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Abstract 

The growth and yield of wheat is subject to constant attempts at improvement. Recent 

technology has allowed us to speed this process up by utilising genetic markers. 

Previous work has had to concentrate on small groups of traits at any one time due to 

the limited allelic representation in bi-parental populations. The aim of this project was 

to identify and study the genetic underpinnings of source and sink related traits in field 

conditions. The crop was measured throughout the full season to observe how these 

traits interact with each other continuously. To this end, the National Institute of 

Agricultural Botany (NIAB) eight-parent population was studied in two field seasons. The 

allelic diversity and high level of recombination present in this population gives us an 

unprecedented opportunity to identify novel Quantitative Trait Loci (QTL) that control 

varying aspects that impact the final yield.  

All traits measured exhibited a much greater range of diversity in the progeny compared 

to that of the founder lines. Using that diversity, we were able to identify QTL on every 

chromosome, with multiple major effect, stable, QTL occurring on 1B, 4B, 4D, 5A and 

6A. Some of these have been described in previous literature, while others such as 1B 

appear to be novel. Further to this, there were two noteworthy QTL for yield that were 

not co-locating with any of the other measured traits. One of these QTL was stably 

located on 7B and explains on average 1.6% of the total phenotypic variation, while the 

other is located on 5B, explaining 6.02% of the total variation in a single environment. 
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1. Introduction 

1.1 Background 

The global population is rising by around 1.7% a year (Rosegrant and Agcaoili, 2010), 

which equates to approximately an extra 110 million people. During the twentieth 

century alone, the world population increased from 1.65 billion to 6 billion. While cereal 

production has continued to increase in this time, so has demand, creating a yield gap 

(Fischer et al., 2009). Global production is actually higher than required solely for direct 

human consumption, however the rising affluence in developing nations and the climate 

change policies of developed nations add further strain to global systems by requiring 

increased production of meat and biofuel respectively (Godfray et al., 2010). In this 

context, it has been predicted that cereal production will need to increase by at least 

50% by 2050 in order to feed an estimated 9 billion people. Global production of cereals 

stands at 2,980 million tonnes a year (FAOSTAT, 2019) (Figure 1.1), 90% of which is from 

just three main crops: Wheat, Maize and Rice - all of which are grass species with edible 

grains and share a common ancestor from around 50-70 million years ago (Kellogg, 

2001). Wheat provides approximately 20% of the calories consumed globally, including 

a similar percentage of the dietary protein for about 2.5 billion people in less developed 

countries (Dixon et al., 2009). Some estimates suggest that, in Europe alone, wheat 

production will need to double to keep pace with demands and maintain stable prices. 

Increasing demand for cereal crops is challenged by a shortage of high-quality 

agricultural land, diseases, resource limitations, increased input costs and 

environmental issues that can drastically reduce optimum yields. The yield potential of 

wheat has been gradually increasing by around 1.1% per annum (Dixon et al., 2009), due 
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to introduction of new cultivars - but this is currently insufficient. There is evidence that 

on as much as 27% of the global area on which wheat is grown, wheat yields may have 

plateaued (Grassini et al., 2013), further increasing pressure on limited productive 

areas. 

 

Figure 1-1 Global cereal production 2017 

 

1.2 Economic importance of wheat 

Average global yields are highly varied between countries and regions, ranging from 

0.5t/ha in some areas of North Africa, to 15.6t/ha in New Zealand. The average global 

yield is around 3.0t/ha, largely due to limited soil resources, water shortages and 

susceptibility to disease and pests (FAO, 2016). 

In 2015, 156 million tonnes of wheat were traded on the international markets, making 

it the most widely traded cereal crop in the world. This international trade represents 
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almost 20% of annual global production, with six main areas accounting for 

approximately 90% of exported wheat. Exact numbers vary year on year, but overall the 

largest wheat exporters in the world are: the USA; the EU; Australia; Canada; the Former 

Soviet Union; and Argentina (Figure 1.2). The wide geographical distribution of these 

exporters produces a generally stable wheat supply, with decreases in production from 

adverse conditions in one area being balanced by better conditions in other areas. 

However, this is not always the case, which has previously led to export restrictions and 

large price increases globally, with net importing nations bearing the brunt of these 

increases (FAO, 2016). 

 

Figure 1-2 Major wheat exporters and importers 2016 (FAO Food Outlook 2016) 

The top importers of wheat are concentrated in developing countries, particularly in 

North and Sub-Saharan Africa, Latin America and South-East Asia. These regions have 

had a greatly increased demand over the past few decades, due to rapidly expanding 

populations combined with an increasing economic wealth.  

In addition to its economic nutritional importance, wheat is culturally important in many 

areas, and has uses in both food and non-food products. The gluten protein content of 
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wheat imparts elastic properties to doughs necessary for products such as bread, pasta 

and noodles (Shewry, 2009), and variants of these are staple foods in many cultures 

around the world. Wheat flour is also used as a thickening agent in sauces and soups, or 

the whole crop harvested green as silage for livestock, in addition to the uses of wheat 

in non-food items such as adhesives, paper and livestock bedding (Kersting et al., 1994). 

1.3 Adaptability 

Wheat is a highly adaptable crop, with a vast global distribution in a wide range of 

locations and climates that is unrivalled by any other cereal. It is cultivated at every 

latitude between 67°N and 45°S, from Northern Europe to New Zealand (Trethowan et 

al., 2005), thriving throughout Mediterranean, temperate and sub-tropical areas, and 

able to tolerate many variations in altitude, soil type and weather conditions (Figure 1.3) 

 

Figure 1-3 Global Wheat Production 2017 (http://www.fao.org/faostat/en/#data/QC/visualize) 
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Modern bread wheat cultivars can be categorised in two broad seasonal types - spring 

and winter. Winter wheat is sown in the autumn, which allows it to develop its initial 

vegetative stage before winter, then resuming its growth in spring. Already being 

established at the start of spring allows winter wheat to gain a head-start in light 

interception and biomass accumulation, while being in a better position to exploit the 

higher moisture levels in the environment. Spring wheat, as the name suggests, is sown 

in spring, has no “holding” phase, and does not need vernalisation (Snape et al., 2001). 

Both types are harvested around the same time in late summer. Both spring and winter 

wheat have their own advantages depending on the priorities of the farmers and the 

climate in which it is grown. 

In the UK, winter wheat is favoured as the yield is typically higher than in spring varieties, 

and it allows more time in spring for other activities. Spring wheat is favoured in 

countries such as Egypt, where the climate allows multiple crops to be grown in rotation 

throughout the year. 

1.4 Classification and grading 

Within cultivated wheat varieties, two main groups appear: ‘Bread’ wheat and ‘Durum’ 

wheat, which are hexaploid and tetraploid respectively. Bread wheat (Triticum 

aestivum) is the most widely utilised, accounting for around 95% of global wheat 

production. Durum wheat (Triticum turgidum) accounts for around 5% of global 

production (Bushuk and Rasper, 1994; Carver, 2009), mainly for use in pasta production. 

Wheat is divided into categories based on quality and end-use. In the UK, these are split 

into four quality groups as defined by the National Association of British and Irish Flour 

Millers (NABIM) (http://www.nabim.org.uk/). Group 1 is the highest quality class, 

http://www.nabim.org.uk/
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defined by hard endosperm and a high protein/gluten content and is used for bread-

making. Group 2 varieties exhibit bread-making potential but not to the same extent as 

Group 1. Group 3 contains soft endosperm varieties, with low protein, and is typically 

used in production of cakes and biscuits, or distilling. Group 4 varieties lack bread- or 

biscuit-making qualities and generally exhibit the highest yields and lowest protein 

contents - this group is mainly grown for animal feed. Each wheat exporting country has 

their own grading systems that meet specific standards in moisture content, protein 

content, grain weight and foreign material content (Bushuk and Rasper, 1994; Carver, 

2009). 

1.5 The origin and domestication of wheat 

Archaeological evidence suggests that wheat originated in an area of the Middle East 

known as the fertile crescent (Brown et al., 2009; Heun et al., 1997) (Figure 1.4). This 

area contains the basins of the Tigris, Euphrates and Jordan rivers, and is the site where 

it is thought that human civilisation first emerged from hunter-gatherer lifestyles into 

an agricultural-based existence (Preece et al., 2015). This change from the hunter-

gatherer lifestyle caused a shift from a previously rich, diverse diet of small grains, 

pulses, wild fruits and any meats they could successfully hunt, to around eight plants 

recognised as Neolithic founder crops (Zohary et al., 2015). It was these crops that 

allowed individuals to specialise, create trade and form the basis of civilisation as we 

know it (Whittle and Cummings, 2007). 
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Figure 1-4 The Fertile Crescent (Image taken from https://www.sophia.org/tutorials/the-fertile-crescent, 2019) 

 

1.5.1 Hybridization Events 

Modern hexaploid and teraploid wheat are the result of two distinct hybridisation 

events (Figure 1.5), the first involving progenitors of the AA and BB genomes between 

200,000 and 500,000 years ago (Dvořák et al., 1993; Huang et al., 2002). The AA genome 

has been traced back to a close relative of Triticum urartu, a diploid einkorn wheat 

(Huang et al., 2002). The BB genome donor is less certain, although previous studies 

have suggested potential candidates, including Aegilops speltoides (Maestra and 

Naranjo, 1998), and 5 species of Sitopsis - none of which are deemed to have sufficient 

homology to the BB genome to be considered the true ancestor (Blake et al., 1999).  

The result of this hybrid was wild emmer (Triticum dicoccoides), an AABB tetraploid, 

which was later domesticated, giving rise to modern durum wheat (Triticum turgidum), 

which accounts for around 5% of global wheat production. More recently, around 
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10,000 years ago, Aegilops tauschii (DD) hybridised with the T. dicoccoides tetraploid to 

create modern, hexaploid T. aestivum, or bread wheat, which has become one of the 

most important crops in the world. Each hybridization event was followed by 

chromosome doubling in the new hybrid, allowing the production of fertile plants. The 

resulting hexaploid bread wheat carries 6 genomes, each with 7 chromosomes, and thus 

contains 42 chromosomes in total (Winfield, 2011). 

 

Figure 1-5 Evolution of hexaploid bread wheat - detailing the 2 separate hybridization events that allowed the 
evolution of bread wheat Triticum aestivum. ‘X2’ refers to the doubling of the chromosomes. (Figure taken from 
www.cerealsdb.uk.net) 

 

http://www.cerealsdb.uk.net/
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1.5.2 Domestication syndrome 

The domestication of crops from their wild progenitors has created genetic bottlenecks, 

limiting the genetic diversity in modern crops (Dubcovsky and Dvorak, 2007; Haudry et 

al., 2007). Grain crops were selected for larger grains and higher grain: chaff ratios, 

which reduced the amount of labour needed to extract the greatest amount of food 

(Harlan, 1967). 

One of the most important changes that occurred to wheat during domestication was 

the mutation of the brittle rachis (Br) locus. In wild plants, the Br locus ensured that 

mature seeds would be dispersed, but in a domesticated crop is agriculturally 

deleterious. The mutation to non-Br supressed the formation of fractures in the rachis, 

leaving spikes intact until harvest, reducing pre-harvest losses (Nalam et al., 2006; Peng 

et al., 2011). A second major mutation occurred at the Q locus, changing the glumes 

from tenacious to soft, requiring less energy to be expended in threshing the grains from 

the chaff. Simons et al. (2006) shows that the Q locus also has an effect on spike 

characteristics and rachis fragility. Between these traits, domesticated wheat has lost 

its seed-dispersal mechanism, rendering it unable to survive without human 

intervention.  

1.5.3 The Green Revolution 

The Green Revolution has been the greatest change to crop production since 

domestication 10,000 years ago. The term Green Revolution was coined to describe a 

20-year period from 1960s to 1980s marked by a radical stepping up of the pace of 

technology transfer, market development, crop research and infrastructure 

improvements in response to continually increasing population and food demand 
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(Hardin, 2008). During this period, effective fertilisers and pesticides became more 

widely available, improved irrigation techniques were adopted, and high-yielding cereal 

varieties were developed (Pingali, 2012). 

In wheat, a major step-change in yield potential was obtained through the development 

and distribution of semi-dwarf varieties. These short varieties would be able to 

withstand higher nitrogen applications that might have caused lodging in taller varieties 

(Peng et al., 1999). The introduction of Reduced height genes (Rht) was the main cause 

of the reduction in plant height. The Rht genes are a homoeologous set on the group 4 

chromosomes, coding for DELLA proteins (Peng et al., 1999), transcriptional growth 

repressors which interact with gibberellic acid (GA) (Ellis et al., 2002; Peng et al., 1999). 

Normally, the repressive action of the DELLA gene products would be suppressed by GA, 

however the DELLA variants encoded by the Rht genes are insensitive to GA and 

maintain constitutive growth repression under conditions where endogenous GA levels 

would normally have promoted growth (Peter, 2003). 

The Rht genes were introduced to UK germplasm by cross breeding with the Japanese 

variety Norin-10. Norin-10 possesses both Rht-B1 and Rht-D1, B and D genome copies 

of the Rht genes (Gale and Youssefian, 1985). These dwarfing genes were selected 

because they cause a significant reduction in height without dwarfing the ears as well 

(Peng et al., 1999), therefore increasing the Harvest Index (Borlaug, 1983). The first 

commercial UK variety to possess a Rht gene was Gaines, which was characterised by 

stiffer, shorter straw that reduced lodging, and increased biomass in the ears (Gale and 

Youssefian, 1985). Other successes include Lerma Rojo-64 and Sonora-64, wheat 

varieties released in 1964 and grown in South-East Asia, helping to end famine in the 
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region by boosting yields by 3.6% per year (Borlaug, 1983; Peter, 2003; Shiferaw et al., 

2013). In 1965, India and Pakistan imported a combined total of 450 tonnes of semi-

dwarf seed, developed by the International Maize and Wheat Improvement Centre 

(CIMMYT), Mexico. By 1970, India was producing 20.1 million tonnes of wheat, and 

Pakistan harvested 7.3 million tonnes - an increase of over 60% on 1965 yields in each 

country. In 1972, Indian wheat production rose further to 27 million tonnes, although 

Pakistan’s production dropped slightly in this timeframe, likely due to a smaller area 

being cultivated during the Indo-Pakistani war. 

In addition to dwarfism, intensive breeding programmes at CIMMYT had the unintended 

consequence of favouring photoperiod insensitive varieties (Borlaug, 1983). This 

occurred because the breeding program was designed for two growing seasons a year 

for accelerated varietal development, with growing sites situated 10⁰ in latitude and 

over 2600m in altitude apart. As a result of this insensitivity, there was less need to tailor 

varieties to individual regions, and the new Green Revolution varieties could be 

distributed and grown around the world (Beales et al., 2007; Kato and Yokoyama, 1992). 

Today the world is in need of a new Green Revolution. Yield plateaus, increasing 

populations and climate change demand a second Green Revolution that is sustainable 

and minimises damage to the environment and ecosystems. The previous revolution 

was concentrated on favourable areas with high levels of rainfall or irrigation (Pingali, 

2012). The next revolution must encompass the entire world, especially in marginal 

areas that were overlooked in the first one.  

These challenges can be met by re-establishing production systems and agricultural 

innovations with modern technological innovations and scientific knowledge (Pingali, 
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2012). This must happen, despite investments in agriculture having steadily and 

significantly dropped since the end of the Green Revolution (Pingali, 2012). 

1.6 Genetic dissection of yield 

Yield is the final outcome of the crop growth and development processes occurring 

throughout the growing season. However, yield is formed continually from sowing to 

harvest, with virtually all genes contributing directly or indirectly (Slafer, 2003). 

Although some processes governing yield are inherited in a qualitative manner, most 

yield related traits are inherited quantitatively, with a full range of potential variation. 

Yield itself may be considered to be the result of the actions and interactions of all other 

traits, rather than a trait in itself (Slafer, 2003). The Agriculture and Horticulture 

Development Board (AHDB) Wheat Growth Guide (Figure 1.6), though written from an 

agronomist and grower’s perspective, provides a useful integrative picture of how the 

different stages of the life cycle are connected and together determine final yield. It 

demarcates three major phases of the winter wheat crop cycle - Foundation, 

Construction and Production.  

The Foundation stage starts with seed germination and establishment of a vegetative 

canopy above ground and the root system below ground. Growth slows down as 

autumn progresses and reaches a minimum in the colder winter months, and the 

vernalization requirement, where present due to the possession of winter alleles at the 

VRN-A1 locus, blocks the transition to reproductive development until sufficient chill 

units have been accumulated. The number and spatial organisation of leaves forming 

the vegetative canopy is established through tillering (branching) and the transition to 
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the Construction phase is marked genetically by the satisfaction of the vernalization 

requirement and the activation of floral pathways (Snape et al., 2001).  

The Construction phase combines rapid vegetative growth from already established 

tillers with rapid development of the floral organs from the apical meristems of each 

tiller. The timespan from initiation of stem extension to anthesis is mainly a function of 

thermal time, subject to a genetically variable photoperiod sensitivity. Most UK winter 

wheats are photoperiod sensitive; that is, they repress floral development until 

daylength exceeds a certain threshold. This serves the purpose of avoiding exposure of 

delicate floral organs to late frosts.  

The Production phase spans the remainder of the crop cycle from fertilization through 

grain filling to senescence and ripening. Although this phase starts with a set maximum 

number of grain sites per unit area, continued photosynthetic activity and an adequate 

supply of water and nutrients are needed to avoid seed abortion and lower than 

maximum potential grain filling. 

 

Figure 1-6 Wheat development phases reproduced from the AHDB Wheat Growth Guide 
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Figure 1.7, also reproduced from the Wheat Growth Guide, illustrates how yield 

potential derives from the ability to capture appropriate amounts of water and nutrients 

from the soil, light energy and carbon dioxide from the atmosphere and to channel the 

fixed carbon and nitrogen to the grain. 

 

 

Figure 1-7 Summary of the capture and utilisation of natural resources, particularly solar energy, water and carbon 
dioxide. It illustrates how these resources convert into grain and non-grain energy (expressed here in t/ha biomass or 
grain). (reproduced from the AHDB Wheat Growth Guide) 
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1.6.1 The reductionist approach to yield 

The traditional genetic approach to yield is essentially reductionist, based on defining a 

nested hierarchy of component traits that can be tackled one at a time. 

At the top level, Grain Yield (per unit area) is of course the direct product of the number 

of grains per unit area and the average grain weight, usually expressed as the Thousand 

Grain Weight (TGW). Attempts to understand why grain size varies have focussed on 

the principal grain morphometric traits such as length and width, which determine the 

grain volume and Specific Weight, a measure of grain density per unit volume. These 

first order yield component traits are quite heritable, and their genetic underpinnings 

have been studied with some success. Further detail of specific loci governing GW, GL 

and TGW will be given in Chapter 3.  

However, grains are found on ears, and therefore the number of grains found per unit 

area is itself the product of the number of plants per unit area (which is influenced by 

the number of seeds planted per unit area), the number of tillers per plant, and the 

average number of grains per ear. The tillering ability of the plant and number of grains 

per ear are partly genetically determined but are not independent of each other and of 

course respond dynamically to resource availability/capture and environmental stress. 

The plant’s ability to establish fertile spikelets are fixed early in development - between 

Zadok’s Stage 30 and 60 (Zadoks et al., 1974) - and is reliant on early vigour and water 

use efficiency (López-Castañeda and Richards, 1994). 

Most previous studies focusing in depth at sink-related traits have limited scope in the 

sizes of the studied populations and are highly variable in the physical areas used for 
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measuring grain yield. Simmonds et al (2014), Brinton et al (2017) and Snape et al 

(2007), all used plots around 1 x 6m, Verma et al (2004) used 1.4 x 5m plots, while 

Griffiths et al (2015) used plots between 1m2 and 6m2 depending on the location. All of 

these studies used populations of varying sizes from 34 lines (Verma et al., 2004) to 202 

lines (Snape et al., 2007). 

1.6.2 Yield – the integrative approach 

All of the above field studies involved collecting data from ear emergence or flowering 

onwards, with little in the way of data capture before this. Any source-related traits are 

usually confined to looking at the time around grain filling and senescence, rather than 

taking into account the gradual accumulation of source capacity over the full lifecycle. 

Some research, exemplified by Camargo et al (2018, 2016) and Pennacchi et al (2018) 

have begun to take a more integrative approach, measuring growth parameters 

throughout the season, with a view to understanding some of the complexity of how 

multiple traits together explain the final yield. Camargo et al used a fully automated 

glasshouse phenomics facility to capture detailed data on growth and development over 

a full crop cycle, concluding that there were benefits to the genetic mapping of growth 

curve parameters as well as single time point data to help develop a better 

understanding of developmental plasticity in wheat. The limitations of this study were 

the use of single pot-grown plants in a glasshouse environment, which means that the 

relevance of the findings to field-grown crops is somewhat uncertain, and a lack of 

genetic power imposed by the low number of genotypes (208) and two replicates 

catered for by the capacity of the facility. Pennacchi et al (2018) used a combination of 
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controlled environment and field trials, using 12 and 119 lines respectively, but has not 

yet published a genetic analysis. 

With the exception of Camargo et al (2018, 2016), all other studies mentioned here 

were based on double-haploid lines in bi-parental populations. Simmonds et al (2014) 

and Brinton et al (2017) took these further, creating NILs for examining specific loci. The 

predominant use of bi-parental populations is potentially limiting on the detection of 

novel QTLs due to the limited genetic diversity represented from just two parents, and 

there is a lower mapping resolution for QTLs because of fewer opportunities for 

recombination events to occur. Camargo et al (2018, 2016) used a subset of a multi-

parent population, with a wider genetic base and higher mapping resolutions. Section 

1.7.3 goes into further detail on the advantages and disadvantages of the various 

population types. 

1.7 Quantitative Genetic analysis in wheat 

Most traits of interest in plant genetics show a continuous range of variation that are 

controlled by the cumulative action of multiple genes, environmental factors and 

epistatic interactions (Lynch and Walsh, 2004).  

A quantitative trait locus (QTL) is a statistically identified region of the genome that is 

theoretically associated with genetic variation of a given trait. The dissection of a 

quantitative trait requires the identification of QTLs that contribute to the expression of 

a quantitative phenotype by means of molecular markers associated with the 

phenotypic variation (Lynch and Walsh, 2004). 
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The success of any experiment aiming to accurately map QTLs depends on multiple 

factors: the size and type of mapping population, the complexity of the targeted trait, 

the number of molecular markers available and the quality of the linkage map (Milner 

et al., 2016). As the genetic variation of a trait can involve many minor effect QTLs, 

higher trait heritability is crucial for reliable results (Bradbury et al., 2011). To limit 

environmental variation on the target trait, experiments generally need to be 

conducted with replicates over multiple years with a large sample of individuals to 

ensure an appropriate level of recombination is present. 

1.7.1 The experimental design challenge 

Complex traits such as yield can only be accurately measured in larger field plots. 

Conducting field trials with multiple lines, repeats and with plots of a sufficient size can 

quickly become a daunting challenge for phenotyping. For example, the field 

experiments conducted for this thesis covered approximately 2.4ha including buffer 

zones between plots, which equates to around 12km to walk along every individual plot. 

1.7.2 High-throughput phenotyping 

To be able to dissect traits such as yield, that are the final product of a full season’s 

growth and environmental interactions, data must be collected over the full lifecycle of 

the plant. Such a varied period poses its own challenges to data collection, with shorter 

days for phenotyping in winter, and wetter periods throughout the year meaning many 

instruments could not be used all the time due to sensitive electronic components. 

Others, such as radio spectrometers, have specific lighting conditions and times of day 

at which they can be used, rendering them unsuitable on a large scale. The ideal 

phenotyping method must be quick (lasting just seconds) and yet precise; a phenotype 
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acquisition time of just 1 minute per plot would result in a prohibitive 27 continuous 

hours of phenotyping in the context of the large yield trials described in this thesis.  

Several methods have been proposed to provide a combination of mobility and 

automation needed to cover large scale experiments at multiple timepoints, including 

proximal sensing carts (White and Conley, 2013), ‘Phenomobile’- a manned buggie that 

can collect multiple phenotypes simultaneously (Deery et al., 2014), ‘Field Scanalyzer’- 

a fixed automated gantry (LemnaTec), and more flexible and variably configured tractor-

mounted booms and UAVs carrying bespoke payloads of sensing instruments. All of 

these methods have various advantages and disadvantages, from expense and reliability 

to payload capacity (Table 1.1) 
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Table 1.1 Phenotyping platforms with some relative advantages and disadvantages (Deery et al., 2014) 
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1.7.3 Genetic mapping populations 

Most studies have traditionally used bi-parental crosses. These are simple to create, 

needing only two lines with contrasting phenotypes at the target trait, and have proven 

to be highly successful. Early plant genetics experiments used backcrossing (BC) 

populations, typically an F2 generation, these could be created in a relatively short time 

span. However, BC studies were usually based on single plants, limiting the ability to 

repeat trials for most crops. 

The next stage of these populations is Recombinant Inbred Lines (RILs), derived from an 

F2 generation which then goes through selfing for several cycles. This has the advantage 

of stabilising the genes across generations, allowing for replicated trials, while also 

increasing the potential level of genetic recombination, giving a higher mapping 

resolution than previous designs. 

Once candidate loci for the desired traits have been identified, Near Isogenic Line (NIL) 

populations can be created by backcrossing to a recurrent parent several times, 

eliminating background genetic variation. This makes NILs a strong resource for 

selectively analysing single loci or genes. However, this also means that NILs are single 

use. 

The main constraint for all of the above methods is that there are potentially large 

confidence intervals for many of the QTLs, potentially spanning hundreds of candidate 

genes (Holland, 2007), and there is a relatively low genetic base, not representing wider 

allelic diversity available in the germplasm (Jannink, 2007). 
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Genome-wide association studies (GWAS) exploit linkage disequilibrium (LD) as a 

function of historical recombination for QTL mapping. Until as recently as the last 

decade, GWAS was impractical at scale due to genotyping limitations, but decreasing 

costs and increasing data processing had promoted the use of GWAS across many 

species and studies. GWAS gives a high detection power, however is prone to return 

false-positives due to unknown kinship and population structure among the population 

analysed (Lewis, 2002; Zhao et al., 2007). In addition, rare variant QTLs with low 

frequency may remain undetected despite having relative large effects (Mackay and 

Powell, 2007). 

Multi-parent populations have emerged as the next generation of mapping resources, 

combining diverse genetic founder contributions with high levels of recombination 

(Colin et al., 2008; Mackay and Powell, 2007), overcoming some of the limitations of 

previous populations and analysis methods. The most common form of multi-parent 

populations are Nested Association Mapping and Multiparent Advanced Generation 

InterCross (MAGIC). NAM populations are designed to increase the precision and power 

of QTL mapping by combining the advantages of association mapping and bi-parental 

crosses, and unlike GWAS are effective at identifying rare alleles (McMullen et al., 2009). 

NAM populations are derived by crossing a single inbred parent with a successive 

collection of diverse inbred lines, the first of which was a maize population as described 

by Yu et al (2008). These capture thousands of recombination events, but the levels of 

recombination and LD can vary considerably between families, potentially limiting the 

precision of QTL mapping (McMullen et al., 2009).  
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The advantages and disadvantages of MAGIC populations, along with their construction 

and current status in research, can be found below in section 1.8. 

1.8 The MAGIC population 

The concept of repeated intercrossing within a population was first described by Darvasi 

and Soller (1995), who used repeated intercrossing of a bi-parental population to 

increase the probability of recombination across the genome. This work was further 

developed by Mott et al (2000), creating the first multiparent advanced generation 

intercross (MAGIC) population to study mouse genetics.  

MAGIC was first advocated in crops by Mackay and Powell (2007), based on the 

principles of established by Mott et al (2000). Several MAGIC populations are now 

available for a range of crop species, including rice (Bandillo et al., 2013), arabidopsis 

(Kover et al., 2009), wheat (Huang et al., 2012; Mackay et al., 2014), maize (Dell’Acqua 

et al., 2015), faba bean (Sallam and Martsch, 2015) and chickpea (Gaur et al., 2014).  

The elite wheat MAGIC population of eight European varieties (Alchemy, Brompton, 

Claire, Hereward, Rialto, Robigus, Soissons and Xi19) was developed by the National 

Institute of Agricultural Botany (NIAB), as described by Mackay et al (2014). These 

parents were chosen to reflect complementary strengths in Grain Yield, Disease 

Resistance and Quality, as well as reflecting their importance as parents in current 

breeding programs (Table 1.2).  
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Table 1.2 - Properties of the eight wheat parents used to create the Multi-parent Advanced Generation 

InterCross (MAGIC) wheat population. 

