

The decoupled nature of basal metabolic rate and body temperature in endotherm evolution

Article

Accepted Version

Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. and Venditti, C. ORCID: https://orcid.org/0000-0002-6776-2355 (2019) The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature, 572. pp. 651-654. ISSN 0028-0836 doi: 10.1038/s41586-019-1476-9 Available at https://centaur.reading.ac.uk/85675/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1038/s41586-019-1476-9

Publisher: Nature Research

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1	Title: The decoupled nature of basal metabolic rate and body temperature in endotherms
2	evolution
3	
4	Authors: Jorge Avaria-Llautureo ^{1, 4} , Cristián E. Hernández ² , Enrique Rodríguez-Serrano ³ ,
5	Chris Venditti ¹ .
6	
7	Author affiliations:
8	
9	1. School of Biological Sciences, University of Reading, Reading, RG6 6BX, United
10	Kingdom.
11	
12	2. Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología,
13	Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción,
14	Concepción, Chile.
15	
16	3. Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias
17	Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
18	
19	4. Facultad de Ciencias. Universidad Católica de la Santísima Concepción (UCSC).
20	Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS). Chile.
21	

22 The origin of endothermy in birds and mammals are iconic events in vertebrate 23 evolution. Endotherms can maintain their body temperature (T_b) over a wide range 24 of ambient temperatures (T_a) using primarily the heat generated continuously by 25 their high basal metabolic rates $(BMR)^1$. There is also an important positive feedback loop in that *BMR* itself is influenced by T_b^{1-3} . Owing to this, many 26 27 ecologists and evolutionary physiologists posit that the evolution of BMR and $T_{\rm b}$ 28 must have been coupled during the radiation of endotherms³⁻⁵, changing with 29 similar trends⁶⁻⁸. However, colder historical environments might have imposed 30 strong selective pressures on BMR to compensate for increased rates of heat loss and 31 to keep T_b constant⁹⁻¹². Thus, adaptation to cold T_a via *BMR* increases could have 32 decoupled *BMR* from T_b and caused different evolutionary routes to the modern 33 diversity in these traits. Here we show that *BMR* and $T_{\rm b}$ were decoupled in ~ 90% of 34 mammalian and in ~ 36 % of avian phylogenetic branches. Mammalian BMR 35 evolved with rapid bursts but without any long-term directional trend, whereas $T_{\rm b}$ 36 evolved mostly at a constant rate and towards colder bodies from a warmer-bodied 37 ancestor. Avian BMR evolved predominantly at a constant rate – again with no 38 trend, whereas $T_{\rm b}$ evolved with much greater rate heterogeneity than *BMR* and 39 there has been adaptive evolution towards colder bodies. Furthermore, rapid shifts 40 leading to both BMR increases and decreases were linked to abrupt changes 41 towards colder T_a but only in mammals. Our results suggest that natural selection 42 effectively exploited the diversity of mammalian BMR under diverse, often adverse 43 historical thermal environments.

44

45 Phylogenetic statistical methods^{13, 14} now provide us with the opportunity to formally test

46 whether *BMR* has been linked to T_b or T_a throughout the evolution of birds and mammals.

47 By accommodating for and identifying heterogeneity in the rate of phenotypic evolution

48 these methods can detect and reconstruct accurate historical evolutionary processes¹⁵.

49 Evaluation of the evolutionary coupling between *BMR* and T_b has direct consequences for

50 several longstanding ecological and evolutionary theories (including the Metabolic

51 Theory of Ecology) which assume $coupling^{2-8}$.

52

53 We first quantified and compared rates for *BMR* and T_b evolution along each branch of

54 the time-calibrated phylogenetic trees of birds and mammals (henceforth *branch-wise*

55 *rates, r;* see Methods). *r* measures how fast a trait evolved along an individual

56 phylogenetic branch (r is a rate scalar by which the background rate is multiplied to 57 increase or decrease the pace of evolution). If *BMR* and T_b were coupled during the 58 evolution of endotherms, the amount of change along phylogenetic branches in both traits 59 should be positively associated – where r is high in BMR we expect it to be high in $T_{\rm b}$ 60 (Fig. 1 b). We tested this prediction against alternative evolutionary scenarios. Firstly, we 61 cannot make any inferences about coupling or decoupling where there is no rate 62 heterogeneity for both *BMR* and T_b (r = 1 for all branches in the tree for both traits; Fig. 63 1a). Secondly, we infer decoupled evolution if both traits show rate heterogeneity, but the 64 magnitudes of rs are negatively correlated (*i.e.* branches evolving at a high rate for BMR 65 are evolving at a low rate for $T_{\rm b}$, and vice-versa, Fig. 1c). We suggest this scenario implies decoupled evolution because a negative correlation most likely implies that one 66 67 trait tends to be conserved whilst the other evolved rapidly. Thirdly, we infer decoupled 68 evolution if only one trait shows rate heterogeneity while the other evolved at a constant 69 rate (Fig 1d and e) or if both traits show heterogeneity but the *branch-wise rates* are not 70 associated (Fig 1f).

