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Abstract

The advances in computing software, hardware, connected devices and wire-

less communication infrastructure in recent years have led to the desire to

work with streaming data sources. Yet the number of techniques, approaches

and algorithms which can work with data from a streaming source is still very

limited, compared with batched data. Although data mining techniques have

been a well-studied topic of knowledge discovery for decades, many unique

properties as well as challenges in learning from a data stream have not been

considered properly due to the actual presence of and the real needs to mine

information from streaming data sources. This thesis aims to contribute to

the knowledge by developing a rule-based algorithm to specifically learn clas-

sification rules from data streams, with the learned rules are expressive so

that a human user can easily interpret the concept and rationale behind the

predictions of the created model. There are two main structures to represent

a classification model; the ‘tree-based’ structure and the ‘rule-based’ struc-

ture. Even though both forms of representation are popular and well-known

in traditional data mining, they are different when it comes to interpretability

and quality of models in certain circumstances.

The first part of this thesis analyses background work and relevant topics
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in learning classification rules from data streams. This study provides infor-

mation about the essential requirements to produce high quality classification

rules from data streams and how many systems, algorithms and techniques

related to learn the classification of a static dataset are not applicable in a

streaming environment.

The second part of the thesis investigates at a new technique to improve

the efficiency and accuracy in learning heuristics from numeric features from

a streaming data source. The computational cost is one of the important fac-

tors to be considered for an effective and practical learning algorithm/system

because of the needs to learn from continuous arrivals of data examples se-

quentially and discard the seen data examples. If the computing cost is too

expensive, then one may not be able to keep pace with the arrival of high

velocity and possibly unbound data streams. The proposed technique was

first discussed in the context of the use of Gaussian distribution as heuristics

for building rule terms on numeric features. Secondly, empirical evaluation

shows the successful integration of the proposed technique into an existing

rule-based algorithm for the data stream, eRules.

Continuing on the topic of a rule-based algorithm for classification data

streams, the use of Hoeffding’s Inequality addresses another problem in learn-

ing from a data stream, namely how much data should be seen from a data

stream before starting learning and how to keep the model updated over time.

By incorporating the theory from Hoeffding’s Inequality, this study presents

the Hoeffding Rules algorithm, which can induce modular rules directly from

a streaming data source with dynamic window sizes throughout the learning

period to ensure the efficiency and robustness towards the concept drifts.
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Concept drift is another unique challenge in mining data streams which the

underlying concept of the data can change either gradually or abruptly over

time and the learner should adapt to these changes as quickly as possible.

This research focuses on the development of a rule-based algorithm, Ho-

effding Rules, for data stream which considers streaming environments as

primary data sources and addresses several unique challenges in learning

rules from data streams such as concept drifts and computational efficiency.

This knowledge facilitates the need and the importance of an interpretable

machine learning model; applying new studies to improve the ability to mine

useful insights from potentially high velocity, high volume and unbounded

data streams. More broadly, this research complements the study in learning

classification rules from data streams to address some of the unique chal-

lenges in data streams compared with conventional batch data, with the

knowledge necessary to systematically and effectively learn expressive and

modular classification rules from data streams.
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Chapter 1

Introduction

1.1 Research Context and Motivation

Volume, velocity, variety and veracity are defining the new dimensions of

digital data that the world is generating and relying on every day [77, 96, 37].

From traffic pattern and real-time monitoring of fleets of vehicles [80] to real-

time data sensing in the chemical process industry using soft-sensors [79],

digital data is being created, stored and analysed at the fastest rate ever.

Simply put, the philosophies and the abilities to understand and learn from

digital data have evolved rapidly, and are even considered to be a “Big Data

Revolution”, (Professor Gary King, Weatherhead University) [81].

However, the stated “revolution” does not solely lie with large scale stor-

age and computational power, but the statistical and algorithmic methods

to ingest, learn and adapt to the available data. The desire to extract knowl-

edge from high velocity and possibly infinite flows of data in real-time has led

to the growing field of streaming data analytic model, which is also known
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as the key area of Data Stream Mining (DSM) [55]. Insights from streaming

data sources can produce a major source of information for decision making.

Since the early 2000s, many DSM techniques have been proposed, for a re-

cent review and categorisation of streaming mining techniques/algorithms,

one of which is referred to an advanced review of data streaming mining by

Gaber [52].

While it is not possible to cover every area within knowledge discovery

and data mining within the scope of this research, the main topics form the

fundamentals of this research are as follow:

Streaming Data. The definition of streaming data has become more

apparent in recent years due to the explosion of technologies, wireless commu-

nication network, and connected devices (Internet of Things). Large volume

and high velocity are the two key drivers to creating changes in perception

related to knowledge discovery from raw data, as well as rules of some de-

veloped algorithms and systems for data mining. Traditional algorithms and

systems for static data are not designed to deal with sequential character-

istics of streaming data such as unbounded, sequential order, concept drift,

and online arriving. These challenges are the underlying rationales for this

research to move forward in a direction that allows useful and actionable

information to be derived from streaming data sources, as well as incorpo-

rating some well-researched studies from the data mining community into

streaming environments.

Expressiveness of Classification Models is still an area of research

that has attracted less attention in data stream mining, despite its practi-

cal importance, and many critical applications, which still need to interpret
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decisions from a machine learning model by a domain expert. In particular,

the idea of having an expressive model from streaming data in real-time is

even more limited in practice, as well as in the literature, to the best of the

author’s knowledge. Chapter 2 outlines some important remarks for tree-

based and rule-based algorithm for a classification model in both static and

streaming environments.

Rule-Based Representation for Classification Models. Knowledge

discovery from data has been a well-studied topic for the last few decades as

well as different ways to represent the learned concepts from raw data. In

particular for classification tasks, tree or hierarchical structures have been the

primary method of encoding learned data but, the tree structure is also prone

to some drawbacks as raised in Chapter 2. Moreover, rule-based models

are another well-known alternative to the tree-based model because of its

modular and expressive structure. The aforementioned properties of rule-

based models are even more valuable factors when considering the suitability

of model representation for learning from streaming data sources, which can

help decision makers with informed predictions (white-box).

Numeric Features in Streaming Data. An algorithm sees the input

vector in data in the form of numeric and categorical features. Depending

on the underlying information, it may be more appropriate to represent the

input data as either categorical or numeric feature. For example, information

such as colours, nationalities, ethics, and names can be naturally appropri-

ately represented as categorical features. On the other hand, information

such as measurements, age, height, and distance can be most appropriately

considered numeric features. While many well-established algorithms for

3
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classification can work with both categorical and numeric features out-of-

the-box, there are challenges for working efficiently and effectively with nu-

meric features in streaming environments, because the data is assumed to be

unbounded and the underlying distribution can change over time. A stream

centric approach to working with numeric features is proposed along with

empirical evaluations to investigate the possibility of increasing the overall

computational efficiency but still being competitive in terms of accuracy for

rule-based classification algorithms.

Dynamic Sliding Window. Due to the continuous and unbounded

characteristics of streaming data, the sliding window technique is known as a

common technique to learn from streaming data and has been widely adapted

by well-known studies related to streaming data such as [72], [115], [55], and

[94]. Traditionally, the learning process starts when data collection is com-

pleted, and the learned model aims to reflect the concept encoded in the

collected data. However, in a streaming environment, a concept evolves over

time and a valid model at a given point in time does not necessarily imply

validity at a later point in time. Therefore, the sliding window technique

means continuously learning and evaluating data examples from recent his-

tory and then continuously adapting to any change in underlying data over

time. Robust and dynamic window size are essential to the success in learning

from streaming data, but the challenge of getting the right size for a window

of historical data is one to be investigated on. Hoeffding’s Inequality was

studied in this research, and it shows a great promise, along with empirical

validations to incorporate the equality with sliding window technique to cre-

ate dynamic windows sizes throughout the learning time, with competitive

4
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accuracy.

Research Motivation

An important method of data stream mining is the classification of unseen

data examples. Traditionally, a classification model is built on static batch

training sets, allowing several iterations over the data. However, stream-

ing data sources bring new challenges to the well-established classification

algorithms such as C4.5 [104, 105], Rainforest [61], RIPPER [30], AQ [93],

or CN2 [28] because a streaming data source can be very fast and infinite.

Hence, algorithms that only require one pass through the data are necessary.

Moreover, the existence of concept drift, changes of pattern encoded in

the data over time, is more apparent and of concern in the streaming environ-

ment. Having concept drift as a primary learning requirement, a streaming

classifier is required to be able to detect such concept drifts and adapt to

reflect the current concept in the data as accurately as possible.

Most data stream classification techniques are based on the ‘Top Down In-

duction of Decision Tree’ (TDIDT), also known as the ‘Divide-and-Conquer’

approach [115]. However, a hierarchical format such as a decision tree is a

major drawback and often requires irrelevant information to be available to

perform a classification task [26]. The complexity and exposed bureaucracies

of tree-based models as in [123] show that on a large dataset and streaming

data source, a tree-based model limits the ability to reveal the expressiveness

of the captured concept, wherein humans can easily interpret the model/con-

cept. The hierarchical structure of tree-based models also poses a challenge

5
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to adapt to concept drift in real time.

The expressiveness of decision models in the data stream is an area of

research that has attracted less attention, despite its paramount practical

importance. Output expressiveness increases trust in streaming data ana-

lytics, which is one of the challenges facing adaptive learning systems. Par-

ticularly, the Local Interpretable Model-Agnostic Explanations (LIME) al-

gorithm [107] was proposed to generate a short explanation for each new

classified or regressed instance out of a prediction model, in a state in which

the information can easily be understood by humans (possibly expressed as

rules, in the same way). LIME itself is not a learner that creates a model

from a given set of training data examples, but an express technique that

aims to explain the predictions from any classifier. Also, LIME does not con-

sider the environment how the train model was created (static or streaming);

rather the predictions from the trained model.

Unsurprisingly, the work attracted a great deal of media attention and has

emphasised the need for expressive and interpretable models. The model’s

trust has been concerned and further emphasised.

1.2 Research Questions

To advances the knowledges for classification tasks in streaming environment,

the following research questions are posed:

Research Question 1: How can a trained predictive model from a streaming

data source be reliably interpreted and understood by the users?

Accuracy has been the dominating measurement of interest in comparing
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classifiers in both static and streaming environments, it is evident that real-

time decision making based streaming models still suffer from the issue of

trust.

By looking to develop a rule-based technique, a user can determine an

accuracy loss, such that a model can be expressive enough to grant trust,

and at the same time, the shortfall in accuracy can be tolerated compared

with any other best performing classifiers which are less expressive or can

even be completely black box.

Research Question 2: What are the most efficient approaches to improve

the efficiency in learning heuristic for numeric features from a high-volume

and high-velocity streaming data source?

To date, there is no single optimised rule-based method to deal with nu-

meric features. However, methods for working with numeric features have

been studied extensively in the past two decades for static/batch data en-

vironments. These methods suffer performance in learning or even have no

ability to capture learning insights from a streaming data source.

Research Question 3: What impact have the properties of streaming data

sources had on the faith and accuracy of the predictions for classification

tasks?

Abstaining is desirable and necessary in critical applications where mis-

classification is very costly, such as in medical or financial applications. Tree-

based techniques always return a prediction for a given data example because

of its hierarchical structure. However, a model that can draw a clear line be-

tween objective and random subjective prediction is highly desirable.
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Research Question 4: How have concept drifts and dynamic behaviours

in streaming data been posing challenges in learning a reliable and accurate

classification model?

The key challenge of streaming data classification lies in the need of the

classifier to adapt in real-time to concept drifts, which is significantly more

challenging if the data stream is high velocity.

By looking at classification in data stream environments, this research

does not stop at the assumption of early machine learning techniques which

typically expect to work with a complete set of training data examples, but

even more demanding and infinite data sources. An example of such an

application is the monitoring of a network of sensors to determine whether

the unbounded and sequential flow of data may be too large to consider

storing and revisiting as being impractical.

1.3 Aim and Objectives

The primary aim of the research is to investigate common issues across most

rule-based techniques in data stream mining and develop a set of techniques

as a system to improve the efficiency and feasibility of predictive learning

from streaming data sources.

To achieve this aim, this research focuses on a number of investigations,

experimental studies and empirical evaluations that involve discussing the

following proposition:

Develop a rule-based algorithm which can induce modular classi-
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fication rules from a streaming data source in real time with the

ability to adapt to concept drifts. Expressive rule-based algorithms

have been well studied in last decades, but were not designed to

understand and deal with challenges from high volume and high

velocity streaming data.

A classification rule set is a way to represent models for classification. A

rule-based classifier typically stores the model as a set of ‘IF - THEN’ rules

of the form:

IF condition(s) THEN conclusion

The ‘IF’ part (left-hand side) of a rule, is typically referred to as the

precondition(s), whereas the ‘THEN’ part (right-hand side) is referred to as

a consequence.

Research Objectives

Following research objectives would facilitate the achievement of the afore-

mentioned research aim:

• Objective 1: To understand the background of learning a predictive

model from data streams.

• Objective 2: To assess the limitations of existing methods in learning

predictive model from streaming data source.

• Objective 3: To investigate and develop techniques to overcome the

unique challenges in learning predictive model from streaming data

sources.

9
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• Objective 4: To identify factors that affect the reliability of predic-

tions for classification tasks in streaming environments.

• Objective 5: To develop a set of techniques as a system to learn

modular and expressive classification rules from streaming data sources.

Objective 1, 2, 3 and 4 are designed to address important aspects and

significant challenges in learning predictive models for classification tasks in

streaming environment. Altogether, they are the foundation to Objective

5 to deliver the defined aim of the research.

1.4 Research Methodology

This section focuses on reflecting the nature of this research and the required

methods to tackle the research area properly. It discusses the paradigm

of the research and identifies the characteristics of the research methods

which facilitate the research to be conducted in a proper way and recognised

manner. Chosen methods and procedures for data sources, validation, and

evaluation are described that are used in conducting this research.

1.4.1 Adopted Research Paradigm and Philosophical

Stands

Generalising findings from results of some experiments is the primary goal

of research which contributions/outcomes could be used or applied beyond

the area under investigation [47, 119]. Therefore, the primary purpose of any

research remains the same, no matter of in what branch and category of the
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science it focuses on. However, depending on the branch and science, the

way, which the scientists see a phenomenon and raise questions about it, is

significantly differs. From this perspective, there is a number of recognised

paradigms of research among the scholars such as positivism, constructivis-

m/interpretivism, and critical theory [39, 63].

First, the positivism paradigm is a methodological philosophy in quanti-

tative research where the methods of natural sciences are applied to discover

the study of social science [36]. In this respect, any understanding of a phe-

nomena needs to be evidently measured and supported by official statistics.

Next, to the interpretivism paradigm, the methods of interpretivism sup-

port the understanding of knowledge related to human and social sciences

which cannot be the same as the methods used in physical sciences because

humans interpret their acts and the world based on such interpretations while

the world does not [75]. Therefore, within the interpretivism paradigm, a sin-

gle phenomenon may have more than one interpretation rather than a truth

that can be realised by process of measurement.

Finally, critical theory is also known as the “transformative paradigm”

[109] where the ontology is based on relativism. From this aspect, criti-

cal researchers intentionally use the ethical, political standard and moral to

judge the situation and practice their research with the consideration of so-

cial, political, economic and cultural context for specific research’s objectives

[109].

This research is in the stream of computing in general, and computer

science in particular. Research in computing discipline typically contains two

aspects, science and engineering [66]. For this reason, there are two primary
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dimensions for discussion in Computing, theoretical and experimental. From

the paradigmatic perspective, this research falls in the positivism paradigm.

Accordingly, this research focuses on using quantitative methods to address

the raised research questions.

1.4.2 Research Methods

To realise the objectives of this research, a quantitative research approach

was held. There are several specific methods in Computer Science which

typically has its base in logic and mathematics. Computer Science is also

regarded as an empirical discipline, in which a written piece of software (code)

can be seen as an experiment, the structure and behaviour of which could

be realised [95]. There are also well-established methods which are suitable

and specific to Computer Science discipline [13]:

Experimental method shows the experiments that will occur in order to

extract outputs from real-world implementation. The veracity of theories

can be learned and proven by the experiments. This method is also popular

in several different fields such as automating theorem, Natural Languages

Processing (NLP), analysing performance and behaviour, artificial neural

network, etc. It is essential to make sure that the created experiments can

be reproducible and independently verified.

Simulation method is very much suitable in Computer Science because it

offers a possibility to investigate systems or hypothesise that are outside of

the experimental domain. Some fields that also adopt computer simulation

methodology are physics, economics, and astronomy.

12
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Theoretical method can probably be regarded as the most classical method-

ology, which also suits Computer Science discipline since it is related to logic

and mathematics. There is a good evidence about the inheritance of theoret-

ical method in Computer Science such as popularity of iteration, recursion

and induction. A theory is essential to develop logic and semantic models

and the reason for the programs to demonstrate the correctness. Neverthe-

less, the theoretical method can help in finding new mathematical models or

theories, but this method still needs other methods to prove and facilitate

reasonable proofs.

In order to discover and disseminate new knowledge, a multi-method

approach is employed in this research. The approach involves proposing

novelties from an existing mathematical concept (Theoretical method) and

empirically evaluating (Experimental method) the proposed concepts. The

combination of which provides a comprehensive pipeline in learning the new

novelties as well as deeper empirical understandings of the problem area.

1.4.3 Data Sources and Gathering

For this research, both real life and synthetic datasets are used for evaluat-

ing classification tasks for data streams. The KDD [68] and UCI ML [12]

repositories have the most common used datasets for benchmarking machine

learning algorithms, but many of these datasets are not suitable for evalu-

ating data stream classification. The Forest Covertype dataset is one of the

largest with about 600,000 data examples, and it is suitable to be used to

simulate a data stream. Synthetically generated data is also used for stream-
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ing evaluation as it is easier to produce, and there is a little cost in term

of storage and transport. Examples include the Random Tree Generator

[40] and SEA Generator [116]. The using of both synthetic and real-time to

provides different experimental settings which are important for the stated

research questions because the faith of a prediction is important to be ver-

ified with real-life dataset and the challenges of streaming environment can

be simulated with synthetic data sources respectively.

Data Controls

During the evaluation, the data is generated on-the-fly (for both real life

datasets or synthetic feeders). This aspect directly influences the number

of training data examples that can be supplied at any given time period.

Therefore, the number of features and learning time of an algorithm will

also be important metrics for evaluating between algorithms. The learning

time of an algorithm can be regarded as a direct metric for the efficiency

of learning a model from a data stream, which is the primary concern in

Research Question 2.

1.4.4 Evaluation Practices and Procedures

The accuracy of a learning algorithm is the critical variable to be measured.

Having an optimal error rate, or equivalently its converse accuracy, may not

be the only concern, but it is typically the most important one. Having a

reliable estimation of accuracy can enable comparison of different methods

so that the best available method for a given problem could be determined.
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However, classification tasks in a streaming environment have different

requirements from traditionally static data. Instead of maximising the use

of a collected dataset, the focus in evaluating classification tasks from a

streaming data source shifts to trends over time (concept drifts) and the

response time.

