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Abstract

Let K/k be an extension of number fields. We describe theoretical results and compu-
tational methods for calculating the obstruction to the Hasse norm principle for K/k and
the defect of weak approximation for the norm one torus R1

K/kGm . We apply our techniques
to give explicit and computable formulae for the obstruction to the Hasse norm principle
and the defect of weak approximation when the normal closure of K/k has symmetric or
alternating Galois group.

2020 Mathematics Subject Classification: 14G05 (primary); 11E72, 11R37,
20G30 (secondary).

1. Introduction

In this paper we study a local-global principle known as the Hasse norm principle (HNP).
Let K/k be an extension of number fields with associated idèle groups A∗

K and A∗
k . The

norm map NK/k : K ∗ → k∗ extends to an idèlic norm map NK/k :A∗
K →A∗

k . The HNP is
said to hold for K/k if the so-called knot group

K(K/k)= (k∗ ∩ NK/kA
∗
K )/NK/k K ∗

is trivial, i.e. if being a norm everywhere locally is equivalent to being a global norm from
K/k. For example, if N/k is the normal closure of K/k, then the HNP holds for K/k in the
following cases:

(I) (the Hasse norm theorem) N = K and Gal(K/k) is cyclic [30];
(II) [K : k] is prime [2];

(III) [K : k] = n and Gal(N/k)∼= Dn is dihedral of order 2n [3];
(IV) [K : k] = n and Gal(N/k)∼= Sn [54] (see also [53]);
(V) [K : k] = n ≥ 5 and Gal(N/k)∼= An [41].
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2 ANDRÉ MACEDO AND RACHEL NEWTON

Biquadratic extensions provide the simplest setting in which the HNP can fail. For example,
3 is everywhere locally a norm from Q(

√−3,
√

13)/Q, but not a global norm [30].
The HNP also has a geometric interpretation: the knot group K(K/k) is identified with the

Tate–Shafarevich group X(T ) of the norm one torus T = R1
K/kGm defined by the following

exact sequence of algebraic groups over k:

1 → R1
K/kGm → RK/kGm →Gm,k → 1

where RK/kGm denotes the Weil restriction of Gm from K to k. The HNP holds for K/k if
and only if the Hasse principle holds for all principal homogeneous spaces for R1

K/kGm .
Weak approximation is said to hold for a torus T over k if its k-points are dense in the

product of its points over all completions of k; in other words if A(T )= 0, where A(T )=∏
v T (kv)/T (k) and T (k) denotes the closure of T (k) in

∏
v T (kv) with respect to the prod-

uct topology. The following exact sequence, due to Voskresenskiı̆ in [52], ties together weak
approximation for a torus T and the Hasse principle for principal homogeneous spaces
for T :

0 → A(T )→ H1(k, Pic X)∼ →X(T )→ 0. (1·1)

Here X denotes a smooth compactification of T and we write H1(k, Pic X)∼ for the dual
group Hom (H1(k, Pic X),Q/Z). Note that the Hochschild–Serre spectral sequence gives an
isomorphism Br X/Br0 X ∼= H1(k, Pic X), where Br0 X = Im(Br k → Br X). While results
of Colliot–Thélène and Sansuc (see e.g. Theorem 2·2) enable computation of the invariant
H1(k, Pic X), and a result of Tate (see Theorem 2·3) does the same for the Tate–Shafarevich
group, actually computing these groups in practice can be challenging. In this paper we
give new methods for computing these invariants in the case of norm one tori associated to
extensions of number fields.

Set-up. Except where stated otherwise, our assumptions throughout the rest of the paper
will be as follows. Let T = R1

K/kGm and let X denote a smooth compactification of T . Let
L/k be a Galois extension containing K/k and set G = Gal(L/k) and H = Gal(L/K ).

In addition to general techniques from the arithmetic of algebraic tori, our work makes
use of a quotient of the knot group called the ‘first obstruction to the HNP for K/k
corresponding to the tower L/K/k’ defined by Drakokhrust and Platonov in [17] as

F(L/K/k)= (k∗ ∩ NK/kA
∗
K )/(k

∗ ∩ NL/kA
∗
L)NK/k K ∗,

i.e. as the cokernel of the natural map K(L/k)→K(K/k). As shown in [17], the first
obstruction to the HNP in a tower of number fields admits a purely group-theoretic
description in terms of the relevant local and global Galois groups, see Theorem 4·5.

Let X0 be a smooth compactification of the torus R1
L/kGm . The map NL/K : R1

L/kGm →
R1

K/kGm induces a canonical map fL/K : H1(k, Pic X0)
∼ → H1(k, Pic X)∼, see [9, section

1·2·2]. In order to study the birational invariant H1(k, Pic X), we introduce an object called
the ‘unramified cover of the first obstruction to the HNP for K/k corresponding to the tower
L/K/k’ defined as

Fnr (L/K/k)= Coker( fL/K ).

In similar fashion to the first obstruction to the HNP, its unramified cover Fnr (L/K/k) also
admits an explicit group-theoretic description:
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Explicit methods for the HNP and applications 3

THEOREM 1·1. There is a canonical isomorphism

Fnr (L/K/k)= (H ∩ [G,G])/�G(H),

where �G(H) denotes the focal subgroup of H in G, see Definition 4·7.

As a corollary, one can compute the p-primary parts of the knot group, the invariant
H1(k, Pic X), and the defect of weak approximation for all but finitely many primes p. In
what follows, let F(G, H)= (H ∩ [G,G])/�G(H) and write M(p) for the p-primary part
of an abelian group M .

COROLLARY 1·2. If p is a prime such that H3(G,Z)(p) = 0, then:

(i) K(K/k)(p) = F(L/K/k)(p);
(ii) H1(k, Pic X)∼(p) = F(G, H)(p);

(iii) A(T )(p) = ker
(
F(G, H)(p) → F(L/K/k)(p)

)
, where the map F(G, H)→

F(L/K/k) is a natural surjection, see Section 4.

We now restrict our focus to extensions with normal closure having Galois group isomor-
phic to An or Sn . Our first main theorem enables a purely computational analysis of the HNP
and weak approximation for extensions in this family.

THEOREM 1·3. Suppose that G is isomorphic to An or Sn for some n ≥ 4 and G 	∼=
A6, A7. Then:

K(K/k)=
{
F(L/K/k), if |H | is even,

F(L/K/k)×K(L/k), if |H | is odd.

and

H1(k, Pic X)∼ =
{
Fnr (L/K/k), if |H | is even,

Fnr (L/K/k)×Z/2, if |H | is odd.

Theorem 2·3, due to Tate, shows that the knot group of the Galois extension L/k is dual
to Ker(H3(G,Z)→∏

v H3(Dv,Z)), where Dv denotes the decomposition group at a place
v of k. Note that this kernel only depends on the decomposition groups at the ramified
places, since if v is unramified then Dv is cyclic and hence H3(Dv,Z)= 0. In the setting
of Theorem 1·3 we obtain an algorithm that takes as inputs G, H and the decomposition
groups at the ramified places of L/k and gives as its outputs the knot group K(K/k), the
invariant H1(k, Pic X), and the defect of weak approximation A(T ) for T = R1

K/kGm .
Using Theorem 1·3 we also characterise the possible isomorphism classes of the group

H1(k, Pic X):

THEOREM 1·4.

(i) For G ∼= Sn the invariant H1(k, Pic X) is an elementary abelian 2-group. Moreover,
every possibility for H1(k, Pic X) is realised: given an elementary abelian 2-group A,
there exists n ∈N and an extension of number fields K/k whose normal closure has
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4 ANDRÉ MACEDO AND RACHEL NEWTON

Galois group Sn such that H1(k, Pic X)∼= A, where X is a smooth compactification of
R1

K/kGm.

(ii) For G ∼= An the invariant H1(k, Pic X) is either isomorphic to C3, C6 or an elementary
abelian 2-group. Again, every possibility for H1(k, Pic X) is realised.

Remark 1·5. The statement of Theorem 1·4 also holds if one replaces H1(k, Pic X) by
K(K/k) or A(T ), see Proposition 7·3.

Theorems 1·3 and 1·4 can be combined to obtain more precise information, as demon-
strated in Corollary 1·6 and Example 1·7 below.

COROLLARY 1·6. Retain the assumptions of Theorem 1·3 and, for p prime, let Hp denote
a Sylow p-subgroup of H. Then H1(k, Pic X)(p) = 0 for all primes p> 3, H1(k, Pic X)(3) =
0 if G ∼= Sn,

H1(k, Pic X)∼(2) =
{
F(G, H)[2] ∼= F(G, H2) if |H | is even,

Z/2 if |H | is odd,

and if G ∼= An then

H1(k, Pic X)∼(3) = F(G, H)[3] ∼= F(G, H3).

In particular, if 3 � |H | then H1(k, Pic X) is 2-torsion.

Example 1·7. Suppose that G ∼= Sn and |H | is odd. Then H1(k, Pic X)=Z/2 and
K(K/k)=K(L/k). The same conclusion holds for G ∼= An under the stronger assumption
that |H | is coprime to 6.

As a further application of Theorem 1·3, one can obtain conditions on the decomposition
groups determining whether the HNP and weak approximation hold in An and Sn extensions.
In Propositions 1·8 and 1·9, we exhibit such a characterisation for n = 4 or 5, when these
local conditions are particularly simple.

PROPOSITION 1·8. Suppose that G is isomorphic to A4, A5, S4 or S5. Then K(K/k) ↪→ C2

and:

(i) if |H | is odd, then K(K/k)= 1 ⇐⇒ ∃ v such that V4 ↪→ Dv;
(ii) if ∃ C ≤ H generated by a double transposition with [H : C] odd, then K(K/k)=

1 ⇐⇒ ∃ v such that Dv contains a copy of V4 generated by two double
transpositions;

(iii) in all other cases, K(K/k)= 1.

PROPOSITION 1·9. Retain the assumptions of Proposition 1·8. Then

H1(k, Pic X)=
{
Z/2 in cases (i) and (ii) of Proposition 1·8;
0 otherwise.

Therefore, in cases (i) and (ii) of Proposition 1·8, weak approximation holds for R1
K/kGm if

and only if the HNP fails for K/k. In all other cases, weak approximation holds for R1
K/kGm.
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Explicit methods for the HNP and applications 5

For the sake of completeness, we also provide criteria for the validity of the HNP when
G ∼= A6 or A7 (the two groups not addressed by Theorem 1·3), see Propositions 6·15 and
6·21. The proof uses the first obstruction to the HNP, along with various tricks involving
moving between subextensions as detailed in Section 3.

Our motivation for providing explicit local conditions for the failure of the HNP is to
enable a statistical analysis of the HNP and weak approximation for norm one tori in families
of extensions of number fields. Such an analysis was carried out for extensions of a number
field k with fixed abelian Galois group by the second author together with Frei and Loughran
in [21] (ordering by discriminant) and [22] (ordering by conductor). One consequence of
their results is that the HNP fails for 0% of biquadratic extensions of k. In the case k =Q,
this was refined to an asymptotic formula for the number of biquadratics failing the HNP
(ordered by discriminant) by Rome in [46].

Having dealt with the V4 case and noting that the HNP holds for all C4, D4 and S4 quartics
(see (I), (III) and (IV)), if one wants to fully understand the frequency of failure of the HNP
for quartics with fixed Galois group, there is one remaining family to tackle: namely A4

quartics. Counting A4 quartics may be beyond current capabilities but the following corol-
lary of Proposition 1·8 gives hope that one may be able to exploit results about biquadratic
extensions to bound the number of A4 quartics for which the HNP fails.

COROLLARY 1·10. Let K/k be a quartic extension of number fields with normal closure
L/k such that G = Gal(L/k) is isomorphic to A4. Let F be the fixed field of the copy of V4

in G. Then

K(K/k)∼=K(L/k)∼=K(L/F).

In particular, the HNP holds for K/k if and only if it holds for the biquadratic extension
L/F. Likewise, weak approximation holds for R1

K/kGm if and only if it holds for R1
L/FGm.

The first statistical study of the HNP in a family of extensions with fixed non-abelian
Galois group is carried out by the first author in [42], where he shows that the HNP fails for
0% of D4 octics ordered by an Artin conductor. The present paper provides the algebraic
input required to study the statistics of the HNP and weak approximation in several more
families of non-abelian, and even non-Galois, number fields – such as S4 octics, for example.
This future work will capitalise on recent advances in counting within families of number
fields, see e.g. [1, 4, 5, 6, 8, 18, 23, 32, 44, 55], and contribute to the ongoing rapid progress
in the area of rational points and failures of local-global principles in families of varieties.
See [12] for a survey of recent developments in this area.

Although counting degree n > 4 extensions of number fields with bounded discriminant
may be out of reach at present, there are very precise conjectures for the number of such
extensions. Namely, the weak Malle conjecture on the distribution of number fields (see
[43]) predicts that the number N (k,G, X) of degree n extensions K of a number field k
with Galois group G and |Nk/Q(DiscK/k)| ≤ X satisfies

X
1

α(G) � N (k,G, X)� X
1

α(G)+ε, (1·2)

where α(G)= ming∈G\{1}{ind(g)} and ind(g) equals n minus the number of orbits of g on
{1, . . . , n}. Using a computational method developed by Hoshi and Yamasaki to determine
H1(k, Pic X) (see Section 6·2), we obtain the following consequence of this conjecture:
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6 ANDRÉ MACEDO AND RACHEL NEWTON

THEOREM 1·11. Fix a number field k and an integer n ≤ 15 with n 	= 8, 12. Suppose that
Conjecture (1·2) holds for every transitive subgroup G ≤ Sn. Then:

(i) the HNP holds for 100% of degree n extensions over k, when ordered by
discriminant;

(ii) weak approximation holds for 100% of norm one tori of degree n extensions over
k, when ordered by discriminant of the associated extension.