71

As *BMR*, body mass (*Mass*), T_b , and T_a are at least to some extent correlated in extant birds and mammals, and such correlations may vary between orders¹⁶, we estimated the *branch-wise rates* for *BMR* and T_b while accounting for their covariates across extant species using the *phylogenetic variable-rates regression* model¹⁷ (henceforth *variablerates*; Methods). This approach allows for simultaneous estimation of both an overall relationship between, for instance, *BMR* as a function of *Mass* and T_b across extant species, and any shifts in rates (*r*) that apply to the phylogenetically structured residual

79	variance in the relationship. In both birds and mammals, the variable-rates model
80	significantly fits the data better than the constant-rate regressions, which assume a single
81	rate across all branches (Methods; Table S1 to S8). The best fitting variable-rates model
82	for mammalian <i>BMR</i> includes both <i>Mass</i> and T_b with a single slope for each trait
83	estimated across all orders (Table S1 and S2). For mammalian T_{b} , the best fitted model
84	includes Mass and BMR as covariates, also with a single slope across all orders (Table S3
85	and S7). In birds, the best model for BMR includes only Mass with a single slope for all
86	orders (Table S4). Finally, the best fitted model for avian T_b includes <i>Mass</i> only in
87	Columbiformes (Table S6).
88	
89	The branch-wise rates estimated in the best fitting models shows that mammalian BMR
90	evolved at a constant rate ($r = 1$) in just 11.2% of branches and at faster rates ($r > 1$) in
91	88.8% of branches (Fig. 2a). Mammalian $T_{\rm b}$ evolved at a constant rate in 70.3% of
92	branches and faster rates in 29.7% of branches (Fig. 2b). In birds, BMR evolved at a
93	constant rate in 90.5% of branches and at faster rates in 9.5% of branches (Fig. 2d).
94	Avian $T_{\rm b}$ evolved at a constant rate in 69 % of branches and at faster rates in 31% (Fig.
95	2e). When the <i>branch-wise rates</i> for <i>BMR</i> and T_b were compared, we found that in
96	mammals, both traits evolved at a constant rate in 10.6% of branches (Fig. 3a consistent
97	with Fig. 1a). In 60.2% of branches only one trait evolved at faster rates while the other
98	trait diverged at a constant rate. This indicates that <i>BMR</i> and T_b evolved in a decoupled
99	fashion along these branches (Fig. 3a consistent with Fig. 1d, e). We found that 29.2% of
100	branches had an increased rate in both <i>BMR</i> and T_b . However, the magnitudes of the
101	branch-wise rates were not significantly correlated (p _{MCMC} [% of posterior distribution

102	crossing zero] = 9%; Table S9; Fig. 3a consistent with Fig 1f). This also suggests
103	decoupled evolution in those branches – likely because of distinct selection pressures
104	acting on <i>BMR</i> and $T_{\rm b}$. On the other hand, both traits evolved at a constant rate in 63.8%
105	of branches for birds (Fig. 3c consistent with Fig. 1a). In 32% of branches only one trait
106	evolved at fast rates while the other trait diverged at a constant rate (Fig. 3c consistent
107	with Fig. 1d, e). In the remaining 4.2% of branches, both traits evolved at faster rates, but
108	the <i>r</i> magnitudes were not statistically correlated ($p_{MCMC} = 16.9\%$, Table S10, Fig. 3c
109	consistent with Fig. 1f).
110	
111	As rapid bursts in <i>BMR</i> evolution were not coupled with those in T_b evolution, we
112	evaluated the alternative hypothesis postulating that BMR evolved in response to T_a . This
113	hypothesis suggests that colder environments increase the rate of heat lost from
114	organisms which is subsequently compensated by BMR increases ⁹⁻¹² . These BMR
115	increases could have occurred over long periods of time because of global cooling ^{18} -
116	generating a long-term directional trend in BMR during the radiation of mammals and
117	birds. This expectation is in line with the Plesiomorphic-Apomorphic Endothermy
118	Model ⁶⁻⁸ (PAE Model). By assuming that <i>BMR</i> and T_b are coupled in endotherms and that
119	they both can be used as a proxy of the degree of endothermy, the PAE model predicts a
120	general tendency towards higher endothermic levels through time (from basoendothermic
121	ancestors, Methods) associated with the Cenozoic global cooling. Global cooling is not
122	the only source of variation in T_a . Long-term directional increases in <i>BMR</i> might have
123	also been driven by historical dispersals of endotherms towards higher latitudes ¹⁹ . In
124	either case, if a long-term decrease in T_a drove adaptation via <i>BMR</i> elevation, and T_b

