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SYMMETRIES OF PROJECTIVE SPACES AND SPHERES

GYÖRGY PÁL GEHÉR

Abstract. Let H be either a complex inner product space of dimension at

least two, or a real inner product space of dimension at least three, and let

us fix an α ∈
(
0, π

2

)
. The purpose of this paper is to characterise all bijective

transformations on the projective space P (H) which preserve the quantum

angle α (or Fubini-Study distance α) between lines in both directions. (Let
us emphasise that we do not assume anything about the preservation of other

quantum angles). For real inner product spaces and when H = C2 we do this

for every α, and when H is a complex inner product space of dimension at
least three we describe the structure of such transformations for α ≤ π

4
. Our

result immediately gives an Uhlhorn-type generalisation of Wigner’s theorem

on quantum mechanical symmetry transformations, that is considered to be a
cornerstone of the mathematical foundations of quantum mechanics. Namely,

under the above assumptions, every bijective map on the set of pure states of

a quantum mechanical system that preserves the transition probability cos2 α
in both directions is a Wigner symmetry (thus automatically preserves all

transition probabilities), except for the case when H = C2 and α = π
4

where

an additional possibility occurs. (Note that the classical theorem of Uhlhorn

is the solution for the α = π
2

case). Usually in the literature, results which

are connected to Wigner’s theorem are discussed under the assumption of
completeness of H, however, here we shall remove this unnecessary hypothesis

in our investigation. Our main tool is a characterisation of bijective maps on
unit spheres of real inner product spaces which preserve one spherical angle in

both directions.

1. Introduction

Characterising bijective isometries between normed spaces is a classical and im-
portant area of functional analysis. For instance, the Mazur–Ulam theorem as-
serts that every bijective isometry between real normed spaces is an affine map
(i.e. a composition of a linear transformation and a translation by a vector). As
a consequence, if two real normed spaces are isomorphic as metric spaces, they
are also isomorphic as vector spaces. Another classical result in this area is the
Banach–Stone theorem, which characterises bijective linear isometries between Ba-
nach spaces of continuous functions on compact Hausdorff spaces. In particular,
the existence of such a map implies that the underlying compact Hausdorff spaces
are topologically equivalent. Since the appearance of these remarkable theorems,
the structures of bijective isometries have been studied and described for several
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Key words and phrases. Projective space, quantum pure states, unit sphere, quantum angle

preserving map, Fubini–Study metric, Wigner symmetry, transition probability preserving map,
spherical angle preserving map.
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2 GYÖRGY PÁL GEHÉR

important normed spaces, and even today this is an active area of functional analy-
sis. We refer to the books [17, 18] for an excellent introduction, and to the following
papers: [1, 2, 3, 7, 8, 12, 23, 26, 40].

Describing the structure of bijective isometries of non-linear spaces is also very
important. One of the most classical examples of this is the famous Wigner’s
theorem on quantum mechanical symmetry transformations [5, 14, 19, 25, 28, 32,
39, 42]. First, let us state the theorem in its operator theoretic form, and then
explain two equivalent rephrasing. Let H be a complex (or real) Hilbert space, and
P1(H) be the set of all rank-one orthogonal projections acting on H. In quantum
mechanics rank-one orthogonal projections represent pure states of the system, and
the transition probability between P,Q ∈ P1(H) is defined by TrPQ ∈ [0, 1], where
Tr denotes the trace functional. Now, Wigner’s theorem states the following:

Wigner’s theorem. Let H be a Hilbert space with dimH ≥ 2. Then every bijective
map φ : P1(H)→ P1(H) which preserves the transition probability, i.e.

Trφ(P )φ(Q) = TrPQ (P,Q ∈ P1(H)),

is induced by a unitary or an antiunitary operator U : H → H (bijective orthogonal
operator in the real case), i.e. we have:

φ(P ) = UPU∗ (P ∈ P1(H)).

Second, the following formula can be easily verified:

‖P −Q‖ =
√

1− TrPQ (P,Q ∈ P1(H)),

where ‖ · ‖ denotes the usual operator norm. This quantity is called the gap dis-
tance of P and Q. Therefore, Wigner’s theorem characterises bijective isometries
of P1(H) with respect to the gap metric. The gap metric was introduced and in-
vestigated by Sz.-Nagy and independently by Krein and Krasnoselski, and found
applications in perturbation theory of linear operators, perturbation analysis of
invariant subspaces, optimisation, robust control, etc. (see [20] for references).

Third, let P (H) denote the projective space obtained from H, i.e. the space of
all lines (one-dimensional subspaces) of H. Of course the map P1(H) → P (H),
P 7→ ImP gives a natural bijection. If 0 6= v ∈ H is a vector, then [v] will stand
for the line generated by it. The quantum angle or Fubini–Study distance between
[u], [v] ∈ P (H) is defined by the following formula:

]([u], [v]) := arccos
|〈u, v〉|
‖u‖ · ‖v‖

∈
[
0, π2

]
.

We call a bijective isometry with respect to this distance a Wigner symmetry. In
case when ]([u], [v]) = π

2 , then we will usually write [u] ⊥ [v], moreover, given any

subset L ⊂ P (H) we will use the notation L⊥ := {[w] ∈ P (H) : [w] ⊥ [u], ∀ [u] ∈
L}. By a straightforward calculation we infer the following equation:

TrPQ =

(
|〈u, v〉|
‖u‖ · ‖v‖

)2

= cos2]([u], [v])

for every P,Q ∈ P1(H) such that [u] = ImP and [v] = ImQ. Therefore, Wigner’s
theorem can be viewed as a characterisation of Wigner symmetries.

There is a huge literature of generalising Wigner’s theorem in several directions,
perhaps the first of them was Uhlhorn’s theorem [41] which we state now.
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Uhlhorn’s theorem. Let H be a Hilbert space with dimH ≥ 3 and φ : P (H) →
P (H) be a bijective map preserving orthogonality in both directions, i.e.

φ([u]) ⊥ φ([v]) ⇐⇒ [u] ⊥ [v] ([u], [v] ∈ P (H)).

Then φ is a Wigner symmetry, hence there exists a unitary or an antiunitary op-
erator U : H → H (bijective orthogonal operator in the real case) such that

φ([u]) = [Uu] ([u] ∈ P (H)).

This was a serious improvement, since in Uhlhorn’s theorem only the preservation
of the quantum logical structure is assumed, while in Wigner’s theorem its complete
probabilistic structure is preserved. We point out that Uhlhorn’s theorem can be
stated also for non-complete inner product spaces (see Lemma 3.8), which can be
found e.g. in [16]. For further generalisations of Wigner’s theorem on projective
spaces we mention [10, 11, 13, 14, 27, 30, 33, 34, 35, 36], and on Grassmann spaces
or certain classes of idempotent operators we refer to [9, 20, 21, 22, 29, 37, 38].

The present paper is devoted to provide a very natural generalisation of Wigner’s
theorem, following Uhlhorn’s direction. Instead of preserving orthogonality of lines
in both directions, we will assume that a fixed quantum angle α ∈

(
0, π2

)
is preserved

in both directions. We point out that this problem has been solved partially in
[24] by Li, Plevnik and Šemrl, namely, they proved that if α ≤ π

4 and H is a
real space with 5 ≤ dimH < ∞, then such maps are always Wigner symmetries.
Their method depends heavily on these rather restrictive assumptions. Here, by
developing a novel technique, we solve this problem in a much more general setting.
Namely, in the real case we will answer the question completely, i.e. for every (not
necessarily complete) inner product space with dimension at least three and for all
quantum angles α. We will also solve the problem for every quantum angle α in the
pure qubit case, i.e. when H = C2, which could be quite a surprise since Uhlhorn’s
theorem obviously does not hold in two dimensions. For complex inner product
spaces of dimension at least three we will provide a characterisation for quantum
angles α ≤ π

4 .
The outline of the paper is the following: in the next section we state four

theorems which are our main results. Then in Section 3 we will prove a result about
transformations on spheres preserving one spherical angle between unit vectors
in both directions. This will put us in the position to prove our Uhlhorn-type
generalisation of Wigner’s theorem in the real case which will be given in Section
4, and in the same section we will also prove the complex case.

2. Statements of the main results

Let H be an inner product space. If the vectors x, y ∈ H are orthogonal, then
we will write x ⊥ y. By Rätz’s version of Wigner’s theorem [32], if H is a real inner
product space, then a Wigner symmetry φ : P (H)→ P (H) is always induced by a
bijective linear isometry O : H → H, i.e. we have

φ([v]) = [Ov] ([v] ∈ P (H)). (1)

Moreover, in the complex case every Wigner symmetry φ : P (H)→ P (H) is induced
by a bijective linear or conjugatelinear isometry U : H → H:

φ([v]) = [Uv] ([v] ∈ P (H)). (2)

Now, we state our generalisation of Wigner’s theorem for real spaces.
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Theorem 1. Let H be a real inner product space with dimH ≥ 3 and suppose that
0 < α < π

2 . If φ : P (H) → P (H) is a bijective map which preserves the quantum
angle α between lines in both directions, i.e. φ satisfies

]([u], [v]) = α ⇐⇒ ](φ([u]), φ([v])) = α ([u], [v] ∈ P (H)),

then φ is a Wigner symmetry, hence possesses the form (1).

The proof of Theorem 1 will require the study of bijective transformations on
the unit sphere SH = {h ∈ ‖h‖ = 1} of a real inner product space H which preserve
one spherical angle. The spherical angle between two unit vectors x, y ∈ SH is

^(x, y) := arccos〈x, y〉 ∈ [0, π],

which also provides the geodesic distance on the sphere SH . (Note that writing
^(x, y) = π

2 is the same as x ⊥ y). The study of such maps was initiated by Ever-
ling in [15], where he proved a result, similar to Theorem 2, under the assumption
that 3 ≤ dimH < ∞ and α ≤ π

2 . Apparently, he was motivated by the surpris-
ing Beckman–Quarles theorem [6] which asserts that every map on H preserving
distance 1 is automatically an isometry if we have 2 ≤ dimH <∞ .

We state our improvement of Everling’s theorem below.