 

a Contains the dwarf allele of the D genome copy of the Reduced height 1 gene 
b Contains the 1BL/1RS chromosomes translocation from rye  
c Orange wheat blossom midge 
d Contains the dwarf allele of the B genome copy of the Reduced height 1 gene  
e Contains the spring type allele of the Vrn-A1 gene 
Table modified from Mackay et al (2014) and Benbow (2016) 

 
 

The population was created following a replicated funnel crossing design, ({[AxB]x 

[CxD]}x {[ExF]x [GxH]}), (Figure 1.8) giving a population showing uniform kinship 

relationships, with minimal structure remaining. The reduction of population structure 

found in MAGIC populations compared to GWAS reduces the chance of false positives 

(Zhang et al., 2010). The multiple founders available in these populations contribute a 

greater amount of allelic variety to the population. Combined with the multiple cycles 

of intercrossing, that creates an increased opportunity to accumulate greater numbers 

of recombination events, allows for a much greater precision in QTL locations than 

possibly in traditional bi-parental crosses and later AM populations. The controlled 

allelic input and high levels of recombination improves the sampling of genetic diversity 

Variety Breeder Pedigree Listing year Seed Yield

NABIM 

Quality 

Group

Trait Attributes

Alchemy Limagrain Claire x (Consort x Woodstock) 2006 9.163 4
yield, disease resistance, breeding use, 

soft, Rht-D1b a

Brompton
Elsoms Seeds 

Ltd
CWW-92-1 x Caxton 2005 9.151 4

hard feed, 1BL/1RSb, OWBMc - resistant, 

Rht-D1b

Claire Limagrain Wasp x Flame 1999 8.654 3
soft biscuit/distilling, slow apical 

development, Rht-D1b

Hereward RAGT Norman 's' x Disponent 1991 7.683 1
high-quality benchmark I bread- making, 

Rht-D1b

Rialto

PBI 

Cambridge 

Ltd

Haven 's' x Fresco 's' 1994 8.377 2
moderate bread-making, 1BL/1RS, Rht-

D1b

Robigus
CPB Twyford 

Ltd
complex 2003 9.053 3

exotic introgression, disease resistance, 

breeding use, OWBM-resistant, Rht-

B1b d

Soissons

Maison 

Florimond 

Desprez

Jena x HN35 1995 7.553 2
bread-making quality, early flowering, 

Rht-B1b

Xi19 Limagrain (Cadendza x Rialto) x Cadenza 2002 8.957 1
bread-making quality, facultative type, 

breeding use, Rht-D1b, Vrn-A1b e
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available and facilitates the analysis of interacting and complex traits. However, MAGIC 

populations require high density genotyping to ensure that there is full coverage of 

every linkage block in the genome which allows us to take full advantage of the high 

recombination levels. 

 

Figure 1-8 Replicated funnel crossing design from the eight founder parental lines (Table 1.1; red) to final 1091 lines 
(green). (source Niab.com) 

 

Due to the multiple parentage of a MAGIC population, creating a genetic map is more 

difficult than in a bi-parental cross. Whilst there are multiple software packages 

available for mapping molecular markers in bi-parental populations (R/qtl (Broman et 

al., 2003), QTL Cartographer (Wang et al., 2011), Flapjack (Milne et al., 2010), ect.), to 

date only two are available for MAGIC populations (HAPPY (Mott et al., 2000) and 

mpMap (Huang and George, 2011)). A genetic linkage map for the NIAB MAGIC 

population was created by Gardner et al (2016), who use the Illumina Infinium iSelect 

90k array to genotype the population. From here, they removed all markers with more 
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than 50% missing data, and manually recalled all markers with more than 4% missing 

data to ensure that only high-quality data would be used in mapping. Of the remaining 

markers, 20,639 SNP markers were scorable and polymorphic, of which 18,601 were 

mapped in the MAGIC population (Gardner et al., 2016; Mackay et al., 2014). This 

represents around 80% of the diversity shown in the WAGTAIL UK winter genome–wide 

wheat association panel genotyped with the same 90K SNP array (Gardner et al., 2016). 
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1.9 Project Outline 

1.9.1 Aims 

The aims of this PhD thesis are to conduct an in-depth study of the genetic 

underpinnings of a suit of traits spanning both source and sink potential in wheat. To 

accomplish this, the NIAB MAGIC population was analysed from emergence through to 

final yield. This population captures more than 80% of the allelic diversity found in the 

UK winter wheat elite breeding material, making it likely that the markers identified in 

this analysis are segregating in the UK population as a whole. 

1.9.2 Hypotheses  

1. There will be a significant heritable difference in varying aspects of biomass 

accumulation between MAGIC genotypes which will cause heritable differences 

in the final yield.  

2. There will be a significant heritable difference in the components of sink capacity 

between MAGIC genotypes which will cause heritable differences in the final 

yield.  

3. There will be significant genetic interactions between QTL for sink related traits.  

4. There will be significant genetic interactions between QTL for source related 

traits. 

5. There will be significant genetic interactions between QTL for combinations of 

all measured traits. 
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2. Materials and Methods 

2.1 Plant Materials  

All field experimentation in this thesis uses the elite wheat Multiparent Advanced 

Generation Intercross (MAGIC) Recombinant Inbred Line (RIL) population described in 

Chapter 1, section 1.7.3. The population was developed by the National Institute of 

Agricultural Botany (NIAB), Cambridge, UK and first described by Mackay et al (2014). 

The full population resource consists of 1,091 RILs; for logistic reasons, field trials were 

limited to 1,584 plots and therefore only a subset of the full population was used. The 

643 RILs for which genotypic data was publicly available were prioritised, with remaining 

trial space being filled with a random selection of the ungenotyped lines. For 

convenience, this resource will henceforth be referred to as the ‘MAGIC population’, its 

progeny lines as ‘MAGIC RILs’ and its eight founders as ‘MAGIC parents’. 

2.2 Field Trial Design 

At the heart of this thesis were two large-scale yield trials, conducted from 2014-16, 

designed to deliver the first ever evaluation of multiple traits throughout the whole crop 

cycle of a large eight-parent wheat RIL population, with all examined traits obtained 

non-destructively from plots large enough to provide a valid measure of combine yield. 

These field trials were conducted at University of Reading’s Crop Research Unit, 

Sonning, UK (0°54’ W, 51°29’ N) where the soil type is a free-draining sandy loam 

overlying a gravel terrace in the field known as ‘Gravelpit’ and a free-draining deep 

sandy loam in a second field, known as ‘Lamyard’. 

For the 2014-15 season, the experiment comprised 783 MAGIC RILs, the 8 parents, and 

KWS Kielder (KWS UK Ltd.) and Skyfall as controls, all in duplicate for a total of 1584 
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plots in a parcel of the field known as ‘Gravelpit’). The experiment was designed as a 

randomised complete block design using the Design of Experiments Website (DEW) 

software (http://www.expdesigns.co.uk) hosted by NIAB1, comprised 2 main blocks 

(reps) and 16 sub-blocks (8 for each main block). For the 2015-16 season, a partially 

randomised incomplete block design was used to accommodate increased replication 

of control varieties as a means of quantifying spatial variation and consisted again of 2 

blocks and 16 sub-blocks. The 2015-16 trial was located on the field known as ‘Lamyard’, 

consisted of 806 MAGIC lines, the 8 parents, and 16 replicates each of KWS Kielder and 

Skyfall (RAGT Seeds UK) as controls. The eight parents and 730 MEL lines were 

duplicated; due to lack of seed stock, only a single repetition was possible for 76 MEL 

lines used. All lines were randomly assigned within each rep, with one Kielder and one 

Skyfall in each sub-block. Field plans for both 2014-15 and 2015-16 trials, are included 

in the Appendix.  

Both 2014-15 and 2015-16 field trials followed silage maize crops in rotation after which 

no farmyard manure was spread. The field was power harrowed after ploughing to a 

depth of 30cm. Seeds were drilled in 5.5 x 1.9m plots at 300 seeds/m², with a 2m discard 

between the ends of each plot as a buffer zone to reduce chances of contamination 

between lines. All plots were treated with a standard disease and nutrient regime. 

Weather was recorded in both seasons using an on-site weather station. 

                                                      
1 www.expdesigns.co.uk is no longer available; equivalent designs to those reported here are readily 
generated using Genstat or packages available in R. 

http://www.expdesigns.co.uk/
http://www.expdesigns.co.uk/
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2.3 Phenotyping 

2.3.1 Phenocart 

For 2014-15 we constructed a proximal sensing cart similar to that described by White 

and Conley (2013). The initial designs were altered for our field dimensions and 

instrument requirements, with construction undertaken by Richard Casebow (Technical 

Manager, Crops Research Unit). Initially, this comprised a single arm where we could 

mount a high-resolution camera (Canon EOS 6D), triggered by remote, and a Red: Far 

Red sensor (Skye Instruments Ltd SKR 1800). Compared to previous testing with a 

monopod, the sensor cart allowed a much greater degree of repeatability and speed, 

with each image showing the same area within a few centimetres. This was later 

expanded for the 2015-16 field season to include an RTK GPS (Piksi), a Panasonic 

Toughbook CF-19, a deep-cycle battery with a pure sinewave inverter, and extra arms 

to allow further instruments to be added as needed. Pictures of the Phenocart can be 

seen below in Figure 2.1. 

 

Figure 2-1 Panel A: Phenocart 2014-15 with Canon EOS 6D; Panel B: Phenocart 2015-16 with Canon EOS 6D, RTK GPS 
(Piksi), Panasonic Toughbook CF-19, deep-cycle battery and pure sinewave inverter. 
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2.3.2 Green Area Index 

Images of the plots were captured throughout the growing seasons for the extraction 

of Green Area Index, henceforth referred to as GAI. We used the Canon EOS 6D camera 

at a fixed height, giving an image covering approximately 1.5m². As suggested in 

Physiological Breeding II (Pask et al., 2012), no zoom function was used, and care was 

taken to always approach the plots with the imaging arm pointing in a southerly 

direction with respect to the Phenocart body, in order to avoid shadows from the 

equipment appearing in the images where possible. Images were taken in RAW format 

with a resolution of 5472 x 3648 pixels for maximum data capture. For ease of analysis, 

the initial RAW images were converted to the JPEG format using Digital Photo 

Professional (Canon), a commercially available image editing software. These JPEG 

images were processed using ‘PhenoHarvest’, custom software that extracts the GAI 

from the images, based on measuring the percentage of green pixels in an image in 

contrast to the background of the image. This works on similar principles to Pask et al 

(2012), and BreedPix (Casadesús and Villegas, 2014). A representative subset of images 

before and after processing can be seen below in Figure 2.2. The software also allows 

for manual adjustment of the threshold for the ‘greenness’ of an image, which can be 

used to account for different lighting conditions and to remove any excess ‘green’ that 

may be in the background. The ‘PhenoHarvest’ software was written by Joel Potts and 

Samith Adhikari, undergraduate Computing Science students as part of their 

Undergraduate Research Opportunity Placements (UROPs), but the system 

specification, field testing, validation and use was conducted by myself as part of this 

thesis. 
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To verify this method and give an alternative assessment of canopy cover or 

“greenness”, the Red: Far-Red (660:730nm) reflectance ratio of the plots was measured 

using the SKR 1800 (Skye Instruments Ltd, Llandrindod Wells, UK). These measurements 

were taken at four timepoints across the 2014-15 season, each taken within a day of the 

PhenoHarvest-derived GAI measurements. The R:FR was inverted (1/R:FR) to transform 

the data into a positive scale for better comparison with GAI. As shown below in Table 

2.1, there is strong, significant (p<0.05), correlation between R:FR and the extracted GAI 

measurements at the closest overlapping timepoints (measured as days after sowing), 

and this correlation increases over time as the canopy closes. 

 
Table 2.1 Pearson’s Correlation matrix of Red: Far Red (RFR) and Green Area Index (GAI). The time series measures of 
canopy cover are presented in chronological order with a three-digit suffix indicating the number of days after sowing 
when each measurement was t 

 

 

 

 

 

 

 

 

 

 

 

RFR 155 GAI 156 RFR 203 GAI 203 GAI 223 RFR 224 GAI 235 RFR 235

RFR 155 1

GAI 156 0.42 1

RFR 203 0.31 0.1 1

GAI 203 0.22 0.03 0.74 1

GAI 223 0.24 -0.05 0.81 0.69 1

RFR 224 0.25 0 0.84 0.67 0.93 1

GAI 235 0.21 -0.03 0.75 0.64 0.9 0.94 1

RFR 235 0.19 -0.02 0.76 0.61 0.86 0.94 0.95 1
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Figure 2-2 Subset of time series images before and after PhenoHarvest analysis. Panel A, B, C, D, E, F. A, B, C are RGB 
images taken on 2/4/15, 28/5/15 and 29/6/15 and respectively, D,E,F are the equivalent images after processing in 
PhenoHarvest to extract the percentage of green pixels, which is used as a proxy for GAI. Images represent 
approximately 1.5m x 1m area. 

 

2.3.3 Height 

Crop height was calculated for both years based on a mean value of three 

measurements using the rising plate method, in which a lightweight foam disk 

approximately 100cm in diameter is lowered onto the top of the crop until it settles, 

and then the height measured from that point (Sharrow, 1984). The measurements 

were taken pre-anthesis, at anthesis, at the end of grain filling, and at harvest maturity.  

 

A B C 

 

D E F 
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2.3.4 Growth Habit 

In both seasons, growth habit was measured 

around G25-29 (Zadoks stages) following the 

scoring scheme shown in Figure 2.3.  

 

      

  

Figure 2-3 Angles for growth habit 
measurement. Reproduced from the CPVO 
Wheat Distinctness Uniformity and Stability 
Variety Testing guidelines (CPVO, 2009). 

 

2.3.5 Anthesis 

Anthesis was measured based on days after May 1st. This was measured as Zadoks stage 

65 when over 50% of the ears in any given plot had over 75% of the anthers emerged. 

During the anthesis period, all plots at or near anthesis were assessed three times a 

week at a minimum. Where there was more than one person assessing, samples were 

cross-checked to ensure consistency of scoring where possible.  

 

2.3.6 Multispectral profiling 

During the 2014-15 field season, URSULA Agriculture Limited was contracted to conduct 

drone-based multispectral imaging of the field. This provided averaged per-plot 

Vegetation Index values, such as Normalised Difference Vegetation Index. Three flights 

were conducted across the growing season, on the May 1st, June 4th and June22nd. These 

dates were timed to coincide approximately with the onset of flag leaf emergence, the 
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peak GAI/booting, and anthesis. It was not possible to repeat this in the 2015-16 field 

season as the company had ceased operating.  

2.3.7 Sink Traits 

In both growing seasons, the individual plot sizes were manually measured before 

harvest, to allow for accurate calculations of the final yield. The moisture content was 

measured using a Harvest Master grain gauge (HM-1000), and final plot yields adjusted 

to a moisture content of 15%. TGW was calculated from approximately 200 seeds using 

an Elmor C3 seed counter (Elmor Ltd., Switzerland). Grain morphological traits were 

determined using digital image analysis, using the GrainScan software developed by 

Whan et al (2014), processing the same grains that were used for TGW. The Grains were 

scattered on a commercial flatbed scanner (HP Scanjet G2710) and scanned at a 

resolution of 300dpi, with no colour adjustment or cropping applied. As suggested by 

Whan et al (2014), a matt black box was upturned over the scanning surface to minimise 

reflection and shadows, maximising the contrast at the border of each seed. 

2.3.8 Nitrogen Content  

The nitrogen content of each sample was measured using Near-Infrared Reflectance 

Spectroscopy (NIRS). Grain samples were loaded into a FOSS NIRSystems 5000, which 

uses the 700-2500nm wavelength range. In order to create the calibration equation 

needed for NIRS, an initial 100 flour samples were dried for 72 hours, then analysed 

using a Leco Nitrogen analyser (model CHN628). A further 100 samples were added to 

encompass the extreme ends of the data range, and to fill any larger gaps in the 34  
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calibration curve for maximum accuracy. The final calibration equation had a correlation 

of 0.991 between the NIRS and Leco results. 

2.3.9 Grain number m-2 

The number of grains m-2 acts as a summary of all events up to and a little beyond 

anthesis (Pask et al., 2012). The number of grains m-2 can be calculated using the 

equation:  

Grains m-2 (GNO) = Yield (g m-2) / TGW (g) × 1000 

2.4 Spatial Variation Modelling 

In the first season (2014-15), it was noticed from the drone-based remote sensing data 

that there was significant spatial variability in the field experiment. Having looked at 

historical satellite imagery available via Google Earth during selection of the trial site, 

there was no prior evidence of such widespread variability. In Figure 2.4 of the URSULA 

aerial imagery below, the left-hand image showing Red-Green-Blue (RGB) imagery of 

the field with a large block appearing significantly greener than the surrounding areas. 

This is further highlighted in the right-hand image showing NDVI values across the field, 

with a significantly higher NDVI occurring in the areas appearing greener in the RGB 

imagery. Further URSULA imagery from alternative time series can be found in the 

appendix. 

A level of variability was anticipated due to the large size of the experiment, with a large 

field area more likely to show significant variability in soil composition and hydrological 

features. However, the unusually low rainfall between March and June 2015 

exacerbated the impact on crop growth of any variability in soil or drainage 

characteristics. We speculate that highly localised patches of high and low NDVI reflect 
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hitherto unmapped variation in the depth and distance from surface of the underlying 

gravel bed, causing the observed differences in water-retention ability and susceptibility 

to prolonged drought conditions. 

 

Figure 2-4 Panel A: Composite RGB image of RGB aerial imagery on 22/6/2015. Panel B: Composite false-colour NDVI 
image of aerial imagery on 22/6/2015. 
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Whatever the cause, such profoundly spatially structured patterns of variability were 

likely to significantly obscure the relative ranking of genotypes, given that the largest 

‘high NDVI’ patch inconveniently straddled one end of at least six of the eight blocks, 

unless a bespoke approach to modelling the spatial variation was taken. In conjunction 

with Sam Dumble of the University of Reading Statistical Advisory Service, two models 

to compensate for the spatial variability were initially proposed, both of which are based 

in the INLA package for R (http://www.math.ntnu.no/inla/R/stable). Custom shapefiles 

were created for each phenotype using the QGIS software (http://qgis.osgeo.org), 

consisting of a 66 x 24 plot field matrix, where missing data has been removed. This step 

is necessary as both models would class missing data as a 0, affecting the surrounding 

data during modelling. Once the data and shapefile were loaded into R, the INLA 

package utilises a bayesian inference, continuous auto-regressive model based on the 

dual replication in the field and the unmodelled data surrounding each data point, with 

the resulting data then exported from R as BLUPs (best linear unbiased prediction). 

Spatial Model 1 makes the assumption that the genotype replicates should be identical 

if all underlying biotic and abiotic factors are the same. Spatial Model 2 does not assume 

this, with every plot being treated as an individual. Looking below at Figure 2.5 shows 

side-by-side heatmaps of the raw and modelled data. Both models appear to be 

successful in erasing visibly discernible spatial patterns. Looking at how the modelling 

affects the distribution of the data, as shown in Figure 2.5, Spatial Model 1 maintains a 

similar range and dispersion of genotypic means around the population mean, whilst 

Spatial Model 2 appears to pull all the values closer to the mean (~0.4), rather than 

effectively adjusting values to take into account the high local bias, while preserving the 

genotypic range. 

http://www.math.ntnu.no/inla/R/stable
http://qgis.osgeo.org/
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Figure 2-5 Panels A, B and C: heatmaps of NDVI data, Raw NDVI, Corrected NDVI - Spatial Model 1 and Corrected NDVI 
- Spatial Model 2 respectively. Panels D, E and F: NDVI data distribution, Raw NDVI, Corrected NDVI - Spatial Model 1 
and Corrected NDVI - Spatial Model 2 respectively. 

 

To discern how the different models affected QTL analysis, anthesis data for the raw 

and processed data was run in R/qtl. Anthesis was chosen as a model trait here because 

it is highly heritable, and of somewhat known genetic architecture. With one of the eight 

MAGIC parents (Soissons) carrying the photoperiod insensitivity allele Ppd-D1a, we 

would have expected to find a major effect QTL at the Ppd-D1 locus on the short arm of 

chromosome 2D. If the spatially modelled data is effective in bringing the raw plot 

values closer to the true genetic mean, it is expected that the genetic signal to noise 

ratio will increase, and consequentially the apparent strength of the Ppd QTL will 

increase.  
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The resulting QTL scans for anthesis can be seen below in Figure 2.6. As expected in the 

raw data, Ppd can be clearly seen on chromosome 2D, with a LOD score in excess of 8. 

Application of Spatial Model 1 leads to a clear increase in the significance of the Ppd-D1 

signal, with a LOD score around 18. Spatial Model 2 appears to have completely 

removed the ability to detect the expected Ppd-D1 on chromosome 2D. It is therefore 

likely that this second model is overcorrecting for the spatial variability and in effect 

spuriously reducing the genetic variation of the population. On the grounds that Spatial 

Model 1 was: 1. effective in removing discernible spatial patterns, whilst 2. preserving a 

pattern of dispersion of genotype means around the population mean and 3. increasing 

the signal-to-noise ratio for a well understood trait, we adopted Spatial Model 1 and 

implemented it to calculate BLUPs for all traits being analysed. 

 

Figure 2-6 Comparison of date of anthesis (Zadoks 65) QTLs for raw and modelled data. Strength of the QTL is 
measured on the y-axis as LOD (Logarithm of Odds), x-axis represents the location of the QTL on each chromosome. 
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2.5 Genotyping 

The lines were genotyped using the 90k array (Illumina Infinium iSelect, 

www.illumina.com - described by Wang et al (2014)), by Mackay et al (2014). 20,639 

SNP markers were scorable and polymorphic, of which 18,601 were mapped in the 

MAGIC population (Gardner et al., 2016; Mackay et al., 2014). A comprehensive genetic 

linkage map for the population was reported by Gardner et al (2016)- the first such map 

for an eight-parent MAGIC population in wheat. 

This map contains 4578 unique marker sites, averaging four markers per site. To simplify 

the genetic analysis and reduce the computational power required, the full 20,639-

strong marker set was filtered and reduced by removing all but one marker from marker 

groups showing perfect correlation. The resulting map contained 3535 markers (Figure 

2.8). In the Gardner et al (2016) map, around 37%, 50% and 13% of markers were 

mapped to the A, B and D genomes respectively. In the UoR skimmed marker set, this 

became around 44%, 47% and 9%. We can see that the sub-genomes with higher marker 

density have lost relatively more markers as a result of the filtering; however, the 

percentage of markers on each genome after processing are now closer to the 

percentages of unique marker sites reported by Gardner et al (2015): 41%, 47% and 

12%. Where there are apparently large gaps spanning <10cM, largely on the D-genome, 

this is due to the well-documented lack of sequence diversity/polymorphism on the 

cultivated hexaploid D-genome rather than an effect of the skimming procedure. 

http://www.illumina.com/
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Figure 2-7 Genetic map distribution of the ‘UoR skimmed marker set’. The 21 wheat chromosomes are laid out 
horizontally with A, B and D genome homoeologous chromosome grouped together. 

 

2.6 Genetic Analysis 

All genetic analysis was conducted in R, using the mpMap package (Huang et al 2011); 

a package specifically designed for the analysis of multi-parent populations. The genetic 

map was uploaded along with marker data, phenotypic data and a pedigree matrix 

(provided by Lukas Wittern (NIAB/University of Cambridge/Bayer CropScience) and 

Keith Gardner (NIAB)), which allows IBD (Identity By Descent) to be calculated for use in 

Composite Interval Mapping (CIM), (Zeng 1994). CIM allows for systematic inclusion of 

covariates in the analysis, taking into account the effects of a selected number of 

associated markers in the genome as surrogates for QTL.  

2.6.1 Significance thresholds in QTL mapping. 

Multiple methods have been proposed to set an appropriate level of significance for 

mapping QTL. Botstein and Lander (1989) suggested a cumulative distribution of the 
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LOD score, whereas Churchill and Doerge (1994) estimated the threshold for declaring 

QTL based on permutation testing.  

For the purpose of this thesis, QTL were identified applying a threshold of 10-3. While 

slightly lower than used in experiments such as Camargo et al (2016) (threshold = 10-4), 

a lower threshold was deemed appropriate for the detection of more smaller, more 

subtle QTL effects for complex integrative traits. 

2.6.2 QTL naming convention 

All QTL were named following the Graingenes annotation (www.graingenes.org/). 

Briefly, the first letter has to be a "Q" to indicate it is a QTL, then follows a trait code, a 

period, the laboratory designator, a hyphen ("-") and the chromosome name. If there is 

more than one QTL for the same trait on the same chromosome, you designate each of 

them with numbers after the chromosome name. To differentiate between our 

experiments, we also added a year code, for a final format of: Q.< 3-letter trait 

abbreviation> - <Year in YYYY format> . <3 letter site abbreviation> - <chromosome> . 

<integer to make multiple QTL on same chromosome unique>. 

2.6.3 Multiple peaks 

In total, 245 QTLs were found over the all sink and source traits. In several cases, two or 

more QTL peaks for the same trait measured in different years were identified within a 

small map distance of each other. These multiple peaks are either real, distinct QTL that 

are situated in close proximity, or they could represent the same underlying QTL but 

where peak position for a given trait is assigned to adjacent intervals in different years 

because of the inherent noisiness of field phenotype data and the hidden influence of 

linked, environment-specific effects. Increasing the interval discovery window around 

http://www.graingenes.org/
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each QTL within the R/mpmap software suppressed a number of spurious ‘independent’ 

QTL; the evidence supporting this is that the final interval discovery window of 100cM 

used brought the sum of phenotypic variability explained close to the level predicted by 

the fitted model. This method worked well on individual years, however a manual 

approach involving application of several additional criteria was used when comparing 

between different analyses in order to discern if QTLs detected in different years should 

actually be interpreted as pleiotropic rather than linked. When combined with covariate 

analysis, this allows QTLs in close proximity to be detected while removing multiple 

peaks for the same QTL. This method worked well on individual years, however a 

manual approach was used when comparing between different analyses in order to 

discern if QTLs were the same between years. 

2.7 Statistical Analysis  

All descriptive statistics (mean, variance, standard error, distribution) and statistical 

tests (t-test, ANOVA, Pearson’s product moment correlation) were carried out in R 3.3.3 

(R Core Team, 2017). Broad sense heritability of phenotype data was defined as: 

𝐻2 =
𝜎2𝐺

𝜎2𝑃
 

Where H2 is the broad sense heritability, σ2G is the genotypic variance and σ2P is the 

total phenotypic variance. 
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3. Genetic analysis of ‘sink’ traits in the elite wheat 

MAGIC population 

3.1 Introduction 

3.1.1 ‘Sink’ trait definition 

The genetic yield potential of wheat has been defined as the yield of a cultivar when 

grown in the environment to which it is adapted, with nutrients and water non-limiting 

and with pests, diseases, weeds, lodging, and other stresses effectively controlled 

(Evans and Fisher, 1999). When broken down into its component parts, yield per unit 

area is the product of the number of grains per ear, the grain dry mass, and the ear 

density, the latter in turn being a function of both plant population density and tillering. 

As the harvested organ, the grain is referred to as the ‘sink’ and the degree of 

remobilization of photoassimilates from the leaf canopy (i.e. the ‘source’) to the grain is 

referred to as ‘sink strength’. Chapter 4 presents an analysis of ‘source’ traits and 

Chapter 5 will deal with achieving balance between source and sink. In this Chapter, 

genetic variation for yield components associated with the sink are treated as potential 

traits to ensure that sink strength is not limiting yield. 

3.1.2 Tillering 

After a number of weeks following germination and establishment of a primary root 

system and unfurling of leaves on the main shoot, a major parameter in determining 

the wheat plant’s yield potential is the number of side shoots or tillers that it produces. 

In a typical season, the tillering stages, denoted in the Zadoks decimal growth stage 

system as GS20-30, will run from around the beginning December to the end of March 
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(AHDB, Wheat Growth Guide 2018). Thus, the ability to establish multiple tillers with 

fertile spikelets is fixed relatively early in development and is improved by early vigour 

via increased biomass and water use efficiency (López-Castañeda and Richards, 1994). 

Although a potentially interesting trait, we did not have a sufficiently accurate, high 

throughput system to measure tiller number and genetic dissection of tillering lies 

outside the scope of this thesis. 

3.1.3 Grain number per ear 

Once the final number of fertile tillers has been established, by the onset of stem 

elongation (GS31), all further potential for yield gain rests on the number and size of 

grains that can develop on a set number of ears per unit area. The ear itself has a 

complex nested branching structure consisting of a main branch (the rachis) carrying 

parallel rows of spikelets, each of which may bear between 2 and 5 grains. Plant 

dwarfing genes, the Rht group, have been attributed with the increase in the numbers 

of grain per ear (Ma et al., 2015). As well as reducing the plant height, Rht had a 

pleiotropic effect that increased the number of seeds per spikelet, rather than the 

number of spikelets per ear, when compared to non-dwarf plants (Youssefian et al., 

1992). Again, although the optimisation of ear architecture is an active area of research, 

high throughput phenotyping of ear architecture was not possible in these large field 

trials and thus the further focus of this Chapter will be on grain size-related traits.  

3.1.3 Grain size and shape 

While the notion of a developing grain as a steadily expanding balloon has intuitive 

appeal, in reality grain filling is the result of a complex chain of overlapping processes 

which impact grain dimensions differently at different times. Grain length is the first 
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grain dimension to reach a maximum (Xie et al., 2015) and is relatively stable across 

more sensitive to environmental fluctuations and relies partly on the remobilisation of 

photosynthate during senescence. Experiments by Gebbing & Schnyder (1999) showed 

that remobilisation during senescence can account for 10-20% of final grain mass, or a 

higher proportion in stressed conditions (Foulkes et al., 2002). 

