million in 2019 (BBC Research, 2015). Currently, the demand of astaxanthin is 

fulfilled by chemical synthesis through petroleum based reactions. Since the demand for 

astaxanthin is high, the research interest on alternative pathways of natural astaxanthin 

production has increased. One such way represents the biotechnological route, through the 

utilisation of algae, bacteria and yeast.  

Apart from microalgae, (Haematococcus pluvialis), the yeast Xanthophyllomyces 

dendrorhous (previously known as Phaffia rhodozyma) is one of the most promising 

microorganisms for the commercial production of natural astaxanthin. This is due to the fact 

that the growth rate in yeasts is shorter than in microalgae and that yeasts have the ability to 

grow on various carbon sources including glucose, cellobiose, xylose and glycerol. Attempts 



149 

 

on using low-cost substrates such as agricultural by-products for microbial astaxanthin 

production have been previously made (Jirasripongpun et al., 2007; Parajó, Santos, & Vázquez, 

1998; Vázquez et al., 1998). To achieve this, the agriculture residues need first to be hydrolysed 

by chemical and/or enzymatic treatment into fermentable sugars. Several studies have utilised 

various agricultural by-products as fermentation substrates including pine wood (Parajó et al., 

1997), Eucalyptus wood hydrolysates (Vázquez et al., 1998), molasses (Jirasripongpun et al., 

2007), by-products of wet corn milling (Hayman, Mannarelli, & Leathers, 1995) and mussel 

waste water processing (Amado & Vázquez, 2015) as substrates for carotenoid production.  

In the standard approach of lignocellulosic bioconversion strategy, separate 

saccharification and fermentation (SHF) process is performed. In this approach, lignocellulosic 

hydrolysis is carried out separately and the obtained hydrolysates are then subjected to 

microbial fermentation (Mosier et al., 2004; Öhgren et al., 2007; Taherzadeh & Karimi, 2007). 

Simultaneous saccharification and fermentation (SSF) is another method that can be applied for 

bioconversion of lignocellulosic materials into value added products. In this process, sugars are 

produced during hydrolysis step and directly consumed by the microorganism present in the 

reactor. This technique provides the possibility to overcome the main disadvantages of enzyme 

hydrolysis, including the reduction of the potential of product inhibition (glucose and 

cellobiose) on cellulase activity by maintaining a low concentration of the end-products of 

enzymatic reaction (Taherzadeh and Karimi 2007). Furthermore, this method could reduce the 

risk of contaminations compared to separate hydrolysis and fermentation (SHF). This approach 

has been reported to enhance bioethanol production in yeast, Saccharomyces cerevisiae by 

utilising lignocellulosic biomass from paper manufacturing industry (Kádár, Szengyel, and 

Réczey 2004), corn stover (Öhgren et al. 2007) and sugarcane bagasse (Zhao, Song, and Liu 

2011). 
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Various cultivation modes including batch, fed-batch and continuous have been 

investigated for carotenoid production in yeasts, either in lab or pilot scale (Meyer & Du Preez, 

1994; Montanti et al., 2011; Valduga et al., 2014). In the case of some yeast species cultivated 

on batch mode, high initial carbon concentrations (usually glucose) result in suppression of 

yeast growth as well as product formation due to Crabtree effect (Liu & Wu, 2008; Yamane, 

Higashida, Nakashimada, Kakizono, & Nishio, 1997). It has been demonstrated that X. 

dendrorhous undergoes Crabtree effect, a phenomenon where cells metabolically switch to 

fermentative metabolism leading to ethanol production even under ample oxygen supply when 

initial glucose present is above a given threshold (strain dependent) (Reynders et al., 1997; 

Yamane et al., 1997). Fed-batch cultivation mode is considered as an appropriate strategy to 

overcome such issues, as it allows the addition of one or more nutrients to the reactor during 

fermentation in order to maintain the concentration of the substrate below its inhibitory levels 

(Yen, Liu, & Chang, 2015).  

This study aimed to investigate the production of astaxanthin in Xanthophyllomyces 

dendrorhous, using enzymatically hydrolysed rapeseed meal as fermentation feedstock. 

Initially, the experiments were conducted using semi-defined media to optimise the 

fermentation parameters. The optimised conditions were then applied in lab-scale bioreactor 

cultures using rapeseed meal hydrolysates under batch and fed-batch mode. Besides that, the 

feasibility of using pre-hydrolysis and simultaneous saccharification and fermentation (pSSF) 

was also investigated. Thus, the main contribution of this chapter is to provide detailed 

information on the suitability of low-cost substrates as in the case of rapeseed meal as sole 

fermentation feedstock for astaxanthin production in X. dendrorhous. 
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5.2 Materials and methods 

5.2.1 Microorganism  

The yeast strain Xanthophyllomyces dendrorhous DSMZ 5626 was used in this study and 

was purchased from Leibniz Institute DSMZ. The strain was proliferated and maintained in 

Yeast and Mold (YM) media containing (in g/l): yeast extract (3.0); malt extract (3.0); peptone 

from soybean (5.0); glucose (10.0) and agar (15). Stock yeast cultures were stored at -80 °C 

until further use.  

For the preparation of the inoculum, a loopful of stock yeast culture was inoculated on 

sterilised commercial YM agar (Sigma Aldrich, UK) and incubated at 20 °C for 5 days. After 

that, a single colony of yeast X. dendrorhous was transferred in 30 ml of YM broth media 

(similar composition as above) for cell proliferation and was incubated for 3 days prior to 

inoculation in semi defined media. Finally, a suspension of X. dendrorhous was transferred into 

50 ml of semi defined media to a final optical density (OD) measurement of 0.1. The optical 

density measurement was conducted using a Biomate 3 UV/VIS Spectrophotomer (Thermo 

Spectronic, NY). The composition of semi defined media was as follows (in g/l): carbon source 

(30), yeast extract (2.0), malt extract (2.0), KH2PO4 (7.0), (NH4)2SO4 (1.0), MgSO4.7H2O (1.5), 

FeCl3.6H20 (0.15), ZnSO4.7H2O (0.02), MnSO4.H2O (0.06), CaCl2.2H2O (0.15).  

5.2.2 Raw materials 

The rapeseed meal that was used in this study was kindly provided by Stainswick Farm 

(Oxfordshire, United Kingdom) and was generated via cold pressing oil extraction technique. 

The fresh rapeseed meal (Chapter 4) had the following composition (w/w): oil, 16.7%; protein, 

25.3%; lignin, 16.1%; ash, 5.3% and carbohydrate, 34.2%. Rapeseed meal samples were 
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grinded using dry-grinder and sieved to obtain uniform size of particles (< 850 µm). After that, 

oil was removed using a supercritical carbon dioxide (CO2) extractor rig (SciMed, UK) at 70 

°C and pressure at 350 bar for 1 h, with ethanol (10%, v/v) as the co-solvent. The residual 

defatted meal was kept at 4 °C prior to use. 

5.2.3 Production of Rapeseed Meal Hydrolysates 

In this work, two commercial cellulase mixtures were used for enzymatic hydrolysis of 

rapeseed meal; Accellerase 1500 (kindly provided by DuPont, Leiden, Netherlands) and 

pectinase (Novozymes). Both enzymes contained a mixture of cellulolytic activities that were 

given in detail in Chapter 4.  

150 g of defatted rapeseed meal (10 % w/v) was heat pretreated in a 2-litre glass bottle 

containing 1.35 litre of distilled water in an autoclave at 126 °C for 30 min. After cooling down 

the rapeseed meal, 150 ml of enzyme (10% v/v) were added to the vessel. Enzymatic hydrolysis 

was carried out in an orbital shaker (GFL 3015, SciQuip, UK) at 250 rpm at 50 °C for 24 h. 

Heat inactivation was applied at 95 °C for 10 min in a water bath (GD 120, Grant, Cambridge). 

The produced hydrolysates were then filter-sterilised using 0.25 µm Millipore stericup unit 

(EMD Millipore StericupTM) and were kept at 4 °C prior to use.  

5.2.4 Bioreactor setup 

In this study, a 2-litre stirred tank bioreactor (BIOSTAT B, Sartorious AG, German) was 

used with a working volume of 1.5 litres. This unit consisted of a double jacketed 2-litre vessel 

with an integrated digital control unit (DCU) that controlled the speed, air flow, temperature 

and pH of the fermentation. The vessel was equipped with baffles, 3 units of 6-bladed impellers 

as well as multiple ports for sensors for fermentation control. The temperature was controlled 
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by circulating warm/cold water through the double jacket vessel whereby air was supplied via 

compressed air. The pH of the fermentation was controlled by Easy Ferm pH probe (Hamilton, 

Switzerland) and the pH corrective solutions used were 5 M sodium hydroxide and 5 M 

hydrochloric acid. Antifoam 204 (10% v/v) (Sigma Aldrich) was used to prevent foaming 

during fermentation. Dissolved oxygen (DO) was controlled by a DO-probe (OxyFerm, 

Hamilton, Switzerland). Prior to each fermentation experiment, the bioreactor was sterilised at 

121 °C for 20 min, unless stated otherwise. In all fermentation studies, samples were taken at 

regular time intervals for 5 days and analysed as described in section 5.2.7.  

5.2.5 Fermentation with semi defined media 

The X. dendrorhous cultivation in semi defined media was performed in a 2-litre 

bioreactor with a working volume of 1.5 litres as described in section 5.2.4. The composition 

of semi defined media was as described in section 5.2.1. Initially, 1.5 litres of synthetic media 

were prepared, added in the reactor and autoclaved at 121 °C for 20 min prior to yeast 

inoculation. Batch fermentation was carried out at different process parameters to investigate 

the best conditions for microbial astaxanthin production in X. dendrorhous including: (i) pH 

(pH 6 and uncontrolled pH) and (ii) agitation speed (250, 400 and 600 rpm). Other processing 

parameters were maintained as follows: temperature, 20 °C; aeration, 1 l/min. 

Fed-batch cultivation approach was also conducted using semi defined media as 

described in section 5.2.1. Two different refined carbon sources, glucose and glycerol, were 

used as feeding solutions. 10 g/l of feed solution were added to the bioreactor once the values 

of dissolved oxygen increased during fermentation (DO-stat approach). Fermentation 

conditions were controlled as follows:  temperature, 20 °C; pH 6; agitation speed, 600 rpm; 

aeration, 1 l/min. 
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5.2.6 Fermentation with Rapeseed Meal Hydrolysates 

5.2.6.1 Separate hydrolysis and fermentation (SHF) 

Filter sterilised rapeseed meal hydrolysates (1.5 litres) were prepared as described in 

section 5.2.3 and aseptically transferred to a 2-litre bioreactor, previously autoclaved at 121°C 

for 20 min. In fed-batch fermentations, experiments were initiated in similar way as in batch 

ones. 10 g/l of glycerol solution was manually and aseptically added to the bioreactor after 

dissolved oxygen values showed an increasing trend during fermentation (DO-stat approach). 

Fermentation conditions were as follows; temperature, 20 °C; pH 6; agitation speed, 600 rpm; 

aeration, 1 l/min. 

5.2.6.2 Pre-hydrolysis and fermentation (pSSF)  

In pre-hydrolysis and fermentation (pSSF) approach, the enzymatic hydrolysis of 

rapeseed meal and the subsequent fermentation were performed in one reactor. Two different 

enzymes were separately tested in this study (pectinase and Accellerase 1500). Firstly, 150 g/l 

of rapeseed meal (10% w/v) were added to the reactor with 1.35 litre of distilled water. The 

bioreactor unit was then subjected to autoclaving at 126 °C for 30 min. After cooling, 150 ml 

of enzyme were added to the fermentation vessel and the hydrolysis step was initiated at 50 °C 

for 24 h. Agitation was controlled at 250 rpm during this period. Once the hydrolysis step was 

completed, the vessel was cooled down to 20 °C followed by inoculation of 5% (v/v) of X. 

dendrorhous suspension. Fermentation conditions were as follows; temperature, 20 °C; pH 6; 

agitation speed, 600 rpm; aeration, 1 l/min. 
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5.2.7  Analytical methods 

In the case of batch bioreactor cultures using semi-defined media and SHF 

fermentations, samples of ~2 ml were periodically withdrawn from the bioreactor. 1 ml of 

sample was added into a pre-dried tube (24 h in drying oven at 100°C) and centrifuged at 10845 

x g for 10 min. The supernatant was collected for sugar and ethanol analysis. The pellet was 

washed twice using distilled water and was frozen at -20°C prior to freeze drying for 2 days 

(Virtis, UK). The dry weight of yeast biomass was calculated as the difference between the 

weight of the tubes before and after freeze drying process. 

As for SSF technique, cell growth was observed by total plate count method. Hence, 

100 µl of serially diluted samples were plated on Yeast and Mold agar plates (YM agar) and 

incubated at 20°C for 5 days. The calculation for colony forming unit (CFU) were calculated 

as in Eq 5-1:  

𝐶𝑈 𝑚𝑙−1 =
𝑁𝑜 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑚𝑙)
 

Eq 5-1 

Sugars (glucose, xylose, galactose and arabinose), glycerol and ethanol were analysed 

by high performance liquid chromatography (HPLC) using an Agilent Infinity 1260 system 

(Agilent Technologies, USA) with Aminex HPX-87H column (Bio-rad, CA) column coupled 

to a differential refractometer and a DAD detector. Operating conditions were as follows: 

sample volume: 20µl; mobile phase: 0.5 mM H2SO4; flow rate: 0.6 ml/min; column 

temperature: 65 °C. The quantification of each chromatogram peak was achieved on the basis 

of external standard curves, using standard solutions of known concentrations. 
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Astaxanthin extraction was carried out according to Sedmak  et al (1990). Briefly, 1 ml 

of dimethyl sulfoxide (DMSO) was preheated at 55 °C and added to the freeze-dried biomass, 

followed by vortexing for 30-40 sec. Subsequently, 0.2 ml of 20 % sodium chloride (NaCl) and 

1.0 ml of acetone were added to the mixture to extract the intracellular carotenoids. The aqueous 

and organic phases were separated by centrifugation at 5423 x g for 5 min. The extraction 

process was repeated until colourless biomass was obtained. The organic phases were pooled 

together and their absorbance was measured at 480 nm in a spectrophotometer. DMSO solution 

was used as blank. Values were then divided by the extinction coefficient of 2150. The equation 

for total carotenoids concentration is given in equation below (Eq 5-2); 

𝐶𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝜇𝑔 𝑔⁄ ) =  
𝐴 × 𝑉 (𝑚𝐿) × 104

𝐴1𝑐𝑚
1%  × 𝑊 (𝑔)

 

Eq 5-2 

    

where, A is the absorbance at 480 nm, V is the volume, 𝐴1𝑐𝑚
1%  is the coefficient (2150) 

and W is the weight of biomass. 

