
Discovering medication patterns for high-
complexity drug-using diseases through 
electronic medical records 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Huang, H., Shang, X., Zhao, H., Wu, N., Li, W. (V.) ORCID: 
https://orcid.org/0000-0003-2878-3185, Xu, Y., Zhou, Y. and 
Lei, F. (2019) Discovering medication patterns for high-
complexity drug-using diseases through electronic medical 
records. IEEE Access, 7. pp. 125280-125299. ISSN 2169-
3536 doi: https://doi.org/10.1109/ACCESS.2019.2937892 
Available at https://centaur.reading.ac.uk/85747/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1109/ACCESS.2019.2937892 

Publisher: IEEE 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Discovering medication patterns for high­
complexity drug­using diseases through 
electronic medical records 
Article 

Accepted Version 

Huang, H., Shang, X., Zhao, H., Wu, N., Li, W. (V.), Xu, Y., 
Zhou, Y. and Lei, F. (2019) Discovering medication patterns 
for high­complexity drug­using diseases through electronic 
medical records. IEEE Access. ISSN 2169­3536 (In Press) 
Available at http://centaur.reading.ac.uk/85747/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

Publisher: IEEE 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



 

VOLUME XX, 2019 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number 

Discovering Medication Patterns for High-
Complexity Drug-Using Diseases through 
Electronic Medical Records 

HUI-QUN HUANG1, XIAO-PU SHANG2, (Member IEEE), HONG-MEI ZHAO2,3, NAN WU3, WEI-
ZI LI4, YUAN XU2, YANG ZHOU2, AND LEI FU5 
1School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China 
2School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China 
3Peking University People’s Hospital, Beijing 100044, China 
4Informatics Research Center, University of Reading, Berkshire RG6 6AH, United Kingdom 
5Chinese PLA General Hospital, Beijing 100044, China 

Corresponding author: Xiaopu Shang (sxp@bjtu.edu.cn) and Weizi Li (weizi.li@henley.ac.uk). 

This work was supported by National Natural Science Foundation of China (Grant number 61702023), Humanities and Social Science Foundation of 

Ministry of Education of China (Grant number 17YJC870015), and the Beijing Natural Science Foundation (Grant number 7192107). 

ABSTRACT An Electronic Medical Record (EMR) is a professional document that contains all data 

generated during the treatment process. The EMR can utilize various data formats, such as numerical data, 

text, and images. Mining the information and knowledge hidden in the huge amount of EMR data is an 

essential requirement for clinical decision support, such as clinical pathway formulation and evidence-based 

medical research. In this paper, we propose a machine-learning-based framework to mine the hidden 

medication patterns in EMR text. The framework systematically integrates the Jaccard similarity 

evaluation, spectral clustering, the modified Latent Dirichlet Allocation and cross matching among multiple 

features to find the residuals that describe additional knowledge and clusters hidden in multiple 

perspectives of highly complex medication patterns. These methods work together step by step to reveal the 

latent medication pattern. We evaluated the method by using real data from EMR text (patients with 

cirrhotic ascites) from a large hospital in China. The proposed framework outperforms other approaches for 

medication pattern discovery, especially for this disease with subtle medication treatment variances. The 

results also revealed little overlap among the discovered patterns; thus, the distinct features of each pattern 

are well studied through the proposed framework. 

INDEX TERMS Electronic Medical Record (EMR); medication pattern; discovery; machine learning; 

high-complexity drug-use pattern 

I. INTRODUCTION 

Evidence-based medicine is recognized as an imperative 

approach to optimize decision-making in medical practice 

[1]. In the past, the evidence mainly came from well-

designed, well-conducted clinical trials and the validated 

personal experiences of physicians. The most reliable 

evidence-based medicine is based on randomized controlled 

trials designed for large populations of patients [2]. 

However, the increasing number of clinical and biological 

parameters that must be collected for precision medicine 

make it almost impossible to design dedicated trials [3]. A 

Medical Record (MR), which was a paper document in the 

past and now is mostly computerized, is the systematic 

documentation of a patient's medical care history across 

time within one particular health care provider's jurisdiction 

[4]. Namely, MRs can be seen as the logs that describe 

patients’ treatments and other hospital activities with 

outcomes, such as recovery, transfer and death. 

As the most important medical log documenting patients’ 

whole treatment processes and evolving statuses, Electronic 

Medical Records (EMR) contain rich clinical data, 

information and knowledge. Furthermore, the amount of 

EMR data has been rapidly increasing with the hospital 

digitalization process. From the view of evidence-based 

medicine, EMRs are the best clinical evidence of positive 

(i.e., recovery) or negative (i.e., death) treatment results. 
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EMRs also have great potential for enabling data-driven 

predictions and further explorations of clinical knowledge if 

the EMR data can be deeply analyzed. The mining outcomes 

are helpful to support physicians’ decisions during patients’ 

journeys [5]-[7], such as treatment pathway personalization. 

Recent studies [8]-[10] show that machine-learning methods 

are important and powerful EMR-analyzing technologies that 

can mine the underlying knowledge [8]-[10]. 

In this research, we aimed to discover medication 

patterns from highly complex drug treatments and diseases 

by systematically applying Jaccard similarity, spectral 

clustering, and Bayes probability techniques for EMR text 

mining. Cirrhotic ascites EMR data were selected to 

evaluate our approach since patients with this disease 

always have many complications and require complex 

medication patterns [11]. Our approach outperformed other 

machine-learning-based methods in the following aspects. 

1) The approach effectively discovered the major 

medication patterns from EMR text for highly complex 

diseases and mixed medication patterns. 2) This approach 

can separate the highly mixed medication treatments into 

distinct clustered medication patterns rather than vague 

future clustering that classifies every item into one of the 

treatment patterns, although the similarity was weak. 3) 

Unlike unsupervised deep-learning-based treatment pattern 

discovery methods, our classification approach results in 

each step of the framework being interpretable rather than a 

black box [12]. This approach is important for clinical 

knowledge discovery (since it is evidence based and 

interpretable) to understand the classifying processes of 

certain drugs for clinical purposes. 4) To the best of our 

knowledge, this is the first time machine learning methods 

have been used for medication discovery from cirrhotic 

ascites EMRs. 

The rest of this paper is organized as follows. Section II 

is the review of related works. Section III describes the 

proposed framework and methods to discover latent 

medication patterns. Section IV presents the real data 

experiments and discussions followed by the conclusions in 

the last section. 

II. RELATED WORKS 

EMR text mining is a systematic project that includes data 

extraction and mining from textual EMR sources (with a 

focus on the mining part) to discover meaningful knowledge. 

Similar to an EMR, an Electronic Health Record (EHR) is 

also a medical record, but it places emphasis on daily data 

across hospitals, social care and self-reported/monitored data 

for long-term health status. Therefore, this section provides a 

state-of-the-art review on both EMR and EHR textual data 

processing and mining research. 

A. EMR TEXT PRE-PROCESSING 

It has been a challenging task to analyze the textual content 

of EMRs in current research [13]. Existing research has 

adopted the Natural Language Processing (NLP) technique 

that focuses on targeting and extracting useful information 

from EMRs for clinical research [14]-[18]. The 

International Classification of Diseases (ICD) and the 

Systematized Nomenclature of Medicine-Clinical Terms 

(SNOMED-CT) are two widely adopted medical term sets 

and powerful tools in medical semantics analytics. These 

coding systems play important roles in targeting specific 

words or segmentations within EMR text. However, those 

standardized terms are not always mandatory in EMR 

records. Some studies [15], [16], [19], [20] use multiple 

lexicon databases to cover a wide range of words and/or 

phrases to create their own dictionaries. Another challenge 

in processing Chinese EMRs is that there is no official 

Chinese SNOMED-CT available, while English EMR text 

mining is relatively easier since every word in a sentence is 

separated by spaces. Spaces help to improve the precision 

of information segmentation in text mining, but Chinese 

sentences are made up of characters with no spaces between 

words [21]. Some authors [22]-[24] have attempted Chinese 

EMR text mining based on a special lexicon or a manually 

established ontology structure. Some meaningful results 

have been discovered from those approaches, but they 

require significant manual work to process the textual data. 