Theorem 2. Let H be a real inner product space with 3 ≤ dimH, and 0 < α <
π. Assume that ψ : SH → SH is a bijective transformation which preserves the
spherical angle α in both directions, i.e. we have

^(x, y) = α ⇐⇒ ^(ψ(x), ψ(y)) = α (x, y ∈ SH).

Then there exists a bijective linear isometry R : H → H such that we have

(i) either
ψ(x) = Rx (x ∈ SH), (3)

(ii) or α = π
2 and

ψ(x) ∈ {−Rx,Rx} (x ∈ SH).

Next, let H = C2. For any [u] ∈ P (C2) the symbol [u]⊥ stands for the unique
line orthogonal to [u]. Now, we state our theorem about pure qubit states.

Theorem 3. Suppose that 0 < α < π
2 . If φ : P (C2) → P (C2) is a bijective map

preserving the quantum angle α in both directions, i.e.

]([u], [v]) = α ⇐⇒ ](φ([u]), φ([v])) = α ([u], [v] ∈ P (C2)),

then

(i) either φ is a Wigner symmetry, hence possessing the form (2),

(ii) or α = π
4 and there exists a Wigner symmetry φ̃ such that

φ([v]) ∈
{
φ̃([v]), φ̃([v])⊥

}
([v] ∈ P (C2)).

Finally, our last result is a generalisation of Wigner’s theorem for complex inner
product spaces, which we state below.

Theorem 4. Suppose that H is a complex inner product space, 3 ≤ dimH and
0 < α ≤ π

4 . Assume that φ : P (H)→ P (H) is a bijective map which satisfies

]([u], [v]) = α ⇐⇒ ](φ([u]), φ([v])) = α ([u], [v] ∈ P (H)).

Then φ is a Wigner symmetry, therefore possesses the form (2).
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3. Symmetries of spheres

The aim of this section is to verify Theorem 2, but before that we need to prove
several lemmas. Note that although our method follows some of Everling’s ideas,
it essentially differs from his approach at several points. Let H be a real inner
product space of dimension at least three. A map ψ : SH → SH is said to be a
^-isometry if we have

^(x, y) = ^(ψ(x), ψ(y)) (x, y ∈ SH),

or equivalently

〈x, y〉 = 〈ψ(x), ψ(y)〉 (x, y ∈ SH).

We begin with the following characterisation of bijective ^-isometries, which is
probably well-known.

Lemma 3.1. Let H be a real inner product space with dimH ≥ 3. If ψ : SH → SH
is a bijective ^-isometry, then (3) is satisfied with a bijective linear isometry R.

Proof. We define the following bijective map:

R : H → H, Rx =

{
‖x‖ · ψ

(
1
‖x‖x

)
if x 6= 0,

0 if x = 0.

We have to show that R is a linear isometry. We obviously have 〈Rx,Ry〉 = 〈x, y〉
(x, y ∈ H). Therefore we obtain ‖Rx−Ry‖2 = 〈Rx,Rx〉+ 〈Ry,Ry〉− 2〈Rx,Ry〉 =
〈x, x〉+ 〈y, y〉 − 2〈x, y〉 = ‖x− y‖2, hence R is an isometry. By the famous Mazur–
Ulam theorem we immediately obtain the linearity of R. �

For some vectors z1, . . . zn ∈ H the symbol [z1, . . . zn] will stand for the generated
subspace in H. We will use the following notation for an x ∈ SH :

x(α) := {y ∈ SH : ^(x, y) = α}.

Next, we investigate the set x(α)∩y(β) which later will be utilised in order to obtain
further spherical angles which ψ preserves.

Lemma 3.2. Let H be a real inner product space with dimH ≥ 3. Let x, y ∈ SH ,
0 < α < β < π, and assume that γ := ^(x, y) ∈ (0, π]. Then the following
equivalences are satisfied:

x(α) ∩ y(β) = ∅ ⇐⇒

 γ > α+ β or γ < β − α, if α+ β < π,
γ < β − α, if α+ β = π,

γ > 2π − α− β or γ < β − α, if α+ β > π,
(4)

and

#(x(α) ∩ y(β)) = 1 ⇐⇒

 γ ∈ {α+ β, β − α}, if α+ β < π,
γ = β − α, if α+ β = π,

γ ∈ {2π − α− β, β − α}, if α+ β > π.
(5)

Moreover, if α 6= π
2 , then we have

x(α) ∩ y(α) = ∅ ⇐⇒
{

γ > 2α, if α < π
2 ,

γ > 2π − 2α, if α > π
2 ,

and

#(x(α) ∩ y(α)) = 1 ⇐⇒
{

γ = 2α, if α < π
2 ,

γ = 2π − 2α, if α > π
2 .
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Proof. We will only consider the first two equivalences, since the other two can
be verified similarly. Let us observe that the quantity #(x(α) ∩ y(β) ∩ K) is the
same for every three-dimensional subspace K of H which contains x and y. Thus
we have x(α) ∩ y(β) = ∅ if and only if we have x(α) ∩ y(β) ∩ K = ∅ for some (or
equivalently, for all) such K. Moreover, if #(x(α) ∩ y(β) ∩K) = 1 with such a K,
and this unique element is denoted by u, then the symmetry of the sphere implies
u ∈ [x, y]. Therefore we conclude that #(x(α) ∩ y(β)) = 1 if and only if we have
#(x(α)∩y(β)∩K) = 1 for some (or equivalently, for all) three-dimensional subspaces
K containing x and y. In particular this cannot happen if γ = π, since in this case
we have [x, y] = [x] and thus u ∈ {x, y}, which is a contradiction. Therefore we
only have to prove our statement for the case when dimH = 3 and γ < π, so from
now on we will assume this.

The first spherical law of cosines implies that x(α) ∩ y(β) 6= ∅ if and only if there
exists a C ∈ [0, π] such that

cos γ = cosα cosβ + sinα sinβ cosC.

This is equivalent to cos γ ∈ [cos(α+β), cos(β−α)] = [cos(2π−α−β), cos(β−α)],
which yields (4).

Clearly, #(x(α) ∩ y(β)) = 1 implies C ∈ {0, π}, therefore we conclude that
#(x(α)∩y(β)) = 1 holds exactly when one of the following two conditions is satisfied:

• C = 0 and γ = β − α, or

• C = π, α+ β 6= π and γ =

{
α+ β, if α+ β < π,

2π − α− β, if α+ β > π.

The equivalences stated in the lemma follows from this. �

It is a standard and natural method in the theory of preservers that one charac-
terises a relation in terms of the property which is preserved by our bijective map
in both directions, and then concludes that this map also preserves this relation in
both directions. Here this method will be utilised several times.

We proceed with the verifications of the following two lemmas.

Lemma 3.3. Let 0 < α < π
2 . Under the hypotheses of Theorem 2 we have the

following two properties:

^(x, y) = jα ⇐⇒ ^(ψ(x), ψ(y)) = jα (x, y ∈ SH , j ∈ N, 2 ≤ j < π
α ). (6)

and

^(x, y) ≤ jα ⇐⇒ ^(ψ(x), ψ(y)) ≤ jα (x, y ∈ SH , j ∈ N, 2 ≤ j < π
α ) (7)

Proof. Assume that j ∈ N and 2 ≤ j < π
α . It is straightforward that we have

^(x, y) = jα if and only if there is a unique (j− 1)-element sequence {x1, . . . xj−1}
such that ^(xl, xl+1) = ^(x, x1) = ^(xj−1, y) = α (l = 1, . . . j − 2). Since ψ
and ψ−1 are bijective transformations preserving the spherical angle α in both
directions, we conclude that the latter condition is equivalent to the existence of a
unique (j−1)-element sequence {y1, . . . yj−1} such that ^(yl, yl+1) = ^(ψ(x), y1) =
^(yj−1, ψ(y)) = α (l = 1, . . . j−2). But this holds exactly when ^(ψ(x), ψ(y)) = jα,
therefore we obtain (6).

The proof of (7) is very similar, we only have to observe that ^(x, y) ≤ jα is
satisfied if and only if there exists a (j − 1)-element sequence {x1, . . . xj−1} such
that ^(xl, xl+1) = ^(x, x1) = ^(xj−1, y) = α (l = 1, . . . j − 2). �
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Lemma 3.4. Let H be a real inner product space with dimH ≥ 3, and ψ : SH → SH
be a bijective map. Assume that 0 < α < π

2 and that ψ satisfies

^(x, y) ≤ α ⇐⇒ ^(ψ(x), ψ(y)) ≤ α (x, y ∈ SH).

Then ψ also fulfils the following:

^(x, y) = 2α ⇐⇒ ^(ψ(x), ψ(y)) = 2α (x, y ∈ SH). (8)

Proof. We only have to observe that ^(x, y) = 2α holds if and only if there is a
unique u ∈ SH with ^(x, u) ≤ α and ^(u, y) ≤ α. �

In the previous lemma we could have shown the property (6) as well however,
we will not need it in the sequel. Next, we show that the ^-isometriness of ψ is a
consequence of a much milder assumption.

Lemma 3.5. Let H be a real inner product space with dimH ≥ 3, and ψ : SH → SH
be a bijective map. Suppose that there exists a decreasing sequence {αn}∞n=1 ⊆ (0, π)
of spherical angles with limn→∞ αn = 0 such that ψ preserves all of them in both
directions. Then ψ is a ^-isometry.

Proof. From (7) of Lemma 3.3 we conclude that

(j − 1)αn < ^(x, y) ≤ jαn ⇐⇒ (j − 1)αn < ^(ψ(x), ψ(y)) ≤ jαn (9)

holds for every x, y ∈ SH and j, n ∈ N, 3 ≤ j < π
αn

. Since αn can be arbitrarily
small, we obtain that ψ preserves every spherical angle which is less than π in both
directions. Hence we also have

^(x, y) < π ⇐⇒ ^(ψ(x), ψ(y)) < π,

and thus a negation of this equivalence gives that the spherical angle π is also
preserved in both directions, which completes the proof. �

Using Lemma 3.2 we can provide other spherical angles which ψ preserves.

Lemma 3.6. Let H be a real inner product space with dimH ≥ 3, 0 < α < β < π,
α + β ≤ π, and ψ : SH → SH be a bijective map. Suppose that ψ preserves the
spherical angles α and β in both directions. Then

(i) ψ preserves the spherical angles β − α and α + β in both directions, if
α+ β < π,

(ii) ψ preserves the spherical angle β − α in both directions, if α+ β = π.