5.3 Results and discussion  

5.3.1 Fermentations using semi-defined media 

Cultures of X. dendrorhous were performed in a 2- litre bioreactor using semi defined 

media with glucose (30 g/l) as carbon source. The semi defined media were selected to 

investigate the yeast growth in a controlled environment with a view to optimise the process 

parameters (pH and agitation) of the bioreactor operation. The optimised parameters were then 
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applied in bioreactor fermentations using rapeseed meal hydrolysates as sole fermentation 

feedstock.  

5.3.1.1 Batch fermentations - effect of pH 

Figure 5-1 depicts the fermentation profile of X. dendrorhous DSMZ 5626 using semi 

defined media in 2-L stirred tank bioreactor. Around 8 g/l of dried biomass and 2 mg/l of 

astaxanthin were produced after 105 h under controlled pH. In the case of uncontrolled pH, the 

initial pH of the culture was 5.97, and was progressively decreased to 4.2 after 48 h of 

fermentation, at time point in which cell growth was suppressed, as demonstrated by poor 

biomass (1.5 g/l) and astaxanthin production (0.2 mg/l). At the end of fermentation, the pH of 

the culture had dropped to 3.8, indicating a highly acidic culture environment. Low pH 

environment is known to cause acid stress to yeasts that results in reduced membrane 

permeability, anion extrusion and alters expression of genes that are key for yeast growth 

(Lopes Brandão et al., 2014; Yalcin & Ozbas, 2008).  

As observed in Figure 5-1A, glucose consumption was strongly influenced by the pH. 

In uncontrolled pH cultures, around 10 g/l of glucose were consumed by the yeast before cell 

growth was interrupted at 36 h due to acidic conditions (pH 4.2). This is in contrast with yeast 

growth in controlled pH cultures, where 30 g/l of glucose were fully consumed within 34 h of 

fermentation. Additionally, yeast metabolism by-products such as ethanol (2 g/l) and glycerol 

(1.2 g/l) were produced during fermentation. Hu et al., (2006) reported that the optimal pH for 

X. dendrorhous growth is at 6. When the pH largely deviates from its optimal range, it prevents 

the cells from maintaining their optimal intracellular pH, which in turn results in failure of key 

intracellular enzymatic functions (Narendranath & Power, 2005).  
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Figure 5-1: Growth profile of X. dendrorhous cultivated in 2-litre stirred tank reactor using semi 

defined media at different pH conditions. Symbols represent: (●)- controlled at pH 6, (○) - 

uncontrolled pH and (∆)- pH profile for uncontrolled experiment. Fermentation conditions; 

aeration, 1 l/min; temperature, 20 °C; agitation, 250 rpm. Abbreviations: AXN - astaxanthin; 

Glu – glucose.  
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5.3.1.2 Batch fermentations - effect of agitation speed 

The effects of three different agitation speeds (250, 400 and 600 rpm) on astaxanthin 

production were investigated under controlled pH (pH 6) and constant air flow rate (1 l/min). 

Figure 5-2 depicts the fermentation profile of X. dendrorhous in terms of yeast growth, 

astaxanthin production, dissolved oxygen, glucose consumption and ethanol production, in 

cultures with semi defined media and at different agitation speeds. It was clear that astaxanthin 

production was positively correlated with increasing agitation speed. Specifically, the highest 

agitation speed (600 rpm), supported both the highest astaxanthin yield (3.61 mg/l) and biomass 

production (16.35 g/l of dry weight) at 118 h of fermentation. In contrast at the lowest agitation 

speed (250 rpm), 2.4 mg/l of astaxanthin were produced with 8 g/l of biomass. As for yeast 

growth, X. dendrorhous entered into the stationary phase after 36 h of fermentation when 250 

and 400 rpm were applied, due to oxygen limitations in the bioreactor (< 20 %). On the other 

hand, at high agitation (600 rpm), the cell growth had a longer exponential phase, up to 70 h of 

fermentation (Figure 5-2C).  

Observing the dissolved oxygen values when agitation at 250 rpm was applied, DO 

readings fell at 0% after 20 h of fermentation and were maintained at low levels (<20%) until 

72 h. After that, DO levels increased to >80%, coinciding with the stationary growth phase of 

X. dendrorhous. However, when the agitation rate was increased to 400 and 600 rpm, the DO 

levels remained at > 40% for most of the fermentation duration. High agitation rates ensured 

sufficient dissolved oxygen supply that is required for cells growth. In terms of metabolites 

production, maximum ethanol concentration (EtOHmax) was observed at 2.1 g/l after 31 h of 

fermentation when agitation at 250 rpm was applied. However, at agitation speeds of 400 and 

600 rpm, minimal amount of ethanol was detected in the culture (< 1 g/l). This reduction in 

ethanol production indicated that Crabtree effect was reduced at higher agitation rates. It should 
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be noted that in all experiments, any produced ethanol was subsequently consumed by the yeast 

once glucose was depleted from the media. High agitation rates ensure better oxygen uptake 

rate by microorganisms as well as heat and mass transfers, enabling a satisfactory supply of 

nutrients and facilitating the removal of carbon dioxide from the culture medium (Valduga et 

al., 2011). It has been reported that medium to high agitation rates (300 - 900 rpm) increased 

yeast growth and astaxanthin production in X. dendrorhous (Luna-Flores, Ramírez-Cordova, 

Pelayo-Ortiz, Femat, & Herrera-López, 2010; Vázquez et al., 1998; Zheng et al., 2006). 

Sufficient supply of oxygen can enhance astaxanthin production by preventing NADH 

accumulation and supplying oxygen molecules to re-oxidize NADH into NAD+ as a starting 

material for astaxanthin biosynthesis (Yamane et al., 1997). Johnson & Shroeder (1996) have 

described the following stoichiometric equation for astaxanthin synthesis from glucose by X. 

dendrorhous (Eq 5-3). 

12 Glucose + 4O2 + 14NADPH + 48NAD+ = 1 Astaxanthin + 32CO2 +

14NADP+ + 48NADH + 12H2O + 34H+  

 

Eq 5-3 
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Figure 5-2: Effect of agitation speed on cell growth, astaxanthin production, ethanol production and glucose consumption in a 2-L bioreactor using semi defined 

media with 30 g/l of glucose as carbon source. (A) 250 rpm; (B) 400 rpm; (C) 600 rpm. Fermentation conditions: aeration, 1 l/min; temperature, 20 °C; pH 6. 

Symbols represent: ▲-astaxanthin, AXN (µg/ml); ●- glucose, Glu (g/l); ∆- dry cell weight, DCW (g/l); ○- ethanol, EtOH (g/l); + - dissolved oxygen, DO (%) 
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Based on Eq 5-3, the presence of oxygen is required to metabolise glucose into astaxanthin. 

Yamane et al. (1997) investigated the effect of oxygen supply on growth and astaxanthin 

production of X. dendrorhous by controlling the DO levels in the fermenter. They found out 

that increasing the DO (from 20% to 80%) benefited both biomass and astaxanthin production 

and could inhibit the occurrence of Pasteur and Crabtree effect which are related to high glucose 

concentrations. The Pasteur effect refers to the inhibition of glycolysis by respiration whereas 

Crabtree effect refers to the inhibition of respiration by glycolysis (Rodrigues, Ludovico, & 

Leão, 2006; Yamane et al., 1997).  

5.3.1.3 Fed-batch fermentations 

A key-objective of this study was to investigate the feasibility of fed-batch strategy on 

the improvement of biomass and astaxanthin yield in X. dendrorhous. To this end, dissolved 

oxygen control (DO-stat) was used as a substrate feeding indicator, due to the reverse 

dependence of carbon source with dissolved oxygen in the culture. Two types of feeding 

solutions were used, that of glucose (10 g/l) and glycerol (10 g/l). In batch fermentations, a 

sharp increase in dissolved oxygen levels was observed demonstrating a slow oxygen uptake 

by the microorganism, as a response to the starvation of nutrients in the fermenter. That was 

the point of feeding intervention applied in fed-batch cultivations.  

Figure 5-3 depicts the fed-batch fermentation kinetics for X. dendrorhous cultivated in 

semi-defined media with glucose (A) and glycerol (B) as feeding solutions. As shown in Figure 

5-2(A), glucose (10 g/l) was added at two time points (48 and 68 h) where DO values spiked 

from < 68% to 89% coinciding with the depletion of glucose in the fermenter (residual glucose 

concentration, 0-1 g/l). Following feeding of glucose, DO values reduced again indicating cell 
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activity. After 100 h of fermentation, 18 g/l of biomass and 4.8 mg/l of astaxanthin were 

observed after two feeding cycles.  

Fed batch fermentations with glycerol (10 g/l) as feeding solution were also performed 

(Figure 5-3B). After 100 h of fermentation, biomass (19 g/l) and astaxanthin production (4.8 

mg/l) were similar to those in fed batch cultures with glucose as feeding solution. Astaxanthin 

accumulation was initiated in the mid-exponential growth phase (~30 h) and went on until the 

end of the fermentation (~100 h). Overall, astaxanthin production increased by 25 % compared 

to the respective fermentation with glycerol in batch mode (3.6 mg/l). 

Fed-batch strategy has been implemented before to improve both yeast production and 

astaxanthin pigmentation in X. dendrorhous. Liu & Wu (2008) studied various feeding schemes 

including constant, exponential and optimal feeding (based on a mathematical model) with 

glucose as carbon source. They found out that the optimal feeding scheme resulted in high 

biomass (29 g/l) and astaxanthin production (27 mg/l) compared to batch mode (16.8 g/l of 

biomass and 15 mg/l of astaxanthin). Besides that, fed batch approach has been widely 

implemented as a strategy to improve biomass and astaxanthin production using low cost 

substrates as carbon sources such as mollases, wood hydrolysates and dates juice in X. 

dendrorhous (Luna-Flores et al., 2010; Moriel et al., 2005; Vázquez et al., 1998).
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Figure 5-3: Fed-batch cultivation of X. dendrohous in a 2- litre stirred tank bioreactor. (A) Fed-batch with glucose, (B) Fed-batch with glycerol. 

Fermentation conditions: aeration, 1 l/min; temperature, 20 °C; pH 6. Symbols represent: ▲-astaxanthin, AXN (µg/ml); ●- glucose, Glu (g/l); ∆- dry cell 

weight, DCW (g/l); ○- ethanol, EtOH (g/l); + - dissolved oxygen, DO (%). Arrows indicate feeding points. 
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5.3.2 Fermentations using rapeseed meal hydrolysate 

5.3.2.1 Batch Fermentations  

This section aimed to investigate X. dendrorhous growth and astaxanthin production 

using enzymatically hydrolysed rapeseed meal hydrolysates as the sole substrate with no 

nitrogen-based additives. Based on the results obtained in semi-defined media, the process 

parameters that were applied were: pH 6, agitation speed at 600 rpm, under constant aeration 

of 1 l/min and 20 °C. Besides that, separate saccharification and fermentation (SHF) strategy 

was implemented, whereby rapeseed meal hydrolysis was performed in a separate vessel, and 

prior to X. dendrorhous fermentation. Two types of rapeseed meal hydrolysates derived from 

different enzymatic treatments (Accellerase 1500 and pectinase) were used. The details of the 

enzymatic hydrolysis treatments are given in detail in Chapter 4.  

Figure 5-4 shows the growth profile of batch fermentation of X. dendrorhous in two 

different rapeseed meal hydrolysates and Table 5.1 presents the main fermentation data of these 

trials. The composition of rapeseed meal hydrolysates derived from Accellerase 1500 consisted 

of 13 g/l of total sugars (glucose, xylose and galactose). The utilisation of this hydrolysate as 

fermentation medium resulted in 14 g/l of biomass and 3.6 mg/l of astaxanthin (P). By 

observing the substrate consumption profile, it can be noted that glucose was used as a primary 

carbon source, and upon its depletion, hemicellulosic derived sugars were then consumed. As 

for astaxanthin yield on biomass (Y p/x), 250 µg/g of biomass were produced. These values were 

higher compared to those obtained in flask fermentations utilising rapeseed meal hydrolysates 

as substrate (12 g/l of biomass and 3.2 g/l of astaxanthin) as discussed in Chapter 4. It is evident 

that the optimised process conditions led to higher biomass and astaxanthin production, due to 

the provision of better dispersion of nutrients and adequate oxygen supply in the bioreactor, in 

which had a positive impact on cell growth and astaxanthin production.  
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As for batch bioreactor fermentations using pectinase derived hydrolysates, it consisted 

of 20 g/l of total monomeric sugars with the additional presence of glycerol (52 g/l) that was 

sourced from the enzyme formulation as previously mentioned (Chapter 4). X. dendrorhous 

cultivation in this hydrolysate was most preferable for biomass (42 g/l). The concentration of 

astaxanthin, P (10.2 mg/l) was positively correlated with high biomass production. These data 

clearly showed that glycerol acted as additional carbon source for biomass production; upon 

exhaustion of the main sugars in the media, glycerol started to be consumed as demonstrated 

by the diauxic growth curve on this occasion (indicated by an arrow in Figure 5-4B). The 

metabolic pathway for glycerol catabolism is discussed in detail in Chapter 3.  

Biomass production was positively correlated with increased sugars concentration in all 

tested hydrolysates. Observing the astaxanthin yield on biomass (Yp/x), the values for both 

hydrolysates were similar (~ 250 µg/g), indicating that the type of carbon source did not affect 

the accumulation of astaxanthin. In comparison with semi-defined media with 30 g/l of glucose 

as initial carbon source, it was expected that biomass production was higher (16 g/l) compared 

to Accellerase 1500 hydrolysates (14 g/l) that contained less carbon source available (13 g/l), 

however, astaxanthin production (P) were similar (3.6 mg/l) in both fermentation. This suggests 

the ability of the particular yeast to produce intracellular astaxanthin was higher in Accellerase 

1500 hydrolysates (Y p/x = 251 µg g) as compared to semi-defined media (Y p/x = 221 µg/g). 