Prequential or ‘Interleaved Test-Then-Train‘ procedure is adopted in this

research for evaluating classification algorithms for data streams. Each data

example is used to test the model before it is used for training, and from this,

the error rate can be incrementally minimised and monitored over time. This

scheme is particularly suitable to evaluate streaming algorithms because it

makes maximum use of available data as well as measuring both time and

accuracy.

1.5 The Organisation of the Thesis

This thesis is organised into seven chapters which aim to support the fun-

damental rationales behind the contributions in knowledge to the domain.

Figure 1.1 provides an overview of how the research questions were investi-

gated and answered in each chapter and how they were brought together to

deliver the aim of the research collectively.
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Figure 1.1: Overview of how research questions are answered to deliver the
defined research aim.

Chapter 2 introduces essential background in different forms of representa-

tion for predictive learning in data mining and characteristics for each type of

representation in a streaming environment. Limitations of existing classifica-

tion algorithms for data streams were evaluated and compared with others.

In this chapter, there is also a comparison between traditional methods for

evaluating classification algorithms with a streaming oriented method, pre-

quential.

Chapter 3 develops a new technique to overcome the arising challenges in

learning heuristic from numeric features from data streams. The technique
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addresses the unique challenges such as high-velocity and high-volume data

in a streaming environment. G-eRules algorithm was developed from the

integration of the proposed technique and an existing rule-based algorithm,

eRules. G-eRules algorithm shows a significant improvement in learning ef-

ficiency while maintaining competitiveness in term of accuracy.

Chapter 4 proposes a method that focuses on the challenges in buffering

historical data to retain, and continuously learn from a potentially infinite

data stream, yet optimising the required buffering space for historical data.

The method incorporates the use of Hoeffding’s Inequality with the sliding

window technique to dynamically and reliably buffer recent data examples

for classification learning tasks.

Chapter 5 develops Hoeffding Rules algorithm, an expressive and robust

rule-based classification algorithm for streaming data on top of the works

from Chapter 3 and Chapter 4.

Chapter 6 presents empirical evaluations and discussions of the proposed

technique in Chapter 3 and the Hoeffding Rules algorithm in Chapter 5.

The empirical experiments validate the novelty contributions of the research

in relation to the raised research questions under a controlled and standard-

ized framework. Subsequently, some limitations of Hoeffding Rules algorithm

are realised and discussed.

Chapter 7 concludes the research by drawing together all aspects of the

study and findings from the empirical evaluations. The contributions of this

research along with the consideration for future direction are presented.
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Moreover, each individual chapter also provides an overview of related

work to provide a more focused attention for the key concepts as well as an

informative comparison of the contributions of this thesis in relation to the

domain.

18



Chapter 2

Background of Classification

Tasks for Data Streams

This chapter provides an overview and related backgrounds regarding the

topics in predictive learning from data streams in relation to the main propo-

sition of the research:

“This research investigates common issues classification tasks in

data stream mining and introduces a set of techniques as a system

to improve the efficiency and feasibility of learning from streaming

data sources.”

This research focuses on modular classification rules, learning from stream-

ing data sources, a number of proposed methods and ideas in this research

have been coined within other paradigms of knowledge discovery, e.g., model

representation or numeric features handling.
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This chapter first introduces the different model representation techniques

and paradigms used in streaming related works/researches (Section 2.1 and

Section 2.2). Limitations of tree-based model for data streams are described

in Section 2.3.

Next, the chapter focuses on existing works and algorithms in learning

predictive models from streaming data sources in Section 2.4.

Section 2.5 describes ways in which designed algorithms and methods

for streaming data can be empirically evaluated.

Finally, Section 2.6 highlights the limitations of existing algorithms for

classification tasks in relation to different dimensions of interest for a perfor-

mant algorithm for classification tasks in a streaming environment.

2.1 Data Model Representation

Data mining is a task to learn and discover hidden knowledge and informa-

tion from available data. The patterns or concepts of the data need to be

expressed in a form or structural pattern within which they can be under-

stood and worked with [21, 94].

Figure 2.1 shows a hierarchy of output expressiveness, with rule-based

models being at the top of all the other classification techniques.
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Figure 2.1: Hierarchy of output expressiveness.

There are many different ways to represent data concepts that can be

learnt from data mining tasks. At the simplest end of the scale, modelling

is performed on a single data table. A row in the data corresponds to a

data example to be analysed in terms of its characteristic (feature) and the

concept (class) to which it belongs. The ultimate objective of a trained model
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is to discover one or more patterns that reflect the underlying truth of the

data.

Classification is a category of supervised learning where the main task

is learn from a set of training data examples that are classified (labelled by

class labels) [83, 35]. Subsequently, a trained model will be able to classify

label for newly encountered data examples. Examples of classification tasks

can be classification of countries based on climate, classification of cars based

on fuel consumption, or prediction of a diagnosis based on a patient’s model

record/condition.

Generally, a classification can be formulated as a set of observations de-

scribed with a fixed number of features, Fi, and a designed class feature,

C. The learning/modelling task is to find a mapping, f(...) that is able to

compute the class value, C = f(F1, F2, ..., Fn) from the feature values of seen

and previously seen data examples.

The form of a decision tree and a set of modular classification rule are

two of many available structures to represent learnt models/concepts from

data for classification tasks [104, 108, 23, 121]. The popularity of using tree-

based and rule-based methods to represent learnt models is no exception for

classification tasks in the data stream community [123, 3, 76, 115].

2.1.1 Tree-based / Hierarchical Model

A decision tree is a flowchart-like data structure implementing the “Divide-

and-Conquer” strategy and is made up of internal decision nodes and ter-

minal leaves [123, 102]. An internal node (non-leaf node) denotes a test on
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a feature and the test will either produce a branch or a leaf node as shown

in Figure 2.2. A branch represents an outcome of the test and a leaf node

represents a class label. The process starts at the root and internal nodes

are recursively produced until leaf nodes are produced for all the tests [123].

Figure 2.2: An example of a decision tree structure based on the description of
constructing decision trees [123].

For classification, a decision tree is a well-known nonparametric method

which has been used for classification in many applications such as financial

analysis, astronomy, and medicine. Given a data example in which the as-

sociated class label is unknown, each feature of the data example is tested

against the created decision tree. A path is traced from the root to the leaf

node where the leaf node represents the class label prediction for that data

example [65].
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As previously mentioned, a decision tree is a nonparametric method and

it does not require any domain knowledge or parameter settings, which makes

it ideal for exploratory knowledge discovery. Multi-dimensional data can also

be handled by decision trees [65].

In the late 1970’s and early 1980’s, a version of tree-based algorithm

known as ID3 (Iterative Dichotomiser 3) [18] was developed by J.Ross Quilan.

C4.5 algorithm [104] was later introduced as the success of ID3 algorithm

and it is frequently used as a benchmark for comparison between learning

algorithms [65]. A general pseudo-code for building decision trees is shown

in Algorithm 1:

Algorithm 1: A general pseudo-code for building decision trees

[83].

1 Check for base cases;

2 foreach each feature, α do

3 Find the selected criteria from splitting on α;

end

5 Let αbest be the feature with the height normalised information gain;

6 Create a decision node that splits on αbest;

7 Recur on the sub-lists obtained by splitting on αbest, and add those

nodes as children of node;

Generally, a decision tree is created in a top-down manner, starting with

the most basic tree with only a root node, and then extending it to a more

specific tree structure. For instance, if a tree consists of only the root node

then it is too general, while the most specific tree would construct a leaf node
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for every single data example, which would be too specific, or overfitting. One

of the main criteria for a good decision is to have a tree at the right level

which will adequately generalise the training data examples to enable a high

predictive accuracy on unseen data examples.

Furthermore, the book CART (Classification and Regression Trees) [65]

by L. Breiman, J. Friedman, R. Olshen, and C.Stone was published in 1984,

describing the generation of binary decision trees. In fact, ID3 and CART

(Classification AND Regression Tree) were introduced independently of one

another at approximately same time but they both cover a similar approach

for learning decision trees from data [65]. The implementations of these

algorithms are available in the WEKA workbend [64, 71], as open source.

2.1.2 Modular Rule-Based Model

Another important representation of classification is a set of collective classi-

fication rules. A rule set is a very popular alternative to decision trees, where

the rules are generated by the “Separate-and-Conquer” search strategy. The

studies of rule-based model have been active as early as the 1960’s [49, 48].

Typically, a rule-based classification has a set of ‘IF...THEN...’ rules.

Each rule has a conjunction and feature-value on the left-hand-side (LHS) of

the rule, and a class label in the rule consequent, or right-hand-side (RHS)

of the rule. As an option, probabilistic rules can also be generated where

the consequent of these rules consists of a list of probabilities or number of

covered training data example for each possible class label [27]. Rule sets are

generally simpler and more comprehensive, compared with decision trees.
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The ideas for learning classification rules are quite similar to the ideas

used in a decision tree induction. The “Divide-and-Conquer” search in deci-

sion tree recurrently partition the training data examples by advancing the

purity measurement of the succeed node. On the other hand, rule learn-

ing algorithms only expand one single successor at a time, thereby learning

a complete rule that covers part of the training data examples. After a

complete rule has been learned, all data examples that are covered by the

created rule are removed from the training set, and the process is repeated

with the streaming data examples until all data examples in the training set

are covered by a rule, and this strategy is known as “Separate-and-Conquer”

search.

Pseudo-codes for “Divide-and-Conquer” and “Separate-and-Conquer” searches

in general are described as in Algorithm 2:
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Algorithm 2: General pseudo-codes for “Divide-and-Conquer” and

“Separate-and-Conquer” searches.
Divide-and-Conquer:

2 Divide problem into a group of smaller problems of the same

type;

3 Conquer the smaller problems by solving them recursively;

4 Combine the solutions to get a solution to the main problem;

Separate-and-Conquer:

6 Learn a rule that covers part of the given training set (the

separate part);

7 Recursively learn another rule that covers some remaining

examples (the conquer part);

8 Repeat this process until no examples remain;

If using a “Divide-and-Conquer” searching approach, then the rules are

generated directly from a decision tree, such as the C4.5 classifier [123],

while a “Separate-and-Conquer” search induces ‘IF...THEN...’ rules directly

from training data examples, without constructing a decision tree [26]. A

rule is deemed to be complete if it only covers data examples from a target

classification. A process of generating rules directly from data examples can

be insulated as in Figure 2.3.
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Figure 2.3: Inducing modular classification rules by using a “Separate-and-
Conquer” search.

Also, a decision tree can easily be converted to a set of classification rules,

in which a rule is generated for each leaf. The antecedent of the rules contains

a condition for every node on the path, from the root to that leaf [123].

2.1.3 Limitations of Tree-base Representation

Cendrowska [26] notes that a decision tree may grow excessively large and

complex, and she introduces the Prism algorithm, a “Separate-and-Conquer”

search based algorithm that can introduce modular rules which do not nec-

essarily fit into a decision tree. For example, the concept below can easily be

represented by two modular rules and this concept does not fit into a decision

tree structure without creating an irrelevant feature for duplicating certain

information.

IF a = 0 AND b = 1 THEN class = X

IF c = 0 AND d = 1 THEN class = X

Otherwise, class = Y
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However, the above three rules cannot be precisely represented by a de-

cision tree without redundant information, because the rules do not have

any features in common. Representing these rules in a decision tree struc-

ture would require adding unnecessary and meaningless rule terms, which is

also known as the replicated subtree problem [123, 114]. Figure 2.4 illus-

trates the simplest tree to represent the above rules and highlights the issue

of redundant information when representing some kinds of concept with a

tree-based structure.

Figure 2.4: An example of a replicated subtree problem for the rule; IF a =
0 ∧ b = 1 THEN class = X, IF c = 0 ∧ d = 1 THEN class = X, otherwise
class = Y .

The above tree structure was generated under the assumption that there
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are only four features (a, b, c, d), with each feature either associated with

the value of 0 or 1; and there are only two possible class labels in the stated

decision rules. From this example, extracted rules from the “Divide-and-

Conquer” (tree structure) can lead to unnecessarily large and complex trees

as well as redundant rules [123]. Also, Fürnkranz et al. [50] suggest that

decision tree-based models are less expressive, as they tend to be complex

and difficult to interpret by human once the tree model grows to a certain size.

Nevertheless, Quinlan [104], the author behind the well-known C4.5 machine

learning decision tree-based algorithm, acknowledged that pruning a decision

model does not guarantee simplicity and can still be too cumbersome to be

understood by humans.

Additionally, rules are also popular in their own terms because each rule

contains an independent piece of knowledge, thus adding or removing a rule

from a rules-set will not affect other rules [65].

2.2 Static and Streaming Data

The works in [5, 14, 40, 41] define a data stream as being a ‘sequence of data

examples’ which are produced at either high rate, high volume, or both.

There are a few characteristics that can be used to distinguish between data

streams and conventionally static data:

• The data examples arrive online and in sequential order. For this rea-

son, the order in which the data examples arrives cannot be controlled,

either within a data stream or across the data stream.

30



Page 31

• Unbounded, the data examples always arrive at the system but the

exact quantity is unpredictable and the seen data examples may not

be able to fit in memory or on disks over time.

• Once a data example has been seen and processed, it should be dis-

carded or archived away from the main memory.

Given these characteristics, conventional data mining algorithms are not

suitable for data streams, because they were not designed for rapid and

continuous flow of data examples, and continuous queries [117] are not sup-

ported, though supporting a continuous flow of data examples is an essential

prerequisite in data stream applications [14].

Practical Examples

Real-life applications involving data streams can be found in many domains,

including financial applications, networking, sensor monitoring, and web ap-

plications.

Sensor monitoring [25, 90] is a very good example of the applications

of mining a data stream. More and more sensors are used in either our

daily lives or the industrial sector. Sensors behave very differently from tra-

ditional data sources because the data is periodically collected and pushed

away immediately, keeping no record of historical information. Their limi-

tations make conventional mining techniques and approaches inappropriate

for queries over sensors.

Tradebot systems [88, 2] offer solutions to analysing queries about real-

time streaming financial data, such as stock tickets and news feeds. At any
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time, Tradebot regularly accounts for 5% of the total trading volume on the

US stock market, and Tradebot systems typically hold stocks for just 11

seconds for each automatic transaction [2].

Big Data Stream Mobile Computing (BDSMC) [15] is a paradigm

that relies on advances in mobile communication and real-time mobile cloud

computing. Nowadays, a spatially distributed network of thousands of low

energy devices (e.g., smartphones, PDAs, tablets, RFIDs and smart home ap-

pliances), are all capable of acquiring and communicating in real time, which

creates a huge volume of heterogeneous data streams. The paradigm outlines

a new generation of inter-connected mobile/wireless computing infrastruc-

tures that can be used to extract hidden insights from an ever increasing

volume of time-series correlated heterogeneous data streams.

Social networking websites (Facebook, Twitter, LinkedIn) tailor their

content to individual users. In order to do so, these services need to look at

and analyse data generated from their users in real time to keep the content

up-to-date. For example, Facebook [97] has over 1.35 billion active users

monthly and some of its generated data includes 4.5 billion likes, 300 million

photo uploads, and 4.75 billion pieces of content shared daily.

Internet of Things (IoT) Stream Mining has been recognised as

one the most exciting and key opportunities for both academia and indus-

try [37, 96, 44]. The IoT is driving a new industrial revolution, creating a

new source of wealth insights and unprecedented levels of innovation. Smart

manufacturing, smart cities and the automotive industry are among the no-

table examples of the uses of IoT devices, which result in high volume and

high velocity of data from machine-to-machine (M2M) communication. Sub-
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sequently, there is the need to learn and mine actionable insights from such

data streams .

2.3 Challenges for Classification Tasks in Stream-

ing Environment

When mining data streams, some very unique challenges are faced. [14,

5, 100, 115], mentioned, and discussed. Alternative approaches have been

proposed for resolving these challenges. Also, in limited resource settings

such as sensor networks [60], the characteristics of data streams are even

more concerning and require careful planning so that a working solution can

be delivered.

2.3.1 Unbounded Memory Requirement

For data stream settings, the amount of required physical hardware and

resources is often uncertain. There are algorithms [120] that use external

memory for handling data which is unable to fit into main memory. However,

such algorithms are not developed to work with data streams specifically,

because they cannot handle continuous queries and they are typically not

able to give instant or near real-time responses. A continuous data model

is most applicable to situations where quick responses are required and the

data is continuously generated at a high rate over time. Systems designed

for data streams are required to accept new arriving data examples while

processing old data. Therefore, the time spent on each data example needs
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to be low, otherwise the latency of computation will be too high and the

system will not be able to keep pace with the data streams [120]. For this

reason, data stream mining systems or algorithms need to confine themselves

to main memory without accessing secondary storage.

Arasu [11] published some very early work on characterising data models

which can be precisely learnt using a given bounded amount of memory and

models that must be approximated if disk access is not allowed. A limited

number of data models were considered and a complete list of features for

models that require a potentially unbounded limit of memory (proportional

to the size of the input data streams) to answer was offered. The work

by the author [11] shows that without knowing the size of the input data

stream, it is impossible to place a limit on memory requirements for most

data models, unless the domain of features involved is restricted (either based

on known data properties or through the imposition of models). The main

idea behind the work is that without domain restrictions, an unbounded

number of feature values must be remembered because they might join with

data examples that would arrive in the future.

2.3.2 Concept Drift

Concept drift is a unique property of data stream and does not happen

in static (batch) data. A concept represents underlying information and

knowledge from the data. However, in streaming data, a concept drift [38,

115, 25, 57, 100] happens when data changes from one concept to another.

The changes can be sudden or gradual and a past concept may re-occur in
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an unforeseen manner.

Figure 2.5: Different types of concept drift in data streams.

Generally, in data streams, the concept of the data is expected to change

in unforeseen and unpredictable ways. There are various approaches to at-

tempt to overcome this challenge in streaming environment from the research-

ing community. As early as in 1986 [111], Schlimmer and Grainger raised

the topic of learning complex and changing environments. They proposed a

method that is able to tolerate noise and drift by re-calculating the weight

of training data examples based on how well they fit future data examples.

Bach and Maloof [16] suggested placing a probability distribution over the lo-
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cation of the most recent detect drift point and then using a Bayesian model

to compare and update the distribution from the predictions of the model.

Generally, there are two common approaches to tackle concept drift. The

first approach is to directly maintain and modify the learnt models as in

[72, 122, 115]. The second approach is to maintain and compare the created

models for some seen data examples in order to select those that are the best

performers for unseen data examples [17, 112, 124, 116].

2.4 Established Classification Algorithms for

Stream Classification

Classification perhaps is one of the most widely studied and researched as-

pects of data mining, and it is the same for data stream mining. However,

there are very few algorithms and systems that have been specifically pro-

posed for data stream mining tasks. Some algorithms were proposed as an

improvement to existing algorithms for batch settings to work on data stream

settings [31, 113, 106]. On the other hand, some were proposed to address

the fundamentals in data streams, such as high velocity data and concept

drifts [72, 57, 40, 115, 19, 92].