Proof. (i): Let us observe that the properties of ψ implies ψ
(
x(α) ∩ y(β)

)
=

ψ(x)(α) ∩ ψ(y)(β). Therefore, by Lemma 3.2 we have

^(x, y) ∈ {β − α, α+ β} ⇐⇒ #(x(α) ∩ y(β)) = 1

⇐⇒ #(ψ(x)(α) ∩ ψ(y)(β)) = 1 ⇐⇒ ^(ψ(x), ψ(y)) ∈ {β − α, α+ β}.

We observe that α < π
2 . Clearly, there exists a j ∈ N, 2 ≤ j < π

α such that
β − α < jα < α+ β. Since

^(x, y) = β − α ⇐⇒ ^(x, y) ∈ {β − α, α+ β} and ^(x, y) ≤ jα,

the above equivalence and (7) of Lemma 3.3 imply that ψ preserves the spherical
angle β − α, and thus also α+ β in both directions.

(ii): This is immediate from Lemma 3.2. �
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For a given set A ⊆ SH we will use the notation diam^(A) = sup{^(x, y) : x, y ∈
A}. We proceed with the following crucial statement.

Lemma 3.7. Let us assume that the hypotheses of Theorem 2 are satisfied for ψ

and that we have 0 < α < π
2 . Then arccos

(
4 cos2 α
cosα+1 − 1

)
∈ (α, 2α) holds, and ψ

preserves this spherical angle in both directions.

Proof. Let x, y ∈ SH , and set γ := ^(x, y) and h(γ) := diam^(x(α) ∩ y(α)). First,

let us prove that h(γ) = α holds if and only if γ = arccos
(

4 cos2 α
cosα+1 − 1

)
. Clearly, we

have h(0) = 2α. By this and Lemma 3.2, the equation h(γ) = α implies 0 < γ <
2α(< π). Let us consider a vector u ∈ x(α)∩y(α). Then there exists an orthonormal
system {e1, e2, e3} ⊂ H and δ, ε ∈ [0, π] such that we have x = cos γ2 · e1 + sin γ

2 · e2,
y = cos γ2 ·e1−sin γ

2 ·e2 and u = cos δ ·e1 +sin δ cos ε ·e2 +sin δ sin ε ·e3, furthermore,
the following two equations are valid:

〈u, x〉 = cos γ2 cos δ + sin γ
2 sin δ cos ε = cosα

and

〈u, y〉 = cos γ2 cos δ − sin γ
2 sin δ cos ε = cosα.

Thus we conclude that δ ∈ {0, π} or ε = π
2 . It is easy to see that the first possibility

cannot happen. Indeed, in that case we would get u ∈ {e1,−e1}, whence α =
^(u, x) = ^(u, y) ∈

{
γ
2 , π −

γ
2

}
would follow, that is a contradiction. In the second

case we have cos δ = cosα
cos(γ/2) ∈ (0, 1), therefore we obtain the following equation:

x(α) ∩ y(α) =

{
cosα

cos γ2
· e1 +

√
1− cos2 α

cos2 γ
2

· ẽ3 : ẽ3 ∈ SH , ẽ3 ⊥ e1, ẽ3 ⊥ e2

}
. (10)

It is straightforward that

h(γ) = arccos

(
2

cos2 α

cos2 γ
2

− 1

)
.

One easily computes the only solution γ0 ∈ (0, 2α) of the equation h(γ0) = α:

γ0 = arccos

(
4 cos2 α

cosα+ 1
− 1

)
.

Next, we show that γ0 > α. Observe that the function h : (0, 2α)→ (0, 2α) is a
strictly decreasing bijection. Since we have

h(α) > α ⇐⇒ 2 cos2 α

cos2 α
2

− 1 < cosα ⇐⇒ cosα
4 cos2 α

2 − 2

cos2 α
2

− 1 < cosα

⇐⇒ cosα
3 cos2 α

2 − 2

cos2 α
2

< 1 ⇐⇒
(

3− 2

cos2 α
2

)
cosα < 1,

and this latter inequality is satisfied, we obtain that h(α) > α holds. Therefore,
the monotonicity of h implies γ0 > α.

Now, by (10), if u ∈ x(α)∩y(α) and ϑ > 0, then we have #(x(α)∩y(α)∩u(ϑ)) = 1
if and only if ϑ = h(γ). In particular, we have #(x(α) ∩ y(α) ∩ u(α)) = 1 for every
u ∈ x(α) ∩ y(α) exactly when γ = γ0, which gives a characterisation of the spherical
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angle γ0 in terms of α. Therefore, similarly as in Lemma 3.6, we obtain that ψ
preserves the spherical angle γ0 in both directions. Namely, we have

^(x, y) = γ0 ⇐⇒ #(x(α) ∩ y(α) ∩ u(α)) = 1 for every u ∈ x(α) ∩ y(α)

⇐⇒ #(ψ(x)(α) ∩ ψ(y)(α) ∩ ψ(u)(α)) = 1 for every ψ(u) ∈ ψ(x)(α) ∩ ψ(y)(α)

⇐⇒ #(ψ(x)(α) ∩ ψ(y)(α) ∩ v(α)) = 1 for every v ∈ ψ(x)(α) ∩ ψ(y)(α)

⇐⇒ ^(ψ(x), ψ(y)) = γ0,

and this completes our proof. �

Before we prove Theorem 2, we need Uhlhorn’s theorem for (not necessarily
complete) inner product spaces which we state below and that was proven e.g. in
[16, Corollary 4.5] (however, in order to get the full statement, one may combine
Theorem 4.1 and Corollary 4.5 of [16]).

Lemma 3.8 (Uhlhorn’s theorem for inner product spaces). Let H be a real or
complex inner product space with dimH ≥ 3. Let φ : P (H) → P (H) be a bijective
map which preserves orthogonality in both directions, i.e.

[u] ⊥ [v] ⇐⇒ φ([u]) ⊥ φ([v]) ([u], [v] ∈ P (H)).

Then φ is a Wigner symmetry, hence possesses the form (1) in the real case, and
(2) in the complex case.

Now, we are in the position to verify our main result about symmetry transfor-
mations on unit spheres of real inner product spaces.

Proof of Theorem 2. The α = π
2 case is a direct consequence Lemma 3.8. We will

consider several possibilities separately in order to handle the remaining case.

Case 1: when α ≤ π
4 . By Lemmas 3.3 and 3.7, our map ψ preserves the

spherical angles 2α and β := arccos
(

4 cos2 α
cosα+1 − 1

)
∈ (α, 2α) in both directions.

Since α+β < 2α+β < 4α ≤ π, an application of Lemma 3.6 gives that ψ preserves
both of the positive spherical angles 2α− β and β − α in both directions. Clearly,
one of these spherical angles is less than or equal to α

2 . Therefore an iteration gives
us a decreasing sequence of positive spherical angles converging to zero such that ψ
preserves all of them in both directions. Applying Lemma 3.5 completes the proof
of this case.

Case 2: when π
4 < α < π

2 . We will use the notation

β(α) := arccos

(
4 cos2 α

cosα+ 1
− 1

) (
α ∈

[
0, π2

])
.

The following estimation shows that the continuous function β(α) − α is strictly
increasing on the interval

[
0, π2

]
:
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dβ(α)

dα
=

4 sinα cosα(cosα+ 2)

(cosα+ 1)2

√
1−

(
4 cos2 α
cosα+1 − 1

)2

=
4 sinα cosα(cos(α) + 2)

(cosα+ 1)2
√

4 cos2 α
cosα+1

√
2− 4 cos2 α

cosα+1

=
4 sinα cosα(cosα+ 2)

(cosα+ 1)2 cosα
√

2 + 2 cosα− 4 cos2 α

>
4 sinα cosα(cosα+ 2)

(cosα+ 1)2 cosα
√

2 + 2 cosα− 4 cos2 α

=
cosα+ 2

cosα+ 1
= 1 +

1

cosα+ 1
> 1 (0 < α < π

2 ).

We also know that β(α)−α < α holds for every α ∈ (0, π2 ), and that β(α)−α = α
if α ∈ {0, π2 }.

Let us define a sequence {εn}∞n=1 recursively as follows: ε1 := π
4 , π

4 < εn <
π
2

and β(εn) − εn = εn−1 (n ∈ N, n ≥ 2). This obviously gives a strictly increasing
sequence which is therefore convergent, i.e. ε̂ := limn→∞ εn. By continuity, we have
β(ε̂)− ε̂ = ε̂, from which we conclude ε̂ = π

2 .
Next, let us examine the equation 2π − β(α) − α = 2α. Since the left-hand

side is strictly decreasing on the interval
[
0, π2

]
, and the right-hand side is strictly

increasing, we conclude that there is a unique solution ε̌ ∈
[
0, π2

]
. A numerical

calculation gives the following two inequalities:

2π − β(1.28)− 1.28 > 2.59 > 2.56 = 2 · 1.28,

and
2π − β(1.29)− 1.29 < 2.57 < 2.58 = 2 · 1.29.

Therefore we infer 1.28 < ε̌ < 1.29.
We proceed with showing that if α ≤ εn holds for some n ∈ N, then ψ is a

^-isometry, which will complete this case. In fact, the previous case implies this for
n = 1. Let us assume that we have already verified this for an n ∈ N, and consider
an α ≤ εn+1. On one hand, if β(α) + α ≤ π, then by Lemma 3.6 ψ preservers the
spherical angle β(α)− α in both directions, and since β(α)− α ≤ εn, we are done
by the inductional hypothesis. On the other hand, if β(α)+α > π, then by Lemma
3.2 we have:

^(x, y) ∈ {β(α)− α, 2π − β(α)− α} ⇐⇒ #
(
x(α) ∩ y(β(α))

)
= 1

⇐⇒ #
(
ψ(x)(α) ∩ ψ(y)(β(α))

)
= 1

⇐⇒ ^(ψ(x), ψ(y)) ∈ {β(α)− α, 2π − β(α)− α}.
We distinguish two possibilities. First, if α ≤ ε̌, then we have

^(x, y) = β(α)− α ⇐⇒ ^(x, y) ∈ {β(α)− α, 2π − β(α)− α} and ^(x, y) < 2α,

thus (6) and (7) of Lemma 3.3 imply that ψ preserves the spherical angle β(α)−α
in both directions. Since β(α)−α ≤ εn, the map ψ has to be a ^-isometry. Second,
if α > ε̌, then we observe that

2π − 4α < 2π − 4ε̌ < 1.2 < ε̌ < α.
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Lemma 3.2 gives the following:

^(x, y) = 2π − 4α ⇐⇒ #
(
x(2α) ∩ y(2α)

)
= 1 (x, y ∈ SH).

