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FREDHOLM THEORY OF TOEPLITZ OPERATORS ON DOUBLING
FOCK HILBERT SPACES

AAMENA AL-QABANI, TITUS HILBERDINK AND JANI A. VIRTANEN

Abstract. We study the Fredholm properties of Toeplitz operators acting on doubling
Fock Hilbert spaces, and describe their essential spectra for bounded symbols of vanishing
oscillation. We also compute the index of these Toeplitz operators in the special case when
ϕ(z) = |z|β with β > 0. Our work extends the recent results on Toeplitz operators on the
standard weighted Fock spaces to the setting of doubling Fock spaces.

1. Introduction

A positive Borel measure µ on the complex plane C is said to be a doubling measure if
there is a positive constant C such that

µ (D(z, 2r)) ≤ Cµ (D(z, r)) ,

for all z ∈ C and r > 0, where

D(z, r) = {w ∈ C : |w − z| < r}.
We denote by dA the standard Lebesgue area measure on C. Let ϕ be a subharmonic non-
harmonic real-valued function of class C2 on the complex plane C such that ∆ϕdA is a
doubling measure, where ∆ϕ is the Laplacian of the function ϕ defined by

∆ϕ = ϕxx + ϕyy.

The doubling Fock space F 2
ϕ is defined by

F 2
ϕ =

{
f ∈ H(C) : ‖f‖2

ϕ =

∫
C
|f(z)|2e−2ϕ(z)dA(z) <∞

}
,

where H(C) is the set of all entire functions. These spaces were introduced in [6], where
their sampling and interpolating sequences were described.

It is well known that F 2
ϕ is a Hilbert space with inner product given by

〈f, g〉 =

∫
C
f(w)g(w)e−2ϕ(w)dA(w).

We also note that the doubling Fock spaces include the standard weighted Fock spaces [14],
the Fock-Sobolev space [3], the Fock spaces with weights ϕ(z) = |z|β, where β > 0 (see [10]),
and the generalized Fock spaces [11] with weights ϕ satisfying 0 < C1 ≤ ∆ϕ(z) ≤ C2, for all
z ∈ C, where C1 and C2 are positive constants.
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When ∆ϕdA is doubling, we say that a measurable function f : C→ C is in L2
ϕ if

‖f‖2
ϕ =

∫
C
|f(z)|2e−2ϕ(z)dA(z) <∞.

We denote by P the orthogonal projection of L2
ϕ onto F 2

ϕ. It has the integral representation

Pf(z) =

∫
C
f(w)Kz(w)e−2ϕ(w)dA(w),

where Kz is the reproducing kernel function; that is, for each z ∈ C, Kz is the unique
function in F 2

ϕ for which

f(z) = 〈f,Kz〉,
for all f ∈ F 2

ϕ. Note that Kz depends on ϕ and we write

Kz(w) = Kϕ(w, z) = K(w, z),

for z, w ∈ C. For z ∈ C, the normalized reproducing kernel function at z is defined by

kz(w) =
Kϕ(w, z)

‖Kϕ(z, z)‖ϕ
,

for w ∈ C.
For f ∈ L∞ = L∞(C), the Toeplitz operator Tf on F 2

ϕ with symbol f is defined by

Tf (g) = P (fg).

It is clearly a bounded linear operator on F 2
ϕ and ‖Tf‖ ≤ ‖f‖∞.

We say that a bounded linear operator T on a Banach space X is Fredholm if kerT and
X/T (X) are both finite-dimensional. In this case, the index of T is defined to be

indT = dim kerT − dim (X/T (X)) .

The essential spectrum σess(T ) is defined by

σess(T ) = {λ ∈ C : T − λI is not Fredholm},

where I denotes the identity operator on X. Clearly σess(T ) is contained in the spectrum
σ(T ) of T .

Our main results are concerned with the Fredholm properties and computation of the
index of Toeplitz operators acting on doubling Fock spaces F 2

ϕ with bounded symbols of
vanishing oscillation. Before introducing the notion of vanishing oscillation, we make a few
useful observations. Since dµ = ∆ϕdA is a doubling measure, by [12, §I.8.6], for any z ∈ C
and r > 0, we have that

µ (∂(D(z, r)) = µ({z}) = 0

and µ (D(z, 2r)) ≥ Cµ (D(z, r)), where C > 1 is a constant. Moreover, our assumption
that ϕ is non-harmonic implies that µ is a locally finite non-zero doubling measure on C, so
0 < µ (D(z, r)) <∞, for any z ∈ C and r > 0. It follows that, for each z ∈ C, µ (D(z, r))→
∞ as r → ∞, and the function r 7→ µ (D(z, r)) is an increasing homeomorphism from the
interval (0,∞) onto itself. Hence, for every z ∈ C, there is a unique radius ρ(z) such that

µ(D(z, ρ(z)) = 1.