In fact, the assertions of Theorem 1·11 remain true if one only assumes Conjecture (1·2)
for a few transitive subgroups of Sn , see Remark 6·13(iii). An analysis of the invariant
H1(k, Pic X) for extensions K/k of degree n ≤ 15 has also recently been carried out inde-
pendently by Hoshi, Kanai and Yamasaki in [35] and [36]. In these works, the computation
of H1(k, Pic X) for such extensions (which in the present paper happened behind the scenes
of the proof of Theorem 1·11) is made explicit and, additionally, necessary and sufficient
conditions for the vanishing of K(K/k) are given.

In order to obtain asymptotic formulae for the number of extensions satisfying certain
conditions, it is often necessary to first show the existence of at least one such extension, see
[21, theorem 1·7], for example. Our next result addresses this issue. Let G be a finite group
and H a subgroup of G. We define a (G, H)-extension of a number field k to be an extension
K/k for which there exists a Galois extension L/k containing K/k such that Gal(L/k)∼= G
and Gal(L/K )∼= H . We write FG/H for a flasque module in a flasque resolution of the
Chevalley module JG/H , see Section 2.

THEOREM 1·12. Let G be a finite group and H a subgroup of G. Then:

(i) there exist a number field k and a (G, H)-extension of k satisfying the HNP and,
furthermore, if H1(G, FG/H ) 	= 0 then weak approximation fails for the norm one
torus associated to this extension;

(ii) there exist a number field k and a (G, H)-extension of k whose norm one torus
satisfies weak approximation and, furthermore, if H1(G, FG/H ) 	= 0 then this
extension fails the HNP.

The condition H1(G, FG/H ) 	= 0 in Theorem 1·12 is necessary because for a (G, H)-
extension K/k with X a smooth compactification of R1

K/kGm , one has H1(k, Pic X)=
H1(G, FG/H ). This is due to Colliot-Thélène and Sansuc (see Theorem 2·2).

It is interesting to compare Theorem 1·12 with [21, theorem 1·3], where the authors prove
existence of Galois extensions failing the HNP with prescribed solvable Galois group G and
base field k. Here we avoid the restriction on G but lose control of the base field which,
in both cases of Theorem 1·12, may be of quite large degree over Q. In Section 7, we give
explicit examples of extensions of number fields illustrating all cases of Proposition 1·8.
The examples of field extensions for which the HNP holds all have base field Q, and the
examples for which the HNP fails have base fields that are at most quadratic extensions
of Q.

1·1. Structure of the paper

Section 2 contains some relevant background material concerning the arithmetic of alge-
braic tori. In Section 3 we gather results that allow one to transfer information regarding
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Explicit methods for the HNP and applications 7

the HNP from a field extension to its subextensions and vice versa. We also give analogues
of these results for weak approximation on the associated norm one tori. In Section 4 we
prove Theorem 1·1 and Corollary 1·2. In Section 5 we introduce generalised representation
groups and outline work of Drakokhrust which uses these groups to describe the invariant
H1(k, Pic X) occurring in Voskresenskiı̆’s exact sequence (1·1). In Section 6 we apply our
results to extensions whose normal closure has Galois group An or Sn , proving Theorems 1·3
and 1·4, Corollary 1·6, Propositions 1·8 and 1·9, Corollary 1·10 and Theorem 1·11. In
Section 7 we prove Theorem 1·12 and give examples of successes and failures of the HNP
in all cases covered by Proposition 1·8.

1·2. Notation

Given a number field k and a Galois extension L/k, we use the following notation:

k an algebraic closure of k;
A∗

k the idèle group of k;
Ok the ring of integers of k;
�k the set of all places of k;
Lv the completion of L at some choice of place above v ∈�k ;
Dv the Galois group of Lv/kv.

Given a field K , a variety X over K and an algebraic K -torus T , we use the following
notation:

Gm,K the multiplicative group Spec(K [t, t−1]) of K (when K is clear from the
context we omit it from the subscript);

X L the base change X ×K L of X to a field extension L/K ;
X the base change of X to an algebraic closure of K ;
Pic X the Picard group of X ;
T̂ the character group Hom(T ,Gm,K ) of T ;
RK/k T the Weil restriction of T to a subfield k of K ;
R1

K/kGm the kernel of the norm map NK/k : RK/kGm →Gm,k .

For an algebraic torus T defined over a number field k, we denote its Tate–Shafarevich
group and defect of weak approximation by

X(T ) := Ker

(
H1(k, T )→

∏
v∈�k

H1(kv, T )

)
and A(T ) :=

(∏
v∈�k

T (kv)

)
/T (k),

respectively.
Given a finite group G, a G-module A, an integer q and a prime number p, we use the

following notation:

|G| the order of G;
exp(G) the exponent of G;
[G,G] the derived subgroup of G;
G∼ the Q/Z-dual Hom(G,Q/Z) of G;
G p a Sylow p-subgroup of G;
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8 ANDRÉ MACEDO AND RACHEL NEWTON

Ĥ
q
(G, A) the Tate cohomology group;

Xq
ω(G, A) the kernel of the restriction map Ĥ

q
(G, A)

Res−→∏
g∈G Ĥ

q
(〈g〉, A).

For x, y ∈ G we adopt the convention [x, y] = x−1 y−1xy and x y = y−1xy. If G is abelian
and d ∈Z>0, we use the following notation:

G[d] the d-torsion of G;
G(d) the d-primary part of G.

We often use ‘=’ to indicate a canonical isomorphism between two objects.

2. Preliminaries on the arithmetic of algebraic tori

Let T be a torus over a number field k. As mentioned above, Voskresenskiı̆’s exact
sequence ties together the Tate–Shafarevich group X(T ) and the defect of weak approxi-
mation A(T ):

THEOREM 2·1 (Voskresenskiı̆). Let T be a torus defined over a number field k and let
X/k be a smooth compactification of T . Then there exists an exact sequence

0 → A(T )→ H1(k, Pic X)∼ →X(T )→ 0. (2·1)

Proof. See [52, theorem 6].

Voskresenskiı̆ proved Theorem 2·1 by considering the following exact sequence of Galois
modules:

0 → T̂ → DivX−T X → Pic X → 0, (2·2)

where T̂ denotes the group of characters of T . The key point is that (2·2) is a flasque reso-
lution of the Galois module T̂ . We explain this concept below (see [13] and [14] for more
details).

Let G be a finite group and let A be a G-module. We say that A is a permutation module if

it has a Z-basis permuted by G. We say that A is flasque if Ĥ
−1
(G ′, A)= 0 for all subgroups

G ′ of G. A flasque resolution of A is an exact sequence of G-modules

0 → A → P → F → 0,

where P is a permutation module and F is flasque. We say two G-modules A1 and A2 are
similar if A1 ⊕ P1

∼= A2 ⊕ P2 for permutation modules P1, P2 and denote the similarity class
of A by [A].

Recall that if T is split by a Galois subextension L/k of k/k, then Gal(k/L) acts trivially
on the character group T̂ = Hom(T ,Gm,k) and thus T̂ is a Gal(L/k)-module. Implicit in
much of our work is the fact that the norm one torus R1

K/kGm is split by any Galois extension

of k containing K . The followng result shows that the group H1(k, Pic X) has a simple
cohomological description and can be computed using any flasque resolution of T̂ .
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THEOREM 2·2 (Colliot–Thélène and Sansuc). Let T be a torus defined over a number
field k and split by a finite Galois extension L/k with G = Gal(L/k). Let

0 → T̂ → P → F → 0

be a flasque resolution of T̂ and let X/k be a smooth compactification of T . Then the
similarity class [F] and the group H1(G, F) are uniquely determined and

H1(k, Pic X)= H1(G, Pic X L)= H1(G, F). (2·3)

Additionally,

H1(G, F)=X2
ω(G, T̂ ) := Ker

⎛⎝H2(G, T̂ )
Res−→

∏
g∈G

H2(〈g〉, T̂ )

⎞⎠ . (2·4)

In the special case where T = R1
L/kGm, we have

X2
ω(G, T̂ )= H2(G, T̂ )= H3(G,Z). (2·5)

Proof. See [13, lemme 5 and proposition 6] for the proof of (2·3). The isomorphism
H1(G, F)=X2

ω(G, T̂ ) is proved in [14, proposition 9·5(ii)]. The final assertion for R1
L/kGm

follows from its defining sequence.

The Tate–Shafarevich group X(T ) also has a description in terms of the cohomology of
T̂ :

THEOREM 2·3 (Tate). Let T be a torus defined over a number field k and split by a
finite Galois extension L/k with G = Gal(L/k). Then Poitou–Tate duality gives a canonical
isomorphism

X(T )∼ =X2(G, T̂ ), (2·6)

where X2(G, T̂ )= Ker(H2(G, T̂ )
Res−→∏

v∈�k
H2(Dv, T̂ )). In the special case where T =

R1
L/kGm,

X(T )∼ = Ker

(
H3(G,Z)

Res−→
∏
v∈�k

H3(Dv,Z)

)
, (2·7)

where Dv = Gal(Lv/kv) is the decomposition group at v.

Proof. This is the case i = 1 of [45, theorem 6·10]. For the case T = R1
L/kGm , see [50,

p· 198].

PROPOSITION 2·4. Let T be a torus defined over a number field k and split by a finite Galois
extension L/k with G = Gal(L/k). Then taking duals in Voskresenskiı̆’s exact sequence
(2·1) yields the exact sequence

0 →X2(G, T̂ )→X2
ω(G, T̂ )→ A(T )∼ → 0, (2·8)

where the map X2(G, T̂ )→X2
ω(G, T̂ ) is the natural inclusion arising from the

Chebotarev density theorem.
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10 ANDRÉ MACEDO AND RACHEL NEWTON

Proof. This follows from the proof of [52, theorem 6] and isomorphisms (2·4) and (2·6).

Let us return to the case where T is the norm one torus R1
K/kGm of an extension K/k

of number fields. Taking character modules in the defining sequence for T shows that T̂ is
isomorphic to the G-module JG/H , defined as follows:

Definition 2·5 (Chevalley module). Let G be a finite group and H a subgroup of G.
The map η :Z→Z[G/H ] defined by η : 1 �→ NG/H =∑

gH∈G/H gH produces the exact
sequence of G-modules

0 →Z
η−→Z[G/H ] → JG/H → 0,

where JG/H = coker η is called the Chevalley module of G/H .

Furthermore, for T = R1
K/kGm we have

X(T )=K(K/k)

(see [45, p· 307]). Hence, Theorem 2·1 gives a necessary and sufficient condition for the
simultaneous validity of the HNP for K/k and weak approximation for T , namely the
vanishing of H1(k, Pic X).

LEMMA 2·6. Let K/k be a finite extension and let X be a smooth compactification of T =
R1

K/kGm. Then T ×k K is stably rational. Consequently, H1(K , Pic X)= 0 and H1(k, Pic X)
is killed by [K : k].
Proof. Write TK = T ×k K . Applying base change to the exact sequence defining T gives

1 → TK → (RK/kGm)×k K
NK/k−−→Gm,K → 1. (2·9)

Let L/k be a Galois extension containing K . Let G = Gal(L/k) and let H = Gal(L/K ).
Taking character groups gives an exact sequence of H -modules

0 →Z
NG/H−−→Z[G/H ] → T̂K → 0 (2·10)

where NG/H : 1 �→∑
gH∈G/H gH . The map

∑
gH∈G/H agH · gH �→ aH defines a left splitting

of (2·10). Therefore, (2·9) splits and consequently

TK ×Gm,K
∼= (RK/kGm)×k K .

Hence, TK is K -stably rational, whereby H1(K , Pic X)= H1(H, Pic X L)= 0. Now recall
that CorG

H ◦ ResG
H is multiplication by [G : H ] = [K : k] and ResG

H : H1(G, Pic X L)→
H1(H, Pic X L)= 0. This completes the proof that [K : k] kills H1(G,Pic X L)=
H1(k, Pic X).

The corollary below is an immediate consequence of Theorem 2·1 and Lemma 2·6.

COROLLARY 2·7. Let T = R1
K/kGm. Then A(T ) and K(K/k) are killed by [K : k].
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3. Using subextensions and superextensions

Let k be a number field. In order to study the HNP and weak approximation in non-Galois
extensions of k, it is often useful to be able to deduce information about the knot group of
an extension K/k from information about its subextensions or superextensions, the latter
meaning extensions of k containing K . In this section we collect some results that serve this
purpose.

LEMMA 3·1. Let φ : T1 → T2 be a morphism of algebraic tori over k, and let X1 and
X2 be smooth compactifications of T1 and T2, respectively. Then we obtain a commutative
diagram with exact rows as follows, where the vertical arrows are induced by φ:

0 �� A(T1) ��

��

H1(k, Pic X1)
∼ ��

��

X(T1)

��

�� 0

0 �� A(T2) �� H1(k, Pic X2)
∼ �� X(T2) �� 0.

Proof. This follows from Voskresenskiı̆’s proof of [52, theorem 6].

COROLLARY 3·2. Let φ : T1 → T2 be an isogeny of algebraic tori over k with kernel μ.
Let X1 and X2 be smooth compactifications of T1 and T2, respectively. Then for any prime
p such that p � |μ(k)|, we obtain a commutative diagram with exact rows as follows, where
the vertical isomorphisms are induced by φ:

0 �� A(T1)(p) ��

∼=
��

H1(k, Pic X1)
∼
(p)

��

∼=
��

X(T1)(p)

∼=
��

�� 0

0 �� A(T2)(p) �� H1(k, Pic X2)
∼
(p)

�� X(T2)(p) �� 0.

Proof. Let ψ : T2 → T1 be the dual isogeny. Then ψ ◦ φ is multiplication by |μ(k)| on T1.
Now apply Lemma 3·1.

The following theorem is an application of Corollary 3·2 to norm one tori which will be
very useful later in this section as well as in Section 6.