followed the same trajectory (as assumed by the PAE model) we expect to find a positive correlation between the *branch-wise rates* of *BMR* and the *branch-wise rates* of T_a . With this in mind, we also expect a positive trend towards higher *BMR* and T_b values from basoendothermic ancestors and a negative trend towards lower T_a from warmer ancestral environments. We used the *variable-rates* model to estimate the *branch-wise rates* for T_a whilst accounting for latitude since, generally, T_a decreases from the equator to the poles (Methods; Table S11).

132

133 The variable-rates model significantly improved the fit to the T_a data over the constant-134 rate regression model in both mammals and birds (Table S11). In 21.2% of mammalian 135 branches $T_{\rm a}$ evolved at a constant rate, and with rate heterogeneity in the remaining 136 78.8% – including 72.2% of branches with faster rates and 6.6\% with slower rates (r < 1, 137 Fig. 2c). This indicates that most ancestral mammalian lineages (72.2%) faced abrupt 138 historical changes in their $T_{\rm a}$, while far fewer lineages (6.6%, mostly bats) survived and 139 continued existing in similar thermal environments. In birds, 77.6% of branches show 140 faster rates of T_a change, 22.1% show changes at a constant rate, and in only a single 141 branch the T_a changed at a slower rate (Fig. 2f). 142

143 When *branch-wise rates* of mammalian *BMR* and T_a evolution were compared, we found 144 that they were coupled in 74.9% of branches ($p_{MCMC} = 0\%$; Table S12; Fig. 3b, consistent 145 with Fig. 1b). To evaluate further if T_a decreases were linked to *BMR* increases in the 146 74.9% of mammals where both traits were coupled (i.e. to ascertain the direction of 147 change), we evaluated the expected positive trend in *BMR* as a response to the long-term

148 decrease in $T_{\rm a}$. We conducted Bayesian phylogenetic regressions between extant values 149 of these two variables (in turn) and the *path-wise rates* (sum of *branch-wise rates* along 150 branches in the path from the root of the tree to each terminal species, Methods)¹⁵. We 151 found a negative effect of *path-wise rates* on T_a across all mammals (Fig. 4b; Table S14), 152 which supports a long-term directional trend towards habitats with lower T_a over time. 153 However, we did not find evidence for any trend in mammalian BMR evolution – BMR154 increases and decreases were equally likely in our sample (Table S14). Our results 155 suggest that in colder environments, where resources were available to fuel metabolic elevation, selection favoured higher mammalian BMR^{20} . Another possibility might be that 156 157 *BMR* increase was a correlated response to direct selection on other physiological traits, 158 like maximal metabolic capacities for thermogenesis, whose benefits outweigh the energetic cost of BMR elevation²⁰. Otherwise, selection may have always favoured BMR 159 decreases under an ever colder environment²⁰. 160

161

162 In contrast to mammals, most avian branches that experienced rapid shifts in T_a did not 163 show evidence of coupled changes in BMR - 68.4% of branches had fast rates of T_a 164 evolution but a constant rate of *BMR* evolution (Fig. 3d consistent with Fig. 1d, e). 165 Moreover, the small fraction of branches where BMR evolved at fast rates (9.5%) were 166 not linked to rapid shifts in T_a (Fig. 3d consistent with Fig. 1f; Table S13). Avian BMR 167 did not show a positive evolutionary trend despite the fact they also experienced colder 168 environments over time (Fig. 4d; Table S15). Birds might not have responded to colder 169 temperatures by changes in their *BMR* because their lower thermal conductance might

have helped them retain internal heat⁹. Alternatively, other physiological strategies, such
as torpor, may have been selected for under colder environments²¹.