The complex composition of the rapeseed meal hydrolysates that composed of mixtures of 

sugars, protein and other nutrients helps to promote in astaxanthin production in X. 

dendrorhous.
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Figure 5-4: Growth profile of X. dendrorhous cultivated in 2-L bioreactor with rapeseed meal hydrolysates as sole fermentation media. A) Accellerase 1500 

derived hydrolysates (15% v/v of enzyme and 10% w/v of substrate); B) pectinase derived rapeseed meal hydrolysates (10% v/v of enzyme and 10% w/v of 

substrate). Fermentation conditions: aeration, 1 l/min; temperature, 20 °C; pH 6. Symbols represent: ▲- astaxanthin, AXN (µg/ml); ●- glucose, Glu (g/l); ◆- 

xylose, xyl (g/l), ◇- galactose, galac (g/l), ✲- arabinose, Ara (g/l); ∆- dry cell weight, DCW (g/l); ○- ethanol, EtOH (g/l), × - glycerol, Gly (g/l); + - dissolved 

oxygen, DO (%).  
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Table 5-1: Fermentation data of X. dendrorhous in batch bioreactor cultures of rapeseed meal 

hydrolysates and semi-defined media  

Hydrolysates 
Time 

(h) 

Total carbon 

concentration 

(g/l) 

X (g/l) P (mg/l) Y p/x (µg/g) 

RSM+10% 

Accellerase  

 

112 13.3 ± 0.2 14.3 ± 0.9 3.6 ± 0.1 251 ± 5 

RSM + 10% 

Pectinase 

 

113 72.1 ± 4.3 42.0 ± 0.4 10.2 ± 0.2 242 ± 6 

Semi – defined 

media  

(30 g/l glucose) 

123 27.6 ± 1.1 16.3 ± 0.4 3.6 ± 0.1 221 ± 8 

*Fermentation conditions: agitation, 1 l/min; temperature, 20 °C; pH 6; agitation, 600 rpm 

 

5.3.2.2 Fed-batch fermentations  

Given that rapeseed meal hydrolysate was proved a promising nutrient source for both 

biomass and astaxanthin production in X. dendrorhous, we further investigated the cultivation 

of the yeast in Accellerase 1500 hydrolysates which were composed of sugars deriving solely 

from the hydrolysis of rapeseed meal (no additional carbon sources from the enzyme 

formulation). To this end, a similar fed-batch mode approach was taken (DO-stat mode) as in 

semi defined media experiment (section 5.3.1.3), with the addition of glycerol as feed (Figure 

5-5). 

Results showed that feeding of glycerol after the main carbon sources (glucose, xylose, 

galactose) were exhausted from the media, had some slight effects on the growth of X. 

dendrorhous compared to batch fermentations with Accellerase 1500 rapeseed meal 

hydrolysates alone. Some amounts of glycerol were consumed until 50 h of fermentation. After 
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this point, the concentration of glycerol was maintained at 10 g/l until end of fermentation. The 

addition of glycerol at this point failed to induce shifting towards glycerol metabolism possibly 

due to the fact that the yeast cells were already under stress environment. It might also occur 

due to possible deficiency of some key micronutrients such as protein or amino acids in the 

fermentation media (Chatzifragkou et al., 2014). Previous studies reported that fed-batch 

cultivation mode is the best approach for mass production of carotenoids, however this was not 

the case in our study. Total biomass (14 g/l) and astaxanthin production, P (3.2 mg/l) were 

slightly lower as compared in batch fermentation (biomass, 16 g/l and astaxanthin, 3.6 mg/l).  

Fed batch strategies utilising low-cost substrates have been applied for microbial 

astaxanthin production in yeasts before. Eucalyptus wood containing xylose rich hydrolysates 

has been used for microbial astaxanthin production in X. dendrorhous NRRL Y-17268 

continuous feeding of fresh hydrolysates. Around 10.3 g/l of biomass were obtained with 8.2 

mg/l of astaxanthin produced in this case (Vázquez et al., 1998). Besides that, Moriel et al., 

(2005) investigated fed batch strategy with continuous feeding utilising sugar cane juice and 

urea for astaxanthin production in X. dendrorhous ATCC 24202. They reported that about 19 

g/l of biomass with 5.7 mg/l of astaxanthin were produced when continuous feeding strategy 

was applied.  
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Figure 5-5: Fed-batch cultivation of X. dendrorhous utilising rapeseed meal hydrolysates as 

substrates supplemented with glycerol as feed solution. Fermentation conditions: aeration, 1 

l/min; temperature, 20 °C; pH 6. Symbols represent: (+)-DO, (▲)- astaxanthin (mg/l), (◆)- 

galactose/xylose, (∆)- dry cell weight (g/l), (●)- glucose, (×)-glycerol + - dissolved oxygen, DO 

(%). Arrows indicate feeding point. 
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5.3.3 Prehydrolysis and fermentation (pSSF) in 2-l bioreactor 

This study was carried out in order to investigate the possibility of conducting pSSF 

strategy with a view to improve yeast growth as well as astaxanthin production in X. 

dendrorhous. pSSF strategy is an improvement of simultaneous saccharification and 

fermentation (SSF) strategy that has been widely used in bioethanol production by 

Saccharomyces cerevisiae (Taherzadeh & Karimi, 2007). In SSF strategy, the enzymatic 

hydrolysis of cellulosic material and microbial fermentation are performed simultaneously. 

However, problems often arise mainly due to the difference in the optimal temperatures of the 

enzymatic hydrolysis and yeast fermentation. In our case, the significant difference between 

optimal temperature for enzymatic hydrolysis of rapeseed meal and X. dendrorhous growth 

rendered the SSF approach not feasible. To this end, the vessel temperature was set at 50 °C for 

24 h (the optimal temperature for enzyme hydrolysis), followed by reducing the temperature to 

20 °C (optimal temperature for X. dendrorhous), prior to inoculation. 

Results showed that Accellerase 1500 and pectinase derived rapeseed meal hydrolysates 

were able to support both growth and astaxanthin production. Figure 5-6 depicts the growth 

profile of X. dendrorhous cultivated in a 2-litre bioreactor using pSSF approach in Accellerase 

1500 hydrolysates (Figure 5-6A) and pectinase hydrolysates (Figure 5-6B). In the case of pSSF 

using Accellerase 1500 hydrolysates, total astaxanthin production was 30 % lower than in SHF 

cultivation process utilising the same hydrolysates. This might occur due to the presence of 

rapeseed biomass in the bioreactor, in which led into collisions between rapeseed meal biomass 

and yeast cells during agitation and eventually cell disruption.  

In the case of pectinase derived rapeseed meal hydrolysates, it was observed that the 

sugars released during hydrolysis step were used as primary carbon sources. Generally, about 

70 g/l of total carbon sources (~ 22 g/l sugars and ~48 g/l glycerol) were available for yeast 
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consumption. It was observed that glycerol started to be consumed once available sugars were 

exhausted in the media, demonstrating that cells were able to divert their metabolism towards 

glycerol consumption. It is interesting to observe that during the period of glycerol metabolism, 

glucose was also released in the hydrolysates by the slow activity of pectinase on rapeseed meal 

at 20°C (as opposed to optimum temperature of pectinase activity at 50°C). At the end of the 

fermentation, glycerol was completely consumed by the yeast and about 3.5 g/l of excess 

glucose remained in the media. In the pSSF approach with pectinase derived rapeseed meal 

hydrolysates similar results for astaxanthin production were noted as in batch fermentation with 

separate hydrolysis and fermentation experiment (~10 mg/l). 
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Figure 5-6: Growth profile of X. dendrorhous using pSFF approach. (A) 10% (v/v) Accellerase 

1500 in 10% (w/v) substrate; (B) 10% (v/v) pectinase in 10% (w/v) substrate. Hydrolysis 

conditions: agitation, 250 rpm; temperature, 50 °C; time, 24 h. Fermentation conditions: 

aeration, 1 l/min; agitation, 600 rpm; temperature, 20 °C; pH 6. Symbols represent: ▲-

astaxanthin, AXN (µg/ml); ●- glucose, Glu (g/l); ◆- xylose, xyl (g/l), ◇- galactose, galac (g/l), 

✲- Arabinose, Ara (g/l); ∆- dry cell weight, DCW (g/l); ○- ethanol, EtOH (g/l), × - glycerol, 

Gly (g/l); □ – CFU/ml 
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5.4 Conclusions 

This study demonstrated the suitability of rapeseed meal hydrolysates as substrates for 

microbial astaxanthin production. Under optimised process conditions (pH 6, 600 rpm, 1 l/min 

of air), the yeast growth was higher compared to flask fermentations, suggesting the 

requirement of this yeast species for ample oxygen supply for growth. Pectinase derived 

rapeseed meal hydrolysates had high capability to support yeast growth and subsequently 

increased the astaxanthin pigmentation in the cells as compared to Accellerase 1500, mainly 

due to the presence of glycerol that acted as additional carbon source. Besides that, although in 

our case the pSSF approach did not significantly increase the yeast performance in terms of 

biomass and astaxanthin production, it may hold potential for rapeseed meal bioconversion into 

microbial astaxanthin on a larger scale after further optimisation.  
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6 Astaxanthin Extraction from Xanthophyllomyces dendrorhous: 

Comparison between Mechanical Abrasion, Enzymatic and CO2 

Supercritical Fluid Extraction 

Abstract 

This study investigated three different extraction strategies for the extraction of 

microbially produced astaxanthin from the yeast Xanthophyllomyces dendrorhous DSMZ 

5626. Firstly, mechanical method (glass beads) accompanied with different types of solvents 

[ethanol, methanol, acetone, dimethyl sulfoxide, mixture of acetone: DMSO (1:1) and water] 

was used to measure the astaxanthin extractability (%). Highest astaxanthin extractability was 

obtained when glass beads disruption coupled with acetone extraction was used to extract 

astaxanthin in yeast with 95 % extractability. Secondly, enzymatic cell lysis using 2 different 

enzymes (Accellerase 1500 and Glucanex) on wet and dry cells accompanied with acetone 

extraction were optimised using central composite design of experiment (DoE) with main 

variables being pH and reaction temperature. Results showed that Glucanex cell lysis 

accompanied with acetone extraction resulted in high astaxanthin extractability (>100%) as 

compared to standard extraction method (DMSO/acetone) under optimised conditions (pH 4.6 

at temperature of 30.8 °C). Thirdly, enzyme-assisted supercritical fluid extraction with carbon 

dioxide (CO2-SCFE) and ethanol as co-solvent was investigated for its efficiency towards 

astaxanthin extraction. Increased astaxanthin extractability was observed when the cells were 

pretreated with Accellerase 1500 and Glucanex as compared to non-treated samples. However, 

utilising CO2-SCFE as an extraction strategy was less efficient compared to the glass beads 

and enzymatic extraction strategies.  

 Keywords: extraction, glass beads, enzyme, CO2-SCFE 
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6.1 Introduction 

Astaxanthin found its market in various sector including food, feed, natural colourant 

and nutraceutical industries due to its highly pigmented colour and high antioxidant capacity 

(Molino et al., 2018). Microbial astaxanthin needs to be formulated as an active ingredient in 

various products including animal feed, nutraceuticals and cosmetic products. In some 

application such as animal feed, whole microbial cells can be formulated as feed ingredient as 

it is without the need for pigment extrcation. However, in other applications such as cosmetic 

products and as food ingredients, there is a need to extract the pigment to allow further process 

to take place. Since microbial astaxanthin is produced intracellularly, there is a need for an 

efficient extraction strategy, so that the extracted pigment retains its stability, colour and 

activity. The purity of the extracted astaxanthin pigment will further determines the market 

price that varies from $2500-7000/kg (Shah et al., 2016). Natural astaxanthin is supplied by 

microbial fermentation using either yeast, (such as Xanthophyllomyces dendrorhous) or 

microalgae (such as Haematococcus pluvialis). The high astaxanthin yields and productivities 

obtained by X. dendrorhous, in fact, make this particular microorganism a promising choice 

for the potential scaling up and commercialisation of an industrial process (Hu et al., 2007; 

Monks et al., 2013; Schmidt et al., 2011). The extraction of astaxanthin from cultures of X. 

dendrorhous is one of the most important step, which contributes to the overall complexity and 

cost of the whole production process. 

 Considering that astaxanthin accumulates intracellularly in X. dendrorhous, cell 

disruption is the first and most likely the most important step of the separation and purification 

process. This is attributed to the fact that the yeast cell wall components are composed of 

polymers of mannose (± 40 % of dry cell mass), β-glucans (± 60 % of dry mass) and small 
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amounts of chitin (± 2 % of dry cell mass) (Sena, Valasques Junior, Baretto, & Assis, 2012). 

The complex and rigid structure of yeast cell wall needs to be ruptured  prior to solvent 

extraction of the intracellular carotenoids by commonly used solvents including acetone, 

petroleum ether, ethyl acetate and hexane (Michelon et al., 2012; Wu & Yu, 2013b; Yang et 

al., 2011). The various chemical methods act based on the permeability of a particular chemical 

inside the cell wall and allows periplasmic products to permeate through the yeast cell wall  

(Liu et al., 2016). Several cell disruption methods have been investigated for astaxanthin 

extraction from yeast cells including chemical, mechanical and enzymatic methods, either 

singly or in combination.  

The mechanical methods that have been studied for the extraction of bio-products 

including carotenoids, enzymes and lipid from several yeast cells including Saccharomyces 

cerevisiae and Xanthophyllomyces dendrorhous, primarily at small scale, include 

homogenisation and the utilisation of glass beads (Persike et al., 2002; Reyes, Gomez, & Kao, 

2014; Sedmak, Weerasinghe, & Jolly, 1990b). Persike et al. (2002), applied glass beads 

followed by vigorous vortex for the extraction of invertase and urease from Xanthophyllmyces 

dendrorhous strain 24202. In another study, different mechanical disruption methods were 

used to extract carotenoids from X. dendrorhous cells including maceration with diatomaceous 

earth, glass beads and ultrasonic waves. The results demonstrated that carotenoids 

extractability by glass beads in acetone was low (48%) as compared to other disruption 

methods (51-60%). The disadvantage of the mechanical disruption methods is that they are not 

product selective as a variety of cellular components are also released along with astaxanthin 

(Liu et al., 2016).  
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Enzymatic cell lysis has been extensively applied for the production of  yeast extract, 

mainly from Saccharomyces cerevisie (Milic et al., 2007). However, few research works have 

focused on astaxanthin extraction from X. dendrorhous using an enzymatic cell lysis approach. 

The complex structure of yeast cells requires the synergistic effects of several enzyme activities 

including chitinase, protease and β-glucanase activities, in order to disrupt the outer layer of 

their cell wall (Salazar, 2008; Sena et al., 2012), prior to astaxanthin extraction by solvents. 

The selection of suitable enzymes is critical to ensure a high degree of cell wall disruption that 

subsequently results in high astaxanthin extractability. This method is considered a much more 

gentle process than mechanical or chemical disruption strategies. However, the enzymatic 

method  is less cost-effective due to the high cost of the enzymes (Liu et al., 2016). 

In addition to the above methods, Supercritical Fluid Extraction (SCFE) has been 

applied for the extraction of carotenoids from various sources including plants, microalgae and 

yeast. This method is considered a “green” technology and has the potential to replace the 

commonly used solvent-based extraction methods for the selective recovery of carotenoids. 