THEOREM 3·3. Let L/K/k be a tower of finite extensions. Let T0 = R1
L/kGm, let T =

R1
K/kGm and let X0 and X be smooth compactifications of T0 and T , respectively. Then for

a prime p with p � [L : K ] we obtain a commutative diagram with exact rows as follows,
where the vertical isomorphisms are induced by the natural inclusion j : T ↪→ T0:

0 �� A(T )(p) ��

∼=
��

H1(k, Pic X)∼(p) ��

∼=
��

X(T )(p)

∼=
��

�� 0

0 �� A(T0)(p) �� H1(k, Pic X0)
∼
(p)

�� X(T0)(p) �� 0.

Alternatively, the norm map NL/K : T0 � T can be used to obtain a similar commutative
diagram with the direction of the vertical isomorphisms reversed.
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12 ANDRÉ MACEDO AND RACHEL NEWTON

Proof. Let S be the kernel of NL/K : RL/kGm → RK/kGm and let i : S → RL/kGm be the
inclusion. Then the following diagram with exact rows commutes:

1 �� S i �� R1
L/kGm

NL/K ��
��

��

R1
K/kGm

��
��

��

1

1 �� S i �� RL/kGm
NL/K �� RK/kGm

�� 1.

Let d = [L : K ] and let [d] denote the map x �→ xd . The natural inclusion j : RK/kGm →
RL/kGm satisfies NL/K ◦ j = [d]. Using i and j , we obtain a surjective morphism

S × RK/kGm → RL/kGm

whose kernel μ is finite for dimension reasons. Moreover, since NL/K ◦ j = [d], μ is
killed by d. Let Z , W and W0 be smooth compactifications of S, RK/kGm and RL/kGm ,
respectively. By [52, lemma 3], Pic(Z × W )= Pic Z ⊕ Pic W . Thus, Corollary 3·2 yields

H1(k, Pic Z)(p) ⊕ H1(k, Pic W )(p) ∼= H1(k, Pic W0)(p).

Furthermore, RK/kGm and RL/kGm are k-rational so H1(k, Pic W )= H1(k, Pic W0)= 0 and
hence H1(k, Pic Z)(p) = 0. Therefore, X(S)(p) = A(S)(p) = 0 by Theorem 2·1. Now the
result follows from applying Corollary 3·2 to the surjective morphism

S × R1
K/kGm → R1

L/kGm

whose finite kernel is killed by d.

The following special case of Theorem 3·3 reduces the calculation of A(T ), H1(k, Pic X)
and X(T ) to the case where K/k is the fixed field of a p-group.

COROLLARY 3·4. Let L/K/k be a tower of finite extensions with L/k Galois. Let G =
Gal(L/k) and H = Gal(L/K ). For p prime, let Hp denote a Sylow p-subgroup of H and
let K p denote its fixed field. Let X and X p be smooth compactifications of T = R1

K/kGm

and Tp = R1
K p/kGm, respectively. Then we obtain a commutative diagram with exact rows as

follows, where the vertical isomorphisms are induced by the natural inclusion T ↪→ Tp:

0 �� A(T )(p) ��

∼=
��

H1(k, Pic X)∼(p) ��

∼=
��

X(T )(p)

∼=
��

�� 0

0 �� A(Tp)(p) �� H1(k, Pic X p)
∼
(p)

�� X(Tp)(p) �� 0.

Alternatively, the norm map NK p/K : Tp � T can be used to obtain a similar commutative
diagram with the direction of the vertical isomorphisms reversed.

As a consequence of Corollary 3·4, we obtain the following result which deals with the
two extremes in terms of the power of p dividing |H |.

COROLLARY 3·5. Retain the notation of Corollary 3·4.

(i) If p � |H |, then H1(k, Pic X)(p) ∼= H3(G,Z)(p).
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Explicit methods for the HNP and applications 13

(ii) If H contains a Sylow p-subgroup of G, then H1(k, Pic X)(p) = 0.

Proof.
(i) Follows from Theorem 2·2 and Corollary 3·4.

(ii) Follows from Lemma 2·6.

We additionally obtain the following result when H is a Hall subgroup of G, i.e. a
subgroup such that gcd(|H |, [G : H ])= 1.

COROLLARY 3·6. Retain the notation of Corollary 3·4. If H is a Hall subgroup of G,
then

H1(k, Pic X)∼=
∏
p�|H |

H3(G,Z)(p),

K(K/k)∼=
∏
p�|H |

K(L/k)(p), and

A(T )∼=
∏
p�|H |

A(T0)(p),

where T = R1
K/kGm and T0 = R1

L/kGm.

Proof. Follows from Corollaries 3·4 and 3·5, Lemma 2·6 and Corollary 2·7.

We now drop the assumption that L/k is Galois and return to the more general setting of
Theorem 3·3.

COROLLARY 3·7. Retain the notation of Theorem 3·3. Then:

(i) A(T ) is killed by [L : K ] · exp(A(T0));
(ii) H1(k, Pic X) is killed by [L : K ] · exp(H1(k, Pic X0));

(iii) X(T ) is killed by [L : K ] · exp(X(T0)).

Proof. We give the proof for A(T ) – the other proofs are analogous. Let d = [L : K ],
e = exp(A(T0)) and let x ∈ A(T ). Since NL/K ◦ j = [d], we have xde = NL/K ( j (x)e)= 1,
as j (x) ∈ A(T0).

COROLLARY 3·8. Retain the notation of Theorem 3·3.

(i) If exp(A(T0)) · [L : K ] is coprime to [K : k], then weak approximation holds
for T .

(ii) If exp(X(T0)) · [L : K ] is coprime to [K : k], then the HNP holds for K/k.

Proof. This follows immediately from Corollaries 3·7 and 2·7.

The following result is a slight generalisation of [29, proposition 1].
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14 ANDRÉ MACEDO AND RACHEL NEWTON

PROPOSITION 3·9. Let L/K/k be a tower of finite extensions and let d = [L : K ]. Then the
map x �→ xd induces a group homomorphism

ϕ :K(K/k)→K(L/k)

with Kerϕ ⊂K(K/k)[d] and {xd | x ∈K(L/k)} ⊂ Im ϕ. In particular, if |K(K/k)| is
coprime to d, then ϕ induces an isomorphism K(K/k)∼= {xd | x ∈K(L/k)}.
Proof. This follows from the fact that under the identification of H1(k, R1

K/kGm) and
H1(k, R1

L/kGm) with k∗/NK/k K ∗ and k∗/NL/k L∗, the maps j and NL/K from Theorem 3·3
induce multiplication by d and projection respectively. Alternatively, observe that the propo-
sition follows from the inclusions NL/kA

∗
L ⊂ NK/kA

∗
K , NL/k L∗ ⊂ NK/k K ∗, (NK/kA

∗
K )

d ⊂
NL/kA

∗
L and (NK/k K ∗)d ⊂ NL/k L∗. If |K(K/k)| is coprime to d, then Im ϕ ⊂ {xd | x ∈

K(L/k)}.
Next, we establish a generalisation of Gurak’s criterion (see [29, proposition 2]) for the

validity of the HNP in a compositum of two subextensions with coprime degrees.

PROPOSITION 3·10. Let L/k be a finite extension with subextensions K/k and M/k
such that L = K M. Let T = R1

L/kGm, T1 = R1
K/kGm and T2 = R1

M/kGm and let X, X1 and
X2 be their respective smooth compactifications. Then we obtain a commutative diagram
with exact rows as follows, where the vertical homomorphisms are induced by the natural
inclusions T1 ↪→ T and T2 ↪→ T :

0 �� A(T1)⊕ A(T2) ��

��

H1(k, Pic X1)
∼ ⊕ H1(k, Pic X2)

∼ ��

��

X(T1)⊕X(T2)

��

�� 0

0 �� A(T ) �� H1(k, Pic X)∼ �� X(T ) �� 0.

If [K : k] and [M : k] are coprime, then the vertical maps in the diagram are isomorphisms.

Proof. The commutative diagram comes from Lemma 3·1. If [K : k] and [M : k] are
coprime, then any prime number divides at most one of [L : K ] and [L : M], whence
Lemma 2·6 and Theorem 3·3 show that the vertical maps in the diagram are isomorphisms.

PROPOSITION 3·11. In the notation of Proposition 3·10, the map X(T1)⊕X(T2)→
X(T ) induces the following homomorphism on the relevant knot groups

ϕ :K(K/k)×K(M/k)→K(L/k)

(x, y) �→ xn ym,

where m = [L : M] and n = [L : K ]. Moreover, if a = exp(K(K/k)), b = exp(K(M/k)),
and h = gcd(m, n), then ϕ satisfies Kerϕ ⊂K(K/k)[bn] ×K(M/k)[am] and {zh | z ∈
K(L/k)} ⊂ Im ϕ.

Proof. This follow from the argument in the proof of Proposition 3·9.
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Explicit methods for the HNP and applications 15

We end this section by proving a version of [29, theorem 1] for weak approximation
in nilpotent Galois extensions. We require the following description of the defect of weak
approximation:

PROPOSITION 3·12. Let T be a torus defined over a number field k and split by a finite
Galois extension L/k with G = Gal(L/k). Then

A(T )∼ = Im

(
X2

ω(G, T̂ )
Res−→

∏
v∈�k

H2(Dv, T̂ )

)
, (3·1)

where Dv = Gal(Lv/kv) is the decomposition group at v. If T = R1
L/kGm then

A(T )∼ = Im

(
H3(G,Z)

Res−→
∏
v∈�k

H3(Dv,Z)

)
. (3·2)

Proof. The equality in (3·1) follows from Proposition 2·4. Then (3·2) follows from the iso-
morphism (2·5) of Theorem 2·2 and the analogous result that H2(Dv, T̂ )= H3(Dv,Z) in
this setting.

We make use of the following weak approximation version of [28, lemma 2·3]:

LEMMA 3·13. Let K/k and M/k be finite subextensions of L/k such that [K : k] and
[M : k] are coprime. If weak approximation holds for R1

K M/MGm, then it holds for R1
K/kGm.

Under the additional assumption that K/k is Galois, weak approximation for R1
K/kGm

implies weak approximation for R1
K M/MGm.

Proof. Let T = R1
K/kGm , TM = T ×k M and TK = T ×k K . Suppose first that weak approx-

imation holds for R1
K M/MGm = TM . By Lemma 2·6 and Theorem 2·1, weak approximation

holds for TK . To complete the proof, observe that weak approximation for TK and TM implies
weak approximation for RK/k TK and RM/k TM . Since [K : k] and [M : k] are coprime, the
surjective morphism of algebraic groups

RK/k TK × RM/k TM → T

(x, y)→ NK/k(x)NM/k(y)

has a section. Therefore, weak approximation for T follows from weak approximation for
RK/k TK and RM/k TM .

Now suppose that K/k is Galois and that weak approximation holds for R1
K/kGm . Then

K M/M is Galois with Galois group isomorphic to Gal(K/k). Let w be a place of M and let
v be the place of k lying below w. The various restriction maps give a commutative diagram

H3(Gal(K/k),Z)

Resv
��

∼= �� H3(Gal(K M/M),Z)

Resw
��

H3(Dv,Z) �� H3(Dw,Z).
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16 ANDRÉ MACEDO AND RACHEL NEWTON

Since weak approximation holds for R1
K/kGm , isomorphism (3·2) of Proposition 3·12 shows

that Resv is trivial, and hence Resw is also trivial. As w was arbitrary, weak approximation
for R1

K M/MGm follows from (3·2).

Remark 3·14. The hypothesis that K/k is Galois in the second implication of Lemma 3·13
is necessary. To see this, consider a Galois extension L/k with Galois group G = C3 × S3

and with a decomposition group Dv containing the Sylow 3-subgroup of G for some place v
of k (such an extension always exists, see Section 7). Let K/k and M/k be subextensions of
L/k of degree 9 and 2, respectively. One can verify that the invariant H1(k, Pic X) vanishes
for K/k and thus weak approximation holds for R1

K/kGm by Theorem 2·1. On the other
hand, K M/M = L/M is Galois with Galois group C3 × C3 and decomposition group C3 ×
C3 for a prime of M above v. It follows that weak approximation fails for R1

K M/MGm by
isomorphism (3·2) of Proposition 3·12. See [38] for some other examples of varieties over
number fields that satisfy weak approximation over the base field but not over a quadratic
extension.

We also require the following well-known fact:

PROPOSITION 3·15. Let G be a finite group and G p a Sylow p-subgroup of G. For any
G-module A and any n ∈Z>0, the restriction map

ResG
G p

: Hn(G, A)→ Hn(G p, A)

maps Hn(G, A)(p) injectively into Hn(G p, A).

Proof. See, for example, [11, theorem III·10·3].

PROPOSITION 3·16. Let L/k be a Galois extension such that G = Gal(L/k) is nilpotent.
For every prime p, let G p be a Sylow p-subgroup of G. Let kp and L p be the fixed fields of
the subgroups G p and

∏
q 	=p Gq, respectively. The following are equivalent:

(i) weak approximation holds for R1
L/kGm;

(ii) weak approximation holds for each R1
L p/kGm;

(iii) weak approximation holds for each R1
L/kp

Gm.

Proof.
(i) =⇒ (ii): follows from Corollary 3·8.
(ii) =⇒ (iii): follows from Lemma 3·13.
(iii) =⇒ (i): we prove A(R1

L/kGm)(p) = 0 for every prime p. Let v be a place of k and let
w be a place of kp above v. The various restriction maps give a commutative diagram

H3(G,Z)(p)
Res1 ��

Res4

��

H3(Dv,Z)(p)

Res2

��
H3(G p,Z)

Res3 �� H3(Dw,Z).
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Explicit methods for the HNP and applications 17

As weak approximation holds for R1
L/kp

Gm , isomorphism (3·2) of Proposition 3·12 yields
Im Res3 = 0. Furthermore, Proposition 3·15 shows that Res2 is injective. It follows that
Im Res1 = 0 and, since v was arbitrary, we conclude that A(R1

L/kGm)(p) = 0 by (3·2).

Remark 3·17. We note that the implication (iii) =⇒ (i) in Proposition 3·16 does not require
the hypothesis that G is nilpotent. This is analogous to the corresponding result for the HNP
– see Gurak’s remarks preceding [29, theorem 2].