173	Finally, we found a negative effect of <i>path-wise rates</i> on T_b in both mammals (Fig. 4a;
174	Table S14) and birds (Fig. 4c; Table S15). This suggest that – on average – endotherms
175	evolved towards colder bodies from warmer-bodied ancestors. These directional models
176	predict a mean T_b of 35.3 °C and 40.4 °C in the most recent common ancestor (MRCA)
177	of mammals and birds respectively (Fig. 4a, c), suggesting that early birds and mammals
178	were mesoendotherm rather than basoendotherms (Methods). This result does not support
179	that ancestral mammals could not attain $T_b > 30$ °C owing to the elevated metabolic rates
180	necessary to compensate heat loss in cold environments ²² . However, if the T_b - T_a
181	differential (ΔT) determines how hot early mammals were, we expect that the mammalian
182	MRCA with a T_b of 35.3 °C could survive in an environment warm enough to have a low
183	ΔT . Our model describing the negative trend in T_a predicts that the MRCA of mammals
184	lived in an environment with 23 °C on average (Fig. 4b), resulting in a ΔT of 15.3 °C.
185	This ancestral ΔT is very conservative compared with the ΔT s observed in extant
186	mammals. For example, there are small mammals that achieve T_b higher than 39 °C (e.g.
187	<i>Microdipodops pallidus</i> ¹⁶) that can survive in environments of 11 °C ¹⁹ ($\Delta T = 28$ °C).
188	Also, some larger mammals have stable T_b even in extreme environmental conditions –
189	the Artic hare (<i>Lepus arcticus</i>) can maintain its T_b of 38 °C ¹⁶ in temperatures as low as -
190	$12 ^{\circ}\mathrm{C}^{19} (\Delta T = 50 ^{\circ}\mathrm{C}).$
191	

192	Taken together, our results reveal that BMR was not coupled with T_b across the evolution
193	of endothermic species. As environments became colder, mammals survived by changing
194	their BMR, while birds likely survived owing to their high thermal insulation. Evaluating
195	the isolated and/or combined effect of environmental variables on physiological attributes
196	has implications for evidence-based projections for the future ²³ . In this sense, the
197	previously unappreciated complexity, interplay and decoupled nature in the evolutionary
198	history of <i>BMR</i> , T_b and T_a might point to undetected resilience of endotherms in the face
199	of modern global challenges.
200	
201	Figure legends.
202	
203	Figure 1. Possible evolutionary scenarios between BMR and T_b given their branch-
204	wise rates (r) in a bivariate space. Grey colours represent the constant background rate
205	(r = 1). Red colours represent rates faster than the background rate $(r > 1)$ and blue
206	colours represent rates slower than the background rate ($r < 1$), which might be related to
207	past events of positive ¹⁷ and stabilizing selection ²⁹ respectively. Point fill colours
208	represent <i>BMR</i> rates and point outline colours represent T_b rates.
209	
210	Figure 2. Branch-wise rates (r) of BMR. The and To on the mammalian and avian
210	
211	phylogeny. Silhouettes courtesy of Phylopic/Apokryltaros (vectorized by T. Michael
212	Keesey), Becky Barnes, Doug Backlund et al., Emily Willoughby, Enoch Joseph et al.,
213	Estelle Bourdon, Ferran Sayol, FunkMonk, Jon Hill (Photo by DickDaniels), L. Shyamal, Lip

214 Kee Yap (modified), Mathew Callaghan, Matt Martyniuk, nicubunu, Pearson Scott

- 215 Foresman, Prin Pattawaro et al., Rebecca Groom, Sarah Werning, T. Michael Keesey
- 216 (after Joseph Wolf), Yan Wong, Steven Traver. Silhouette licence links:
- 217 <u>https://creativecommons.org/licenses/by/3.0/;</u>
- 218 https://creativecommons.org/licenses/by-sa/3.0/.
- 219

220 Figure 3. *Branch-wise rates (r)* of *BMR*, *T*_b, and *T*_a in bivariate space for mammals

221 (a, b) and birds (c, d). Bayesian GLS analyses indicates that only fast *branch-wise rates*

for *BMR* and slow-fast *branch-wise rates* of *T*_a were statistically correlated in mammals

- 223 $(p_{MCMC} = 0; n = 602 \text{ branches; black line}).$
- 224

```
Figure 4. Mammals (a, b) and birds (c, d) evolved towards both colder T_b and T_a
```