Although word segmentation in Chinese characters is a 

challenging task, it is a prerequisite step to directly mine 

information and knowledge from EMR text. 

In this study, we focused on mining clinical knowledge 

from EMR text with a hybrid text-preprocessing approach. 

To segment Chinese text in EMRs, we first selected the 

medical terms with Chinese ICD codes. Then, we used a 

word dictionary from existing hospital information systems 

and further created the dictionary for this research. The aim 

of EMR text pre-processing is to extract meaningful words 

and information from the text in order to provide the 

computer readable data for subsequent processing. 

B. EMR/EHR DATA MINING 

The deep learning approach has attracted significant 

attention in data representation and prediction from high 

dimensional EMR data. Reference [25] proposed a deep 

multi-modality architecture for EHR analysis based on 

Poisson Factor Analysis modules. This architecture is able 

to identify Type 2 Diabetes Mellitus (T2DM) patients from 

a group of all kinds of patients using diagnosis codes and 

laboratory tests. Reference [26] presented Deepr (short for 

Deep record), a new end-to-end deep learning system, that 

learns to automatically extract features from medical 

records and predict future risks. Reference [27] proposed a 

deep learning approach for phenotyping from patient EHRs. 

Existing deep learning approaches always focus on disease 

prediction or identification based on EMR/EHR non-picture 

data, such as the work of [28]-[30]. However, in 

unsupervised deep learning cases, the accuracy varies due 

to the lack of consideration of uncertainties in complex 
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diseases. Furthermore, deep learning as a black box with 

obscure reasoning processes has limited its capability of 

supporting clinical research. Our proposed framework aims 

to discover hidden patterns that are normally omitted in 

high-complexity medication diseases and give more 

semantics and interpretability to identified patterns. 

Traditional machine learning methods (e.g., non-deep 

learning methods) are also powerful tools for mining 

knowledge from EMR data. Reference [31] demonstrates a 

framework for identifying subjects with and without T2DM 

from EHRs with relatively high accuracy and performance. 

This framework integrates several machine learning 

methods, such as the k-Nearest-Neighbors, Naïve Bayes, 

Decision Tree, Random Forest, Support Vector Machine 

and Logistic Regression. Based on k-means clustering and 

EMR data, Rajkomar et al. [32] characterized the utilization 

patterns of primary care patients and created weighted 

panel sizes for providers based on the work required to care 

for patients with different patterns. Reference [19] 

classified obesity and obesity types in thousands of EMRs 

by using the Support Vector Machine (SVM) and Naïve 

Bayes models, and the experimental results indicate that the 

SVM performs better. Reference [33] proposed a flexible 

hierarchical Bayesian nonparametric model to cluster 

medical data into groups. This work was inspired by the 

structure of ICD codes that can present semantic 

relationships between different diseases. Similarly, an 

improved Latent Dirichlet allocation (LDA) model [34] that 

is also a probabilistic model was applied to discover the 

changing trends of medical behaviors over time from 

EMRs. The above machine learning models provide 

effective ways to mine knowledge from EMRs. However, 

they are context sensitive, since the same model always has 

different results in different EMR mining scenarios. These 

models require more robustness. 

Following the LDA model, Reference [35]-[37] proposed 

the latent treatment pattern discovery model based on the 

treatment logs to analyze the EMRs of cardiovascular and 

cerebrovascular diseases. Although the temporal 

dimensions are important in clinical practice, the LDA has 

limited capability of identifying the time sequence of 

treatment activities from the medical logs. To solve this 

problem, Reference [36]-[37] used the tuple <timestamp, 

activity> to identify a single treatment activity in the LDA 

model. In this paper, we discovered medication patterns 

from EMRs in hepatocirrhosis ascites diseases. The pure 

LDA model could not adequately identify the medication 

patterns for hepatocirrhosis ascites. Since there are many 

complexities among treatments for different patients with 

this disease, the medication treatments for some patients 

always have subtle variances, and drug uses are always 

highly mixed. Moreover, traditional LDA-based methods 

cannot compare the relative importance of the treatment 

between different patient groups/patterns. According to the 

real data test in the following section of this paper, the 

proposed framework and methods effectively discovered 

the distinct medication patterns with minor differences for 

this disease with highly complex medication patterns. 

Furthermore, the time-density-reduction method can 

support the relative importance of the same drug in 

different medication patterns. 

III. FRAMEWORK AND METHOD TO DISCOVER 
LATENT MEDICATION PATTERNS 

A. GENERAL METHOD TO DISCOVER THE 
MEDICATION PATTERN 

Generally, four steps are needed to discover treatment 

patterns in EMR text, as shown in Figure 1. These steps 

include data extraction, data pre-processing for 

classification, medication data clustering and medication 

pattern recognition. 

In the first step, the challenge lies in precisely extracting 

meaningful data from the EMR text. An EMR is a kind of 

professional and technical document written by physicians 

in a natural language. Therefore, the key question is where 

to cut or split a sentence into meaningful words and 

phrases. In the English language, two words are separated 

by spaces. However, there are no spaces in Chinese 

sentences to separate words. Thus, the effectiveness of 

word segmentation determines the accuracy of the data 

extracted from EMRs. In the second step, the extracted data 

in the form of numbers, words and phrases are transformed 

into a format that the computer can process, such as a word 

matrix. In the third step, a medication data framework 

classifies the extracted drugs into different groups. 

However, in order to reveal the clinical meaning from the 

clustered data, the fourth step recognizes the medication 

pattern. 

Based on the general process above, we developed a 

hybrid medication pattern discovery method by introducing 

the LDA model and the special clustering algorithm. Figure 

2 describes the mining process that will be elaborated upon 

in the subsequent section. 

B. BASIC PROCESSING STEPS 

Data segmentation and extraction is the basic processing 

step that begins the mining process. Although Chinese is 

slightly different from English in an NLP analysis, 

extracting drug use situations is easier than extracting other 

elements (i.e., the description of an illness) in EMR free 

text. This is because the name of the drug is stable and 

consistent. To extract Chinese drug treatment content from 

EMR text, we used a medicine dictionary provided by our 

collaborative hospital to extract the names of drugs. 

Following the names of drugs in EMR text, there are usage 

instructions, such as the specific drug usage time and 

duration. We used key words to automatically extract this 

information. Figure 3 shows an example that extracts 

necessary data from EMR text. In this example, red words 
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(English) / characters (Chinese) are key words that can be used to locate corresponding information in the sentence. 

The drug name can be extracted from the sentences using a 

dictionary. 

C. PATTERN DISCOVERY WITHOUT TIME SEQUENCE 

1) REPRESENT THE MEDICATION TREATMENT OF 
PATIENTS WITH A P-M MATRIX 

Based on the extracted data from EMRs, we used a two-

dimensional matrix to represent the medication process for 

each patient. Columns of the matrix indicate the day of the 

treatment in the hospital, and each line indicates a drug. 

Assume  is a P-D (Patient-Drug) matrix of patient , and 

ij
is an element in . Then, ij

=1 if this patient used drug i 

on the jth day, and otherwise ij
=0. 

Note that the size of these matrices may be different since 

different patients may have different lengths of stay (LoSs). 

Figure 4 gives two medication matrices with different sizes 

for Patient x and Patient y, where the LoS is 10 days and 12 

days for Patient x and Patient y, respectively. 

The size discrepancy of the P-D matrix has increased the 

challenge of comparing the similarities among matrices. 

Although the P-D matrix is an important way to represent 

and store the medication process, it is difficult to directly 

cluster the medication treatments of different patients using 

the P-M matrix. One possible way is to drop the time 

information from the matrix when calculating the similarity 

and clustering of the medication patterns. In the following 

steps, we clustered the medication cases without 

considering timestamps. 