3.1.4 Genetic variability in sink traits 

It is well established that in wheat, grain numbers can have high levels of variability 

depending on the environment. Generally, this instability has not stopped grain number 

being a viable target in breeding programmes and has significantly contributed to yield 

increases in modern cultivars (Griffiths et al., 2015). In contrast, grain weight has 

repeatedly been shown to be more stable and has a higher heritability than grain 

number and yield itself (Giura and Saulescu, 1996; Kuchel et al., 2007). Despite grain 

number being the more prominent yield component; grain shape, size and density are 

connected directly to the economic value of wheat in the UK, as they impact the milling 

quality and flour yield (Gegas et al., 2010), with larger grains increasing flour yield. 

Previous QTL and association analyses have identified QTL for grain size, shape and 

weight on almost every chromosome (Bogard et al., 2011; Bonneau et al., 2013; Farré 

et al., 2016; Gegas et al., 2010; Griffiths et al., 2015; Kuchel et al., 2007; Kumar et al., 

2016; Simmonds et al., 2014; Williams and Sorrells, 2014; Xie et al., 2015), with stable 

QTL being identified on 2A (Wu et al., 2015); 2D (Breseghello and Sorrells, 2007); 4A 

(Echeverry-Solarte et al., 2015); 5A (Brinton et al., 2017; Wu et al., 2015); and 6A 

(Simmonds et al., 2014; Zhang et al., 2013).  
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3.1.5 Aim of this study 

All the results referred to above were obtained based on analyses using biparental RIL 

or doubled haploid (DH) populations. Therefore, only a limited range of allelic variation 

was explored in each population and opportunities to detect interactions between loci 

was limited. My aim, in this chapter, was to conduct a thorough genetic analysis of sink-

related traits in a large elite wheat eight-parent population, offering more allelic 

diversity and more power to detect both small effects and interactions between loci 

than any previous study. To date, the only instance of use of the elite wheat 8-parent 

MAGIC population for the genetic dissection of ‘sink’ traits has been a PhD thesis by Dr 

H. Benbow, where two experimental populations (Avalon x Cadenza and MAGIC) were 

utilised for the analysis of grain related traits. The combination of these populations 

allowed for QTL previously identified in AxC to be refined to a smaller marker interval, 

as well as identifying potentially novel QTL. The study used QTL mapping on AxC and 

GWAS on the MAGIC population, identifying regions of interest on 3D, 4B, 4D, 5A, 5B 

and 6A. 

The aims of the work presented in this chapter are as follows: 

• Estimate the heritability of traits relating to grain size and weight. 

• Find out which grain weight and grain size parameters were best correlated to 

yield. 

• Differentiate between environmentally responsive and environmentally 

independent QTL governing grain size and weight. 

• Assess the significance of co-location of QTL governing different sink traits and 

yield. 
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3.2 Results 

3.2.1 Phenotypic variation and Correlation analysis 

The traits analysed in this chapter are the Grain Yield (GY), measured in tonnes per 

hectare; Thousand Grain Weight (TGW), the dry weight of 1000 threshed grains; Grain 

Length (GL) and Grain Width (GW), both measured in mm; Grain Area (GA), measured 

in mm²; Length-Width Ratio (LWR); Nitrogen (N), measured as a percentage of dry 

weight, and Factor Form Density (FFD), a measurement of deviation from the cylindrical 

form.  

The mean, variance, S.E., range and broad sense heritability were calculated for eight 

traits, spatially corrected and averaged over two years (harvest years 2015 & 2016) and 

are displayed in Table 3.1. 

 
Table 3.1 - Sink traits - descriptive statistics for Parents and Progeny. S.E. – Standard Error, H2 – broad sense 
heritability 

 

Using the Shapiro-Wilk test for normality, five of the eight quantitative traits could be 

considered normally distributed, with grain nitrogen, yield and L/W ratio deviating 

significantly from normality as can be seen from the density plots in Figure 3.1. 

However, when using large sample sizes such as these, even a small deviation from the 

normal will test as significant (Öztuna et al., 2006). From a visual inspection, yield and 

nitrogen appear to be normally distributed, and L/W Ratio has a skewed distribution. In 

this population, the phenotypic range of the progeny greatly exceeded the range of the 

H²

Trait Parents Progeny Parents Progeny Parents Progeny Parents Progeny Parents Progeny Parents Progeny 

Grain Yield Yld 8.29 8.26 0.09 0.21 0.10 0.02 7.92 6.52 8.84 9.74 0.92 3.22 0.26

Thousand Grain Weight TGW 38.82 38.55 2.19 9.68 0.52 0.11 36.71 28.73 41.13 48.47 4.43 19.74 0.51

Grain Width GW 3.38 3.33 0.004 0.007 0.022 0.003 3.30 3.046 3.50 3.574 0.20 0.53 0.54

Grain Length GL 6.91 6.82 0.03 0.05 0.10 0.01 6.65 6.16 7.20 7.69 0.55 1.53 0.74

Grain Area GA 18.32 17.82 0.41 0.51 0.23 0.02 17.64 15.63 19.41 20.52 1.77 4.89 0.73

Nitrogen Concentration Ntr 2.75 2.75 0.004 0.011 0.024 0.004 2.606 2.371 2.82 3.13 0.21 0.76 0.16

Length-Width Ratio LWR 2.04 2.05 0.003 0.007 0.021 0.003 1.977 1.796 2.13 2.38 0.15 0.58 0.56

Factor Form Density FFD 1.67E-03 1.70E-03 2.27E-09 7.59E-09 1.68E-05 3.02E-06 1.60E-03 1.37E-03 1.73E-03 2.02E-03 1.23E-04 6.46E-04 0.39

RangeMean Variance S.E Min Max
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parental lines indicating transgressive segregation; this is clear from the density plots 

shown in Figure 3.1. The most heritable traits were GL, GW, GA, LWR and TGW with 

heritabilities between 0.51 and 0.74, which leads us to expect strong genetic signals for 

these traits. The least heritable traits were grain nitrogen and grain yield, with scores of 

0.16 and 0.26 respectively. These low heritabilities reflect the complexity of these highly 

integrative traits. 
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Figure 3-1 Density plots of trait data for MAGIC population. Parental values are displayed as vertical bars on the plots with two-letter codes denoting the parent cultivar as follows: Al – 
‘Alchemy’; Br – ‘Brompton’; Cl – ‘Claire’; He – ‘Hereward’; Ri – ‘Rialto’; Ro – ‘Robigus’; So – ‘Soissons’; Xi – ‘Xi19’.
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Of the morphological grain traits (TGW, GA, GL, GW and FFD), all were strongly 

correlated with themselves between years (PCC= 0.52 to 0.78, p < 0.05). This reflects 

previous research suggesting that grain morphology and weight is relatively stable 

across environments compared to yield (PCC= 0.11 between years). 

TGW was strongly correlated with GW in both years (PCC= 0.78 and 0.87 respectively), 

but only moderately with GL (PCC= 0.23 and 0.38). Yield is moderately but consistently 

correlated with GL (PCC= 0.27 and 0.19), which is greater than yield correlations with 

both GW (PCC= -0.09 and 0.21) and TGW (PCC= -0.04 and 0.30). In 2015-16, both GW 

and TGW have more effect on the yield than GL, however in 2014-15, it appears that 

the opposite is true, and the yield:GL correlation is generally more consistent across 

environments. This is likely due to the grain length being the first morphometric 

measurement reaching its maximum before anthesis. Grain width is more 

environmentally dependant, relying on source capacity and resource remobilisation to 

reach its maximum, which is hindered in stressed conditions as senescence is 

accelerated, giving a shorter grain filling period. This in turn affects TGW, which is much 

more highly correlated with GW than GL. (Figure 3.2). 

The impact of weather will be looked at in detail in Chapter 4. 
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Figure 3-2 Pearson’s correlation coefficients for five sink traits and yield in each of two seasons, 2014-15 and 2015-
16. Increasingly negative correlations highlighted in deepening shades of blue; size of positive correlations is indicated 
by the depth of shade of red highlighting. 

 

3.2.2 Mapping Quantitative Trait Loci for ‘sink’ traits  

In total, 155 significant, non-redundant QTL were discovered for the eight studied ‘sink’ 

traits (see Chapter 2 for details of significance criteria and methodology for determining 

redundancy between QTL). These are shown in Table 3.2. 

3.2.2.1 Thousand Grain Weight 

A total of 28 significant (-log10p ≥ 3) QTL for Thousand Grain Weight (TGW) were found 

on chromosomes 1B, 2A, 2D, 3B, 4A, 4B, 4D, 5A, 5B, 5D and 6A (Table 3.2). 



55 
 

These QTL explain approximately one third of the total variation in TGW, both in 2015 

and 2016 or in the across-seasons analysis. Approximately half of the variation explained 

by the QTL are accounted for by the two strongest QTL: Q.TGW-2016.UoR-6A (p= 9.96E-

14, %var= 6.97 - 9.95); Q.TGW-2016.UoR-4D (p= 1.23E-11, %var= 4.65 - 7.6), expressed 

in both years and detected in identical locations in all analyses. Q.TGW-2015.UoR-4B 

(52.17 - 52.67cM), Q.TGW-2016.UoR-4B (54.7 - 55.2 cM) and the meta-QTL: Q.TGW-

ME.UoR-4B (50.16 - 51.16 cM) were all highly significant (P value e-10 to e-17) and 

explained 3 to 3.7% variation and are likely be a single QTL, based on the magnitude and 

direction of the parental effect. The remaining 19 QTL were either year-specific or 

detected only in the across-season analysis. Smaller effects together explained the year-

specific component of variation, the strongest of these being Q.TGW-2015.UoR-7A 

(254.13 - 254.63cM) which explained 3.01% of the variation and P value of 3.06E-07. 
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Table 3.2 – QTL table for sink-related traits. QTL names follow standard format as described in Chapter 2. Trait abbreviations are as shown in Table 3.1. Left and Right 
Marker Positions are the location of the markers in cM, p-value is the significance of the QTL and -log10p is the strength of the QTL
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Q.GA-ME.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 1.37E-05 4.86 4.1

Q.GL-2015.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 2.32E-06 5.63 3.09

Q.GL-ME.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 9.44E-11 10.03 5.16

Q.GL-2016.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 5.34E-11 10.27 5.7

Q.GA-2016.UoR-1B.1 1B wsnp_BE443531B_Ta_1_1 Ku_c11813_215 81.49 78.69 81.49 3.09E-10 9.51 5.63

Q.TGW-2015.UoR-1B 1B BS00073034_51 BS00022648_51 87.03 86.53 87.03 5.68E-05 4.25 3.59

Q.GA-2016.UoR-1B.2 1B BobWhite_c9881_1312 BS00074911_51 256.45 255.95 256.45 7.16E-06 5.15 3.31

Q.GL-2015.UoR-1B.2 1B BS00068327_51 BobWhite_c2844_569 268.54 267.04 268.54 6.88E-05 4.16 5.07

Q.GL-2016.UoR-1B.2 1B RFL_Contig1823_1044 Tdurum_contig50988_500 276.38 276.38 276.88 2.53E-08 7.60 7.03

Q.GL-ME.UoR-1B.2 1B RFL_Contig1823_1044 Tdurum_contig50988_500 276.38 276.38 276.88 2.06E-08 7.69 6.53

Q.GA-ME.UoR-1B.2 1B RFL_Contig1823_1044 Tdurum_contig50988_500 276.88 276.38 276.88 2.91E-04 3.54 3.59

Q.GW-2015.UoR-1D 1D CAP8_c2401_433 D_GB5Y7FA02I369B_378 27.31 25.79 27.31 7.56E-04 3.12 0.82

Q.GL-ME.UoR-1D 1D D_contig13475_402 wsnp_Ex_c12012_19240904 39.65 39.65 47.46 1.11E-04 3.95 1.31

Q.GW-ME.UoR-1D 1D Kukri_rep_c112609_711 BobWhite_rep_c65565_359 61.08 59.07 61.08 1.43E-04 3.84 2

Q.GW-2016.UoR-1D 1D Kukri_rep_c112609_711 BobWhite_rep_c65565_359 61.08 59.07 61.08 1.00E-06 6.00 2.33

Q.GL-2015.UoR-2A 2A wsnp_JD_rep_c48914_33168544 RAC875_c17787_274 88.03 88.03 90.07 9.98E-07 6.00 3.79

Q.Yld-2016.UoR-2A 2A Kukri_rep_c90581_382 Excalibur_c4847_631 102.38 102.38 103.90 7.75E-05 4.11 1.83

Q.GA-ME.UoR-2A 2A Kukri_c45015_145 Tdurum_contig27887_55 109.94 109.94 111.95 3.30E-07 6.48 2.63

Q.FFD-2016.UoR-2A 2A BS00089457_51 RAC875_rep_c119471_174 115.52 112.46 115.52 9.14E-06 5.04 3.61

Q.TGW-2016.UoR-2A 2A BS00089457_51 RAC875_rep_c119471_174 115.52 112.46 115.52 3.37E-07 6.47 3.53

Q.GA-2016.UoR-2A 2A BS00045521_51 BS00083727_51 124.61 124.61 125.62 5.87E-08 7.23 0.96

Q.GA-2015.UoR-2A 2A BS00083727_51 RAC875_c15213_1942 125.62 125.62 127.63 3.71E-08 7.43 3.55

Q.GL-2016.UoR-2A 2A BS00040337_51 BS00062757_51 134.69 134.19 134.69 5.14E-06 5.29 1.57

Q.GL-ME.UoR-2A 2A BS00040337_51 BS00062757_51 134.69 134.19 134.69 2.79E-08 7.55 2.28

Q.TGW-ME.UoR-2A 2A BS00062757_51 BobWhite_c28819_733 135.19 134.69 135.19 3.72E-07 6.43 1.71

Q.Yld-ME.UoR-2A 2A Kukri_c24064_2095 BS00041816_51 140.76 140.76 141.26 1.81E-06 5.74 3.74

Q.FFD-ME.UoR-2A 2A Kukri_c24064_2095 BS00041816_51 141.26 140.76 141.26 2.34E-05 4.63 2.42

Q.TGW-2015.UoR-2A 2A Ku_c5710_310 BS00022896_51 142.77 141.26 142.77 3.53E-05 4.45 1.04

Q.Yld-ME.UoR-2B 2B BS00067962_51 BS00110490_51 116.01 100.99 116.01 6.89E-04 3.16 1.97

Q.GA-2016.UoR-2B 2B BS00075410_51 Jagger_c9472_305 174.88 174.38 174.88 1.20E-04 3.92 1.11

Q.GA-ME.UoR-2B 2B BS00072689_51 BS00039488_51 199.82 198.81 199.82 2.29E-04 3.64 1.47

Q.Yld-2016.UoR-2B 2B BobWhite_c22728_78 BS00022805_51 271.92 271.92 279.38 1.13E-04 3.95 2.14

Q.TGW-ME.UoR-2D 2D BS00029208_51 BS00009575_51 42.21 42.21 50.33 3.17E-05 4.50 0.76

Q.GW-2016.UoR-2D 2D Kukri_rep_c72254_186 Kukri_c14902_1112 111.88 106.21 111.88 7.61E-05 4.12 1.38

Q.Ntr-2015.UoR-2D 2D BobWhite_c40561_305 BobWhite_c18906_680 170.44 164.88 170.44 9.60E-04 3.02 3.09

Q.GL-2016.UoR-2D 2D BobWhite_c40561_305 BobWhite_c18906_680 170.44 164.88 170.44 1.36E-05 4.87 1.54

Q.GW-2015.UoR-2D 2D BS00100539_51 BobWhite_c5756_516 196.35 171.95 196.35 4.14E-06 5.38 1.8

Q.GW-ME.UoR-2D 2D BobWhite_c5756_516 BS00086534_51 198.36 196.35 198.36 1.70E-04 3.77 0.55

Q.Ntr-2015.UoR-3A 3A Excalibur_c12875_864 Kukri_c2123_1254 16.13 15.13 16.13 8.86E-04 3.05 1.1

Q.GW-2016.UoR-3A 3A RAC875_c67998_96 BS00047668_51 188.69 186.68 188.69 4.84E-05 4.32 1.47

Q.GA-2016.UoR-3B 3B tplb0059m03_1516 JD_c23336_253 15.35 15.35 16.87 3.00E-04 3.52 0.64

Q.GW-2015.UoR-3B 3B wsnp_Ku_c17659_26797674 RAC875_c2529_1483 68.67 68.17 68.67 5.52E-05 4.26 3.48

Q.TGW-ME.UoR-3B 3B BS00022072_51 Excalibur_c15944_70 89.15 87.13 89.15 1.27E-05 4.90 4.08

Q.GL-2016.UoR-3B 3B BS00032830_51 IACX971 94.18 94.18 95.19 1.69E-04 3.77 3.29

Q.TGW-2016.UoR-3B.1 3B CAP8_rep_c4453_136 RAC875_c37608_216 105.61 105.61 106.11 1.05E-05 4.98 4.7

Q.FFD-2016.UoR-3B.1 3B BobWhite_s64174_119 wsnp_BE497469B_Ta_2_1 107.11 106.61 107.11 2.22E-06 5.65 3.9

Q.TGW-2015.UoR-3B 3B Tdurum_contig49477_187 BobWhite_c32864_250 166.02 165.01 166.02 5.24E-04 3.28 2.76

Q.TGW-2016.UoR-3B.2 3B BS00047274_51 Excalibur_c48047_90 175.11 171.05 175.11 5.40E-06 5.27 4.05

Q.FFD-2016.UoR-3B.2 3B Excalibur_c48047_90 BS00097383_51 180.42 175.11 180.42 5.23E-05 4.28 3.46

Q.Ntr-2015.UoR-4A 4A BS00010925_51 BS00011273_51 92.13 92.13 92.63 3.05E-04 3.52 2.72

Q.TGW-ME.UoR-4A 4A wsnp_Ex_c3988_7221220 RAC875_c6939_1042 140.85 137.28 140.85 9.37E-05 4.03 1.4

Q.Yld-2015.UoR-4A 4A wsnp_Ex_c3988_7221220 RAC875_c6939_1042 140.85 137.28 140.85 3.45E-05 4.46 1.55

Q.GA-2016.UoR-4A.1 4A BS00064369_51 BS00091752_51 164.01 158.75 164.01 1.66E-05 4.78 1.66

Q.GA-2016.UoR-4A.2 4A Excalibur_c74390_108 BS00064419_51 211.2 210.70 211.20 4.65E-06 5.33 1.54

Q.Yld-2016.UoR-4A 4A Excalibur_c10699_404 BobWhite_c38832_153 214.75 214.75 217.29 1.31E-05 4.88 2.86

Q.FFD-ME.UoR-4B 4B BS00084070_51 Ra_c26080_461 49.66 49.66 50.16 4.53E-06 5.34 1.87

Q.FFD-2015.UoR-4B 4B BS00084070_51 Ra_c26080_461 49.66 49.66 50.16 3.90E-10 9.41 2.4

Q.Yld-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 50.16 50.16 51.16 2.56E-04 3.59 1.62

Q.GA-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.81E-07 6.55 1.73

Q.GA-2016.UoR-4B.1 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.54E-08 7.60 2.93

Q.GW-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 1.00E-10 10.00 3.22

Q.GW-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.47E-11 10.61 3.03

Q.GW-ME.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 1.44E-14 13.84 4.04

Q.TGW-ME.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 0.00E+00 17.5* 3.53

Q.TGW-2015.UoR-4B 4B Tdurum_contig42229_113 BobWhite_c44691_648 52.17 52.17 52.67 6.66E-16 15.18 3.72

Q.GA-ME.UoR-4B 4B BS00011851_51 BS00084904_51 54.7 54.70 55.20 1.81E-08 7.74 2.77

Q.TGW-2016.UoR-4B 4B BS00011851_51 BS00084904_51 54.7 54.70 55.20 7.03E-11 10.15 3.03

Q.FFD-2016.UoR-4B 4B BS00084904_51 BS00022988_51 55.7 55.20 55.70 1.14E-06 5.94 2.05

Q.Yld-2015.UoR-4B 4B BS00067786_51 IACX5989 75.09 75.09 78.18 1.98E-05 4.70 3.32

Q.GA-2016.UoR-4B.2 4B BS00104364_51 BS00009342_51 170.66 170.66 173.22 2.89E-04 3.54 0.13

Q.GA-2016.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 3.53E-06 5.45 3.25

Q.GA-ME.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 5.44E-08 7.26 2.78

Q.FFD-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 6.89E-06 5.16 2.94

Q.GA-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 9.99E-08 7.00 2.48

Q.TGW-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 1.23E-11 10.91 4.65

Q.FFD-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 6.66E-14 13.18 6.34

Q.GW-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 5.33E-14 13.27 5.73

Q.FFD-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 2.66E-15 14.58 6.87

Q.TGW-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 21* 7.6

Q.TGW-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 21* 7.33

Q.GW-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 23* 8.71

Q.GW-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 29* 9.28

Q.GW-2015.UoR-5A.1 5A BS00040933_51 BobWhite_rep_c50145_387 39.25 39.25 39.75 7.52E-04 3.12 1.08

Q.GA-2015.UoR-5A 5A BobWhite_rep_c49700_452 wsnp_Ex_c7668_13089715 69.43 68.43 69.43 2.28E-07 6.64 3.53

Q.GL-2015.UoR-5A 5A BobWhite_rep_c49700_452 wsnp_Ex_c7668_13089715 69.43 68.43 69.43 6.85E-09 8.16 6.91

Q.GA-ME.UoR-5A 5A wsnp_Ku_c5071_9049540 BobWhite_c15454_63 73.03 73.03 83.05 2.62E-09 8.58 5.29

Q.GL-ME.UoR-5A 5A wsnp_Ku_c5071_9049540 BobWhite_c15454_63 73.03 73.03 83.05 5.55E-16 15.26 9.79

Q.GL-2016.UoR-5A.2 5A wsnp_Ku_c5071_9049540 BobWhite_c15454_63 73.03 73.03 83.05 0.00E+00 15.5* 11.18

Q.TGW-2016.UoR-5A 5A BobWhite_c15454_63 BS00034303_51 83.55 83.05 83.55 8.40E-05 4.08 1.25

Q.GA-2016.UoR-5A 5A BobWhite_c15454_63 BS00034303_51 83.55 83.05 83.55 1.04E-08 7.98 5.65

Q.TGW-2015.UoR-5A 5A Ex_c2171_2600 BobWhite_c47401_491 310.04 310.04 310.54 2.70E-06 5.57 2.32

Q.GW-2016.UoR-5A 5A BS00069245_51 BobWhite_c8266_227 310.54 310.54 311.55 2.22E-11 10.65 5.07

Q.GW-2015.UoR-5A.2 5A BobWhite_c8266_227 Excalibur_c46261_342 311.55 311.55 312.56 6.83E-05 4.17 2.13

Q.GW-ME.UoR-5A 5A BobWhite_c8266_227 Excalibur_c46261_342 311.55 311.55 312.56 6.75E-08 7.17 4.36

Q.GA-2016.UoR-5B.1 5B Ra_c19198_137 Kukri_c74960_427 15.68 15.68 16.69 8.33E-09 8.08 2.26

Q.GA-ME.UoR-5B.1 5B Kukri_c74960_427 BS00033612_51 16.69 16.69 17.19 8.57E-07 6.07 3.44

Q.GA-2015.UoR-5B.1 5B Tdurum_contig48658_1022 BobWhite_c8048_663 44.97 44.97 46.48 1.26E-05 4.90 2.28

Q.GL-2015.UoR-5B.1 5B wsnp_Ku_c3869_7094615 Ra_c44756_929 56.1 56.10 59.14 8.63E-08 7.06 4.13

Q.GL-2016.UoR-5B.1 5B wsnp_Ku_c3869_7094615 Ra_c44756_929 56.1 56.10 59.14 1.29E-08 7.89 3.06

Q.GL-ME.UoR-5B.1 5B wsnp_Ku_c3869_7094615 Ra_c44756_929 56.1 56.10 59.14 7.48E-10 9.13 4.31

Q.TGW-ME.UoR-5B 5B IACX9261 BS00087043_51 142.56 133.91 142.56 2.08E-06 5.68 2.58

Q.GA-2015.UoR-5B.2 5B BS00065128_51 BS00067744_51 173.2 173.20 178.87 1.20E-05 4.92 2.37

Q.TGW-2015.UoR-5B 5B BS00067744_51 Excalibur_c3165_730 178.87 178.87 182.50 5.01E-04 3.30 2.04

Q.TGW-2016.UoR-5B 5B BS00067744_51 Excalibur_c3165_730 178.87 178.87 182.50 2.94E-04 3.53 1.97

Q.GA-ME.UoR-5B.2 5B BS00067744_51 Excalibur_c3165_730 178.87 178.87 182.50 3.84E-06 5.42 3.06

Q.GL-2015.UoR-5B.2 5B Excalibur_c3165_730 IACX9238 182.5 182.50 183.00 2.58E-07 6.59 5.05

Q.GL-ME.UoR-5B.2 5B Excalibur_c3165_730 IACX9238 182.5 182.50 183.00 1.10E-07 6.96 5

Q.GL-2016.UoR-5B.2 5B IACX9238 Kukri_c2955_281 183 183.00 184.00 2.17E-06 5.66 4.32

Q.Ntr-2016.UoR-5B 5B BS00022673_51 BS00005860_51 199.34 199.34 202.43 3.27E-04 3.49 2.04

Q.GA-2016.UoR-5B.2 5B RFL_Contig2772_1693 BobWhite_rep_c60245_107 213.01 212.00 213.01 1.05E-08 7.98 2.62

Q.Yld-2016.UoR-5B 5B Excalibur_c1925_2569 BobWhite_c39214_164 229.16 227.12 229.16 2.05E-12 11.69 6.02

Q.GW-2015.UoR-5D 5D wsnp_Ku_rep_c72922_72561803 BS00021901_51 14.07 14.07 15.07 1.89E-04 3.72 1.27

Q.TGW-2016.UoR-5D 5D wsnp_Ku_rep_c72922_72561803 BS00021901_51 14.07 14.07 15.07 1.45E-05 4.84 1.55

Q.FFD-2016.UoR-5D 5D BS00021901_51 Kukri_rep_c73094_348 15.07 15.07 19.57 3.05E-04 3.52 2.41

Q.GA-2015.UoR-5D 5D Kukri_rep_c73094_348 Kukri_c444_833 21.57 19.57 21.57 6.26E-04 3.20 0.42

Q.GW-2016.UoR-5D 5D Kukri_rep_c73094_348 Kukri_c444_833 21.57 19.57 21.57 3.36E-04 3.47 0.88

Q.GW-ME.UoR-5D 5D Kukri_rep_c73094_348 Kukri_c444_833 21.57 19.57 21.57 1.16E-04 3.94 0.48

Q.GA-2016.UoR-6A.1 6A wsnp_CAP7_c399_215824 wsnp_Ku_c26784_36748247 98.45 98.45 102.35 1.34E-04 3.87 2.89

Q.FFD-ME.UoR-6A 6A JD_c8888_741 RAC875_rep_c81239_73 119.36 119.36 119.86 1.49E-05 4.83 3.73

Q.Ntr-2015.UoR-6A 6A wsnp_BG262421A_Ta_2_2 BS00054054_51 125.91 124.90 125.91 2.52E-08 7.60 8.35

Q.FFD-2015.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 9.12E-08 7.04 4.52

Q.GA-2015.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 2.91E-14 13.54 7.16

Q.GW-2015.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 1.41E-14 13.85 7.75

Q.GW-ME.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 0.00E+00 22.5* 10.96

Q.FFD-2016.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 3.23E-04 3.49 2.43

Q.TGW-2016.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 9.96E-14 13.00 6.97

Q.TGW-2015.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 0.00E+00 20.5* 9.48

Q.TGW-ME.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 0.00E+00 21* 9.95

Q.GW-2016.UoR-6A 6A RAC875_c23305_563 BS00041481_51 134.48 134.48 137.00 0.00E+00 24* 11.91

Q.GA-2016.UoR-6A.2 6A Tdurum_contig53138_302 BS00021689_51 139.52 139.52 140.53 1.11E-16 15.95 9.47

Q.GA-ME.UoR-6A 6A Tdurum_contig53138_302 BS00021689_51 139.52 139.52 140.53 0.00E+00 18* 9.26

Q.Ntr-2016.UoR-6A 6A BS00023893_51 BS00065082_51 180.47 176.94 180.47 6.27E-04 3.20 3.2

Q.GA-2016.UoR-6A.3 6A Excalibur_c7002_314 RAC875_c40653_612 229.11 229.11 230.12 4.29E-07 6.37 3.36

Q.Ntr-2015.UoR-6B.1 6B BS00091262_51 BS00103275_51 152.64 152.64 153.14 5.32E-04 3.27 1.75

Q.Ntr-2015.UoR-6B.2 6B RAC875_c12907_515 BS00023080_51 201.81 199.77 201.81 3.85E-05 4.41 3.78

Q.FFD-2015.UoR-6D 6D BS00021881_51 BobWhite_c22280_104 130.85 130.85 190.15 1.75E-04 3.76 1.67

Q.TGW-ME.UoR-7A.1 7A BS00026702_51 BS00082055_51 6.6 5.60 6.60 4.09E-05 4.39 1.07

Q.GW-ME.UoR-7A.1 7A Excalibur_c24750_504 Excalibur_rep_c69170_602 8.61 7.10 8.61 5.03E-04 3.30 1.39

Q.GA-2016.UoR-7A 7A Excalibur_c60134_182 BS00110940_51 65.98 65.98 74.73 1.40E-05 4.85 0.39

Q.GL-ME.UoR-7A.1 7A BobWhite_s63403_99 Kukri_s118416_65 180.5 178.46 180.50 1.57E-04 3.80 1.82

Q.GL-2016.UoR-7A.1 7A BobWhite_s63403_99 Kukri_s118416_65 180.5 178.46 180.50 2.06E-05 4.69 2.19

Q.TGW-2015.UoR-7A 7A Kukri_rep_c105999_572 BobWhite_c47283_127 254.13 254.13 254.63 3.06E-07 6.51 3.01

Q.FFD-2015.UoR-7A 7A Kukri_rep_c105999_572 BobWhite_c47283_127 254.63 254.13 254.63 1.51E-04 3.82 2.17

Q.TGW-ME.UoR-7A.2 7A Excalibur_c63900_370 BobWhite_c1441_1123 265.69 264.18 265.69 5.65E-06 5.25 2.27

Q.Yld-2016.UoR-7A 7A BS00063458_51 RAC875_c67826_84 276.69 275.17 276.69 2.14E-05 4.67 1.11

Q.GW-2016.UoR-7A 7A BS00009838_51 BS00021657_51 311.26 310.25 311.26 3.03E-06 5.52 2.58

Q.GL-ME.UoR-7A.2 7A BS00004257_51 Excalibur_c14451_1313 312.27 312.27 313.79 1.35E-05 4.87 1.87

Q.GL-2016.UoR-7A.2 7A BS00004257_51 Excalibur_c14451_1313 312.27 312.27 313.79 1.32E-05 4.88 2.37

Q.Yld-2015.UoR-7A 7A RAC875_c13093_86 wsnp_Ex_c7071_12171619 318.37 318.37 321.39 1.21E-07 6.92 4.33

Q.GW-ME.UoR-7A.2 7A Tdurum_contig54832_139 Tdurum_contig61864_1352 352.64 351.63 352.64 1.85E-04 3.73 1.11

Q.GW-2015.UoR-7A 7A Tdurum_contig27856_230 BobWhite_c25105_507 355.66 355.16 355.66 2.08E-04 3.68 1.61

Q.Yld-2015.UoR-7B.1 7B RFL_Contig6075_1128 Tdurum_contig5352_556 0 0.00 6.39 3.30E-04 3.48 1.55

Q.Yld-2016.UoR-7B.1 7B RFL_Contig6075_1128 Tdurum_contig5352_556 0 0.00 6.39 7.77E-06 5.11 1.68

Q.Yld-2016.UoR-7B.2 7B RAC875_c10932_1697 BS00022550_51 66.08 64.06 66.08 1.81E-04 3.74 0.9

Q.Ntr-ME.UoR-7D 7D Excalibur_c33002_123 BS00022463_51 148.98 148.98 180.19 9.07E-04 3.04 2.57
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3.2.2.2 Grain Length 

A total of 25 significant (-log10p ≥ 3) QTL for Grain Length (GL) were found on 

chromosomes 1B, 1D, 2A, 2D, 3B, 5A, 5B and 7A. 