2.4.1 Hoeffding Trees

Domingos and Hulten introduced the Hoeffding Trees algorithm in their pa-

per “Mining High-Speed Data Streams” [40, 72]. The system in their paper

was referred to as VFML (Very Fast Machine Learning). At any time, the
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system can build decision trees with the use of constant memory and constant

time per data examples. The Hoeffding Trees or VFDT (Very Fast Decision

Tree) algorithm was the underlying algorithm for their system. VFML overall

introduced several enhancements for practical evaluation.

The Hoeffding Trees algorithm can be regarded as the current “state-of-

the-art” algorithm in data stream mining because it accomplishes the charac-

teristics of an algorithm which are needed for mining tasks for data streams,

and are able to cope with a high velocity flow of data while remaining comput-

ing efficiency as well as adequately accurate [82]. Additionally, the Hoeffding

Trees algorithm uses the Hoeffding’s Bound [69] to guarantee that the learned

model is asymptotically almost identical to that of a conventional learner [40].

The Hoeffding Bound [82] states that with probability 1−δ, the true mean

of a random variable of range, R will not differ from the estimated mean after

n independent observations of more than ε, as shown in the Equation 2.1:

ε =

√√√√√R2ln(1
δ

)
2n (2.1)

The use of the Hoeffding Bound is very helpful because it gives an esti-

mation of the number of samples needed to learn data examples from a data

stream, as the classifier learns from an infinite number of data examples

regardless of the distribution generating the values. The Hoeffding Bound

depends only on the range of values, number of samples, and desired confi-

dence.

Algorithm 3 describes the process of inducing a decision tree from data
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streams using the Hoeffding Trees algorithm.

Algorithm 3: Hoeffding Trees algorithm [21]

1 Let HT be a tree with a single leaf (the root);

2 forall all training examples do

3 Sort example into leaf l using HT;

4 Update sufficient statistics in l;

5 Increment nl, the number of data examples seen at l;

6 if nl mod mmin = 0 and data examples seen at l not all of same

class then

7 Compute Gl(Xi);

8 Let Xa be feature with highest Gl;

9 Let Xb be feature with second highest Gl;

10 Compute Hoeffding Bound ε =

√√√√√R2ln(1
δ

)
2n ;

11 if Xa 6= Xθ AND (Ga −Gb > ε OR ε < τ) then

12 Replace l with an internal node that split on Xa;

end

14 forall Branches on the split do

15 Add new leaf with initialised sufficient statistics;

end

end

end

Domingos and Hulten showed in their empirical studies that a decision

tree learned by the Hoeffding Trees will be similar to a decision tree learned
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via batch learning, which produces a tree of the same quality as a batch data

learned tree, despite being induced incrementally. This finding is important

because for a long time batch data-learned decision trees had been consid-

ered among the best performing machine learning models [125]. The classic

decision tree algorithms C4.5 [104] and CART [125] both induce decision

tree models from batch data but were developed independently, are widely

recognized by the data mining community, and are regarded by many as the

de facto standard for batch learning.

2.4.2 VFDR: Very Fast Decision Rules

Gama and Kosina proposed an algorithm termed VFDR (Very Fast Decision

Rules) that is able to continuously learn compact ordered and unordered

rules-sets. Gama and Kosina highlighted the advantages of modular rules

not being hierarchically structured like decision trees, in which new rules

can be learnt for new concepts or removed when they became out-of-date,

without affecting learning efficiency.

The Hoeffding Bound is also used in VFDR to decide when to expand a

rule. In order to create rule-set from the data examples, a Hoeffding Bound

determines the number of seen data examples after which a rule should be

expanded and a new rule induced.

The rule-set (RS) is learned as shown in Algorithm 4.
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Algorithm 4: VFDR (Very Fast Decision Rules) learning algorithm

[57]

input : S: Data stream source;

Nmin: Minimum number of data examples;

ordered set: Boolean flag;

output: RS: A set of classification rules

1 Let RS ← {};

2 Let default rule L← θ;

3 foreach example (x, yk) ∈ S do

4 foreach Rule r ∈ RS do

5 if r cover the example then

6 Update sufficient statistics of Rule r;

7 if Number of examples if in Lr > Nmin then

8 r ← ExpandRule(r);

end

10 if ordered set then

11 BREAK;

end

end

end

15 if None of the rules RS trigger then

16 Update sufficient statistic of the empty rule;

17 if Number of examples in L > Nmin then

18 RS ← RS ∪ ExpandRule(default rules);

end

end

end
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Algorithm 5: ExpandRule(): Expanding on Rule [57]

input : r: A decision rule;

H: Split evaluation function;

δ: 1 minus the desired probability of choosing correct feature;

output: r
′ : Expanded rule;

1 Let h0 the entropy of the class distribution at Lr;

2 Compute ε =

√√√√√R2ln(1
δ

)
2n (Hoeffding Bound);

3 if h0 > ε then

4 foreach feature Xi do

5 Let hij be the H() of the best split based on feature Xi and

value vj;

6 if hij < hbest and nij > 0.1 ∗ n then

7 Let hbest = hij;

end

end

10 if h0 − hbest > ε then

11 Extend r with a new condition based on the best feature

Xa = vj;

12 Release sufficient statistics of Lr;

13 r ← r ∪Xa = vj

end

end

16 return r
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The update process of an existing rule is shown in Algorithm 5, which

employs a Hoeffding Bound metric to decide whether to split and expand the

rule with new terms.

VFDR is able to deal with multiple classes, discrete and numeric features.

Additionally, VFDR is shown to be very competitive compared to VFDT

(Very Fast Decision Tree), the state-of-the-art in streaming decision tree)

learning, while making use of modular rules which can be easier to interpret

by humans to improve adaptability.

2.4.3 eRules - A Modular Adaptive Classification Rule

Learning

eRules by Stahl, Gaber and Salvador [115] can be regarded as the most

recent rule-based tool added to the data stream mining toolbox. Focusing

on one of the very unique properties of data streams, which is concept drift,

eRules classifier will construct a new model if the current model has a high

percentage of unclassified data examples. This feature makes eRules very

different from VFDT and VFDR, because eRules may abstain from labelling

a data example if that data example is not covered by the rule set, while

other classifiers such as VFDT and VFDR always enforce a classification

[115]. This feature may be highly desirable in critical applications where

misclassification is costly and irreversible, for example, medical diagnosis or

financial applications.

Essentially eRules makes use of Cendrowska’s Prism algorithm [26] to

induce modular classification rules with a “Separate-and-Conquer” search
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strategy, as mentioned in Section 2.1.2, from data streams by using a sliding

window technique [14]. The three main processes of eRules as illustrated in

Figure 2.6 are outlined as follows:

Figure 2.6: The three main processes in eRules algorithm [115].

Learning Rules in Batch Mode – An initial rule-set is learnt using the

Prism algorithm on the first batch of incoming data examples. Later data

examples are added to a buffer if they are not covered by the current rule-set.

If the number of data examples in the buffer reaches a user defined threshold,

then its data examples are used to induce new rules (using Prism) and the

buffer is emptied.

Adding New Rules – Whenever new rules are generated from the afore-

mentioned buffer, they are added to the current rule-set and thus adapt to

new emerging concepts in the data stream.

Validation and Removal of Existing Rules – eRules also removes learnt
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rules from the model if the concerning rules are not relevant to the cur-

rent concept anymore, i.e., if concept drift occurs. This is quantified by the

deterioration of the individual rule’s classification accuracy over time.

2.4.4 Online Information Network

OLIN, an online classification system was proposed by Last [86]. The system

can dynamically adjust the size of training window and the number of unseen

data examples to rebuild the classification model with the most recent data

examples.

The induced concept of the system uses the Info-Fuzzy Network (INF) to

build a tree-like classification model. The window size is controlled by infor-

mation theory. The main idea is to repeatedly construct a new network from

a sliding window of latest examples, according to the classification error rate.

Therefore, if the model is stable, then the window will increase accordingly,

up to a pre-specified limit. The latest model always classifies the examples

that arrive before the subsequent network reconstruction. Typically, a con-

cept is realised by a sudden spike in the classification error rate. If a concept

is detected, the system re-calculate the size of the training window.

While the system produces a tree-like classification model, the tree is dif-

ferent compared to conventional decision trees in that each level of the tree

represent only one feature, except the root note layer. The nodes represent

the different values of the feature. An overview of the OLIN system is pre-

sented in Figure 2.7. The process of producing a classification is similar to

that of conventional decision trees.
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Figure 2.7: Overview of OLIN system architecture [86].

Nonetheless, the process of constructing the tree has been termed the

Information Network (IN). As illustrated in Figure 2.7, each one of V0

data examples in the validating internal [t2, t3] is labelled by the created

model from T0 from the earlier training internal [t0, t2]. Furthermore, both

training and validating intervals do not have to be the same. When it comes

with t3 , the system re-construct the tree-model by the ‘Learning Module’
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using T1 data examples from the training internal [t1, t3],and subsequently

applied to V1 data examples in the validating interval [t3, t4]. There is an

assumption that the first data example in the interval [t3, t4] that it arrives

after the model construction has been completed. In streaming environment,

unseen data examples can be labelled by partially constructed model in the

IN algorithm [29]. Unlike using the Hoeffding Bound in VFDT [40, 41]

and VFDR [57], OLIN uses a less conservative condition. The measurement

is derived from the mutual conditional information in the IN algorithm by

applying the likelihood ratio test in order to assess the statistical significance

of the mutual information.

2.4.5 On Demand Classification

Clustering is typically regarded as an unsupervised approach. In [7, 6], Ag-

garwal et al. have introduced the concept of micro-clusters, which can ad-

equately maintain statistics at both temporal and spatial granularity level.

Subsequently, on-demand classification is introduced, in [4] which the idea

of micro-clusters is utilised. At a high level, there two main processes that

make up on-demand classification. Firstly, the process continuously learns

and maintains summaries from the seen data examples. On the other hand,

the second process continuously uses the stored summary statistics for a pre-

diction of the class label. Each micro-cluster represents a class label, and

the data points within the cluster will have the associated class label as the

classification.

Both of the main processes can be executed in an online fashion, and this
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can be particularly essential in a streaming environment in which new data

examples arrive in real-time. At any point, the realised micro-clusters can

be used to label unseen data examples.

2.4.6 LWClass Algorithm

In a proposal for online learning of data streams in a resource constrained

environment, Gaber et al. [53] describe a strategy to dynamically adapt the

learning process for data streams on the basis of available memory resources.

The LWClass algorithm is rooted from Algorithm Output Granularity (AOG)

[54, 51] which introduces the first resource-aware data mining approach that

can cope with fluctuating data velocity according to the available computing

resources at hand. The AOG performs the local data analysis on resource

constrained devices that generate or receive streams of information. There

are three main stages in AOG, which are learning, adaptation, and knowledge

integration, as show in Figure 2.8.
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Figure 2.8: Three main processes in Algorithm Output Granularity (AOG) [53].

LWClass algorithm starts by calculating out the number of data exam-

ples which could be loaded in the memory, according to the available space.

Once there is a labelled data example available, the algorithm will search for

the nearest seen data example already stored in the main memory. There is

a pre-defined distance threshold for the aforementioned task. The threshold

represents the similarity metric acceptable by the algorithm to consider can-

didates for entry to the matrix. The matrix is also a summarised version of

the seen data examples. Once the weight is zero, the entry is released from

the memory
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2.4.7 SCALLOP Algorithm

In [46], Ferrer-Troyano et al. introduce a scale classification algorithm named

SCALLOP (Scalable Classification Algorithm by Learning decisiOn Patterns)

that introduce a model online based on a certain set of user defined param-

eters.

Generally, it is inherently difficult to construct stable high quality rule-

based classifiers from data streams, because of the challenges in keeping

the underlying rule-statistics throughout the time horizon. This is one of

few rule-based classifiers related to classification tasks for data streams that

focuses on a scalable algorithm to classify numerical, low dimensionality,

high-cardinality and time-changing data streams.

The algorithm is started by taking a number of user-specified labelled data

examples where α is rules per class label. Afterwards, the algorithm focuses

on maintaining the rule-set after the arrival of each new data example. At the

point of arrival, each data example falls into one of these three possibilities:

• Positive covering: The data example adds more strength to a current

discovered rule.

• Possible expansion: The data example is covered by any generated

rules but there is a rule that can be extended to cover the data example

without overlapping with different labelled rules.

• Negative covering: The data example weakens to a current discov-

ered rule.

For each of the above cases, a different procedure is defined as follows:
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• Positive Covering: The values of positive support and confidence of the

existing rule are re-calculated.

• Possible Expansion: In this case, the generated rule is extended if it

satisfies the following two conditions:

1. The data example is bounded within a user-specified growth bounds

to avoid a possible incorrect expansion of the rule.

2. There is no intersection between the newly revised rule and any

generated rules for the same class label.

• Negative Covering: In this case, the negative support and confidence

level are re-calculated. If the new confident value is smaller than the

user-specified threshold, then a new rule is added.

The set of rules is refined for every γ new data example, where γ is a user-

specified parameter. If the rules have the same class label and are within

a user-defined acceptable distance, the rules are merged. Meanwhile, it is

necessary to make sure that the rules do not intersect with rules associated

with other class labels. The resulting hypercube of the merged rules should

also, be within certain growth bounds. Figure 2.9 illustrates the key concept

of SCALLOP.
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Figure 2.9: Main processes in SCALLOP algorithm [46].

Finally, there is also a refinement stage which releases the undesirable

rules from the current models. Particularly, uninteresting rules have less than

minimum positive support. Additionally, the rules that are not covered by

at least one of the data examples of the last user-defined number of received

data examples are released.

For prediction, a voting system is utilised to classifying the unlabelled
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data examples. If there is a rule covering the current record, the class label

associated with that rule is used as the classifier output. Otherwise, voting

over the current rules within the growth bound is used to infer the class label.

2.4.8 ANNCAD Algorithm

Law et al [87] introduced an incremental classification algorithm, termed AN-

NCAD (an Adaptive Nearest Neighbour Classification Algorithm for Data

Streams). This uses multi-resolution data representation to locate adaptive

nearest neighbours of a test point.

At the beginning, the algorithm begins with an attempt to locate the data

example according to the majority of nearest neighbours at finer levels. In

case the finer levels do not differentiate between the classes with a pre-defined

threshold value, the coarser levels are used in a hierarchical way. In case of

concept drifts, an exponential fade factor is used to decrease the weight of

old data in the classification process. Ensemble approach is used to overcome

the errors of the initial quantization of data. Figure 2.10 shows the main

processes that make up the ANNCAD algorithm.
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Figure 2.10: Main processes in ANNCAD algorithm [87].

As claimed in [87], the experimental results of the ANNCAD algorithm

were superior compared with VFDT [72]. However, this algorithm does not

seem to have the ability to deal with sudden concept drifts as the exponential

fade factor takes a while to cease having an effect. As a matter of fact, the

choice of the exponential fade factor could have undesired effects on either

an over or under-estimate of the rate of concept drifts. Both cases would

result a in reduction in accuracy.

2.5 Evaluation Procedures of Learning Algo-

rithms for Stream Classification

The evaluation process is an important task to identify various critical mea-

surements of an algorithm. Normally, accuracy, or equivalently its converse
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error, is the most interesting concern, and it also is the most applicable [21].

In classification, accuracy is typically measured as the percentage of cor-

rectly classified unseen data examples after being trained on a given number

of seen data examples. In other words, the set validating the data exam-

ple is never exposed to an algorithm during the learning phase, rather this

occurs at the evaluating phase to avoid the bias of the training model. A

small number of mistakes when predicting labels of data examples indicates

the reliability of the learning algorithm, and achieving the highest possible

accuracy is the most immediate and obvious goal of most data learning algo-

rithms. If there is a found nearest neighbour, it checks the class label. If the

class label is matched, then the weight of the instance is increased by one;

otherwise, it is decreased by one.

Because of its unique characteristics, a data stream has different require-

ments compared with batch data settings. For carrying out a proper eval-

uation, batch data learning algorithms can usually have access to the data

without being limited the amount of time that data examples can be seen or

analysed. In data stream settings, the focus shifts to trend over time, where

the data concept develops over time and can be realised at different stages

of growth [21].

Furthermore, data stream classification is still a relatively new field in

the data mining community. For this reason, evaluation practices are not

nearly as well researched and established as they are in the batch setting.

The amount of literature related to data streams is increasing rapidly, but

there is only a limited amount that specifically addresses or relates to data

stream classification as defined in this research. The papers found that most
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closely related to the content of this research are:

• Mining high-speed data streams by Domingos and Hulten [40].

• Accurate decision trees for mining high-speed data streams by Gama,

Rocha and Medas [59].

• Forest trees for on-line data by Gama, Medas, and Rocha [58].

• Efficient decision tree construction on streaming data by Jin and Agrawal

[76].

• A streaming ensemble algorithm (SEA) for large-scale classification by

Street and Kim [116].

• Multi-interval discretization of numeric-valued features for classifica-

tion learning by Usama and Keki [74].

• Online ensemble learning: An empirical study by Alan and Givan [45].

• eRules: A modular adaptive classification rule learning algorithm for

data streams by Stahl, Gaber and Salvador [115]

• Learning decision rules from data streams by Gama and Kosina [57].

• New Options for Hoeffding Trees by Pfahringer, Holmes, and Kirkby

[100].

The evaluation methods used in the above literature show that single

holdout was the most used method to obtain estimated accuracy, although

some papers used five-fold cross-validation, while repeated sampling methods

are used in [45] and test-then-train is used in [57, 115].
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2.5.1 Holdout

At a certain quantity, cross-validation on batch data can be too time con-

suming, and the measurement from a single holdout set is often accepted. If

the division between the train and test sets have been predefined, the results

from different studies can be directly compared. Applying data stream set-

tings as a large scale of batch learning, it is appropriate to use the holdout

practice on data stream learning [21].

Unlike batch settings, the learning model for a data stream should be

monitored periodically to detect changes and concept drifts from the data

stream. However, the learning model should not be tested too frequently

because testing the model may often significantly slow down the evaluation

process, depending on the size of the test set. In data stream settings, a set

of new examples from the stream that have not yet been used to train the

learning algorithm can be considered a source of holdout examples.

A possible source of holdout data examples is a new data example from

the data stream that has not yet been used to train the learning algorithm.

A procedure can ‘look ahead’ to collect a batch of data examples from the

stream for use as test data examples. This method would benefit the learning

efficiency of scenarios with concept drifts, as it could be used to measure the

ability of the learning algorithm to adapt to the latest trends in the data.