2) MEASURE THE SIMILARITY OF PRESCRIBED 
MEDICATIONS WITH THE JACCARD SIMILARITY 
COEFFICIENT 

Similarity is an important factor that can cluster patients 

with similar medication treatments. To measure the 

similarity of the medication experiences of patients who 

have different LoSs, the Jaccard index [38] is introduced, 

and the time information is dropped. The Jaccard similarity 

coefficient J is defined as equation (1): 

| |
( , )

| |

A B
J A B

A B
    (1) 

where A and B are sample sets. The definition can be 

understood as the size of the intersection divided by the size 

of the union of the sample sets. The similarity of sets A and B 

can be acquired by (2). 

| | | |
( , ) 1 ( , )

| |
d

A B A B
J A B J A B

A B


     (2) 

in which Jd (the Jaccard Distance) is the distance between A 

and B. 

According to equations (1) and (2), we calculated the 

similarity of medication treatments of different patients based 

on a P-M matrix. A Patient-Patient Matrix (P-P Matrix) can 

describe the similarity degree. For illustration, we extracted 

part of the patients into a P-P Matrix PJ shown in (3), which 

included 20 patients. 

20*20

46.2 13 26.7 18.8 20 22.6 3.8 13.5 16.7 9.1 14.3 17.6 26.9 19.4 14.8 27.6 21.1 20.61 24

13 18.8 15.2 25 18.8 3.8 20 17.1 18.5 25 22.2 16.2 19.2 23.3 17.9 24.2 19.21 14

23.8 18.2 10 15.6 2.5 19.1 23.5 19.2 12.2 25.6 23.7 16.3 20.6 13.3 17.6 27.1

PJ 

9 15.4

31 11.1 22.6 0 16.7 16.7 9.1 14.3 14.3 43.5 22.9 14.8 23.3 27.8 20.61 24

20 35.7 3.8 27.3 19.5 6.7 23.1 17.6 43.5 26.5 19.2 27.6 27.8 20.61 24

20 0 21.4 7.9 11.1 33.3 23.1 19 12.9 12.5 26.1 15.2 22.2 21.11

3.8 31.3 25.6 11.6 18.5 17.6 32 26.5 17 321 .1 27.8 24.2 29.2

3.3 2.7 5.7 0 0 0 3.2 2.9 0 01 2 4
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37.2 10.3 21.4 25.7 22.7 32.7 23.1 26.7 30 16.71

7.7 10.3 10.4 26.3 9.3 14.3 18.6 5.11 22

25.9 28.6 27.6 14.3 17.6 25 191 24

25 21.6 28 21.9 23.1 48.1 3 22.2

46.2 21.3 33.3 36.7 33.3 36.81

24.1 31.3 34.2 27.8 33.31

27.1 27.3 32.7 171

36.4 33.3 501

32.4 25.81
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(3) 

It can be seen that an adjacent matrix (3) is symmetric, and 

each element pjab in PJ indicates the medication similarity 

between patient a and patient b. 

3) CLUSTER THE PATIENTS WITH SPECTRAL 
CLUSTERING 

Based on the similarity measurement, we can obtain a graph, 

PG, where all of the patients are connected with each other 

under certain edge weights. The weight value is the similarity 

between two patients. Now, the problem of clustering these 

patients can be solved by cutting the graph into several sub-

graphs. Each of the sub-graphs represents a patient cluster in 

which the patients probably have similar medication 

treatments. 

During patient clustering, the aim of cutting is to minimize 

the weights of the connection between two sub-graphs while 

the weights of the connections inside the sub-graphs are high. 

Thus, we introduced a special clustering model called 

Normalized Cut (N-cut) [39]. Considering the connection 

between the relative density of each group, an N-cut (Ncut) 

can be described as (4): 

( , ) ( , )
( , )

( ) ( )

cut C D cut C D
Ncut C D

vol C vol D
   (4) 

where C and D are sample sets, vol is the volume in each 

sample set, and cut is the sum of the weight of the edges that 

are cut. vol and cut can be calculated via (5), (6), and (7): 

,

( ) ij

i C j V

vol C w
 

                           (5) 

,

( ) ij

i D j V

vol D w
 

                           (6) 

,

( , ) ij

i C j D

cut C D w
 

                                (7) 

To get clusters, the method needs to find the cutting place 

in the graph to minimize the value of Ncut. The resolution of 

the problem min(Ncut(C, D)) can refer to [39]. 

Figure 5 gives an example of clustering patients by using 

spectral clustering. Assume and  are patients, 

and the edges are the similarities that are obtained by the P-P 

javascript:void(0);
javascript:void(0);
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Matrix. By cutting the edge with the weights of 0.2 and 0.3, 

Ncut(C1, C2) can reach the minimum value. Thus, the six 

patients are separated into two clusters, and the patients in the 

same cluster have similar medication conditions. 

Generally, the patient clustering process can be described 

as follows. 

Step 1: Input the similarity matrix PJ and the number of 

clusters K. 

Step 2: Calculate the diagonal matrix D and the symmetric 

matrix of PJ. Then, obtain the Laplacian matrix L and L’, 

where L=D-A, L’=D-1/2LD-1/2. 

Step 3: Calculate the eigenvalue and eigenvector of L’: 

Ve={ve1, ve2, …, vem}. 

Step 4: Cluster patients according to the first K eigenvector 

VK={ve1, ve2, …, vek}. 

Note that in Step 1, the number of clusters is required. The 

number of clusters can be acquired by the LDA method, 

which we illustrate in section 3.3.4. In Step 4, a clustering 

method, such as K-means, is required to develop the final 

clustering result. 

The rule of acquiring Spectral Clustering is as follows: 

Rule of spectral clustering the patients: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rule of acquiring Spectral Clustering is as follows: 

 

4) LDA MINING 

LDA [40] is a generative probabilistic model for collections 

of discrete data, such as text corpora. It is a three-level 

hierarchical Bayesian model where each item of a 

collection is modeled as a finite mixture over an underlying 

set of topics. 

LDA models have proven effective in revealing the 

mixture risk and medical behavior trends from EMRs [34]-

[41]. We propose using the LDA to calculate the similarity 

degree of each medication trace to cluster drugs into different 

groups. In EMR text mining using the LDA, the EMR text 

for a patient can be seen as a document; the name of a 

medication can be seen as a word; and the latent medication 

patterns can be seen as the topics to be discovered. However, 

in practice, physicians always use the format of <name of the 

drug: frequency in one day, duration of the days> to record 

the medication process in EMR text. Therefore, when 

sampling the name of drugs, we should label the drug name 

in each day of the medication duration. Figure 6 is the 

medication pattern discovery probabilistic graphical model 

based on LDA. 

Similar to the new document generation process in the 

LDA model, the medication (drug) generation process is as 

follows. 

Step 1: Randomly choose a distribution Φ for a medication 

pattern, where Φ is subject to a Dirichlet Distribution with 

parameter β (Φ~Dir(β)). 

Step 2: Randomly choose a distribution δ for a medication 

pattern and drug use frequency, where δ is subject to a 

Dirichlet Distribution with parameter v (δ~Dir(v)). 

Step 3: Randomly choose a distribution ρ for a medication 

pattern and drug use duration, where ρ is subject to a 

Dirichlet Distribution with parameter w (ρ~Dir(η)). 

Step 4: Randomly choose a distribution θ for a patient’s 

medication treatment D, where θ is subject to a Dirichlet 

Distribution with parameter α (θ~Dir(α)). 

Step 5: Choose D drugs by repeating the following three 

sub-steps. 

Sub-step 5-1: Probabilistically draw a medication 

pattern z from a multinomial distribution θ (z~multi(θ)). 

Sub-step 5-2: Probabilistically draw a drug use 

frequency l from δ. 

Sub-step 5-3: Probabilistically draw a drug use duration 

f from ρ. 

Based on the model and steps above, Gibbs Sampling is an 

efficient method to resolve the LDA-based problem [42], 

[43]. Following the idea of Gibbs Sampling method, we need 

to acquire p(z,w,f,l|,,v,η) and the conditional probability 

distribution of drug i over medication pattern k. This 

probability can be represented by p(zi=k|zΓi,w,f,l,,,v,η), 

where zΓi is the medication pattern distribution without drug 

i. Finally, we can get the probability of drug i over a certain 

medication pattern when Gibbs Sampling is convergent. 