Carbon dioxide (CO2) is mostly used as  the primary supercritical fluid extraction solvent as its 

supercritical state has high solvation power, and is non-toxic, non-flammable, non-explosive, 

cost-effective and can be easily removed from the product (Machmudah et al., , 2006; Wang et 

al., 2012). The products extracted using this method are free of toxic solvents, in contrast to  

solvent extraction where the residual solvents might be present in the final products (Jokić et 

al., 2016). Furthermore, the low critical temperature of CO2 means that this process could be 

carried out at moderate temperatures, thus preventing the degradation of carotenoids, which 

can occur due to their sensitivity to relatively high temperatures (Krichnavaruk et al.,, 2008). 

This method has been successfully used to extract compounds such as lipid, phenolic 

compounds and pigments from plants, yeast and bacteria. However, very few research works 
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have been conducted on astaxanthin extraction from X. dendrorhous. In a study by Lim et al. 

(2002), bead milling was used as the cell disruption strategy prior to astaxanthin extraction by 

CO2-SCFE in X. dendrorhous cells.  

This study is aimed at assessing several methods for extracting astaxanthin from X. 

dendrorhous DSMZ 5626 cells, including the use of glass beads, enzymatic lysis and CO2 

Supercritical Fluid Extraction (CO2-SCFE). Although previous studies dealing with 

astaxanthin extraction by various methods have been performed, this study is more focused on 

comparing between methods. Furthermore, to our knowledge, astaxanthin extraction using 

CO2-SCFE is scarce and the enzymatic cell lysis as a pre-treatment strategy prior to CO2-SCFE 

has not been investigated before for X. dendrorhous cells. A design of experiment (DoE) 

methodological approach was used to identify the optimal process conditions for astaxanthin 

extraction in the case of the enzymatic lysis and CO2-SCFE methods and generate new 

knowledge on the effect of process conditions on astaxanthin extraction. The efficacy of the 

above methods was measured in terms of  astaxanthin extractability (%) as compared to a 

standard solvent based extraction procedure, described by Sedmak et al. (1990). The current 

work thus provides new insights into astaxanthin extraction from yeast cells and can form the 

basis for developing a scalable and efficient process. 

 

 

 

 



 180 

 

6.2 Materials and Methods 

6.2.1 Microorganism and Fermentation Conditions  

The yeast strain Xanthophyllomyces dendrorhous DSMZ 5626 was used in this study and 

was purchased from Leibniz Institute DSMZ. The strain proliferation and inoculum preparation 

were conducted as previously described in Chapter 3. The composition of the semi-defined 

media used in this study were (in g/l): carbon source (30), yeast extract (2.0), malt extract (2.0), 

KH2PO4 (7.0), (NH4)2SO4 (1.0), MgSO4.7H2O (1.5), FeCl3.6H20 (0.15), ZnSO4.7H2O (0.02), 

MnSO4.H2O (0.06), CaCl2.2H2O (0.15).  

In this study, a 2-litre stirred tank bioreactor (BIOSTAT B, Sartorious AG, German) was 

used with a working volume of 1.5 litre within the experimental set up being the same as 

previously described in Chapter 5. The fermentations were carried out for 5-days under aerobic 

conditions. The key fermentation parameters that were controlled were: Temperature (20 °C), 

pH (pH 6), aeration (1 l/min) and agitation (600 rpm); the dissolved oxygen was not controlled. 

Cell biomass was collected and treated according to the extraction method, as described in the 

sections below. 

6.2.2 Sample Preparation 

For the experiments concerning the extraction of astaxanthin by glass beads extraction 

and enzymatic cell lysis, 2 ml of fresh X. dendrorhous were added to 2 ml vials, which were 

then centrifuged at 10,845 x g for 10 min (Multifuge X3R, Fisher Scientific, UK). The pellets 

(~ 30 mg of cell pellet) were collected and washed twice using distilled water. For the 

experiment using the wet cells, the fresh cells were kept at 4°C until further use. To prepare 
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dried samples, the vials containing wet cells were frozen at -20°C and then freeze dried for 24 

h (Virtis SP Scientific, UK); these pellet samples corresponded to about 30 mg of dry cells.  

In the case of astaxanthin extraction by CO2-SCFE, samples from 3 bioreactor 

experiments (of similar conditions) were collected together to ensure that there was enough 

starting material for the experiment. 1.5 litre of yeast culture medium was collected after 5 days 

of fermentation and centrifuged at 10845 x g for 10 min (Multifuge X3R, Fisher Scientific, 

UK). The pellet was washed twice with distilled water, kept at -20 °C for 48 hrs, and then 

freeze dried for 72 hrs (Virtis SP Scientific, UK). The dried cell pellets from the three different 

fermentation runs were pooled together and thoroughly mixed to ensure a homogenous sample 

prior to CO2-SCFE extraction.  

6.2.3 Extraction of Astaxanthin 

(1) Glass beads / solvent extraction  

Freeze dried cell samples (~30 mg of freeze dried X. dendrorhous cells), prepared in 2 

ml Eppendorf tube as described in section 6.3.2, were used in this study. 0.3 g of glass beads 

(diameter 1mm) was added to the vials followed by addition of 1 ml organic solvent (list of 

solvents used provided below). The cells/beads suspensions in the different types of solvent 

were mixed at 2000 rpm for 10 mins in a ThermoMixer C (Eppendorf). Subsequently, 0.1 ml 

of NaOH (20% w/v) was added to the mixture, followed by further mixing for 5 mins at 2000 

rpm in a ThermoMixer C. The aqueous and organic phases were separated by centrifugation at 

5423 x g for 5 min and the organic phase (top layer) was collected for astaxanthin measurement, 

carried out by a spectrophotometric analysis as described in section 6.2.6. The organic solvents 

used in this study were: distilled water (dH20), ethanol (EtOH, 99.8%, MERCK), methanol 
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MeOH, 100%, Fisher Scientific), acetone (100%, Merck), dimethyl sulfoxide (DMSO, 100% 

Sigma-Aldrich) and mixture of acetone: DMSO (1:1).  

(2) Enzyme hydrolysis / solvent extraction 

I. Accellerase 1500 treatment  

The enzymatic lysis of the cell wall of X. dendrorhous was carried out using the 

commercial enzyme, Accellerase 1500 (Du Pont) solution, which contained multiple enzymatic 

activities including cellulase, hemicellulase and β-glucanase. In order to determine the 

optimum condition for enzymatic hydrolysis a non-factorial 22 Central Composite Design of 

Experiments (DoE), with two factors at three levels was employed. The two independent 

variables assessed were temperature (30, 40, 50 °C) and pH (4.5, 5.5, 6.5). The dependent 

variable was astaxanthin extractability (%), calculated by comparing the astaxanthin 

concentration obtained after each extraction method to the concentration obtained using the 

standard chemical extraction method by Sedmak et al. (1990), the method is described in detail 

in section 6.2.6. Thirteen different experiments were carried out in total, which included the 

low, high and axial points for all the parameters, along with a central point replicated five times 

to calculate experimental errors. Minitab 17 was used for the experimental design and statistical 

analysis. 

In this experiment, both freeze dried and wet cell samples were used. Sample 

preparation followed the same method as described in section 6.2.2. The experimental set up 

was as follows:  0.75 ml of sodium citrate buffer (pH varied according to the DoE - see results 

sections for details) and 0.25 ml of enzyme (30 % v/v of Accellerase 1500) were added to vials 

containing wet and freeze-dried cell biomass of X. dendrorhous. The mixture was then 

incubated in a thermomixer (Eppendorf) under agitation at 1400 rpm and the temperature was 
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controlled according to DoE for 1 hr. After enzyme treatment, samples were centrifuged at 

10845 x g for 10 mins and the supernatant was discarded. The pellet was washed twice with 

distilled water to remove excess enzymes and buffer. Subsequently, 1 ml of acetone was added 

to the pellet and the suspension mixed at 2000 rpm for 10 mins to facilitate the extraction of 

astaxanthin. 100 µl of NaCl (20% w/v) were then added to the mixture to assist in the formation 

of the aqueous and organic (solvent) phases. Samples were mixed for another 5 mins and then 

were centrifuged at 5423 x g for 5 mins. The solvent phase (upper layer) was used for 

astaxanthin analysis, conducted as described in section 6.2.6.  

II. Glucanex treatment 

Freeze dried Glucanex enzyme (Novozyme, Denmark), containing β-1, 3 glucanase 

obtained from Trichoderma harzianum was used in this experiment. A non-factorial 22 Central 

Composite Design of Experiments (DoE) with two factors at three levels was employed. The 

two independent variables assessed were temperature (35, 45, 55 oC) and pH (3.5, 4.5, 5.5). 

The conditions of the independent variables in this experiment were different compared to the 

Accellerase 1500 treatment to reflect the optimal activity conditions, recommended by the 

manufacturer. The dependent variable was the astaxanthin extractability (%), calculated as 

described in section 6.2.6. Thirteen different experiments were carried out in total, which 

included the low, high and axial points for all the parameters, along with a central point 

replicated five times to calculate experimental errors. Minitab 17 was used for the experimental 

design and statistical analysis. 

Initially, a 20 % (w/v) Glucanex stock solution was prepared. The sample preparation 

followed the same method as that described in section 6.2.2. The experiments set up was as 

follows: 0.75 of sodium citrate buffer (pH varied according to the DoE - see results section for 
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details) and 0.25 ml of enzyme (5 % w/v of Glucanex stock solution) were added to vials 

containing wet and freeze-dried cell biomass of X. dendrorhous. The optimisation experiment 

and the acetone extraction process were conducted following the same procedure to that 

described above for the Accellerase 1500 treatment. 

(3) Enzyme assisted CO2-supercritical fluid extraction (SCFE) with ethanol as co- solvent  

In this experiment, X. dendrorhous cells were pretreated with Accellerase 1500 (30 % 

v/v) unless stated otherwise. Subsequently, the pretreated cells were frozen at -20 °C for 24 hrs 

prior to freeze drying (VirTis Scientific, UK) for 72 hrs. The samples were then ground with a 

pestle and mortar and kept in amber containers in a desiccator until further use.  

Freeze dried samples of X. dendrorhous were subjected to carbon dioxide-super critical 

fluid extraction (CO2-SCFE) in a CO2-SCFE rig (SciMed, UK). The apparatus consisted of a 

recirculating chiller, a CO2 line, solvent and co-solvent pumps, a heat exchanger, a 200 ml 

extraction vessel, an automated backpressure vessel, a collection vessel and a controller. For 

every run, 2.0 g of freeze dried samples and 100 g of inert glass beads (5mm) (Sigma Aldrich) 

were added to the extraction vessel and submitted to a CO2 flow rate of 15 g/min.  

 In order to optimise the extraction process, a non-factorial 23 Central Composite 

Design of Experiments (DoE) method with three factors and 3 levels was employed. The 

independent variables were: temperature (50, 60, 70°C), co-solvent concentration (EtOH at 5, 

10, 15 %) and pressure (150, 250, 350 bar); the run lasted 30 mins. The dependant variable 

accessed was astaxanthin extractability (%), calculated as described in section 5.2.6. Fourteen 

experiments which included the low, high and axial points of all parameters were conducted 

along with a central point, which was replicated three times. At the end of each run, astaxanthin 
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was obtained in ethanol; the sample was immediately analysed for astaxanthin content using a 

spectrophotometer (see section 6.2.6).  

Response Surface Methodology (RSM) was used to construct a mathematical model 

describing the effectiveness of astaxanthin extraction; the data were presented in the form of 

3-dimensional graphs. All the independent variables of the model equation were tested 

statistically by the F-test at a 95% interval of confidence. The Coefficient of Variance (CV, %) 

and the Determination Coefficient (R2) were used to evaluate the quality of the fitted 

polynomial model. Finally, the experiments were validated by performing additional 

experiments (in triplicate) using the optimal conditions for astaxanthin extraction, as suggested 

by the model. The experimental values from these runs were then compared to the predicted 

values given by the model to confirm the accuracy of the model. 

6.2.4 Testing of Astaxanthin Solubility in Solvents 

In order to explain some of the results obtained after extraction of astaxanthin using 

different solvents, an experiment was conducted to evaluate the solubility of commercial 

astaxanthin in organic solvents including ethanol (EtOH, 99.8%, MERCK), methanol (MeOH, 

100%, Fisher Scientific), acetone (100%, Merck), dimethyl sulfoxide (DMSO, 100% Sigma-

Aldrich), mixture of acetone:DMSO (1:1) as well as in water. Approximately 10 mg of pure 

astaxanthin (Sigma Aldrich) were added to 1 ml of solvent in 2 ml (Eppendorf) tubes and were 

then mixed at 1200 rpm for 24hrs at 25°C in a thermomixer (Eppendorf). If a clear solution 

was observed, then additional amounts of astaxanthin (~2 mg) were added to the mixture until 

there was a visual indication of undissolved material. The obtained solvent/astaxanthin 

mixtures were diluted 100 times in methanol and were then filtered through a 0.2µm polyvinyl 
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difluoride (PVDF) membrane filter. Finally, the concentration of astaxanthin in the different 

solvents was analysed by HPLC to estimate the solubility of astaxanthin in these solvents.  

6.2.5 Activity of β-Glucanase 

In order to measure the β-glucanase activity of the two enzymes mixtures used in this 

study (Accellerase 1500 and Glucanex), and calculate the amounts needed for the experiments, 

the following method was used. 0.25 ml of enzyme solution and 0.25 ml of laminarin solution 

1% (w/v) obtained from the seaweed Laminaria digitata (Sigma-Aldrich) in sodium acetate 

buffer (0.1 M, pH 5.5) were mixed, following which the reaction mixture was incubated at 55 

°C for 30 mins. The reaction was stopped by heating at 100°C for 5 mins. The reducing sugars 

were determined by the method of 3, 5-dinitrosalicylic acid (DNS method) using glucose as 

the standard. For the control, distilled water was used instead of laminarin solution. One 

activity unit of β-1, 3 glucanase (U) was defined as the release of 1 µmol of glucose/min/ml of 

enzyme solution. 