However, in case of no concept drift, it is assumed that a single static holdout

set should be enough, which avoids the problem of varying estimates between

potential test sets [21].
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2.5.2 Interleaved Test-then-Train or Prequential Test-

ing

A popular alternative to the holdout method that has been used is to in-

terleave testing with training. A data example is used to test the existing

model before it is used for training, and the overall accuracy is incrementally

updated [41, 21]. By conducting the testing and training in this order, the

model is always being tested on data examples it has not seen. This method

has the advantage that no holdout set is required for testing, which makes

the maximum use of data examples. Also, the plot of accuracy is likely to

be smoother over time, as shown in Figure 2.11, as a single data example

is less significant to the overall average.
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Figure 2.11: Accuracy plotting produced from learnings from the same data
stream by holdout and Prequential methods, at a rate of every 100,000 data ex-
amples [21]

However, there is also a realised disadvantage to this method, in that it is

difficult to separate and measure between training and testing times. Also,

the accuracy at any given time is unlikely reflect to the actual accuracy of

the learning algorithm at that exact point. Therefore, data stream learn-

ing algorithms using this method of evaluation will be punished for early

mistakes, regardless of the level of accuracy they are capable of at a later

time, although this effect tends to be balanced out over time as shown in

Figure 2.11.
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2.6 Limitations of Existing Predictive Algo-

rithms for Streaming Data Mining

A common characteristic of the majority of the systems and techniques de-

scribed is that they are either not expressive (with eRules and VFDR being

the exceptions) or robust in learning data examples from streaming data

sources. For instance, ANNCAD algorithm is not able to deal with sud-

den concept drifts because the exceptional fade factor takes a while to cease

having an effect. Another example, SCALLOP algorithm relies on a set of

defined statistical metrics to maintain the learned rules and this mechanism

shows the inflexibility in adapting to concept drifts.

The key challenges in data stream classification are represented in high-

velocity rate, concept drifts, and the unbounded memory requirements. For

instance, when dealing with high-velocity data input, an algorithm is con-

strained to deal with recently arrived data examples within a fixed period,

which can influence the reliability of the learned model. Concept drifts may

affect the overall accuracy or error rate due to the invalidation of a confirmed

concept from the past if there is no mechanism to detect these changes over

time. Unbounded memory refers to the space dimension where the concept

should be learnt from a given number of seen data examples rather than from

a complete training set like in static data.

While many approaches have been proposed to address some of these

challenges, they are often unable to address these challenges simultaneously.

Table 2.12 outlines the previously reviewed techniques in terms of address-

ing the aforementioned challenges.
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Figure 2.12: Summary of reviewed algorithms for classifications tasks in stream-
ing environment.

While Hoeffding Trees can be regarded the as state of the art in terms of

accuracy compared with others, but it produces a tree-based model which is

complex and hard to understand when it reaches a certain size. Furthermore,

the ability to abstain/refuse from classifying when there is a high degree of

uncertainty is not present in the majority of the algorithms/techniques above.

Furthermore, some of the algorithms are developed to induce classification

rules directly from training data examples such as eRules and Very Fast

Decision Rules (VFDR). However, they both use an inefficient method in

learning heuristic from numeric features, binary splitting. This method is

appropriate for a static environment where all possible values of the numeric

feature are known, but this is not the case for streaming environments.

Finally, the works and studies related to classification for the streaming

environment are far from being complete. A number of challenges still exist
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in stream classification algorithms; particular with respect to concept drift

and resource adaptive classification.

2.7 Summary

This chapter provides a background of the differences between two primary

forms of data representation for a predictive model in data mining and how

a tree-based model can be problematic to represent a classification model

in the streaming environment due to the replicated sub-tree issue as raised

in Section 2.3. Particularly, the tree-based structure is hard to remove an

invalid concept which was valid at the early stage of the learning, and this is

the case of concept drifts data streams.

The key challenges for classification tasks in a streaming environment

were described, such as concept drifts and high-velocity data input continu-

ously in Section 2.3.

Section 2.4 reflected on the existing algorithms for classification tasks

for data streams. Section 2.6 identified limitations of these algorithms

regarding to the three evaluating criteria (accuracy, speed and space) which

are primarily used to assess the performance of an algorithm for classification

tasks in streaming environment.

The need for dedicated evaluation procedures for classification algorithms

in a streaming environment was highlighted in Section 2.5. A traditional

method such as Holdout is not suitable to capture necessary metrics (accu-

racy, speed and space) to measure the performance of a predictive streaming

algorithm. Accuracy is typically the primary measurement for evaluation for
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classification algorithm with a static dataset, but this is not any more the

case in a streaming environment.

While streaming data is still a relatively new topic in the data mining

community, driving factors such as the explosion of the Internet of Things

and the advances in wireless connectivity mean that data streams will cer-

tainly play a larger and more essential role in knowledge discovery. The major

research challenges for classification tasks in streaming environments are rep-

resented in concept drift, resource adaptivity, high velocity, and unbounded

memory requirements.

In subsequent chapters, various aspects related to classification tasks with

streaming data are presented in a greater detail, as well as the proposal of sta-

tistical approaches and algorithms to directly learn classification rules from

streaming data sources along with the corresponding empirical evaluations.
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A new Approach to Improve

the Computing Efficiency in

Dealing with Numeric Feature

for Data Streams

This chapter develops a technique which can effectively and efficiently learn

heuristic for numeric features in a streaming environment.

High-velocity and potentially unbounded data input in a streaming envi-

ronment poses some challenges to learn the necessary heuristic for numeric

features efficiently and accurately.

Conventionally, many well-established algorithms can work with both cat-

egorical and numeric features out of the box because the training data ex-

amples are static and stable at the time of learning. Numeric features often

need to be transformed/discretised into categorical features with a separate
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process, or as an integrated part of an algorithm, before the actual learning

tasks can start. However, these methods often require stable learning values

and full exposure to the numeric values of the feature. However, this is not

the case for a streaming data source because the data input can arrive with

high-velocity and possibly unbounded.

The efficiency of an algorithm the primary concern in one of the raised

research questions in Section 1.2:

“Research Question 2: What are the most efficient approaches to improve

the efficiency in learning heuristic for numeric features from a high-volume

and high-velocity streaming data source?”

In this chapter, various approaches in dealing with numeric features are

discussed as well as a novel approach to efficiently deal with numeric features

from the core. Subsequently, Section 3.5 shows the integration of the pro-

posed approach into existing eRules algorithm, and its empirical evaluation.

3.1 Working with Numeric Features

Traditionally, algorithms designed for batch settings can learn from numeric

features because they have access to all available values of the numeric

features at learning time. Approaches for handling numeric features have

been studied extensively. Some algorithms such as ‘support vector machine’

[34, 33] and KNN [10, 32] can naturally work with numeric features as input

due to the way that they are designed to operate based on Euclidean space.

Other algorithms expect categorical features as inputs, but need to have an
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extra component or step to process numeric features; Naive Bayes [126] and

C4.5 [104, 105], for instance. Commonly, the step to process numeric features

is normally separated from the learning algorithm. A discretising algorithm

can transform raw inputs to discretise values in a pre-processing step that

is independent from the learning algorithm. By having the step to process

numeric features, an algorithm may process data examples with or without

numeric features, by learning the transformed data examples which would

just have categorical feature. Even if an algorithm can work with numeric

features natively, Dougherty et al. [42] shows that in certain cases, learning

from transformed/pre-categorised data examples can lead to a better result.

Methods for working with numeric features have been studied extensively

in the past two decades for batch data. An overview of well-known methods

for data discretisation for batch setting is described in [65]. However, this is

not the case for data streams, where data examples are constantly arriving

at high speed, while the learning process is iteratively repeated. Only a small

number of discretising methods for batch settings can be directly applied to

streaming data settings without any modifications and, consequently, they

are unlikely to perform as well as they do on static data.

From the best of the author’s knowledge, there are very few techniques

specifically designed to deal with numeric features in a streaming environ-

ment. The work from Gama and Pinto [56] is a rare example of incremental

discretisation methods that are intended to operate on data streams. This

discretising technique is split into two main layers. The first layer processes

values from a given numeric feature and generates some statistical data about

the seen values without storing these values. From the memorised statistics
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in layer one, the final discretisations are created by either equal width or

equal frequency in the second layer.

3.2 Streaming Approaches

This section focuses on the problem of complexity in computational efficiency

when generating rules from numeric features, especially, for “Separate-and-

Conquer” search based algorithms from streaming data sources.

3.3 Computational Issues in Dealing with Nu-

meric from a Streaming Data Source

As described in Section 2.4, the original PRISM [26] algorithm works on

categorical features only and produces a set of rule term of the form (α = c).

This limitation was overcome by eRules [115] and Very Fast Decision Rules

(VFDR) [57], which are among few rule-based algorithms specifically de-

veloped for learning rules directly from streaming data sources. For nu-

meric features, eRules and VFDR produce rule terms of the form (α < nu-

meric constant) or (α ≥ numeric constant), and ( α ≤ numeric constant)

and (α > numeric constant) respectively.

Generally, the process of how eRules algorithm and VFDR algorithm deal

with numeric features in a streaming environment can be described as follows:
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Algorithm 6: A general pseudo-code of how eRules and VFDR deal

with numeric features.

For a given set/sub-set of training data examples:1 For each

possible value, αi, of a numeric feature, α, calculate the conditional

probability for a given target class;

2 Return the rule term with the overall best conditional probability for

a given target class;

It is evident that the above process in dealing with numeric features

requires many cut-point calculations for the conditional probabilities for each

possible value, αi, for a numeric feature, α.

Figure 3.1: Example of a large number of cut-point calculations to learn heuristic
form numeric features even for a very simple dataset.
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Considering the example Figure 3.1, there is a fictitious dataset with

just six observations, one categorical feature, one numeric feature, and two

class labels. It shows how many cut-point calculations eRules or VFDR need

to perform in order to search for one best rule term. The number of cut-

point calculations needed for a numeric feature is the number of unique values

of the feature multiplied by two. Clearly, for such a small number of data

examples and minimised number of features and class labels, both eRules and

VFDR required a significant number of calculations, which is costly in terms

of computational performance. Additionally, both eRules and VFDR rely

on the “Separate-and-Conquer” search approach, which may require many

iterations to introduce a complete rule.

3.4 Using Gaussian Distribution to Discrim-

inant Classification

There is a major concern in computational efficiency of how two notable

streaming rule-based algorithms, eRules and VFDR, deal with numeric fea-

tures. A new heuristic method is proposed based on Gaussian distribution

to improve the computational efficiency when dealing with numeric features.

Gaussian or normal distribution can be regarded as the most important

and most widely used distribution in statistics. The name ‘Gaussian’ is

after mathematician Karl Friedrich Gauss [85], but some of the properties

of Gaussian distribution were actually realised and defined by Abraham de

Moivre [84].
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The density diagram of the spread of the data from a Gaussian distribu-

tion often form a bell-shaped curve as shown in Figure 3.2.

Figure 3.2: Density distribution has a bell shape curve when the values are
normally distributed.

The usefulness of the Gaussian distribution comes from the fact that the

distributions of many natural phenomena in real-life are at least approxi-

mately normally distributed [84]. Nowadays, many natural measurements

in daily life are normally distributed, such as human weight, height, and

blood pressure. However, one of the first known uses of the Gaussian dis-

tribution was to analyse the errors in measurements made in astronomical

observations, which happened because of defective instruments and imperfect

observers [84].

Because of its popularity and proven accuracy in many applications, a

method relying on Gaussian distribution of values from numeric features as-

sociated with a given target class is proposed to avoid frequent cut-point

calculations, as described in the method used by the eRules and VFDR al-

gorithms.
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Typically, for each numeric feature from training data examples, a Gaus-

sian distribution can be generated, as shown in Figure 3.3, to represent all

possible values of that numeric feature for a target class.

Figure 3.3: Example of a Gaussian distribution for a class label from the values
of a numeric feature.

For a given dataset with classification labels, ω1, ω2, ..., ωi, if there is a

measurement vector (values of a numeric feature), α, then a specific value of

the numeric feature can be calculated, displaying whether it is the most rel-

evant to a particular classification label, based on the Gaussian distribution

of the values associated with this particular classification label.

The Gaussian distribution is calculated for a numeric feature, α, with

mean, µ, and variance, σ2, from all numeric values with a particular classifi-

cation label, ωi. The class conditional density probability is then, given by

Equation 3.1.

p(αj|ωi) = p(αj|µ, σ2) = 1√
2πσ2

exp(−(αj − µ)2

2σ2 ) (3.1)
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Hence a heuristic measurement of posterior class probability, p(ωi|αj),

or equivalently log(p(ωi|αj)) can be calculated and used to determine the

probability of a target class for a valid value of a numeric feature as, in

Equation 3.2.

log(p(ωi|αj)) = log(p(αj|ωi)) + log(p(ωi))− log(p(αj)) (3.2)

The probability of regions, Ωi, are calculated for these numeric values,

such that if αi ∈ Ωi then, αi, belongs to class, ωi. This approach may not

necessarily capture the full details of the intricate continuous distribution,

but it is highly efficient with respect to computation and memory perspec-

tives. This is because the Gaussian distribution only needs to be calculated

once and can then be updated when new data stream examples are received,

by simply recalculating mean, µ, and variance, σ2.

The range of values, which extends to both sides from µ, of the distribu-

tion should represent the most common values of α, for a target class, ωi. A

candidate rule term can be generated by selecting an area under the curve

for a range of values for which the density class probability p(x < α ≤ y|ωi)

is the highest, where, x, and, y, are valid values of numeric feature, α, from

the Gauss distribution for the target class, ωi. As shown in Figure 3.4, the

shaded area represents the highest density class probability p(x < α ≤ y|ωi)

of a subset from the training dataset.
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Figure 3.4: Shaded area represents a range of values of numeric feature, α, for
class, ωi.

Globally, the area in the centre under the curve represents the most com-

mon values of the feature for a target class. For example, the shaded area of

one standard deviation of the mean (µ± 1σ), as illustrated in Figure 3.5a,

covers 68% of all possible values of the feature for the target class; or, as

illustrated in Figure 3.5b, 95 % of all possible values of the feature for the

area of (µ± 1.96σ) [24].

(a) 68% of all possible values (b) 95% of all possible values

Figure 3.5: Shaded areas represents ranges of values of feature α for class ωi.
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However, distributions for different classifications can also overlap each

other. An area of distribution for a target class sometimes cannot be used

to precisely distinguish a classification, as shown in Figure 3.6.

Figure 3.6: Distributions of different classification overlapping.

However, the most interesting rule term is one that can maximise the

coverage of the rule for a target class. Therefore, this approach uses density

estimation to discover a rule term of the form of (x < α ≤ y) by selecting

only a highly relevant range of values from a numeric feature, which can then

be used to represent a subset of data examples for the target class, along with

other rule terms.
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Algorithm 7: A general pseudo-code of how to generate a rule term

using the proposed method in this chapter.

1 For each numeric feature, calculate a Gaussian distribution with

mean, µ, and variance, σ2, for each classification;

2 Calculate class conditional density and posterior class probability for

each numeric feature value for the target class, using

Equations (3.1) and (3.2);

3 Select the value of the feature with greater posterior class

probability;

4 Select the next smaller and larger values from the value chosen in

Step 3 which have the greatest posterior class probability;

5 Calculate density probability with two values from Step 4 from the

normal distribution for the target class;

6 Select the range of the feature (x < α ≤ y) as the rule term for

which density class probability is the maximum;

A high level of the pseudocode is expressed in Algorithm 7. This generic

way of extracting numeric rule term can be used in any rule-based streaming

algorithms in order to increase the data throughput. Next, in Section 3.5,

the proposed method is incorporated with the eRules algorithm, with empir-

ical experiments to show the superior compared to the existing mechanism

in dealing with numeric features.
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3.4.1 Illustrations of Rule Term for Numeric Features

To illustrate the described approach above for using Gaussian distribution to

generate a rule term for a numeric feature, a simple three classes scenario is

created to demonstrate the proposed process compared with the binary-split

approach.

Figure 3.7: Class density of a numeric feature.

As shown in Figure 3.7, this is a fictitious example that shows how

values of a numeric feature spread for each class label. The example below

will consider the process to create a rule term for the feature in Figure 3.7,

with the approach as proposed in Section 3.4, and the well-known binary

tree split approach used in the eRules [115] and VFDR [57] algorithms.
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3.4.1.1 Binary-Split Rule Term

Depending on used heuristic, by using binary split, an algorithm can select

an optimal split value of a numeric feature to create a rule term of the form

(α ≤ v) or (α > v). However, the binary split approach is unlikely to

distinguish a class from others if the class distributions overlap, as shown

Figure 3.7.

For instance, when selecting the first quantile for the distribution of class

1 in Figure 3.8 as the split point, in this example, the value of the first

quantile for class 1 is 47.

Figure 3.8: Split value for class 1 at first quantile.

Considering the split value of the feature for class 1 as shown in Fig-

ure 3.8, if the split is at the first quantile of the distribution of class 1, then

there are two possible rule terms for this feature, (α ≤ 47) or (α > 47v). In
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either term, it is very difficult to separate class 1 from other classes. The non

shaded area annotates the coverage for (α > 47). As shown, the (α > 47)

rule term well covers the data examples for class 1. However, because of

the structure of the rule term, (α > 47) also covers a major number of data

examples from class 3.

The example for binary split based rule term in this section clearly shows

the limitation of binary split approach, and how difficult it is to separate

data examples when the underlying distributions of the classes overlap. In

particular, in streaming environments, the distributions will be dynamic and

unstable as the underlying distributions from seen data examples can only

be estimated.

3.4.1.2 Gaussian Based Rule Term

Following the processes described in Algorithm 7, the rule term (51 < α ≤

53), is created for class 1 as shown in Figure 3.9. While it is impossible to

create a rule term that can totally separate class 1 from other classes, the

false coverage is minimised compared with a binary split approach.
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Figure 3.9: Rule term based on Gaussian distribution as described in Algo-
rithm 7.

The above example assumes that all numeric values of the feature are

available to create a rule term, but in practice, only valid numeric values

from the feature at the point of assessment are considered. Iteratively, the

training set will be reduced, but the rule term from the proposed approach

will be generated with the greatest relevance to the target class, as shown in

Figure 3.9.
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3.5 G-eRules: eRules Algorithm and an Im-

proved Approach for Processing Numeric

Features.

An extended algorithm based on e-Rules is termed G-eRules, which is based

on the method as proposed in Section 3.4 to create heuristic for numeric

features in order to make the eRules algorithm computationally more effi-

cient. While the proposed method for numeric features was integrated with

the eRules algorithm, it could also be adopted as the mechanism to deal with

numeric features in other rule-based and tree-based streaming classifiers.

In G-eRules, the algorithm still utilises the “Separate-and-Conquer” search

strategy by expanding one single successor feature-value at a time, thereby

learning one complete rule from the training data at a time. After each

complete rule is introduced, all data examples that are covered by this rule

are removed from the training set, and the procedure is repeated. The key

innovation compared with the original eRules algorithm is that the algorithm

will create a distribution for each possible class label for each numeric feature

at the beginning the of the learning process. Subsequently, the conditional

probability of a value from a numeric feature for a given class label can be

quickly calculated during the rule term selection process.