According to Figure 6, we can obtain the following joint 

probability: 

 , | , , ,p z w, f,l, v      
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Integer k; 

 //W is a P-P Matrix 

Array W[n][n]; 

Get W[n][n]; 

Array D[n][n]; 

For i=0 to n-1 

   For j=0 to n-1 

      If i=j 

         D[i][j]=W[i][0]+W[i][1]+......+W[i][n-1]; 

      Else 

         D[i][j]=0; 

Array L[n][n]; 

For i=0 to n-1 

   For j=0 to n-1 

      L[i][j]=D[i][j]-W[i][j]; 

Array SL[n][n]; 

SL[n][n]=D[n][n]1/2L[n][n]D[n][n]1/2; 

Array F[n][m]; 

Find the m smallest eigenvalues and the 

corresponding eigenvectors of F[n][m]; 

F[n][m]=All of the eigenvectors; 

Get k clusters by K-Means(F[n][m],k) 
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in which ( ) is a Dirichlet delta function and ( )

1={ }c C

cn n
 

 

is the count of allocating the medication pattern c to patient  

Similarly, we can use the following equations. 
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where ( )v  , ( )v  , and ( )v v  are Dirichlet delta 

functions; ( )

1={ }w W

c c wm m 
 is the count of allocating drug w to 

medication pattern c; ,

, 1{ }w m W

m c c wx x   is the count of 

allocating drug w with using frequency m to medication 

pattern c; and ,

, 1{ }w q W

n c c wy y   is the count of allocating drug 

w with use duration q to medication pattern c. 

Therefore, the joint probability (8) can be represented by 

(13): 
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According to the characteristic of the Gamma function that 

Γ(+1) = Γ(+1), we have (14): 
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Thus, the Gibbs Sampling parameters 


, 


, 


, and 


 

are acquired, and we can use these parameters to calculate 

the distribution of medication patterns. The medication 

discovery pattern is the reverse of the medication (drug) 

generation process. 

Note that the parameters of Gibbs Sampling and the 

number of clusters (namely, the number of patterns to be 

classified) should be given as input parameters when using 

the LDA-based method. Traditionally, this parameter can be 

determined by the index of perplexity [40] and the real 

medication scenario. However, some studies [44], [45] 

concluded that perplexity is not always the best way to 

determine the number of clusters, and it is sometimes slightly 

uncorrelated with human judgement. Therefore, in this 

framework, we recommend determining the number of 

clusters by using actual clinical scenarios. However, 

perplexity is also acceptable to evaluate the number of 

clusters when necessary. In IV-B-2, we give an example of 

determining the number of clusters using real scenarios. 

5) CROSS MATCHING FOR MAXIMAL PATTERN 
COVERAGE 

In the EMR text analysis process, the Spectral Clustering 

method can separate the low weight linkages between 

patients with low similarity and formulate groups of patients 

with high similarity. The LDA-based method can calculate 

the similarity degree of each medication history of patients 

and then cluster drugs into different groups of different 

medication patterns. Note that in the LDA-based method, the 

same drug may appear in different patterns with different 

memberships. As shown in Figure 7, the medication patterns 

generated by the LDA-based method may overlap, while the 

Spectral Clustering method separates patients without any 

overlap. 

As mentioned above, apart from explicitly recognizable 

differences, there are many subtle medication variances 

among different patients with similar cirrhotic ascites 

treatments. This variance has increased the medication 

complexity since physicians always use drugs with different 

functions in similar treatment episodes in practice. However, 

there are very few existing clinical pathway guidelines 

distinguishing such variances in medical processes. To 

discover those medication patterns hidden among these 

medical logs and additional clinical knowledge with less 

distinct features, we cross-matched the feature results of 

Spectral Clustering and the LDA-based methods with their 

cluster sets. This approach was inspired by multiple 

clustering related studies [46] that emphasize integrative 

clustering methods to find more stable and robust solutions 

rather than a single subset with a single algorithm with a 

single validity metric. For example, consensus clustering 

takes multiple subsets of a dataset and uses repeated 

predictions of cluster assignments to gauge stability [47]. 

HOPACH [48] recursively partitions a dataset while seeking 

to optimize a clustering measure. Both of these methods 

improve on previous single methods by repeatedly 

examining sub-clusters of a dataset. Moreover, the 

COMMUNAL method [46] proved that integrating 

information from multiple clustering algorithms and multiple 

validity measures would improve the signal and assist in 

determining stability. In other words, if the number of 

clusters is determined, cross matching on different clustering 

results may increase the focus of each cluster and enlarge the 

gap between different clusters. To let the discovered 

medication patterns represent typical clinic meanings, 

maximal coverage to represent the hidden knowledge that 

was lost in single clustering is the objective of cross 

matching, especially in complicated medication processes. 

The rules of cross matching are described as follows. 

Rules of cross matching 
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D. MEDICATION PATTERN DISCOVERY WITH TIME-
IMPORTANCE 

The results acquired by clustering lack time information 

since LDA is a word-bag-based method. To mine more 

meaningful information related to medication patterns and 

for the integrity of the framework, this section provides a 

basic method to discover more information from temporal 

sequences and evaluate the relative importance of the same 

drug in different patterns. As denoted in the P-D matrix, the 

LoSs of different patients vary, which makes measuring the 

changing drug usage in the same time scale more difficult. 

For example, a patient used drug A for 3 days during his/her 

total 3 day stay, while another patient used the same drug for 

6 days during the first days of his/her 20 day stay. How can 

we compare the drug use modes in this context? In this 

scenario, we propose a time-density-reduction method to 

evaluate the temporal drug use characteristic. In this method, 

we extended the LoSs of patients whose LoSs were shorter 

than the maximum LoS to make the medication process even. 

Following the above example, the LoS of 3 is extended to 20 

days, and he/she uses drug A, D, B, and C throughout the 20 

days all the time at the same frequencies. Figure 8 illustrates 

the time-density-reduction. In this figure, the LoS of Patient x 

is extended to the same as that of patient y. For the P-D 

matrix, the time-density-reduction is equivalent to the 

extension on the columns. 

After standardizing the LoSs of different patients to the 

same time scale, more work is required to discover 

medication characteristics according to the scenario’s needs, 

such as the drug use period of a certain patient group. Note 

that there are also negative effects in the method of time-

density-reduction. One problem is the distortion of absolute 

drug use quantity, which means that the processed data 

cannot be used for calculating or comparing the absolute 

drug use quantities of different patients. In this scenario, we 

are still able to evaluate the relative importance of drugs in 

different patterns. For example, in Figure 8, the absolute days 

of using drug D for Patient x is smaller than that of Patient y, 

whereas the stretched Patient x has a longer use period than 

Patient y. This indicates that Drug D plays a more important 

role in the treatment of Patient x than of Patient y, which we 

call the ‘time-density-reduction versus importance’ 

phenomenon. 

IV. REAL DATA ANALYSIS 

In this data experiment, we selected the patients with 

cirrhotic ascites. Ascites is the most common complication of 

cirrhosis, and 60% of patients with compensated cirrhosis 

develop ascites within 10 years during the disease’s 

progression [49], [50]. Ascites formation is the signal that the 

illness has progressed into a decompensated period that is a 

serious stage and requires treatment with medications. 

Medication for ascites always varies among patients with 

complex subtle differences with both known and unknown 

clinical knowledge. Recognizing all the medication variances 

are also an important part of the whole treatment process for 

many internal medicine diseases, and it is one of the most 

crucial components in clinical pathway guideline 

development. 

A. DATA SET AND DATA PRE-PROCESSING 

Following the above methods, we analyzed real EMR text 

from a major hospital in China. We included 998 inpatient 

EMRs from June 2014 to July 2016. All EMRs were from 

patients with hepatocirrhosis ascites, which means these 

patients have a main diagnosis of liver cirrhosis (ICD code: 

K74.151) and a secondary diagnosis of ascites (ICD code: 

R18), excluding the cases caused by hepatic carcinoma. In 

these data, we further excluded the patients who were 

transferred or dead and kept the ones that obtained effective 

treatment before being discharged from the hospital. 