4. The first obstruction to the Hasse norm principle

In this section, we give some background concerning the first obstruction to the Hasse
norm principle and then go on to prove Theorem 1·1 and Corollary 1·2. Throughout the
section, we fix a tower of number fields L/K/k such that L/k is Galois. Let X and
X0 be smooth compactifications of the tori R1

K/kGm and R1
L/kGm , respectively. Applying

Lemma 3·1 to the norm map NL/K : R1
L/kGm → R1

K/kGm gives a commutative diagram with
exact rows as follows, where the vertical arrows are induced by NL/K :

0 �� A(R1
L/kGm) ��

��

H1(k, Pic X0)
∼ ��

fL/K

��

X(R1
L/kGm)

gL/K

��

�� 0

0 �� A(R1
K/kGm) �� H1(k, Pic X)∼ �� X(R1

K/kGm) �� 0.

(4·1)

Definition 4·1. In the notation of diagram (4·1), we define

(i) F(L/K/k) := Coker(gL/K )= (k∗ ∩ NK/kA
∗
K )/(k

∗ ∩ NL/kA
∗
L)NK/k K ∗, called the

first obstruction to the HNP for K/k corresponding to the tower L/K/k, see [17,
Definition 1];

(ii) Fnr (L/K/k) := Coker( fL/K ), called the unramified cover of F(L/K/k).

Clearly the knot group K(K/k) (which is sometimes called the total obstruction to the
HNP) surjects onto F(L/K/k) and F(L/K/k) equals K(K/k) if the HNP holds for L/k. In
[17], Drakokhrust and Platonov give another very useful sufficient criterion for this equality
to hold, as follows:

THEOREM 4·2. [17, theorem 3] Set G = Gal(L/k), H = Gal(L/K ). Let G1, . . . ,Gr be
subgroups of G and let H1, . . . , Hr be subgroups of H such that Hi ⊂ H ∩ Gi for each i .
Let Ki = L Hi and ki = LGi . Suppose that the HNP holds for the extensions Ki/ki and that
the map

r⊕
i=1

CorG
Gi

:
r⊕

i=1

Ĥ
−3
(Gi ,Z)→ Ĥ

−3
(G,Z)

is surjective. Then F(L/K/k)=K(K/k).

In order to compute F(L/K/k), Drakokhrust and Platonov give some explicit results
relating this object to the local and global Galois groups of the tower L/K/k. We present
their results here in a slightly more general setting. Let G be a finite group, let H ≤ G, and
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18 ANDRÉ MACEDO AND RACHEL NEWTON

let S be a set of subgroups of G. Consider the following commutative diagram:

H/[H, H ] ψ1 �� G/[G,G]

⊕
D∈S

( ⊕
H xi D∈H\G/D

Hi/[Hi , Hi ]
)

ψ2 ��

ϕ1

��

⊕
D∈S

D/[D, D],

ϕ2

��

(4·2)

where the xi ’s are a set of representatives of the H–D double cosets of G, the sum over D is
a sum over all subgroups in S, and Hi := H ∩ xi Dx−1

i . The maps ψ1, ϕ1 and ϕ2 are induced
by the natural inclusions H ↪→ G, Hi ↪→ H and D ↪→ G, respectively. If h ∈ Hi , then

ψ2(h[Hi , Hi ])= x−1
i hxi [D, D] ∈ D/[D, D].

Given a subgroup D ∈ S, we denote by ψD
2 the restriction of the map ψ2 in diagram (4·2) to

the subgroup
⊕

H xi D∈H\G/D Hi/[Hi , Hi ].

LEMMA 4·3. In diagram (4·2), ϕ1(KerψD
2 )⊂ ϕ1(KerψD′

2 ) whenever D ⊂ D′.

Proof. The proof follows in the same manner as the proof of [17, lemma 2].

LEMMA 4·4. [17, lemma 1] Set G = Gal(L/k) and H = Gal(L/K ). Given a place v of k,
the set of placesw of K above v is in one-to-one correspondence with the set of double cosets
in the decomposition G =⋃rv

i=1 H xi Dv. Ifw corresponds to H xi Dv, then the decomposition
group Hw of the extension L/K at w equals H ∩ xi Dvx

−1
i .

Set G = Gal(L/k), H = Gal(L/K ) and S = {Dv | v ∈�k}. Lemma 4·4 shows that, with
these choices, diagram (4·2) takes the form

H/[H, H ] ψ1 �� G/[G,G]

⊕
v∈�k

(⊕
w|v

Hw/[Hw, Hw]
)

ψ2 ��

ϕ1

��

⊕
v∈�k

Dv/[Dv, Dv],

ϕ2

�� (4·3)

where the sum over w | v is a sum over all places w of K above v and Hw is the
decomposition group of L/K at w.

THEOREM 4·5. [17, theorem 1] With the notation of diagram (4·3), there is a canonical
isomorphism

F(L/K/k)= Kerψ1/ϕ1(Kerψ2).

We write ψnr
2 for the restriction of the map ψ2 to the subgroup

⊕
v unramified in L/k

(⊕
w|v

Hw/[Hw, Hw]
)
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Explicit methods for the HNP and applications 19

and define ψr
2 similarly using the ramified places.

LEMMA 4·6. Set G = Gal(L/k) and H = Gal(L/K ). Let C be the set of all cyclic sub-
groups of G and let ϕC

1 and ψC
2 denote the relevant maps in diagram (4·2) with S = C.

Then

ϕ1(Kerψnr
2 )= ϕC

1 (KerψC
2 ),

where the maps in the expression on the left are the ones in diagram (4·3).

Proof. This follows from the Chebotarev density theorem and Lemma 4·3.

Definition 4·7. Let H be a subgroup of a finite group G. The focal subgroup of H in G is

�G(H)= 〈h−1
1 h2 | h1, h2 ∈ H and h2 is G-conjugate to h1〉

= 〈[h, x] | h ∈ H ∩ x H x−1, x ∈ G〉� H.

THEOREM 4·8. [17, theorem 2] In the notation of diagram (4·3), we have

ϕ1(Kerψnr
2 )=�G(H)/[H, H ].

Theorem 4·8 is very useful – quite often one can show that �G(H)= H ∩ [G,G] and
hence the first obstruction F(L/K/k) is trivial. In fact, since [NG(H), H ] ⊂�G(H), if one
can show that [NG(H), H ] = H ∩ [G,G], then F(L/K/k)= 1. This criterion generalises
[29, theorem 3].

Remark 4·9. The group Kerψ1/ϕ1(Kerψ2) featured in Theorem 4·5 can be computed in
finite time. Indeed, Kerψ1 is given in terms of the relevant Galois groups, and by [17, p· 307]
we have

ϕ1(Kerψ2)= ϕ1(Kerψnr
2 )ϕ1(Kerψr

2 ). (4·4)

Hence, Theorem 4·8 and the fact that only finitely many places of k ramify in L/k show
that ϕ1(Kerψ2) can be obtained by a finite computation. We combined these facts to
assemble a function 1obs(G,H,l) in GAP [24] that, given the groups G = Gal(L/k),
H = Gal(L/K ) and the list l of decomposition groups Dv at the ramified places v, returns
the group Kerψ1/ϕ1(Kerψ2) isomorphic to the first obstruction F(L/K/k). The code for
this function is available at [40].

Our next task is to prove Theorem 1·1, which gives a purely group-theoretic description
of Fnr (L/K/k). First, recall the definition of the group F(G, H):

Definition 4·10. Let G be a finite group and let H ≤ G. We define the group F(G, H) as

F(G, H)= (H ∩ [G,G])/�G(H).

Returning to the situation of a tower of number fields L/K/k with L/k Galois, G =
Gal(L/k) and H = Gal(L/K ) and letting ψ1, ϕ

C
1 and ψC

2 denote the relevant maps in
diagram (4·2) with S = C , the set of all cyclic subgroups of G, we have

F(G, H)= Kerψ1/ϕ
C
1 (KerψC

2 ). (4·5)
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20 ANDRÉ MACEDO AND RACHEL NEWTON

We now prove the following strengthening of Theorem 1·1:

THEOREM 4·11. There is a canonical isomorphism Fnr (L/K/k)= F(G, H) under
which the natural surjection Fnr (L/K/k)� F(L/K/k) coincides with the natural surjec-
tion F(G, H)� F(L/K/k) induced by Theorem 4·5.

Proof. The norm map NL/K induces a commutative diagram of k-tori with exact lines:

1 R1
L/kGm RL/kGm Gm 1

1 R1
K/kGm RK/kGm Gm 1.

NL/K NL/K = (4·6)

Taking character groups in (4·6) and then taking G-cohomology gives the following
commutative diagram of abelian groups with exact lines:

H2(G,Z) H2(G,Z[G/H ]) H2(G, T̂ ) H3(G,Z)

H2(G,Z) H2(G,Z[G])= 0 H2(G, T̂0) H3(G,Z).

θ1

=

θ2 θ3

f ∗
L/K = (4·7)

By Theorem 2·2, the group Fnr (L/K/k)= Coker
(

fL/K : H1(k, Pic X0)
∼ → H1(k, Pic X)∼

)
is dual to Ker

(
f ∗

L/K |X2
ω(G,T̂ )

:X2
ω(G, T̂ )→X2

ω(G, T̂0)
)
. As the first line of diagram (4·7)

is exact, we have

Ker
(

f ∗
L/K |X2

ω(G,T̂ )

)= Im θ2 ∩X2
ω(G, T̂ ).

Furthermore, taking character groups in the second line of (4·6) and then taking both G-
cohomology and 〈g〉-cohomology, we obtain the following commutative diagram with exact
lines

H2(G,Z) H2(G,Z[G/H ]) H2(G, T̂ )

∏
g∈G

H2(〈g〉,Z) ∏
g∈G

H2(〈g〉,Z[G/H ]) ∏
g∈G

H2(〈g〉, T̂ )

θ1 θ2

θ4

θ5

(4·8)

and a straightforward diagram chase shows that θ2 induces an isomorphism

θ−1
4 (Im θ5)/ Im θ1

∼= Im θ2 ∩X2
ω(G, T̂ ).

In [45, theorem 6·12] and pages leading to it, the authors show that the first square in
diagram (4·8) is dual to diagram (4·2) with S = C = {cyclic subgroups of G}, reproduced
below:
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Explicit methods for the HNP and applications 21

H/[H, H ] ψ1 �� G/[G,G]

⊕
g∈G

( ⊕
H xi 〈g〉∈H\G/〈g〉

〈xi gx−1
i 〉 ∩ H

)
ψC

2 ��

ϕC
1

��

⊕
g∈G

〈g〉.

��

(4·9)

In particular, θ−1
4 (Im θ5)/ Im θ1 is dual to Kerψ1/ϕ

C
1 (KerψC

2 ) and the existence of a canoni-
cal isomorphism Fnr (L/K/k)= F(G, H) follows from (4·5). Theorem 4·5 can be proved in
an analogous way by considering a version of diagram (4·8) with all decomposition groups
in place of all cyclic subgroups of G and recalling from Theorem 2·3 that X(T ) is dual to
X2(G, T̂ ). Proposition 2·4 now yields the desired compatibility.

Proof of Corollary 1·2. This is a direct consequence of diagram (4·1) and Theorems 2·2
and 4·11.

COROLLARY 4·12. If H is a Hall subgroup of G, then Fnr (L/K/k)= F(L/K/k)= 1.

Proof. The focal subgroup theorem [31] shows that for a Hall subgroup H of G, we
have F(G, H)= 1. The result therefore follows from Theorem 1·1 and the surjection
Fnr (L/K/k)� F(L/K/k).

5. Generalised representation groups

Theorem 5·3 below gives an explicit description of the birational invariant H1(k, Pic X)
in terms of generalised representation groups, which we now define:

Definition 5·1. Let G be a finite group. A finite group G is called a generalised
representation group of G if there exists a central extension

1 → K → G
λ−→ G → 1, (5·1)

such that the transgression map TrG : Ĥ
1
(K ,Q/Z)→ Ĥ

2
(G,Q/Z) in the inflation-

restriction exact sequence is surjective. We call K the base normal subgroup of G.

Remark 5·2. Surjectivity of the transgression map TrG in Definition 5·1 is equivalent

to injectivity of the dual map Tr∗G in the exact sequence Ĥ
−3
(G,Z)

Tr∗G−→ Ĥ
−2
(K ,Z)→

Ĥ
−2
(G,Z), where the second map is induced by the inclusion K ⊂ G. Hence, a central

extension as in (5·1) gives a generalised representation group if and only if Tr∗G gives an

isomorphism Ĥ
−3
(G,Z)∼= K ∩ [G,G].

Let L/k be a Galois extension of number fields with Galois group G and let G be a
generalised representation group of G with base normal subgroup K . Then the middle group

in Voskresenskiı̆’s exact sequence (2·1) for R1
L/kGm is Ĥ

−3
(G,Z)∼= K ∩ [G,G] = F(G, K ).

Theorem 5·3 below shows that this is a special case of a more general phenomenon.
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22 ANDRÉ MACEDO AND RACHEL NEWTON

THEOREM 5·3 (Drakokhrust). Let L/K/k be a tower of number fields with L/k Galois.
Let X/k be a smooth compactification of the norm one torus R1

K/kGm. Let G = Gal(L/k)

and H = Gal(L/K ). Let G be a generalised representation group of G with projection map
λ and for any subgroup B ≤ G let B = λ−1(B). Then there is a canonical isomorphism

H1(k, Pic X)∼ = F(G, H).

Proof. For any v ∈�k , define

Sv =
{
λ−1(Dv) if v is ramified in L/k;

a cyclic subgroup of λ−1(Dv) with λ(Sv)= Dv otherwise.