226 over their evolutionary history. *Path-wise rates* had a significant negative effect in

mammalian and avian T_b ($p_{MCMC} = 4\%$ and 3%; n = 502 and 367 species) and in

mammalian and avian T_a ($p_{MCMC} = 0$ and 0; n = 2922 and 6142 species), both supporting

a negative macroevolutionary trend¹⁵. Transparent and dark lines indicate the posterior

- 230 distribution of slopes and the mean slope respectively, estimated from the Bayesian
- 231 PGLS (Methods).
- 232

233 Methods.

Data. We used a time-calibrated phylogenetic tree of extant mammals $(n = 3321)^{24}$, and the body mass (*M*), basal metabolic rate (*BMR*), and body temperature (*T*_b) taken from

236 Clarke et al.¹⁶ (n = 632). After identifying species in the tree that have trait information,

we obtained a final mammalian dataset of 502 species, which includes representativesfrom 15 orders (SI).

239

For birds, we used the consensus time-calibrated tree from Rolland et al.¹⁹. This tree was 240 inferred from the samples of trees provided by Jetz et al²⁵. Data for *BMR*, $T_{\rm b}$, and *Mass* 241 were obtained from Fristoe et al⁹. After matching this database with the phylogenetic 242 243 tree, we obtained a final sample of 164 species which includes representatives from 21 244 orders (SI). The dataset used to evaluate evolutionary trends in T_b (see below) is from Clarke & Rothery²⁶, which contains 367 species with phylogenetic information. 245 246 247 Data for ambient temperature (T_a) and latitude for extant mammals and birds was extracted from Rolland et al.¹⁹ These datasets include 2922 species of mammals and 6142 248 species of birds which have phylogenetic information. The T_a for extant endothermic 249 250 species is the temperature of environments in which birds and mammals inhabit today -251 measured as the mean ambient temperature for the mid-point latitude of each species distribution (Rolland et al.¹⁹). The T_a at which a species exists today may not be a 252 253 heritable trait *per se*. However, the evolution of T_a can still be inferred using phylogenetic 254 methods since habitat selection reflects species adaptations (traits) to some characteristics 255 of the environment. This interrelationship should leave phylogenetic signal in the T_a at 256 which endothermic species live. Accordingly, we found significant phylogenetic signal in the T_a of both mammals ($\lambda_{PosteriorMean} = 0.77$; Bayes Factor = 665) and birds ($\lambda_{PosteriorMean} =$ 257 0.8; Bayes Factor = 1404). Furthermore, the phylogenetic signal for T_a is very high (λ =1) 258 in birds and mammals, when estimated using the median-r scaled tree. 259

Finally, to evaluate the endothermic levels for the MRCA of mammals and birds proposed by Lovegrove^{7, 8}, we followed his categorization of endothermic species as basoendotherms ($T_b^{\text{Birds}} < 40.4 \text{ °C}$; $T_b^{\text{Mammals}} < 35.0 \text{ °C}$), mesoendotherma ($40.4 \text{ °C} \le T_b^{\text{Birds}} \le 42.5 \text{ °C}$; $35 \text{ °C} \le T_b^{\text{Mammals}} \le 37.9 \text{ °C}$), and supraendotherms ($T_b^{\text{Birds}} > 42.5 \text{ °C}$; $T_b^{\text{Mammals}} > 37.9 \text{ °C}$).

266

267 **Inferring the** *branch-wise rates* of evolution. We identified heterogeneity in the rate of 268 evolution along phylogenetic branches (*branch-wise rates*) by dividing the rate into two parameters: a background rate parameter (σ_b^2) which assumes changes in the trait of 269 270 interest (e.g. *BMR*) are drawn from an underlying Brownian process, and a second 271 parameter, r, that identifies a branch-specific rate shift. A full set of *branch-wise rates* are 272 estimated by adjusting the lengths of each branch in a time-calibrated tree (stretching or 273 compressing a branch is equivalent to increasing or decreasing the phenotypic rate of 274 change relative to the underlying Brownian rate of evolution). Branch-wise rates are 275 defined by a set of branch-specific scalars $r (0 < r < \infty)$ which transform each branch in order to optimize the phenotypic rate of change to a Brownian process ($\sigma_{\rm b}^2 r$). If 276 277 phenotypic change occurred at accelerated (faster) rates along a specific branch of the 278 tree, then r > 1 and the branch is stretched. Decelerated (slower) rates of evolution are 279 detected by r < 1 and the branch is compressed. If the trait evolves at a constant rate 280 along a branch, then the branch will not be modified (*i.e.* r = 1). 281