The data were cleaned and anonymized before analysis, 

which means the patients’ personal information, such as 

name, age, address, and phone number, were removed. The 

//LDAClus[i][0]←patientId  

LDAClus[i][1]←meditation-pattern-Id 

Array LDAClus[][]; 

//SpectralClus[i][0]←patientId  

SpectralClus[i][1]←meditation-pattern-Id 

Array SpectralClus[][]; 

LDAClus[][]←Get data from LDA Clustering result; 

SpectralClus[][]←Get data from Spectral Clustering 

result; 

//match[i][0]←meditation-pattern-Id of LDA 

Clustering 

//match[i][1]←meditation-pattern-Id of Spectral 

Clustering 

//match[i][2]←total number of patients that 

LDAClus[x][0]=SpectralClus[y][0] 

//Assume that there are N meditation-patterns 

after clustering 

Array match[N*N][3]; 

For i=1 to |LDAClus[]| 

     where match[x][0]=LDAClus[i-1][0] and 

match[x][1]=SpectralClus[i-1][0] 

           match[x][2]++;  

//match[X1][0]∪match[X2][0]∪...∪

match[XN][0]=


1-

0

]1][[lu
N

i

isLDAC  

//match[X1][1]∪match[X2][1]∪...∪

match[XN][1]=


1-

0

]1][[lupectral
N

i

isCS  

Find 

max(match[X1][2]+match[X2][2]+...+match[XN][2]); 

Find the information of patients that belong to new 

cross matching patterns; 

Re-clustering N new meditation patterns 
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patient ID was re-coded so that it would be hard to backtrack 

the ID to the original patient but still be able to identify a 

unique patient. Figure 9 gives an example of patient ID 

obfuscation. 

Based on the masked data, we extracted the medication 

information from the text. During this process, we paid 

attention to the duration and frequency of drug use. Namely, 

the appearance of a drug name in one patient treatment 

record was in the format of frequency and duration. 

However, according to the advice of physicians in this data 

experiment, we ignored the frequency of the drug used in one 

day because the frequency is always concerned with the 

degree of the illness and the dosage of drug, which is less 

important to the clinical pathway and medication scheme. 

Thus, for each patient, the processed EMR data took the form 

of a drug list with time stamps. 

B. MEDICATION PATTERN DISCOVERY 

1) P-M MATRIX 

In this process, we first established the P-D matrix for each 

patient and calculated the similarity between different 

patients using the Jaccard Index. Figure 10 is scatter 

diagrams of the P-D matrix from real data. In Figure 10, the 

vertical axis is the drug, and each drug is coded as a number. 

The horizontal axis is the LoS, which indicates the time that 

the drug was used. 

2) LDA-BASED MEDICATION CLUSTERING 

Based on pre-processed medication data from the EMR text, 

we used the LDA-based model to extract latent medication 

patterns. Table 1 shows the patterns discovered from this 

process. In this work, parameters α, β, δ, and ρ were set to 

0.1, 0.01, 0.01, and 0.01, respectively, which are commonly 

used values in previous studies [40], [41], [51]. As for the 

number of patterns, we evaluated it from the repetition and 

representation. Figure 11 is the evaluation results of 

repetition and representation. The horizontal axis is the 

number of patterns; the left vertical axis is the representation 

degree; and the right vertical axis is the repetition. The dotted 

line represents repetition, and the solid line is representation. 

Repetition reflects the ratio of drugs that repetitiously appear 

in different clusters to the total drugs that in all patterns. The 

higher the value, the more overlap among different clusters. 

The treatments for cirrhotic ascites are similar. According to 

the physician’s advice, the number of patterns should be as 

small as possible. Figure 11 indicates that the repetition value 

is similar when the pattern number is in the range of 3 to 10. 

If the number of patterns continues to decrease, the repetition 

rapidly rises. Therefore, three patterns are an optimal solution 

in this context. Moreover, the representation data indicate 

that the drugs in the patterns are more representative than 

other cases when there are three patterns. Thus, we selected 3 

as the number of patterns. 

In the LDA-based method, a patient can belong to 

different clusters with different memberships. This is the 

point that we mentioned at the beginning of the paper: some 

methods are difficult to cluster the patients with subtle 

treatment variances under similar symptoms. In this case, we 

first clustered them into the different patterns according to 

their highest membership. Then, in the following steps, we 

performed cross matching to ensure that the distinct 

characteristics of the medications among different patients 

were focused. The cross-matching results are given in the 

next section. 

Figure 12 shows the results of the LDA-based patient 

clusters. The round is composed by all patient IDs. Each line 

establishes the similarity link between two patients, and the 

lines in different colors indicate the cluster to which a patient 

belongs. 

Figure 13 is the fingerprint map of the LDA-based patient 

cluster. The three bars demonstrate the patients clustering 

results acquired by the pure LDA method. We clustered the 

patients into three groups. The dark blocks indicate a high 

membership weight of the corresponding cluster to which a 

patient belongs, while the light blocks represent a low 

membership weight. The patients are sequenced by ID on the 

horizontal axis. 

3) SPECTRAL CLUSTERING 

Based on the P-M matrix, we calculated the Jaccard 

similarity index and acquired the P-P matrix. Since the 

matrix was huge, we displayed the matrix using a heat map, 

as shown in Figure 14. In this figure, the deep colors 

represent weak similarity, and the light colors represent 

strong similarity. 

According to the P-P matrix and the evaluation of cluster 

numbers above, we clustered the patients into 3 groups using 

the Spectral Clustering method as shown in Figure 15. 

4) CROSS MATCHING AND MEDICATION PATTERNS 

Based on the data processing result in section 4.2.1 and the 

initial clustering results in 4.2.2 and 4.2.3, we cross-matched 

the features and clustering sets between the Spectral and 

LDA-based clustering methods to acquire the medication 

patterns, as shown in Table 1. We used two different 

methods to acquire the Spectral Clustering results. One 

method was K-means (KM) based, and the other method was 

the discretize (DIS)-based method. According to the results, 

the two approaches yielded similar results. Therefore, in the 

following discussion, we only used the results from the K-

means-based method marked with gray shading in Table 1. 

As shown in the table, we acquired three medication patterns 

with focused clinical meanings and discovered a previously 

unexplored mixed pattern. Technically, the mixed pattern 

represents the datasets that are only covered by one 

clustering method (either LDA or spectral) and represents the 

residual knowledge, as shown in white areas of Figure 7. 

From a clinical point of view, the patients with relatively 

complex diseases require treatment with more combinations 

of various drugs. For these patients, the medication treatment 

patterns are vague and difficult to be classified into the above 

patterns. Note that in most of the current methods, all of the 

sample patients are classified into one specific group. 
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Although this might be possible from the view of data 

mining, the clinical meaning for each cluster is not always 

clear. Our method outperforms existing methods in 

identifying major distinct patterns and mixed patterns. In 

Table 1, the names of drugs are marked with different 

symbols to indicate the clinical functions. Clinical functions 

are an important clue to identify the clinical meaning of each 

medication pattern. The discovered medication patterns 

represent drugs that provide liver protection, have antiviral 

activity, and ease ascites. The drug in each pattern is listed by 

the sequence of the use probability. 

5) MEDICATION PATTERNS WITH TIME-SEQUENTIAL 
CHARACTERISTICS 

Following the medication pattern discovery, we analyzed the 

time characters in these patterns. Based on the time-density-

reduction method, we divided the LoS of each patient into 40 

segments and calculated the medication process based on the 

discovered patterns. For example, the medication process of 

a patient with a 20-day-LoS will be divided into 40 pieces 

since 0.5 day is the calculation unit. Figure 15 to Figure 17 

show the medication conditions for each pattern with time 

characteristics. The vertical axis indicates the percentage of 

patients in the corresponding pattern. The patient number 

here is not the absolute amount but is amplified by the time-

density-reduction method. 