Consider the version of diagram (4·2) with respect to the groups G, H and S = {Sv | v ∈�k}.
In this setting, Drakokhrust shows in [16, theorem 2] that

H1(k, Pic X)∼ = Kerψ1/ϕ1(Kerψnr
2 ),

where ψnr
2 denotes the restriction of ψ2 to the subgroup

⊕
v unramified in L/k

(
rv⊕

i=1

H ∩ xi Svx
−1
i

)

and the xi ’s are a set of representatives for the double coset decomposition G =⋃rv
i=1 H xi Sv.

By the Chebotarev density theorem we can choose the subgroups Sv for v unramified in
such a way that every cyclic subgroup of G is in S. For this choice, we obtain

Kerψ1/ϕ1(Kerψnr
2 )= F(G, H).

Indeed, we clearly have Kerψ1 = (H ∩ [G,G])/[H , H ] and the equality ϕ1(Kerψnr
2 )=

�G(H)/[H , H ] follows from Lemma 4·6 and an argument similar to the proof of [17,
theorem 2].

The following lemma will be used alongside Theorem 5·3 in the proof of Theorem 1·3,
see Proposition 6·3 below.

LEMMA 5·4. We have F(G, H)∼= F(G, H) if and only if Kerλ∩ [G,G] ⊂�G(H),
where the notation is as in Theorem 5·3.

Proof. Easy exercise.

The next lemma enables us to employ generalised representation groups to calculate knot
groups using the isomorphism (2·7) of Theorem 2·3 (via duality) or Theorem 4·2.

LEMMA 5·5. [17, lemma 4] Let G be a finite group, H a subgroup of G and G a gen-
eralised representation group of G with projection map λ and base normal subgroup K .
Then

Im
(

Cor : Ĥ
−3
(H,Z)→ Ĥ

−3
(G,Z)

)∼= K ∩ [λ−1(H), λ−1(H)].
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It is well known that every finite group has a generalised representation group (see [37,
theorem 2·1·4]). The following result of Schur, which gives presentations of generalised
representation groups of An and Sn , will be used in Section 6 when investigating the Hasse
norm principle for An and Sn extensions.

PROPOSITION 5·6. Let n ≥ 4 and let U be the group with generators z, t1, . . . , tn−1 and
relations:

(i) z2 = 1;
(ii) zti = ti z, for 1 ≤ i ≤ n − 1;

(iii) ti
2 = z, for 1 ≤ i ≤ n − 1;

(iv) (ti .ti+1)
3 = z, for 1 ≤ i ≤ n − 2;

(v) ti .t j = zt j .ti , for |i − j | ≥ 2 and 1 ≤ i, j ≤ n − 1.

Then U is a generalised representation group of Sn with base normal subgroup K = 〈z〉.
Moreover, if ti denotes the transposition (i i + 1) in Sn, then the map

λ : U −→ Sn

z �−→ 1

ti �−→ ti

is surjective and has kernel K . Additionally, if n 	= 6, 7, then a generalised representation
group of An is given by V = λ−1(An)= 〈z, t1.t2, t1.t3, . . . , t1.tn−1〉 ≤ U.

Proof. See Schur’s original paper [48] or [33, chapter 2] for a more modern exposi-
tion regarding generalised representation groups of Sn . The An case is dealt with in
[41, section 3].

6. Applications to An and Sn extensions

In this section we apply the results of the preceding sections to study the HNP and weak
approximation for norm one tori of An and Sn extensions. Throughout the section, we fix
the following notation: L/K/k is a tower of number fields such that L/k is Galois and G =
Gal(L/k) is isomorphic to An or Sn with n ≥ 4. We set H = Gal(L/K ). For any subgroup
G ′ of G, we denote by FG/G ′ a flasque module in a flasque resolution of the Chevalley
module JG/G ′ . Let X/k be a smooth compactification of the torus T = R1

K/kGm . We use the

isomorphism (2·3) in Theorem 2·2 to identify H1(k, Pic X) with H1(G, FG/H ).

6·1. Results for general n

First, we complete the proof of Theorem 1·3. For G ∼= An or Sn , we have H3(G,Z)∼=Z/2,
unless G ∼= A6 or A7 in which case H3(G,Z)∼=Z/6. Therefore, in our proof of Theorem 1·3,
we can apply Corollary 1·2 to deal with the odd order torsion. It remains to analyse the 2-
primary parts of K(K/k) and H1(G, FG/H ).We start with the simpler case where |H | is odd.

PROPOSITION 6·1. If |H | is odd, then

(i) H1(G, FG/H )(2) =Z/2, and
(ii) K(K/k)(2) =K(L/k)(2) and K(K/k)(2) has size at most 2.
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24 ANDRÉ MACEDO AND RACHEL NEWTON

Proof.
(i) This follows from Corollary 3·5(i).

(ii) This is a consequence of Theorem 3·3 and isomorphism (2·7) of Theorem 2·3.

Proof of Theorem 1·3 for |H | odd. We analyse the p-primary parts of the groups in
Theorem 1·3 for each prime p. For p odd, apply Corollary 1·2 and use the
fact that K(L/k)∼ ↪→ H3(G,Z)=Z/2 (Theorem 2·3). For p = 2, use Proposition 6·1.
By Theorem 1·1, Fnr (L/K/k)= F(G, H) is a subquotient of H ∩ [G,G], whereby
Fnr (L/K/k)(2) = 1, since |H | is odd. As Fnr (L/K/k) surjects onto F(L/K/k), we also
have F(L/K/k)(2) = 1.

We now solve the case where |H | is even. For this, we will use the generalised represen-
tation group G of G, the projection map λ and the base normal subgroup K = 〈z〉 presented
in Proposition 5·6, so our next two results do not apply when G ∼= A6 or A7.

LEMMA 6·2. Suppose that G is not isomorphic to A6 or A7 and that |H | is even. Let
h ∈ H be any element of order 2. Then there exists a copy A of V4 inside G such that:

(i) h ∈ A;
(ii) z ∈ [λ−1(A), λ−1(A)].

Proof. Case (1) h comprises a single transposition. Relabelling if necessary, we can assume
that h = (1 2). Take A = 〈(1 2), (3 4)〉 and note that [λ−1 ((1 2)) , λ−1 ((3 4))] = [t1, t3] in
the notation of Proposition 5·6. Using the relations satisfied by the elements ti ∈ G given in
Proposition 5·6, it is clear that this commutator is equal to z, as desired.

Case (2) h comprises more than one transposition. Relabelling if necessary, we can
assume that h = (1 2)(3 4) · · · (n − 1 n) for some even n ≥ 4. Take A = 〈h, x〉, where x =
(1 3)(2 4) and let us prove by induction that z = [λ−1(h), λ−1(x)]. Note that, in the notation
of Proposition 5·6, we have h = t1.t3. · · · .tn−1 and x = t2.t1.t2.t3.t2.t3.

Base case n = 4: a straightforward (but long) computation using the relations sat-
isfied by the elements ti given in Proposition 5·6 shows that [λ−1(h), λ−1(x)] =
[t1.t3, t2.t1.t2.t3.t2.t3] = z.

Inductive step: suppose that h = (1 2)(3 4) · · · (n − 1 n)(n + 1 n + 2). Denoting the
permutation (1 2)(3 4) · · · (n − 1 n) by h̃, write h = h̃.tn+1. Now

[λ−1(h), λ−1(x)] = [λ−1(h̃)tn+1, λ
−1(x)] = [λ−1(h̃), λ−1(x)]tn+1[tn+1, λ

−1(x)].

By the inductive hypothesis and the relations of Proposition 5·6, [λ−1(h̃), λ−1(x)]tn+1 =
ztn+1 = z and [tn+1, λ

−1(x)] = [tn+1, t2.t1.t2.t3.t2.t3] = 1, as desired.

The next proposition completes the proof of Theorem 1·3.

PROPOSITION 6·3. Suppose that G is not isomorphic to A6 or A7 and that |H | is even.
Then:

(i) H1(G, FG/H )
∼ = Fnr (L/K/k);

(ii) K(K/k)= F(L/K/k).
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Proof.
(i) By Theorems 1·1, 5·3 and isomorphism (2·3) of Theorem 2·2, if we can

show that F(G, H)∼= F(G, H) then it will follow that the natural surjection
H1(G, FG/H )

∼ � Fnr (L/K/k) is an isomorphism. By Lemma 5·4, it suffices to
check that Kerλ⊂�G(H), i.e. that z ∈�G(H). Let A = 〈h, x〉 be the copy of
V4 constructed in the proof of Lemma 6·2. Then h ∈ H ∩ x H x−1 and therefore
z = [λ−1(h), λ−1(x)] ∈�G(H), as desired.

(ii) By the isomorphism (2·3) of Theorem 2·2, the statement in (i) implies that the
map fL/K in diagram (4·1) is trivial. As this diagram is commutative, it follows
that gL/K is also trivial and thus K(K/k)=X(T )= Coker(gL/K )= F(L/K/k).

Now that we have proved Theorem 1·3, we have reduced the study of the HNP and weak
approximation for norm one tori of An and Sn extensions to a purely computational problem
(except in the cases of A6 and A7). The groups F(L/K/k) and K(L/k) can be computed
using the GAP algorithms described in Remark 4·9 and at the end of Section 6·2 below. The
calculations of the knot group and of H1(k, Pic X) in the remaining cases where G ∼= A6, A7

are done in Section 6·3.

Remark 6·4. The method employed in this section to provide explicit and computable for-
mulae for the knot group and the invariant H1(k, Pic X) in An and Sn extensions works for
other families of extensions. For example, let G ′ be any finite group such that H3(G ′,Z)=
Z/2. Embed G ′ into Sn for some n and suppose that G ′ contains a copy of V4 conjugate to
〈(1, 2)(3, 4), (1, 3)(2, 4)〉. For such a group G ′, analogues of Lemma 6·2 and Propositions
6·1 and 6·3 yield a systematic approach to the study of the HNP and weak approximation
for G ′-extensions.

We proceed by investigating the possible isomorphism classes of the finite abelian
group F(G, H) (and thus, by Theorems 1·1, 1·3 and isomorphism (2·3), of the invariant
H1(G, FG/H ) as well).

PROPOSITION 6·5. The group F(Sn, H) is an elementary abelian 2-group. Moreover, every
elementary abelian 2-group occurs as F(Sn, H) for some n and some H ≤ Sn.

Proof. It suffices to prove that for every element h ∈ H ∩ [Sn, Sn], we have h2 ∈�Sn (H).
This is clear from the definition of �Sn (H) because h is conjugate to its inverse in Sn . The
statement on the occurrence of every elementary abelian 2-group is shown in Proposition 6·7
below.

PROPOSITION 6·6. The group F(An, H) is either isomorphic to C3 or an elementary
abelian 2-group. Moreover, every such possibility is realised for some choice of n and H.

Proof. First, we claim that any element of even order in F(An, H) is 2-torsion. Let h ∈ H
have even order. By [27], h is An-conjugate to h−1. Therefore h2 ∈�An (H), which proves
the claim.

Next, we claim that any element of odd order in F(An, H) is 3-torsion. Let h ∈ H be such
that its image in F(An, H) has odd order. Replacing h by a suitable power, we may assume
that h itself has odd order, whereby h is Sn-conjugate to h2. By the pigeonhole principle,
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at least two of the three Sn-conjugate elements h, h−1, h2 are An-conjugate. Therefore, at
least one of h−2, h, h3 is in �An (H). Since h has odd order, we conclude that in all cases
h3 ∈�An (H), whence the claim.

Next, we show that F(An, H)(3) is cyclic. Suppose for contradiction that the images in
F(An, H) of h1, h2 ∈ H generate a copy of C3 × C3. Replacing h1 and h2 by suitable pow-
ers if necessary, we may assume that the lengths of the cycles making up h1 and h2 are
powers of 3, say 3r1 ≤ 3r2 ≤ · · · ≤ 3rk for h1 and 3s1 ≤ 3s2 ≤ · · · ≤ 3sl for h2, where k, l ≥ 1
and ri , s j ∈Z≥0. Note that h1 and h−1

1 cannot be An-conjugate, or else we would have
h2

1 ∈�An (H), and similarly for h2. The criterion [27] for an element of An to be conju-
gate to its inverse yields 3ri 	= 3r j and 3si 	= 3s j for i 	= j . Since n =∑k

i=1 3ri =∑l
i=1 3si , the

uniqueness of the representation of n in base 3 implies that k = l and ri = si for every i .
Thus the cycle structures of h1 and h2 are identical and hence h1, h2 and h2

2 are conjugate
in Sn . Therefore, at least two of these elements are An-conjugate, whereby at least one of
h−1

1 h2, h−1
1 h2

2, h2 is in �An (H). This contradicts the assumption that the images of h1 and
h2 generate a non-cyclic subgroup of F(An, H). One can compute that F(A12, H)∼= C3 for
H = 〈(1, 2, 3)(4, 5, 6, 7, 8, 9, 10, 11, 12)〉 using GAP, for example. The statement on the
occurrence of every elementary abelian 2-group is shown in Proposition 6·7 below.

PROPOSITION 6·7. For every k ≥ 0, there exists n and a subgroup H of An such that

F(An, H)(2) ∼= F(Sn, H)(2) ∼= Ck
2 .

Proof. The case k = 0 is realised by letting H = 1. From now on, assume that k ≥
1. Let H be generated by k commuting and even permutations of order 2 such that,
for any x, y ∈ H with x 	= y, the permutations x and y have distinct cycle structures.
We define such a group recursively as H = Hk , starting from H1 = 〈(1, 2)(3, 4)〉, H2 =
〈(1, 2)(3, 4), (5, 6)(7, 8)(9, 10)(11, 12)〉 and adding, at step i , a new generator hi such that:

(i) hi is an even permutation of order 2;
(ii) hi is disjoint to the previous generators h1, . . . , hi−1;
(iv) hi moves enough points so that its product with any element of Hi−1 has cycle

structure different from that of any element of Hi−1.

Let n be large enough so that H ⊂ An . It is straightforward to check that one then has
�An (H)=�Sn (H)= 1. Therefore, F(An, H)= H ∩ [An, An] = H ∼= Ck

2 and similarly for
F(Sn, H). This completes the proof.