6.2.6 Determination of Total Carotenoids 

i. Standard Chemical Method and Spectrophotometric Analysis 

In order to measure the astaxanthin concentration in the different samples (pellets) the 

standard method of Sedmak et al. (1990) was followed. Briefly, 1 ml of dimethyl sulfoxide 

(DMSO) was preheated at 55 °C and added to the freeze-dried biomass, followed by vortexing 

for 30-40 secs. Subsequently, 0.1 ml of 20 % sodium chloride (NaCl) and 1.0 ml of acetone 

were added to the mixture to extract the intracellular carotenoids. The aqueous and organic 

phase was separated by centrifugation at 5423 x g for 5 mins. The extraction process was 
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repeated until a colourless biomass was obtained, and the organic phases were pooled together 

and their absorbance was measured at 480 nm in a Biomate 3 UV/VIS Spectrophotomer 

(Thermo Spectronic, NY). The resultant values were then divided by the extinction coefficient 

of 2150. This spectrophotometric method was also used to determine the astaxanthin 

concentration in the solvents used for extraction in the glass bead, enzymatic cell lysis and 

CO2-SCFE experiments. The equation for the estimation of the total carotenoids concentration 

is given below: 

𝐶𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝜇𝑔 𝑔⁄ ) =  
𝐴 × 𝑉 (𝑚𝐿) × 104

𝐴1𝑐𝑚
1%  × 𝑃 (𝑔)

 

Eq. 6-1 

    

Where, A is the absorbance at 480 nm, V is the volume, 𝐴1𝑐𝑚
1%  is the coefficient (2150) 

and P is the weight of biomass.  

Astaxanthin extractability (%) was calculated by Eq. 6-2 (Machado et al., 2016). 

𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝐶

𝐶𝐷𝑀𝑆𝑂
×  100 

Eq. 6-2 

Where C is the concentration of astaxanthin extracted from the cells using the different 

disruption/extraction techniques and CDMSO is the total carotenoids extracted from X. 

dendrorhous using the standard method, i.e. by cell disruption with DMSO/acetone. 
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ii. High Performance Liquid Chromatography (HPLC) 

The quantification of astaxanthin in the experiments assessing the solubility of 

astaxanthin in different organic solvents (section 01) was performed by HPLC. A HPLC system 

(Agilent Infinity, 1260 series, Agilent Technology) equipped with a YMC-C30 silica-based 

reversed-phase column (250 × 4.6 mm, YMC) coupled with diode array detector (DAD, 

Agilent Infinity 1260 series, Agilent Technology) was used for the identification and 

quantification of astaxanthin. A gradient method was used, with (A) methanol/ MTBE/ water 

(82:16:2) and (B) methanol/ MTBE/ water (23:75:2) as the mobile phase. The gradient started 

at 100% of solvent A. Solvent B was then gradually increased to 50 % (1-45 mins) and further 

increased to 100% (46–55 mins), where it was held for 5 mins; the duration of each run was of 

60 mins in total. The injection volume was 100 μl and the flow rate was kept constant at 1.0 

ml/min. For astaxanthin identification and quantification, calibration curves were constructed 

using commercial astaxanthin standard (Sigma Aldrich). All detected peaks were recorded at 

450 nm. 

6.2.7 Scanning Electron Microscopy 

The morphology of the cell biomass samples after each treatment was analysed using 

Quanta FEG 600 Environmental Scanning Electron Microscopy instrument (FEI Co. Inc., 

Hillsboro, Oregon). Samples were mounted onto SEM stubs using carbon tape and then sputter 

coated with a thin layer of gold to prevent charging during imaging. The parameters used for 

imaging were: 20 kV of accelerating voltages, 4.0 spot size and a working distance 

approximately 10 – 12 mm. Images were recorded under vacuum at 6000X magnification. 
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6.3 Results and Discussion 

6.3.1 Glass beads / solvent extraction  

Figure 6-1 presents the results from the experiment where astaxanthin extraction was 

performed with glass beads aiming to disrupt the yeast cell, coupled with different types of 

solvent to extract astaxanthin simultaneously. The application of glass beads with vigorous 

shaking at 2000 rpm for cell disruption (freeze-dried samples) accompanied with different 

types of organic solvents, namely ethanol (EtOH, 99.8%, MERCK), methanol (MeOH, 100%, 

Fisher Scientific), acetone (100%, Merck), dimethyl sulfoxide (DMSO, 100% Sigma-Aldrich), 

mixture of acetone:DMSO (1:1) as well as in water, was investigated in this study. Figure 6-1 

presents the results from the experiment where astaxanthin extraction was performed with glass 

beads aiming to disrupt the yeast cell and was coupled with different types of solvent to extract 

astaxanthin simultaneously. The highest extraction was achieved with acetone (95 %), followed 

by DMSO: Acetone (84 %). Methanol and ethanol were not significantly different from each 

other (54-58%), whereas DMSO on its own resulted in low extraction yield (42 %) and water 

in the lowest (14 %). This might have occurred due to the fact that acetone has good 

permeability through the cell wall and membrane of X. dendrorhous as well as high solubility 

to astaxanthin (Yin et al.,2013). The difference in the extraction yield obtained with the 

different solvents could be attributed to the differences in their polarity which were: Ethanol 

(4.3) < methanol (5.1) < acetone (5.4) < DMSO (7.2) < water (9.00) (Yin et al., 2013). As 

astaxanthin contains both polar (at the end of the molecule) and non-polar (in the middle of the 

molecule) components in their chemical structure (Blasko et al., 2008), the use of slightly polar 

solvent helps to extract astaxanthin from the cell wall/membrane of the yeast cells, which might 

be attached by the non-covalent binding to specific proteins (Amaro et al., 2015).  
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In order to understand better the mechanisms of astaxanthin extraction and 

extractability values (%) obtained, the solubility of astaxanthin in different solvents was tested 

(Table 6-1). The highest solubility of pure astaxanthin was observed with a combination of 

DMSO and acetone (1:1), whereas a lower astaxanthin solubility was found in DMSO and 

acetone alone. The solubility of astaxanthin is highly correlated with the polarity of the solvent 

used. The highest astaxanthin solubility, i.e. 2.03 mg/ml, was observed when a mixture of 

DMSO: acetone (1:1) was used. In terms of the astaxanthin solubility in individual solvents, 

the highest solubility was observed when DMSO was used, a fact that correlates to the high 

polarity of DMSO. Even though astaxanthin has low solubility in acetone (0.55 mg/ml) as 

compared to DMSO, the latter demonstrates high permeability through the yeast cell wall and 

most likely due to this reason it led to higher astaxanthin extractability from the yeast cells (Yin 

et al., 2013). The mechanism of astaxanthin extraction when using organic solvents is based 

on the permeation of the solvents through the cell wall and cell membrane, and on its 

subsequent interaction with astaxanthin using Van der Waals forces. This solvent/astaxanthin 

complex will diffuse across the cell membrane and remain dissolved in the solvents (Halim et 

al., 2012).   
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Figure 6-1: Percentage of astaxanthin extractability (%) using glass beads (0.3 g) with different 

types of solvents. Extraction was performed at room temperature under agitation at 2000 rpm 

in ThermoMixer (Eppendorf). Different letters show the significant difference between each 

treatment using Tukey pairwise comparison (p<0.05). Abbreviations: dH20 (distilled water), 

MeOH (methanol), EtOH (ethanol), DMSO (dimethyl sulfoxide). 
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Table 6-1: Solubility of astaxanthin in solvents after incubation for 24 h at 25 °C. 

Solvent Concentration (mg/ml) 

Water 0 

Ethanol 0.038±0.004a 

Acetone 0.55±0.02b 

Methanol 0.04±0.002a 

Dimethyl Sulfoxide (DMSO) 1.64 ± 0.03c 

DMSO:Acetone (1:1) 2.03 ± 0.04d 

Different letters represent significant difference between solvents by Tukey pairwise 

comparison (p<0.05). 

 

Several works have been published reporting the utilisation of glass beads to extract 

intracellular products from various yeast species, however there is a very limited number of 

studies on astaxanthin extraction form X. dendrorhous. Glass beads extraction is achieved by 

disrupting the yeast cells via bead collision zones through compaction or shear force with 

energy transfer from beads to the cells (Duarte et al., 2017). Previously, glass beads 

accompanied with acetone were used to rupture Sporodiobolus pararoseus and Rhodotorula 

mucilaginosa. Results showed that about 66% and 52% of the carotenoids, were obtained, 

respectively, compared to the standard DMSO method (Lopes, Remedi, dos Santos Sá, Burkert, 

& de Medeiros Burkert, 2017). In a study performed by Sedmak et al. (1990), two different 

methods (glass beads extraction and DMSO/solvent method) were used to extract astaxanthin 

from four different strains of Phaffia rhodozyma cells. Similar results were obtained between 

these two methods (275 – 276 µg/g), which are also in line with the results obtained in this 

study. However, the DMSO disruption method is more rapid than the glass bead disruption 
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process, in which multiple samples can be processed at the same time, the DMSO method is 

considered more suitable for large nu mber of samples. However, the key drawbacks of the 

glass bead method is that it is a rather slow method and is also a non-selective extraction 

process where all polar/non-polar compounds are extracted, a fact that coule potentially create 

issues during downstream processing and purification of astaxanthin. 

The resultant morphology of the X. dendrorhous cells after the glass beads treatment 

was studied by environmental scanning microscopy (Figure 6-2). Before the glass beads 

treatment, the cells had intact sphere shapes with a smooth surface. After treatment, small 

particles (< 5 mm) were produced as a result of beads abrasion (Figure 6-2B), as compared 

with the intact cells before disruption (Figure 6-2A).  The small sized cells and debris produced 

after the glass beads treatment resulted in an increased surface area for subsequent solvent 

extraction, leading to higher astaxanthin extractability. At this point, astaxanthin extraction was 

most likely highly dependent on the solubility and polarity of the organic solvents used, as the 

degree of cell disruption was already high. For example, in the glass beads accompanied with 

water extraction, the lowest amount of astaxanthin was extracted even though the cells were 

ruptured. This is attributed to the low ability of the solvent in this case (water) to penetrate the 

debris/cells as well as the low astaxanthin solubility in water. This experiment demonstrated 

that the types of organic solvents used after the bead treatment are crucial for astaxanthin 

extraction and consequently for the efficacy of the overall process.  
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Figure 6-2: Scanning electron microscopy images of X. dendrorhous cells A) intact cells, B) 

cells after treatment with glass beads followed by acetone (100%) extraction. Extraction was 

performed at room temperature under agitation at 2000 rpm in ThermoMixer (Eppendorf).  
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6.3.2 Enzymatic Treatment/ Solvent Extraction  

i. Accellerase 1500 treatment 

In this study, wet and dried X. dendrorhous cells were subjected to enzymatic treatment 

using Accellerase 1500, aiming to disrupt the cell wall, followed by acetone extraction for the 

extraction of astaxanthin. Accellerase 1500 is an enzyme cocktail that has multiple enzymatic 

activities including cellulases and hemicellulases, and a measured with β-glucanase activity of 

0.03 U/ml. A full factorial central composite design of experiments (CCD) was employed to 

identify the optimal conditions for astaxanthin extraction. The parameters that were 

investigated were temperature (30, 40, 50 °C) and pH (4.5, 5.5, 6.5), whereas the treatment 

time was fixed at 1 hr and the enzyme concentration at 30 % (v/v). The reason for selecting 

these temperature and pH conditions was that according to the manufacturer, these values are 

within the range of their optimum enzymatic activity. In total, 12 runs as well as 5 zero points 

for error estimation, were conducted, and the corresponding results are presented in Table 6-2.  

Overall, the results showed that astaxanthin extraction using wet cells resulted in higher 

extractability compared to freeze dried cells. Possible explanation might be due to the presence 

of moisture inside the cells, which resulted in a higher water activity and potentially a higher 

enzymatic activity towards X. dendrorhous; such effect of water activity on enzyme reaction 

has been reviewed by Rezaei, Jenab, & Temelli (2007).  On the other hand, in the freeze-dried 

samples, the moisture levels were much lowed due to the drying process. Amongst the dried 

samples, the highest astaxanthin extractability (%) was observed for Run 5 (temperature at 40 

°C, pH 4.09), whilst the lowest extractability was observed for Run 8 (temperature at 54.1°C, 

pH 5.51).  
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Table 6-2: Effects of pH and temperature on astaxanthin extractability (%) of dry and wet 

samples of X. dendrorhous DSMZ 5627 cells after treatment with Accellerase 1500 (30 %, v/v) 

followed by acetone extraction.  

Run pH Temperature 

Astaxanthin 

extractability (%) 

Dry samples Wet samples 

1 4.50 (-1) 30.0 (-1) 6.33 10.59 

2 6.50 (+1) 30.0 (-1) 4.91 6.98 

3 4.50 (-1) 50.0 (+1) 4.84 8.85 

4 6.50 (+1) 50.0 (+1) 4.78 5.30 

5 4.09 (-1) 40.0 (0) 8.66 14.08 

6 6.91 (+1) 40.0 (0) 4.65 5.81 

7 5.50 (0) 25.7 (-1) 4.97 9.30 

8 5.50 (0) 54.1 (+1) 2.52 4.00 

9 5.50 (0) 40.0 (0) 8.91 12.60 

10 5.50 (0) 40.0 (0) 9.12 13.50 

11 5.50 (0) 40.0 (0) 7.49 13.11 

12 5.50 (0) 40.0 (0) 7.95 12.95 

13 5.50 (0) 40.0 (0) 9.43 13.76 

 

The results obtained from the 13 runs were used to construct two quadratic models were 

constructed, one for dry cells (Eq. 6-3) and one for wet cells (Eq. 6-4), describing the main, 

interaction and quadratic effects of the independent variables (pH, temperature) on the response 

(astaxanthin extractability).  

𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%)                                                                                                  
=  −44.1 + 8.29𝑝𝐻 + 1.679𝑇 − 0.958𝑝𝐻2 − 0.02412𝑇2 + 0.0339𝑝𝐻. 𝑇 

 Eq. 6-3 
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𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%)                                                                                                   

= −73.7 + 16.43 𝑝𝐻 + 2.544𝑇 − 1.714𝑝𝐻2 − 0.03362𝑇2 + 0.0016𝑝𝐻. 𝑇 

Eq. 6-4 

Where T= temperature and astaxanthin extractability (%) = % astaxanthin extracted 

from the cells as described in Eq. 6-2. 

 

Table 6-3 presents the regression coefficients of the quadratic equation for describing 

astaxanthin extractability (%) in the case of Accellerase 1500 treatment. Even though 

astaxanthin extractability was higher using wet cell as compared to dry, the models generated 

for both samples demonstrate similar profiles in terms of the significance of the variables 

tested. With regards to astaxanthin extractability using dry cells, it was observed that both 

linear and quadratic terms have a statistically significant (p < 0.05) effect on the extraction. 