Since ψ preserves the spherical angle 2α in both directions by Lemma 3.3, a straight-
forward argument shows that ψ also preserves the spherical angle 2π − 4α in both
directions. Therefore, by the previous possibility we infer the ^-isometriness of ψ.

Case 3: when 3π
4 < α < π. By Lemma 3.2 we have #(x(α) ∩ y(α)) = 1 if and

only if ^(x, y) = 2π−2α, therefore ψ preserves the spherical angle 2π−2α ∈
(
0, π2

)
in both directions, and the previous cases complete the present one.

Case 4: when α = 3π
4 . Similarly as above, we get that ψ preserves the spherical

angle π
2 in both directions. By Lemma 3.2 we have the following property:

^(x, y) ∈
{
π
4 ,

3π
4

}
⇐⇒ ^(ψ(x), ψ(y)) ∈

{
π
4 ,

3π
4

}
(x, y ∈ SH).

But the spherical angle 3π
4 is preserved in both directions, whence we get that the

same holds for π
4 , and therefore, by Case 1, ψ is indeed a ^-isometry.

Case 5: when π
2 < α < 3π

4 and α 6= 2π
3 . We set ε1 := 5π

8 and define εn for
n ≥ 2 by the recursive formula εn = π − εn−1

2 (n ≥ 2, n ∈ N). We observe that
5π
8 ≤ ε2k−1 <

2π
3 and 2π

3 < ε2k ≤ 11π
16 are satisfied for all k ∈ N. Moreover, one

easily obtains the following explicit formula by a straightforward calculation:

εn = (−1)n−1 ε1
2n−1 +

n−2∑
j=0

(−1)j π2j (n ≥ 2),

whence we infer that limn→∞ εn = 2π
3 .

We show that if π
2 < α ≤ εn and n is odd, or εn ≤ α < 3π

4 and n is even,
then ψ is a ^-isometry, which will complete this case. In order to do this, we use
induction. If n = 1, then π

2 < α ≤ ε1 = 5π
8 implies that ψ preserves the spherical

angle 2π − 2α ∈
[

3π
4 , π

)
. From the previous cases it readily follows that ψ is a

^-isometry. Let us suppose that the claim has been proven for some n ≥ 1, and
let us investigate it for n + 1. On one hand, if n = 2k − 1 with some k ∈ N, then
α ≥ ε2k >

2π
3 implies that ψ preserves the spherical angle 2π − 2α ∈ (0, ε2k−1]

in both directions. Thus, by the previous cases and the inductional hypothesis,
either ψ is a ^-isometry, or 2π − 2α = π

2 . But in the latter case we have α = 3π
4

which we exclude here, therefore ψ is a ^-isometry. On the other hand, if n = 2k
with some k ∈ N, then π

2 < α ≤ ε2k+1 implies that ψ preserves the spherical angle
2π − 2α ≥ ε2k in both directions. The inductional hypothesis and the previous
cases together yield that ψ is a ^-isometry.

Case 6: when α = 2π
3 . First, by Lemma 3.2, for every x, y ∈ SH we have

^(x, y) > 2π
3 ⇐⇒ x(2π/3) ∩ y(2π/3) = ∅

⇐⇒ ψ(x)(2π/3) ∩ ψ(y)(2π/3) = ∅ ⇐⇒ ^(ψ(x), ψ(y)) > 2π
3 .

Next, observe that for every x ∈ SH and u ∈ x(2π/3) we have #(x(2π/3) ∩
u(2π/3)) = 1, and let us denote this unique element by ũx, which depends only on
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x and u, furthermore, we also have ũx = x̃u ∈ [u, x]. We obtain the following:

{ψ(ũx)} = ψ
(
x(2π/3) ∩ u(2π/3)

)
= ψ(x)(2π/3) ∩ ψ(u)(2π/3) =

{
˜ψ(u)ψ(x)

} (
x ∈ SH , u ∈ x(2π/3)

)
.

Now, we claim that ^(x, y) = π holds if and only if ^(x, y) > 2π
3 and for every

u ∈ x(2π/3) and z ∈ y(2π/3) ∩ u(2π/3) we have ^(ũx, z̃y) = 2π
3 . For the necessity

part, suppose that ^(x, y) = π, and consider the following isometry:

T : H → H, T (λx+ h) = λx− h (h ∈ H,h ⊥ x).

Since we have ũx = Tu and z̃y = Tz, therefore indeed, ^(ũx, z̃y) = ^(u, z) = 2π
3 .

We proceed with the sufficiency part. Assume that 2π
3 < ^(x, y) < π holds. We

shall find a vector u ∈ x(2π/3) such that for every z ∈ y(2π/3) ∩ u(2π/3) we have
^(ũx, z̃y) 6= 2π

3 . Set γ := ^(x, y) and choose an orthonormal system {e1, e2} such
that x = e1 and y = cos γ · e1 + sin γ · e2. We define y′ := sin γ · e1− cos γ · e2 (which

is orthogonal to y) and fix the vector u := − 1
2 · e1 −

√
3

2 · e2 ∈ x(2π/3). We have

ũx = − 1
2 · e1 +

√
3

2 · e2. A straightforward calculation gives that for any z ∈ y(2π/3)

there exists a δ ∈ [0, 2π) and an e3 ∈ SH , e3 ⊥ ej (j = 1, 2) such that

z = − 1
2 · y +

√
3

2 · (cos δ · y′ + sin δ · e3),

and then

z̃y = − 1
2 · y −

√
3

2 · (cos δ · y′ + sin δ · e3).

Now, we have z ∈ y(2π/3) ∩ u(2π/3) if and only if the following equation is satisfied:

〈u, z〉 = 1
4 cos γ +

√
3

4 sin γ −
√

3
4 sin γ cos δ + 3

4 cos γ cos δ = − 1
2 . (11)

Assume we also have ^(ũx, z̃y) = 2π
3 . Note that this happens exactly when

〈ũx, z̃y〉 = 1
4 cos γ −

√
3

4 sin γ +
√

3
4 sin γ cos δ + 3

4 cos γ cos δ = − 1
2 . (12)

Subtracting (11) from (12) gives sin γ = sin γ cos δ, which implies cos δ = 1. Then
by (11) we get 2π

3 = γ, a contradiction, therefore our claim is verified.
Finally, by the observations made above we infer the following equivalence-chain:

^(x, y) = π ⇐⇒
{

^(x, y) > 2π
3 and ^(ũx, z̃y) = 2π

3

for every u ∈ x(2π/3), z ∈ y(2π/3) ∩ u(2π/3)

⇐⇒

{
^(ψ(x), ψ(y)) > 2π

3 and ^
(

˜ψ(u)ψ(x), ˜ψ(z)ψ(y)

)
= 2π

3

for every ψ(u) ∈ ψ(x)(2π/3), ψ(z) ∈ ψ(y)(2π/3) ∩ ψ(u)(2π/3)

⇐⇒
{
^(ψ(x), ψ(y)) > 2π

3 and ^
(
w̃ψ(x), s̃ψ(y)

)
= 2π

3

for every w ∈ ψ(x)(2π/3), s ∈ ψ(y)(2π/3) ∩ w(2π/3)

⇐⇒ ^(ψ(x), ψ(y)) = π.

Since ψ preserves the spherical angles 2π
3 and π in both directions, one easily

sees that it also preserves the spherical angle π
3 in both directions, hence Case 2

completes the proof. �
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4. Symmetries of projective spaces

The aim of this section is to prove our main results on transformations of projec-
tive spaces namely, Theorems 1, 3 and 4. We begin with the verification of Theorem
3 which is a direct consequence of Theorem 2.

Proof of Theorem 3. By Bloch’s representation (see e.g. [31]), elements of P (C2)
can be represented as points on the unit sphere SR3 of R3 in the following way:

ρ : P (C2)→ SR3 , ρ
(
[(cos θ, eiν sin θ)]

)
= (sin 2θ cos ν, sin 2θ sin ν, cos 2θ), (13)

where 0 ≤ θ ≤ π
2 , 0 ≤ ν < 2π. Furthermore, we have

^ (ρ([u]), ρ([v])) = 2 · ]([u], [v]) ([u], [v] ∈ P (H)).

Clearly, ρ ◦ φ ◦ ρ−1 : SR3 → SR3 preserves the spherical angle 2α in both directions.
On one hand, if α 6= π

4 , then by Theorem 2 the map ρ◦φ◦ρ−1 is a ^-isometry, and
thus φ is a Wigner symmetry. On the other hand, if α = π

4 , then from Theorem 2 we

get that there is a ^-isometry ψ : SR3 → SR3 such that ρ◦φ◦ρ−1(x) ∈ {ψ(x),−ψ(x)}
holds for every x ∈ SR3 , whence we infer φ([v]) ∈ {ρ−1 ◦ψ ◦ρ([v]), ρ−1 ◦ψ ◦ρ([v])⊥}
for all [v] ∈ P (C2), which completes the proof. �

We proceed with verifying some lemmas. For any [v] ⊂ P (H) and 0 < α ≤ π
2

we will use the following notation:

[v]α := {[u] ∈ P (H) : ]([u], [v]) = α}.
We will denote by C the set of those numbers in K ∈ {C,R} which have unit
modulus. Furthermore, if [v], [w] ∈ P (H), then the symbol

P[v],[w] := {[u] ∈ P (H) : ∃ λ, µ ∈ K such that u = λ · v + µ · w 6= 0}
will stand for the projective line spanned by [v] and [w].