These QTL explain on average one third of the total variation in Grain Length, both in 

2015 and 2016 or in the across-seasons analysis. Approximately one third of the 

variation explained by the QTL are accounted for by the two strongest QTL: Q.GL-

ME.UoR-5A (p= 5.55E-16, %var= 6.91 – 11.18); Q.GL-2016.UoR-1B.1 (p= 5.34E-11, %var= 

3.09 – 5.7), expressed in both years and detected in identical locations in all analyses. A 

further two stable QTL were identified across all analyses on chromosome 5B, Q.GL-

2015.UoR-5B.1 located between 56.10 - 59.14cM and Q.GL-ME.UoR-5B.2 182.50 – 

184.00cM explaining between 3.06 - 5.05% variation explained. A further four dual co-

locating were identified on 1B, 2A, and 2 sets on 7A. The remaining five QTL were either 

year-specific or detected only in the across-season analysis. Smaller effects together 

explained the year-specific component of variation, the strongest of these being Q.GL-

2015.UoR-1B.2 (267.04 - 268.54cM) which explained 5.07% of the variation and P value 

of 6.88E-05. 

3.2.3.3 Grain Width 

A total of 29 Significant (-log10p ≥ 3) Grain Width (GW) were found on chromosomes 

1B, 1D, 2D, 3A, 3B, 4B, 4D, 5A, 5D, 6A and 7A.  

These QTL explain between 28.9 and 40.12% of the total variation in Grain Width, both 

in 2015 and 2016 or in the across-seasons analysis. Approximately half of the variation 

explained by the QTL are accounted for by the two strongest QTL: Q.GW-2015.UoR-6A 
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(p= 1.41E-14, %var= 7.75 – 11.91); Q.GW-2015.UoR-4D (p= 5.33E-14, %var= 5.73 – 9.28), 

located at the locus for Rht-D1.  

The four largest effect QTL were on 4B (50.16 - 51.16cM), 4D (32.24 - 40.11cM), 5A 

(310.54 - 312.56cM) and 6A (131.44 - 137.00cM). These QTL were expressed in both 

years and multi-environment analysis, suggesting they are relatively stable in their 

effects. The QTL on 4B and 4D are likely to be Rht-B1b and Rht-D1b respectively. All 

stable QTL have variation in the effects between years, suggesting that there is some 

genotype by environment interaction remaining. Eight QTL only appeared in single year 

analysis, suggesting that these are environmentally specific. However, within their 

environment these QTL explain between 0.82% and 3.48% of phenotypic variation in 

the environments. 

3.2.2.4 Grain Yield  

Grain Yield has a relatively low heritability (H2 =0.26), leading us to expect that there 

would be fewer significant QTL explaining a lower percentage of the total phenotypic 

variation. This reflects the complexity of yield as a trait reliant on the output of many 

other traits. 

A total of 14 Significant (-log10p ≥ 3) QTL for Grain Yield (GY) were found on 

chromosomes 2A, 2B, 4A, 4B, 5B, 7A and 7B. 

These QTL collectively explain between 5.71 and 18.16% of the total variation in Grain 

Yield, both in 2015 and 2016 or in the across-seasons analysis. In the 2014-15 analysis, 

three quarters of the variation is explained by the strongest two QTL: Q.Yld-2015.UoR-

4B (p= 1.98E-05, %var= 3.32); Q.Yld-2015.UoR-7A (p= 1.21E-07, %var= 4.33). In the 2015-
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16 analysis, one third of the variation explained was due to the single strongest QTL: 

Q.Yld-2016.UoR-5B (p= 2.05E-12, %var= 6.02). In the multi-environment analysis, there 

were only two QTL detected Q.Yld-ME.UoR-2A (p= 1.81E-06, %var= 3.74) and Q.Yld-

ME.UoR-2B (p= 6.9E-04, %var= 1.97). 

For this trait, Q.Yld-2015.UoR-7B and Q.Yld-2016.UoR-7B.1 were the only overlapping 

QTL between years, located between 0.000- 6.392cM. Both were significant (p= e-4 to 

e-6) and explained 1.55 to 1.68% of the total variation. All remaining QTL were year 

specific. 

12 QTL only appeared in single year analysis, suggesting that these are environmentally 

unstable. However, within their environment the QTL explain between 0.9% and 6.02% 

of phenotypic variation in the environments.  

3.2.2.5 Nitrogen Content  

The low heritability of this trait (H2 =0.16) would lead us to expect that there would be 

fewer, less significant QTL for Nitrogen Content. A total 9 Significant (-log10p ≥ 3) QTL 

for Nitrogen content (N) were found on chromosomes 2D, 3A, 4A, 5B, 6A, 6B and 7D.  

These QTL collectively explained between 2.57 and 20.8% of the total variation found in 

Nitrogen Content both in 2015 and 2016 or in the across-seasons analysis. The strongest 

of the individual QTL was Q.Ntr-2015.UoR-6A (p= 2.52E-08, %var= 8.35). 

All nine QTL only appeared in single year analysis, suggesting that these are 

environmentally unstable. However, within their environment explain between 1.1% 

and 8.35% of phenotypic variation in the environments.  
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3.2.3 Co-location of QTL for driver and output traits. 

Multi-trait QTL analysis enables us to identify groupings of QTL that may have effects on 

several agronomically important traits. By analysing the co-location of QTL, it is likely that 

several traits will appear genetically linked. Some may be controlled by the same gene, while 

others may be controlled by adjacent genes that are close enough together that it is unlikely 

a recombination event would happen between their locations. With 155 QTL distributed over 

all 21 chromosomes, it is likely that some QTL will randomly co-locate. However, at least a 

portion of the major GW and GL effects are likely to be additive, rather than working as trade-

offs between different grain dimensions. This would lead directly to an increase in TGW, and 

indirectly to an increase in yield. This can be seen in co-locations between GL, GA and TGW 

on chromosomes 5A (73.03 – 83.55cM) and 5B (173.20 – 184.00cM), and co-locations 

between GW, GA and TGW on chromosomes 4B (50.2 – 55.2cM) and 6A (131.44 – 132.95cM).  

These regions show that both grain length and width can drive increases in TGW individually. 

The co-location of GA, GW, TGW and Yield on chromosome 4B (50.2 – 55.2cM) is the only 

genetic observation of the indirect effect that the primary drivers of TGW (GL and GW) 

affecting yield as well. However, TGW does impact yield on 4A (137.28 - 140.85cM). 

In principle, looking at co-location also provides the opportunity to identify QTL for yield 

which are relatively independent from phenology. Such QTL would be extremely significant 

for breeding purposes (Pinto et al., 2010; Reynolds et al., 2009). A total of 75 co-locating QTL 

were identified on chromosomes 1B, 2A, 2D, 3B, 4A, 4B, 4D, 5A, 5B, 5D and 6A. 
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Table Error! No text of specified style in document.3.3 – Co-locating QTL table for sink-related traits. QTL names follow 
standard format as described in Chapter 2. Trait abbreviations are as shown in Table 3.1. Left and Right Marker 
Positions are the location of the markers in cM, p-value is the significance of the QTL and -log10p is the strength 
of the QTL 

 

 

3.2.3.1 Chromosome 1B 

On chromosome 1B, two sets of co-locating QTL were observed (Figure 3.3). Q.GA-ME.UoR-

1B.1 and a grain length QTL consistent across all analyses are co-located between markers 

RAC875_rep_c109416_191 and Tdurum_contig42633_1282 (59.06 - 69.60cM), explaining 

between 3.09 and 5.7% of the total phenotypic variation. The Grain Area meta-QTL Q.GA-

ME.UoR-1B.2 also co-located with a grain length QTL detected in 2016 and the multi-

environment analysis. These QTL were co-located between RFL_Contig1823_1044 and 
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Q.GA-ME.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 1.37E-05 4.86 4.1

Q.GL-2015.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 2.32E-06 5.63 3.09

Q.GL-ME.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 9.44E-11 10.03 5.16

Q.GL-2016.UoR-1B.1 1B RAC875_rep_c109416_191 Tdurum_contig42633_1282 69.6 59.06 69.60 5.34E-11 10.27 5.7

Q.GL-2016.UoR-1B.2 1B RFL_Contig1823_1044 Tdurum_contig50988_500 276.38 276.38 276.88 2.53E-08 7.60 7.03

Q.GL-ME.UoR-1B.2 1B RFL_Contig1823_1044 Tdurum_contig50988_500 276.38 276.38 276.88 2.06E-08 7.69 6.53

Q.GA-ME.UoR-1B.2 1B RFL_Contig1823_1044 Tdurum_contig50988_500 276.88 276.38 276.88 2.91E-04 3.54 3.59

Q.FFD-2016.UoR-2A 2A BS00089457_51 RAC875_rep_c119471_174 115.52 112.46 115.52 9.14E-06 5.04 3.61

Q.TGW-2016.UoR-2A 2A BS00089457_51 RAC875_rep_c119471_174 115.52 112.46 115.52 3.37E-07 6.47 3.53

Q.GL-2016.UoR-2A 2A BS00040337_51 BS00062757_51 134.69 134.19 134.69 5.14E-06 5.29 1.57

Q.GL-ME.UoR-2A 2A BS00040337_51 BS00062757_51 134.69 134.19 134.69 2.79E-08 7.55 2.28

Q.TGW-ME.UoR-2A 2A BS00062757_51 BobWhite_c28819_733 135.19 134.69 135.19 3.72E-07 6.43 1.71

Q.Yld-ME.UoR-2A 2A Kukri_c24064_2095 BS00041816_51 140.76 140.76 141.26 1.81E-06 5.74 3.74

Q.FFD-ME.UoR-2A 2A Kukri_c24064_2095 BS00041816_51 141.26 140.76 141.26 2.34E-05 4.63 2.42

Q.Ntr-2015.UoR-2D 2D BobWhite_c40561_305 BobWhite_c18906_680 170.44 164.88 170.44 9.60E-04 3.02 3.09

Q.GL-2016.UoR-2D 2D BobWhite_c40561_305 BobWhite_c18906_680 170.44 164.88 170.44 1.36E-05 4.87 1.54

Q.TGW-2016.UoR-3B.2 3B BS00047274_51 Excalibur_c48047_90 175.11 171.05 175.11 5.40E-06 5.27 4.05

Q.FFD-2016.UoR-3B.2 3B Excalibur_c48047_90 BS00097383_51 180.42 175.11 180.42 5.23E-05 4.28 3.46

Q.TGW-ME.UoR-4A 4A wsnp_Ex_c3988_7221220 RAC875_c6939_1042 140.85 137.28 140.85 9.37E-05 4.03 1.4

Q.Yld-2015.UoR-4A 4A wsnp_Ex_c3988_7221220 RAC875_c6939_1042 140.85 137.28 140.85 3.45E-05 4.46 1.55

Q.FFD-ME.UoR-4B 4B BS00084070_51 Ra_c26080_461 49.66 49.66 50.16 4.53E-06 5.34 1.87

Q.FFD-2015.UoR-4B 4B BS00084070_51 Ra_c26080_461 49.66 49.66 50.16 3.90E-10 9.41 2.4

Q.Yld-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 50.16 50.16 51.16 2.56E-04 3.59 1.62

Q.GA-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.81E-07 6.55 1.73

Q.GA-2016.UoR-4B.1 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.54E-08 7.60 2.93

Q.GW-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 1.00E-10 10.00 3.22

Q.GW-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.47E-11 10.61 3.03

Q.GW-ME.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 1.44E-14 13.84 4.04

Q.TGW-ME.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 0.00E+00 17.5* 3.53

Q.TGW-2015.UoR-4B 4B Tdurum_contig42229_113 BobWhite_c44691_648 52.17 52.17 52.67 6.66E-16 15.18 3.72

Q.GA-ME.UoR-4B 4B BS00011851_51 BS00084904_51 54.7 54.70 55.20 1.81E-08 7.74 2.77

Q.TGW-2016.UoR-4B 4B BS00011851_51 BS00084904_51 54.7 54.70 55.20 7.03E-11 10.15 3.03

Q.FFD-2016.UoR-4B 4B BS00084904_51 BS00022988_51 55.7 55.20 55.70 1.14E-06 5.94 2.05

Q.GA-2016.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 3.53E-06 5.45 3.25

Q.GA-ME.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 5.44E-08 7.26 2.78

Q.FFD-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 6.89E-06 5.16 2.94

Q.GA-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 9.99E-08 7.00 2.48

Q.TGW-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 1.23E-11 10.91 4.65

Q.FFD-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 6.66E-14 13.18 6.34

Q.GW-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 5.33E-14 13.27 5.73

Q.FFD-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 2.66E-15 14.58 6.87

Q.TGW-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 21* 7.6

Q.TGW-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 21* 7.33

Q.GW-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 23* 8.71

Q.GW-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 29* 9.28

Q.GA-2015.UoR-5A 5A BobWhite_rep_c49700_452 wsnp_Ex_c7668_13089715 69.43 68.43 69.43 2.28E-07 6.64 3.53

Q.GL-2015.UoR-5A 5A BobWhite_rep_c49700_452 wsnp_Ex_c7668_13089715 69.43 68.43 69.43 6.85E-09 8.16 6.91

Q.GA-ME.UoR-5A 5A wsnp_Ku_c5071_9049540 BobWhite_c15454_63 73.03 73.03 83.05 2.62E-09 8.58 5.29

Q.GL-ME.UoR-5A 5A wsnp_Ku_c5071_9049540 BobWhite_c15454_63 73.03 73.03 83.05 5.55E-16 15.26 9.79

Q.GL-2016.UoR-5A.2 5A wsnp_Ku_c5071_9049540 BobWhite_c15454_63 73.03 73.03 83.05 0.00E+00 15.5* 11.18

Q.TGW-2016.UoR-5A 5A BobWhite_c15454_63 BS00034303_51 83.55 83.05 83.55 8.40E-05 4.08 1.25

Q.GA-2016.UoR-5A 5A BobWhite_c15454_63 BS00034303_51 83.55 83.05 83.55 1.04E-08 7.98 5.65

Q.GA-2015.UoR-5B.2 5B BS00065128_51 BS00067744_51 173.2 173.20 178.87 1.20E-05 4.92 2.37

Q.TGW-2015.UoR-5B 5B BS00067744_51 Excalibur_c3165_730 178.87 178.87 182.50 5.01E-04 3.30 2.04

Q.TGW-2016.UoR-5B 5B BS00067744_51 Excalibur_c3165_730 178.87 178.87 182.50 2.94E-04 3.53 1.97

Q.GA-ME.UoR-5B.2 5B BS00067744_51 Excalibur_c3165_730 178.87 178.87 182.50 3.84E-06 5.42 3.06

Q.GL-2015.UoR-5B.2 5B Excalibur_c3165_730 IACX9238 182.5 182.50 183.00 2.58E-07 6.59 5.05

Q.GL-ME.UoR-5B.2 5B Excalibur_c3165_730 IACX9238 182.5 182.50 183.00 1.10E-07 6.96 5

Q.GL-2016.UoR-5B.2 5B IACX9238 Kukri_c2955_281 183 183.00 184.00 2.17E-06 5.66 4.32

Q.GW-2015.UoR-5D 5D wsnp_Ku_rep_c72922_72561803 BS00021901_51 14.07 14.07 15.07 1.89E-04 3.72 1.27

Q.TGW-2016.UoR-5D 5D wsnp_Ku_rep_c72922_72561803 BS00021901_51 14.07 14.07 15.07 1.45E-05 4.84 1.55

Q.FFD-2016.UoR-5D 5D BS00021901_51 Kukri_rep_c73094_348 15.07 15.07 19.57 3.05E-04 3.52 2.41

Q.GA-2015.UoR-5D 5D Kukri_rep_c73094_348 Kukri_c444_833 21.57 19.57 21.57 6.26E-04 3.20 0.42

Q.GW-2016.UoR-5D 5D Kukri_rep_c73094_348 Kukri_c444_833 21.57 19.57 21.57 3.36E-04 3.47 0.88

Q.GW-ME.UoR-5D 5D Kukri_rep_c73094_348 Kukri_c444_833 21.57 19.57 21.57 1.16E-04 3.94 0.48

Q.FFD-2015.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 9.12E-08 7.04 4.52

Q.GA-2015.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 2.91E-14 13.54 7.16

Q.GW-2015.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 1.41E-14 13.85 7.75

Q.GW-ME.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 0.00E+00 22.5* 10.96

Q.FFD-2016.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 3.23E-04 3.49 2.43

Q.TGW-2016.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 9.96E-14 13.00 6.97

Q.TGW-2015.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 0.00E+00 20.5* 9.48

Q.TGW-ME.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 0.00E+00 21* 9.95

Q.TGW-2015.UoR-7A 7A Kukri_rep_c105999_572 BobWhite_c47283_127 254.13 254.13 254.63 3.06E-07 6.51 3.01

Q.FFD-2015.UoR-7A 7A Kukri_rep_c105999_572 BobWhite_c47283_127 254.63 254.13 254.63 1.51E-04 3.82 2.17
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Tdurum_contig50988_500 (276.38 - 276.88cM), explaining between 3.59 and 7.03% of the 

total phenotypic variation. 

 

 

Figure 3-3 Fragments of genetic linkage map of chromosome 1B with marker positions as reported in Gardner et 
al (2016). QTL intervals are displayed as coloured bars labelled with QTL names as reported in Table 3.3.  
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3.2.3.2 Chromosome 2A 

On chromosome 2A, three sets of co-locating QTL were observed (Figure 3.4). Q.FFD-

2016.UoR-2A and Q.TGW-2016.UoR-2A were co-located between markers BS00089457_51 

and RAC875_rep_c119471_174 (112.46 - 115.52cM), explaining 3.61 and 3.53% of the total 

phenotypic variation respectively. Q.TGW-ME.UoR-2A co-located with a grain length QTL that 

was identified in 2016 and multi-environment analysis, between markers BS00040337_51 

and BobWhite_c28819_733 (134.19 – 135.19cM), explaining between 1.57 and 2.28% of the 

total phenotypic variation. Q.Yld-ME.UoR-2A and Q.FFD-ME.UoR-2A co-locate between 

markers Kukri_c24064_2095 and BS00041816_51 (140.76 - 141.26cM), explaining 3.74 and 

2.42% of the total phenotypic variation respectively. 
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Figure 3-4 - Fragments of genetic linkage map of chromosome 2A with marker positions as reported in Gardner 

et al (2016) and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured 

bars labelled with QTL names as reported in Table 3.3. 

3.2.3.3 Chromosome 2D 

Co-locating QTL for Grain Nitrogen and Grain Length observed on chromosome 2D (Figure 

3.5) Q.Ntr-2015.UoR-2D and Q.GL-2016.UoR-2D co-located between markers 

BobWhite_c40561_305 and BobWhite_c18906_680 (164.88 - 170.44cM), explaining 1.54 and 

3.09% of the total phenotypic variation respectively. These QTL are independent of Ppd-D1, 

which is located approximately 100cM away from this location. It is not clear why Grain 

Nitrogen from the 2014-15 season would share an element of genetic control with Grain 

Length in the 2015-16 season, especially given the lack of correlation between these two traits 

(PCC = -0.08, Figure 3.2), but this is a 5.6cM interval and it is entirely possible, therefore, that 

these are independent QTL that fall in the same interval by chance. 
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Figure 3-5 Fragments of genetic linkage map of chromosome 2D with marker positions as reported in Gardner et 
al (2016) and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars 
labelled with QTL names as reported in Table 3.3. 

3.2.3.4 Chromosome 3B 

There was only one set of co-locating QTL observed on chromosome 3B (Figure 3.6) Q.TGW-

2016.UoR-3B.2 and Q.FFD-2016.UoR-3B.2 co-located between markers BS00047274_51 and 

BS00097383_51 (171.05 – 180.42cM), explaining 4.05 and 3.46% of the total phenotypic 

variation. 
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Figure 3-6- Fragments of genetic linkage map of chromosome 3B with marker positions as reported in Gardner et 
al (2016) and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars 
labelled with QTL names as reported in Table 3.3. 

3.2.3.5 Chromosome 4A 

Co-locating QTL for TGW and Yield were observed on chromosome 3B (Figure 3.7) Q.TGW-

ME.UoR-4A and Q.Yld-2015.UoR-4A co-located between markers wsnp_Ex_c3988_7221220 

and RAC875_c6939_1042 (137.28 - 140.85cM), explaining 1.4 and 1.55% of the total 

phenotypic variation.  
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Figure 3-7 - Fragments of genetic linkage map of chromosome 4A with marker positions as reported in Gardner et al (2016) 
and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars labelled with QTL 
names as reported in Table 3.3. 

 

3.2.3.5 Chromosome 4B 

On chromosome 4B, there was one large group of co-locating QTL (Figure 3.8). Initially, this 

contains 13 QTL, but can be refined down to five QTL where the same QTL appears in all 

analyses.  
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Q.Yld-2016.UoR-4B is co-locating with QTL for FFD, GA, GW and TGW; the four of which are 

stable across both years and detected in the meta-analysis. This QTL cluster is located 

between markers BS00084070_51 and BS00022988_51 (49.66 – 55.70cM) and explains 

between 1.62 and 4.04% of the total phenotypic variation. TGW and GW consistently had the 

highest -log10p scores and explained the most variation. These QTL are co-locating with Rht-

B1b. 

 

Figure 3-8 - Fragments of genetic linkage map of chromosome 4B with marker positions as reported in Gardner et 
al (2016) and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars 
labelled with QTL names as reported in Table 3.3. 
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3.2.3.5 Chromosome 4D 

On chromosome 4D, there was one large group of co-locating QTL (Figure 3.9). Initially, this 

contains 12 QTL, but can be refined down to four QTL where the same QTL appears in all trait 

analyses- for example Q.TGW-2015.UoR-4D, Q.TGW-2016.UoR-4D and Q.TGW-ME.UoR-4D 

are all located between Excalibur_c19078_210 and RAC875_rep_c105718_304. QTL for GW, 

GA, TGW and FFD appeared in all analyses between markers Kukri_rep_c68594_530 and 

RAC875_rep_c105718_304 (24.93 - 40.11cM) and explains between 2.48 and 9.28% of the 

total phenotypic variation. As with chromosome 4B, TGW and GW consistently had the 

highest -log10p values and explained the most variation. These QTL are co-locating with Rht-

D1b. 
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Figure 3-9 - Fragments of genetic linkage map of chromosome 4D with marker positions as reported in Gardner et al (2016) 
and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars labelled with QTL 
names as reported in Table 3.3. 

 

3.2.3.6 Chromosome 5A 

On chromosome 5A, there was one moderate group of co-locating QTL (Figure 3.10). Initially, 

this contains seven QTL, but can be refined down to three where the same QTL appears in all 

trait analyses, with the magnitude and direction of effects from the parents being 

comparable. Q.TGW-2016.UoR-5A co-locates with QTL for GL and GA, between markers 
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BobWhite_rep_c49700_452 and BS00034303_51 (68.43 – 83.55cM), explaining between 1.25 

and 11.2% of the total phenotypic variance. GL is the strongest QTL in this cluster, explaining 

between 6.91 and 11.2% of the total variation. 

 

 

Figure 3-10 - Fragments of genetic linkage map of chromosome 5A with marker positions as reported in Gardner et al (2016) 
and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars labelled with QTL 
names as reported in Table 3.3. 

 

3.2.3.7 Chromosome 5B 

On chromosome 5B, there was one moderate sized group of co-locating QTL (Figure 3.11). 

Here, a QTL for GL detected in all analyses co-locates with QTL for GA (2015 and ME) and TGW 
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(2015 and 2016), between markers BS00065128_51 and Kukri_c2955_281 (173.20 – 

183.00cM), explaining between 0.48 and 2.41% of total phenotypic variation. 

 

Figure 3-11- Fragments of genetic linkage map of chromosome 5B with marker positions as reported in Gardner 
et al (2016) and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured 
bars labelled with QTL names as reported in Table 3.3. 

3.2.3.8 Chromosome 5D 

On chromosome 5D, there was one moderate sized group of co-locating QTL (Figure 3.12). 

Here, a consistent QTL for GW co-located with Q.TGW-2016.UoR-5D, Q.FFD-2016.UoR-5D and 

Q.GA-2015.UoR-5D between markers wsnp_Ku_rep_c72922_72561803 and Kukri_c444_833 

(14.07 – 21.57cM), explaining between 0.42 and 2.41% of the total phenotypic variation. 
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Figure 3-12 - Fragments of genetic linkage map of chromosome 5D with marker positions as reported in Gardner et al (2016) 
and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars labelled with QTL 
names as reported in Table 3.3. 

 

3.2.3.9 Chromosome 6A 

On chromosome 6A, there was one moderate sized group of co-locating QTL (Figure 3.13). 

Here, a consistent QTL for TGW co-located with FFD (2015 and 2016), GW (2015 and ME) and 

Q.GA-2015.UoR-6A, between markers Kukri_c77911_260 and BS00022605_51 (131.94 – 

132.95cM), explaining between 2.43 and 11.00% of the total phenotypic variation. 
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Figure 3-13 - Fragments of genetic linkage map of chromosome 6A with marker positions as reported in Gardner et al (2016) 
and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured bars labelled with QTL 
names as reported in Table 3.3. 