As a consequence of the work done so far, we can now establish Theorem 1·4 and
Corollary 1·6.

Proof of Theorem 1·4. For G 	∼= A6 or A7 the results follow from Theorems 1·1 and 1·3 and
Propositions 6·5 and 6·6. For the A6 and A7 cases, we describe how to compute H1(k, Pic X)
in Section 6·3 – the results of these computations are in Tables V and VI of the Appendix
and the C3 and C6 cases occur therein.

Proof of Corollary 1·6. Theorem 1·4 shows that H1(k, Pic X)(p) = 0 for a prime p>
3 and that H1(k, Pic X)(3) = 0 if G ∼= Sn . Theorem 1·1 gives Fnr (L/K/k)= F(G, H).
By Theorem 1·4, H1(k, Pic X)∼(3) is 3-torsion, so Theorem 1·3 gives H1(k, Pic X)∼(3) =
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F(G, H)[3]. Let K3 = L H3 and let X3 be a smooth compactification of R1
K3/kGm . Now

Corollary 3·4 and Theorem 1·3 give H1(k, Pic X)∼(3) ∼= H1(k, Pic X3)
∼
(3) = F(G, H3). If |H |

is odd then F(G, H)(2) is trivial and hence H1(k, Pic X)∼(2) =Z/2 by Theorem 1·3. The
result for H1(k, Pic X)∼(2) when |H | is even is obtained in a similar way to the result for
the 3-primary part.

The following corollary of Theorem 1·4 and Corollary 3·4 gives a useful shortcut when
analysing the HNP and weak approximation for Sn extensions, enabling one to reduce to the
case where H is a 2-group.

COROLLARY 6·8. Suppose that G ∼= Sn, let H2 be a Sylow 2-subgroup of H and let K2

denote its fixed field. Let X2 be a smooth compactification of T2 = R1
K2/kGm. Then we obtain

a commutative diagram with exact rows as follows, where the vertical isomorphisms are
induced by the natural inclusion T ↪→ T2:

0 �� A(T ) ��

∼=
��

H1(k, Pic X)∼ ��

∼=
��

X(T )

∼=
��

�� 0

0 �� A(T2) �� H1(k, Pic X2)
∼ �� X(T2) �� 0.

Alternatively, the norm map NK2/K : T2 � T can be used to obtain a similar commutative
diagram with the direction of the vertical isomorphisms reversed.

Remark 6·9. Corollary 6·8 also holds in the case G ∼= An provided n 	= 6, 7 and
F(G, H)(3) = 1. In Proposition 6·11 we show that for most n we have F(An, H)(3) = 1 for
all subgroups H .

The next lemma will aid our characterisation of the existence of elements of order 3 in
F(An, H).

LEMMA 6·10. Let n = 3l for some l ≥ 0 and let ρ = (a1 · · · a3l ) be a 3l -cycle in Sn. Let
j ∈Z with j ≡ −1 (mod 3). Then ρ j is An-conjugate to ρ if and only if l is even.

Proof. Observe that ρ j (ai )= ai+ j , where the subscripts are considered modulo 3l .
Therefore, the permutation x ∈ Sn defined by x(ai)= a1+(i−1) j satisfies xρx−1 = ρ j . Let C
be the An-conjugacy class of ρ. Since the Sn-conjugacy class of ρ splits as a disjoint union
C � gCg−1 for any g ∈ Sn \ An , it is enough to show that x ∈ An if and only if l is even.
We study the cycle structure of x by analysing the fixed points of its powers. Observe that
xt(ai )= a1+(i−1) j t for every t ≥ 0 and so

xt(ai)= ai ⇐⇒ 1 + (i − 1) j t ≡ i (mod 3l)⇐⇒ (i − 1)( j t − 1)≡ 0 (mod 3l).

Therefore, the number of fixed points of xt is gcd(3l, j t − 1). Using this fact, we note two
useful properties of the cycles occurring in a disjoint cycle decomposition of x :

(i) The only cycle of x with odd length corresponds to the fixed point a1: it suffices
to show that, for odd t ≥ 1, the only fixed point of xt is a1. As j ≡ −1 (mod 3), it
is easy to see that j t − 1 	≡ 0 (mod 3) for odd t and thus gcd(3l, j t − 1)= 1.
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(ii) x does not contain a cycle with length divisible by 4: it is enough to prove
that, for any m ≥ 1, the number of fixed points of x4m and x2m coincide, i.e.
that gcd(3l, j4m − 1)= gcd(3l, j2m − 1). This is clear since j4m − 1 = ( j2m −
1)( j2m + 1) and j2m + 1 	≡ 0 (mod 3).

Let c1 · . . . · ck be a disjoint cycle decomposition of x where the cycle ci has length |ci |. By
(i) and (ii), we may assume that |c1| = 1 and |ci | ≡ 2 (mod 4) for all i ≥ 2. Note that x ∈ An

if and only if k is odd. Now 3l =∑
i |ci | ≡ 1 +∑

i≥2 2 (mod 4). Thus, x ∈ An if and only if
3l ≡ 1 (mod 4).

PROPOSITION 6·11. There exists H ≤ An such that F(An, H)(3) ∼= C3 if and only if n ≥ 5
and n =∑k

i=1 3ri with 0 ≤ r1 < · · ·< rk and |{i | ri is odd}| is odd.

Proof. Suppose that F(An, H)(3) ∼= C3. It is easy to check that F(A4, H)(3) = 1 for all
H ≤ A4 so n ≥ 5. Let h be an element of H such that its image in F(An, H) generates
F(An, H)(3). Replacing h by a suitable power if necessary, we may assume that the lengths
of the cycles making up h are powers of 3, say 3r1 ≤ 3r2 ≤ · · · ≤ 3rk with ri ∈Z≥0. If h were
An-conjugate to h−1 then we would obtain h ∈�An (H), a contradiction. Therefore, by cri-
terion [27] we have 3ri 	= 3r j for i 	= j and

∑k
i=1(3

ri − 1)/2 is odd, i.e. the number of odd ri

is odd.
Conversely, assume that n ≥ 5 satisfies n =∑k

i=1 3ri with 0 ≤ r1 < r2 < · · ·< rk and |{i |
ri is odd}| odd and let H be the cyclic group of order 3rk generated by h, where

h = (1 · · · 3r1)︸ ︷︷ ︸
c1

(3r1 + 1 · · · 3r1 + 3r2)︸ ︷︷ ︸
c2

. . .

(
k−1∑
i=1

3ri + 1 · · · n

)
︸ ︷︷ ︸

ck

.

We will prove that F(An, H)(3) ∼= C3. By Proposition 6·6, it is enough to show that h /∈
�An (H). Observe that �An (H) is generated by elements of the form hs−t where hs is An-
conjugate to ht . We complete the proof by showing that �An (H)⊂ 〈h3〉. Suppose that hs is
An-conjugate to ht . We claim that s ≡ t (mod 3). Since conjugate elements have the same
order, 3 | s if and only if 3 | t . Now assume that 3 � s. Then hs generates H and has the same
cycle type as h so, relabelling if necessary, we may assume that s = 1. Suppose for contradic-
tion that t ≡ −1 (mod 3). For every 1 ≤ i ≤ k, let xi ∈ Sn be such that xi only moves points
appearing in ci and xi ci x

−1
i = ct

i . Then x = x1 · . . . · xk satisfies xhx−1 = ht . Lemma 6·10
shows that xi ∈ An if and only if ri is even. Since |{i | ri is odd}| is odd, x ∈ Sn \ An . This
gives the desired contradiction as the Sn-conjugacy class of h splits as a disjoint union
C � xCx−1, where C denotes the An-conjugacy class of h.

Remark 6·12. For fixed n, it would be interesting to determine the list of isomorphism
classes of F(An, H)(2) or F(Sn, H)(2) as H ranges through the subgroups of An or Sn ,
respectively. We give some observations regarding this problem without proof:

(i) one can restrict the focus to An since F(An, H)(2) ∼= F(Sn, H)(2);
(ii) one can assume that H is a 2-group as F(An, H)(2) ∼= F(An, H2);

(iii) if F(An, H)(2) ∼= Ck
2 for some k ∈Z≥0, then k ≤ d(H), where d(H) denotes the

minimal number of generators of H ; in particular, it follows that k ≤ n/2;
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(iv) if H̃ is a subgroup of H of index 2, then 1
2 |F(An, H̃)(2)| ≤ |F(An, H)(2)| ≤

2|F(An, H̃)(2)|;
(v) if F(An0, H)(2) ∼= Ck

2 for some n0 ≥ 1 and k ∈Z≥0, then F(An, H)(2) ∼= Ck
2 for all

n ≥ n0;
(vi) one has F(An, H)(2) ∈ {1,C2} for all n ≤ 11 and H ≤ An and F(An, H)(2) ∈

{1,C2,C2
2} for n = 12, 13, 14 and all H ≤ An .

6·2. Computational methods and results for small n

In this section we prove Propositions 1·8, 1·9, Corollary 1·10 and Theorem 1·11. In
order to prove Proposition 1·9, we must compute the groups H1(k, Pic X) where X is a
smooth compactification of the norm one torus R1

K/kGm and K/k is contained in a Galois
extension L/k with Gal(L/k)= G ∼= S4, S5, A4, A5. One method to achieve this is via
the identification H1(k, Pic X)= H1(G, FG/H ) in (2·3), where H = Gal(L/K ). In [34, sec-
tion 5], Hoshi and Yamasaki developed several algorithms in the computer algebra system
GAP [24] to construct flasque resolutions. Using this work, one can compute the invariant
H1(G, FG/H ) for low-degree field extensions, see e.g. [41, section 4] for some examples.
This computational method can also be used to prove Theorem 1·11:

Proof of Theorem 1·11. Note that an extension K/k of degree n is a (G, H)-extension (as
defined on p. 6), where G is a transitive subgroup of Sn and H is an index n subgroup of
G. Since there are a finite number of possibilities for G and H , one can compute all pos-
sibilities for H1(G, FG/H ) using the aforementioned algorithms. If H1(G, FG/H )= 0, then
both the HNP for K/k and weak approximation for R1

K/kGm hold by Theorem 2·1 and the
isomorphism (2·3). If H1(G, FG/H ) 	= 0, one can compute the integer α(G) of Malle’s con-
jecture and for every such case one obtains α(G) > 1. Thus, if the conjecture holds, then the
number of degree n extensions with discriminant bounded by X and for which the HNP or
weak approximation fails is o(X). The result then follows by observing that Malle’s conjec-
ture also implies that the number of degree n extensions of k with discriminant bounded by
X is asymptotically at least c(k, n)X for some positive constant c(k, n).

Remark 6·13. We list a few observations about Theorem 1·11 and its proof.

(i) The reason for excluding degrees n = 8 and 12 is that in these cases there are pairs
(G, H), where G ≤ Sn is a transitive subgroup and H is an index n subgroup of
G, such that H1(G, FG/H ) is non-trivial and α(G)= 1. A more detailed analysis
of the proportion of these (G, H)-extensions for which the local-global principles
fail is needed in these cases.

(ii) Computing α(G) for all transitive subgroups G of Sn with H1(G, FG/H ) 	= 0 and
[G : H ] = n yields an upper bound (conditional on Malle’s conjecture) on the num-
ber of degree n extensions for which the HNP (or weak approximation for the norm
one torus) fails. For example, the number of degree 14 extensions of k for which
the HNP (or weak approximation for the norm one torus) fails is �k,ε x

1
6 +ε , when

ordered by discriminant.
(iii) In the statement of Theorem 1·11 it suffices to assume Malle’s conjecture only for

the few transitive subgroups G ≤ Sn containing an index n subgroup H such that
H1(G, FG/H ) is not trivial. Indeed, the assumption for all G ≤ Sn was used solely
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to show that the number of degree n extensions of k with discriminant bounded by
X is �k,n X . For n ≤ 15 composite, one can use an argument similar to that of [19,
pp· 723–724] for n even and the results of Datskovsky and Wright [15] for cubics
and of Bhargava, Shankar and Wang [7] for quintics to prove the aforementioned
result. Finally, for n prime we do not need any assumptions as the HNP for K/k
and weak approximation for R1

K/kGm always hold for extensions of prime degree
(see [14, proposition 9·1 and remark 9·3]).

(iv) To simplify the statement we only presented results for degree n ≤ 15 but one can
obtain results for higher degrees in a similar way. However, Hoshi and Yamasaki’s
algorithms require one to embed the Galois group G as a transitive subgroup of Sn ,
whereupon one quickly reaches the limit of the databases of such groups stored in
computational algebra systems such as GAP. To overcome this problem, one can
employ a modification of Hoshi and Yamasaki’s algorithms written by the first
author and made available at [40].

For most of our computational results, we did not employ the algorithms of Hoshi and
Yamasaki and instead used the formula of Theorem 5·3 which expresses H1(k, Pic X) in
terms of generalised representation groups of G and H . We implemented this formula, along
with the simplification afforded by Corollary 3·4, as an algorithm in GAP (see [40]). For the
groups G of Proposition 1·8, our calculations were further simplified thanks to Theorem 1·3.
The outcome of our computations appears in Tables I – VI of the Appendix. Proposition 1·9
follows immediately.

It is noteworthy to compare the two computational methods described above. The
approach based on Theorem 5·3 involves the computation of the focal subgroup �G(H),
which is generally fast for small subgroups H but impractical for large ones. On the contrary,
Hoshi and Yamasaki’s method using flasque resolutions deals only with the G-module JG/H ,
whose Z-rank |G|

|H | − 1 decreases as |H | grows. Therefore this technique (or the modified ver-
sion available at [40]) is usually preferable when H is large. In general, a combination of
the two algorithms is the most convenient way to compute H1(k, Pic X) for all subgroups of
a fixed group G.