More specifically, both linear terms of pH and temperature had a negative correlation with 

astaxanthin extractability, where an increase in temperature and pH resulted in decreased 

astaxanthin extractability (%). However, the interactions of the linear terms (pH*T) showed no 

significant effect (p > 0.05). Similar results were observed with fresh cells. 
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Table 6-3: Regression coefficients of the quadratic equation describing astaxanthin 

extractability as a function of pH and temperature. Astaxanthin extraction was achieved by 

treating freeze dried X. dendrorhous cells with Accellerase 1500, followed by acetone 

extraction. 

Factor Coefficient SE t-value P-value 

Dry cells     

Constant 8.579 0.390 22.02 0.000 

pH -0.894 0.308 -2.09 0.023 

T -0.636 0.308 -2.06 0.078 

pH2 -0.958 0.330 -2.90 0.023 

T2 -2.412 0.330 -7.30 0.000 

pH*T 0.339 0.436 0.78 0.460 

     

Wet cells     

Constant 13.191 0.404 32.62 0.000 

pH -2.358 0.320 -7.38 0.000 

T -1.364 0.320 -4.27 0.004 

pH2 -1.714 0.343 -5.00 0.002 

T2 -3.362 0.343 -9.81 0.000 

pH*T 0.016 0.452 0.04 0.973 
 

 

In order to confirm the accuracy of the model, an analysis of variance (ANOVA) was 

performed along with a F-test for validation. In terms of the astaxanthin extractability using 

freeze dried cells, the fit of model, expressed by the coefficient of regression R2 value, was 

0.909. Furthermore, the F-value (14.09) obtained was higher than the tabulated F-value (F5,7 = 

3.97). In terms of the wet cells, the regression R2-value, was 0.9631, whereas the F-value 

(36.57) was also higher than the tabulated F-value (F5,7 = 3.97). Hence, it can be deduced that 

the models for both freeze dried and fresh samples can satisfactorily describe the extraction 

process. 

Figure 6-3 presents the two-dimensional contour surface graphs generated, which 

provide the model prediction for astaxanthin extractability using Accellerase 1500. The shapes 
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of the contour plots provide a visual interpretation of the interaction between the two variables 

and facilitate the location of optimum experimental condition (Shijin, Xiang, Zhihang, Lili, & 

Jianmeng, 2009). It can be seen that for both wet and dried cells, higher astaxanthin 

extractability (%), i.e around about 9-14 %, was obtained at an extraction temperature around 

35-40 °C and a pH around 4.5-5.5 with. Based on the model prediction, the astaxanthin 

extractability (%) for both samples could be obtained at a temperature of 38.8°C and pH 4.97. 

This set of values predicted an astaxanthin extractability of 8.85% (dry cells) and 14.09% (wet 

cells). The models were subsequently validated by repeating the experiments at these critical 

parameters (temperature at 38.8 °C and pH 4.97) and were compared with the predicted values. 

The results showed that the astaxanthin extractability values were similar, although slightly 

higher than the prediceted values, i.e. with 10.25 % for the dry cells and 14.99 % for the wet 

cells, which demonstrated that the generated models can be considered valid to describe the 

extraction process. 

Overall, this experiment demonstrated that the astaxanthin extraction was much lower 

in the case of Accellerase 1500 treatment compared with the previous results with glass beads 

extraction. Enzymatic cell lysis in yeast occurs as a synergistic effect of protease and glucanase 

activities (Michelon et al., 2012). Generally, enzymatic cell lysis in yeast starts with the binding 

of the lytic protease to the outer mannoprotein layer of the cell wall, which results in exposure 

of the protein structure and releases the cell wall protein and mannan while exposing the glucan 

surface. Subsequently, the glucanase enzyme attacks the inner cell wall and solubilises the 

glucans (Salazar, 2008). The soluble structure of yeast allows then acetone to permeate through 

the cell wall and solubilise astaxanthin. The action of acetone on astaxanthin were discussed in 

detail in section 6.3.1.  
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Figure 6-3: Contour plots depicting the effects of temperature and pH on astaxanthin 

extractability (%) of X. dendrorhous cells. Astaxanthin extraction was achieved by treating the 

cells with Accellerase 1500 (30 % v/v) for 1 h. (A) dry cells (B) wet cells. * The black dots on 

the contour plot represent the experimental points. Abbereviationn: AXN - astaxanthin  
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Scanning electron microscopy images (Figure 6-4) show that after enzymatic treatment, 

the yeast had an irregular shape as compared to the intact cells. A portion of the cells still 

maintained their cell integrity, however most of them lost their intact shape. The enzymes 

attack specific regions of the cell wall, hence the effect is not as damaging as in mechanical 

abrasion using the glass beads as observed in Figure 6-2. During enzymatic lysis, no 

astaxanthin was secreted into the liquid, due to its insolubility in water. The astaxanthin 

extraction only occurred in the presence of solvents (acetone). The activity of Accellerase 1500 

on the yeast disruption was specific and mild in and hydrolysed the yeast cell wall in a more 

selective manner, as compared to the mechanical and chemical extraction, which were non-

selective. This approach of using Accellerase 1500 to hydrolyse the X. dendrorhous cell wall 

has not been reported before.  Although the process is not as effective as the glasss beads 

method, the results show indicate that this method could potentially be used as a pretreatment 

strategy prior to mechanical or chemical treatments such as ultrasonication, CO2-SCFE or 

solvent extraction, to enhance the extraction selectivity (Liu et al., 2016). However, further 

optimisation work is needed to achieve this. 

Figure 6-4: Scanning electron microscopy images of X. dendrorhous cells before and after 

treatment (A) intact cells, B) cells after treatment with Accellerase 1500 (30 % v/v) followed 

by acetone (100 %) extraction. 
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ii. Glucanex treatment 

Beside Accellerase 1500, the effects of the Glucanex enzyme was also investigated in 

this study. Glucanex is a lytic enzyme from Trichoderma harzianum with a measured β-

glucanase activity of 0.4 U/ml. A response surface design was also used in this study with 2 

variables being investigated (temperature and pH). A full factorial CCD was applied for this 

purpose. The parameters that were investigated were temperature (35, 45, 55 °C) and pH (3.5, 

4.5, 5.5), whereas the treatment time was fixed at 1 hr and the enzyme concentration at 5 % 

(w/v). The reason for selecting these temperature and pH conditions was that according to 

manufacturer, these values were in range of optimum enzymatic activity. In total, 12 factorial 

runs as well as 5 zero points, for error estimation, were conducted and the results are presented 

in Table 6-4.  

Similarly to the case of Accellerase 1500 treatment, in the case of Glucanex treatment 

the wet cells resulted in significantly higher astaxanthin extractability as compared to the dry 

cells. However, overall astaxanthin extractability was much higher in the case of Glucanex than 

Accellesae 1500. The highest astaxanthin extractability (%) was observed at run 5 (temperature 

at 30.9 °C and pH 4.5) (115%) whilst the lowest extractability was observed at run 4 

(temperature at 55°C and pH 5.5) (43%). Overall, the results indicated that both pH and 

temperature play a critical role in determining the extraction of astaxanthin by X. dendrorhous 

using Glucanex.   
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Table 6-4:  Effects of pH and temperature on astaxanthin extractability (%) of dry and wet 

samples of X. dendrorhous DSMZ 5627 cells. Astaxanthin extraction was achieved using 

Glucanex (5 %, w/v) for 1 hour, followed by acetone extraction. 

Run pH Temperature 

Astaxanthin extractability 

(%) 

Wet cells Dry cells 

1 3.5 (-1) 35.0 (-1) 91.80 79.80 

2 3.5 (-1) 55.0 (+1) 39.95 22.04 

3 5.50 (+1) 35.0 (-1) 93.33 76.91 

4 5.50 (+1) 55.0 (+1) 43.00 18.09 

5 4.5 (0) 30.9 (-1) 114.83 84.36 

6 4.5 (0) 59.1 (+1) 47.58 25.99 

7 3.09 (-1) 45.0 (0) 44.83 22.04 

8 5.91 (+1) 45.0 (0) 60.24 35.57 

9 4.50 (0) 45.0 (0) 88.91 61.41 

10 4.50 (0) 45.0 (0) 90.89 66.73 

11 4.50 (0) 45.0 (0) 95.16 63.23 

12 4.50 (0) 45.0 (0) 84.94 61.26 

13 4.50 (0) 45.0 (0) 90.89 65.36 

 

The results obtained from the 13 runs were used to construct two quadratic models were 

constructed, one for dry cells (Eq. 6-5) and one for wet cells (Eq. 6-6), describing the the main, 

interaction and quadratic effects of the independent variables (pH, temperature) on the response 

(astaxanthin extractability).    

𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%)                                                                    
=  −201 − 0.20𝑇 + 143.1𝑝𝐻 − 0.0241𝑇2 − 15.59𝑝𝐻2

− 0.026𝑝𝐻. 𝑇 

 

Eq. 6-5 
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𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%)

=  −275.1 + 170𝑝𝐻 + 1.35𝑇 − 18.71𝑝𝐻2 − 0.0442𝑇2

+ 0.038𝑝𝐻. 𝑇 
Eq. 6-6 

Where T= temperature and astaxanthin extractability (%) = % astaxanthin extracted 

from the cells as described in Eq. 6-2 

To confirm the accuracy of the models, a variance analysis of (ANOVA) was performed 

along with a F-test for validation (Table 6-5). In the case of the freeze-dried cells, the 

coefficient of regression R2-value was 0.9492, whereas the F-value (26.17) obtained was higher 

than the tabulated F-value (F5,7 = 3.97), indicating the good fit of the model. It was observed 

that only the linear term of temperature and the quadratic term of pH had a statistically 

significant (p < 0.005) influence on the extraction, whereas the linear term of temperature, the 

quadratic term of pH and the interaction between pH and temperature did have a significant 

effect (p > 0.05). In the case of the wet cells, the coefficient of regression R2-value was 0.9870, 

whereas The F-value (106.11) obtained was also higher than the tabulated F-value (F5,7 = 3.97), 

indicating the good fit of the model. Similarly to the dried cells, the interaction term between 

pH and temperature did not have a significant effect (p > 0.05) on astaxanthin extractability. 
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Table 6-5: Regression coefficients of the quadratic equation describing astaxanthin 

extractability as a function of pH and temperature. Astaxanthin extraction was achieved using 

Glucanex (5 %) for 1 h, followed by acetone extraction. 

Factor Coefficient SE t-value P-value 

Dry cells     

Constant 63.60 3.19 19.92 0.000 

pH 1.54 2.52 0.61 0.562 

T -24.89 2.52 -9.86 0.000 

pH2 -15.59 2.71 -5.76 0.001 

T2 -2.41 2.71 -0.89 0.403 

pH*T -0.27 3.57 -0.07 0.943 

     

Wet cells     

Constant 89.86 1.67 53.86 0.000 

pH 3.28 1.32 2.49 0.000 

T -24.58 1.32 -18.64 0.042 

pH2 -18.71 1.41 -3.13 0.017 

T2 -4.42 1.41 -13.23 0.000 

pH*T 0.38 1.87 0.20 0.844 
 

 

The model prediction is presented in the two-dimensional contour surface graphs 

generated (Figure 6-5). It can be seen that high astaxanthin extractability was obtained at 

extraction temperature lower than 35 °C and a pH of approximately 4.5. According to the 

model, the highest astaxanthin extractability (%) could be obtained at a temperature of 30.8 °C 

and at pH 4.6. This set of values predicted an astaxanthin extractability of 94 % (dry cells) and 

116 % (wet cells). The models were then validated by repeating the experiments using the 

critical parameters (temperature at 30.8 °C and pH 4.6) and the experimental data were 

compared to the predicted results. A slight increased value was obtained for dried cells (105 

%) and slightly decreased for wet cells (108%), however it can be overall deduced that the 

models prediction were satisfactory.   
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Figure 6-5: Contour plots depicting the effects of temperature and pH on astaxanthin 

extractability (%) of X. dendrorhous cells. Astaxanthin extraction was achieved using 

Glucanex (5 % w/v) for 1 h. (A) dry cells (B) wet cells. *The black dots on the contour plot 

represent the experimental points. Abbreviation: AXN = astaxanthin  
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This study demonstrated that astaxanthin extractability (%) using Glucanex (5 % w/v) 

was considerably higher than using Accellerase 1500. This probably occurred due to the 

differences in the activities of these two commercial formulations, which inlcuded β-glucanase, 

cellulase, protease and chitinase; as demonstrated experimentally, the β-glucanase activity of 

Glucanex was significantly higher than that of Accelerase 1500. The high β-glucanase activity 

most likely led to cell lysis through the hydrolysis of the structure of (1-3)-glucose of the yeast 

cell wall glucans. As a result, the hydrolysed cell walls allowed for acetone to permeate into 

the cells and extract astaxanthin. The high astaxanthin extractability values obtained when 

using Glucanex was supported by the SEM images before and after extraction (Figure 6-6). 

The images show that after Glucanex treatment, the cells had irregular shapes and shrinked in 

size as compared to the intact cells. However, some of the cells still retained their intact shapes. 

It can be deduced that the difference in the yeast morphology between Glucanex treatment and 

glass beads treatment was significant, as in the latter the cells were ruptured and formed small 

particles. 

Enzymatic cell lysis as the means for extracting bioproducts from yeast cells has gained 

wide interest among researchers and has beed used to produce yeast extract from 

Saccharomyces cerevisiae (Milic et al., 2007). In terms of astaxanthin extraction from yeast 

cells, Michelon et al. (2012) combined maceration with diatomaceous earth and Glucanex lysis, 

and this process resulted in the extraction of 122% extractability of carotenoids from Phaffia 

rhodozyma, compared to the standard chemical method. In a different study, enzymatic cell 

lysis using different types of enzymes (Glucanex, Lyticase and Driselase) was combined with 

ultrasound pretreatment to extract astaxanthin inform the microalgae Haematococcus pluvialis 

(Machado et al., 2016). This strategy resulted in 84% of astaxanthin extractability compared to 

the standard chemical method. Overall, these works indicate that there is considerable 
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postential in using enzymatic cell lysis with other cell disruption methods to increase 

astaxanthin extractability from yeast cells.   

 

 

Figure 6-6: SEM images depicting X. dendrorhous cells before and after pre-treatment (A) 

intact cells, B) cells after treatment with Glucanex (5% w/v) for 1 hour, followed by acetone 

(100 %) extraction  
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6.4 Enzyme assisted CO2-Supercritical Fluid Extraction (SCFE) with ethanol as co- 

solvent  

The aim of this work was to extract astaxanthin from X. dendrorhous by using CO2-

supercritical fluid extraction (SCFE) with ethanol as co-solvent. A preliminary experiment was 

conducted using freeze-dried cells without prior enzymatic pretreatment. However, low 

astaxanthin extractability was obtained (data not shown). Therefore, it was decided to 

incorporate a yeast cell pretreatment step using an enzyme (Accellerase 1500), aiming to 

disrupt the cell wall and increase subsequent astaxanthin extraction by CO2-SCFE. The reason 

for selecting Accelerase 1500 was to evaluate whether the combination of the two treatments 

would increase astaxanthin extractability. 