 

3.2.3.10 Chromosome 7A 

On chromosome 7A, there is a single set of co-locating QTL (Figure 3.14). Q.TGW-2015.UoR-

7A and Q.FFD-2015.UoR-7A are co-locating between markers Kukri_rep_c105999_572 and 

BobWhite_c47283_127 (254.13 - 254.63cM), explaining 3.01 and 2.17% of total phenotypic 

variation respectively. 
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Figure 3-14 - Fragments of genetic linkage map of chromosome 7A with marker positions as reported in Gardner 
et al (2016) and rendered using Biomercator (Sosnowski et al., 2012). QTL intervals are displayed as coloured 
bars labelled with QTL names as reported in Table 3.3. 
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3.3 Discussion 

3.3.1 Phenotypic variation in yield traits in the MAGIC population 

The experiments described in this chapter were designed to investigate sink-related traits by 

breaking down yield into as many individual components as can be reasonably measured. The 

eight seed traits analysed in this chapter: Grain Yield, Thousand Grain Weight, Grain Width, 

Grain Length, Grain Area, Nitrogen Content, Length-Width Ratio and Factor-Form Density 

were measured over 2 years, in 2015 and 2016. Multiple years are critical when measuring 

quantitative field traits, as most countries have environmental variability year on year, which 

will affect crop production and yields. For example, 2012 was an environmentally 

unfavourable year in the UK compared to other years (Figure 3.15), averaging around 6.6t/ha, 

where successive years have averaged between 7.3 -8.9t/ha (FAOSTAT, 2018) 

 

Figure 3-15 - Average UK wheat yields from 2012-2016. Data retrieved from FAOSTAT. 
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This environmental variability can be seen between the 2014-15 and 2015-16 seasons in our 

field conditions. Average yield increased from 7.14t/ha to 9.34t/ha, an increase of around 

30%, and the average nitrogen concentration declined from 3.03 to 2.47%, a decrease of 

almost 20%. These traits are typically affected in opposite directions due to well established 

negative correlations between yield and nitrogen concentration. In the context of 

environmental influence, the stressed season in 2014-15 led to an earlier senescence, 

therefore less time for grain filling, decreasing yield. However, the later senescence in 2015-

16 increased the grain filling period, diluting the nitrogen content with starch to a lower 

overall concentration. 

The environmental conditions had little effect on grain area, width and length overall. 

Average grain length decreased by 0.21mm (3%) in 2015-16. However, this is likely to be due 

to an increased amount of grains coming from the apex and base of the ear, which are 

typically smaller than grains in the middle of the ear. These smaller grains are usually aborted 

in any form of sub-optimal conditions (Friend, 1965). The average grain width only increased 

by 0.13mm (4%) in 2015-16. Despite a much longer grain filling period, there were 

significantly more grain to fill. Average thousand grain weight increased from 35.60 to 40.98g 

(15% increase); while this is a significant amount, overall it is much more stable than yield. 

3.3.2 Heritability of phenotypes 

Heritability of phenotypes is key to plant breeding, as the extent to which the trait value 

reflects genetically programmed ‘merit’ rather than environmentally-influenced ‘response’ 

determines the rate of gain in selection. Highly heritable traits are also consistently expressed 

over a range of growing conditions, providing reliability for growers. Over the 2 years of field 

trials, between 5.71 and 18.16% of the total phenotypic variation in yield between the 800 
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tested progeny lines of the MAGIC population was accounted for in this analysis. It is likely 

that some of the remaining variation is caused by genetic factors not detected in the analysis, 

however a larger proportion of the remaining phenotypic variance will be due to indirect 

cumulative effects of other traits and environmental interactions. It has been repeatedly 

shown that final yield is unstable and is largely influenced by environmental factors (Snape et 

al., 2007; Tyagi et al., 2015; Wu et al., 2012). This vulnerability to environmental variables is 

undesirable in UK elite varieties, as weather conditions are rarely consistent between areas 

or years. Grain yield is unlikely to be suitable for marker-assisted breeding, as any QTL are 

unlikely to be stable across environments or have large phenotypic effects. This is backed up 

by our analysis where we found only one QTL stable (7B) across seasons, and this only 

explained around 1.6% of the phenotypic variation. Final yield is the product of complex 

interactions between multiple genetically determined traits (such as the number of grains per 

ear, potential grain dry mass and the ear density, to name but a few) and environmental 

factors (such as temperature and rainfall patterns, nutrient availability and biotic stress). The 

low heritability of the grain yield found in the MAGIC population reflects the polygenic nature 

of the trait and the complexity of grain yield inheritance. In direct contrast, thousand grain 

weight and grain dimensions have significantly higher heritability (H2= 0.39 to 0.74) in the 

MAGIC population. This indicates that grain morphological traits may be more suitable targets 

for identifying QTL and marker assisted breeding, as they are more environmentally stable. 

Moreover, grain morphological measurements can be semi-automated using instruments like 

MARVIN (GTA Sensorik GmbH, Neubrandenburg, Germany) used by Simmonds et al (2014) - 

although there are some cheaper image analysis methods now available, such as GrainScan 

(Whan et al., 2014), giving a variety of options to drive systematic genetic dissection of this 

category of sink trait. 
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3.3.3 Correlation 

Of the traits analysed in this chapter, all but yield and nitrogen concentration were strongly 

correlated across years (PCC= 0.49 - 0.78 for grain traits, PCC= 0.11 and 0.14 for yield and 

nitrogen concentration respectively). This followed the expected pattern, as it has been well 

established that grain morphology and weight are more stable across environments than yield 

itself. 

Most grain morphological traits were inconsistently correlated with yield. Only grain length 

appeared to be the more stably correlated with yield, with a moderate correlation coefficient 

of 0.27 and 0.19 in 2014-14 and 2015-16 respectively. The remaining grain morphology traits 

(GW, GA and FFD) varied each year, with significantly lower correlation in 2014-15 compared 

to 2015-16. It would appear that the relationships between sink-related traits are partially 

environmentally dependant. Grain width and factor-form density have higher correlations 

with yield in 2015-16 compared to 2014-15, showing that they can have significant impact on 

yield under favourable conditions, and little effect under stressed conditions. Grain length is 

likely to be the most stable across years in relation to yield because it is the first grain 

morphological trait to reach it maximum (Xie et al., 2015), whereas grain width is dependent 

on the grain filling period. 

The inconsistent correlations between thousand grain weight and yield might reflect the 

conclusions of Fischer (2008), stating that increasing grain yield potential has been achieved 

by increasing the numbers of grain per unit land, rather than the size of individual seed. 

However, the moderate correlation between TGW and yield in 2015-16 (PCC= 0.30) and 

strong heritability (H2= 0.6), suggests that a significant measure of yield potential is embodied 
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in thousand grain weight, subject to that potential being realised by favourable conditions 

immediately preceding and during grain filling.  

Grain length and width have relatively low correlations in both years (PCC= -0.11 and 0.09 

respectively), however both are positively correlated to various degrees with thousand grain 

weight. The low correlations between grain length and width suggests that these traits are 

controlled independently with minimal interaction, although there is some research 

suggesting that it is possible that increasing grain length would allow for further 

enhancements of grain width as well (Brinton et al., 2017). As both grain length and width 

have either low correlation (PCC= -0.09) or moderate positive correlation (PCC= 0.19 - 0.27) 

with yield, grain morphology could potentially be improved for economic traits such as milling 

quality without adversely affecting the yield. 

In the context of thousand grain weight, grain width (PCC= 0.78 and 0.87) is a more important 

contributor than grain length (PCC = 0.23 and 0.38). However, grain area, which is heavily 

influenced by both grain width and length, has a strong correlation (PCC= 0.73 and 0.85) with 

thousand grain weight, indicating that increasing grain length may have a positive effect on 

the thousand grain weight via grain area. Of the traits measured, only Nitrogen content had 

a consistent negative correlation with yield, a well-documented trade off.  

Grain number m-2 will be discussed in Chapters 4 and 5 as the culmination of a season’s 

growth and pre-grain filling source capacity and the link between source and sink traits, 

representing the final sink capacity and the ability of source to provide assimilates to fill it. 
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3.3.4 Quantitative Trait Loci Analysis for Grain Yield Traits in the MAGIC population 

3.3.4.1 Co-locating QTL 

Across eleven chromosomes, QTL for two or more traits were detected, either co-locating 

between the two same markers, spanning adjacent marker intervals or having a shared 

flanking marker. Once QTL had been grouped into non-redundant intervals, consolidating 

adjacent QTL as described above, there were a total of 85 unique QTL locations, of which 16 

QTL locations involved two or more different traits. As many of the traits analysed here are 

correlated with each other, it is expected that some QTL, especially the stronger effect ones, 

will either be pleiotropic, directly affecting several phenotypes simultaneously, or that 

variability in one trait will indirectly affect another trait. QTL that are co-locating for the yield 

and grain morphological traits suggest that some of the variability in yield can be explained 

by variation in the size and shape of the grain, rather than the number of grains alone. The 

chromosomes of interest to this analysis are 1B, 2A, 2D, 3B, 4A, 4B, 4D, 5A, 5B, 5D 6A and 7A 

- the twelve chromosomes where we have identified with co-locating QTL. Previous studies 

have identified QTL for yield, thousand grain weight, grain quality and grain morphology on 

all of these chromosomes, using both bi-parental and association panels (Bennett et al., 2012; 

Bonneau et al., 2013; Breseghello and Sorrells, 2007; Brinton et al., 2017; Cabral et al., 2018; 

Echeverry-Solarte et al., 2015; Giura and Saulescu, 1996; Griffiths et al., 2015; Li et al., 2015; 

Simmonds et al., 2014; Tyagi et al., 2015; Williams and Sorrells, 2014). It is possible that many 

of the QTL detected in the MAGIC population are homologues of QTL found in other wheat 

populations; however, it is difficult to directly compare studies due to differences in marker 

sets and maps. Nonetheless, where appropriate, the most relevant previously discovered 

grain size and weight QTL are considered as candidates to explain the effects observed. 
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3.3.4.2 Major Effect QTL 

Within the analysed co-locating QTL, 29 had a -log10p value of greater than 10, accounting 

for 11 trait/chromosome combinations over multiple analyses. The higher -log10p values and 

effect sizes suggest that these are major effect QTL. Within this group were major co-locating 

QTL on chromosomes 4B, 4D, 5A and 6A.  

3.3.4.3 Chromosome 4B 

Major effect QTL were located on chromosome 4B between markers BS00084070_51 and 

BS00022988_51. The strongest QTL detected were for grain width and thousand grain weight. 

In this case, it is likely that variation in expansion of grain width is acting as a driver of 

thousand grain weight, which in turn has an effect on yield. This chromosome contains the 

only observation of the indirect effect of a primary component (grain width) on the final yield, 

and then Q.Yld-2016.UoR-4B has been detected in 2016 alone, the only year where grain 

width and thousand grain weight had a significant correlation with yield. These QTL are co-

locating with the B-genome copy of the Reduced height (Rht-B1) gene. From looking at 

parental effects, it is apparent that Rht-B1b, inherited from Robigus and Soissons, has a small 

negative effect on grain width. A probable pleiotropic effect of Rht-B1b on Grain Width and 

Thousand Grain Weight has been reported previously by Simmonds et al (2014); and earlier, 

at a cruder level, analysis of monosomic lines with substituted whole chromosomes of large-

grained line G603-86 in the ‘Favorit’ background showed the 4B monosomic to have 

narrower, longer grains than average (Giura and Saulescu, 1996). 

3.3.4.4 Chromosome 4D 

The most noticeable QTL was for grain width between markers Excalibur_c19078_210 and 

RAC875_rep_c105718_304. This co-locates with QTL for grain area, FFD, and thousand grain 
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weight. These are likely to be located near the D-genome copy of the Reduced height (Rht-

D1b) gene, inherited from six of the eight parents in the MAGIC population. The ‘perfect’ 

marker for Rht-D1b (wMAS000002_Rht-D1) was not included on the genetic map used in the 

MAGIC population, however there is strong evidence that these markers are closely linked 

with Rht-D1b (Benbow, 2016), and the negative effect of Rht-D1b on grain weight was 

demonstrated over a range of tillage and production systems by Casebow et al (2016).  

This leads to the conclusion that variability in grain width and weight is caused by the dwarfing 

effect of Rht, supported by previous work by Flintham et al (Flintham et al., 1997); Gale and 

Youssefian (1985); and Fischer and Stockman (1986), showing that Rht has no effect on the 

number of spikelets per ear, but does increase the number of fertile florets per spikelet, which 

would tend to bring down the mean grain weight since the higher the grain positions within 

a given spikelet, the lower the grain weight (Acreche and Slafer, 2006). 

3.3.4.5 Chromosome 5A 

A QTL for grain length was identified co-locating with grain area thousand grain weight, 

between markers BobWhite_rep_c49700_452 (69.4cM) and BS00034303_51 (83.6cM). This 

is likely to be the same QTL identified and fine mapped by Brinton et al (2017), which led to a 

significant increase in thousand grain weight driven by longer grains associated with increased 

pericarp cell length. A direct comparison cannot be made between studies, as there is only 

one common marker between the genetic maps on chromosome 5A.  

QTL for grain width and thousand grain weight were co-locating between markers 

BS00069245_51 (68.4cM) and Excalibur_c46261_342 (83.6cM). This region has been 

identified as being associated with numerous beneficial traits (Bariana et al., 2006), including 

the B1 awning locus (Mackay et al., 2014) and SnTox1 sensitivity (Cockram et al., 2015). Both 
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the B1 and SnTox1 loci co-locate with the identified QTL once the markers were transposed 

from the Wang et al (2014) map used in the original studies to the newer Gardner et al (2016) 

map. The Q locus may also co-locate to this area, which has been shown to have multiple 

roles in plant growth and reproductive development. However, no markers between the 

MAGIC population overlap with previous mapping studies of the Q locus, making it difficult to 

compare studies. 

3.3.4.6 Chromosome 6A 

The fourth major QTL set is on chromosome 6A, between markers Kukri_c77911_260 and 

BS00022605_51. Simmonds et al (2014) has already identified and validated a QTL for 

thousand grain weight on 6A using near isogenic lines (NILs). The TaGW2 gene was found in 

this QTL region, which is the homologue of OsGW2 found in rice, Oryza sativa. OsGW2 

encodes for a ubiquitin ligase, which has been shown to negatively regulate grain width and 

grain weight. Loss of function in OsGW2 in rice leads to increased cell numbers in the spikelet 

hull, resulting in wider grains and indirectly affecting the rate of grain filling (Song et al., 2007). 

This affect has shown to be lower in wheat, with some evidence suggesting that TaGW2 may 

have the opposite effect (Bednarek et al., 2012; Yang et al., 2012). Based on the location of a 

common adjacent marker, the QTL is less than 10cM from the Simmonds marker, suggesting 

that the QTL detected here is the same that was previously validated. The common parent, 

Rialto, between the populations used in these experiments also supports the QTL found on 

6A of the MAGIC population being the same one as found in the Spark x Rialto DH population, 

as Rialto had positive effect alleles in both studies. 
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3.3.5 Conclusions 

The results in this chapter present a set of SNP markers that have significant associations with 

grain yield, weight and dimensions in the MAGIC population. Compared to previous studies, 

the use of the MAGIC population bypasses some of the problems in traditional association 

panels or bi-parental crosses - such as limited allelic diversity, few recombination points, and 

population structure effects. Our results show that grain width is responsible for a greater 

proportion of grain weight, than grain length. There is still scope to increase grain length as a 

way of affecting grain area, which has a much greater correlation with grain weight than grain 

length does, which will affect the economic value of the grain consistently, whereas thousand 

grain weight is only significantly correlated with yield in the 2016 conditions. When looking 

directly at correlations with yield, grain length is the more stable trait across environments. 

From this multi-year analysis, a combined total of 155 QTL were identified in all analyses, 

refined to 85 unique QTL when multi-trait pleiotropic QTL and multi-year QTL for a single trait 

are consolidated. Of these, 16 loci were associated with two or more traits (as opposed to 

just multiple environments for the same trait). Only seven of the multi-trait QTL were the 

pleiotropic multi-trait effects wholly consistent from year to year. 

There are several loci that have been identified in this chapter that are potential candidates 

for further investigation. There are several notable yield QTL that appear to be independent 

of other measured traits. Q.Yld-2015.UoR-7B.1 and Q.Yld-2016.UoR-7B.1 are located on 

chromosome 7B and on average explain 1.6% of the phenotypic variation in yield. Q.Yld-

2016.UoR-5B explains 6.02%, warranting further investigation due to the relatively large 

effect for such a complex trait, despite only occurring in a single environment. Likewise, the 
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strongest QTL for nitrogen concentration, Q.Ntr-2015.UoR-6A, explained 8.35% and only 

occurred in a single year. 

Some of these have been reported in previous studies but have yet to be fully validated, 

whereas others, such as those found on 1B, 1D, 5B and 5D, have not been reported in any of 

the several studies of grain size and shape parameters conducted on winter wheat in UK 

environments, and thus appear to be novel QTL. The capacity to detect variation that was not 

previously seen is expected due to the additional allelic diversity captured by the eight 

parents, the high levels of recombination in the MAGIC population and extensive marker 

coverage not found in many previous studies. 
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4. Genetic analysis of ‘source’ traits in the elite wheat 

MAGIC population 

4.1 Introduction 

4.1.1 ‘Source’ trait definition 

As mentioned in Chapter 3, the genetic yield potential of wheat has been defined as the yield 

of a cultivar when grown in the environment to which it is adapted, with nutrients and water 

non-limiting and with pests, diseases, weeds, lodging, and other stresses effectively 

controlled (Evans and Fisher, 1999). As the harvested organ, the grain is referred to as the 

‘sink’. The capability of the plant to fill the sink to its full potential capacity reliant on the 

‘source’. In plant physiology, the total capacity of a plant to accumulate biomass is referred 

to as the ‘source’. The source capacity is principally limited by the rate at which a plant can 

fix carbon through photosynthesis. Plant photosynthesis, and therefore biomass, is 

dependent on multiple factors; the canopy architecture and its ability to intercept and 

capture light, the duration of light capture, and the photosynthetic capacity/efficiency of the 

canopy (Parry et al., 2011). In this chapter, genetic variation in the rate, duration and absolute 

quantity of biomass accumulation are treated as potential traits to ensure that source 

capacity is not limiting yield. 

4.1.2 Canopy Architecture  

For wheat grown in modern high-input agricultural systems, canopy architecture has already 

been targeted extensively in breeding programs, and has largely been optimised for light 

capture, with few obvious opportunities for further improvement (Horton, 2000).  
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4.1.3 Duration of light capture 

There may still be opportunities to extend the duration of light capture by increasing early 

development of leaf area so that the formation of a full canopy coincides with periods when 

radiation intensities are highest in any given season. For example, rapid canopy formation 

may be useful in colder climates where developmental processes, such as leaf emergence, 

are temperature limited (Hay and Porter, 2006). Alternatively, the duration of light capture 

could be improved by introducing ‘stay green’ phenotypes, increasing the total 

photosynthesis accumulation by delaying senescence (Dohleman et al., 2009; Dohleman and 

Long, 2009). 

4.1.4 Photosynthetic capacity 

Potentially, the largest improvements to the source capacity could be achieved through 

increasing the photosynthetic rate per unit leaf area (Long et al., 2006; Parry et al., 2011; 

Raines, 2006). Previous experiments conducted by Fischer et al. (2009), using eight historic 

bread wheat cultivars, suggest that there have been some improvements in photosynthesis 

per unit leaf area in line with improvements in harvest index, although there appears to be 

little difference in the total biomass produced. 

Currently, most research on increasing photosynthesis per unit leaf area is focused on 

optimising the properties of Rubisco as it is currently a slow and inefficient catalyst, although 

several groups are also working on transgenic lines that would allow C4 enzyme pathways 

and CO2 concentrating mechanisms to be deployed in wheat (Hu et al., 2012; Miyao, 2003; 

Qi et al., 2017). There are several strategies that could increase photosynthesis, which may 

be developed individually or in combination. The first approach, and most obvious, would be 

to simply increase the amount of Rubisco present - this would be particularly useful in high-
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irradiance environments. However, Rubisco already accounts for approximately 25% of leaf 

nitrogen and 50% of the soluble protein within the leaf (Reynolds et al., 2009), making any 

further increase difficult on a resource level. Another option would be to identify or engineer 

‘better’ Rubisco, by increasing the catalytic rate and the relative specificity for CO2-reducing 

competitive, and wasteful, oxygenase reactions. Driever et al. (2014), has shown that there is 

still vast potential to be exploited in the natural variation found in different genotypes. While 

there is potential in this area, there has not yet been any substantial increase in catalytic rate 

or enzyme specificity (Parry et al., 2007). As well as increasing the photosynthetic rate, it is 

also important to maintain that higher level once achieved. Lobell and Field (2007) show that 

heat stress has a significant negative impact on photosynthesis, translating to a decrease in 

yield. Modern cultivars are adapted to current environmental conditions, however increased 

heat-tolerance will be needed in the face of climate change. There is already evidence that 

the thermotolerance of photosynthesis can be improved, as shown by Kumar et al. (2009) in 

Arabidopsis.  

An often-overlooked contributor to photosynthetic capacity is that of spike photosynthesis. 

The spikes are displayed above the crop canopy for a significant amount of time, with less 

competition for radiation interception between plants than you find at the canopy level. It 

has been shown that spike photosynthesis can significantly contribute to grain filling 

(Tambussi et al., 2007). This is likely to be of particular importance in stressed environments. 

Despite this potential, little research has been conducted on this trait, and there has been no 

known attempts to improve it in breeding programmes (Parry et al., 2011). Recent work by 

Molero et al. (2014) has identified high variation in spike photosynthesis, and Sanchez-

Bragado et al. (2014) showed that the spike has a photosynthetic capacity comparable to that 
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of the flag leaf. Within spike photosynthesis, there is also the role of awns, where present. 

Research by Li et al. (2006) concluded that awns play a significant role in carbohydrate 

production and are considered the main photosynthetic tissues in the ear (Tambussi et al., 

2007). Despite the recent progress in this area, estimates of the contribution to grain filling 

vary considerably, ranging from 10% to 76% (Aranjuelo et al., 2011; Gebbing and Schnyder, 

1999; Tambussi et al., 2007). This could be part of the genetic diversity reported by Molero et 

al. (2014), however it may also by caused by the limitations in the individual methodologies 

used, as it is a particularly difficult phenotype to measure. 

4.1.5 Aims of this study 

All of the results referred to above were obtained based on analyses using biparental RIL or 

doubled haploid (DH) populations. Therefore, only a limited range of allelic variation was 

explored in each population and opportunities to detect interactions between loci was 

limited. My aim, in this chapter, was to conduct a thorough genetic analysis of source-related 

traits in a large elite wheat eight-parent population offering more allelic diversity and more 

power to detect both small effects and interactions between loci than any previous study. To 

date, the only instance of use of the elite wheat 8-parent MAGIC population for the genetic 

dissection of ‘source’ traits has been conducted by Camargo et al (2018, 2016), based on a 

limited number of lines and a single growth season in a controlled environment. 

The aims of the work presented in this chapter are as follows: 

• Estimate the heritability of traits relating to biomass accumulation 

• Calculate correlations between grain yield and crop biomass parameters 

• Detect environmentally stable QTL regulating biomass accumulation 

• Assess the significance of co-locating QTL governing different source traits  
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4.2 Results 

4.2.1 Phenotypic variation and Correlation analysis 

4.2.1.1 ‘Source’ Traits 

The primary traits analysed in this chapter are Crop Height - measured at multiple time points 

in cm, Green Area Index (GAI) - the percentage of green cover per unit area and Date of 

Anthesis - measured in days after the 1st May. As with the sink traits dealt with in Chapter 3, 

the ‘source’ traits dealt with in this Chapter are examined for their correlation with and impact 

on Grain Yield (GY) - measured in tonnes per hectare. 

As the time series GAI data are capable of charting the growth and decline of the vegetative 

canopy, biologically relevant secondary traits were extracted from a spline curve model that 

interpolates data between points and extract potential growth indicators for biomass 

accumulation: Canopy Duration - measured as the number of days spent above 50% of 

maximum value; Maximum Green Value and Accumulated Green Cover - the area under the 

plotted curve and the Senescence Rate, measured as a percentage loss of green area per day 

from time of Maximum GAI to maturity.  

4.2.1.2 Trait variability 

The mean, variance, S.E., range and broad sense heritability were calculated for four primary 

and five derived traits, averaged over two years (harvest 2015 & 2016) and are displayed in 

Table 4.1. 
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Table 4.1 Sink phenotypes - descriptive statistics for Parents and Progeny. S.E. – Standard Error, H2 – broad sense heritability. 
Three letter trait abbreviations will be used throughout the remainder of the Chapter and in the QTL names. 

 

 

Using the Shapiro-Wilk test for normality, only two traits were statistically normally 

distributed; Accumulated Green Area and Maximum Green Value, both in 2014-15. However, 

when using large sample sizes such as these, even a small deviation from the normal will test 

as significant (Öztuna et al., 2006). Visually (Figure 4.1), most traits appear to follow a near-

normal distribution, with notable exceptions: Anthesis Date in 2014-15 showed a bimodal 

distribution with a minority of the population flowering several days earlier than the mean, 

while in 2015-16 there was a more complex multi-modal distribution of Anthesis Dates, 

Maximum Green Value in 2015-16 has a truncated distribution due to the large number of 

lines reaching the maximum possible GAI of 1. For all traits, the phenotypic range of the 

progeny greatly exceeded the range of the parental lines indicating transgressive segregation; 

this can be clearly seen in Table 4.1 above and Figure 4.1 below. Predictably, Height and 

Anthesis Date were the most heritable traits, with heritabilities between 0.63 and 0.71, 

followed by Senescence Rate and Grain number m-2 at 0.54 and 0.38 respectively. These 

strong heritabilities lead us to expect strong genetic signals for these traits. The least heritable 

traits were Accumulated Green Area, Maximum Green Value and Time of Maximum Green 

Value, with heritabilities between 0.12 and 0.22, reflecting the inherent complexity of traits 

that represent integrative properties of the canopy growth curve over a prolonged period of 

time. 

Parents Progeny Parents Progeny Parents Progeny Parents Progeny Parents Progeny Parents Progeny

Early Height Eht 40.00 40.90 12.26 17.74 1.24 0.15 36.40 30.80 47.90 57.50 11.60 26.70 0.63

Final Height Fht 64.70 66.80 15.87 37.32 1.41 0.21 58.10 48.10 72.00 88.40 13.90 40.3 0.70

Canopy Duration Cdu 96.94 99.86 202.39 216.39 5.03 0.51 80.00 65.00 128.50 165.00 48.50 100 0.27

Maximum Green Value Mgv 0.810 0.810 0.002 0.004 0.016 0.002 0.730 0.560 0.880 1.000 0.140 0.440 0.19

Accumulated Green Cover Agc 81.32 84.00 12.99 155.82 1.27 0.44 75.34 42.84 87.70 132.47 12.35 89.63 0.12

Date of Anthesis Da 39.61 39.65 17.38 11.90 1.47 0.12 29.93 26.47 43.46 48.35 13.54 21.89 0.71

Grain Yield Yld 8.46 8.21 0.13 0.60 0.13 0.03 7.98 4.11 8.95 10.86 0.97 6.75 0.29

Senescence Rate Snr 3.55 3.50 0.12 0.18 0.12 0.01 3.08 2.02 3.97 4.77 0.89 2.75 0.54

H²

Trait 

AbbreviationTrait

Mean Variance S.E Min Max Range
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Figure 4-1 - Density plots showing the distribution of the spatially corrected trait data for the MAGIC RIL population in the 
2014-15 vs 2015-16 field trials. 
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4.2.1.3 Between year correlations 

Of the source traits measured, height and anthesis are the only traits that are highly 

correlated (PCC>0.5) across years (Figure 4.2). It was expected that these traits should be 

highly correlated between years due to their overall strong heritability and the large individual 

effects of the Rht and Ppd loci. Grain number m-2 was moderately correlated between years 

(PCC= 0.34). The lack of strong correlation (PCC= -0.05 – 0.16) between years for other traits 

suggests that more subtle, quantitative effects on canopy development are highly responsive 

to year-to-year variation in environmental parameters such as temperature and rainfall 

patterns (see Section 4.2.2). 