Algorithm 8 outlines the process in creating heuristics for numeric fea-

tures, which is integrated in the eRules algorithm, termed G-eRules.
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Algorithm 8: G-eRules induction approach for numeric features.

1 for i = 1→ C do

2 D ← original Dataset

3 while D contains classes other than ωi do

4 forall α in D do

5 calculate mean µ and variance σ2 of numeric feature α for

class ωi;

6 foreach value αj of feature α do

7 Calculate p(αj |ωi);

end

9 Select αj of feature α, which has highest value of p(αj |ωi);

10 For values < αj select the value x that has the highest

probability density in this range, and for values ≥ αj select

the value y that has the highest probability density in this

range;

11 Calculate p(x < α ≤ y|ωi);

end

13 Select (x < α ≤ y) for which p(x < α ≤ y|ωi) is a maximum;

14 Create subset S of D containing all the instances which has

(x < α ≤ y);

15 Build a rule term describing S;

16 D ← S;

end

18 The induced rule, R is a conjunction of all the rule terms built at line

15;

19 Remove all instances covered by rule R from original Dataset.;

20 repeat

21 lines 2 to 19;

until all instances of ωi have been removed;

23 Reset original Dataset to its initial state;

end
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The principal objective of the presented G-eRules algorithm in this sec-

tion is to show the effectiveness of the proposed approach in dealing with

numeric features. Computational performance and competitiveness in terms

of the accuracy compared with other established data stream classifiers are

evaluated with different settings as well as both synthetic and real datasets.

The implementation of G-eRules was coded with Java so that it could be

used within the Massive Online Analysis (MOA) framework [21], a work-

bench for evaluating data stream mining algorithms. MOA was chosen as

it natively contains the implementations of data stream algorithms, such as

VFDT (Very Fast Decision Tree) or VFDR (Very Fast Decision Rules). The

analysis of the empirical experiments is presented in Chapter 6.

3.6 Normality Test

The described approach in dealing with numeric features is however based

on an assumption that the values from numeric features come from a normal

distribution or Gaussian distribution. However, if the assumption is not

taken seriously, then the proposed approach in this chapter should not be

used instinctively, as this learnt model will not draw accurate and reliable

conclusions about the actual distribution of numeric features. In other words,

if the user is certain about the true distribution of a numeric feature that is

not normal, then different approaches should be considered.

On the other hand, the normality assumption is more valid in streaming

settings as the assumption of an unbounded arriving data example is one of

the main characteristics for streaming data, as stated in Section 2.3. As
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shown in [99], it is common that many statistical techniques assume that

the distribution of real values is ‘normal’ if large enough sample sizes are

used (> 30 or 40), and the true distribution is uncertain. Furthermore,

Altman and Balnd [9] showed that the distribution of data can be ignored

if the samples consists of hundreds of observations as well as samples from

a true normal distribution, although these may not necessarily look normal

themselves. Additionally, there are few notable points from the central limit

theorem [9, 43] regarding the normality assumption as follows:

• If the sample is approximately normal, then the sampling distribution

will also be normal.

• If the sample size is reasonably large enough, then the sampling distri-

bution tends to be normal, regardless of the actual underlying distri-

bution of data.

• Means of random samples from any distribution will themselves have

normal distribution.

From the stated points above, in a streaming environment in particular,

true normality is considered to be a myth, but a good estimation of nor-

mality can be confirmed by using visual plots or significant tests. The main

idea behind these methods is to show whether data seriously deviates from

normality, then confirm the normality [99, 9, 43].

In most cases, the buffer for arriving data examples contains more than

30 or 40 data examples, and it is acceptable to assume the that values for

numeric feature come from a normal distribution unless proven otherwise.
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3.7 Summary

This chapter studies the challenges in dealing with numeric features in data

streams for the purposes of inducing rules from algorithms based on the

“Separate-and-Conquer” approach in Section 3.3, as well as develops an ap-

proach to effectively and efficiently dealing with numeric features in stream-

ing settings. This is the primary concern in one of the raised research ques-

tions in Section 1.2:

“Research Question 2: What are the most efficient approaches to improve

the efficiency in learning heuristic for numeric features from a high-volume

and high-velocity streaming data source?”

The difficulties in dealing with numeric features were discussed, and how

the existing methods for batch settings are not applicable in a streaming

environment any more. Approaches in eRules [115] and VFDR [57] were also

investigated with some practical examples to show inefficiency, drawbacks

with a binary-split approach, and the need for a better approach. As shown,

it is a very expensive process to search for best split from numeric features

if the main algorithm employs the “Separate-and-Conquer” search strategy,

because the calculation for all values will need to be repeated after each

iteration until the learning of the rule has been completed or the stopping

criteria is reached.

Subsequently, a new computationally efficient method of extracting rule

terms in the form (x < α ≤ y) from numeric features in the data stream for

classification applications was proposed. The proposed approach utilizes the

density probability values from Gaussian distributions of the class labels to
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extract the rule terms. This approach is generic and independent algorithms

can adapt and incorporate it into the learning process easier. Section 3.5

shows the example in incorporating the proposed approach in dealing with

numeric features in the eRules algorithm, a simple yet competitive rule-based

data stream classifier, which allows abstaining from a classification, but is

computationally inefficient when dealing with numeric features. The new

version with the method as proposed in Section 3.5 is termed G-eRules.
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A new Dynamic Sliding

Window Technique with

Hoeffding’s Inequality

A more dynamic and robust method for buffering recent data examples is de-

veloped in this chapter by incorporating the property of Hoeffing’s Inequality

with the sliding window technique.

The sliding window technique in learning from recent data examples has

been discussed in Section 2.4. While this approach shows a good way to

work with data examples in streaming settings, it is not clear how much

recent data to learn from is the main topic in this chapter. This is the

primary concern in two of the raised research questions in Section 1.2:

“Research Question 3: What impact have the properties of streaming data

sources had on the faith and accuracy of the predictions for classification
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tasks?”

“Research Question 4: How have concept drifts and dynamic behaviours

in streaming data been posing challenges in learning a reliable and accurate

classification model?”

4.1 Issues with Fixed Sliding Windows Tech-

nique in Streaming Environment

Typically, the size of a window or how much data to buffer before learning

is set by the user before the learning process starts. The size of a window is

fixed through the learning process, and there is unlikely to be a global optimal

window size that will work well on all streaming sources. In other words, a

fixed size sliding window contains ‘n - pre-defined’ number of data examples

or those data examples that have arrived during the last ‘t - pre-defined’

time window. This approach could work well if the occurring concept drift

is known in advance, but practically, this is rarely the case.

If the window size is not optimal such as:

• Too Small: The algorithm will not be able to learn the underlying

concept of the data.

• Too Large: The learning time for each window can increase and the

outdated concept (in case of concept drift) will also be learnt.

Data examples from a sliding window are used to induce classification but
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this process does not take into account the possibility of concept drift. The

problems with fixed-size sliding window can be illustrated as in Figure 4.1.

Figure 4.1: Different scenarios with a fixed sliding window when encountering
concept drifts.

In a streaming environment, it is important to learn and maintain the

concepts that reflect the current state of the data, while not including that

which happened in the past and is no longer valid. One way to achieve

this objective is to calculate a certain level of confidence in the number of
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observed data examples.

The Hoeffding Trees algorithm [40] also has the mechanism to decide how

many data examples are needed before splitting at an estimated best feature

at any given moment in time.

This chapter looks at the applications of Hoeffding’s Inequality [67] in

general, and how it can be used to estimate the confidence in whether adding

a rule term to a rule currently being induced or stopping the induction process

is appropriate.

4.2 A new Dynamic Sliding Windows Tech-

nique with Hoeffding’s Inequality

The idea to use Hoeffding’s Inequality was inspired from [67, 91, 40]. Ho-

effding’s Inequality provides a statistical measurement in confidence of the

sample mean of n independent data examples x1, x1..., xn. If Etrue is the true

mean and Eest is the estimation of true mean from an independent sample

then the difference in probability between Etrue and Eest is bounded by:

P[|Etrue − Eest| > ε] < 2e−2nε2/R2 (4.1)

Where R is the possible range of the difference between Etrue and Eest.

From the bounds of the Hoeffding’s Inequality, it is assumed that with the

confidence of 1− δ, the estimation of the mean is within ε of the true mean:
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P[|Etrue − Eest| > ε] < δ (4.2)

From Equations 4.1 and 4.2 and solving for ε, a bound on how close the

estimated mean is to the true mean after n observations with the confidence

of at least 1− δ is illustrated as follows:

ε =
√
R2 ln(1/δ)

2n (4.3)

By using the Hoeffding Bound as an independent metric to verify the true

likeness of a rule term , the rules satisfy the Hoeffding Bound then they are

likely to be as good as the rules learnt from an infinite data stream.

ε is calculated after a rule term with best conditional probability for class

ωi selected. However, the rule term will be added to the current rule unless

the difference of the conditional probabilities between the selected best and

the second best rule term is greater than ε. Otherwise, the rule’s induction

process is completed and the rule is added to the rule set. A new iteration

for a new rule is started again, with data examples covered by the previous

rule removed.

If G(tα) is the heuristic measurement that is used to test rule term tα,

then R in Equation 4.3 represents the range of G(tα). G(tα) in our approach

is the conditional probability P(class = i|tα) at which rule term tα covers

target class ωi. Hence, the probability range of rule term R is 1. n is the

number of data examples that the rule has covered so far.
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Concerning the suitability of the best rule term, let tαbest
be the rule term

with the highest conditional probability from the current iteration, and tαj−1

be the rule term with the second highest conditional probability from the

current iteration, then:

∆G = G(tαj
)−G(tαj−1) (4.4)

If ∆G > ε, then the Hoeffding Bound guarantees that with a probability

of 1− δ, the true ∆G ≥ (∆G− ε).

Essentially, the Hoeffding Bound is used to determine a probability with

the confidence of 1 − δ that the observed conditional probability, in which

the rule term covers the target class in n examples, is the same as would be

observed for an infinite number of data examples.

4.3 Illustration of Hoeffding’s Inequality

The mathematical proofs of Hoeffding’s Inequality are well described in [69,

91]. Additionally, this section demonstrates a very simple scenario to prove

the aforementioned characteristics of Hoeffding’s Inequality in Section 4.2.

4.3.1 Illustration Preparation

Problem: There is a vector of letters ‘A’ and ‘B’ and the probability of ‘A’

is exactly 0.30. In other words, if the vector size is 10,000 then there are

3000 ‘As’ and 7000 ‘Bs’.
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Hypothesis: The concept of Equation 4.3 in this scenario can then be

applied to calculate the probability of ‘A’ from the given vector. Although

it is known that the real probability of ‘A’ is 0.3, assuming that this value is

unknown and the probability of ‘A’ is calculated from sampling values from

the vector.

Defining Parameters: In this example, R = 1.0 because the probability

of ‘A’ can only be between 0.0 and 1.0, therefore, the range, R, should be

1.0. δ and n are 0.05 and 200 respectively. However, n and δ are configurable

and different values can be used.

Description: Based on the selected parameters, where n = 200, R = 1.0

and δ = 0.05, then ε can be calculated. Contextually, it can be interpreted

that the estimated probability of ‘A’ from any 200 values sample from the

initial vector of 10,000 should be smaller than a certainty of 0.95. In other

words, if the probability of ‘A’ is calculated from a sample of 200 random

values from the original vector and the process is repeated 100 times, then it

should be expected that at least 95 times the difference between the estimated

probability of ‘A’ from the sample and the actual probability of ‘A’ should

be constrained by ε.

The code for this experiment can found in Appendix C to reproduce

the stated experiment.
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4.3.2 Confirming the Property of Hoeffding’s Inequal-

ity in Integrating with Sliding Window Tech-

nique

From the experiment setup in Section 4.3.1, if Hoeffding’s Inequality is

valid, then an error rate of a run should not excess 0.05 (5%), and this

should be valid for an infinite number of runs if the underlying concepts/dis-

tributions are static.

Figure 4.2: Error rate for 10,000 runs of the sample experiment as described in
Section 4.3.1.

Figure 4.2 showed that the error rate was absolutely respected for 10, 000

runs, which confirmed the stated characteristics of Hoeffding’s Inequality.

The empirical experiment in this section provides a concrete foundation

to form a more robust and dynamic rule algorithm for streaming in the next
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chapter, named Hoeffding Rules.

4.4 Summary

In a streaming environment, new data examples will continuously arrive.

Both the computational and storage costs will become impractical over time.

It is important to get the right amount of training data examples to ensure

the validity of the learning concept over time.

This is the primary concern in two of the raised research questions in

Section 1.2:

“Research Question 3: What impact have the properties of streaming data

sources had on the faith and accuracy of the predictions for classification

tasks?”

“Research Question 4: How have concept drifts and dynamic behaviours

in streaming data been posing challenges in learning a reliable and accurate

classification model?”

Therefore, by holding and analysing a small portion of seen data, the

aforementioned challenge can be overcome. The sliding window technique

is a well-known technique, where only a number of the most recently ob-

served data examples are kept in memory or appropriate secondary storage

for learning and validating purposes. Additionally, the learning process is

made easier and more substantial by the that fact that the number of data

examples will not cause major challenges in computing and storage costs.
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Practically, there is no ‘magic number’ that can be pre-determined to

guarantee capturing the underlying concept of data sources. Also, the uni-

formity of the data sequence can vary between scenarios. Along with the key

concepts of the sliding window technique, this chapter introduced an addi-

tion to improve the robustness and efficiency of the sliding window technique

when learning from a data stream. Hoeffding’s Inequality was applied to de-

termine a suitable window size for a given error rate to reflect an underlying

concept from a sub-sample set (window size) of data examples. Rather than

relying on a static size for the windows throughout the learning process, the

window size is determined throughout the learning process. For instance, if

Hoeffding’s Inequality is not satisfied, then learner would need to buffer more

data examples before the learning process can be started. However, as men-

tioned earlier, it is not practical to have an indefinite window size because of

computing cost and storage as well the potential existence of concept drifts

in the data.

Subsequently, Chapter 5 presents the use of a dynamic sliding window

along with the G-eRules algorithm described in Chapter 3 to form a more

comprehensive and robust classifier for streaming data, termed Hoeffding

Rules.
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Hoeffding Rules Algorithm:

Expressiveness and Uncertainty

Awareness Rule-based Classifier

for Data Streams

The advantages and importance of a modular rule-based classifier were dis-

cussed in Chapter 2, and the approaches to efficiently deal with numeric

features and dynamic buffering from a streaming environment were outlined

in, Chapter 3 and Chapter 4 respectively. This is the primary concern in

two of the raised research questions in Section 1.2:

“Research Question 2: What are the most efficient approaches to improve

the efficiency in learning heuristic for numeric features from a high-volume

and high-velocity streaming data source?”
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“Research Question 4: How have concept drifts and dynamic behaviours

in streaming data been posing challenges in learning a reliable and accurate

classification model?”

The Expressiveness of decision models in data streams is an area of re-

search that has attracted less attention, despite its practical importance.

Moreover, rule-based models are another well-known alternative to the tree-

based model because of its modular and expressive structure. The aforemen-

tioned properties of rule-based models are even more valuable factors when

considering the suitability of model representation for learning from stream-

ing data sources, which can help decision makers with informed predictions

(white-box).

Furthering the works in Chapter 3 and adapting the illustrated concept

in Section 4.3, this chapter presents a completed rule-based classifier for

streaming environment that adopts Hoeffding’s Inequality to build decision

rules. The proposed algorithm can help decision makers within informed pre-

dictions. The algorithm is termed Hoeffding Rules. Objectively, this chapter

addresses the two remaining raised research questions in Section 1.2:

“Research Question 1: How can a trained predictive model from a stream-

ing data source be reliably interpreted and understood by the users?”

“Research Question 3: What impact have the properties of streaming data

sources had on the faith and accuracy of the predictions for classification

tasks?”

In this chapter, the details of Hoeffding Rules algorithm is explained.
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Section 5.1 describes the high-level skeleton of Hoeffding Rules algorithm

and how different processes connect to others. Subsequently, Section 5.1.1,

Section 5.1.2, Section 5.1.3 and Section 5.1.4 provide deep-dives into

each component of Hoeffding Rules algorithm.

5.1 Overall Learning Process of Hoeffding Rules

This section highlights the development of Hoeffding Rules algorithm concep-

tually. It involves the induction of an initial classifier in the form of a set of

expressive “IF... THEN...” rules. This section first highlights expressive rule

sets in general and then discusses the Prism algorithm as a basic approach

for inducing such rules on batch data in Section 5.1.1. Prism algorithm has

been adopted by Hoeffding Rules as the basic process for inducing expressive

rules. However, it has been enhanced with a more expressive rule term in-

duction method for numeric features as described in Section 3.4 based on

probability density distribution. Section 5.1.3 then describes the Hoeffd-

ing Inequality adapted by Hoeffding Rules algorithm as a metric to estimate

a good dynamic window size of the data stream to induce expressive rules

form. Lastly, Section 5.1.4 illustrates the process of adding newly learned

rules from streaming data.

Expressive classification rules are learned from a given set of labelled

data examples, which consists of feature values and rule learning algorithms

to construct one or more rules of the form:

IF t1 AND t2 AND t3 ... AND tk THEN Class ωi
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The left side of a rule is the conditional part of the rule, which consists

of a conjunction of rule terms, where a rule term t is a logical test that

determines whether a data example to be classified has the classification ωi

or not. A classification rule can have one up to k rule terms, where k is the

number of features in the data.

5.1.1 Inducing the Initial Classifier

The first step of Hoeffding Rules execution is the generation of the initial

classifier, which is conducted in batch mode using Prism [26] on the first n

seen data examples in the window. For the first window, the window size

n is predefined by the user. Subsequently, the number of data example for

each window consists of unseen data examples plus the data examples not

covered by the rules from the previous window. The overall learning process

of the Hoeffding Rules algorithm is as defined in Algorithm 9.
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Algorithm 9: Hoeffding Rules - Inducing rules from an infinite data
stream.
R← Learnt rule set;
r ← A classification rule;
S ← Stream of data examples;
Wunseen ← Buffer of unseen data example;
WHB ← Buffer of data examples not covered by rules from previous
Wunseen;
n : pre-defined window size;

7 while S has more data example do

8 i→ new instance from S ;
9 if r ∈ R covers i then

10 Validate the rule r and remove if necessary;
else

12 Add i to Wunseen;
1313 if Wunseen = n then

14 W ′ := Wunseen +WHB;
15 empty(Wunseen,WHB);
16 Learn rule set, R′, in batch mode as in Algorithm 10

from W ′;
17 Add R′ to R;
18 WHB := data examples not covered by r ∈ R′ in W ′;

end

end

end
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Algorithm 10: Hoeffding Rules - Inducing classification rules in
batch mode.