282 We estimated the r values of BMR, $T_{\rm b}$, and $T_{\rm a}$ evolution using the phylogenetic variablerates regression model in a Bayesian framework¹⁷. This model is designed to 283 284 automatically detect shifts in the rate of trait evolution across phylogenetic branches 285 while accounting for a relationship with another trait or traits across extant species 286 values. This approach allows for simultaneous estimation of both an overall relationship 287 between, for instance, BMR as a function of Mass and $T_{\rm b}$ across extant species, and any 288 shifts in rates (r) that apply to the phylogenetically structured residual variance in the 289 relationship. As residual variance is explained by shifts in rate across phylogenetic 290 branches we can, for example, determine how much *BMR* has changed in the past (r)291 after accounting for their covariation with *Mass* and $T_{\rm b}$ in the present (the relationship 292 between the values across extant species). Thus, if the amount of *BMR* change along individual phylogenetic branches were coupled with the amount of change of T_b , then we 293 294 should find the r values of BMR to be positively associated with the r values of $T_{\rm b}$. The 295 branch-wise rates for $T_{\rm b}$ evolution can be estimated while accounting for its covariation 296 with other traits or factor across extant species. Previous studies on the association 297 between *BMR* and $T_{\rm b}$ using extant species values alone have not evaluated the association 298 in evolutionary terms even when they use phylogenetic method.

299

300 We evaluated 24 *phylogenetic variable-rates regression models* and 24 *phylogenetic*

301 *constant-rate regression models* (Table S1 to S8). Regression model selection was

302 conducted using Bayes Factors (BF) via marginal likelihoods estimated by stepping stone

303 sampling. BF is calculated as the double of the difference between the log marginal-

304 likelihood of the complex model and the simple model. By convention, BF > 2 indicates

305	positive evidence for the complex model, BF 5-10 indicates strong support, and $BF > 10$
306	are considered very strong support ²⁷ . We inferred the <i>r</i> values of <i>BMR</i> and T_b with the
307	phylogenetic variable-rates regression models that best fit the data for our samples of
308	mammals and birds (Table S7 and S8). We also estimated the r values for T_a after
309	accounting for the effect of latitude of species distribution (Table S11) and, consequently,
310	we accounted for the geographic variation of T_a across extant species distributions. We
311	used BayesTraits v3.0 ²⁸ to detect the magnitude and location of r in a Bayesian Markov
312	chain Monte Carlo (MCMC) reversible-jump framework, which generates a posterior
313	distribution of trees with scaled branches lengths according to the rate of evolution. There
314	is no limit or prior expectation in the number of the r branch-scalars, r numbers vary
315	from zero (no branch is scaled) to n , where n is the number of branches in the
316	phylogenetic tree. Regarding the values of each r parameter, we used a gamma prior,
317	with $\alpha = 1.1$ and β parameter rescaled in order to get the median of the distribution equal
318	to one. With this setting, the numbers of rate increases and decreases proposed is
319	balanced ¹³ . We ran 50,000,000 iterations sampling every 25,000 to ensure chain
320	convergence and independence in model parameters in <i>BMR</i> and T_b analyses. We
321	discarded the first 25,000 iterations as burn in. For the T_a analysis in mammals we ran
322	200,000,000 iterations sampling every 100,000, and we discarded the first 100,000
323	iterations as burn in. For T_a analysis in birds we ran 400,000,000 iterations discarding the
324	first 100,000,000 as burn in, and we sampled every 200,000. Regression coefficients
325	were judged as significant according to a calculated p_{MCMC} value for each posterior of
326	regression coefficients: where $< 5\%$ of samples in the posterior distribution crossed zero,
327	this indicates that the coefficient is significantly different from zero.