4.2.1.4 Trait-trait correlations 

Early Height is consistently negatively correlated with the date of anthesis in each year (PCC 

= -0.46 and -0.52); this probably reflects the fact that the minority of lines inheriting 

photoperiod-insensitivity from ‘Soissons’ begin stem extension some weeks earlier than the 

remainder of the population (the ‘Soissons’ Ppd-D1a allele confers an advancement in GS55 

of 42d in a study of isogenic pairs – (Bentley et al., 2013)) and therefore there is a strong 

causal link between a determinant of Anthesis Date (the Ppd-D1a allele) and height of the 

canopy pre-booting (as only photoperiod-insensitive lines have begun stem extension at the 

date of measurement of Early Height (11-13th May). Anthesis and senescence maintain 

negative correlations in both years (PCC = -0.1 and -0.36 respectively), possibly reflecting the 

fact that late flowering lines fill grain and mature in the longest, hottest days of the year which 

hastens the rate of senescence relative to earlier flowering lines. All other trait-trait 

correlations were inconsistent from year to year. For example, the correlation between final 

height and yield obtained in 2014-15 (PCC = 0.02) was negligible compared to that seen in 
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2015-16 (PCC = 0.46). This is likely due to environmental stress reducing yields across the 

board in 2014-15 but without affecting height variation so strongly. The maximum green value 

and accumulated green area are inconsistently correlated (PCC= 0.88 and 0.17 in 2014-15 and 

2015-16 respectively), as were maximum green value and the canopy duration (PCC= 0.01 

and -0.45 in 2014-15 and 2015-16 respectively) and accumulated green area and canopy 

duration (PCC= 0.37 and 0.73 in 2014-15 and 2015-16 respectively). Grain number m-2 was 

inconsistently correlated with all traits with the exception of yield (PCC= 0.62 and 0.57 in 

2014-15 and 2015-16 respectively). This strong correlation was expected as it is well 

established that increases in the grain number has traditionally been responsible for increases 

in yield. 
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Figure 4-2 - Correlation matrix of Source phenotype data 

4.2.2 Weather differences between seasons 

Since most traits were poorly correlated between 2014/15 and 2015/16, weather data was 

examined with a view for identifying potential sources of differences in abiotic stress between 

the two seasons, which might be triggering differential genotype-dependant responses. As 

previously described, weather data was retrieved from the weather station at Sonning Farm, 

Sonning UK. Data can be seen below in Figure 4.3. 



97 
 

 

Figure 4-3 - A. Monthly average temperature (in °C, LHS y-axis) is plotted for 2014-15 (blue bars) and 2015-16 (orange bars) 
and as cumulative Thermal Degree Days (DD, RHS y-axis) for 2014-15 (blue line) and 2015-16 (orange line). Monthly average 
rainfall (in mm, LHS y-axis) is plotted for 2014-15 (blue bars) and 2015-16 (orange bars) and as cumulative rainfall (mm, RHS 
y-axis) for 2014-15 (blue line) and 2015-16 (orange line). 

 

As shown in Figure 4.3, the 2014-15 season was characterised by a cool winter and relatively 

dry spring/early summer. In contrast, the 2015-16 season featured an unusually mild winter 

and a much more average rainfall with a well-distributed pattern across the spring and 

summer. Average temperatures between January and July are relatively comparable. 

However, looking at average rainfall between March and June, the main growth periods, 
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there was a total of 104.9mm rain in the period in 2015 compared to 227.8mm of rain in 2016 

- a twofold increase. This sporadic rainfall in the 2014-15 season would have exacerbated the 

underlying spatial variability issue as described in Chapter 2 of this thesis. Overall, 2014-15 

was lower yielding than 2015-16 by an average of 2.2t/ha, reached anthesis 3 days sooner 

and had a lower overall biomass (plant height, maximum green cover, accumulated green 

cover), all of which are highlighted in the density plots shown in Figure 4.1. 

4.2.3 Mapping Quantitative Trait Loci for ‘source’ traits 

In total, 106 significant, non-redundant QTL were discovered for the nine ‘source’ traits 

studied, plus yield (see Chapter 2 for details of significance criteria and methodology for 

determining redundancy between QTL). These are shown below in Table 4.2. 
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Table 4.2 – QTL table for source-related traits, QTL names follow standard format as described in Chapter 2. Trait abbreviations are as shown in Table 4.1. Left and Right Marker Positions are 
the location of the markers in cM, p-value is the significance of the QTL and -log10p is the strength of the QTL. 

 

 

 

 

 

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

Q.Agc-2016.UoR-1A 1A BS00010488_51 RAC875_c42700_264 0.00 0.00 1.01 8.39E-09 8.08 5.19

Q.Cdu-2016.UoR-1A 1A BS00010488_51 RAC875_c42700_264 0.00 0.00 1.01 4.09E-06 5.39 4.01

Q.Cdu-2015.UoR-1A 1A Tdurum_contig47183_205 RAC875_c11899_366 57.08 57.08 63.47 1.84E-06 5.74 2.33

Q.Da-2015.UoR-1A 1A BS00009866_51 BobWhite_c46349_402 75.12 73.62 75.12 4.82E-04 3.32 3.2

Q.Snr-2016.UoR-1A 1A BS00009866_51 BobWhite_c46349_402 75.12 73.62 75.12 1.15E-07 6.94 5.2

Q.Agc-2016.UoR-1B 1B BS00037387_51 BobWhite_c14271_1379 28.79 26.75 28.79 2.61E-05 4.58 3.1

Q.Cdu-2016.UoR-1B 1B BobWhite_c44460_821 IACX8074 299.25 291.21 299.25 3.08E-04 3.51 1.69

Q.Da-2016.UoR-1B 1B Excalibur_c55186_351 wsnp_Ex_c11461_18489681 349.59 345.42 349.59 2.39E-04 3.62 2.37

Q.Da-2016.UoR-1D 1D Excalibur_c15692_532 tplb0061f07_1411 25.28 24.28 25.28 1.26E-07 6.90 3.05

Q.Cdu-2015.UoR-1D 1D D_F5XZDLF01A85DT_301 Excalibur_c24303_1145 32.03 32.03 35.60 2.44E-04 3.61 2.07

Q.Fht-2015.UoR-1D 1D Kukri_rep_c112609_711 BobWhite_rep_c65565_359 61.08 59.07 61.08 2.83E-09 8.55 4.95

Q.Fht-2016.UoR-1D 1D Kukri_rep_c112609_711 BobWhite_rep_c65565_359 61.08 59.07 61.08 2.41E-07 6.62 4.85

Q.Eht-2015.UoR-1D 1D BS00004282_51 BS00003816_51 89.52 89.52 99.08 5.90E-07 6.23 2.26

Q.Fht-2016.UoR-2A 2A Excalibur_rep_c105284_131 Excalibur_c25235_1178 84.49 83.99 84.49 5.22E-04 3.28 1.41

Q.Yld-2016.UoR-2A 2A Kukri_rep_c90581_382 Excalibur_c4847_631 102.38 102.38 103.90 7.75E-05 4.11 1.83

Q.Da-2016.UoR-2A 2A BS00021739_51 BobWhite_c12252_476 106.42 106.42 106.92 2.78E-04 3.56 3.02

Q.Agc-2016.UoR-2A 2A wsnp_Ex_c28204_37349164 wsnp_Ex_c2337_4379619 132.17 129.14 132.17 7.44E-12 11.13 7.03

Q.Cdu-2016.UoR-2A 2A BS00062757_51 BobWhite_c28819_733 135.19 134.69 135.19 3.45E-10 9.46 6.51

Q.Snr-2015.UoR-2B 2B Kukri_c19266_779 BobWhite_c12144_216 3.53 2.53 3.53 1.12E-04 3.95 4.75

Q.Cdu-2015.UoR-2B 2B RAC875_c5577_1682 BS00084668_51 11.09 11.09 12.10 3.80E-06 5.42 4.23

Q.Agc-2015.UoR-2B 2B Excalibur_c14396_1629 Excalibur_c1787_1199 28.32 27.82 28.32 1.86E-09 8.73 5.25

Q.Agc-2016.UoR-2B.1 2B Kukri_c63748_1453 wsnp_Ex_c19371_28311667 35.38 34.88 35.38 6.38E-04 3.20 2.21

Q.Mgv-2015.UoR-2B.2 2B Kukri_c3067_398 RFL_Contig1863_250 48.39 39.92 48.39 2.58E-05 4.59 2.95

Q.Mgv-2016.UoR-2B.1 2B BobWhite_c7786_376 BS00037345_51 168.84 167.33 168.84 5.77E-05 4.24 2.32

Q.Mgv-2016.UoR-2B.2 2B Ku_c34010_1016 Kukri_c6973_344 188.99 188.49 188.99 8.49E-04 3.07 1.14

Q.Agc-2016.UoR-2B.2 243.11 241.07 243.11 3.08E-04 3.51 2.61

Q.Eht-2016.UoR-2B 243.11 241.07 243.11 1.90E-04 3.72 2.89

Q.Cdu-2016.UoR-2B 243.11 241.07 243.11 4.56E-05 4.34 4.29

Q.Eht-2015.UoR-2B 2B Kukri_c4294_371 Excalibur_c1353_1364 253.98 251.45 253.98 6.57E-04 3.18 0.93

Q.Yld-2016.UoR-2B 2B BobWhite_c22728_78 BS00022805_51 271.92 271.92 279.38 1.13E-04 3.95 2.14

Q.Mgv-2016.UoR-2D 2D BS00010043_51 D_contig17313_245 18.85 18.85 21.94 3.34E-04 3.48 4.06

Q.Snr-2015.UoR-2D 2D BS00010043_51 D_contig17313_245 18.85 18.85 21.94 4.91E-06 5.31 3.62

Q.Da-2015.UoR-2D 62.71 55.40 62.71 0.00E+00 20* 10.78

Q.Da-2016.UoR-2D 62.71 55.40 62.71 1.04E-13 12.98 6.98

Q.Cdu-2016.UoR-2D 62.71 55.40 62.71 4.36E-04 3.36 1.35

Q.Mgv-2015.UoR-2D 62.71 55.40 62.71 5.99E-05 4.22 4.48

Q.Snr-2016.UoR-2D 2D Excalibur_c39215_100 D_contig28346_467 78.27 77.77 78.27 2.06E-04 3.69 0.97

Q.Fht-2015.UoR-3A 3A BS00034334_51 BS00022516_51 88.10 87.60 88.10 9.47E-06 5.02 3.33

Q.Fht-2016.UoR-3A 3A RAC875_c30443_966 Ku_c103671_362 97.97 97.47 97.97 6.39E-11 10.19 4.75

Q.Eht-2015.UoR-3A 3A wsnp_Ku_c30545_40369365 BobWhite_c28950_147 110.76 107.22 110.76 4.43E-04 3.35 2.39

Q.Da-2015.UoR-3A 3A Excalibur_c60452_196 BS00078430_51 111.27 111.27 111.77 1.51E-04 3.82 2.45

Q.Agc-2015.UoR-3A 3A BS00056089_51 wsnp_Ex_c26887_36107413 176.22 174.70 176.22 3.42E-04 3.47 2.35

Q.TMgv-2015.UoR-3A 3A BS00056089_51 wsnp_Ex_c26887_36107413 176.22 174.70 176.22 7.72E-05 4.11

Q.Cdu-2015.UoR-3A 3A RAC875_c67998_96 BS00047668_51 186.68 186.68 188.69 7.49E-04 3.13 2.02

Q.Eht-2016.UoR-3A 3A Tdurum_contig56731_335 BS00100626_51 194.73 194.23 194.73 3.78E-06 5.42 4.15

Q.Mgv-2015.UoR-3B 3B RAC875_c60169_200 BS00044752_51 44.77 44.77 47.31 4.10E-04 3.39 2.14

Q.Agc-2015.UoR-3B 3B Excalibur_c5977_440 BS00035137_51 165.01 164.00 165.01 5.80E-04 3.24 2.05

Q.Yld-2015.UoR-4A 4A wsnp_Ex_c3988_7221220 RAC875_c6939_1042 140.85 137.28 140.85 3.45E-05 4.46 1.55

Q.Da-2016.UoR-4A 4A D_F5XZDLF02G9H4M_286 BobWhite_c43728_100 154.19 151.14 154.19 1.70E-04 3.77 2.59

Q.Da-2015.UoR-4A 4A BS00021957_51 Kukri_c3948_209 158.24 157.74 158.24 8.70E-07 6.06 3.58

Q.Fht-2016.UoR-4A 4A BobWhite_c25163_178 Excalibur_c74390_108 210.20 210.20 210.70 3.73E-07 6.43 1.96

Q.Yld-2016.UoR-4A 4A Excalibur_c10699_404 BobWhite_c38832_153 214.75 214.75 217.29 1.31E-05 4.88 2.86

Q.Snr-2015.UoR-4B 4B Kukri_c23338_624 Kukri_c26488_139 25.91 19.24 25.91 1.17E-05 4.93 3.74

Q.Eht-2016.UoR-4B 4B BS00100839_51 BS00023766_51 48.65 47.14 48.65 6.29E-06 5.20 0.43

Q.Eht-2015.UoR-4B 4B RAC875_c27536_611 CAP7_c1893_424 49.15 48.65 49.15 6.14E-12 11.21 1.89

Q.Fht-2015.UoR-4B 50.16 50.16 51.16 2.61E-14 13.58 2.69

Q.Fht-2016.UoR-4B 50.16 50.16 51.16 1.23E-13 12.91 4.45

Q.Yld-2016.UoR-4B 50.16 50.16 51.16 2.56E-04 3.59 1.62

Q.Yld-2015.UoR-4B 4B BS00067786_51 IACX5989 75.09 75.09 78.18 1.98E-05 4.70 3.32

Q.Snr-2016.UoR-4B 4B Ex_c32540_659 BS00096604_51 92.89 92.39 92.89 1.70E-06 5.77 4

Q.Mgv-2015.UoR-4B 4B Jagger_c1432_289 wsnp_Ra_c2711_5148302 105.13 105.13 105.63 4.07E-08 7.39 3.46

Q.Agc-2015.UoR-4B 4B BS00022653_51 Kukri_c11415_1074 111.24 111.24 112.25 5.55E-07 6.26 3.78

Q.Da-2015.UoR-4B 4B BS00022830_51 Ku_c101046_1063 159.51 158.50 159.51 1.58E-07 6.80 3.47

Q.Eht-2015.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 0.00E+00 35* 12.32

Q.Eht-2016.UoR-4D 32.24 32.24 40.11 2.22E-11 10.65 8.38

Q.Fht-2015.UoR-4D 32.24 32.24 40.11 0.00E+00 68* 21.2

Q.Fht-2016.UoR-4D 32.24 32.24 40.11 0.00E+00 25* 8.48

Q.Mgv-2015.UoR-5A 5A BS00079189_51 RFL_Contig3674_847 28.29 28.29 34.11 1.71E-06 5.77 1.51

Q.Da-2016.UoR-5A.1 5A BS00041077_51 BobWhite_c19985_446 62.59 62.09 62.59 5.39E-05 4.27 2.33

Q.Snr-2016.UoR-5A 5A wsnp_Ex_c3838_6980774 BobWhite_c11512_157 128.21 128.21 137.43 9.35E-04 3.03 2.6

Q.Eht-2016.UoR-5A 5A Tdurum_contig43844_1266 Excalibur_c1208_72 139.96 139.96 141.98 1.49E-06 5.83 3.47

Q.Da-2015.UoR-5A 5A Tdurum_contig43844_1266 Excalibur_c1208_72 141.98 139.96 141.98 1.25E-04 3.90 1.51

Q.Da-2016.UoR-5A.2 5A wsnp_Ex_c1279_2451582 BS00094342_51 144.55 144.55 146.06 1.36E-05 4.87 2.25

Q.Eht-2015.UoR-5A 5A Jagger_c6106_119 BS00068178_51 169.34 169.34 169.84 3.01E-05 4.52 1.45

Q.Agc-2016.UoR-5B 5B Kukri_c33299_519 BS00010213_51 75.62 75.62 76.12 6.27E-04 3.20 3.33

Q.Eht-2016.UoR-5B 5B BS00105054_51 Tdurum_contig12995_722 156.19 155.69 156.19 3.20E-05 4.49 4.34

Q.Da-2015.UoR-5B 5B BS00037103_51 Tdurum_contig50731_961 218.58 218.58 220.08 4.67E-05 4.33 2.79

Q.Yld-2016.UoR-5B 5B Excalibur_c1925_2569 BobWhite_c39214_164 229.16 227.12 229.16 2.05E-12 11.69 6.02

Q.Cdu-2015.UoR-5B 5B Excalibur_c71712_180 RFL_Contig3285_1009 301.22 300.72 301.22 1.96E-04 3.71 2.62

Q.Da-2016.UoR-5D 5D BS00108733_51 BobWhite_c7263_337 49.43 38.25 49.43 1.33E-04 3.88 2.55

Q.Fht-2015.UoR-6A 6A Kukri_c27958_334 wsnp_CAP7_c399_215824 96.41 96.41 98.45 4.64E-05 4.33 4.09

Q.Mgv-2016.UoR-6A 6A Kukri_c21413_107 BS00003881_51 122.39 122.39 123.90 1.43E-05 4.84 3.08

Q.Eht-2016.UoR-6A 6A Kukri_c77911_260 BobWhite_c20706_135 131.94 131.44 131.94 6.92E-06 5.16 2.58

Q.Fht-2016.UoR-6A 6A BobWhite_c20706_135 BS00022605_51 132.95 131.94 132.95 5.15E-08 7.29 2.92

Q.Eht-2016.UoR-6B 6B BobWhite_c11301_226 Excalibur_c20083_433 142.38 137.71 142.38 1.84E-05 4.74 2.66

Q.Da-2016.UoR-6B 6B BS00054287_51 Excalibur_c22998_621 158.18 158.18 159.18 1.89E-04 3.72 1.53

Q.Fht-2016.UoR-6D 6D Kukri_c31995_1948 wsnp_Ra_c13881_21836489 120.26 120.26 120.76 3.43E-08 7.46 3.13

Q.Da-2015.UoR-7A 7A BS00078460_51 Ex_c9615_1202 105.98 104.98 105.98 8.38E-05 4.08 2.31

Q.Fht-2016.UoR-7A 7A BobWhite_c8366_563 BS00044040_51 204.19 204.19 205.19 1.70E-04 3.77 2.44

Q.Cdu-2015.UoR-7A 7A CAP7_c10038_214 Excalibur_c47990_159 243.07 242.57 243.07 4.70E-04 3.33 2.36

Q.Yld-2016.UoR-7A 7A BS00063458_51 RAC875_c67826_84 276.69 275.17 276.69 2.14E-05 4.67 1.11

Q.Yld-2015.UoR-7A 7A RAC875_c13093_86 wsnp_Ex_c7071_12171619 318.37 318.37 321.39 1.21E-07 6.92 4.33

Q.Yld-2015.UoR-7B 7B RFL_Contig6075_1128 Tdurum_contig5352_556 0.00 0.00 6.39 3.30E-04 3.48 1.55

Q.Yld-2016.UoR-7B.1 7B RFL_Contig6075_1128 Tdurum_contig5352_556 0.00 0.00 6.39 7.77E-06 5.11 1.68

Q.Yld-2016.UoR-7B.2 7B RAC875_c10932_1697 BS00022550_51 66.08 64.06 66.08 1.81E-04 3.74 0.9

Q.Eht-2015.UoR-7B 7B RAC875_c34012_983 BS00023884_51 237.78 237.78 238.79 7.13E-05 4.15 3.04

24.28 28.90 36.26 34.39 15.63 17.85 19.59 10.60 13.43 23.47 30.09 26.67 10.75 18.16 12.11 12.77
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4.2.3.1 Maximum Green Value 

A total of 10 significant (-log10p ≥ 3) QTL for the Maximum Green Value were found on 

chromosomes 2B, 2D, 3B, 4B, 4D, 5A and 6A (Table 4.2). 

Combined, these QTL explained 19.6% and 10.6% of the total variation in the Maximum 

Green Value in the 2015-16 and 2015-14 seasons analyses respectively. In the 2014-15 

analysis, approximately half of the variation explained by the QTL are accounted for by 

the two strongest QTL: Q.Mgv-2015.UoR-2B.1 (p= 1.72E-06, %var= 5.05); Q.Mgv-

2015.UoR-2D (p= 5.99E-05, %var= 4.48). In the 2015-16 analysis, the single strongest 

QTL, Q.Mgv-2016.UoR-2D (p= 3.34E-04, %var= 4.06%) accounted for less than half of 

the total variation. The remaining 7 QTL explained between 1.14% and 3.46% of the 

variation in the relevant year. For this trait, all 10 significant QTL were year-specific i.e. 

no QTL was found in the same location in both years.  

4.2.3.2 Canopy Duration 

A total of 11 significant (-log10p ≥ 3) QTL for the canopy duration were found on 

chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 5B and 7A (Table 4.2). 

Combined, these QTL explain 15.63% and 17.85% of the total variation in the canopy 

duration in the 2015-14 and 2015-16 seasons respectively. In 2014-15, the strongest 

QTL explained approximately a quarter of the variation; Q.Cdu-2015.UoR-2B (p= 3.80E-

06, %var= 4.23). The remaining QTL from this analysis each averaged 2.28% of the 

variation explained. In the 2015-16 analysis, the strongest three QTL explain the 

majority of the total variation explained: Q.Cdu-2016.UoR-1A (p= 4.09E-06, %var= 4.01); 

Q.Cdu-2016.UoR-2A (p= 3.45E-10, %var= 6.51); Q.Cdu-2016.UoR-2B (p= 4.56E-05, %var= 

4.29). The remaining 7 QTL explained between 1.35% and 2.62% of the variation in the 
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relevant year. For this trait again, all 11 significant QTL were year-specific, with no 

overlap between years.  

4.2.3.3 Accumulated Green Cover 

A total of 10 significant (-log10p ≥ 3) QTL for the Accumulated Green Cover were found 

on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 4B and 5B (Table 4.2). 

Combined, these QTL explain 13.43% and 23.47% of the total variation in Accumulated 

Green Cover in the 2015-14 and 2015-16 seasons respectively. In 2014-15, the two 

strongest QTL explained over half of the total variation explained: Q.Agc-2015.UoR-2B 

(p= 1.86E-09, %var= 5.25); Q.Agc-2015.UoR-4B (p= 5.55E-07, %var= 3.78). In the 2015-

16 analysis, the two strongest QTL explained approximately half of the total variation 

explained: Q.Agc-2016.UoR-1A (p= 8.39E-09, %var= 5.19); Q.Agc-2016.UoR-2A (p= 

7.44E-12, %var= 7.03). Q.Agc-2015.UoR-2B (27.8-28.3cM) and Q.Agc-2016.UoR-2B.1 

(34.9- 35.4cM) were both significant (p value e-4 to e-9), explained 2.21 and 5.25% 

variation respectively and may actually be a single QTL. The remaining QTL explained 

between 2.05 and 3.33% of the variation in the relevant year and were all year-specific.  

4.2.3.4 Senescence  

A total of 7 significant (-log10p ≥ 3) QTL for Senescence were found on chromosomes 

1A, 2B, 2D, 3A, 3B, 4B and 5A (Table 4.2). 

Combined, these QTL explain 12.11% and 12.77% of the total variation in the 

Senescence in the 2015-14 and 2015-16 seasons analyses respectively. In 2014-15, three 

QTL explained similar amounts of variation: Q.Snr-2015.UoR-2B (p= 1.12E-04, %var= 

4.75); Q.Snr-2015.UoR-2D (p= 4.91E-06, %var= 3.62); Q.Snr-2015.UoR-4B (p= 1.17E-05, 
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%var= 3.74). In the 2015-16 season, three quarters of the variation is explained by the 

strongest two QTL: Q.Snr-2016.UoR-1A (p= 1.15E-07, %var= 5.20); Q.Snr-2016.UoR-4B 

(p= 1.70E-06, %var= 4.00). The remaining QTL explained between 0.97 and 2.6% of the 

variability. Yet again, all seven QTL were year specific.  

4.2.3.5 Grain Yield 

 A total of 12 significant (-log10p ≥ 3) QTL for Yield were found on chromosomes 2A, 2B, 

4A, 4B, 5B, 7A and 7B (Table 4.2). 

Combined, these QTL explain 10.75% and 18.16% of the total variation in Grain Yield in 

the 2015-14 and 2015-16 seasons respectively. In 2014-15, three quarters of the 

variation is explained by the strongest two QTL: Q.Yld-2015.UoR-4B (p= 1.98E-05, %var= 

3.32); Q.Yld-2015.UoR-7A (p= 1.21E-07, %var= 4.33). In 2015-16, one third of the 

variation explained was due to the single strongest QTL: Q.Yld-2016.UoR-5B (p= 2.05E-

12, %var= 6.02). Q.Yld-2015.UoR-7B (p=3.30E-04, %var =1.55) and Q.Yld-2016.UoR-7B.1 

(p=7.77E-06, %var =1.68) were the only Yield QTL found in both years, located between 

0.0- 6.39cM on chromosome 7B. Both were significant (p= e-4 to e-6) and explained 1.55 

to 1.68% of the total variation. All remaining Yield QTL were year specific. 

4.2.3.5 Grain number m-2 

A total of 10 significant (-log10p ≥ 3) QTL for grain number were found on chromosomes 

2B, 3A, 3B, 4D, 5B, 6A and 7A (Table 4.2).  

Combined, these QTL explain 11.76% and 21.49% of the total variation in Grain number 

m-2 in the 2015-16 and 2015-14 seasons respectively. In 2014-15, half of the variation 

explained is explained by the strongest two QTL: Q.GNO-2015.UoR-4D (p= 2.10E-08, %var= 
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6.11); Q.GNO-2015.UoR-2B (p= 6.35E-06, %var= 3.98). In 2015-16, half of the variation 

explained is explained by the strongest two QTL: Q.GNO-2016.UoR-4D (p= 1.19E-05, %var= 

3.51); Q.GNO-2016.UoR-7A (p= 5.30E-06, %var= 3.02). Two pairs of QTL were consistent across 

both years: Q.GNO-2015.UoR-4D and Q.GNO-2016.UoR-4D, located 32.24 - 40.61cM, explaining 

6.11 and 3.51% of the total variation; Q.GNO-2015.UoR-7A.2 and Q.GNO-2016.UoR-7A, located 

at 361.19 - 366.73cM, explaining 3.44 and 3.02% of the total variation. All remaining grain 

number QTL were year specific. 

4.2.4 Co-location of QTL for driver and output traits 

Multi-trait QTL analysis enables us to identify QTL that may have pleiotropic effects on 

several agronomically important traits. Pleiotropy, according to K.B.Low is defined as 

“the condition where a single mutation causes more than one observable phenotypic 

effect or change in characteristic.” In examining the co-location of QTL for different 

traits, therefore, we are entertaining the hypothesis that the same gene variant may 

impact either directly or indirectly on the expression of two or more traits, although it 

may not be easy to differentiate between pleiotropy and tight linkage, where the traits 

in question may be controlled by adjacent genes that are so close together that we are 

unlikely to observe recombination between them. With 102 QTL distributed over 20 

chromosomes (7D being the exception), it is likely that some pairs of QTL for different 

traits will co-locate merely by chance. However, as we have seen in section 4.2.1.4, 

some traits are highly and consistently correlated from year to year, and therefore there 

is an expectation that correlated traits will share overlapping genetic architecture. 

Different criteria are used here to judge whether QTL for different traits co-locate due 

to pleiotropy or chance linkage. First, pleiotropy is favoured over chance linkage if there 

are well-founded biological reasons to suppose that an increase in the value of trait x 
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would lead to the observed direction of change in trait y. However, if the biological or 

mechanistic reasoning is supported by observation of consistent relative size and 

direction of parental effects for the traits in question, pleiotropy is far more likely to be 

the correct explanation. In principle, looking at co-location also provides the 

opportunity to identify QTL for yield which are relatively independent from phenology 

i.e. rather than impacting shifting key stages of development with respect to the peak 

of resource availability within the testing environment, they encode additive effects that 

increase efficiency of resource capture, leading to increased biomass and better yield. 

Such QTL would be extremely significant for breeding purposes (Pinto et al., 2010; 

Reynolds et al., 2009). Loci where two or more QTL co-located were identified on 

chromosomes 1A, 2A, 2B, 2D, 3A, 4B, 4D, 5A, 6A and 7B. 

 

4.2.4.1 Chromosome 1A 

On chromosome 1A, two sets of co-locating QTL were observed for: accumulated green 

cover and canopy duration; date of anthesis and senescence rate (Figure 4.4). Q.Agc-

2016.UoR-1A and Q.Cdu-2016.UoR-1A are co-located between markers BS00010488_51 

and RAC875_c42700_264 (0.00 - 1.00cM), explaining 4.01 and 5.19% of the total 

phenotypic variation respectively. Q.Da-2015.UoR-1A and Q.Snr-2016.UoR-1A also co-

locate on 1A, between markers BS00009866_51 and BobWhite_c46349_402 (73.61 - 

75.12cM), explaining 3.5 and 5.2% of the total phenotypic variation respectively. The 

two QTL are likely to be pleiotropic as: A. the correlation between Agc and Cdu in 2016 

was 0.73, B. the same subsets of parents had increasing and decreasing alleles for the 

QTL and biologically, it is plausible that an increase in Canopy Duration (Cdu) would be 
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accompanied by an increase in the area under the GAI curve (Agc). Da and Snr co-

locating is unlikely to be significant, as it only appeared in separate years. 

 

Figure 4-4 - Fragments of chromosome 1A showing co-locating QTL for Accumulated green cover (green bar), Canopy 
duration (light blue bar), Date of Anthesis (orange bar) and Senescence rate (dark blue bar). 

4.2.4.2 Chromosome 2A 

On chromosome 2A, two sets of co-locating QTL were observed for: Yield and date of 

anthesis; accumulated green cover and canopy duration (Figure 4.5). Q.Yld-2016.UoR-
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2A and Q.Da-2016.UoR-2A are co-located between markers Kukri_rep_c90581_382 and 

BobWhite_c12252_476 (102.4 – 106.9cM), explaining 1.83 and 3.02% of the total 

phenotypic variation respectively. Q.Agc-2016.UoR-2A and Q.Cdu-2016.UoR-2A also co-

locate on 2A, between markers wsnp_Ex_c28204_37349164 and 

BobWhite_c28819_733 (129.13 – 135.19cM), explaining 7.03 and 6.51% of the total 

phenotypic variation respectively.  