Lemma 4.1. Let H be a real or complex inner product space with dimH ≥ 3.
Assume that 0 < α ≤ β ≤ π

2 , v, w ∈ H with ‖v‖ = ‖w‖ = 1 and set γ :=
]([v], [w]) 6= 0. Then we have

[v]α ∩ [w]β = ∅ ⇐⇒ γ < β − α or γ > α+ β, (14)

#([v]α ∩ [w]β) = 1 ⇐⇒
{

either γ = β − α, or γ = α+ β < π
2 ,

or dimH = 3 and α = β = π
2 .

(15)

Moreover, if γ = π
2 = α+ β, then [v]α ∩ [w]β = {[cosα · v + λ sinα · w] : λ ∈ C}.

Proof. If α = π
2 , then we also have β = π

2 , and clearly, #([v]π/2∩[w]π/2) = 1 holds if
and only if dimH = 3. Therefore from now on we may assume that 0 < α < π

2 . By
the triangle inequality, (14) is obvious, therefore we will further assume throughout
the proof that β−α ≤ γ ≤ α+β is fulfilled. We fix an orthonormal system {e1, e2}
such that [v] = [e1] and [w] = [cos γ · e1 + sin γ · e2]. If [u] ∈ [v]α, then

[u] = [cosα · e1 + λ sinα cos δ · e2 + µ sinα sin δ · e3] (16)

holds with some δ ∈ [0, π2 ], |λ| = |µ| = 1, and e3 ∈ H such that ‖e3‖ = 1, e3 ⊥ ej
(j = 1, 2). Of course, the three coordinates in (16) are all non-zero if and only if
0 < δ < π

2 . Note that we have [u] ∈ [v]α ∩ [w]β if and only if

cosβ = | cosα cos γ + λ sinα sin γ cos δ|. (17)

Now, observe that if any (λ, δ) ∈ C × (0, π2 ] solves (17), then choosing µ = −1

and 1 in (16) gives us two different elements of [v]α ∩ [w]β . Therefore having
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#([v]α ∩ [w]β) = 1 implies δ = 0 for every solution (λ, δ) of (17). In particular, we
have [u] ∈ P[v],[w] as well in that case.

Clearly, the following map is injective on C × [0, π2 ):

ϑ : C × [0, π2 ]→ K, (λ, δ) 7→ cosα cos γ + λ sinα sin γ cos δ.

Furthermore, we have ϑ
(
C × [0, π2 )

)
= {z ∈ K : 0 < |z − cosα cos γ| ≤ sinα sin γ}

and ϑ
(
C × {π2 }

)
= {cosα cos γ}. Therefore #([v]α ∩ [w]β) > 0 holds if and only

if cos(α + γ) ≤ cosβ ≤ cos(α − γ) does, which is equivalent to our assumption,
i.e. β − α ≤ γ ≤ α+ β.

Now, the following equivalence-chain is straightforward from the observations
made above, and it verifies (15):

#([v]α ∩ [w]β) = 1 ⇐⇒ (λ, δ) = (−1, 0) or (1, 0) is a unique solution of (17)

⇐⇒
{

(λ, δ) = (1, 0) solves (17) and cosα cos γ 6= 0, or
(λ, δ) = (−1, 0) solves (17) and cosα cos γ ≥ sinα sin γ

⇐⇒
{

(λ, δ) = (1, 0) is a solution of (17) and γ 6= π
2 , or

(λ, δ) = (−1, 0) is a solution of (17) and α+ γ ≤ π
2

⇐⇒ cosβ = cos(α− γ) and γ 6= π
2 , or cosβ = cos(α+ γ) and α+ γ ≤ π

2

⇐⇒ β = α− γ and γ 6= π
2 , or β = γ − α and γ 6= π

2 , or β = α+ γ

⇐⇒ γ = α− β, or γ = α+ β < π
2 , or γ = β − α

⇐⇒ γ = α+ β < π
2 or γ = β − α.

Finally, if γ = π
2 = α+β, then (17) becomes sinα = cosβ = sinα cos δ, therefore

δ = 0, and by (16) we get

[v]α∩[w]β ⊆ [v]α ⊆ {[cosα·e1+λ sinα·e2] : λ ∈ C} = {[cosα·v+λ sinα·w] : λ ∈ C}.
But obviously, {[cosα · v + λ sinα · w] : λ ∈ C} ⊆ [v]α ∩ [w]β is also fulfilled. �

The following three lemmas are consequences of Lemma 4.1 and are proven in a
similar way as the lemmas in Section 3.

Lemma 4.2. Let H be a real or complex inner product space with dimH ≥ 3, and
φ : P (H) → P (H) be a bijection. If φ preserves the quantum angle α ∈

(
0, π4

)
in

both directions, then φ shares the following property:

]([v], [w]) ≤ jα ⇐⇒ ](φ([v]), φ([w])) ≤ jα
(
[v], [w] ∈ P (H), 2 ≤ j < π

2α

)
.

(18)

Proof. Observe that we have ]([v], [w]) ≤ jα
(
j ∈ N, 2 ≤ j < π

2α

)
if and only

if there exists a (j − 1)-element sequence {[ul]}j−1
l=1 ⊂ P (H) with ]([v], [u1]) =

]([ul], [ul+1]) = ]([uj−1], [w]) = α (l ∈ N, 1 ≤ l ≤ j − 2). Indeed, one direction
is immediate from the triangle inequality. Concerning the other one, by Bloch’s
representation we infer the existence of such a (j − 1)-element sequence in P[v],[w].
Therefore, using the same technique as in Lemma 3.3, (18) is yielded. �

Lemma 4.3. Let H be a real or complex inner product space with dimH ≥ 3,
0 < α < β < π

2 , and φ : P (H) → P (H) be a bijection. If φ preserves the quantum
angles α and β in both directions, then

(i) φ also preserves the quantum angles β − α and α + β in both directions if
α+ β < π

2 ,
(ii) φ also preserves the quantum angle β − α in both directions if α+ β ≥ π

2 .
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Proof. (i): Applying Lemma 4.1 gives the following for every [v], [w] ∈ P (H):

]([v], [w]) ∈ {β − α, α+ β} ⇐⇒ ](φ([v]), φ([w])) ∈ {β − α, α+ β}. (19)

Let us observer that there exists a j ∈ N, 2 ≤ j < π
2α with β − α < jα < α+ β. A

technique similar to the one used in Lemma 3.6 completes the proof of this case.
(ii): A similar, but easier argument verifies this part. �

Lemma 4.4. Let H be a real or complex inner product space with dimH ≥ 3, and
φ : P (H) → P (H) be a bijection. If φ preserves the quantum angle α ∈ (0, π4 ) in
both directions, then φ shares the following property:

]([v], [w]) = jα ⇐⇒ ](φ([v]), φ([w])) = jα
(

[v], [w] ∈ P (H), 2 ≤ j < π

2α

)
.

(20)

Proof. For j = 2, this is straightforward from Lemma 4.1. For j > 2, the statement
can be verified using a simple recursion and (i) of Lemma 4.3. �

The next lemma can be verified along the same lines as Lemma 3.5.

Lemma 4.5. Let H be a real or complex inner product space with dimH ≥ 3, and
φ : P (H)→ P (H) be a bijection. If there is a sequence of positive quantum angles
{αn}∞n=1 such that limn→∞ αn = 0 and φ preserves these quantum angles in both
directions, then φ is a Wigner symmetry.

If [v] ∈ P (H), then the symbol H 	 [v] will denote the set of those vectors in H
which are orthogonal to v. This is a linear subspace, thus it can be considered as
an inner product space with the restricted inner product.

Now, we are in the position to verify Theorem 1 by applying Theorem 2.

Proof of Theorem 1. During our proof we will distinguish six different cases. In the
first three of them we will deal with the possibility when H is of dimension at least
four, and in the last three ones we will handle the three-dimensional case.

Case 1: when dimH ≥ 4 and 0 < α < π
3 . Let v ∈ SH be arbitrary and

w ∈ SH such that φ([v]) = [w] holds. Then we have φ([v]α) = [w]α. We consider
a bijective isometry R : H → H such that Rw = v, and define the transformation

φ̃ : P (H) → P (H), φ̃([u]) = R(φ([u])) which is also bijective and preserves the

quantum angle α in both directions. In addition, we have φ̃([v]) = [v], whence

φ̃([v]α) = [v]α follows as well. It is straightforward that

[v]α = {[cosα · v + sinα · u] : u ∈ SH	[v]},

where dim(H	 [v]) ≥ 3. Therefore there exists a bijective map ψ : SH	[v] → SH	[v]

which induces the restricted transformation φ̃
∣∣
[v]α

, i.e. we have

φ̃([cosα · v + sinα · u]) = [cosα · v + sinα · ψ(u)] (u ∈ SH	[v]).

Our aim is to show that ψ is a ^-isometry. We calculate the following for every
u1, u2 ∈ SH	[v]:

]
(
[cosα · v + sinα · u1], [cosα · v + sinα · u2]

)
= arccos

(∣∣cos2 α+ 〈u1, u2〉 sin2 α
∣∣) .

(21)
If u1 and u2 run through SH	[v], then cos2 α+ 〈u1, u2〉 sin2 α runs through the in-

terval [cos 2α, 1], and thus the quantum angle in (21) runs through
[
0,min

(
π
2 , 2α

)]
.
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The inequality − cosα < cos 2α implies that

]
(
[cosα · v + sinα · u1], [cosα · v + sinα · u2]

)
= α

holds exactly when

^(u1, u2) = arccos

(
cosα

1 + cosα

)
∈
(
π
3 , arccos 1

3

)
⊂
(
π
3 ,

π
2

)
.

Since φ̃ preserves the quantum angle α in both directions, it is apparent that ψ

preserves the spherical angle arccos
(

cosα
1+cosα

)
in both directions. By Theorem 2

we obtain that ψ is a ^-isometry. Therefore if [w1], [w2] ∈ [v]α, then we have

]([w1], [w2]) = ]
(
φ̃([w1]), φ̃([w2])

)
, and thus we infer

](φ([w1]), φ([w2])) = ]([w1], [w2]) ([w1], [w2] ∈ [v]α).

Since this holds for every line [v], our map φ preserves every quantum angle from
the interval

(
0,max

(
2α, π2

)]
, hence φ has to be a Wigner symmetry by Lemma 4.5.