As noted above, due to the time-density-reduction method, 

some drugs that appear in Figures 16-18 were not included in 

the patterns in Table 1. According to the ‘time-density-

reduction versus importance’ phenomenon, these drugs are 

the drugs often used by patients with short LoSs. For 

instance, in Figure 16, Spironolactone Tablets are the drug 

used by most of the amplified patients (patients with 

extended LoSs). However, Spironolactone is not included in 

medication Pattern 1 in Table 1. Therefore, we concluded 

that most of the patients who belong to Pattern 1 and are 

given Spironolactone Tablets have short LoSs, and this 

medicine is more important for patients in Pattern 1. 

According to the medication characteristics in each 

pattern, we chose 6 typical drugs (Furosemide Tablets, 

Furosemide Injection, Ursofalk Capsule, Leucogen Tablets, 

Insulin R Injection, and Coenzyme Complex for Injection) to 

further analyze the medication patterns. The reason for 

selecting these 6 drugs is that they appeared in more than one 

pattern, and all of them have high usage probabilities. 

Figures 19 through 23 show the analysis results where the 

vertical axis represents the proportion of patients using the 

corresponding drug, and the horizontal axis represents the 

unified LoSs (which can be understood as timing sequences). 

Figure 19 and Figure 20 are both the usage characteristics 

of Furosemide, which is a diuretic drug. Figure 19 shows the 

results of Furosemide Tablets, and Figure 20 shows 

Furosemide Injections. In Figure 19, the drug usage 

characteristics are similar, but minor differences exist in the 

different patterns. In Figure 20, significant differences appear 

among the patterns. The proportions of patients who use 

Furosemide Injections in Pattern 1 and Pattern 2 are higher 

than those in Pattern 3. Furosemide is a diuretic drug, but 

patients who need the treatment to alleviate ascites use less 

Furosemide. One reasonable explanation is that Furosemide 

Injections are stronger than Furosemide Tablets. Therefore, 

the Furosemide Injection is always used as a short-term and 

effective medication treatment for patients without serious 

ascites. Furthermore, the patients with serious ascites take 

Furosemide Tablets for long-term and surgical treatments. 

Figure 21 illustrates the drug use characteristics of the 

Coenzyme Complex for Injections. Clearly, huge differences 

exist in these patterns. The high usage proportion indicates 

that the Coenzyme Complex for Injections is a very 

important drug for the patients in Pattern 2. According to the 

function of the Coenzyme Complex for Injections, it is 

mainly used for curing hepatitis, and the results in Figure 21 

are completely consistent with the clinical meaning of Pattern 

2. 

Figure 22 and Figure 23 show the drug usage of Leucogen 

Tablets and Insulin R Injections. Both of them are commonly 

used for patients with cirrhotic ascites, especially for 

complications during the medication treatment. These results 

reveal that Leucogen Tablets are more important in Pattern 1 

and Pattern 2, and Insulin R Injections are more important for 

patients in Pattern 3, especially in the middle and later 

treatment periods. 

6) EVALUATION OF THE MEDICATION PATTERN 
DISCOVERING FRAMEWORK 

Based on the experiment above, we evaluated the patterns 

discovered from the EMR text using the proposed 

framework. Figure 24 is the comparison of the performances 

of different medication mining methods. The bars in this 

figure are the clustering results acquired by the pure LDA, 

pure Spectral Clustering, and the proposed frameworks, 

respectively. We used light green, dark green and black 

blocks to represent the patients in Pattern 1, Pattern 2, and 

Pattern 3, respectively. The patients are sequenced by their 

IDs on the horizontal axis. The first bar represents the LDA 

clustering results based on the membership weight shown in 

Figure 13. The second bar shows the results of Spectral 

Clustering. The last one shows the results of our proposed 

method in which the white blocks represent the patients 

filtered by cross matching the features and clustering sets 

between the Spectral and LDA methods. Obviously, 

approximately half of the patients have similar memberships 

in different clusters, which are difficult to separate. Cross 

matching plays an important role in filtering the confusing 

items from the whole data set. 

The key goal of the proposed method was to discover 

medication patterns. Figure 25 and Figure 26 are the 

comparisons of the drugs from different patterns acquired by 

the LDA and proposed methods. In these two figures, we 

classified the drugs into four function groups represented by 

different color blocks. Those groups represent liver 
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protection (yellow, one star in Table 1), antiviral (red, two stars in Table 1), ascites treatment (blue, three stars in Table 

1), and other functions (white, no star in Table 1). For the 

patterns discovered by the pure LDA methods in Figure 25, 

we see that it is difficult to distinguish the functional patterns. 

All three patterns have high probabilities to use the drugs that 

function to protect the liver. This indicates that the 

characteristics of the patterns are not distinct and obvious. In 

the results acquired by the new proposed method in Figure 

26, each discovered medication pattern has a distinct focus 

on drug functions, starting with different color blocks. The 

starting blocks indicate the drug function with the highest use 

probability in the corresponding pattern. By using cross 

matching, some medication treatments with similar drug use 

are separated. We further analyzed these patients and 

acquired the distribution of drug use probability shown as the 

last three bars in Figure 26. The filtered medications have 

mixed drug use conditions. 

V. DISCUSSION AND CONCLUSIONS 

Based on the real EMR textual data from patients with 

cirrhotic ascites, we proposed a medication pattern discovery 

framework to help physicians make clinical decisions based 

on medication patterns. This study effectively identified the 

medication patterns from EMRs, especially for diseases with 

minor treatment variances from complex medication 

treatments. For example, ascites cirrhosis is a common 

disease, but the clinical practice guidelines released by EASL 

(European Association for the Study of the Liver) [49] are 

different from AASLD (American Association for the Study 

of Liver Diseases) [52]. Both of these associations give 

professional and official clinical guidelines in their respective 

regional area. The question is which one performs better for 

which groups of patients. Regardless of the type of illness, 

similar questions also arise among different hospitals and 

physicians. Every hospital may have its own specific clinical 

guidelines or clinical pathways based on authoritative 

doctors. Moreover, each physician probably has his/her own 

clinical treatment style under the guideline. In consideration 

of those variances, in recent years, physicians and researchers 

have increasingly focused on personalized pathways to 

acquire better curative effects [53], [54]. Physicians 

acknowledge the importance of standard or reference clinical 

pathways, but they also argue that more attention should be 

paid to the most suitable treatment for a specific patient 

rather than a universal standard. 

Current existing methods can hardly classify the latent 

drug use patterns in the above scenarios. The proposed 

method is based on the Jaccard index, Spectral Clustering 

and modified LDA method. By cross matching, the clustered 

results are well focused on the specific medication patterns 

with little overlap. This framework filters some medication 

treatments with high mixed drug usage and then clusters 

them into a distinct single group. It is different from the 

current methods in which all sampling data have to be 

classified into one certain group. 

Mining medication treatment patterns is helpful in the 

process of predicting clinical history, and medication 

treatments are an important component in clinical pathway 

development. In the ongoing and following future work, we 

plan to address the following. 1) We may introduce more 

types of data into the clustering process, such as the 

examination results during the LoS, which can evaluate the 

effects of corresponding medication processes and mine the 

best-fit treatment pattern for corresponding patient groups. 2) 

In this paper, we only consider the medications in the 

treatment process. In the future, we will consider more kinds 

of treatment contents, such as clinical examinations, bedside 

operations, and even nursing contents. These contents are all 

necessary components of the clinical pathway. 3) We are 

working on a clinical decision support system that integrates 

the methods that we have developed. The input data of this 

system is EMR text, and the outcomes are the medication 

knowledge hidden in the EMR text. We performed initial 

work (as shown in Figure 27) based on the proposed method 

in this paper. One specific format of the decision support 

system is that a facility needs to be able to automatically 

recommend clinical pathways with corresponding analyzed 

data and confidence degrees based on the imported EMR 

data. 

REFERENCES 
[1] R. B. Haynes, D. L. Sackett, W. S. Richardson, W. Rosenberg, and G. 