The two QTL are likely to be pleiotropic, as the correlation between Yld and Da in 2016 

was -0.19, and the same subsets of parents had opposite increasing and decreasing 

alleles for the QTL. Agc and Cdu in 2016 had a correlation of 0.73, and the same subsets 

of parents had increasing and decreasing alleles for the QTL and biologically at this 

location as well. 
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Figure 4-5 - Fragments of chromosome 2A showing co-locating QTL for Accumulated green cover (green bar), Canopy 
duration (light blue bar), Date of Anthesis (orange bar) and Grain Yield (red bar). 

 

4.2.4.3 Chromosome 2B 

On chromosome 2B, two sets of co-locating QTL were observed for: accumulated green 

cover and maximum green value; early height, accumulated green cover and canopy 

duration (Figure 4.6). Q.Agc-2015.UoR-2B and Q.Mgv-2015.UoR-2B.1 were co-locating 
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between markers Excalibur_c14396_1629 and Excalibur_c1787_1199 (27.82 - 

28.32cM), explaining 5.25 and 5.05% of the total phenotypic variation respectively. 

There is also a cluster for Q.Agc-2016.UoR-2B.2, Q.Eht-2016.UoR-2B and Q.Cdu-

2016.UoR-2B between markers Ex_c16948_754 and BobWhite_c38001_528 (241.07 - 

243.11cM) explaining 2.61, 2.89 and 4.29% of the total phenotypic variation 

respectively.  

The two QTL are likely to be pleiotropic as: the correlation between Agc and Mgv in 2015 

was 0.88, and the same subsets of parents had increasing and decreasing alleles for the 

QTL with the exception of Hereward. In the 2015 environment, the Agc was significantly 

shorter, so it is plausible that the Mgv would have played a much larger part in the Agc.  
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Figure 4-6 - Fragments of chromosome 2B showing co-locating QTL for Accumulated green cover (green bar), Canopy 
duration (light blue bar), Maximum green value (black bar) and Early height (pink bar) 

 

4.2.4.4 Chromosome 2D 

On chromosome 2D, two sets of co-locating QTL were observed (Figure 4.7). Maximum 

green value and senescence rate; Q.Mgv-2016.UoR-2D and Q.Snr-2015.UoR-2D were 

co-locating between markers BS00010043_51 and D_contig17313_245 (18.84 - 

21.94cM), representing 4.06 and 3.62% of the total phenotypic variation explained. 

There is a second cluster of QTL controlling Days to Anthesis, Canopy Duration and 

Maximum Green Value involving Q.Da-2015.UoR-2D, Q.Da-2016.UoR-2D, Q.Cdu-

2016.UoR-2D and Q.Mgv-2015.UoR-2D between markers Kukri_c27309_590 and 
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snp_CAP12_c1503_764765 (55.40 – 62.71cM), explaining 10.78, 6.98, 1.35 and 4.48% 

of the total phenotypic variation respectively. The Soissons alleles of Q.Da-2015.UoR-

2D and Q.Da-2016.UoR-2D cause flowering 4 days earlier than the average of the other 

founders and can therefore be identified as the Ppd-D1a photoperiod insensitivity allele, 

known to be located in this region and known to be carried only by Soissons amongst 

the eight-elite wheat MAGIC population. We can conclude that the effects on Canopy 

Duration in 2016 and Maximum Green Area in 2015 are pleiotropic effects of Ppd-D1 

allelic status, due to the similar size and the direction of the parental effects.  
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Figure 4-7- Fragments of chromosome 2D showing co-locating QTL for Senescence rate (dark blue bar), Canopy 
duration (light blue bar), Maximum green value (black bar) and Canopy duration (light blue bar). 

 

4.2.4.5 Chromosome 4B 

On chromosome 4B, there was one cluster of co-locating yield and height QTL (Figure 

4.8). Q.Eht-2016.UoR-4B, Q.Eht-2015.UoR-4B, Q.Fht-2015.UoR-4B, Q.Fht-2016.UoR-4B 

and Q.Yld-2016.UoR-4B are co-locating between markers BS00100839_51 and 
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BS00033614_51 (47.13 - 51.16cM), explaining 0.43, 1.89, 2.69, 4.45 and 1.62% of the 

total phenotypic variation respectively. Founder effects for Q.Fht-2016.UoR-4B and 

Q.Yld-2016.UoR-4B mirror each other with inheritance of Robigus or Soissons alleles 

decreasing height and increasing yield, whilst alleles inherited from the remaining six 

parents increase height and decrease yield, this is likely to be a pleiotropic effect of 

height reduction controlled by Rht-B1b, a dwarfing gene carried by two of the eight 

parents - Robigus and Soissons - altering the harvest index and decreasing lodging risk, 

both of which directly impact yield. It is notable that the Rht-B1b effect only explained 

yield in the high-yielding 2015-16 season. 



113 
 

 

Figure 4-8 - Sections of chromosome 4B with co-locating markers Fragments of chromosome 2A showing co-locating 
QTL for Early height (pink bar), final (brown bar) and Grain yield (red bar). 

 

4.2.4.6 Chromosome 4D 

On chromosome 4D, there was one cluster of co-locating QTL observed for: early height, 

final height and grain number m-2 (Figure 4.9). Q.Eht-2015.UoR-4D, Q.Eht-2016.UoR-4D, 

Q.Fht-2015.UoR-4D, Q.Fht-2016.UoR-4D, Q.GNO-2015.UoR-4D and Q.GNO-2016.UoR-
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4D  are co-locating between Kukri_rep_c68594_530 and RAC875_rep_c70284_235 

(24.93 – 49.47cM), explaining 12.32, 8.38, 21.2, 8.48, 6.11 and 3.51% of the total 

phenotypic variation respectively. These are likely to be the Rht-D1b gene, inherited 

from six of the eight parents - although the “perfect” marker (wMAS000002_Rht-D1) 

was not included in the genetic map for the MAGIC population. The differences in the 

variation explained and the strength of the QTL indicate that Rht-D1b is a stronger 

determinant of final height than early height and has more of a role in determining final 

height in unfavourable conditions (explaining 21.2% of final variation in 2014-15, as 

opposed to only 8.48% in 2015-16). Rht-D1b is known to affect the number of grain by 

altering the harvest index, however the low amount of variation explained here shows 

that this is only a small part of the overall process. 
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Figure 4-9 - Fragment of chromosome 4D showing co-locating QTL for Early height (Pink bar) and Final height(Brown 
bar). 

 

4.2.4.7 Chromosome 5A 

On chromosome 5A, there was one cluster of co-locating QTL observed for: early height 

and date of anthesis (Figure 4.11). Q.Eht-2016.UoR-5A and Q.Da-2015.UoR-5A are co-

locating between markers Tdurum_contig43844_1266 and Excalibur_c1208_72 (139.95 

– 141.98cM), explaining 3.47 and 1.51% of the total phenotypic variation respectively. 



116 
 

 

Figure 4-10 - Fragment of chromosome 5A showing co-locating QTL for Early height (Pink bar), Senescence rate 
(dark blue bar) and Date of Anthesis (orange bar). 

 

4.2.4.8 Chromosome 6A 

On chromosome 6A, there was one cluster of co-locating QTL observed for: early height 

and final height (Figure 4.11). Q.Eht-2016.UoR-6A and Q.Fht-2016.UoR-6A are co-

locating between markers Kukri_c77911_260 and BS00022605_51 (131.44 – 132.95), 

explaining 2.58 and 2.92% of the total phenotypic variation respectively. Despite a high 
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correlation between these traits in 2016 (PCC= 0.55), it is unlikely these QTL are 

pleiotropic, as there were no consistencies on increasing and decreasing allelic affects 

from the parents. 

 

Figure 4-11 - Fragment of chromosome 6A showing co-locating QTL for Early height (Pink bar) and Final height 
(orange bar). 
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4.2.4.9 Chromosome 7B 

On chromosome 7B, there was one cluster of co-locating yield QTL (Figure 4.12). Q.Yld-

2015.UoR-7B and Q.Yld-2016.UoR-7B.1 are co-locating between RFL_Contig6075_1128 

and Tdurum_contig5352_556 (0.00 - 6.39cM), explaining 1.55 and 1.68% of the total 

phenotypic variation respectively. Despite the relatively low variation explained, this is 

significant as one of the few QTL that are consistent across both years, and intriguingly 

appears to be independent of the source and sink (Chapter 3) traits that have been 

measured. 
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Figure 4-12- Fragment of chromosome 7B showing co-locating QTL for Grain Yield (Red bar) 

 

 

4.3 Discussion 

4.3.1 Phenotypic variation in yield trials in the MAGIC population 

The nine traits measured in this chapter - Early Height, Final Height, Canopy Duration, 

Maximum Green Value, Accumulated Green Area, Anthesis, Yield, Senescence and Grain 
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number m-2 were measured over two years of field trials conducted in 2014-15 and 

2015-16. The repetition over multiple years afforded the opportunity to assess in two 

quite contrasting seasons the extent of overlap (or lack thereof) in genetic architecture 

of source traits that underpin photosynthesis and biomass accumulation. Over the two 

years of the field trials, only 10.75 - 18.16% of the phenotypic variation in yield was 

explained by this analysis. For the source traits, significant QTL could explain anywhere 

between 3 – 36% of the total phenotypic variation for any given trait in a year, with 

height and anthesis predictably explaining the highest proportions of variation.  

In 2014-15, crop height was on average around 4.6 - 5.8cm (8.4 – 10.7%) shorter than 

2015-16 at any comparable time point. The significantly lower rainfall in spring and 

summer of 2015 (Figure 4.3) is likely to be the main driver of lower plant height in this 

season. This is in line with the reductions in Plant Height (PH) between 17 and 33% 

(depending on duration and intensity of drought) observed in a meta-analysis of 60 

wheat drought response studies (Zhang et al., 2018). There are clear differences in 

phenology between the years, which can be seen in Figure 4.1. Anthesis occurs three 

days earlier on average in 2014-15, this would be due to environmental stresses, as it is 

well established that abiotic stresses such as water limitation can induce early flowering 

in wheat. An increase in the development rate of leaves can be seen in the differences 

between the timing of the maximum green values, which were on average up to 40 days 

earlier in 2014-15 than 2015-16. Because of this accelerated development rate, the 

maximum green cover is significantly lower in 2014-15, with the average cover being 

25% lower. In the stressed, accelerated development scenario (2014-15), it is likely that 

the plants were utilising most of their resources on the flag leaf, leaving a lower density 
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of leaves overall, and reducing the total green area covered at any given time. Looking 

at the canopy duration, there is an increase of over 50% from 2014-15 to 2015-16, due 

to the higher canopy duration over a much longer period in the second year. 

Advancement of anthesis and earlier peaking of canopy under water limitation in turn 

affects senescence, with Bogard et al (2011) concluding that leaf senescence is mainly 

driven by the timing of anthesis. In addition to this, it has been commonly observed that 

stress induces premature senescence (Buchanan-Wollaston, 1997; Noodén et al., 1997; 

Verma et al., 2004). 

4.3.2 Trait Heritability 

Heritability of phenotypes is key to plant breeding as the extent to which the trait value 

reflects genetically-programmed ‘merit’ rather than environmentally-influenced 

‘response’ determines the rate of gain in selection. Highly heritable traits are also 

consistently expressed over a range of growing conditions, providing reliability for 

growers.  

As seen in Table 4.1, traits like height, date of anthesis and grain number m-2 are such 

attributes. Many of the source traits measured in this analysis however have relatively 

low heritability (H2 = 0.12 - 0.27), which appears to be a common feature of source-

related growth parameters. Camargo et al (2018) conducted growth parameter 

measurements on a subset 208 lines from the MAGIC population in controlled 

glasshouse conditions. The study also found low heritability in most growth parameters 

including modelled senescence curves, the minimum asymptote and value at the 

inflection point of the calculated plant area and height curves, concluding that any 

correlations between parameters were largely environmental. However, Pennacchi et 
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al (2018) showed a higher heritability (H2 = 0.5 - 0.78) for Early Vigour, Accumulated 

Green Area, Maximum Cover and Stay Green – all derived from image analysis methods. 

However, this was based on a single year’s experiment with conditions consistent across 

all replications.  

Beyond the well-studied plant height and anthesis, the rate of senescence and grain 

number m-2 were the most heritable traits measured (H2 = 0.54 and 0.38) over the two 

years. This high heritability makes it a potentially attractive target for breeding 

programs, as a slower rate of senescence should have a ‘stay green’ effect - potentially 

extending the grain filling period and increasing yields, and increases in grain number 

have a direct impact on yield. Delayed senescence has been linked to higher yields by 

Verma et al (2004), Bogard et al (2011) and Pennacchi et al (2018). 

4.3.3 Correlation 

The majority of traits had poor correlations between years and were inconsistent 

between traits. However, some remain agreeable with previous research. Anthesis and 

senescence are consistently negatively correlated across years (PCC= -0.1 and -0.36 

respectively), which is consistent with Bogard et al (2011), where of the six 

environments studied that showed significant correlations between these traits, five of 

them were negative associations. 

Yield is consistently correlated with canopy duration (PPC= 0.21 and 0.32 in respective 

years), compared to a slightly more inconsistent correlation with accumulated green 

area (PCC= 0.16 and 0.38) and no significant correlation between the maximum value 

and yield (PCC= 0.08 and -0.05). This lends weight to the theory that a longer canopy 

duration can have a significant effect on the yield. As expected, yield is also strongly 
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correlated with grain number m-2 (PCC= 0.62 and 0.57). This reflects previous breeding 

efforts where increases in grain number were responsible for the corresponding 

increases in yield. 

Environmental effects and trait interactions can be seen throughout the correlations 

through the inconsistencies between years. The maximum green value and accumulated 

green area are positively correlated in both years (PCC= 0.88 and 0.17 respectively), with 

the higher correlation in 2014-15 reflecting the lower total time due to early 

senescence, meaning a short period of high green cover has significant impact on the 

accumulated biomass, whereas, in ‘ideal’ conditions, the maximum value doesn’t 

appear to be as important as the time the plant spends near its maximum value. Indeed, 

the negative correlation (PCC=-0.45) between the maximum green value and the canopy 

duration observed in 2015-16 supports the idea that, in unstressed conditions, a higher 

maximum value comes at the expense of maintaining a high level of cover over time. 

4.3.4 Co-locating QTL 

Across ten chromosomes, QTL for two or more traits were detected, either co-locating 

between two markers, spanning adjacent marker intervals or having a shared flanking 

marker. As many of the traits analysed here are correlated with each other, it is 

expected that major QTL will either be pleiotropic and affect several phenotypic traits 

simultaneously, or that variability in one trait will affect another trait directly. QTL that 

are co-locating for the yield growth parameters suggest that some of the variability in 

yield can be explained by variations in plant growth affecting source capacity. The 

chromosomes of interest to this analysis are 1A, 1D, 2A, 2B, 2D, 3A, 4B, 4D, 5A, 6A and 

7B. Previous studies have identified QTL for numerous growth parameters and biomass 
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measurements on all these chromosomes, using both bi-parental and association panels 

(Bogard et al., 2011; Camargo et al., 2018, 2016; El-Feki et al., 2018; Kulwal et al., 2003; 

Li et al., 2010; Pushpendra et al., 2007; Simmonds et al., 2014; Snape et al., 2007; Verma 

et al., 2004).  

4.3.5 Major effect QTL 

Within the analysed QTL, only 12 had a -log10p value greater than 10. Of these, 10 were 

related to anthesis (Ppd, 2D), height (Rht-B1b, 4B and Rht-D1b, 4D). The remaining two 

are Q.Agc-2016.UoR-2A and Q.Yld-2016.UoR-5B (-log10p= 11.13 and 11.69 

respectively). Both of these appear in a single year, with Q.Agc-2016.UoR-2A co-locating 

with Q.Cdu-2016.UoR-2A. 

Of the major effect QTL, Ppd is co-locating with the smaller QTL Q.Cdu-2016.UoR-2D and 

Q.Mgv-2015.UoR-2D, Rht-B1b co-locates with the yield QTL Q.Yld-2016.UoR-4B, and 

Rht-D1b does not co-locate with any of the other source traits. 

4.4 Conclusions 

The results of this chapter clearly show that the traits used for measuring growth 

parameters and biomass accumulation are highly variable with a significant 

environmental component.  

There were few consistent correlations in the context of yield, however canopy duration 

was moderately correlated with yield in both years. Looking at the data from unstressed 

conditions in 2015-16, the vast majority of lines had maximum values above 90% cover. 

This supports the theory that a canopy will expand into the available space to the best 

of its resources. However, it may not reflect the level of light intercepted through 
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varying canopy densities, which still have potential to be targeted in breeding for 

attributes such as the size, number, and display of leaves to increase light interception 

(Long et al., 2006). The differences in the accumulated green area and the canopy 

duration would have been controlled by the rate of biomass accumulation, the onset of 

senescence and the rate of senescence, rather than the maximum cover for any line. 

The correlations with yield were not generally reflected in the QTL analysis. QTL for yield 

and date of anthesis were co-located at 2A (102.37 - 103.89cM), and QTL for yield and 

height on 4B (50.15 - 51.16cM); these did follow correlations between these traits and 

yield, however they only appeared in the 2015-16 analysis. The only stable yield QTL 

was Q.Yld-2015.UoR-7B, located on 7B between markers RFL_Contig6075_1128 and 

Tdurum_contig5352_556 (0.00 - 6.39cM), explaining on average 1.6% of the total 

phenotypic variation. 

To the best of our knowledge, this is the only study that attempts to look at the full 

growing season of wheat using large-scale image analysis to assess growth parameters 

for genetic analysis in field conditions. Other studies have utilised extensive image 

analysis on individual plants to examine canopy architecture and calculate growth, 

usually in using automated systems in a controlled environment (Camargo et al., 2018; 

Chen et al., 2014; Knecht et al., 2016). However, measurements in the field are more 

likely to be of use in the selection of genotypes that will perform well in farming practice, 

particularly in cases where large plots are used to simulate real farming conditions 

(Rebetzke et al., 2014). Both Pennacchi et al (2018) and Elsayed et al (2018) used image 

analysis to assess growth parameters in field settings. Elsayed et al (2018) looked 

directly at the percentage of green pixels and used destructive harvest to assess the 
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links between images and wet/dry biomass, nitrogen content and nitrogen uptake. 

These were taken at specific dates, with results showing significant relations between 

green area using imagery and biomass parameters. Pennacchi et al (2018) used similar 

methodology and growth parameters to those examined in this chapter and found 

broadly comparable results at a canopy level that accumulated cover and ‘stay green’ 

have positive correlations with yield, however statistically significant correlations 

between growth parameters and yield were not remarkably high, with the correlation 

coefficients being below 0.5. However, this study did not include a reported genetic 

component beyond trait heritability. 

From this multi-year analysis, a combined total of 102 QTL were identified in all analyses, 

refined to 95 when identical QTL over multiple years are consolidated. Of these, 12 loci 

were associated with two or more traits. None of the co-locating QTL appeared to be 

stable across years. 

Of the QTL identified in this chapter, there are several that may warrant further study. 

Many single environment QTL explain significant amounts of the total phenotypic 

variation, and therefore need to be understood as variants that enable the crop to 

respond flexibly to its environment.  
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5 Final Discussion 

5.1 Thesis Overview 

The aim of this thesis was to conduct an in-depth study of the genetic underpinnings of 

a suit of traits spanning both source and sink potential in wheat. Further objectives of 

the research included identifying alleles with positive or negative effects on the biomass 

accumulation and grain yield components; observing potential trade-offs between traits 

and the effects this has on the final yield. To this end, the eight-parent NIAB MAGIC 

population was studied in field conditions over two years (2014-16), with 

measurements taken from emergence through to final yield. Throughout the 

experiments, high resolution imagery was taken in order to derive biomass 

accumulation proxies, along with development assessments and final yield. Post-

harvest, the grain yield was broken down into individual components - grain 

morphology, weight and quality, to assess the sink potential. This discussion will focus 

around the hypotheses stated at the beginning of this thesis, which are:  

1. There will be a significant heritable difference in the components of sink capacity 

between MAGIC genotypes which will cause heritable differences in the final 

yield.  

2. There will be significant genetic interactions between QTL for sink related traits.  

3. There will be a significant heritable difference in varying aspects of biomass 

accumulation between MAGIC genotypes which will cause heritable differences 

in the final yield.  

4. There will be significant genetic interactions between QTL for source related 

traits. 
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5. There will be significant genetic interactions between QTL for combinations of 

all measured traits. 

5.2 Assessing the sink potential 

The research documented in Chapter 3 was focused on breaking down yield into 

individual components, assessing their individual contributions and genetically mapping 

their traits. For all traits analysed, there were significant differences between 

genotypes, with the range of the progeny greatly exceeding that of the parental lines. 

These differences for the main driving traits of thousand grain weight (grain length, 

width and area) are highly heritable (PCC = 0.54 – 0.74). Yield itself has a relatively low 

heritability (H2 = 0.26) and can be highly variable between years. In the case of this 

experiment, average yields differed by 2.2t/ha between years. 

Many experiments have shown that the final yield is unstable and subject to 

environmental influences throughout the entire growing season (Snape et al., 2007; 

Tyagi et al., 2015; Wu et al., 2012). The low heritability in yield across all of these studies 

reflects the polygenic nature of the trait and the complexity of a trait that is essentially 

the sum of all other traits. 

Of the sink components analysed, all except yield and nitrogen concentration were 

strongly correlated between years (PCC = 0.49 – 0.78). This followed the established 

patterns, with previous research having established that grain morphology and weight 

are more stable across environments than yield itself. In respect to yield, grain length is 

the most stably correlated with yield. Grain width, grain area, FFD and thousand grain 

weight had significantly higher correlations with yield in 2015-16 than in 2014-15. This 

shows that they are more susceptible to environmental stresses than grain length, but 
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under favourable conditions they can be expected to have a significant impact on yields. 

The inconsistent correlations between thousand grain weight and yield might reflect the 

conclusions of Fischer (2008), stating that increasing grain yield potential has been 

achieved by increasing the numbers of grain per unit land, rather than the size of 

individual seed. 

Evidence in this thesis shows that grain length and width are controlled independently 

with minimal interaction. Across both years, there is low correlation between traits 

(PCC= -0.11 and 0.09), and there were no co-locating QTL found in any analyses. 

Although, Brinton et al. (2017) suggested that increasing grain length should allow for 

further enhancements of grain width as well.  

In total, 85 unique QTL locations were identified over multiple analyses. Of these, 16 

QTL locations involved two or more traits. Individually, these QTL explained anywhere 

between 0.13 and 11.91% of the total phenotypic variation explained for any given trait 

in a year. As expected, QTL were discovered on multiple chromosomes. Previous 

research has identified QTL for sink-related traits on almost every chromosome, with 

major QTL on 2A, 2D, 4A, 5A and 6A (Breseghello and Sorrells, 2007; Brinton et al., 2017; 

Echeverry-Solarte et al., 2015; Simmonds et al., 2014; Wu et al., 2015; Zhang et al., 

2013). 

Among our QTL, there were five major effect (-log10p > 10) QTL locations. These were 

located on chromosomes 1B, 4B, 4D, 5A and 6A. The QTL on 4B and 4D co-locate with 

the Rht genes (Rht-B1b and Rht-D1b respectively); 5A corresponds to fine mapping for 

grain length done by Brinton et al (2017); and 6A corresponds to Simmonds et al (2014) 
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likely to represent the TaGW2 gene. The major QTL on chromosome 1B for grain length 

appears to be novel, explaining up to 5.7% of the total phenotypic variation.  

5.3 Source Strength  

The experiment conducted in Chapter 4 of this thesis aimed to observe differences in 

biomass accumulation and duration to discern how this impacts final yield. As with sink 

traits, the phenotypic range of the progeny greatly surpassed that of the founder 

varieties. 

Many of the source-related traits in this analysis have relatively low heritability (H2 = 

0.12 - 0.29). This has been shown previously in experiments by Camargo et al (2018). 

Beyond the well-studied plant height and date of anthesis, the rate of senescence had 

the highest heritability (H2 = 0.54). This is comparable to results seen in experiments by 

Pennacchi et al (2018), where of the canopy traits measured, stay green 

(delayed\slower senescence) had the highest heritability. 

The majority of traits in Chapter 4 are poorly correlated between years, and correlations 

between traits are inconsistent with few exceptions. Date of anthesis and senescence 

rate are consistently negatively correlated, with earlier flowering producing a slower 

rate of senescence to maximise grain filling time. This was also shown by Bogard et al 

(2011), where of the six environments studied that showed significant correlations 

between these traits, five of them were negative associations. In respect to yield, 

canopy duration is the most consistently correlated (PCC = 0.21 and 0.32), followed by 

a more variable accumulated green area (PCC = 0.16 and 0.38). Maximum green cover 

has no significant correlation with yield (PCC = 0.08 and -0.05). From this, it can be 
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deduced that canopy duration can have a significant effect on the final yield, as has been 

suggested by Verma et al (2004) and Bogard et al (2011). 

In total, 95 unique QTL were discovered over multiple analyses. Of these, 80 were single-

environment QTL, and there were 12 loci associated with two or more traits. 

Individually, these QTL explained anywhere between 0.43 and 21.2% of the total 

phenotypic variation for any given trait in a year. In total, only 10.75 – 18.16% of the 

phenotypic variation in yield was explained in the analyses, with only one stable QTL 

across years on chromosome 7B. Of the 12 major effect QTL identified in the source 

analysis, 10 were related to anthesis (Ppd, 2D) or height (Rht-B1b, 4B and Rht-D1b, 4D). 

The remaining two are single environment QTL, Q.Agc-2016.UoR-2A and Q.Yld-

2016.UoR-5B.  

5.4 Source-sink interactions 

Looking at the phenotypic relationships between the source and sink traits measured, 

the effects of plant height (Rht) on yield components are the most obvious (Correlation 

matrix of all data can be found in the appendix). This is due to the effect of semi-

dwarfing genes introduced to increase the harvest index. Although harvest index was 

generally improved by increasing the numbers of grain per unit area, there would also 

have been an effect on the size of the individual grains. Grain morphology traits have 

been shown to be associated with chromosomes 4B and 4D in multiple previous studies 

(Flintham et al., 1997; Gegas et al., 2010; Giura and Saulescu, 1996). In this thesis, the 

only examples of traits that are QTL co-locating that are unambiguously appearing in 

both source and sink traits are the Rht genes. Rht is one of the biggest effects on grain 

morphology and has the most far reaching effects in respect to the number of 
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associated traits. Both Rht-B1b and Rht-D1b are consistently linked with grain width, 

thousand grain weight and FFD (Table 5.1).  

 
 
Table 5.1 – Co-locating QTL with Rht on 4B and 4D, QTL names follow standard format as described in Chapter 2. Left 
and Right Marker Positions are the location of the markers in cM, p-value is the significance of the QTL and -log10p 
is the strength of the QTL 

 

Looking at grain number m-2, it is moderately correlated between years (PCC= 0.34), 

with a corresponding heritability of 0.38. As expected, grain number m-2 is highly 

correlated with yield (PCC= 0.57 - 0.62) but is poorly and inconsistently correlated with 

all measured source traits, despite being the culmination of the source capacity up to 

grain filling. Intuitively, grain number m-2 has strong negative correlations with most of 

the grain morphology traits; the strongest of these being thousand grain weight and 

grain width (average of PCC= -0.6 and 0.52 respectively). Given that grain width is a 

major contributor to thousand grain weight, and is established during grain filling, it is 

QTL Chr LeftMrk RightMrk Pos LeftMrk RightMrk pvalue -log10p

Q.FFD-2015.UoR-4B 4B BS00084070_51 Ra_c26080_461 49.66 49.66 50.16 3.90E-10 9.41

Q.FFD-ME.UoR-4B 4B BS00084070_51 Ra_c26080_461 49.66 49.66 50.16 4.53E-06 5.34

Q.Fht-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 50.16 50.16 51.16 2.61E-14 13.58

Q.Fht-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 50.16 50.16 51.16 1.23E-13 12.91

Q.Yld-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 50.16 50.16 51.16 2.56E-04 3.59

Q.GA-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.81E-07 6.55

Q.GA-2016.UoR-4B.1 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.54E-08 7.60

Q.GW-2015.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 1.00E-10 10.00

Q.GW-2016.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 2.47E-11 10.61

Q.GW-ME.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 1.44E-14 13.84

Q.TGW-ME.UoR-4B 4B Ra_c26080_461 BS00033614_51 51.16 50.16 51.16 0.00E+00 17.5*

Q.TGW-2015.UoR-4B 4B Tdurum_contig42229_113 BobWhite_c44691_648 52.17 52.17 52.67 6.66E-16 15.18

Q.GA-ME.UoR-4B 4B BS00011851_51 BS00084904_51 54.7 54.70 55.20 1.81E-08 7.74

Q.TGW-2016.UoR-4B 4B BS00011851_51 BS00084904_51 54.7 54.70 55.20 7.03E-11 10.15

Q.FFD-2016.UoR-4B 4B BS00084904_51 BS00022988_51 55.7 55.20 55.70 1.14E-06 5.94

Q.Eht-2015.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 0.00E+00 35*

Q.GA-2016.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 3.53E-06 5.45

Q.GA-ME.UoR-4D 4D Kukri_rep_c68594_530 Excalibur_c19078_210 24.93 24.93 32.24 5.44E-08 7.26

Q.Eht-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 2.22E-11 10.65

Q.FFD-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 2.66E-15 14.58

Q.FFD-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 6.89E-06 5.16

Q.FFD-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 6.66E-14 13.18

Q.Fht-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 68*

Q.Fht-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 25*

Q.GA-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 9.99E-08 7.00

Q.GNO-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 2.10E-08 7.68

Q.GW-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 5.33E-14 13.27

Q.GW-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 29*

Q.GW-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 23*

Q.TGW-2015.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 21*

Q.TGW-2016.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 1.23E-11 10.91

Q.TGW-ME.UoR-4D 4D Excalibur_c19078_210 RAC875_rep_c105718_304 32.24 32.24 40.11 0.00E+00 21*

Q.GNO-2016.UoR-4D 4D BS00036421_51 RAC875_rep_c70284_235 40.61 40.61 49.47 1.19E-05 4.92
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unsurprising that these two traits are similarly correlated with grain number m-2. The 

consistent negative correlation with grain morphology traits suggests a lack of source 

capacity during grain filling, with a higher number of grains requiring a more assimilates 

from the source at grain filling to reach its full potential. This may seem to be an 

insurmountable trade-off, as increasing the source capacity overall may increase may 

the number of tillers and fertile grain set, decreasing the available assimilates for 

individual grain. However, there is potential to increase the source capacity specifically 

during grain filling by delaying or slowing down senescence. The negative correlation 

between the rate of senescence and thousand grain weight (PCC= -0.15) shows that a 

reduced rate of senescence can increase grain filling, potentially compensating for a 

higher number of grains. This can be seen to a degree in the small but significant 

correlation between the rate of senescence and yield (PCC= -0.07 and -0.08). 