A non-factorial Central Composite Design of Experiments (DoE), which included 12 

factorial runs and 5 were zero-point runs; Table 6-6 details the experimental conditions and the 

results. The astaxanthin extractability (%) values ranged from 0.04 % (run 11) to 23.0 1% (run 

8). 
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Table 6-6: Effects of temperature, pressure and co-solvent concentration (ethanol) on 

astaxanthin extractability (%). Astaxanthin extraction was achieved by treatment of freeze 

dried X. dendrorhous cells with Accellerase 1500 (30 % v/v) for 3 hour, followed by CO2-

SCFE extraction. 

Run 
Temperature 

(°C) 

Pressure 

(bar) 
EtOH (%) 

Astaxanthin 

extractability 

(%) 

01 50.0 (-1) 150.0 (-1) 5.0 (-1) 7.78 

02 70.0 (+1) 150.0 c 5.0 (-1) 1.62 

03 50.0 (-1) 350.0 (+1) 5.0 (-1) 16.37 

04 70.0 (+1) 350.0 (+1) 5.0 (-1) 17.94 

05 50.0 (-1) 150.0 (-1) 15.0 (+1) 20.33 

06 70.0 (+1) 150.0 (-1) 15.0 (+1) 14.50 

07 50.0 (-1) 350.0 (+1) 15.0 (+1) 21.70 

08 70.0 (+1) 350.0 (+1) 15.0 (+1) 23.01 

09 43.2 (-1) 250.0 (0) 10.0 (0) 13.40 

10 76.8 (+1) 250.0 (0) 10.0 (0) 14.82 

11 60.0 (0) 81.8 (-1) 10.0 (0) 0.04 

12 60.0 (0) 418.2 (+1) 10.0 (0) 13.38 

13 60.0 (0) 250.0 (0) 1.6 (0) 4.24 

14 60.0 (0) 250.0 (0) 18.4 (+1) 19.64 

15 60.0 (0) 250.0 (0) 10.0 (0) 14.30 

16 60.0 (0) 250.0 (0) 10.0 (0) 14.32 

17 60.0 (0) 250.0 (0) 10.0 (0) 16.52 
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In order to develop a model that predicts the influence of temperature, pressure and 

ethanol concentration on astaxanthin extraction by CO2-SCFE, the results were used to 

compute the main interaction and quadratic effects of the independent variables on astaxanthin 

extractability (Table 6-7); the equation of the quadratic model is given in Eq. 6-7. It was 

observed that only the linear term of pressure and ethanol concentration demonstrated a 

statistically significant (p < 0.005) effect. The linear term of temperature, the quadratic term of 

temperature, pressure and ethanol concentration as well as the interaction terms between these 

variables did not have a significant effect (p > 0.05).  

Both pressure and co-solvent concentrations significantly influenced astaxanthin 

extraction. Co-solvent (ethanol) acts by increasing the polarity of CO2, allowing the dissolution 

of polar compounds. Even though astaxanthin has low polarity, it has a high molecular weight 

(MW= 596.8). Therefore, the presence of ethanol facilitates the extraction process as it can aid 

the dissolution of heavier substances in CO2 (Andrade-Lima, Charalampopoulos, & 

Chatzifragkou, 2018). It was observed that increasing the ethanol concentration presented a 

positive correlation with astaxanthin extractability (%). This can be observed in run 3 and run 

7, as an increase in EtOH from 5 % to 15% resulted in increased astaxanthin extractability, i.e. 

from 16.4 % to 21.7 %. In terms of the influence of pressure, a similar trend was observed, as 

an increase in pressure positively affected astaxanthin extractability. This phenomenon can be 

observed in run 11 and run 12, where a significant increase of pressure from 82 bar to 418 bar 

(at the same temperature, i.e. 60oC, and ethanol concertation, i.e. 10 %) resulted in a significant 

increase in astaxanthin extractability (from ~ 0 % to ~13%). The higher pressure most likely 

led to a higher disruption of the yeast cell wall and causing the release of the pigment, as also 

been shown with plant cellular systems previously (Andrade-Lima et al., 2018).   
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Table 6-7: Regression coefficients of the quadratic equation describing astaxanthin 

extractability (%) as a function of temperature, pressure and ethanol concentration. Astaxanthin 

extraction was achieved by treatment of freeze dried X. dendrorhous cells with Accellerase 

1500 (30 % v/v) for 3 hour, followed by CO2-SCFE extraction. 

Factor Coefficient SE t-value P-value 

Constant 8.90 1.20 7.41 0.000 

T -0.298 0.564 -0.53 0.613 

P 2.528 0.564 4.49 0.003 

E 2.728 0.564 4.84 0.002 

T2 0.434 0.620 0.70 0.506 

P2 -1.145 0.620 -1.85 0.107 

E2 -0.028 0.620 -0.05 0.965 

TP 1.121 0.736 1.52 0.172 

TE 0.006 0.736 0.01 0.994 

PE -1.134 0.736 -1.54 0.167 
 

 

 

 

𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%)
=  18.5 − 0.832𝑇 + 0.0379𝑃 + 1.13𝐸 + 0.00434 𝑇2

− 0.000114𝑃2 − 0.0011𝐸2 + 0.001121𝑇𝑃
+ 0.0001𝑇𝐸 − 0.00227𝑃𝐸 

 

Eq. 6-7 

Where T= temperature, P = pressure, E = Ethanol and astaxanthin extractability (%) = 

% astaxanthin extracted from the cells as described in Eq. 6-2. 

An ANOVA test was performed to confirm the accuracy of the models, along with an 

F-test. The coefficient of regression (R2) was 0.8846 and the the F-value (5.96) was higher than 

the tabulated F-value (F9,7=2.72), indicating that the model gave a good fit and was able to 

describe satisfactorily the astaxanthin extraction process from yeast cells using CO2-SCFE. 

Figure 6-7 shows the response surface graphs; according to the model the maximum predicted 

maximum astaxanthin extractability (25.7%), was obtained at 76.8°C temperature, 360 bar 

pressure and 18% (v/v) ethanol concentration. The model was then validated by repeating the 

experiments using these critical parameters and the experimental data were compared to the 
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predicted results.  An astaxanthin extractability value of 22% was obtained which demonstrates 

that the model can predict satisfactorily the extraction process. 

Figure 6-8 shows the difference in the appearance of the X. dendrorhous cells before 

and after CO2-SCFE. The discolouration of the cells occurs after CO2-SCFE treatment resulted 

from astaxanthin being extracted from the cell wall. The results obtained in this study are in 

line with previous works in this area, concerning the extraction of pigments and lipids. Previous 

research incorporated a cell pretreatment step using a bead mill to disrupt the Phaffia 

rhodozyma cells prior to CO2-SCFE extraction (Lim et al., 2002). This strategy was found to 

increase astaxanthin extractability ~90% under optimised conditions (temperature = 40 °C, 

pressure = 500 bar). In another study, Duarte et al. (2017) investigated the use of CO2-SCFE 

in combination with ultrasound treatment, to extract intracellular lipids from the yeast Candida 

sp. LEB-M3. They found that pretreatment with ultrasonication followed by CO2-SCFE 

resulted in a relatively low lipid extractability (20 %) as compared to the conventional chemical 

extraction method, indicating that the ultrasonication method was not able promote significant 

cell rupture. Besides that, the effect of the pre-treatment step, the type of microorganism is 

likely to affect considerably the performance of the SCFE process. For example, an SCFE 

method was used to extract carotenoids from microalgae species, in particular Haematococcus 

Pluvialis. Under optimised conditions (Temperature = 55 °C, pressure = 20 MPa and EtOH = 

13 %), 84% of astaxanthin extractability was obtained using CO2-SCFE, using disrupted, freeze 

dried cells ( Reyes et al., 2014). Overall, the present work as well as previous works 

demonstrate that there is significant scope for further research combining different pre-

treatment methods (i.e. enzymatic, chemical, physical) with SCFE to maximise the extraction 

of astaxanthin from yeast cells.   
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Figure 6-7: Response surface plots depicting the effects of temperature, pressure and ethanol 

concentration astaxanthin extractability (%): (A) Effect of pressure and ethanol, (B) effect of 

temperature and pressure and (C) effect of temperature and ethanol. Astaxanthin extraction was 

achieved by treatment of freeze dried X. dendrorhous cells with Accellerase 1500 (30 %) for 3 

hours, followed by CO2-SCFE extraction. 
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Figure 6-8: Differences in the freeze-dried X. dendrorhous cells: (A) cells treated with 

Accellerase 1500 (30% v/v) for 3 h before being subjected  to CO2-SCFE extraction; (B) after 

extraction with CO2-SCFE using ethanol (15 %) as co-solvent. 

 

6.4.1 SCFE Extraction of Astaxanthin after Using Different Enzymes for Pretreatment 

of Yeast Cells 

The aim of this experiment was to investigate in more depth the effect of treatment, 

used as a pre-treatment step for improving CO2-SCFE extraction of astaxanthin from X. 

dendrorhous cells. Two different concentrations of Accellerase 1500 were tested, i.e. 30 and 

70 % (v/v), as well as Glucanex (5% v/v).  Figure 6-9 depicts the kinetics of astaxanthin 

extraction during the CO2-SCFE process. The CO2-SCFE process was conducted for a longer 

period (80 min) than in the previous experiment in order to investigate the kinetics of 

astaxanthin extraction at the optimised condition identified previously (360 bar, 76.8°C and 

18% EtOH).  It was decided not to extend the extraction process for longer than 80 minutes as 

this would require additional amounts of solvent and energy rendering the process not 

economically viable (Andrade-Lima et al., 2018).  
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In the case of freeze dried cells without any pre-treatment, the maximum astaxanthin 

extractability obtained was 14% (Figure 6-9). In comparison, about 3.5 times higher 

astaxanthin extractability (~45%) was obtained when Accellerase 1500 (70%) was used as 

pretreatment step. It seems that by increasing the Accellerase 1500 concentration, a higher 

degree of cell wall rupture occurred, which allowed higher extraction of astaxanthin. Figure 

6-10 shows the scanning electron microscopy images of intact X. dendrorhous cells before and 

after CO2-SCFE extraction. It can be observed that during CO2-SCFE extraction the cells’ 

morphology changed significantly, particularly after enzyme pre-treatment (Figure 6-10 C, D) 

where a considerable level of rupture and shrinkage can be observed; the latter probably due to 

the release of intracellular components. 

From the results in Figure 6-9, it can be observed that astaxanthin was extracted mostly 

at the beginning of the extraction (before 20 mins) process. At this stage, there did not seem to 

be considerable differences in rate of astaxanthin extraction regardless of the enzyme used. 

This phase is known as the Constant Extraction Rate (CER), a condition where easily accessible 

solute is dissolved and extracted. This process was facilitated by a mass transfer mechanism 

(convection) from the solid phase to the fluid phase, and extraction was limited by astaxanthin 

solubility in the CO2-SCFE (Silva et al., 2016).  After 20 min, the rate of astaxanthin extraction 

started to decrease, most likely due to the decrease in the concentration of available astaxanthin 

within the cells, as the process continued. This is a slow process which is driven by diffusion 

and convention and is known as the Falling Extraction Period (FER). In this region, once the 

easily available pigments are depleted, CO2 has to be diffused into the cell wall, dissolve the 

pigments and diffuse out. In the final stage of the extraction process is known as the Low 

Extraction Rate (LER) or diffusion-controlled phase (DC); during this stage the extraction rate 

is even lower than during the FER phase, and mass transfer occurs mainly by diffusion inside 
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the yeast cells (Silva et al., 2016; Andrade-Lima et al., 2018). This stationary phase. Overall, 

the optimum time for astaxanthin extraction was found to be between 60-70 mins. 
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Figure 6-9:  Kinetics of CO2-SCFE extraction of freeze-dried X. dendrorhous cells, pre-treated 

with different enzymes. Symbols represent (■) 70% Accellerase, (▼) 30% Accellerase, (◆) 

5% Glucanex (●) control- no pretreatment. CER = constant extraction rate, FER = falling 

extraction period and LER = low extraction rate and DC = diffusion-controlled phase  
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Comparing the results from this CO2-SCFE experiment to the previous experiment 

where Glucanex treatment was used followed by acetone extraction (section 5.3.2), it can be 

observed that lower astaxanthin extractability was obtained in the former case (~45% vs 

~100%, respectively). Theoretically, once the cells were ruptured, the permeability of the 

solvent through the cell wall as well as the solubility of astaxanthin in this particular solvent 

should dictate to a large extent the astaxanthin extractability values obtained. The lower 

astaxanthin extractability (%) obtained in the case of the CO2-SCFE experiment might be due 

to the lower solubility of astaxanthin in ethanol that was used as co-solvent, compared to 

acetone. Nevertheless, astaxanthin extraction by CO2-SCFE has a lot of potential for large-

scale operations taking into account the potential environmental advantages (less solvent) of 

such green technology as well as the lower processing time compared to other methods, e.g. 

the glass beads treatment followed by acetone extraction or the enzyme treatment (e.g. 

Glucanex) followed by acetone extraction. Another advantages of this process is that the 

processing conditions (e.g. pressure, temperature, co-solvent type and concentration) can be 

tailored for the extraction of targeted pigments present in complex mixtures, such as in 

microbial cells or plant materials. This would simplify the subsequent purification process.
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Figure 6-10: SEM images depicting X. dendrorhous cells before and after pre-treatment: (A): 

Freeze dried X. dendrorhous cells, (B): Freeze dried X. dendrorhous cells (no pretreatment) 

after CO2-SCFE extraction (control cells), (C): Freeze dried X. dendrorhous cells (pretreated 

with Accellerase, 30 % v/v) after CO2-SCFE extraction , (D): Freeze dried X. dendrorhous 

cells (pretreated with Glucanex, 5 % v/v) after CO2-SCFE extraction. 