1 for i = 1→ C do
2 D ← input Dataset;
3 while D contains classes other than ωi do
4 forall α in D do
5 if α is categorical then
6 Calculate the conditional probability, P(ωi|tα) for all rule

terms tα from on all feature-value, αi from α;
else if α is numeric then

8 calculate mean µ and variance σ2 of numeric feature α
for class ωi;

9 foreach value αj of feature α do
10 Calculate P(αj |ωi) based on created Gaussian

distribution created in line 8;
end

12 Select αj of feature α, which has highest value of
P(αj |ωi);

13 Create tα in form of x < α ≤ y as described in
Section 3.4.1.2;

14 Calculate P(tα|ωi), where tα is in the form of
x < α ≤ y;

end
end

17 Select tα for which P(tα|ωi) is a maximum;
18 Create subset S of D containing all the instances which covered by

tα;
19 D ← S;

end
21 The induced rule, R is a conjunction of all the rule terms built at line

17;
22 Remove all instances covered by rule R from input Dataset;
23 repeat
24 lines 2 to 22;

until all instances of ωi have been removed;
26 Reset input Dataset to its initial state;

end
return induced rules;
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5.1.2 Evaluating Existing Rules and Removing Obso-

lete Rules

The evaluation and removal of rules are performed throughout the learning

process. Once labelled data examples are available, the rules of the current

classifier are applied to these data examples. Each rule remembers how

many data examples that the rule has correctly and incorrectly classified in

the past. With this information, a rule can actively update its accuracy after

each classification attempt. If a rule’s classification accuracy drops below

a pre-defined threshold (by default 0.8) and the rule has also surpassed a

minimum number of classification attempts (by default 5), then the rule is

removed. The reason for considering a minimum number of classifications is

to avoid the rule being removed too early.

For instance, if the rule’s minimum number of classification attempts is

only 1, then it would be removed if the first classification attempt failed.

However, with the default settings, the rule would ‘survive’ 5 attempts. As-

suming that 1 out of 5 attempts failed, then the rule would be retained, as it

has an accuracy of 4÷ 5 = 0.8, which is the minimum classification accuracy

required.

The default settings may be adjusted according to the user requirements.

A lower minimum accuracy will cause the classifier to adapt more slowly,

however, a high accuracy may result in rules expiring quickly and thus more

computing cost occurring to induce new rules. Also, a low number of mini-

mum classification attempts will result in rules expiring quickly and a high

number of minimum classification attempts will lead to a slower adaptation.
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In the experiments, it was found that the default values worked well in most

cases. these were used in all experimental results presented.

5.1.3 Buffering Data Examples that Do Not Satisfy

the Hoeffding Bound

One of the notable features of Hoeffding Rules algorithm is the use of Hoeffd-

ing’s Inequality, which is described in Chapter 4 to determine the credibility

of a rule term. For an algorithm based on the “Separate-and-Conquer” search

strategy in batch data, a new rule term is searched and added to a current

rule until the rule only covers data examples of the target class. However,

the Hoeffding Rules algorithm does not always induce rules that cover only

examples of the target class, because Hoeffding Rules will stop inducing fur-

ther rule terms if the rule does not satisfy the Hoeffding’s Bound metric from

the current subset of data examples.
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Figure 5.1: Combining data examples that satisfy the Hoeffding’s Bound from
the previous window with the unseen data examples from the current window.
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As illustrated in Figure 5.1, once all possible rules are induced from the

sliding window, then all data examples that are not covered by the newly

created rules are stored in a buffer, which is combined with the next window

of unseen data examples from the stream. Hence, after the first window, each

sliding window is filled with unseen data examples from the window and the

instances from the Hoeffding’s Bound buffer from the previous windows. The

Hoeffding Bound buffer contains instances that are not covered by the current

rule set.

5.1.4 Addition of New Rules

The addition of new rules also takes place online. As outlined in Algo-

rithm 9, Hoeffding Rules applies its current rules to new data examples

that are already labelled, in order to evaluate the rule set’s accuracy. How-

ever, if none of the rules applies to a labelled data example, this data example

is added to the window. Once the window of unseen instances reaches the

defined threshold, data examples are learnt as outlined in Algorithm 9 to

induce new rules, which are then added to the current classifier. Next, the

window is reset by removing all data examples.

5.2 Summary

The Hoeffding Rules algorithm is developed in this chapter which focuses on

producing an expressive rule set that is still robust with concept drift in real-

time, but more expressive to users. Compared with less expressive streaming

classifiers, Hoeffding Rules explains how a decision is reached. The algo-
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rithm utilised the “Separate-and-Conquer” search strategy and Hoeffding’s

Inequality to learn new rules and adapt learned ruleset throughout the learn-

ing cycle. Inheriting, the feature from eRules and G-eRules, the Hoeffding

Rules algorithm may also decide to abstain from classifying a data example

if it has low confidence about a true class label. This again is desirable in

applications where a false classification label could be very costly.

This chapter is motivated by the fact that rule-based data stream classi-

fication models are more expressive than other types of classification models

such as the decision tree model, instances-based model, probabilistic model

or neural network. Additionally, inducing a classifier from a data stream

has some unique challenges compared with data mining from conventional

batch data because the pattern encoded in the stream may change over time,

which is known as concept drift as described in Section 2.3. Typically, most

streaming classification techniques focus on achieving a high level of accuracy

and quick adaptation to concept drift, and they are often unfriendly, difficult

to interpret or too complicated to provide a trustworthy decision to the users,

which is undesirable in many domains such as medical applications, finance

or surveillance.

Collectively, Hoeffding Rules algorithm addresses the four research ques-

tions in Section 1.2 about a system which can learn expressive rules effec-

tively from streaming data sources.
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Chapter 6

Empirical Evaluations and

Discussions

This chapter presents the empirical evaluations and discussions of the nov-

elty contributions in previous chapters under controlled and standardized

evaluation procedures for classification tasks in a streaming environment.

It is essential to have evaluations to demonstrate the ability to meet the

requirements of the end user and their desired application. The improved

technique in dealing with numeric features in G-eRules algorithm is evalu-

ated by looking at the integration of the technique to an existing algorithm,

eRules. Hoeffding Rules algorithm is evaluated to demonstrate the capability

of a new rule-based algorithm for classification tasks being able to answers the

challenges of learning from streaming data sources. Results of the evaluation

show that the proposed Hoeffding Rules algorithm significantly outperforms

the baselines in terms of accuracy and learning time in comparison with other

existing algorithms.
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This chapter consists of five sections. Section 6.1 describes the method-

ology for evaluation procedures for stream mining experiments. Section 6.2

provides an of logical structure of the evaluations this chapter in in relation

to address the raised research questions. Section 6.3 critically review and

discuss the outputs from the empirical experiments for G-eRules algorithm

and Hoeffding Rules Algorithm. Finally, Section 6.5 concludes the chapter.

6.1 Evaluation Methodology

The prequential approach is used to place various learning algorithms under

test and systematically compared with others. The experimental methodol-

ogy in this research is motivated by the requirements of the desire to answer

the defined research questions.

6.1.1 Validation and Evaluation Procedures

For a classification task in the streaming environment, there is a particular

set of requirements. They are a number of features per data example, a

certain volume of data and a velocity at which data examples arrive. The

behaviour of data stream algorithm has three dimensions of interest:

The accuracy of classified labels for unseen data examples.

The amount of space required to buffer training data examples for learning

tasks at any given time.

The time required to learn from training data examples before the training

data examples need to be discarded completely.
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However, when the requirements cannot be practically relaxed, then the

effectiveness of the learning algorithm can also be considered as a metric–the

ability to minimize the overall error rate with limited time and limited space.

The error rate of an algorithm tends to be the typical metric which one

wants to be able to control the most, but it also tends to be the most uncon-

trollable one. The most influential factor of error rate is the representational

power of an algorithm, in other words, it is the capability of an algorithm

to capture the true underlying concepts in a data stream, and the ability to

generalize to ignore the noise and isolate useful concepts in the data.

Controlling the time and space required by an algorithm, one can in-

fluence the error rate. Space and time are independent. By keeping more

pre-computed information, such as statistical meta-data or lookup tables, an

algorithm can learn faster at the cost of space. On the other hand, an algo-

rithm can also run faster by processing less information, either by storing less

or stopping early, thus having less data to process. In short, the more time

an algorithm has particularly, the more has to compute, or more information

that is processed, the more likely it is that the error rate can be reduced.

Streaming environment has different requirements from the batch set-

tings. Instead of maximizing data use, the attention focuses on the trends

over time–where for static data, a single model is the desired final output

of learning, whereas, in the streaming environment, the model evolves over

time and can be employed at different stages of growth.

Prequential or ‘Interleaved Test-Then-Train’ procedures are selected for

evaluating the developed algorithms in the research. Each data example can

be used to test the model before it is used for training, and from this, the
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error rate can be incrementally minimised and monitored over time. This

scheme is particularly suitable for streaming algorithms evaluation because

it makes maximum use of available data as well as measuring both time and

accuracy. It also provides the capability to monitor a plot of the accuracy

of over time, as data individual data example will become increasingly less

important to the overall average.

6.1.2 Data Sources

Both real time and synthetic data generators are used for the experiments

in this chapter. Whether a real life dataset or a synthetic data generator,

the data examples are always generated on-the-fly, and the data examples

arrive sequentially to the learning algorithm. This behaviour influences the

amount of learning data examples that can be supplied.

In addition, the use of synthetic data generators has several advantages–

it is easier to reproduce and controlled (speed, number of features, volume,

function switch) and the cost in terms of storage and transmission is min-

imised. For the evaluation of this research, the data generators commonly

found in the literature have been considered along with real dataset from the

UCI [12] repository. The details of datasets and the data specification for

each set of experiments are described in more details in the corresponding

evaluations.
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6.1.3 Evolving Stream Experimental Settings

Massive Online Analyais (MOA) [21] is used as a comprehensive workbench

to execute the experiments for evaluating the developed algorithms in this

research. As a streaming environment has settings/constraints which do not

exist in a traditional data mining environment. MOA can help to deliver

standardised mechanisms for empirical evaluation of these methods. In a

streaming environment, there are three primary dimensions:

• Accuracy.

• Amount of space required.

• The time required to learning from training data examples and make

predictions.

The above properties can be independent or related to others because a

change in the time and space used by a learning algorithm can influence the

accuracy/error rate. By holding more pre-computed metadata, such as look-

up tables, a learning algorithm can execute faster at the cost of space. A

learning algorithm can also run faster by processing less information, either

by holding less information or stopping early, thus needing to process less

data. Typically, the more time is available to a learning algorithm, the more

likely it is has a better accuracy.

To summarize, the main criteria to assess the performance of a learning

algorithm in a streaming environment are the following: accuracy, the com-

putational cost in both space and time, adaptability, theoretical performance

guarantee, and a minimal number of parameters.
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6.2 The Organisation of the Evaluations

Two sets of experiment were conducted to evaluate the developed algorithms

in the research, G-eRules and Hoeffding Rules. The logical view of how each

algorithm is related to the raised research questions and it’s key contributions

are illustrated in Figure 6.1.

Figure 6.1: Logical structure of the evaluations in relation to the research ques-
tions.

G-eRules Algorithm

The new form of representation for a numeric rule term improves the compu-

tational cost while maintaining accuracy. The proposed method can be inte-

grated with an existing algorithm which uses “Separate-and-Conquer” search

for learning a classification rule to improve the computational cost/learning

time which is one of three important metrics for a good classifier in a stream-

ing environment. G-eRules algorithm was developed as an integration of the

developed method into an existing rule-based algorithm, eRules. The in-
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tegrated algorithm termed G-eRules, which should be more efficient (less

learning time) compared with the original eRules algorithm and be compet-

itive with other algorithms for classification tasks in streaming mining.

Dynamic Sliding Windows Technique

This technique addresses the current drawbacks of fixed sliding technique

with the use of Hoeffding’s Inequality. Hoeffding’s Inequality was applied to

determine a suitable window size for a given error rate to reflect an underlying

concept from a sub-sample set (window size) of data examples. Rather than

relying on a static size for the windows throughout the learning process,

the window size is determined dynamically throughout the learning process

Concept drifts have always been the challenges for classification tasks in a

streaming environment.

Hoeffding Rules Algorithm

Hoeffding Rules algorithm is coined as a collective system of improvements for

classification tasks in a streaming environment. There are three main dimen-

sions to assess the performance of a learning algorithm (accuracy, learning

time and space). Usually, in a streaming environment, the gain in one metric

is at the cost of one or more metrics. G-eRules algorithm was developed

to show the improvement in efficiency (learning time) while maintaining the

competitiveness in accuracy, and do not affect space. The developed dynamic

sliding windows technique is supposed to improve the dimensions of space

and accuracy in a streaming environment. Altogether, these techniques are
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incorporated to form the Hoeffding Rules Algorithm. The empirical evalua-

tion of Hoeffding Rules algorithm demonstrates the mutually improvements

in accuracy and learning time for classification tasks in a streaming envi-

ronment while the requirement for space is maintained for Hoeffding Rules

algorithm.

6.3 Critical Views and Discussion

This section provides critical views for the conducted experiments for the

proposed technique in dealing with numeric features by evaluating the devel-

oped G-eRules algorithm plus a comprehensive view of performance for the

developed Hoeffding Rules algorithm.

The main challenge in learning classification rules in a streaming envi-

ronment is to maintain an accurate set of rules over time and the ability

to deal with concept drifts. Hoeffding Rules algorithm has substantially ad-

dressed this challenge with dynamic sliding windows and the foundation from

G-eRules algorithm.

6.3.1 Evaluation 1: G-eRules Algorithm

An extended algorithm based on eRules algorithm is termed G-eRules, which

is based on the method as proposed in Section 3.4 to create heuristic for

numeric features in order to make the eRules algorithm computationally more

efficient. This section shows empirical experimental results to confirm the

proposed algorithm improves e-Rules’ processing time and competes well with

other well-known data stream classifiers, as stated in the background work in
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Chapter 2. While the proposed method for numeric features was integrated

with the eRules algorithm, it could also be adopted as the mechanism to deal

with numeric features in other rule-based and tree-based streaming classifiers.

MOA was used as an underlying and independent base to evaluate the

proposed algorithm. Particularly, the following algorithms were used for this

comparative analysis, which also come with MOA natively.

1. VFDR (Very Fast Decision Rules)–[57] a rule-based data stream clas-

sifier.

2. Hoeffding Trees–[40] is a state-of-art decision tree-based classifier.

3. eRules was outlined in Section 2.4.3. It is the only data stream

classifier that is able to abstain from classifying when uncertain.

4. G-eRules inherited from original eRules but this version of the classifier

uses the proposed numeric rule term format and induction approach,

as proposed in Section 3.5.

The reason for these choices is that the Hoeffding Trees algorithm has

been studied by the community [70] for the last decade as the state-of-the-art

in data stream classification and VFDR is one of a few rule-based classifiers

which can generate rules directly from a data stream, and thus shares simi-

larities with eRules. All experiments in this section used the default settings

for eRules and G-eRules, which are: a sliding window of size 500, and a par-

ticular rule being removed if it falls below an individual accuracy 0.8 and has

had a minimum number of 5 classification attempts.
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6.3.1.1 Datasets and Data Settings

Artificial (stream generators in MOA) and real datasets are both used in the

experiments:

SEA Generator–This artificial dataset is introduced in [116]. It generates

an artificial data stream with 2 classes and 3 numeric features, whereas one

feature is irrelevant for distinguishing between the 2 classes. In other words,

one numeric feature does not have any influence on the class label for give

data example and it should be ignored by learning algorithm. This data

generator has been used in empirical studies in [20, 57, 115]. For all experi-

ments, the default generator settings are used, which are concept function 1,

a random instance seed of 1, allowing unbalanced classes and a noise level of

10 %. There are 500,000 data examples generated in the experiments.

Random Tree Generator–This generator is introduced in [40] and is based

on a randomly generated decision tree in which the user can specify the num-

ber of features and classes. New instances are generated by assigning uni-

formly distributed random values to features and the class label is determined

using the tree. Because of the underlying tree structure, decision tree-based

classifiers should perform better on this stream. There are two versions of

this data stream, one with 5 categorical and 5 numeric features, and 3 classi-

fications called RT Generator 5-5-3; and the other one with 3 classifications

but no categorical and only 4 numeric features called RT Generator 0-4-3.

Both versions comprised 500,000 instances. The remaining settings were left

at their default values, which are a tree random seed of 1, instance random

seed option of 1, 5 possible values for each categorical feature, a maximum
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tree depth of 5; minimum tree level for leaf nodes of 3, and the fraction of

leaves per level from first leaf level onwards being 0.15.

Covertype–is a dataset from US Forest Service (USFS) Region 2 Resource

Information System(RIS) which contains the forest cover type for 30x30 me-

ter cells. There are 581,012 instances with 54 features, 10 of which are nu-

meric features. This dataset has been used in several papers on data stream

classification, i.e. in [3, 59, 98]. This real dataset was downloaded from the

MOA website [1] and used without any modifications.

Airlines–this data source was created based on the regression dataset

from Elena Ikonomovska, which was extracted from Data Expo 2009, which

consists of about 500,000 flight records. The task is to use the information

of scheduled departure to predict whether a given flight will be delayed. The

dataset comprises 3 numeric and 4 categorical features. The dataset was also

used in one of Elena’s studies about data streams [73]. This real dataset was

downloaded from the MOA website [1] and used without any modifications.

Instead of initialising an artificial stream for each experiment anew, syn-

thetic generators only created artificial datasets once into static files, then

these datasets were subsequently streamed in as data sources in all experi-

ments. This way, each classifier would be presented with exactly the data

examples in an identical order within the stream.

6.3.1.2 Overall Accuracy, Tentative Accuracy and Learning Time

The experiments in this section focus on the scalability of the proposed G-

eRules algorithm to fast data streams but also, show its competitiveness in

terms of classification accuracy and learning time. While traditional learning
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problems are typically evaluated with well-known methods such as holdout

and cross-validation, both of these methods were not designed for streaming

settings, nor can they be directly applied to evaluate the continuously arrival

of new data examples. As discussed in Section 2.5, there are a few different

approaches that have been used in literature, such as ‘Holdout’ and ‘Pre-

quential’, but none of these are widely and universally used, nor accepted

within the data stream mining community or by the literature.

Nevertheless, ‘Interleaved Test-then-Train’ strategy [21], which was cre-

ated specifically for the streaming domain, and it was used in [72, 57, 115].

The experiments in this section also used an ‘Interleaved Test-then-Train’ ap-

proach to calculate the mean accuracy and learning time from all candidate

classifiers.

One special feature of the eRules algorithm is the ability to abstain from a

classification if there is no realised rule that covers the unseen data example,

which G-eRules also inherited. For this reason, tentative accuracy is also

recorded for eRules and G-eRules, which is the accuracy for instances where

the classifier is confident and actually makes a prediction.
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Table 6.1: G-eRules compared with eRules, Hoeffding Trees and VFDR. The
abbreviation Ab stands for abstain rate, T.Ac stands for tentative accuracy, T
stands for execution time and Ac stands for accuracy.