Interestingly, accumulated green cover has moderate positive correlation with grain 

length, where grain width has a weak negative correlation. Biologically, this makes sense 

as the majority of the accumulated green cover occurs during the construction stage, 

when grain length is being set and will reach its maximum. In contrast grain width 

reaches in maximum after anthesis, where the green cover begins to decline. These 

indicate that there is a potential trade-off between grain length and width. However, 

there is no significant correlation between accumulated green cover and grain area or 

thousand grain weight, suggesting that any potential trade off because of this is 

negligible in the wider context of yield. The lack of genetic linkage between accumulated 

green cover and grain morphology suggests that these traits may be impacted green 

cover but are independently controlled.  
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Of the six co-locating QTL locations between source and sink traits, 5 involved QTL 

associated with plant height, two of which are Rht genes. Only QTL identified on 2A were 

independent of height, involving canopy duration, accumulated green cover, grain length 

and thousand grain weight. These co-locations between source and sink traits have the 

same direction of effect from each parent, suggesting that the QTLs are pleiotropic. 

5.5 Implications for Plant Breeding 

The findings of this thesis have several implications for plant breeding. Firstly, there is 

no single ‘magic bullet’- there is still variation between years in the expression of QTL 

that are nonetheless important overall. This lends weight to the practice of using 

combinable yield as the main phenotype on which selection is based. Secondly, MAGIC 

populations have vast potential as a breeding resource. The range in variation for all 

phenotypes in this thesis, combined with the novel QTLs found on chromosomes 1B, 5B 

and 7B, show that there is untapped potential in existing elite germplasm. The number 

of single environment QTL suggests that with further study, these may help produce 

plants that are tailored to individual environments. Thirdly, some traits that are 

negatively correlated aren’t necessarily in a trade-off. Grain width and length have 

shown a degree of independent control here and in previous studies (Brinton et al., 

2017), as have thousand grain weight and grain number m-2. These traits could be 

individually targeted in breeding programmes to improve both yield and economic 

quality of the crop. 

5.6 Study limitations 

In the first-year field trail, the crop was affected by drought stress, which was 

exacerbated by a free draining soil. This significantly affected the green crop cover 
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throughout the season, as well as reducing canopy duration and the timing of 

senescence.  

Despite having developed Phenocart, phenotyping was still the largest bottleneck of this 

study. Limitations on manpower and the expense of advanced equipment limited the 

level of phenotyping possible, while the time needed to take complex measurements 

made it impractical on a large scale.  

5.6 Future work  

This research has identified some interesting possibilities in the genetics of source 

strength. Further work is needed to broaden the understanding of the genetic controls 

of photosynthetic capacity. While impractical on such a large scale, this study can be 

used to identify a subset of the magic population with the most variability in in relation 

to source traits for further studies. More direct measurements of photosynthetic 

capacity from both physiological (such as chlorophyll concentrations and CO2 

assimilation) and biochemical (stem carbohydrate stores and soluble sugars in flag leaf) 

perspectives would allow further detailed analysis of the full source capability. 

There were some indications of connections between source and sink traits. These could 

be a potential area of further study utilising NILs to identify if these links are coincidental 

due to the large number of QTL identified in this study, due to tight linkage between 

genes or if it is the action of the same gene. 

To complement this work, further analysis could take place examining in more detail the 

trade-offs and connection between source and sink traits. This could be accomplished 

using bayesian techniques such as those described by Scutari et al (2014). 
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Appendix 

 

Field plan 2014-15 (Gravelpit), each colour represents a different block 

 

Field plan 2015-16 (Lamyard) each colour represents a different block 

122A 143A 762A 609A 529A 150A 367A 582A 613A 46A 323A 185A 398A 603A 188A 480A 303A 165A 109A 466A 532A 239A 537A 586A

408A 306A 696A 591A 111A 667A 479A 438A 790A 389A 31A 388A 706A 489A 130A 331A 682A 13A 581A 712A 41A 761A 485A 152A

744A 596A 763A 656A 549A 183A 703A 530A 329A 484A 447A 535A 350A 254A 595A 196A 741A 784A 659A 573A 423A 80A 61A 339A

269A 658A 307A 199A 336A 377A 301A 163A 645A 241A 319A 721A 121A 587A 639A 683A 625A 473A 458A 694A 42A 371A 296A 26A

56A 218A 55A 16A 736A 454A 733A 211A 437A 654A 195A 139A 343A 65A 460A 325A 106A 279A 391A 344A 539A 278A 213A 657A

727A 519A 626A 332A 435A 387A 375A 286A 421A 493A 439A 403A 101A 722A 168A 409A 642A 782A 590A 404A 134A 718A 567A 85A

450A 231A 87A 612A 167A 237A 232A 617A 173A 76A 210A 705A 229A 50A 38A 650A 636A 129A 579A 675A 81A 79A 256A 719A

313A 568A 120A 594A 293A 661A 27A 704A 22A 448A 141A 504A 215A 513A 768A 475A 627A 328A 5A 702A 486A 757A 777A 192A

40A 221A 631A 252A 177A 508A 73A 113A 787A 148A 678A 413A 125A 282A 647A 449A 526A 346A 788A 320A 271A 311A 238A 153A

677A 170A 384A 97A 462A 205A 429A 451A 774A 127A 415A 138A 354A 524A 7A 95A 34A 445A 764A 789A 556A 250A 618A 574A

64A 523A 372A 575A 33A 164A 740A 402A 669A 434A 577A 670A 481A 291A 353A 520A 259A 749A 82A 304A 161A 3A 224A 610A

217A 469A 172A 337A 470A 738A 467A 60A 681A 713A 459A 728A 407A 746A 629A 541A 662A 324A 104A 444A 510A 206A 621A 151A

562A 208A 592A 379A 644A 734A 724A 236A 19A 512A 48A 123A 52A 624A 169A 771A 640A 620A 219A 297A 600A 442A 190A 156A

699A 327A 233A 554A 463A 393A 378A 338A 478A 119A 622A 492A 597A 731A 390A 321A 417A 187A 420A 302A 748A 347A 604A 743A

103A 426A 665A 543A 380A 376A 118A 133A 785A 518A 333A 318A 374A 180A 468A 348A 365A 780A 691A 666A 687A 189A 623A 760A

498A 355A 335A 91A 676A 274A 786A 672A 576A 605A 308A 531A 12A 443A 499A 637A 200A 115A 560A 653A 363A 11A 57A 267A

112A 616A 345A 292A 289A 25A 357A 90A 77A 548A 108A 99A 349A 193A 142A 277A 386A 392A 412A 561A 641A 45A 680A 474A

394A 226A 265A 753A 358A 514A 181A 752A 202A 105A 197A 294A 419A 383A 536A 72A 483A 128A 563A 245A 792A 418A 9A 464A

781A 14A 707A 369A 552A 270A 431A 29A 299A 184A 649A 298A 37A 216A 262A 688A 362A 720A 593A 674A 440A 58A 69A 191A

690A 204A 452A 368A 1A 263A 88A 361A 116A 68A 456A 131A 755A 220A 6A 396A 547A 273A 255A 235A 63A 145A 635A 507A

397A 47A 578A 59A 381A 632A 716A 400A 54A 395A 778A 201A 521A 684A 668A 679A 709A 272A 194A 117A 558A 36A 776A 305A

766A 310A 737A 162A 334A 225A 425A 23A 572A 646A 791A 477A 366A 660A 566A 557A 692A 482A 159A 750A 401A 212A 698A 280A

614A 715A 754A 655A 287A 585A 693A 4A 689A 533A 288A 700A 525A 517A 207A 351A 137A 330A 559A 528A 732A 432A 66A 501A

602A 227A 243A 759A 96A 74A 540A 244A 62A 249A 342A 364A 453A 487A 317A 18A 49A 316A 198A 178A 500A 261A 729A 166A

370A 83A 686A 248A 643A 588A 769A 550A 98A 783A 496A 630A 515A 158A 242A 615A 569A 608A 341A 268A 538A 710A 17A 171A

584A 648A 775A 745A 67A 502A 664A 257A 315A 84A 322A 2A 70A 312A 564A 405A 503A 203A 309A 546A 124A 86A 21A 283A

251A 93A 94A 714A 491A 15A 100A 599A 601A 132A 544A 685A 146A 223A 701A 356A 430A 436A 773A 723A 186A 652A 258A 209A

495A 711A 461A 527A 770A 767A 30A 174A 739A 295A 399A 373A 253A 671A 611A 534A 44A 628A 619A 314A 638A 553A 75A 20A

428A 284A 147A 465A 107A 260A 725A 51A 135A 494A 505A 179A 583A 555A 497A 742A 285A 352A 488A 114A 43A 340A 300A 457A

89A 476A 359A 24A 360A 411A 39A 326A 281A 545A 472A 140A 32A 633A 382A 155A 234A 516A 246A 607A 126A 634A 414A 756A

144A 730A 747A 441A 222A 53A 28A 182A 149A 275A 446A 240A 416A 102A 542A 571A 772A 136A 651A 176A 751A 230A 726A 695A

385A 175A 154A 506A 110A 580A 490A 35A 290A 471A 71A 264A 214A 758A 697A 433A 511A 570A 422A 427A 455A 92A 779A 708A

276A 606A 673A 424A 765A 247A 663A 598A 509A 565A 228A 157A 8A 735A 160A 406A 551A 78A 10A 410A 266A 522A 589A 717A

122B 143B 762B 609B 529B 150B 367B 582B 613B 46B 323B 185B 398B 603B 188B 480B 303B 165B 109B 466B 532B 239B 537B 586B

408B 306B 696B 591B 111B 667B 479B 438B 790B 389B 31B 388B 706B 489B 130B 331B 682B 13B 581B 712B 41B 761B 485B 152B

744B 596B 763B 656B 549B 183B 703B 530B 329B 484B 447B 535B 350B 254B 595B 196B 741B 784B 659B 573B 423B 80B 61B 339B

269B 658B 307B 199B 336B 377B 301B 163B 645B 241B 319B 721B 121B 587B 639B 683B 625B 473B 458B 694B 42B 371B 296B 26B

56B 218B 55B 16B 736B 454B 733B 211B 437B 654B 195B 139B 343B 65B 460B 325B 106B 279B 391B 344B 539B 278B 213B 657B

727B 519B 626B 332B 435B 387B 375B 286B 421B 493B 439B 403B 101B 722B 168B 409B 642B 782B 590B 404B 134B 718B 567B 85B

450B 231B 87B 612B 167B 237B 232B 617B 173B 76B 210B 705B 229B 50B 38B 650B 636B 129B 579B 675B 81B 79B 256B 719B

313B 568B 120B 594B 293B 661B 27B 704B 22B 448B 141B 504B 215B 513B 768B 475B 627B 328B 5B 702B 486B 757B 777B 192B

40B 221B 631B 252B 177B 508B 73B 113B 787B 148B 678B 413B 125B 282B 647B 449B 526B 346B 788B 320B 271B 311B 238B 153B

677B 170B 384B 97B 462B 205B 429B 451B 774B 127B 415B 138B 354B 524B 7B 95B 34B 445B 764B 789B 556B 250B 618B 574B

64B 523B 372B 575B 33B 164B 740B 402B 669B 434B 577B 670B 481B 291B 353B 520B 259B 749B 82B 304B 161B 3B 224B 610B

217B 469B 172B 337B 470B 738B 467B 60B 681B 713B 459B 728B 407B 746B 629B 541B 662B 324B 104B 444B 510B 206B 621B 151B

562B 208B 592B 379B 644B 734B 724B 236B 19B 512B 48B 123B 52B 624B 169B 771B 640B 620B 219B 297B 600B 442B 190B 156B

699B 327B 233B 554B 463B 393B 378B 338B 478B 119B 622B 492B 597B 731B 390B 321B 417B 187B 420B 302B 748B 347B 604B 743B

103B 426B 665B 543B 380B 376B 118B 133B 785B 518B 333B 318B 374B 180B 468B 348B 365B 780B 691B 666B 687B 189B 623B 760B

498B 355B 335B 91B 676B 274B 786B 672B 576B 605B 308B 531B 12B 443B 499B 637B 200B 115B 560B 653B 363B 11B 57B 267B

112B 616B 345B 292B 289B 25B 357B 90B 77B 548B 108B 99B 349B 193B 142B 277B 386B 392B 412B 561B 641B 45B 680B 474B

394B 226B 265B 753B 358B 514B 181B 752B 202B 105B 197B 294B 419B 383B 536B 72B 483B 128B 563B 245B 792B 418B 9B 464B

781B 14B 707B 369B 552B 270B 431B 29B 299B 184B 649B 298B 37B 216B 262B 688B 362B 720B 593B 674B 440B 58B 69B 191B

690B 204B 452B 368B 1B 263B 88B 361B 116B 68B 456B 131B 755B 220B 6B 396B 547B 273B 255B 235B 63B 145B 635B 507B

397B 47B 578B 59B 381B 632B 716B 400B 54B 395B 778B 201B 521B 684B 668B 679B 709B 272B 194B 117B 558B 36B 776B 305B

766B 310B 737B 162B 334B 225B 425B 23B 572B 646B 791B 477B 366B 660B 566B 557B 692B 482B 159B 750B 401B 212B 698B 280B

614B 715B 754B 655B 287B 585B 693B 4B 689B 533B 288B 700B 525B 517B 207B 351B 137B 330B 559B 528B 732B 432B 66B 501B

602B 227B 243B 759B 96B 74B 540B 244B 62B 249B 342B 364B 453B 487B 317B 18B 49B 316B 198B 178B 500B 261B 729B 166B

370B 83B 686B 248B 643B 588B 769B 550B 98B 783B 496B 630B 515B 158B 242B 615B 569B 608B 341B 268B 538B 710B 17B 171B

584B 648B 775B 745B 67B 502B 664B 257B 315B 84B 322B 2B 70B 312B 564B 405B 503B 203B 309B 546B 124B 86B 21B 283B

251B 93B 94B 714B 491B 15B 100B 599B 601B 132B 544B 685B 146B 223B 701B 356B 430B 436B 773B 723B 186B 652B 258B 209B

495B 711B 461B 527B 770B 767B 30B 174B 739B 295B 399B 373B 253B 671B 611B 534B 44B 628B 619B 314B 638B 553B 75B 20B

428B 284B 147B 465B 107B 260B 725B 51B 135B 494B 505B 179B 583B 555B 497B 742B 285B 352B 488B 114B 43B 340B 300B 457B

89B 476B 359B 24B 360B 411B 39B 326B 281B 545B 472B 140B 32B 633B 382B 155B 234B 516B 246B 607B 126B 634B 414B 756B

144B 730B 747B 441B 222B 53B 28B 182B 149B 275B 446B 240B 416B 102B 542B 571B 772B 136B 651B 176B 751B 230B 726B 695B

385B 175B 154B 506B 110B 580B 490B 35B 290B 471B 71B 264B 214B 758B 697B 433B 511B 570B 422B 427B 455B 92B 779B 708B

276B 606B 673B 424B 765B 247B 663B 598B 509B 565B 228B 157B 8B 735B 160B 406B 551B 78B 10B 410B 266B 522B 589B 717B

1A 66A 67A 132A 133A 198A 199A 264A 265A 330A 331A 396A 397A 462A 463A 528A 529A 594A 595A 660A 661A 726A 727A 792A

2A 65A 68A 131A 134A 197A 200A 263A 266A 329A 332A 395A 398A 461A 464A 527A 530A 593A 596A 659A 662A 725A 728A 791A

3A 64A 69A 130A 135A 196A 201A 262A 267A 328A 333A 394A 399A 460A 465A 526A 531A 592A 597A 658A 663A 724A 729A 790A

4A 63A 70A 129A 136A 195A 202A 261A 268A 327A 334A 393A 400A 459A 466A 525A 532A 591A 598A 657A 664A 723A 730A 789A

5A 62A 71A 128A 137A 194A 203A 260A 269A 326A 335A 392A 401A 458A 467A 524A 533A 590A 599A 656A 665A 722A 731A 788A

6A 61A 72A 127A 138A 193A 204A 259A 270A 325A 336A 391A 402A 457A 468A 523A 534A 589A 600A 655A 666A 721A 732A 787A

7A 60A 73A 126A 139A 192A 205A 258A 271A 324A 337A 390A 403A 456A 469A 522A 535A 588A 601A 654A 667A 720A 733A 786A

8A 59A 74A 125A 140A 191A 206A 257A 272A 323A 338A 389A 404A 455A 470A 521A 536A 587A 602A 653A 668A 719A 734A 785A

9A 58A 75A 124A 141A 190A 207A 256A 273A 322A 339A 388A 405A 454A 471A 520A 537A 586A 603A 652A 669A 718A 735A 784A

10A 57A 76A 123A 142A 189A 208A 255A 274A 321A 340A 387A 406A 453A 472A 519A 538A 585A 604A 651A 670A 717A 736A 783A

11A 56A 77A 122A 143A 188A 209A 254A 275A 320A 341A 386A 407A 452A 473A 518A 539A 584A 605A 650A 671A 716A 737A 782A

12A 55A 78A 121A 144A 187A 210A 253A 276A 319A 342A 385A 408A 451A 474A 517A 540A 583A 606A 649A 672A 715A 738A 781A

13A 54A 79A 120A 145A 186A 211A 252A 277A 318A 343A 384A 409A 450A 475A 516A 541A 582A 607A 648A 673A 714A 739A 780A

14A 53A 80A 119A 146A 185A 212A 251A 278A 317A 344A 383A 410A 449A 476A 515A 542A 581A 608A 647A 674A 713A 740A 779A

15A 52A 81A 118A 147A 184A 213A 250A 279A 316A 345A 382A 411A 448A 477A 514A 543A 580A 609A 646A 675A 712A 741A 778A

16A 51A 82A 117A 148A 183A 214A 249A 280A 315A 346A 381A 412A 447A 478A 513A 544A 579A 610A 645A 676A 711A 742A 777A

17A 50A 83A 116A 149A 182A 215A 248A 281A 314A 347A 380A 413A 446A 479A 512A 545A 578A 611A 644A 677A 710A 743A 776A

18A 49A 84A 115A 150A 181A 216A 247A 282A 313A 348A 379A 414A 445A 480A 511A 546A 577A 612A 643A 678A 709A 744A 775A

19A 48A 85A 114A 151A 180A 217A 246A 283A 312A 349A 378A 415A 444A 481A 510A 547A 576A 613A 642A 679A 708A 745A 774A

20A 47A 86A 113A 152A 179A 218A 245A 284A 311A 350A 377A 416A 443A 482A 509A 548A 575A 614A 641A 680A 707A 746A 773A

21A 46A 87A 112A 153A 178A 219A 244A 285A 310A 351A 376A 417A 442A 483A 508A 549A 574A 615A 640A 681A 706A 747A 772A

22A 45A 88A 111A 154A 177A 220A 243A 286A 309A 352A 375A 418A 441A 484A 507A 550A 573A 616A 639A 682A 705A 748A 771A

23A 44A 89A 110A 155A 176A 221A 242A 287A 308A 353A 374A 419A 440A 485A 506A 551A 572A 617A 638A 683A 704A 749A 770A

24A 43A 90A 109A 156A 175A 222A 241A 288A 307A 354A 373A 420A 439A 486A 505A 552A 571A 618A 637A 684A 703A 750A 769A

25A 42A 91A 108A 157A 174A 223A 240A 289A 306A 355A 372A 421A 438A 487A 504A 553A 570A 619A 636A 685A 702A 751A 768A

26A 41A 92A 107A 158A 173A 224A 239A 290A 305A 356A 371A 422A 437A 488A 503A 554A 569A 620A 635A 686A 701A 752A 767A

27A 40A 93A 106A 159A 172A 225A 238A 291A 304A 357A 370A 423A 436A 489A 502A 555A 568A 621A 634A 687A 700A 753A 766A

28A 39A 94A 105A 160A 171A 226A 237A 292A 303A 358A 369A 424A 435A 490A 501A 556A 567A 622A 633A 688A 699A 754A 765A

29A 38A 95A 104A 161A 170A 227A 236A 293A 302A 359A 368A 425A 434A 491A 500A 557A 566A 623A 632A 689A 698A 755A 764A

30A 37A 96A 103A 162A 169A 228A 235A 294A 301A 360A 367A 426A 433A 492A 499A 558A 565A 624A 631A 690A 697A 756A 763A

31A 36A 97A 102A 163A 168A 229A 234A 295A 300A 361A 366A 427A 432A 493A 498A 559A 564A 625A 630A 691A 696A 757A 762A

32A 35A 98A 101A 164A 167A 230A 233A 296A 299A 362A 365A 428A 431A 494A 497A 560A 563A 626A 629A 692A 695A 758A 761A

33A 34A 99A 100A 165A 166A 231A 232A 297A 298A 363A 364A 429A 430A 495A 496A 561A 562A 627A 628A 693A 694A 759A 760A

1B 66B 67B 132B 133B 198B 199B 264B 265B 330B 331B 396B 397B 462B 463B 528B 529B 594B 595B 660B 661B 726B 727B 792B

2B 65B 68B 131B 134B 197B 200B 263B 266B 329B 332B 395B 398B 461B 464B 527B 530B 593B 596B 659B 662B 725B 728B 791B

3B 64B 69B 130B 135B 196B 201B 262B 267B 328B 333B 394B 399B 460B 465B 526B 531B 592B 597B 658B 663B 724B 729B 790B

4B 63B 70B 129B 136B 195B 202B 261B 268B 327B 334B 393B 400B 459B 466B 525B 532B 591B 598B 657B 664B 723B 730B 789B

5B 62B 71B 128B 137B 194B 203B 260B 269B 326B 335B 392B 401B 458B 467B 524B 533B 590B 599B 656B 665B 722B 731B 788B

6B 61B 72B 127B 138B 193B 204B 259B 270B 325B 336B 391B 402B 457B 468B 523B 534B 589B 600B 655B 666B 721B 732B 787B

7B 60B 73B 126B 139B 192B 205B 258B 271B 324B 337B 390B 403B 456B 469B 522B 535B 588B 601B 654B 667B 720B 733B 786B

8B 59B 74B 125B 140B 191B 206B 257B 272B 323B 338B 389B 404B 455B 470B 521B 536B 587B 602B 653B 668B 719B 734B 785B

9B 58B 75B 124B 141B 190B 207B 256B 273B 322B 339B 388B 405B 454B 471B 520B 537B 586B 603B 652B 669B 718B 735B 784B

10B 57B 76B 123B 142B 189B 208B 255B 274B 321B 340B 387B 406B 453B 472B 519B 538B 585B 604B 651B 670B 717B 736B 783B

11B 56B 77B 122B 143B 188B 209B 254B 275B 320B 341B 386B 407B 452B 473B 518B 539B 584B 605B 650B 671B 716B 737B 782B

12B 55B 78B 121B 144B 187B 210B 253B 276B 319B 342B 385B 408B 451B 474B 517B 540B 583B 606B 649B 672B 715B 738B 781B

13B 54B 79B 120B 145B 186B 211B 252B 277B 318B 343B 384B 409B 450B 475B 516B 541B 582B 607B 648B 673B 714B 739B 780B

14B 53B 80B 119B 146B 185B 212B 251B 278B 317B 344B 383B 410B 449B 476B 515B 542B 581B 608B 647B 674B 713B 740B 779B

15B 52B 81B 118B 147B 184B 213B 250B 279B 316B 345B 382B 411B 448B 477B 514B 543B 580B 609B 646B 675B 712B 741B 778B

16B 51B 82B 117B 148B 183B 214B 249B 280B 315B 346B 381B 412B 447B 478B 513B 544B 579B 610B 645B 676B 711B 742B 777B

17B 50B 83B 116B 149B 182B 215B 248B 281B 314B 347B 380B 413B 446B 479B 512B 545B 578B 611B 644B 677B 710B 743B 776B

18B 49B 84B 115B 150B 181B 216B 247B 282B 313B 348B 379B 414B 445B 480B 511B 546B 577B 612B 643B 678B 709B 744B 775B

19B 48B 85B 114B 151B 180B 217B 246B 283B 312B 349B 378B 415B 444B 481B 510B 547B 576B 613B 642B 679B 708B 745B 774B

20B 47B 86B 113B 152B 179B 218B 245B 284B 311B 350B 377B 416B 443B 482B 509B 548B 575B 614B 641B 680B 707B 746B 773B

21B 46B 87B 112B 153B 178B 219B 244B 285B 310B 351B 376B 417B 442B 483B 508B 549B 574B 615B 640B 681B 706B 747B 772B

22B 45B 88B 111B 154B 177B 220B 243B 286B 309B 352B 375B 418B 441B 484B 507B 550B 573B 616B 639B 682B 705B 748B 771B

23B 44B 89B 110B 155B 176B 221B 242B 287B 308B 353B 374B 419B 440B 485B 506B 551B 572B 617B 638B 683B 704B 749B 770B

24B 43B 90B 109B 156B 175B 222B 241B 288B 307B 354B 373B 420B 439B 486B 505B 552B 571B 618B 637B 684B 703B 750B 769B

25B 42B 91B 108B 157B 174B 223B 240B 289B 306B 355B 372B 421B 438B 487B 504B 553B 570B 619B 636B 685B 702B 751B 768B

26B 41B 92B 107B 158B 173B 224B 239B 290B 305B 356B 371B 422B 437B 488B 503B 554B 569B 620B 635B 686B 701B 752B 767B

27B 40B 93B 106B 159B 172B 225B 238B 291B 304B 357B 370B 423B 436B 489B 502B 555B 568B 621B 634B 687B 700B 753B 766B

28B 39B 94B 105B 160B 171B 226B 237B 292B 303B 358B 369B 424B 435B 490B 501B 556B 567B 622B 633B 688B 699B 754B 765B

29B 38B 95B 104B 161B 170B 227B 236B 293B 302B 359B 368B 425B 434B 491B 500B 557B 566B 623B 632B 689B 698B 755B 764B

30B 37B 96B 103B 162B 169B 228B 235B 294B 301B 360B 367B 426B 433B 492B 499B 558B 565B 624B 631B 690B 697B 756B 763B

31B 36B 97B 102B 163B 168B 229B 234B 295B 300B 361B 366B 427B 432B 493B 498B 559B 564B 625B 630B 691B 696B 757B 762B

32B 35B 98B 101B 164B 167B 230B 233B 296B 299B 362B 365B 428B 431B 494B 497B 560B 563B 626B 629B 692B 695B 758B 761B

33B 34B 99B 100B 165B 166B 231B 232B 297B 298B 363B 364B 429B 430B 495B 496B 561B 562B 627B 628B 693B 694B 759B 760B
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Representation of the PhenoHarvest software 

 

Composite image of approximately 200 drone images from Gravelpit (2014-15) (original 

imagery by Richard Casebow) 
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Panel A: Composite RGB image of RGB aerial imagery on 1/5/2015. Panel B: Composite 
false-colour NDVI image of aerial imagery on 1/5/2015. 
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Panel A: Composite RGB image of RGB aerial imagery on 4/6/2015. Panel B: Composite 
false-colour NDVI image of aerial imagery on 4/6/2015.
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Full correlation matrix of all data 