 

 

A B 

C D 
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6.5 Conclusions 

The results presented in this study allowed an assessment of a number of strategies for 

the extraction of astaxanthin from X. dendrorhous cells. The best extraction strategy involved 

the use of Glucanex (5% w/v) followed by acetone extraction; this resulted in even higher 

astaxanthin extraction, compared to the standard extraction method (DMSO/acetone). The use 

of Accellerase (30% v/v) to disrupt the cell wall did not help in extracting astaxanthin (using 

acetone as the solvent) mainly due to the different enzyme activities present in the two 

enzymes, and particularly the low β-1, 3 glucanase activity of Accellerase 1500. Glass beads 

accompanied with acetone extraction was a simple and effective method to rupture the cells 

and extract astaxanthin, as resulted in extractability of higher than 80%. CO2-SCFE was also 

evaluated as it is a much more environmentally friendly method due to the considerably lower 

amounts of solvent used compared to the above methods. The method showed potential 

although an enzymatic pre-treatment step was deemed necessary to rupture the cell was 

structure and reach extractability values of ~ 45%. Further studies are needed to optimise the 

method and increase the astaxanthin extractability. 
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7 General discussion and recommendations for future studies 

7.1 General discussion 

One of the challenges in natural astaxanthin production is associated with its expensive 

production route compared to synthetically produced astaxanthin, as it involves a series of 

processes including fermentation and downstream processing. It is uncertain whether natural 

astaxanthin can be produced at a low cost. Therefore, this current work aims to investigate an 

alternative route for the sustainable production of microbial astaxanthin that can compete with 

the synthetically produced astaxanthin by investigating three main key process stages, 

including: (i) the lignocellulosic hydrolysis, (ii) fermentation process and (iii) pigment 

extraction (downstream processing). This thesis generated new scientific knowledge relevant 

to both academic and scientific communities, and more specifically in (i) identifying a potential 

processing route for rapeseed meal hydrolysis into fermentation nutrients using enzyme 

technology; (ii) demonstrating that rapeseed meal is suitable to be valorised as substrate for 

astaxanthin production by the yeast X. dendrorhous DSMZ 5626; and (iii) investigating 

different methods for maximising astaxanthin extraction yield from yeast cells.  

Generally, renewable resources such as rapeseed meal, a by-product of rapeseed 

processing industry hold a potential to serve as cheap and sustainable substrates for microbial 

conversion into astaxanthin by yeast species. The selection of rapeseed meal as a starting 

material in this study was based on the abundance of rapeseed meal that is generated annually 

in the United Kingdom. Currently, rapeseed meal is used as a feed for livestock as it is high in 

protein. In order to increase the value of rapeseed meal, research has been carried out 

worldwide, mainly focusing on valorisation of its protein content. On the contrary, in this 

current study, we aim to explore the potential of rapeseed meal as sole fermentation substrate 
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for natural astaxanthin production by yeast. To our knowledge, the utilisation of rapeseed meal 

as carbon source for microbial astaxanthin production has not been reported elsewhere. Based 

on the findings of this current study, we aim to be able to propose a strategy for the exploitation 

of rapeseed meal as raw material for natural astaxanthin bioconversion process.  

One of the major tasks carried out in this study was the enzymatic hydrolysis of 

rapeseed meal into nutrient-rich hydrolysates that could be used as sole nutrient source for X. 

dendrorhous. One of the challenges in this work was to select suitable enzymes that can 

hydrolyse the rapeseed structure and lead into a liquid nutrient rich medium that could further 

support yeast growth as well as intracellular astaxanthin pigmentation. It was proved that the 

selection of enzymes for rapeseed meal hydrolysis had its impact on supporting the yeast 

growth and astaxanthin pigmentation. The use of Viscozyme L (an enzyme cocktail that has 

multiple activities) on rapeseed meal resulted in sufficient hydrolysis yield but the subsequent 

hydrolysate was not suitable to support yeast growth and astaxanthin pigmentation in X. 

dendrorhous, possibly due to the presence of growth inhibitors that were released during 

hydrolysis stage as well as due to Crabtree effect during fermentation. Further investigation on 

biomass pretreatment focusing on thermal pretreatment prior to enzyme hydrolysis was 

performed to increase the cellulose hydrolysis rate. This thermal pretreatment using autoclave 

is considered as a simple and mild pretreatment strategy to adopt as it does not require special 

reactor and exclude the use of acid or alkali that could influence the hydrolysates produced in 

later stage. The thermal pretreatment acts by disrupting the hydrogen bonds that hold the 

crystalline structure of cellulose and lignin matrices together and subsequently causes a 

swelling in the biomass and a disruption of the cellulose structure. The increased solubility of 

the lignin will then allow a better accessibility of the enzymes towards its specific site (Brodeur 

et al., 2011).   
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To further investigate the scalability of astaxanthin production in X. dendrorhous with 

rapeseed meal hydrolysates, bioreactor studies are important as the output will determine the 

feasibility of this process for scaling up towards commercialisation. The key parameters 

investigated included pH and agitation, which were proved to play major role in maximising 

astaxanthin production in yeast. Higher agitation rate was required to provide enough oxygen 

as well as ensuring better heat and mass transfer and subsequently increase yeast growth and 

astaxanthin production. The pSSF approach is an improvement of simultaneous 

saccharification and fermentation (SSF), which was not found suitable in this study due to large 

differences between optimal temperatures for yeast growth and enzymatic activity. The 

objective of this study was to provide a new approach for a simplified fermentation process. 

This pSSF approach for astaxanthin production has not been reported before. However, results 

showed that this approach was not suitable for astaxanthin production in yeast as it leads to 

additional hurdles in the intracellular astaxanthin extraction process, as the separation between 

rapeseed meal biomass and yeast was difficult to be carried out. 

 The last part of this current study focused on downstream processing for the extraction 

of intracellular astaxanthin from yeast cells. Yeast derived astaxanthin is characterised as 

natural and can be used as an ingredient in products formulation including feed, food and as a 

colourant. The experiments demonstrated that the application of mechanical extraction (glass 

beads) gave high degree of cell disruption and subsequently increased astaxanthin extraction 

by solvent. This is considered as a feasible method to be used in large scale as it is a simple, 

cheap and reliable and does not require special instrument. One disadvantage of glass beads 

cell disruption is that it requires longer time when processing a high density of cells. As for 

enzymatic cell lysis, two different enzymes (Acellerase 1500 and Glucanex) were investigated 

for their efficacy to hydrolyse the yeast cell wall glucans. The application of enzyme cell lysis 
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with high β-glucanase activity managed to successfully lyse the yeast cell wall and 

subsequently increase the permeability of acetone for astaxanthin extraction. The setback that 

hindered the use of enzyme for scaling up process is the high costs that are associated with the 

provision of the selected enzyme.  

On the other hand, the use of CO2-SCFE for astaxanthin extraction from X. dendrorhous 

failed to meet expectations. Even with modification by utilising ethanol as co-solvent and yeast 

pretreatment prior to extraction, the astaxanthin extractability was low compared to other 

strategies previously mentioned. The complex and rigid structure of yeast cell wall that is 

composed of mannose, β-glucans and chitin hinders the effectiveness of CO2-SCFE strategy. 

However, there are possible improvements that can be performed to increase the astaxanthin 

extractability in CO2-SCFE, such as selection of suitable pretreatment method to adequately 

disrupt the cell wall structure of X. dendrorhous prior to CO2-SCFE such as glass beads and 

ultrasonication.  

The schematic detailing of unit operations for the proposed astaxanthin production in 

X. dendrorhous DSMZ 5626 as discussed in this study is outlined in Figure 7.1. This diagram 

also points out the possible improvements that can be performed to increase the feasibility of 

the overall process (shown in dotted line). Generally, the results obtained in this study 

suggested that the wild strain of X. dendrorhous DSMZ 5626 used was able to produce 

astaxanthin to satisfactory levels (240-250 µg/g of yeast dry weight) in a 2-litre stirred tank 

bioreactor, using solely the enzymatically produced rapeseed meal hydrolysates. However, 

there is a room for improvement in order to increase astaxanthin production using rapeseed 

meal hydrolysates in this particular process. 
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The first improvement that can be performed is to separate between the hull and seed 

meal using mechanical sieve prior to milling process. In this study, it was observed the leftover 

debris after enzymatic hydrolysis in the reaction vial consists of the hull part rather than the 

seed part. It shows that the hull part is more difficult to be hydrolysed as compared to seed 

meal. By separating the seed and hull part, different approach can be performed on each 

material. The seed part that composed of radicle and cotyledon can be directly subjected 

towards mild enzymatic hydrolysis, whereby the hull part is subjected towards pretreatment 

process. As the composition of the hull part is hard and complex as it composed of very strongly 

associated cell wall polysaccharide, harsh pretreatment strategies such as steam explosion 

could be applied to break down or solubilize the structure prior to enzyme hydrolysis, to 

maximise sugar recovery from the hull part. As for the seed part, mild enzymatic treatment is 

able to breakdown its structure into sugars and amino acids. Therefore, by separating these two 

components of rapeseed meal, higher sugar yield could be obtained whilst maintaining the 

quality of hydrolysates produced as not the whole rapeseed meal are exposed to harsh 

conditions during pretreatment, that could lead to production of HMF and furfural. On the 

downstream processing stage, further studies on the astaxanthin extract could be performed to 

investigate the stability of the extract in different types of solvents. Investigating the 

performance of the extracted astaxanthin in product formulation such as in feed and colourant, 

is a key next step for this research work.  

The economic feasibility of the overall process of astaxanthin production using the 

rapeseed meal hydrolysates depends on various factors. In 2017, the price of rapeseed meal 

was about 225 USD per tonne, which is cheaper than soybean cake (336 USD per tonne) (FAO, 

2018). This raw material is generally cheaper than the cost of the chemicals required for the 

semi-defined media formulation. Even though cheap substrate is used to replace refined sugars 
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during fermentation, but the enzymes used in this study are costly. The enzymatic hydrolysis 

step contributes to the major operational cost involved in astaxanthin production in X. 

dendrorhous as compared to the fermentation and the extraction process. As an example, the 

cost of the Pectinase enzyme itself is about 1080 USD per litre. Moreover, the hydrolysis yield 

of rapeseed meal into monomeric sugars is at minimal values with < 55% glucose yield. Hence, 

improvement of the process need to be performed to maximise the sugars hydrolysed, 

subsequently higher astaxanthin yield could be obtained, making the overall process more 

valuable. Besides that, life cycle assessment analysis (LCA) is necessary to be conducted to 

measure the impacts of every step in the life cycle of a product, of the whole process starting 

with the extraction of the raw material up to disposal of the product. LCA is known the common 

decision support tool for the industry to assess the impacts and viability of a process (McIntosh 

and Pontius, 2017).   

After considering all the aspects investigated, the commercialisation of astaxanthin 

production rom X. dendrorhous DSMZ 5626 using the rapeseed meal is not an economically 

feasible to be commercialised unless improvement on the process is carried out. There are 

several aspects that needs to be focused, especially on minimising the cost of overall process 

prior to potential commercialisation.  However, the general process involves in this study 

provides a scientific knowledge on the possible route for the sustainable production of natural 

astaxanthin in yeast. Thus, it can be concluded that this current study serves as a preliminary 

investigation towards the commercialisation of natural astaxanthin produced from X. 

dendrorhous using rapeseed meal hydrolysates as the fermentation substrate. 
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Figure 7-1:  The schematic detailing of unit operations for the proposed astaxanthin production in X. dendrorhous DSMZ 5626 using rapeseed meal as substrate 

as discussed in this study. The diagram contains proposed improvements that could be performed to increase the process efficiency and are presented in the 

dotted line.
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7.2 Recommendations for further studies 

Although the study presented in this thesis has established the potential for utilising 

rapeseed meal for the microbial production of astaxanthin by X. dendrorhous, it only represents 

a preliminary investigation. Some limitations were identified in this study that could potentially 

lead to future research. A Crabtree effect in this yeast was observed to occur during the 

fermentation. However, the mechanism of the Crabtree effect in X. dendrorhous needs to be 

fully characterized, including the determination of the critical threshold limit and the key 

enzymes involved during the yeast metabolism. A complete understanding of the genes 

responsible for the induction of this effect will lead to opportunities for process optimisation 

that can completely eliminate this effect. 

Addition of inducers (acetic acid, hydrogen peroxide and ethanol) was found to increase 

astaxanthin pigmentation in the cells. However, the mechanism behind this induction process 

was not investigated in this work. A study involving investigation at the gene level will give 

more insight into potential mechanism and understanding of the induction process. Besides that, 

strain improvements such as using chemical mutagenesis or genetic engineering to produce a 

yeast strain that has a higher capability to produce the astaxanthin could be performed. The 

improved strain could make the overall fermentation process more cost effective along with a 

higher productivity. Nangia et al., (2016) investigated the use of ultraviolet (UV) as a mutagen 

to improve astaxanthin production in Phaffia rhodozyma. 

In the current study, the thermal pre-treatment step (126 oC, 30 min) was conducted as 

a simple pre-treatment strategy aiming at a subsequent increase in the enzymatic hydrolysis by 

the Accelerase 1500. However, this pre-treatment strategy resulted in only a 25% increment as 

compared to control (no-pretreatment), giving a maximum glucose yield of 40 % (w/w). This 
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value is considered to be low, and the yield can be increased by utilising a more suitable pre-

treatment strategy. Therefore, other pre-treatment strategies such as steam explosion, acid or 

alkali pre-treatment, as well as biological pre-treatment by fungi can be explored for their 

feasibility to increase the hydrolysis rate of the rapeseed meal and subsequently be used for the 

microbial astaxanthin production.  

Moreover, an improvement in the astaxanthin accumulation in the X. dendrorhous using 

the rapeseed meal hydrolysates can be performed by using a fed-batch or continuous 

fermentation approach. In these approaches, different variations of the feeding solutions can be 

studied. In addition to the carbon these feeding solutions should contain nitrogen sources as 

well so as to sustain the growth and the astaxanthin production in the yeast.  

Utilising the CO2-SCFE as a green technology for astaxanthin extraction on its own is 

not a feasible strategy as demonstrated in this study. However, there is a lot of potential for this 

method and should be further investigated. In the current study, the astaxanthin extractability 

(%) was improved when the enzyme-assisted CO2-SCFE was applied. Further work on different 

yeast pre-treatment strategies prior to the CO2-SCFE should be carried out. Different cell 

disruption strategies such as glass beads, ultrasonication or thermal pre-treatment prior to the 

CO2-SCFE can be applied as pre-treatment strategies to improve astaxanthin extraction during 

CO2-SCFE. Besides that, the extracted astaxanthin should also be assessed for its stability in 

various solvents.  

Future studies should aim to improve the biotechnological route for the production of 

astaxanthin by X. dendrorhous DSMZ 5626. Starting right from the selection of the raw 

materials to the astaxanthin extraction process, each step needs to be carefully examined in 

order to provide a sustainable route for the microbial production of astaxanthin that can compete 

with synthetically produced astaxanthin. As seen in this study, the rapeseed meal hydrolysate 
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has been confirmed as a feasible feedstock containing all the essential nutrients including 

carbohydrates, proteins and amino acids that are able to support the X. dendrorhous growth and 

support astaxanthin production as well.  
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