Case 2: when dimH ≥ 4 and π
3 < α < π

2 . In this case we have

]
(
[cosα · v + sinα · u1], [cosα · v + sinα · u2]

)
= α

if and only if

^(u1, u2) ∈ {β1, β2} ,
where

β1 := arccos

(
1− 1

1 + cosα

)
∈
(
arccos 1

3 ,
π
2

)
and

β2 := arccos

(
1− 1

1− cosα

)
∈
(
π
2 , π

)
.

Let us observe that, similarly as in the previous case, if one was able to show that
every bijection ψ : SH	[v] → SH	[v] which satisfies

^(x, y) ∈ {β1, β2} ⇐⇒ ^(ψ(x), ψ(y)) ∈ {β1, β2} (22)

is a ^-isometry, then one could conclude that φ is a Wigner symmetry. That is
exactly what will be done here.

Let x, y ∈ SH	[v] be two unit vectors with γ := ^(x, y) 6= 0. Obviously, we have

#
(

(x(β1)∪x(β2)) ∩ (y(β1) ∪ y(β2))
)

= #
(
x(β1) ∩ y(β1)

)
+ 2 ·#

(
x(β1) ∩ y(β2)

)
+ #

(
x(β2) ∩ y(β2)

)
. (23)

The core idea here is to examine this cardinality. Let us observe that cosβ1 <
− cosβ2, which implies β1 + β2 > π. By Lemma 3.2 we obtain the following
equivalences:

#
(
x(β1) ∩ y(β1)

)
= 1 ⇐⇒ γ = 2β1, (24)

x(β1) ∩ y(β1) = ∅ ⇐⇒ γ > 2β1, (25)

#
(
x(β1) ∩ y(β2)

)
= 1 ⇐⇒ γ ∈ {2π − β1 − β2, β2 − β1}, (26)

x(β1) ∩ y(β2) = ∅ ⇐⇒ γ > 2π − β1 − β2 or γ < β2 − β1, (27)

#
(
x(β2) ∩ y(β2)

)
= 1 ⇐⇒ γ = 2π − 2β2, (28)



SYMMETRIES OF PROJECTIVE SPACES AND SPHERES 17

and

x(β2) ∩ y(β2) = ∅ ⇐⇒ γ > 2π − 2β2. (29)

Notice that if dim(H 	 [v]) = 3, then #
(
x(βj) ∩ y(βl)

)
∈ {0, 1, 2} holds, and if

dim(H 	 [v]) ≥ 4, then always we have #
(
x(βj) ∩ y(βl)

)
∈ {0, 1,∞} (j, l ∈ {1, 2}).

Our next step is to compare the following four quantities: 2β1, 2π−β1−β2, β2−
β1, 2π− 2β2. Since we have π

3 < β1, we get 2β1 > β2−β1. By similar observations,
we obtain the following inequalities: 2β1 > 2π − 2β2, 2π − β1 − β2 > β2 − β1,
2π−β1−β2 > 2π−2β2; and the following relations: 2β1, 2π−β1−β2, β2−β1, 2π−
2β2 ∈ (0, π).

Now, let us solve the equation 2β1 = 2π − β1 − β2, which is equivalent to
3β1 = 2π− β2. Since both sides are in the interval

(
π, 3π

2

)
, this holds if and only if

1− 1

1− cosα
= cosβ2 = cos(3β1) = 4 cos3(β1)− 3 cos(β1)

= 4

(
1− 1

1 + cosα

)3

− 3

(
1− 1

1 + cosα

)
.

By a straightforward calculation we get that this holds exactly when cosα ∈{
− 1√

5
, 0, 1√

5

}
. Clearly, the first two possibilities cannot occur, therefore we con-

clude the only solution α = arccos
(

1√
5

)
.

Next, we examine the equation β2 − β1 = 2π − 2β2, which is the same as 3β2 =
2π + β1. This implies

1− 1

1 + cosα
= cosβ1 = cos(3β2) = 4 cos3(β2)− 3 cos(β2)

= 4

(
1− 1

1− cosα

)3

− 3

(
1− 1

1− cosα

)
.

Again, quite straightforwardly, the unique solution is α = arccos
(

1√
5

)
.

By the above observations we have at most the following six possibilities con-
cerning the order of the four quantities 2β1, 2π − β1 − β2, β2 − β1, 2π − 2β2:

1. 2β1 = 2π − β1 − β2 > β2 − β1 = 2π − 2β2;
2. 2β1 > 2π − β1 − β2 > β2 − β1 > 2π − 2β2;
3. dimH = 4 and 2π − β1 − β2 > 2β1 > β2 − β1 > 2π − 2β2;
4. dimH ≥ 5 and 2π − β1 − β2 > 2β1 > β2 − β1 > 2π − 2β2;
5. 2β1 > 2π − β1 − β2 > 2π − 2β2 > β2 − β1;
6. 2π − β1 − β2 > 2β1 > 2π − 2β2 > β2 − β1.

Using (24)-(29), in each of the above six cases we get the following equivalences:

1. #
(
(x(β1) ∪ x(β2)) ∩ (y(β1) ∪ y(β2))

)
= 3 ⇐⇒ γ = 2β1 = 2π − β1 − β2;

2. #
(
(x(β1) ∪ x(β2)) ∩ (y(β1) ∪ y(β2))

)
= 1 ⇐⇒ γ = 2β1;

3. #
(
(x(β1) ∪ x(β2)) ∩ (y(β1) ∪ y(β2))

)
= 5 ⇐⇒ γ = 2β1;

4. #
(
(x(β1) ∪ x(β2)) ∩ (y(β1) ∪ y(β2))

)
= 2 ⇐⇒ γ = 2π − β1 − β2;

5. #
(
(x(β1) ∪ x(β2)) ∩ (y(β1) ∪ y(β2))

)
= 1 ⇐⇒ γ = 2β1;

6. #
(
(x(β1) ∪ x(β2)) ∩ (y(β1) ∪ y(β2))

)
= 2 ⇐⇒ γ = 2π − β1 − β2.

Here we only give the verification of the second point above, as the others are very
similar. For this let us consider the following table:
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#
(
x(β1) ∩ y(β1)

)
#
(
x(β1) ∩ y(β2)

)
#
(
x(β2) ∩ y(β2)

)
0 < γ < 2π − 2β2 2 ≤ 0 2 ≤
γ = 2π − 2β2 2 ≤ 0 1

2π − 2β2 < γ < β2 − β1 2 ≤ 0 0
γ = β2 − β1 2 ≤ 1 0

β2 − β1 < γ < 2π − β1 − β2 2 ≤ 2 ≤ 0
γ = 2π − β1 − β2 2 ≤ 1 0

2π − β1 − β2 < γ < 2β1 2 ≤ 0 0
γ = 2β1 1 0 0

2β1 < γ ≤ π 0 0 0

Clearly, (23) gives us the desired conclusion.
Finally, in each of the cases above we conclude that ψ preserves the spherical

angle 2β1 or 2π − β1 − β2 in both directions. The only thing which needs to be
shown is that they cannot be π

2 , which is obvious for the first one. Concerning the
second one, we know that β1 <

π
2 and β2 < π, thus 2π − β1 − β2 >

π
2 .

Case 3: when dimH ≥ 4 and α = π
3 . Similarly as in the previous case, we only

need to show that any bijective map ψ : SH	[v] → SH	[v] which satisfies

^(x, y) ∈
{

arccos
(

1
3

)
, π
}
⇐⇒ ^(ψ(x), ψ(y)) ∈

{
arccos

(
1
3

)
, π
}

(30)

is a ^-isometry. In order to prove this it is enough to see that ψ preserves the
spherical angle π in both directions. But this is straightforward form the following
equivalence, where we use the notation β = arccos

(
1
3

)
:(

x(β) ∪ x(π)
)
∩
(
y(β) ∪ y(π)

)
= ∅ and y ∈ x(β) ∪ x(π) ⇐⇒ y = −x.

Case 4: when dimH = 3 and 0 < α < π
3 . Here we have dim(H 	 [v]) = 2 and

therefore, unlike in the previous cases, we cannot apply Theorem 2. Instead, we
shall utilise Lemma 4.5. As in Case 1, one gets that the transformation ψ : SH	[v] →
SH	[v] preserves the spherical angle β := arccos

(
cosα

1+cosα

)
∈ (π3 , arccos 1

3 ) ⊂ (π3 ,
π
2 )

in both directions. Thus ψ also preserves the spherical angle 2β ∈ ( 2π
3 , π) in both

directions, which is a consequence of the following observation:

^(x, y) = 2β ⇐⇒ #
(
x(β) ∩ y(β)

)
= 1 (x, y,∈ SH	[v]).

Therefore from (21) we conclude that φ preserves the quantum angle

γ := arccos
(∣∣cos2 α+ cos(2β) sin2 α

∣∣) ∈ (0, π2 ] (31)

in both directions.
We proceed with examining the above quantum angle γ. An elementary calcu-

lation gives us the following:

cos2 α+ cos(2β) sin2 α = cos2 α+ (2 cos2 β − 1) sin2 α

= cos2 α+

(
2

(
cosα

1 + cosα

)2

− 1

)
(1− cos2 α) = 4 cosα+

4

cosα+ 1
− 5.

Therefore (31) becomes

γ = arccos

(∣∣∣∣4 cosα+
4

cosα+ 1
− 5

∣∣∣∣) . (32)
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Next, an elementary calculation verifies the following inequality:

2c2 − 1 < 4c+
4

c+ 1
− 5 < c

(
1
2 ≤ c < 1

)
.

It is also easy to show that for every c ∈
[

1
2 , 1
)

we have

4c+
4

c+ 1
− 5 < 0 ⇐⇒ 1

2 ≤ c <
1
8 (1 +

√
17),

and

4c+
4

c+ 1
− 5 = 0 ⇐⇒ c = 1

8 (1 +
√

17).

Again, by elementary computations, we obtain∣∣∣∣4c+
4

c+ 1
− 5

∣∣∣∣ = 5− 4c− 4

c+ 1
< 1− 2c2 ≤ c ( 1

2 ≤ c <
1
8 (1 +

√
17))

which gives us

2c2 − 1 <

∣∣∣∣4c+
4

c+ 1
− 5

∣∣∣∣ < c ( 1
2 ≤ c < 1). (33)

Clearly, (32) and (33) implies γ ∈ (α, 2α) ∩
(
0, π2

]
.