329	Testing the relationship between the branch-wise rates of evolution. We first
330	estimated the consensus branch-scaled tree for BMR and T_b from the posterior sample of
331	branch-scaled trees obtained with the phylogenetic variable-rates regression model. The
332	consensus branch-scaled tree was generated by using the median r from the posterior
333	distribution. We evaluated the correlation between the r values for <i>BMR</i> and T_b using a
334	Bayesian GLS regression in BayesTraits v3.0. The same analyses were conducted to
335	evaluate the correlation between <i>branch-wise rates</i> for <i>BMR</i> and T_a . We used a uniform
336	prior for the β (slope coefficient) ranging from -100 to 100. We ran 50,000,000 iterations
337	sampling every 25,000 to ensure chain convergence and independence in model
338	parameters. Significance of regression coefficients were determined as above.
339	
340	Detecting trends We evaluated the direction of change in PMP T_{i} and T_{i} across all
340	Detecting trends. We evaluated the direction of change in <i>BWK</i> , T_b , and T_a across an
340	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16).
340341342	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which
340341342343	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes
 340 341 342 343 344 	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes the species has experienced during its evolution ¹⁵ . If high <i>path-wise rates</i> have
 340 341 342 343 344 345 	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes the species has experienced during its evolution ¹⁵ . If high <i>path-wise rates</i> have disproportionately been associated with trait increases or decreases, we expect to find that
 340 341 342 343 344 345 346 	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes the species has experienced during its evolution ¹⁵ . If high <i>path-wise rates</i> have disproportionately been associated with trait increases or decreases, we expect to find that species with greater <i>path-wise rates</i> will have high or low trait values in the present. For
 340 341 342 343 344 345 346 347 	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes the species has experienced during its evolution ¹⁵ . If high <i>path-wise rates</i> have disproportionately been associated with trait increases or decreases, we expect to find that species with greater <i>path-wise rates</i> will have high or low trait values in the present. For instance, if ancestral mammals experienced progressively colder environmental
 340 341 342 343 344 345 346 347 348 	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes the species has experienced during its evolution ¹⁵ . If high <i>path-wise rates</i> have disproportionately been associated with trait increases or decreases, we expect to find that species with greater <i>path-wise rates</i> will have high or low trait values in the present. For instance, if ancestral mammals experienced progressively colder environmental temperatures owing to climate change or colonization of colder habitats as they were
 340 341 342 343 344 345 346 347 348 349 	mammals and birds using the <i>path-wise rates</i> of these variables (Table S15 and S16). <i>Path-wise rate</i> is the sum of all the <i>branch-wise rates</i> along the path of a species, which lead from the root (the MRCA) to the tips of the tree, and it accounts for the total changes the species has experienced during its evolution ¹⁵ . If high <i>path-wise rates</i> have disproportionately been associated with trait increases or decreases, we expect to find that species with greater <i>path-wise rates</i> will have high or low trait values in the present. For instance, if ancestral mammals experienced progressively colder environmental temperatures owing to climate change or colonization of colder habitats as they were evolving from their MRCA, we expect a negative correlation between the <i>path-wise rate</i>

351	BayesTraits 3.0 to evaluate the relationship between <i>BMR</i> , T_b , T_a and their <i>path-wise</i>
352	rates (Table S15 and S16). We used a uniform prior for the β (slope coefficients) ranging
353	from -100 to 100 to allow all possible values to be equally likely. Finally, we ran
354	50,000,000 iterations sampling every 25,000 to ensure chain convergence and
355	independence in model parameters. Significance of regression slopes were determined as
356	above.
357	
358	End notes.
359	Supplementary Information is linked to the online version of the paper at
360	www.nature.com/nature.
361	
362	Acknowledgments: We thank Ciara O'Donovan, Joanna Baker, Manabu Sakamoto and
363	Ana N. Campoy for helpful discussion on the manuscript. We also thank to three
364	anonymous reviewers who made valuable contributions. Andrew Clarke kindly supplied
365	data for mammals and birds. This work was part of the J.A-LL. PhD thesis, supported by
366	the CONICYT Doctoral Fellowships #21130943. CV was supported by the Leverhulme
367	Trust (RPG-2013-185 and RPG-2017-071). C.E.U and E.R.S were supported by
368	FONDECYT grants #1170815 and #1170486.
369	
370	Authors contribution. J.A-LL., C.E.U., E.R.S, and C.V., contributed to all aspect of this
371	work.
372	
373	Author information: We have no competing interests.