We now move on to the proof of Proposition 1·8. We use Theorem 1·3 to reduce our
task to the calculation of the first obstruction F(L/K/k) and the knot group K(L/k)
for the Galois extension L/k. The former is achieved using the algorithm described in
Remark 4·9. The computation of K(L/k) follows from a simple application of isomorphism
(2·7) of Theorem 2·3 together with Proposition 3·15 and Lemma 6·14 below. Note that if
G = A4, S4, A5 or S5 then H3(G,Z)∼=Z/2.

LEMMA 6·14. Let G = A4, S4, A5, S5, A6 or A7 and let A be a copy of V4 inside G. Then

ResG
A : H3(G,Z)(2) → H3(A,Z)

is an isomorphism.

Proof. Follows from the injectivity of ResD4
V4

: H3(D4,Z)→ H3(V4,Z) and Proposition 3·15.

More generally, the knot group of any Galois extension L/k can be computed by com-
bining the isomorphism (2·7) of Theorem 2·3 and Lemma 5·5. We used these two results to
implement an algorithm (available at [40]) in GAP that, given the group Gal(L/k) and the
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list l of decomposition groups Dv at the ramified places, returns the knot group K(L/k). We
end this subsection by proving Corollary 1·10.

Proof of Corollary 1·10. The isomorphisms K(K/k)∼=K(L/k) and K(L/k)∼=K(L/F) fol-
low from Proposition 1·8 and isomorphism (2·7) of Theorem 2·3. The statement about weak
approximation follows from the isomorphism K(K/k)∼=K(L/F), Voskresenskiı̆’s exact
sequence (2·1) and the fact that the middle group in this sequence is Z/2 for both R1

K/kGm

and R1
L/FGm .

6·3. The A6 and A7 cases

In this section we give a complete characterisation of the Hasse norm principle and weak
approximation for the norm one tori associated to A6 and A7 extensions. Various subgroups
of A6 and A7 are given by semidirect products of smaller subgroups. For brevity, we omit
the precise construction of these semidirect products from the main text and refer the reader
to Tables V and VI of the Appendix containing the generators of these subgroups. Our main
result is the following:

PROPOSITION 6·15. Suppose that G is isomorphic to A6 or A7. Then K(K/k) ↪→ C6 and

(i) K(K/k)(2) = 1 ⇐⇒

⎧⎪⎨⎪⎩
V4 ↪→ H ; or

C4 ↪→ H and ∃ v such that D4 ↪→ Dv; or

4 � |H | and ∃ v such that V4 ↪→ Dv.

(ii) K(K/k)(3) = 1 ⇐⇒
{

C3 ↪→ H ; or

∃ v such that C3 × C3 ↪→ Dv.

We start by settling the Galois case of this proposition.

PROPOSITION 6·16. If L/k is Galois with Galois group A6 or A7, then K(L/k) ↪→ C6 and:

(i) K(L/k)(2) = 1 if and only if there exists a place v of k such that V4 ↪→ Dv;
(ii) K(L/k)(3) = 1 if and only if there exists a place v of k such that C3 × C3 ↪→ Dv.

Proof. This follows from isomorphism (2·7) of Theorem 2·3, Proposition 3·15 and
Lemma 6·14.

We now solve the non-Galois case. As detailed in Section 6·2, we can compute the invari-
ant H1(k, Pic X)= H1(G, FG/H ) for every possibility of H = Gal(L/K ). The result of this
computation is given in Tables V and VI of the Appendix and it proves the following:

PROPOSITION 6·17. Suppose that G is isomorphic to A6 or A7. Then H1(k, Pic X) ↪→Z/6
and:

(i) H1(k, Pic X)(2) = 0 if and only if V4 ↪→ H;
(ii) H1(k, Pic X)(3) = 0 if and only if C3 ↪→ H.

Building upon this proposition, we establish several results concerning the knot group
K(K/k). In particular, we immediately see that the invariant H1(G, FG/H ) is trivial if H
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is isomorphic to A4, C2 × C6, D6, (C6 × C2)� C2, S4, A4 × C3, A5, (A4 × C3)� C2, S5,
PSL(3, 2) or A6. Thus, by Theorem 2·1 and isomorphism (2·3), both groups A(T ) and
K(K/k) are trivial in all these cases.

Next, we investigate the cases where the first obstruction to the HNP for the tower L/K/k
coincides with the total obstruction, i.e. the knot group.

PROPOSITION 6·18. If 6 divides |H |, then K(K/k)= F(L/K/k).

Proof. Let G1 be a copy of V4 inside G such that H ∩ G1 	= 1 and G2 a copy of C3 ×
C3 inside G such that H ∩ G2 	= 1. Set Hi = H ∩ Gi for i = 1, 2 and notice that the HNP
holds for the extensions L Hi /LGi as they are of degree at most 3. Using Proposition 3·15,

Lemma 6·14 and duality, we find that the maps CorG
G1

: Ĥ
−3
(G1,Z)→ Ĥ

−3
(G,Z)(2) and

CorG
G2

: Ĥ
−3
(G2,Z)→ Ĥ

−3
(G,Z)(3) are surjective. Hence

CorG
G1

⊕ CorG
G2

: Ĥ
−3
(G1,Z)⊕ Ĥ

−3
(G2,Z)→ Ĥ

−3
(G,Z)

is surjective (recall that Ĥ
−3
(G,Z)∼=Z/6) and therefore F(L/K/k)=K(K/k) by

Theorem 4·2.

As a consequence of this result, one can use the GAP function 1obs described in
Remark 4·9 to computationally solve the cases where 6 | |H | and H1(G, FG/H ) 	= 0. The
remaining possibilities for H are dealt with in the two following results.

PROPOSITION 6·19.

(i) If H ∼= V4 or D4, then K(K/k)∼=K(L/k)(3);
(ii) If H ∼= C5 or C7, then K(K/k)∼=K(L/k);

(iii) If H ∼= C3,C3 × C3 or C7 � C3, then K(K/k)∼=K(L/k)(2).

Proof. We prove only (i) ((ii) and (iii) follow analogously). In this case H1(G, FG/H )=
Z/3 (see Tables V and VI of the Appendix) and thus Z/3 �K(K/k) by Theorem 2·1 and
isomorphism (2·3). The result now follows by Theorem 3·3, noting that d = [L : K ] = 4 or
8 is coprime to 3.

PROPOSITION 6·20.

(i) If H ∼= C2 or D5, then K(K/k)∼=K(L/k);
(ii) If H ∼= C4 or C5 � C4, then

K(K/k)∼=K(L/k)(3) ×K(M/k)∼=K(L/k)(3) × F(L/M/k),

where M is the fixed field of a copy of (C3 × C3)� C4 inside G containing
H2

∼= C4.

Proof. First, note that in all cases K(K/k)(3) ∼=K(L/k)(3), by Theorem 3·3. By
Proposition 6·17 and Theorem 2·1, it only remains to compute K(K/k)(2). For case (i),
let A be a copy of S3 inside G such that A ∩ H = H2

∼= C2 and let F = L A and K2 =
L H2 . Now Theorem 3·3 shows that K(K/k)(2) ∼=K(K2/k)(2) ∼=K(F/k)(2). Computing
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K(F/k)(2) using Proposition 6·18 and the GAP function 1obs described in Remark 4·9
gives K(F/k)(2) ∼=K(L/k)(2), as required. For case (ii), again let K2 = L H2 . Then
K(K/k)(2) ∼=K(K2/k)(2) ∼=K(M/k)(2), by Theorem 3·3. Now Proposition 6·18 gives
K(M/k)∼= F(L/M/k). Furthermore, Theorem 2·1 and isomorphism (2·3) combined with
the results for (C3 × C3)� C4 in Tables V and VI of the Appendix show that K(M/k) is
2-torsion.

We have thus established the characterisation of the HNP for an A6 or A7 extension given
in Proposition 6·15. Using Proposition 6·17, we can also give a full description of weak
approximation. The local conditions controlling the validity of this principle are given in
detail in the next theorem; they are a direct consequence of Propositions 6·15 and 6·17 and
Voskresenskiı̆’s exact sequence (2·1).

PROPOSITION 6·21. Suppose that G is isomorphic to A6 or A7.

(i) If V4 ↪→ H and C3 ↪→ H, then weak approximation holds for T .
(ii) If H ∼= 1,C2,C5,C7 or D5, then weak approximation holds for T if and only if

V4 	↪→ Dv and C3 × C3 	↪→ Dv for every place v of k.
(iii) If H ∼= C4 or C5 � C4, then weak approximation holds for T if and only if D4 	↪→

Dv and C3 × C3 	↪→ Dv for every place v of k.
(iv) In all other cases, weak approximation holds for T if and only if the HNP fails

for K/k.

7. Examples

This section concerns the existence of number fields with prescribed Galois group for
which the HNP holds, and the existence of those for which it fails. The main result is
Theorem 1·12. To prove it, we will use the notion of k-adequate extensions, as introduced
by Schacher in [47].

Definition 7·1. An extension K/k of number fields is said to be k-adequate if K is a
maximal subfield of a finite dimensional k-central division algebra.

A conjecture of Bartels (see [2, p· 198]) predicted that the HNP would hold for any k-
adequate extension. This was proved by Gurak (see [28, theorem 3·1]) for Galois extensions,
but disproved in general by Drakokhrust and Platonov (see [17, section 9, section 11]). Given
a Galois extension L/k, a result of Schacher (see [47, proposition 2·6]) shows that L is k-
adequate if and only if for every prime p | [L : k] there are at least two places v1 and v2 of k
such that Dvi = Gal(Lvi /kvi ) contains a Sylow p-subgroup of Gal(L/k). This led Schacher
to establish the following result:

THEOREM 7·2. [47, theorem 9·1] For any finite group G there exists a number field k
and a k-adequate Galois extension L/k with Gal(L/k)∼= G.

We can now prove Theorem 1·12, which generalises [28, corollary 3·3] to non-normal
extensions.
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Proof of Theorem 1·12.
(i) Let L/k be a k-adequate Galois extension with Galois group G as given in

Theorem 7·2. Let K = L H and T = R1
K/kGm . Recall that, by Theorem 2·3,

X(T )∼ = Ker

(
H2(G, JG/H )

Res−→
∏
v∈�k

H2(Dv, JG/H )

)
.

Let p be a prime dividing |G| and let Dv be a decomposition group containing a
Sylow p-subgroup of G. Then Proposition 3·15 and the transitivity of restriction
show that the map

H2(G, JG/H )(p)
Res−→

∏
v∈�k

H2(Dv, JG/H )

is injective. It follows that X(T )= 0 and so K(K/k) is trivial. The statement
regarding weak approximation follows from Theorem 2·1 and isomorphism (2·3)
of Theorem 2·2.

(ii) By [17, lemma 6], there is a Galois extension L/k of number fields with
Gal(L/k)∼= G such that every decomposition group is cyclic. Let K = L H , T =
R1

K/kGm and let X be a smooth compactification of T . By [52, section 3, the-

orem 6 and corollary 2], we have A(T )= 0 and X(T )∼= H1(k, Pic X)∼. The
result now follows from isomorphism (2·3) of Theorem 2·2 and the fact that
K(K/k)=X(T ).

As a consequence of the work done in the proof of Theorem 1·12, we can also obtain a
version of Theorem 1·4 for the knot group and the defect of weak approximation. In what
follows, let L/K/k be a tower of number fields where L/k is Galois with Galois group
G ∼= An or Sn and let T = R1

K/kGm .

PROPOSITION 7·3.

(i) For G ∼= Sn the groups K(K/k) and A(T ) are elementary abelian 2-groups.
Moreover, every possibility for K(K/k) is realised: given an elementary abelian 2-
group A, there exists n ∈N and an extension of number fields K/k whose normal
closure has Galois group Sn such that K(K/k)∼= A. Likewise, every possibility for
A(T ) is realised.

(ii) For G ∼= An the groups K(K/k) and A(T ) are elementary abelian 2-groups or iso-
morphic to C3 or C6. Again, every possibility for K(K/k) is realised, and likewise
for A(T ).

Proof. This follows from Theorems 1·4, 1·12 and 2·1.

To conclude this section, we provide examples of number fields over Q illustrating that in
every case addressed by Propositions 1·8 and 6·15, there exists an extension of the desired
type satisfying the HNP. Furthermore, in the cases where failure of the HNP is theoreti-
cally possible, we construct examples showing that failures actually occur (over at most a
quadratic extension of Q). When looking for such examples, [49, Lemmas 18 and 20] give
useful practical conditions to test the local properties of Proposition 1·8. Some of these

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004121000268
Downloaded from https://www.cambridge.org/core. The University of Reading, on 03 Mar 2022 at 12:42:21, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004121000268
https://www.cambridge.org/core


Explicit methods for the HNP and applications 35

extensions were found using the LMFBD database [39] and all assertions below concerning
Galois groups and ramification properties were verified using the computer algebra system
MAGMA [10].

7·1. Successes

(i) First consider G = A4 or S4. Let L/Q be the splitting field of the polynomial f (x)
defined as

f (x)=
{

x4 − 2x3 + 2x2 + 2 if G = A4,

x4 − 2x3 − 4x2 − 6x − 2 if G = S4.

In both cases L/Q is a Galois extension with Galois group G such that the decom-
position group at the prime 2 is the full Galois group. Applying Proposition 1·8 we
thus conclude that the HNP holds for L/Q as well as for any subextension K/Q
contained in L/Q.

(ii) For G = A5, let K =Q(α), where α is a root of the polynomial x5 − x4 + 2x2 −
2x + 2, and let L/Q be the normal closure of K/Q. We have Gal(L/Q)∼= A5 and
there exists a prime p of K above 2 with ramification index 4, so it follows that
4 | |D2|. Since any subgroup of A5 with order divisible by 4 contains a copy of V4

generated by two double transpositions, Proposition 1·8 shows that the HNP holds
for any subextension of L/Q.