Now, we consider four different possibilities. First, if 0 < α < π
4 , then 0 < γ < π

2 ,

and by Lemmas 4.3 and 4.4 our map φ preserves the quantum angles 2α−γ ∈
(
0, π2

)
and γ−α ∈

(
0, π2

)
in both directions. Since one of them is less than or equal to α

2 ,
by a recursion we obtain a sequence of positive quantum angles converging to zero
such that all of them is preserved by φ in both directions. Therefore by Lemma 4.5
we conclude that φ is a Wigner symmetry.

Second, by (32) we have γ = π
2 if and only if α = arccos 1+

√
17

8 . If this happens,
then Uhlhorn’s theorem implies that φ is a Wigner symmetry.

Third, we assume that π
4 ≤ α < arccos 1+

√
17

8 is satisfied, and we claim that
there exists a number 0 < q < 1 such that we have γ < (1 + q)α for every such

α. In fact, if this was not the case, then
∣∣∣4c+ 4

c+1 − 5
∣∣∣ could be arbitrarily close

to 2c2 − 1 on the interval
[

1+
√

17
8 , 1√

2

]
. But then, continuity of the functions and

compactness of the interval would imply that there is a number c ∈
[

1+
√

17
8 , 1√

2

]
at which these two functions attain the same value, contradicting to (33). Since by
Lemma 4.3 the map φ preserves γ − α < qα, by a recursion we get a sequence of
positive quantum angles {αn}∞n=1 converging to zero such that they are preserved
by φ in both directions. Therefore φ has to be a Wigner symmetry.

Finally, let us suppose that we have arccos 1+
√

17
8 < α < π

3 . Since π
4 ≤

arccos 1+
√

17
8 , we get γ

α < π/2

arccos 1+
√

17
8

< 1.8 for every such α. But φ preserves

the quantum angle γ−α < 0.8 ·α, therefore we have the following two possibilities.
Either by a recursion we obtain a sequence of positive quantum angles converging to
zero such that all of them is preserved by φ in both directions, or after some steps we

conclude that φ preserves the quantum angle arccos 1+
√

17
8 , and thus orthogonality

in both directions. Both of them imply that φ is a Wigner symmetry.

Case 5: when dimH = 3 and π
3 < α < π

2 . We claim that

]([x], [y]) = π − 2α ⇐⇒ #([x]α ∩ [y]α) = 3. (34)
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In order to see this let [x] and [y] be two different lines and set γ := ]([x], [y]) ∈(
0, π2

]
. There exist two orthogonal unit vectors e1, e2 ∈ H such that we have

[x] = [cos γ2 · e1 + sin γ
2 · e2], [y] = [cos γ2 · e1 − sin γ

2 · e2]. (35)

We fix a unit vector e3 which is orthogonal to both e1 and e2. For t1, t2, t3 ∈ R,
t21 + t22 + t23 = 1 we have

[t1 · e1 + t2 · e2 + t3 · e3] ∈ [x]α ∩ [y]α

if and only if

cosα =
∣∣t1 cos γ2 + t2 sin γ

2

∣∣ =
∣∣t1 cos γ2 − t2 sin γ

2

∣∣ .
Therefore, we immediately conclude that either t1 = 0, or t2 = 0. In the first
possibility we compute |t2| = cosα

sin
γ
2

> 0, moreover, we have

cosα

sin γ
2

< 1 ⇐⇒ γ > π − 2α

and
cosα

sin γ
2

= 1 ⇐⇒ γ = π − 2α.

In the second possibility we have |t1| = cosα

cos
γ
2

∈ (0, 1). Therefore if γ < π−2α, then

# ([x]α ∩ [y]α) ≤ 2. Otherwise, we have

[x]
α ∩ [y]α =

{[
cosα

sin γ
2

· e2 +

√
1− cos2 α

sin2 γ
2

· e3

]
,

[
cosα

sin γ
2

· e2 −

√
1− cos2 α

sin2 γ
2

· e3

]
,[

cosα

cos γ2
· e1 +

√
1− cos2 α

cos2 γ
2

· e3

]
,

[
cosα

cos γ2
· e1 −

√
1− cos2 α

cos2 γ
2

· e3

]}
.

(36)

Clearly, the third and fourth elements above are always different. Furthermore,
they are also different from the first and second elements. Therefore we have
# ([x]α ∩ [y]α) = 3 if and only if the first and second elements coincide, or equiva-
lently, if cosα = sin γ

2 which yields (34).
Now, by Case 4 and the following equivalence, φ is a Wigner symmetry:

]([x], [y]) = π − 2α ⇐⇒ #([x]α ∩ [y]α) = 3 ⇐⇒ #(φ([x])α ∩ φ([y])α) = 3

⇐⇒ ](φ([x]), φ([y])) = π − 2α.

Case 6: when dimH = 3 and α = π
3 . We claim that we have ]([x], [y]) = π

2

if and only if [x]π/3 ∩ [y]π/3 = {[u1], [u2], [u3], [u4]} is a four-element set such that
]([u1], [u3]) = ]([u1], [u4]) = ]([u2], [u3]) = ]([u2], [u4]) = π

3 holds. Similarly as in

the previous case, we have #
(
[x]π/3 ∩ [y]π/3

)
≤ 3 if and only if γ ≤ π

3 , otherwise

#
(
[x]π/3 ∩ [y]π/3

)
= 4 and [x]π/3 ∩ [y]π/3 = {[v1(γ)], [v2(γ)], [v3(γ)], [v4(γ)]} where

we used the following notations:

v1(γ) =
1/2

sin γ
2

· e2 +

√
1− 1/4

sin2 γ
2

· e3, v2(γ) =
1/2

sin γ
2

· e2 −

√
1− 1/4

sin2 γ
2

· e3,

v3(γ) =
1/2

cos γ2
· e1 +

√
1− 1/4

cos2 γ
2

· e3, v4(γ) =
1/2

cos γ2
· e1 −

√
1− 1/4

cos2 γ
2

· e3.
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A straightforward computation gives the following:

〈v1(γ), v3(γ)〉 = −〈v1(γ), v4(γ)〉 = −〈v2(γ), v3(γ)〉

= 〈v2(γ), v4(γ)〉 =

√
1− 1/4

sin2 γ
2

·

√
1− 1/4

cos2 γ
2

.

Here sin2 γ
2 runs through the interval

(
1
4 ,

1
2

]
, if γ runs through

(
π
3 ,

π
2

]
. Denoting

sin2 γ
2 by u and observing that the equation

(
1− 1

4u

) (
1− 1

4(1−u)

)
= 1

4 has the

only solution u = 1
2 verifies our claim.

Finally, similarly as in the previous case, one can show that φ preserves orthog-
onality in both directions, therefore φ has to be a Wigner symmetry. �

Our final aim is to verify our Uhlhorn-type generalisation for complex spaces of
dimension at least three. But before doing so, we need the following crucial lemma
where we will use the notation

diam] ([v]α ∩ [w]α) := sup (]([u1], [u2]) : [u1], [u2] ∈ [v]α ∩ [w]α) .

Lemma 4.6. Let 0 < α < π
4 , H be a complex inner product space with dimH ≥ 3,

and [v], [w] ∈ P (H) be two lines with ]([v], [w]) =: γ ∈ (0, 2α). Then

diam] ([v]α ∩ [w]α) = 2 · arccos

√
cos2 α− sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) . (37)

Moreover, there exist exactly two lines [u1], [u2] ∈ [v]α ∩ [w]α with ]([u1], [u2]) =
diam] ([v]α ∩ [w]α); and if 0 < β < diam] ([v]α ∩ [w]α), then there exist at least
three different lines [u0], [u1], [u2] ∈ [v]α∩ [w]α with ]([u0], [u1]) = ]([u0], [u2]) = β.

Proof. There is an orthonormal system {e1, e2} such that we have

[v] =
[
cos
(
γ
2

)
· e1 + sin

(
γ
2

)
· e2

]
and [w] =

[
cos
(
γ
2

)
· e1 − sin

(
γ
2

)
· e2

]
. (38)

Let us calculate the set [v]α ∩ [w]α. For any [u] ∈ P (H), we can find a vector
e3 ∈ H, ‖e3‖ = 1, e3 ⊥ ej (j = 1, 2) and numbers λ ∈ C, δ, ε ∈ [0, π2 ] such that

[u] = [cos δ · e1 + λ sin δ cos ε · e2 + sin δ sin ε · e3].

This line lies in [v]α ∩ [w]α if and only if we have

cosα =
∣∣cos

(
γ
2

)
cos δ + λ sin

(
γ
2

)
sin δ cos ε

∣∣ =
∣∣cos

(
γ
2

)
cos δ − λ sin

(
γ
2

)
sin δ cos ε

∣∣ .
The second equation implies that we have either δ = 0, or δ = π

2 , or ε = π
2

or λ ∈ {−i, i}. For the first one, we get γ = 2α which is impossible under our
assumptions. Concerning the second one, the contradiction

1√
2
< cosα =

∣∣sin (γ2 ) cos ε
∣∣ ≤ sin

(
γ
2

)
< sinα < 1√

2

is yielded. The third case implies cos δ = cosα

cos
(γ

2

) ∈ (0, 1). From the last possibility

we obtain the following:

cos2 α = cos2
(
γ
2

)
cos2 δ + sin2

(
γ
2

)
sin2 δ cos2 ε

= cos2
(
γ
2

)
cos2 δ + sin2

(
γ
2

)
(1− cos2 δ) cos2 ε,

from which we conclude

cos δ =

√
cos2 α− sin2

(
γ
2

)
cos2 ε

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

.
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We note that the above fraction is positive, since we have cos
(
γ
2

)
> cosα > 1√

2
>

sin
(
γ
2

)
. We also point out that the ε = π

2 case in the present possibility covers the
before mentioned third possibility. Therefore we conclude that

[v]α ∩ [w]α =

{[√
cos2 α− sin2

(
γ
2

)
cos2 ε

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

· e1+

+ λ

√
cos2

(
γ
2

)
− cos2 α

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

cos ε · e2

+

√
cos2

(
γ
2

)
− cos2 α

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

sin ε · e3

]
: ‖e3‖ = 1,

e3 ⊥ e1, e3 ⊥ e2, 0 ≤ ε ≤ π
2 , λ ∈ {−i, i}

}
. (39)