R. Langley, “Evidence-based medicine: How to practice & teach 
EBM,” Can. Med. Assoc., J., vol. 157, no. 6, pp. 788, Sep. 1997. 

[2] J. E. Bibault, P. Giraud, and A. Burgun, “Big data and machine 

learning in radiation oncology: state of the art and future prospects,” 
Cancer Lett., vol. 382, no. 1, pp. 110-117, Nov. 2016. 

[3] C. Chen, M. He, Y. Zhu, S. Lin, and X. Wang, “Five critical elements 

to ensure the precision medicine,” Cancer Metast. Rev., vol. 34, no. 2, 
pp. 313-318, Jun. 2015. 

[4] U. S. Government, “Personal health records” (PDF). CMS. Retrieved 

2012-04-14, Apr. 2011. 
[5] L. A. Seaborne, K. Hueneberg, A. Bohler, G. Schroeder, and T. White, 

et al., “Developing electronic health record (EHR)-based program to 
deliver survivorship care plans (SCPS) and visits at the UW Breast 

Center,” J. Clin. Oncol., vol. 34, pp. 56, 2016. 

[6] K. U. Kortüm, M. Müller, C. Kern, A. Babenko, and J. Wolfgang, et 
al., “Using electronic health records to build an ophthalmologic data 

warehouse and visualize patients’ data,” Am. J. Ophthalmol., vol, 178, 

pp. 84-93, Jun. 2017. 
[7] T. Delespierre, P. Denormandie, A. Bar-Hen, and L. Josseran, 

“Empirical advances with text mining of electronic health records,” 

BMC Med. Inform. Dec. Mak., vol. 17, no. 1, pp. 127, Aug. 2017. 
[8] L. Pan, G. Liu, F. Lin, S. Zhong, H. Xia, X. Sun, and H. Liang, 

“Machine learning applications for prediction of relapse in childhood 

acute lymphoblastic leukemia,” Sci. Rep., vol. 7, no. 1, pp. 7402, Aug. 
2017. 

[9] S. O. Jr, P. J. Beron, and P. N. Iyer, “Precision medicine: genomic 

profiles to individualize therapy,” Otolaryng. Clin. N. Am., vol. 50, 
no. 4, pp. 765-773, Aug. 2017. 

[10] P. Hamet, J. Tremblay, “Artificial intelligence in medicine,” Met. 

Clin. Exp., vol. 69, pp. S36-S40, 2017. 
[11] F. Wong, “Management of ascites in cirrhosis,” J. Gastroen. Hepatol., 

vol. 27, no. 1, pp. 11-20, Aug. 2012. 

[12] Z. C. Lipton, “The mythos of model interpretability,” arXiv: 
Learning, 2016. 

[13] Y. S. Kim, D. Yoon, J. Byun, H. Park, and A. Lee, et al., “Extracting 

information from free-text electronic patient records to identify 



                                                                  H. Q. Huang et al.: Discovering Medication Patterns for High-Complexity Drug-Using Diseases 

VOLUME XX, 2019 11 

practice-based evidence of the performance of coronary stents,” Plos 
One, vol. 12, no. 8, pp. e0182889, Aug. 2017. 

[14] S. V. Pakhomov, S. A. Weston, S. J. Jacobsen, C. G. Chute, and R. 

Meverden, et al., “Electronic medical records for clinical research: 
Application to the identification of heart failure,” Am. J. Manag. 

Care vol. 13, no. 6 Part 1, pp. 281-288, Jun. 2007. 

[15] K. P. Liao, A. N. Ananthakrishnan, V. Kumar, Z. Xia, and A. Cagan, 
et al., “Methods to develop an electronic medical record phenotype 

algorithm to compare the risk of coronary artery disease across 3 

chronic disease cohorts,” Plos One, vol. 10, no. 8, pp. e0136651, Aug. 
2015. 

[16] K. P. Liao, T. Cai, G. K. Savova, S. N. Murphy, and E. W. Karlson, et 

al., “Development of phenotype algorithms using electronic medical 
records and incorporating natural language processing,” BMJ Brit. 

Med. J., vol. 350, pp. h1885, Apri. 2015. 

[17] W. W. Yim, M. Yetisgen, W. P. Harris, and S. W. Kwan, “Natural 

language processing in oncology: a review,” JAMA Oncol., vol. 2, no. 

6, pp. 797-804. Jun. 2016. 

[18] E. Pons, L. Braun, M. G. Hunink, and J. A. Kors, “Natural language 
processing in radiology: A systematic review,” Radiology, vol. 279, 

no. 2, pp. 329-343, Apr. 2016. 

[19] R. L. Figueroa, and C. A. Flores, “Extracting information from 
electronic medical records to identify the obesity status of a patient 

based on comorbidities and bodyweight measures,” J. Med. Syst., vol. 

40, no. 8, pp. 1-9, Aug. 2016. 
[20] T. Cai, A. A. Giannopoulos, S. Yu, T. Kelil, and B. Ripley, (2016). 

“Natural language processing technologies in radiology research and 
clinical applications,” Radiographics, vol. 36, no. 1, pp. 176-191, Jan. 

2016. 

[21] P. C. Chang, M. Galley, and C. D. Manning, (2008). “Optimizing 
Chinese word segmentation for machine translation performance,” in 

Proc. WSMT-ACL, Columbus, OH, USA, 2008, pp. 224-232. 

[22] Z. Huang, T. M. Chan, and W. Dong, “Mace prediction of acute 
coronary syndrome via boosted resampling classification using 

electronic medical records,” IEEE J. Biomed. Health, vol. 66, pp. 

161-170, Feb, 2017. 
[23] D. Hu, Z. Huang, T. M. Chan, W. Dong, X. Lu, and H. Duan, 

“Utilizing Chinese admission records for mace prediction of acute 

coronary syndrome,” Int. J. Env. Res. Pub. He., vol. 13, no. 9, pp. 
912. Sep. 2016. 

[24] Y. Yang, Y. Cai, W. Luo, Z. Li, Z. Ma, X. Yu, and H. Yu, “An 

ontology-based approach for text mining of stroke electronic medical 
records,” BIBM IEEE Intern. Conf., pp. 288-291, Feb. 2014. 

[25] R. Henao, J. T. Lu, J. E. Lucas, J. Ferranti, and L. Carin, “Electronic 

health record analysis via deep Poisson factor models,” J. Mach. 
Learn. Res., vol. 17, no. 1, pp. 1-32, Apr. 2016. 

[26] P. Nguyen, T. Tran, N. Wickramasinghe, and S. Venkatesh, “Deepr: A 

convolutional net for medical records,” IEEE J. Biomed. Health. vol. 
21, no. 1, pp. 22-30, Jan. 2017. 

[27] Y. Cheng, F. Wang, P. Zhang, and J. Hu, “Risk prediction with 

electronic health records: A deep learning approach,” in Proc. ICDM-
SIAM, Atlantic City, NJ, USA, 2016, pp. 432-440. 

[28] R. Miotto, L. Li, and J. T. Dudley, “Deep learning to predict patient 

future diseases from the electronic health records,” in Proc. ECIR, 
Padua, IT, 2016, pp. 768-774. 

[29] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, “Learning to 

diagnose with LSTM recurrent neural networks,” in Proc. ICLR, San 
Juan, PUR, USA, 2016. 

[30] J. Liu, M. You, Z. Wang, G. Li, X. Xu, and Z. Qiu, “Cough event 

classification by pretrained deep neural network,” BMC Med. Inform. 
Decis., vol. 15, no. 4, pp. 1-10, Nov. 2015. 

[31] T. Zheng, W. Xie, L. Xu, X. He, Y. Zhang, M. You, G. Yang, and Y. 

Chen, “A machine learning-based framework to identify type 2 

diabetes through electronic health records,” Int. J. Med. Inform., vol. 

97, pp. 120-127, Jan. 2017. 