0	_	
1	1	4
~		

375	Data availability statement. Correspondence and request for materials should be
376	addressed to J.A-LL. (jorgeavariall@gmail.com) or C.V. (c.d.venditti@reading.ac.uk).
377	
378	References
379	
380	1. Clarke, A. Principles of Thermal Ecology. Temperature, Energy and Life. (Oxford
381	University Press, 2017)
382	
383	2. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of
384	size and temperature on metabolic rate. Science 293, 2248–2251 (2002).
385	
386	3. Clarke, A., & Pörtner H-O. Temperature, metabolic power and the evolution of
387	endothermy. Biol. Rev. 55, 703-727 (2010).
388	
389	4. Kemp, T. S. The origin of mammalian endothermy: a paradigm for the evolution of
390	complex biological structure. Zool. J. L. Soc. 147, 473–488 (2006).
391	
392	5. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a
393	metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
394	
395	6. Lovegrove, B. G. The evolution of endothermy in Cenozoic mammals: a
396	plesiomorphic-apomorphic continuum. Biol. Rev. 87, 128-162 (2012).

398 7. Lovegrove, B. G. The evolution of mammalian body temperature: the Cenozoic
399 supraendothermic pulses. J. Comp. Physiol. B. 182, 579-589 (2012).

400

- 401 8. Lovegrove, B. G. A phenology of the evolution of endothermy in birds and mammals.
- 402 Biol. Rev. **92**, 1213-1240 (2017).

403

404 9. Fristoe, T. S. *et al.* Metabolic heat production and thermal conductance are mass405 independent adaptations to thermal environment in birds and mammals. PNAS 112.
406 15934-15939 (2015).

407

408 10. Naya, D. E., Naya, H., White, R. C. On the interplay among ambient temperature,
409 basal metabolic rate, and body mass. Am. Nat. 192, 518-524 (2018).

410

411 11. White, C. R., Blackburn, T. M., Martin G. R., Butler, P. J. Basal metabolic rate of
412 birds is associated with habitat temperature and precipitation, not primary productivity.

413 Proc. Biol. Sci. **274**, 287-293 (2007).

- 415 12. Jetz, W., Freckleton, R. P., McKechnie, A. E. Environment, migratory tendency,
 416 phylogeny and basal metabolic rate in birds. PLoS ONE 3(9):e3261.
 417 doi:10.1371/journal.pone.0003261 (2008).
- 418

419	13. Venditti, C., Meade, A. & Pagel, M. Multiples routes to mammalian diversity. Nature
420	479, 393–396 (2011).
421	
422	14. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-
423	dependence on phylogenetic trees. PLoS ONE 9:e89543 (2014).
424	
425	15. Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size
426	in mammals. PNAS. 112, 5093-5098 (2015).
427	
428	16. Clarke, A., Rothery, P. & Isaac, N. J. B. Scaling of basal metabolic rate with body
429	mass and temperature in mammals. J. Anim. Ecol. 79, 610-619 (2010).
430	
431	17. Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred
432	from phylogenies. Zool. J. Linn. Soc. 118, 95-115 (2016).
433	
434	18. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and
435	aberrations in global climate 65 Ma to present. Science. 292, 686-693 (2001).
436	
437	19. Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the
438	distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459-464 (2018).

- 440 20. Swanson, D. L., McKechnie, A. E., Vézina, F. How low can you go? An adaptive
- 441 energetic framework for interpreting basal metabolic rate variation in endotherms. J.
- 442 Comp. Physiol. B. **187**, 1039-1056 (2017).
- 443
- 444 21. Körtner, G., Brigham, R. M. & Geiser, F. Winter torpor in a large bird. Nature. 407,
 445 318 (2000).

22. Crompton, A. W., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in
mammals. Nature 272, 333-336 (1978).

449

- 450 23. Bozinovic, F. & Pörtner, H-O. Physiological ecology meets climate change. Ecol.
 451 Evol. 5, 1025–1030 (2015).
- 452
- 453 24. Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors
 454 of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12, 538-549
 455 (2009).

456

457 25. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global
458 diversity of birds in space and time. Nature. 491, 444-448.

459

26. Clarke, A. & Rothery, P. Scaling of body temperature in mammals and birds. Func.
Ecol. 22, 58–67 (2008).

- 463 27. Raftery, A.E. in *Markov Chain Monte Carlo in Practice* (eds Gilks, W. R.,
 464 Richardson, S. & Spiegelhalter, D. J.) 163–187 (Chapman & Hall, 1996).
- 465
- 466 28. Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states
 467 on phylogenies. Systematic Biology 53, 673–684 (2004).
- 468
- 469 29. Lieberman, B. S. & Dudgeon, S. An evaluation of stabilizing selection as a
- 470 mechanism for stasis. Palaeogeography, Palaeoclimatology, Palaeoecology **127**, 229-238
- 471 (1996).