Dataset Classifier

eRules G-eRules Hoeffding Trees VFDR

Ab

(%)

T.Ac

(%)

T

(ms)

Ab

(%)

T.Ac

(%)

T

(ms)

Ac

(%)

T

(ms)

Ac

(%)

T

(ms)

Covertype 27.993 81.12 90,098 35.77 80.68 12,484 80.61 10,631 61.29 20,722

Airlines 9.63 61.76 366,859 16.68 62.55 116,975 65.20 4,289 61.02 4,818

RT Generator

5-5-3
10.52 69.28 333,163 26.47 64.77 36,486 89.78 2,422 55.51 79,153

RT Generator

0-4-3
96.35 34.94 47,790 65.65 81.21 4,283 96.39 2,391 90.10 3,883,291

SEA Generator 94.06 68.58 22,043 40.84 95.87 3,227 99.9.3 1,265 62.70 176,705

As shown in Table 6.1, G-eRules achieved a very similar classification

accuracy when compared with the original eRules algorithm, however, it

was significantly faster. Both eRules and G-eRules suffered from higher ab-

staining rates when confronted with with data stream with many numeric

features(i.e., Random Tree Generator datasets and SEA). However, G-eRules

had a lower abstaining rate on numeric data. Nevertheless, G-eRules not only

had a lower abstain rate when confronted with numeric features, but also a

high accuracy.

G-eRules generally outperformed existing rule-based classifier, VFDR, in

all experiments, in terms of accuracy and running time. For accuracy, G-

eRules outperformed VFDR in 3 out of 4 cases, and in general, processed

the data streams much faster. For ‘RT-Generator 0-4-3’ synthetic generator,

the VFDR algorithm was unexpectedly slow. This could be explained by

the VFDR algorithm not reaching a stable rule set that keeps changing over
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time. Regarding the Airlines dataset, eRules and G-eRules needed much

longer to process the stream, however, again, this could be due to the fact

that both algorithms are unstable on this particular dataset due to a fixed

sliding window size. However, this problem could be potentially addressed

by a sliding window that adapts its size dynamically to concept changes.

In comparison with the Hoeffding Trees algorithm, G-eRules achieves a

comparable accuracy on the two real datasets, Covertype and Airlines. On

the synthetic generators, Hoeffding Trees performs better. However, one

needs to note that the Hoeffding Trees algorithm is less expressive compared

with G-eRules, eRules, and other rule-based classifiers. The rule set gener-

ated by algorithms such as eRules or G-eRules can easily be interpreted and

examined by the users. On the other hand, the Hoeffding Trees algorithm

needs a further processing step to explain the single path that led to a par-

ticular decision, which may well be quite long for interpretation by decision

takers. As such, the G-eRules algorithm is an expressive rule-based technique

for data stream classification.

In order to examine G-eRules’ computational advantage within numeric

features, there is an experiment comparing eRules and G-eRules on the same

base datasets as in Table 6.1, but with increasing numbers of numeric fea-

tures. SEA and Random Tree generators (with numeric features only) were

used, both with gradual concept drift lasting for 1000 data examples starting

at the 250, 000th data example in order to trigger adaptation and thus make

the problem computationally more challenging. The two real datasets, Cov-

erytpe and Airlines, were also chosen. For all datasets, the numeric features

were gradually increased by duplicating the existing features. The reason for
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duplication is that the concept encoded in the stream stays the same, but

the computational effort needed to find the rules is increases.

(a) Random Tree Generator (b) SEA Generator

Figure 6.2: Learning time of Random Tree and SEA generators with concept
drift.

As expected, Figures 6.2a, 6.2b, 6.3a and 6.3b show that the exe-

cution times for G-eRules increased at a much smaller rate compared with

the execution times of eRules. In fact, G-eRules increased in execution time

when it was confronted with an increasing number of numeric features, and

the increasing rate seemed to be very close to that of Hoeffding Trees. The

reason for this is that the eRules algorithm has to calculate p(ωi|α < v) and

p(ωi|α ≥ v) for each value of a numeric feature, then this process is repeated

during the learning.
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(a) Forest Covertype (b) Airlines

Figure 6.3: Learning time of real datasets, Covertype and Airlines.

On the other hand, for each numeric feature, G-eRules only has to cal-

culate Gaussian distribution for each class label once and then the classifier

can update and look up p(ωi|x < α ≤ y) value from the realised distribu-

tions. Note that the execution times for VFDR were omitted in Figures

6.2a, 6.2b, 6.3a and 6.3b, as they were generally much greater compared

with eRules and G-eRules on these particular cases, as shown in Table 6.1.

Moreover, eRules tends to produce rules with irrelevant terms for numeric

features, resulting in some of the rules produced by eRules being too specific.

In other words, the eRules algorithm encounters the problem of overfitting

in dealing datasets with many numeric features. However, rule terms in the

form of (x < α ≤ y) produced from G-eRules for numeric features tend

to cover more data examples matching the target class. Thus, it needs to

produce less rule terms. Although G-eRules may not dramatically improve

the levels of accuracy from the original eRules algorithm, the processing time

is clearly improved, hence the proposed technique in dealing numeric feature

is shown to be a viable approach to learning from datasets with numeric

features.
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6.3.1.3 Experimental Conclusion and Remarks

The conducted experiments of G-eRules algorithm showed that in terms of

overall classification accuracy and adaptivity to concept drifts, G-eRules algo-

rithm exhibits a similar accuracy to other competitors or outperforms them.

Moreover, the evaluation also showed that G-eRules outperforms all other

competing rule-based data stream classifiers.

Although the efficiency in learning from data streams has been improved

in G-eRules algorithm, the algorithm inherently uses a static sliding window

technique to buffer unseen data examples from the original eRules algorithm.

It has been observed that both eRules and G-eRules were able to detect and

adapt to concepts drifts, but the sensitivity and latency in detecting and

recovering vary. In data stream mining, concept drift can appear gradually

and abruptly, and there could also be a transitional period where data exam-

ples from more than one concepts arrive together. Therefore, static buffering

windows throughout the learning process cannot be guaranteed to adapt to

concept drift with minimal delay. Practically, data streams in real-time are

not static, and the ability to adapt to changes and seasonality is essential for

any data mining solutions.

6.3.2 Evaluation 2: Hoeffding Rules Algorithm

An empirical evaluation has been conducted to evaluate Hoeffding Rules in

terms of accuracy, adaptivity to concept drift and the trade-off accuracy

for a (white-box) model such as Hoeffding Rules algorithm compared with

(black-box) or complex rules to interpret a model such as the Hoeffding Trees
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algorithm.

Two different classifiers were used for comparing and analysing the Ho-

effding Rules approach.

• VFDR (Very Fast Decision Rules) [57], is rule-based algorithm which

learns classification from data streams.

• Hoeffding Trees [40], the state-of-the-art in decision tree learning

algorithm from data streams.

The rationale behind this choice is twofold: (1) Hoeffding Trees has es-

tablished itself for the last two decades as the state-of-the-art in data stream

classification [70, 82, 100, 56], with a long history of success; and (2) both

techniques use the Hoeffding Bound for approximation in learning, which has

also been adopted in the proposed technique for dynamic sliding window to

learn from a data stream.

Table 6.2 shows the default parameters for the classifiers that were used

in all the experiments, unless stated otherwise.
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Table 6.2: Parameter settings for classifiers used in the experiments.

Hoeffding Rules
VFDR

(Very Fast Decision Rules)
Hoeffding Trees

HR.SW: 200

HR.MRT: 3

HR.RVT: 0.7

HR.HBT: 0.01

HR.APT: 0.5

VF.P: 0.1

VF.SC: 0.0

VF.TT: 0.05

VF.AAP: 0.99

VF.PT: 0.1

VF.AT: 15

VF.GP: 200

VF.PF: First hit

VF.OR: false

VF.AD: false

HT.NUE: Gaussian Observer

HT.NOE: Nominal Observer

HT.GP: 200

HT.SC: Information Gain

HT.SCON: 0.0

HT.TTH: 0.05

HT.BS: false

HT.RPA: false

HT.NPP: false

HT.LP: NBAdaptive

HR.SW: Sliding window size

HR.MRT: Minimum rule tries

HR.RVT: Rule validation threshold

HR.HBT: Hoeffding Bound threshold

HR.APT: Adaptation threshold

VF.P: % of total samples seen in the node

VF.SC: Split Confidence

VF.TT: Tie threshold

VF.AAP: Anomaly probability threshold

VF.PT: Probability threshold

VF.AT: Anomaly threshold

VF.GP: Grace period

VF.PF: Prediction function

VF.OR: Ordered rules

VF.AD: Anomaly detection

HT.NUE: Numeric feature estimator

HT.NOE: Categorical feature estimator

HT.GP: Grace period

HT.SC: Split criterion

HT.SCON: Split confidence

HT.TTH: Tie threshold

HT.BS: Binary split

HT.RPA: Remove poor feature

HT.NPP: No pre-prune

HT.LP:Leaf predictieve

6.3.2.1 Datasets and Data Settings

Different synthetic and real-world datasets were used in the experiments. As

for synthetic datasets, available stream generators in MOA were used. The

real world datasets ‘Airlines’ and ‘Forest Covertype’ are known and used for

batch learning, in which case all data examples from datasets are read and

learnt in one pass. However, these datasets were simulated into data streams

by reading data examples from these datasets in ordered sequence over time.
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Table 6.3: Setting parameters for synthetic stream generators are used in the
experiments.

Random Tree Random Tree with Drift SEA SEA with Drift STAGGERS STAGGER with Drift

RT.TRSV: 1
RT.ISV: 1
RT.NCL: 4
RT.NCA: 5
RT.NNA: 5
RT.NVPCA: 5
RT.MTD: 5
RT.FLL: 3
RT.LF: 15%

Before Drift After Drift
SEA.F: 1
SEA.IRS: 1
SEA.BC: true
SEA.NP: 10%

Before Drift After Drift
ST.IRS: 1
ST.F: 1
ST.BC: true

Before Drift After Drift

RT.TRSV: 1
RT.ISV: 1
RT.NCL: 4
RT.NCA: 5
RT.NNA: 5
RT.NVPCA: 5
RT.MTD: 5
RT.FLL: 3
RT.LF: 15%

RT.TRSV: 5
RT.ISV: 5
RT.NCL: 4
RT.NCA: 5
RT.NNA: 5
RT.NVPCA: 5
RT.MTD: 5
RT.FLL: 3
RT.LF: 15%

SEA.F: 1
SEA.IRS: 1
SEA.BC: true
SEA.NP: 10%

SEA.F: 2
SEA.IRS: 1
SEA.BC: true
SEA.NP: 10%

ST.IRS: 1
ST.F: 1
ST.BC: true

ST.IRS: 1
ST.F: 2
ST.BC: true

Drift at: 150,000
Drift Width: 10,000

Drift at: 150,000
Drift Width: 10,000

Drift at: 150,000
Drift Width: 10,000

RT.TRSV: Tree random seed value
RT.ISV: Instance seed value
RT.NCL: Number of class labels
RT.NCA: Number of categorial feature(s)
RT.NNA: Number of numerical feature(s)
RT.NVPCA: Number of values per categorical feature
RT.MTD: Max tree depth
RT.FLL: First leaf level
RT.LF: Leaf fraction

SEA.F: Classification function as defined in paper
SEA.IRS: Seed for random generation of instances
SEA.BC: Balanced class
SEA.NP: Noise Percentage

ST.IRS: Instance random seed
ST.F: Classification function
ST.BC: Balanced class

∗ 400,000 data examples are generated for each experiment.
∗ In each experiment, all classifiers are given identical data examples and same sequenced order.

All synthetic data stream generators are controllable by parameters and

Table 6.3 shows the settings used for all synthetic streams in the evaluation.

6.3.2.2 Utility of Expressiveness

The empirical evaluation is focused on the cost of expressiveness when com-

paring the accuracy and performance between classifiers for data streams.

As mentioned in [127], a learnt model from the labelled data examples

may produce a high predictive accuracy for unlabelled data, however, the

learnt model can be hard and complex to understand for laypersons or even

domain experts. To examine the trade-off between rule-based classifiers such

as VFDR and Hoeffding Rules with a decision tree-based algorithm such as

the Hoeffding Trees algorithm, all classifiers were evaluated with the same

base datasets. Concept drift was also simulated in all synthetic datasets from

150,000 data examples onwards for approximately 1,000 further instances,

where both concepts were presented before switching completely to the new
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concept. The accuracy loss band ζ can be either positive or negative, in

which positive values indicate the Hoeffding Rules algorithm has a better

accuracy and negative values indicate the shortfall in accuracy compared

with its competitor.

(a) Forest Covertype - Real Dataset (b) Airlines - Real Dataset

Figure 6.4: Difference in accuracy compared with other classifiers for real data
streams.

126



Page 127

(a) SEA Dataset with No Concept Drift (b) SEA Dataset with Concept Drift at

150,000

(c) Random Tree Dataset with no Concept

Drift

(d) Random Tree Dataset with Concept

Drift at 150,000

(e) STAGGER without Concept Drift (f) STAGGER with concept drift at

150,000

Figure 6.5: Difference in accuracy compared with other classifiers for synthetic
data streams.

Figures 6.5a, 6.5b, 6.5c, 6.5d, 6.5e, 6.5f, 6.4a and 6.4b show that
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accuracy loss band ζ of Hoeffding Rules is very competitive compared with

the Hoeffding Trees, while clearly outperforming VFDR in most cases. The

reader should note that the existing implementations of the Hoeffding Trees,

VFDR and synthetic data generators in MOA were used. These MOA-

implemented classifiers may have been optimised to work well on these syn-

thetic datasets. Two real datasets Airlines and Covertype, have been chosen

and included for an unbiased evaluation. VFDR is the closest algorithm to

Hoeffding Rules because it is a native rule-based classifier with the ability to

produce rules directly from the seen labelled data examples. However, VFDR

does not offer abstaining and forces a classification. Evidently, it has a pos-

itive loss band compared with VDFR on both real and synthetic datasets

and outperforms the Hoeffding Trees in the Airlines dataset, while suffers a

minor negative loss band on a few occasions on the Covertype dataset.

6.3.2.3 Abstaining from Classification

The result in Section 6.3.2.2 shows the tolerance of rule-based classifiers in

term of the utility of expressiveness compared to decision tree-based classi-

fiers. In addition, another important feature of Hoeffding Rules is the ability

to abstain. In Figure 6.6, can be seen that the abstaining rate of Hoeffding

Rules decreases as it processes more data examples, except with the Ran-

dom Tree dataset. For synthetic datasets with concept drift, at the point of

simulated concept drift (150,000), the abstaining rate spiked up but quickly

recovered to adapt to the new concept. This indicates one of the major

benefits of abstaining instances from classification; when Hoeffding Rules al-

gorithm is uncertain about a classification, it does not risk classifying unseen
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data examples. This feature is desirable and indeed crucial in domains and

applications, where miss-classification is costly or irreversible.

Figure 6.6: Abstaining rates of Hoeffding Rules.

Table 6.4 shows the accuracy evaluation between the Hoeffding Trees,

VFDR and Hoeffding Rules. One unique feature of Hoeffding Rules is its

ability to refuse a classification if the classifier is not confident of outputting

a decisive prediction from its rule set. The tentative accuracy, abstaining

rate for Hoeffding Rules and overall accuracy for the Hoeffding Trees and

VFDR were recorded. The tentative accuracy for Hoeffding Rules is the

accuracy for instances where the classifier is confident of producing a reliable

prediction. The tentative accuracy was also used for estimating the utility

of expressiveness shown in Section 6.3.2.2.
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Table 6.4: Accuracy evaluation between the Hoeffding Trees, VFDR and Hoeffd-
ing Rules.

Dataset

Algorithm Measure SEA Random Tree STAGGER
Covertype Airlines

No Drift With Drift No Drift With Drift No Drift With Drift

Hoeffding Rules

Tentative Accruacy

(%)
82.6 84.30 81.86 75.62 100 98.50 74.24 66.74

Abstaining Rate

(%)
8.07 6.43 49.51 56.02 22.27 28.52 10.04 16.47

VFDR
Overall Accruacy

(%)
81.3 82.26 52.28 47.07 100 86.20 61.32 62.50

Hoeffding Trees
Overall Accuracy

(%)
88.08 89.23 88.98 61.08 100 99.75 82.04 66.04

As shown in Table 6.4, Hoeffding Rules outperforms VFDR in all cases

and is very competitive compared with the Hoeffding Trees, both on synthetic

and real data streams. Hoeffding Rules is also competitive with the Hoeffding

Trees; the accuracy of both classifiers is very close, with Hoeffding Rules

outperforming the Hoeffding Trees in 3 cases. However, compared with the

Hoeffding Trees, Hoeffding Rules produces a more expressive rule set and

does not fundamentally suffer from the replicated subtree problem. Also, the

classification rules generated by Hoeffding Rules can be easily interpreted and

examined by everyday users or domain experts. Decision trees would first

need to undergo a further processing step before a human user could interpret

the rules. This would translate the tree into rules, starting with single passes

from the root node down to each leaf. This may well be too cumbersome

and too time-consuming a task for the decision maker.

Automated tree traversal to increase expansiveness is an additional linear

process with respect to the number of tree nodes, or in its best case for

balanced trees, it can be O(log(tn)) where tn is the number of nodes in the
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tree [62].

6.3.2.4 Computational Efficiency

To examine Hoeffding Rules’ computational efficiency, Hoeffding Rules, VFDR

and Hoeffding Trees are compared on the same data streams as in Table 6.4.

As shown in Figure 6.7, the execution time of Hoeffding Rules outperforms

that of VFDR by far and is also very close to that of the Hoeffding Trees.

Figure 6.7: Benchmark of learning time for different datasets.

Generally speaking, Hoeffding Rules algorithm shows a much better per-

formance in terms of utility of expressiveness compared with its direct com-

petitor VFDR algorithm and is also competitive compared with its less ex-

pressive competitor the Hoeffding Trees algorithm. The same is true for the

evaluation with respect to computational efficiency, Hoeffding Rules’ run-

time is much shorter than VFDR and only slightly longer than the Hoeffding

Trees.
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6.3.2.5 Experimental Conclusion and Remarks

The conducted experiments of Hoeffding Rules algorithm showed the utility

of expressiveness when computing the accuracy and performance between

classifiers for the data stream. In certain datasets, tree-based algorithms

may marginally produce higher predictive accuracy for unlabelled data exam-

ples compared with rule-based algorithms such as Hoeffding Rules algorithm.

However, the trained model/tree-structure can be difficult and complicated

to understand for humans due to the way the tree is constructed, and from

training examples.

Within the Hoeffding Rules Algorithm, the Hoeffding Bound is a metric

that calculates an upper bound of difference between the best and second-

best rule term within an iteration, to verify the true likeness of a rule term.

If the rules satisfy the Hoeffding Bound from a number of buffered data

examples, then these rules are more likely to be as effective as the rules that

learn in an infinite data stream. There is no ‘magic number’ that can be pre-

determined to guarantee correctly capturing the underlying concept from a

streaming data source. Also, the uniformity of the data sequence tends to

vary between scenarios. Rather than relying on a static size of buffering data

examples, an adequate number of unseen data examples that is required for

inducing classification rules should be dynamically determined throughout

the learning process. During the learning process, at any given moment,

if the Hoeffding Bound is not satisfied, then the algorithm would need to

buffer more data examples before a rule can be induced. Limitless buffering

data examples is not a practical approach in a streaming environment due
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to constraints in computing cost and physical storage.