(iii) For G = S5, take K =Q(α), where α is a root of the polynomial x10 −
4x9 − 24x8 + 80x7 + 174x6 − 416x5 − 372x4 + 400x3 + 370x2 + 32x − 16, and
let L/Q be the normal closure of K/Q. One can verify that Gal(L/Q)∼= S5 and
that there is a prime p of K above 2 with ramification index 8. By the same
reasoning as in the A5 case, D2 contains a copy of V4 generated by two dou-
ble transpositions, and thus the HNP holds for any subextension of L/Q by
Proposition 1·8.

(iv) For G = A6, let K =Q(α), where α is a root of the polynomial x15 − 3x13 −
2x12 + 12x10 + 50x9 − 54x7 + 68x6 − 162x5 + 30x4 − 67x3 + 15x + 4, and let
L/Q be the normal closure of K/Q. We have Gal(L/Q)∼= A6 and there are primes
p and q of K above 2 and 3, respectively, such that [Kp :Q2] = 8 and [Kq :Q3] = 9.
Since every subgroup of A6 with order divisible by 8 contains a copy of D4, it fol-
lows that D4 ↪→ D2. Analogously, we have C3 × C3 ↪→ D3. Proposition 6·15 then
shows that the HNP holds for any subextension of L/Q.

(v) For G = A7, let L/Q be the splitting field of the polynomial x7 − 3x6 −
3x5 − x4 + 12x3 + 24x2 + 16x + 24. Then Gal(L/Q)∼= A7 and the primes
2 and 3 ramify in L/Q. Let M be the fixed field of the subgroup
〈(2, 3)(5, 7), (1, 2)(4, 5, 6, 7), (2, 3)(5, 6)〉 ∼= (A4 × C3)� C2 of A7, a degree 35
extension of Q. Given a prime p, let e = e(p) denote its ramification index and
f = f (p) its inertial degree in L . Note that if the decomposition OM/pOM

∼=⊕
i Fp fi [ti ]/(t ei

i ) holds for some ei , fi ∈Z≥0, then lcm(ei) | e, lcm( fi) | f and
hence lcm(ei) · lcm( fi ) | e f = |Dp|. Factoring the prime p = 2 in OM gives
lcm(ei)= 12 and lcm( fi)= 2, so 24 | |D2|. Since any subgroup of A7 with order
divisible by 24 contains a copy of D4, we conclude that D4 ↪→ D2. Using the same
reasoning with the prime p = 3, we find 18 | |D3| and consequently D3 contains
a copy of C3 × C3. By Proposition 6·15, it follows that the HNP holds for any
subextension of L/Q.
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Remark 7·4. An alternative approach to find examples of number fields satisfying the
HNP and with Galois groups as in Propositions 1·8 and 6·15 is to use Q-adequate exten-
sions. Indeed, examining the local conditions of Propositions 1·8 and 6·15, it is clear that
the HNP holds for any subextension of a Q-adequate Galois extension with Galois group
G = A4, S4, A5, S5, A6, A7. The existence of Q-adequate extensions with prescribed Galois
group G has been studied by Schacher and others. For G = A4, S4, A5, S5, A6, A7, there
exist Q-adequate Galois extensions L/Q with Gal(L/Q)∼= G. We give some references
for the interested reader. For G = A4, A5 see [25], [26], respectively. In fact, for these two
groups stronger results hold. For G = A4 there exist k-adequate Galois extensions with
Galois group A4 for any global field k of characteristic not equal to 2 or 3 (see [25, corol-
lary 2·2]). For G = A5, [26, theorem 1] constructs k-adequate Galois extensions with Galois
group A5 for any number field k such that

√−1 	∈ k. For G = S4, S5 see [47, theorem 7·1].
The cases G = A6, A7 are treated in [20]. We chose not to pursue this approach because the
polynomials defining the field extensions were rather cumbersome, particularly for A6 and
A7.

7·2. Failures

(i) We start with the cases where G is A4 or S4. Let L/Q be the splitting field of f (x),
where

f (x)=
{

x4 + 3x2 − 7x + 4 if G = A4,

x4 − x3 − 4x2 + x + 2 if G = S4.

In both cases L/Q is a Galois extension with Galois group G such that every
decomposition group is cyclic. Therefore, Proposition 1·8 shows that the HNP
fails for any subextension of L/k falling under case (i) or (ii) of Proposition 1·8,
i.e. an extension where the HNP can theoretically fail.

(ii) We now find examples for the A5 and S5 cases using work of Uchida [51].
Examples for the A6 and A7 cases can be obtained in a manner analogous to the
construction for A5. Let F/Q be the splitting field of f (x)= x5 − x + 1 and set
D = Disc( f )= 19 · 151. By [51, proofs of corollary 1 and theorem 2], F/Q(

√
D)

is an unramified Galois extension with Galois group A5, while F(
√

2)/Q(
√

2D)
is an unramified Galois extension with Galois group S5. If G = A5 then set
L = F, k =Q(

√
D). If G = S5 then set L = F(

√
2), k =Q(

√
2D). Let K/k be

a subextension of L/k falling under case (i) or (ii) of Proposition 1·8. Since L/k
is unramified, all its decomposition groups are cyclic, whereby the HNP fails for
K/k by the criterion of Proposition 1·8.
A similar construction allows us to provide examples of unramified Galois A6 and
A7 extensions. By Proposition 6·15, these extensions have knot groups isomorphic
to C6 and therefore the HNP fails for them. It is also possible to construct failures
with knot group C2 or C3. Indeed, if G = A6 or A7, one can set S = C3 × C3 in [17,
lemma 6] in order to get a Galois extension of number fields with decomposition
group Dv = C3 × C3 for every ramified place v. Since the remaining places have
cyclic decomposition groups, it follows from Proposition 6·15 that the knot group
of this extension is C2. An analogous construction choosing S = D4 gives a Galois
extension of number fields with knot group equal to C3.
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Appendix

We present the results of the computer calculations outlined in Section 6·2. In the follow-
ing tables, we distinguish non-conjugate but isomorphic groups with a letter in front of the
isomorphism class.

Table I.

G = A4
[K : k] H H1(G, FG/H )

12 1 Z/2
6 C2 = 〈(1, 2)(3, 4)〉 Z/2
4 C3 = 〈(1, 2, 3)〉 Z/2
3 V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0

Table II.

G = S4
[K : k] H H1(G, FG/H )

24 1 Z/2
12 C2a = 〈(1, 2)〉 0
12 C2b = 〈(1, 2)(3, 4)〉 Z/2
8 C3 = 〈(1, 2, 3)〉 Z/2
6 C4 = 〈(1, 2, 3, 4)〉 0
6 V4 = 〈(1, 2), (3, 4)〉 0
6 V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0
4 S3 = 〈(1, 2, 3), (1, 2)〉 0
3 D4 = 〈(1, 2, 3, 4), (1, 3)〉 0
2 A4 = 〈(1, 2)(3, 4), (1, 2, 3)〉 0

Table III.

G = A5
[K : k] H H1(G, FG/H )

60 1 Z/2
30 C2 = 〈(1, 2)(3, 4)〉 Z/2
20 C3 = 〈(1, 2, 3)〉 Z/2
15 V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0
12 C5 = 〈(1, 2, 3, 4, 5)〉 Z/2
10 S3 = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
6 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/2
5 A4 = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
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Table IV.

G = S5
[K : k] H H1(G, FG/H )

120 1 Z/2
60 C2a = 〈(1, 2)〉 0
60 C2b = 〈(1, 2)(3, 4)〉 Z/2
40 C3 = 〈(1, 2, 3)〉 Z/2
30 C4 = 〈(1, 2, 3, 4)〉 0
30 V4a = 〈(1, 2), (3, 4)〉 0
30 V4b = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 0
24 C5 = 〈(1, 2, 3, 4, 5)〉 Z/2
20 C6 = 〈(1, 2, 3), (4, 5)〉 0
20 S3a = 〈(1, 2, 3), (1, 2)〉 0
20 S3b = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
15 D4 = 〈(1, 2, 3, 4), (1, 3)〉 0
12 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/2
10 A4 = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
10 S3 × C2 = 〈(1, 2, 3), (1, 2), (4, 5)〉 0
6 C5 � C4 = 〈(1, 2, 3, 4, 5), (2, 3, 5, 4)〉 0
5 S4 = 〈(1, 2, 3, 4), (1, 2)〉 0
2 A5 = 〈(1, 2, 3, 4, 5), (1, 2, 3)〉 0

Table V.

G = A6
[K : k] H H1(G, FG/H )

360 1 Z/6
180 C2 = 〈(1, 2)(3, 4)〉 Z/6
120 C3 = 〈(1, 2, 3)〉 Z/2
120 C3 = 〈(1, 2, 3)(4, 5, 6)〉 Z/2
90 C4 = 〈(1, 2, 3, 4)(5, 6)〉 Z/6
90 V4a = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 Z/3
90 V4b = 〈(1, 2)(5, 6), (1, 2)(3, 4)〉 Z/3
72 C5 = 〈(1, 2, 3, 4, 5)〉 Z/6
60 S3a = 〈(1, 2, 3)(4, 5, 6), (1, 2)(4, 5)〉 Z/2
60 S3b = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
45 D4 = 〈(1, 2, 3, 4)(5, 6), (1, 3)(5, 6)〉 Z/3
40 C3 × C3 = 〈(1, 2, 3), (4, 5, 6)〉 Z/2
36 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/6
30 A4a = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
30 A4b = 〈(1, 2, 3)(4, 5, 6), (1, 4)(2, 5)〉 0
20 (C3 × C3)� C2 = 〈(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)〉 Z/2
15 S4a = 〈(1, 2, 3, 4)(5, 6), (1, 2)(5, 6)〉 0
15 S4b = 〈(1, 3, 5)(2, 4, 6), (1, 6)(2, 5)〉 0
10 (C3 × C3)� C4 = 〈(1, 2, 3), (4, 5, 6), (1, 4)(2, 5, 3, 6)〉 Z/2
6 A5a = 〈(1, 2, 3, 4, 5), (1, 2, 3)〉 0
6 A5b = 〈(1, 2, 3, 4, 5), (1, 4)(5, 6)〉 0
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Table VI.

G = A7
[K : k] H H1(G, FG/H )

2520 1 Z/6
1260 C2 = 〈(1, 2)(3, 4)〉 Z/6
840 C3a = 〈(1, 2, 3)〉 Z/2
840 C3b = 〈(1, 2, 3)(4, 5, 6)〉 Z/2
630 C4 = 〈(1, 2, 3, 4)(5, 6)〉 Z/6
630 V4a = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 Z/3
630 V4b = 〈(1, 2)(5, 6), (1, 2)(3, 4)〉 Z/3
504 C5 = 〈(1, 2, 3, 4, 5)〉 Z/6
420 C6 = 〈(1, 2)(3, 4)(5, 6, 7)〉 Z/2
420 S3a = 〈(1, 2, 3)(4, 5, 6), (1, 2)(4, 5)〉 Z/2
420 S3b = 〈(1, 2, 3), (1, 2)(4, 5)〉 Z/2
360 C7 = 〈(1, 2, 3, 4, 5, 6, 7)〉 Z/6
315 D4 = 〈(1, 2, 3, 4)(5, 6), (1, 3)(5, 6)〉 Z/3
280 C3 × C3 = 〈(1, 2, 3), (4, 5, 6)〉 Z/2
252 D5 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 Z/6
210 A4a = 〈(1, 2)(3, 4), (1, 2, 3)〉 0
210 A4b = 〈(1, 2, 3)(4, 5, 6), (1, 4)(2, 5)〉 0
210 A4c = 〈(1, 5, 3)(4, 7, 6), (2, 6)(4, 7)〉 0
210 A4d = 〈(1, 2, 5)(4, 6, 7), (3, 4)(6, 7)〉 0
210 C2 × C6 = 〈(1, 2)(3, 5)(4, 6, 7), (1, 3)(2, 5)〉 0
210 D6 = 〈(1, 2)(3, 5)(4, 6, 7), (1, 2)(6, 7)〉 0
210 C3 � C4 = 〈(2, 3, 6), (1, 4, 7, 5)(3, 6)〉 Z/2
140 (C3 × C3)� C2 = 〈(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)〉 Z/2
126 C5 � C4 = 〈(1, 2)(4, 5, 7, 6), (3, 6, 7, 4, 5)〉 Z/6
120 C7 � C3 = 〈(1, 7, 4, 2, 6, 5, 3), (2, 3, 5)(4, 6, 7)〉 Z/2
105 (C6 × C2)� C2 = 〈(1, 2)(3, 5)(4, 6, 7), (1, 3)(2, 5), (1, 2)(6, 7)〉 0
105 S4a = 〈(1, 2, 3, 4)(5, 6), (1, 2)(5, 6)〉 0
105 S4b = 〈(1, 3, 5)(2, 4, 6), (1, 6)(2, 5)〉 0
105 S4c = 〈(1, 2, 3)(5, 6, 7), (2, 3)(4, 5, 6, 7)〉 0
105 S4d = 〈(1, 3, 2)(5, 6, 7), (2, 3)(4, 5, 6, 7)〉 0
70 A4 × C3 = 〈(1, 3, 5)(4, 6, 7), (1, 2, 3)〉 0
70 (C3 × C3)� C4 = 〈(1, 2, 3), (4, 5, 6), (1, 4)(2, 5, 3, 6)〉 Z/2
42 A5a = 〈(1, 2, 3, 4, 5), (1, 2, 3)〉 0
42 A5b = 〈(1, 2, 3, 4, 5), (1, 4)(5, 6)〉 0
35 (A4 × C3)� C2 = 〈(2, 3)(5, 7), (1, 2)(4, 5, 6, 7), (2, 3)(5, 6)〉 0
21 S5 = 〈(1, 2)(3, 7), (2, 6, 5, 4)(3, 7)〉 0
15 PSL(3, 2)a = 〈(1, 4)(2, 3), (2, 4, 6)(3, 5, 7)〉 0
15 PSL(3, 2)b = 〈(1, 3)(2, 7), (1, 5, 7)(3, 4, 6)〉 0
7 A6 = 〈(1, 2, 3, 4, 5), (4, 5, 6)〉 0
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