Next, we verify (37). Since the function gx,y(t) = x−t
y−t is strictly decreasing

on the interval [0, x] if 0 < x < y, and strictly increasing on the interval [0, y] if
0 < y < x, we estimate as follows:

sup
{
]([u], [e1]) : [u] ∈ [v]α ∩ [w]α

}
= arccos

(
inf

{√
cos2 α− sin2

(
γ
2

)
cos2 ε

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

: ε ∈
[
0, π2

]})

= arccos

(
min

{√
cos2 α− t

cos2
(
γ
2

)
− t

: t ∈
[
0, sin2

(
γ
2

)]})

= arccos

√
cos2 α− sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) = arccos

√
1
2 ·

cos2 α− sin2
(
γ
2

)
1
2 − sin2

(
γ
2

)
≤ arccos

√
1
2 ·

cos2 α− 0
1
2 − 0

= α < π
4 . (40)

Notice that the left-hand side of (40) is strictly decreasing in γ. Moreover, the
supremum is attained exactly when ε = 0, in particular, if and only if we have
either

[u] =

[√
cos2 α− sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) · e1 + i ·

√
cos2

(
γ
2

)
− cos2 α

cos2
(
γ
2

)
− sin2

(
γ
2

) · e2

]
∈ P[e1],[e2],

(41)
or

[u] =

[√
cos2 α− sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) · e1 − i ·

√
cos2

(
γ
2

)
− cos2 α

cos2
(
γ
2

)
− sin2

(
γ
2

) · e2

]
∈ P[e1],[e2].

(42)
Now, we consider the following bijective linear isometry:

R : H → H, R(λ · e1 + h) = λ · e1 − h (λ ∈ C, h ∈ H, h ⊥ e1),

which clearly satisfies the equations R([v]) = [w], R([w]) = [v] and R([v]α∩ [w]α) =
[v]α ∩ [w]α. If [u1], [u2] ∈ [v]α ∩ [w]α, then we have ]([u1], [u2]) ≤ ]([u1], [e1]) +
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]([e1], [u2]). On the other hand, if [λ ·e1 +h] ∈ [v]α∩ [w]α (h ⊥ e1, |λ|2 +‖h‖2 = 1),
then by (40) we have |λ| > 1√

2
, and thus we calculate

]([λ · e1 + h], [R(λ · e1 + h)]) = ]([λ · e1 + h], [λ · e1 − h]) = arccos
∣∣|λ|2 − ‖h‖2∣∣

= arccos
∣∣2 · |λ|2 − 1

∣∣ = 2 · arccos |λ| = 2 · ]([λ · e1 + h], [e1]). (43)

Therefore

diam] ([v]α ∩ [w]α) = 2 · sup (]([u], [e1]) : [u] ∈ [v]α ∩ [w]α)

= 2 · arccos

√
cos2 α− sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) ,
which verifies (37). Moreover, the above observations also imply that ]([u1], [u2]) =
diam] ([v]α ∩ [w]α) and [u1], [u2] ∈ [v]α ∩ [w]α hold if and only if the lines [u1] and
[u2] are exactly those defined in (41) and (42).

Finally, let 0 < β < diam] ([v]α ∩ [w]α). Let [u] be the line defined in (41),
and [ũ] be another line from [v]α ∩ [w]α such that ]([u], [ũ]) = β. The existence
of such a line [ũ] is straightforward from the pathwise connectedness of [v]α ∩ [w]α,
which can be directly seen from (39). Since #

(
[v]α ∩ [w]α ∩ P[e1],[e2]

)
= 2, we

obtain that [ũ] /∈ P[e1],[e2]. Let ũ = û + ǔ such that û ∈ [e1, e2] and ǔ ⊥ ej
(j = 1, 2). Clearly, by (39) the line [û− ǔ] lies in [v]α ∩ [w]α \ {[ũ]}, moreover, we
have ]([u], [û− ǔ]) = ]([u], [ũ]) = β, which completes our proof. �

We point out that if α = π
4 , then we have

diam] ([v]α ∩ [w]α) = diam]
(
[v]α ∩ [w]α ∩ P[v],[w]

)
= π

2

for any two different lines [v], [w] ∈ P (H), which can be verified by utilising Bloch’s
representation. Therefore (37) does not hold for general quantum angles α.

We conclude the paper by proving our result on complex projective spaces when
the dimension of H is at least three.

Proof of Theorem 4. Case 1: when 0 < α < π
4 . First, let us examine the following

equation:

α = 2 · arccos

√
cos2 α− sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) .
It is clear that as γ → 0+, the right-hand side tends to 2α, and as γ → 2α−, the
limit of the right-hand side is zero. It was noted in the proof of Lemma 4.6 that
the right-hand side is strictly decreasing. Therefore the above equation must have
a unique solution γ0 from the interval (0, 2α). Now, let us observe the following:

α < 2 · arccos

√
cos2 α− sin2

(
α
2

)
cos2

(
α
2

)
− sin2

(
α
2

) = 2 · arccos

√
cos2 α− sin2

(
α
2

)
cosα

⇐⇒ cos2 α− sin2
(
α
2

)
< cosα cos2

(
α
2

)
⇐⇒ 0 < 1

2 sin2 α.

Since the latter inequality is valid, we actually have α < γ0 < 2α.
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Next, by Lemmas 4.1 and 4.6 we infer the following equivalence-chain for every
[v], [w] ∈ P (H):

]([v],[w]) = γ0 ⇐⇒ diam] ([v]α ∩ [w]α) = α

⇐⇒
{

# ([u]α ∩ [v]α ∩ [w]α) ≤ 1 for every [u] ∈ [v]α ∩ [w]α, and
# {[u] ∈ [v]α ∩ [w]α : # ([u]α ∩ [v]α ∩ [w]α) = 1} = 2,

⇐⇒
{

# ([x]α ∩ φ([v])α ∩ φ([w])α) ≤ 1 for all [x] ∈ φ([v])α ∩ φ([w])α, and
# {[x] ∈ φ([v])α ∩ φ([w])α : # ([x]α ∩ φ([v])α ∩ φ([w])α) = 1} = 2,

⇐⇒ diam] (φ([v])α ∩ φ([w])α) = α

⇐⇒ ](φ([v]), φ([w])) = γ0,

i.e. φ preserves the quantum angle γ0 in both directions. Lemma 4.4 implies that
the quantum angle 2α is also preserved in both directions. Therefore, by Lemma
4.3, our transformation preserves the quantum angles γ0 − α and 2α − γ0 in both
directions. Since none of these quantum angles are zero and at least one of them is
less than or equal to α

2 , a straightforward induction and Lemma 4.5 complete the
proof of this case.

Case 2: when α = π
4 . First, if [v] ⊥ [w], then by Lemma 4.1 we have

[v]π/4 ∩ [w]π/4 =

{[√
1
2 · v + λ

√
1
2 · w

]
: λ ∈ C

}
.

For arbitrary λ, µ ∈ C we compute the following:

]

([√
1
2 · v + λ

√
1
2 · w

]
,

[√
1
2 · v + µ

√
1
2 · w

])
= arccos |1+λµ|

2 .

Therefore we conclude that #
(
[u]π/4 ∩ [v]π/4 ∩ [w]π/4

)
= 2 is satisfied for every

[u] ∈ [v]π/4 ∩ [w]π/4.
Next, we show that this property fails if ]([v], [w]) ∈

(
0, π2

)
. We will use the

notations of (38). A direct calculation gives that the following set is a subset of
[v]π/4 ∩ [w]π/4:

M[v],[w] :=

{[√
1
2 − sin2

(
γ
2

)
cos2 ε

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

· e1+

+ λ

√
cos2

(
γ
2

)
− 1

2

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

cos ε · e2

+

√
cos2

(
γ
2

)
− 1

2

cos2
(
γ
2

)
− sin2

(
γ
2

)
cos2 ε

sin ε · e3

]
: ‖e3‖ = 1, e3 ⊥ e1,

e3 ⊥ e2, 0 ≤ ε ≤ π
2 , λ ∈ {−i, i}

}
. (44)

In particular, we have

[u] :=

[√
1
2 − sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) · e1 + i

√
cos2

(
γ
2

)
− 1

2

cos2
(
γ
2

)
− sin2

(
γ
2

) · e2

]
∈ M[v],[w]
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and

[u′] :=

[√
1
2 − sin2

(
γ
2

)
cos2

(
γ
2

)
− sin2

(
γ
2

) · e1 − i

√
cos2

(
γ
2

)
− 1

2

cos2
(
γ
2

)
− sin2

(
γ
2

) · e2

]
∈ M[v],[w].

A simple computation shows that [u] ⊥ [u′]. Since M[v],[w] is pathwise connected,
there exists a line [ũ] ∈ M[v],[w] with ]([ũ], [u]) = π

4 . As in the last paragraph of
the proof of Lemma 4.6, we can see that [ũ] /∈ P[e1],[e2], and thus we can easily

construct infinitely many other lines which are in [v]π/4∩ [w]π/4∩ [u]π/4. Therefore
if two different lines [v] and [w] are not orthogonal, then there exists a line [u] ∈
[v]π/4 ∩ [w]π/4 such that #

(
[u]π/4 ∩ [v]π/4 ∩ [w]π/4

)
=∞.

By the above observations we have the following equivalence-chain:

[v] ⊥ [w] ⇐⇒ #
(

[u]π/4 ∩ [v]π/4 ∩ [w]π/4
)

= 2 for every [u] ∈ [v]π/4 ∩ [w]π/4

⇐⇒ #
(

[x]π/4 ∩ φ([v])π/4 ∩ φ([w])π/4
)

= 2 for all [x] ∈ φ([v])π/4 ∩ φ([w])π/4

⇐⇒ φ([v]) ⊥ φ([w]).

Therefore φ has to be a Wigner symmetry which completes the proof. �
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[20] Gy.P. Gehér, P. Šemrl, Isometries of Grassmann spaces, J. Funct. Anal. 270 (2016), 1585–
1601.
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