Lastly, in addition to the ability to provide more clarity of learned mod-

els in the form of expressive modular rules, Hoeffding Rules algorithm also

has the ability to abstain from a classification decision when the algorithm

is uncertain about a prediction. In many scenarios, abstaining from classi-

fication and leaving the decision to the users may be necessary for critical

applications where a misclassification would be costly, such as in medical or

financial domains.

6.4 Identified Limitations of Hoeffding Rules

Algorithm

Hoeffding Rules algorithm has substantially addressed the challenge in deal-

ing with concept drifts with dynamic sliding windows. However, the algo-

rithm is still far from perfect. Although, the capability in adapting to concept

drifts Hoeffding Rules algorithm was shown, but a suitable stopping criterion

was revealed as on one of the aspects which one can be improved to increase

to performance of the algorithm.

Due to the nature of a covering algorithm, the rule inducing process

typically stops when there are no more negative examples (or not many of

them). However, this is also the main cause of overfitting; where a rule

specifically covers a small subset of data examples, and will not perform

well with unseen data examples. Therefore, the main issue that needs to be

solved for achieving completeness in covering the underlying concept is to

133



Page 134

ensure that a learned rule is diverse enough, so that it generally represents a

complete piece of information.

6.5 Summary

This chapter provides a comprehensive evaluation for the two developed al-

gorithms in the research, G-eRules and Hoeffding Rules. There are three

primary dimensions of interest–the time required to learning, the amount of

space and the error of predictions. These criteria were used to validate the

developed algorithms with other existing algorithms with different combina-

tions of selected metrics to conclude on a particular dimension of interest

such as speed, accuracy or adaptability.

The experiments for G-eRules algorithm confirms the effectiveness of the

proposed technique based on Gaussian distribution for learning heuristic from

numeric features. The technique can be practically integrated/used in an

existing framework and G-eRules is an example of such an integration.

The developed Hoeffding Rules algorithm represents all the findings of the

research in a collective system. It addresses the challenges in dealing with

numeric features and dynamically buffering data examples in a streaming

environment. Evidently, it is not always the best in terms of accuracy and

learning time compared with other algorithms. In a streaming environment,

adjusting the time and space used by the algorithm can influence the error

rate. Hoeffding Rules algorithm is very competitive with state-of-the-art,

Hoeffding Trees algorithm as well as outperforms in several cases, especially

with real-life datasets. Additionally. Hoeffding Rules algorithm can produce
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modular express rules directly from the data examples, and it is more robust

with concept drifts, which is not the case with the Hoeffding Trees algorithm.

Lastly, due to the nature of a covering algorithm, there is a number of

limitations was identified in Hoeffding Rules and these limitations open the

way forward for potential improvements for Hoeffding Rules algorithm in the

future.
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Conclusion and Future Work

This research focuses on approaches and algorithms to mining valuable and

expressive insights from data streams. The advances in network communi-

cation and rapid increase in the number of connected devices lead the needs

for a system and dedicated approaches to learn from data streams which

are unbounded, as well as having the ability to fit all the learning data into

secondary storage.

Chapter 3 introduces G-eRules algorithm which is developed to improve

the computing efficiency in dealing with numeric features for classification

tasks from dynamic data streams. The dynamic sliding windows technique

in Chapter 4 is developed to address the challenges in dealing with concept

drifts in a streaming environment. In Chapter 5, Hoeffding Rules, a rule-

based algorithm for inducing highly expressive and modular classification

rules from data streams, was developed. Finally, the empirical evaluations of

the developed algorithm are described and critically discussed in Chapter 6.

In this chapter, the main research proposition and research questions are
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revisited in Section 7.1. Section 7.2 highlights the novelty contribution of

the research. This chapter is concluded with suggestions for future direction

in Section 7.3.

7.1 Research Questions Revisited

The primary proposition of the research was:

“This research investigates common issues across most rule-based

techniques in data stream mining and introduces and discusses a

set of techniques as a system to improve the efficiency and feasi-

bility of learning from streaming data sources.”

This research is located in the Knowledge Discovery domain and classifi-

cation tasks in a streaming environment specifically. To address the above

proposition, the following four questions were identified.

Research Question 1: How can a trained predictive model from a stream-

ing data source be reliably interpreted and understood by the users?

While this research aims to establish a technique to reliably and ac-

curately learn from streaming data sources, tree-based models may offer

promising accuracy, but suffer from a lack of expressiveness. As accuracy

has been the dominating measurement of interest in comparing classifiers in

both static and streaming environments, it is evident that real-time decision

making based streaming models still suffer from the issue of trust.
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By looking to develop a rule-based technique, a user can determine an

accuracy loss, such that a model can be expressive enough to grant trust,

and at the same time, the shortfall in accuracy can be tolerated compared

with any other best performing classifiers which are less expressive or can

even be completely black box.

Research Question 2: What are the most efficient approaches to improve

the efficiency in learning heuristic for numeric features from a high-volume

and high-velocity streaming data source?

To date, there is no single optimised rule-based method to deal with nu-

meric features. However, methods for working with numeric features have

been studied extensively in the past two decades for static/batch data envi-

ronments.

This research investigates the ability to learn from numeric features in a

streaming environment. In particular, the computational efficiency is inves-

tigated by comparing established methods with the proposed works because

the runtime when processing numeric features in the streaming environment

is even more of a concern.

Research Question 3: What impact have the properties of streaming data

sources had on the faith and accuracy of the predictions for classification

tasks?

Abstaining is desirable and necessary in critical applications where mis-

classification is very costly, such as in medical or financial applications. Tree-

based techniques always return a prediction for a given data example because

of its hierarchical structure. However, a model that can draw a clear line be-
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tween objective and random subjective prediction is highly desirable.

Research Question 4: How have concept drifts and dynamic behaviours

in streaming data been posing challenges in learning a reliable and accurate

classification model?

The key challenge of streaming data classification lies in the need of the

classifier to adapt in real-time to concept drifts, which is significantly more

challenging if the data stream is high velocity.

By looking at classification in data stream environments, this research

does not stop at the assumption of early machine learning techniques which

typically expect to work with a complete set of training data examples, but

even more demanding and infinite data sources. An example of such an

application is the monitoring of a network of sensors to determine whether

the unbounded and sequential flow of data may be too large to consider

storing and revisiting as being impractical.

7.2 Contributions to Knowledge

This research presents various topics that are related to the construction of

a rule-based algorithm for streaming data classification. In other words, the

proposed rule-based algorithm addresses the raised concerns in the research

questions as described in Section 1.2, keeping in view the drawbacks of

decision tree-based techniques as a basis for a classification model in both

static and streaming environments.

By testing the raised research questions, this work introduces novel meth-

ods and an algorithm in dealing with the challenges mentioned in the pre-
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vious section for learning expressive classification rules from streaming data

sources. The critical contributions are summarized in the following points:

• Develop a new method in learning heuristics for numeric features from

streaming sources by using Gaussian distribution, which is proven to

be more efficient compared with existing method from other rule-based

classification algorithms for streaming data.

• Address the challenges in buffering recent data examples by developing

the dynamic sliding window technique, which is based on the well-

known Hoeffding’s Inequality. The empirical illustration showed that

the proposed sliding window method performs better than the previ-

ously used method.

• A further and the most significant contribution of this research is that

Hoeffding Rules algorithm was formed to address challenges and iden-

tified shortfalls from other methods in learning classification model

from streaming data sources as set out in Research Question 2, 3 and

4. Especially, Hoeffding Rules is designed to introduce to modular,

expressive and interpretable classification rules directly by employing

the “Separate-and-Conquer” searching approach which is the primary

concern in Research Question 1.

The empirical evaluations showed the Hoeffding Rules algorithm is able

to adapt to concept drifts and is significantly faster when compared

with other rule-based algorithms for data streams, so that these are

the goals. In addition, Hoeffding Rules algorithm is very competitive
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or even outperformed in certain cases compared with the state-of-the-

art tree-based algorithm, Hoeffding Trees. Collectively, the Hoeffding

Rules algorithm delivers the primary proposition of the research:

“Develop a set of techniques as a system to improve the ef-

ficiency and feasibility of predictive learning from streaming

data sources.”

Finally, there is software code for the listed contribution above, which

were developed to be used in the common framework, Massive Online Anal-

ysis (MOA), for empirical evaluations. These components can be integrated

into other research projects.

7.3 Future Directions

This thesis has created up a number of avenues for future work. Possible

future work on Hoeffding Rules would comprise the development of more

advanced stopping criteria or filtering criteria to improve accuracy for the

core learner in Hoeffding Rules, this is Prism algorithm. Additionally, the

Hoeffding Rules algorithm can be extended further to learn more generalised

rules instead of only classification predictive rules for one target class feature.

Stopping Criteria for Rule Induction

Pre-pruning is one of the approaches to controlling the complexity of the

resulting target theory and avoiding overfitting during the rule construction.

Stopping criteria is one pruning method that automatically decides when to
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stop inducing a rule or adding an extra rule term to a rule. In other words,

a stopping criteria in rule induction stops the refinement of a rule, even

though it may not cover all training examples positively. In many cases, a

rule should not have more refinements because excluding the remaining cov-

ered negative data examples is estimated to be too costly. There are several

prominent stopping criteria which can be considered, such as minimum cov-

erage constraints, support and confidence, significant tests, encoding length

restrictions and correlation cut-offs.

The simplest form of stopping criteria is discarding rules with low cov-

erage. For instance, a rule should cover a certain minimum number of data

examples or a minimum number of positive examples. For the case of mini-

mum total coverage, if a rule only covers data examples in the shaded area,

then it should be discarded from consideration. Examples need to be covered

by the rule, regardless of whether they are positive or negative. However, in

both cases, a deeper look into a stopping criterion-based coverage is needed

because the objective is to avoid overfitting by filtering out rules whose qual-

ity cannot be reliably estimated due to the small number of training data

examples they cover.

Similar to minimum coverage criteria, some rule-based algorithms also use

a minimum precision or minimum rule accuracy constraint. Although mini-

mum accuracy is already used in the Hoeffding Rules algorithm, metrics such

as recall and precision are considered to maximise the generalisation. For ex-

ample, FOIL [103] has a theoretical stopping criteria; when the best rule has

a value of purity below a certain threshold such as 80%, the algorithm rejects

the rule and the learned theory is considered complete. Moreover, in SFOIL
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algorithm [101] used minimum coverage constraints based on minimum pre-

cision and minimum accuracy as a termination criterion for the stochastic

search.

There is also no reason why only a single metric should be used as a

stopping criterion to filter out unpromising rules. Association rule mining

algorithms are a notable example of combining multiple criteria with the use

of support and confidence. This is also extended to classification algorithms,

where the algorithms obtain candidate rules for covering loop in association

rules learning framework [78, 89]. Confidence can indicate the quality of the

rules, where support aims to ensure a minimum certainty by discarding the

rules with high confidence but with too few positive examples covered.

Filtering Criteria with Likelihood Ratio Significant Test

Although rules are already evaluated with learning data examples, the per-

formance of the induced rules can also be estimated. In particular, when

induced rules only cover a few data examples, their evaluation metrics may

not represent the entire underlying concept. The CN2 [27, 28] algorithm

makes use of significance testing, the likelihood ratio statistic [28], which

compares the probability of class distribution covered by the rule, with the

prior distribution of data examples in the training dataset. A robust rule

would have a significant difference in these two distributions. The use of sig-

nificance testing was used as early as 1989 within CN2, and later, in works

such as the relational learner FOIL [110] and BEXA [118]. Unlike stopping

criteria, the shape of the likelihood isometric does not depend on the number
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of data examples in the learning set but the actual class distribution. There-

fore, a rule may not be significant for a small dataset, but it may become

more significant if there are a lot of training data examples. Hence, the sig-

nificant test tends to lead to purer rules. However, some of these pure rules

are often the outcome of overfitting, and this raise doubt as to whether this

strategy can effectively counter overfitting.

Initially, stopping criteria and filtering appear to very similar. Nonethe-

less, the filtering out strategy and stopping criteria can distinguished as fol-

lows:

• Stopping criteria determine when the inducing process should stop and

the current best rule returned.

• Filtering out determines regions of acceptance performance.

In any case, both strategies are closely related. In particular, filtering

criteria can also be used as stopping criteria if necessary; where no further

rule can be found within acceptance region filtering criteria, the learning

process is considered to be complete. Equivalently, if no further refinement

of a rule can be found within the acceptable region, then the rule is considered

to be complete, and the rule’s inducing process stops.

Generalised Rules Induction

A common approach to descriptive learning in data mining is frequent item-

set mining, which expresses many-to-many relationships between the items

from a given number of item-sets. Association Rules learning is one the
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techniques based on the concept of ‘Frequent Itemset Mining’ to discover

actionable insights. Associations Rules have a general form ‘IF antecedent

THEN output’. For instance, when there is a rule in the form of ‘IF a

AND b THEN c’, the presence of a and b is confirmed, so the presence of

c is high with a minimum probability, which is defined by the user in terms

of support and confidence values of the rules. Further information about

frequent itemsets mining as well some algorithms in this area are reviewed

and discussed in [8, 22].

For a predictive technique such as classification, the induced rules always

produce insights and information related to the target class feature. Con-

trary to predictive techniques, descriptive techniques can capture a greater

relationship between all features to explain the correlated links, in order to

produce insights and patterns. Descriptive methods are designed for un-

labelled data examples, as is the case with Association Rules. However,

descriptive rules can express a wider range of feature values (not only binary,

as with Association Rules). In this context, if there is a special target fea-

ture which that is always in the output part of the rules, this is referred to

as classification. On the other hand, generalised descriptive rules are in a

more general context, where the output part of the rule can be the arbitrary

conjunction of any ‘feature-value’ pairs.
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Appendix C

Implementation of Hoeffding’s

Inequality Proof

R code used to simulate and confirm expected behaviours of Hoeffding’s

Inequality.

1 # s t a r t o f the code ####################

2 ########################################

3

4 # s e t seed b e f o r e rune

5 set . seed (1 )

6

7 # c r e a t e v e c t o r 10 ,000 i tems where ’A’ i s 30%

8 x <− c ( rep ( x = ”A” , 3000) , rep ( x = ”B” , 7000) )

9

10 # c a l c u l a t e e p s i l o n ( Hoe f fd ing Bound) as d e s c r i b e d
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11 e p s i l o n <− sqrt ( log (1/ 0 . 05 ) /(2∗200) )

12

13 # f l a g whether the error r a t e i s v i o l a t e d

14 outOfBound <− FALSE

15

16 # run 10 ,000 t imes

17 for ( i in 1 :10000) {

18 fa l seCount <− 0

19 for ( j in 1 : 100 ) {

20 # s e l e c t 200 i tems randomly

21 s e l e c t e d I t e m s <− sum(sample (x , 200 , replace = TRUE)

↪→ == ”A” )

22

23 # c a l c u l a t e the d e t l a f o r p r o b a b i l t y o f ’A’

24 de l t a <− abs ( ( ( s e l e c t e d I t e m s / 200) − 0 . 3 ) )

25

26 # check i f the bound

27 e . pro <− de l t a > e p s i l o n

28

29 # i n c r e a s e error counter

30 i f ( e . pro == TRUE) fa l seCount <− f a l s eCount + 1

31 }

32

33 # check i f e r ror r a t e e x c e s s e d the d e f i n e d t h r e s h o l d
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34 i f ( fa l s eCount > 5) outOfBound <− TRUE

35 }

36

37 #check i f the bound

38 print ( paste0 ( ”Was e r r o r ra t e v i o l a t e d : ” , outOfBound ) )

39

40 # end o f the code ######################

41 ########################################
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Appendix D

Implementation of R Code for

Numeric Rule Term

R code used to produce examples for numeric rule term based on Gaussian

distribution.

1 l ibrary ( ggp lot2 )

2 set . seed (1 )

3 t1 <− round(rnorm(100 , 50 , 6) )

4 t2 <− round(rnorm(100 , 40 , 6) )

5 t3 <− round(rnorm(100 , 60 , 6) )

6

7 d1 <− data . frame ( x = t1 , Class = 1)

8 d2 <− data . frame ( x = t2 , Class = 2)

9 d3 <− data . frame ( x = t3 , Class = 3)

10 data <− rbind ( d1 , d2 , d3 )
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11 data$Class <− as . factor (data$Class )

12

13 max density <− max( density (d$x )$y )

14 max density x <− density (d$x )$x [ density (d$x )$x >= max

↪→ density ]

15

16 d <− density ( t1 )

17

18 denso i ty approx <− approx (d$x , d$y , xout = t1 )

19 denso i ty approx <− data . frame ( denso i ty approx )

20

21 max density <− denso i ty approx$x [ denso i ty approx$y >=

↪→ max( denso i ty approx$y ) ]

22

23

24 denso i ty approx <− approx (d$x , d$y , xout = t1 [ t1 > max(

↪→ max density ) ] )

25 denso i ty approx <− data . frame ( denso i ty approx )

26 max density r i g h t <− denso i ty approx$x [ denso i ty approx$

↪→ y >= max( denso i ty approx$y ) ]

27 max density r i g h t <− max(max density r i g h t )

28

29 denso i ty approx <− approx (d$x , d$y , xout = t1 [ t1 < max(

↪→ max density ) ] )
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30 denso i ty approx <− data . frame ( denso i ty approx )

31 max density l e f t <− denso i ty approx$x [ denso i ty approx$y

↪→ >= max( denso i ty approx$y ) ]

32 max density l e f t <− min(max density l e f t )

33

34 g <− ggp lot (data , aes ( x = x , co l ou r = Class , f i l l =

↪→ Class ) )

35 g <− g + geom density ( alpha = 0 . 2 ) + xlim (0 , 100)

36 g <− g + geom v l i n e ( x i n t e r c e p t=max density , c o l o r = ”

↪→ green ” , s i z e = 0 . 8 )

37 g <− g + geom v l i n e ( x i n t e r c e p t=max density l e f t , c o l o r

↪→ = ” purple ” , l i n e t y p e=” dashed ” , s i z e = 1 . 5 )

38 g <− g + geom v l i n e ( x i n t e r c e p t=max density r i ght , c o l o r

↪→ = ” blue ” , l i n e t y p e=” dashed ” , s i z e = 1 . 5 )

39 g <− g + g g t i t l e ( ” Density Plot ” )

40 g <− g + xlab ( ”Numeric Value ” )

41 g <− g + ylab ( ” Class Density f o r Numeric Values ” )

42 g

43

44

45 g + annotate ( ” r e c t ” , xmin = −In f , xmax = 30 , ymin = −

↪→ In f , ymax = Inf , f i l l = ” gray ” , alpha = . 5 , c o l o r

↪→ = NA)
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