[32] A. Rajkomar, J. W. L. Yim, K. Grumbach, and A. Parekh, “Weighting 
primary care patient panel size: a novel electronic health record-

derived measure using machine learning” JMIR Med. Inform., vol. 4, 

no. 4, pp. e29, Dec. 2016. 
[33] C. Li, S. Rana, D. Phung, and S. Venkatesh, “Hierarchical bayesian 

nonparametric models for knowledge discovery from electronic 

medical records,” Knowl.-Based Syst., vol. 99, pp. 168-182, May. 
2016. 

[34] L. Yin, Z. Huang, W. Dong, C. He, and H. Duan, “Utilizing 

electronic medical records to discover changing trends of medical 
behaviors over time,” Method. Inform. Med. vol. 56, no. S01, pp. 

e49-e66, 2017. 

[35] Z. Huang, X. Lu, and H. Duan, “Latent treatment pattern discovery 
for clinical processes,” J. Med. Syst., vol. 37, no. 2, pp. 1-10, Apr. 

2013. 

[36] Z. Huang, W. Dong, L. Ji, C. Gan, X. Lu, and H. Duan, “Discovery 
of clinical pathway patterns from event logs using probabilistic topic 

models,” J. Biomed. Inform., vol. 47, pp. 39-57, Feb. 2014. 

[37] Z. Huang, W. Dong, J. Lei, C. He, and H. Duan, “Incorporating 

comorbidities into latent treatment pattern mining for clinical 

pathways,” J. Biomed. Inform. vol. 59 pp. 227-239, Feb. 2016. 

[38] C. Hennig, “Cluster-wise assessment of cluster stability,” Comput. 
Stat. Data Anal., vol. 52, no. 1, pp. 258-271, Sep. 2007. 

[39] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” 

IEEE Tran. P. Anal. Mach. Intell., vol. 22, pp. 888-905, Aug. 2000. 
[40] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” 

J. Mach. Learn. Res., vol. 3, pp. 993-1022, Jan. 2003. 

[41] Z. Huang, W. Dong, and H. Duan, “A probabilistic topic model for 
clinical risk stratification from electronic health records,” J. Biomed. 

Inform., vol. 58, pp. 28–36, Dec. 2015. 
[42] G. Heinrich, “Parameter estimation for text analysis,” Fraunhofer 

IGD, DA, DE,  Tech. Rep. Sep. 2009. 

[43] M. Magnusson, L. Jonsson, M. Villani, and D. Broman, 
“Parallelizing LDA using partially collapsed Gibbs sampling,” Stat., 

vol. 24, pp. 301-327, 2015. 

[44] J. Chang, S. M. Gerrish, C. Wang, J. Boydgraber, and D. M. Blei, 
“Reading tea leaves: How humans interpret topic models,” in Proc. 

NIPS, Vancouver, BC, CAN, 2009, pp. 288-296. 

[45] J. Chuang, S. Gupta, C. D. Manning, and J. Heer, “Topic model 
diagnostics: Assessing domain relevance via topical alignment,” 

Intern. Conf. Mach. Learn., vol. 28, no. 3, pp. 612-620, 2013. 

[46] T. E. Sweeney, A. C. Chen, and O. Gevaert, “Combined mapping of 
multiple clustering algorithms (communal): a robust method for 

selection of cluster number, K,” Sci. Rep., vol. 5, pp. 16971, Nov. 

2015. 
[47] M. D. Wilkerson, and D. N. Hayes, “ConsensusClusterPlus: a class 

discovery tool with con dence assessments and item tracking,” 

Bioinformatics, vol. 26, no. 12, pp. 1572–1573, Jun. 2010. 
[48] M. Laan, and K. Pollard, “Hybrid clustering of gene expression data 

with visualization and the bootstrap,” J. Stat. Plan. Infer., vol. 117, 

pp. 275–303, 2003. 
[49] P. Ginès, P. Angeli, K. Lenz, S. Møller, and K. Moore, et al., “Easl 

clinical practice guidelines on the management of ascites, 

spontaneous bacterial peritonitis, and hepatorenal syndrome in 
cirrhosis,” J. Hepatol., vol. 53, no. 3, pp. 397-417, Jun. 2010. 

[50] P. Gines, E. Quintero, V. Arroyo, J. Terés, and M. Bruguera, et al., 

“Compensated cirrhosis: natural history and prognostic factors,” 
Hepatology, vol. 7, no. 1, pp. 122-128, Feb. 1987. 

[51] T. L. Griffiths, and M. Steyvers, “Finding scientific topics,” in Proc. 

NAS, USA, 2004, pp. 5228-5235. 
[52] A. M. Runyon, “Management of adult patients with ascites due to 

cirrhosis: An update,” Hepatology, vol. 49, no. 6, pp. 2087-2107, 

May. 2009. 
[53] G. Fico, A. Fioravanti, M. Arredondo, J. Gorman, C. Diazzi, G. 

Arcuri, C. Conti, and G. Porini, “Integration of personalized 

healthcare pathways in an ICT platform for diabetes management: a 

small-scale exploratory study,” IEEE J. Biomed. Health, vol. 20, no. 

1, pp. 29-38, Nov. 2014. 

[54] L. Mertz, “Ready or not: personalized medicine is coming. IEEE 
pulse talks with michael snyder about its potential,” IEEE Pulse, vol. 

5, no. 3, pp. 45-47, May. 2014. 

 

 
 
 

 
 

 

 



                                                                  H. Q. Huang et al.: Discovering Medication Patterns for High-Complexity Drug-Using Diseases 

12 VOLUME XX, 2019 

Huiqun Huang was born in Guangxi Province, 

China, in 1996. She is an undergraduate student 
from School of Software Engineering, Beijing 

Jiaotong University from September 2015 to 

June 2019.  
    Her research interests include text mining, 

knowledge representation, information retrieval 

and recommendation. 
 
 

 
Xiaopu Shang got his Ph.D. from Beijing 

Jiaotong University in 2015, and received his 

B.S. degree from PLA Information Engineering 

University, China, in 2009.  
    He is presently a lecturer at Beijing Jiaotong 

University. His research interests include health 
informatics, data-driven healthcare management, 

information technology and society, and 

decision making. 
 
 

 
Hongmei Zhao got her M.S. degree and B.S. 

degree from Peking University and Beijing 

University of Chinese Medicine, Beijing, China, 

in 2015 and 2013, respectively. 
    She is presently a Ph.D. student at Beijing 

Jiaotong University, and an associate researcher 

at Peking University People’s Hospital. Her 
research interests include health informatics, 

data-driven healthcare management. 
 
 
 
Nan Wu got her B.S. degree and Ph.D. degree 

from China Medical University, Shenyang, 
Liaoning, China, in 2003, and Peking University 

Health Science Center, Beijing, China, in 2008, 

respectively. 
    She is presently an attending physician in 

Peking University People’s Hospital. Her 

research interests include health informatics, 
data-driven healthcare management. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weizi Li received her Ph.D. in Beijing Institute 

of Technology. She now is an associate professor 
of Informatics and Digital Health, Deputy 

Director in Informatics Research Centre, Henley 

Business School, University of Reading and a 
Fellow of Charted Institute of IT (FBCS). 

    Her research focuses on digital health, 

integrated system, artificial intelligence and 
machine learning applications in healthcare.  

 
 

Yuan Xu got her B.S. degree from Hebei 

University, Baoding, Hebei, China, in 2017. 
    She is presently a master student with the 

School of Economic and Management, Beijing 
Jiaotong University, Beijing, China. Her current 

research interests include group decision making, 
aggregations, and health informatics, data-driven 

healthcare management. 
 
 
 

 
Yang Zhou was born in Hangzhou, China, in 

1990. He received the bachelor degree in 

Information Management from Beijing Jiaotong 

University, in 2012, where he is currently a Ph.D. 
student of Information Management in School of 

Economics and Management. 

    His research interests include (deep) machine 
learning, NLP, and big data applications. 

 

 
 

 

Lei Fu was born in Gansu, China, in 1982. He 

received the Ph.D. degree in public health from 
the Chinese PLA Logistics College, Beijing, in 

2012.  

    Since 2014, he has joined Core Laboratory of 
Translational Medicine, Chinese PLA General 

Hospital. His research interests include public 

health, hospital management and medical 
informatics. 

 