TOEPLITZ OPERATORS ON DOUBLING FOCK SPACES 3

For z ∈ C and r > 0, we denote by Dr(z) the disk D(z, rρ(z)). Then we say that f is of
vanishing oscillation and write f ∈ V O if f is a continuous function on C and

ωr(f)(z) = sup
w∈Dr(z)

|f(z)− f(w)| → 0

as z →∞. Note that V O is independent of the choice of r.

2. Main results

The Fredholm properties of Toeplitz operators on the unweighted Fock space F 2 were
described by Berger and Coburn [2] in 1987 using heavy machinery of C∗-algebras suitable
for operators on Hilbert spaces. In 1992, Stroethoff [13] provided elementary proofs of their
results, and very recently the theory was extended to the standard weighted Fock spaces F p

α

using elementary methods [1] and limit operator techniques [4]. In the following theorem, we
extend the theory to doubling Fock Hilbert spaces F 2

ϕ, which also sets the stage for further
extensions to other doubling Fock spaces F p

ϕ.

Theorem 1. Let f ∈ L∞ ∩ V O. Then the Toeplitz operator Tf on F 2
ϕ is Fredholm if and

only if there is a radius R > 0 such that f is bounded away from zero on C \D(0, R), that
is, inf |z|≥R |f(z)| > 0. In this case,

σess(Tf ) =
⋂
R>0

cl f (C \D(0, R)) ,

where cl stands for the closure of the given set.

The difficulty with computing the index of Toeplitz operators on F 2
ϕ is that doubling

Fock spaces do not have simple bases unlike the standard weighted Fock spaces where index
formulas can be obtained more easily; see [2] for Toeplitz operators on F 2 and [1] for these
operators on F p

α. The following result gives an index formula in the special case ϕ(z) = 1
2
|z|β

with β > 0, which was introduced in [9] to study the properties of Hankel operators. For
convenience, we write F 2

|z|β for F 2
1
2
|z|β . It is not difficult to see that F 2

|z|β is a doubling Fock

space (and not a standard weighted Fock space).

Theorem 2. Let f ∈ L∞ ∩ V O. Then the Toeplitz operator Tf on F 2
|z|β is Fredholm if and

only if there is a radius R > 0 such that f is bounded away from zero on C \D(0, R). In this
case,

ind(Tf ) = −wind(f |{|z|=R}),
where wind(f |{|z|=R}) is the winding number of the curve f({|z| = R}) around the origin.

The proofs of our main theorems are given in Section 4 below.

3. Preliminaries

The following estimate for the Bergman kernel for F 2
ϕ plays an important role in the study

of concrete operators (such as Toeplitz and Hankel operators) on doubling Fock spaces
(see [5, 8]).
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Theorem 3 ([7, Theorem 1.1 and (3)]). There are constants C > 0 and ε > 0 such that

|K(z1, z2)| ≤ C
1

ρ(z1)ρ(z2)

eϕ(z1)+ϕ(z2)

exp (dϕ(z1, z2)ε)
,

for any z1, z2 ∈ C, where dϕ is the distance on C induced by the metric ϕ(z)−2dz ⊗ dz̄.

The previous theorem combined with the estimate (see [7, Proposition 2.10])

C−1 e
ϕ(z)

ρ(z)
≤ ‖Kϕ(·, z)‖ϕ ≤ C

eϕ(z)

ρ(z)
, for z ∈ C, (1)

where C is a positive constant, gives the following result.

Lemma 4 ([8, Lemma 2.7]). Let r ≥ 1. For every k ≥ 0 and ε > 0 there exists a constant
Ck,ε(r) > 0 such that∫

C \Dr(z2)

|z1 − z2|k

exp (dϕ(z1, z2)ε)

dA(z1)

ρ(z1)2
≤ Ck,ε(r)ρ(z2)k, for any z2 ∈ C.

Moreover, Ck,ε(r)→ 0 as r →∞, for every k ≥ 0 and ε > 0.

For f ∈ L∞, the Berezin transform f̃ of f is defined by

f̃(z) = 〈fkz, kz〉 =

∫
C
|kz(w)|2 f(w)e−2ϕ(w)dA(w).

Lemma 5. Let f ∈ L∞ ∩ V O. Then f̃(z)− f(z)→ 0 as z →∞.

Proof. Let ε > 0. By Theorem 3, (1) and Lemma 4, there is a radius r ≥ 1 so that∫
C \Dr(z)

|kz(w)|2e−2ϕ(w)dA(w) <
ε

‖f‖∞ + 1
,

for all z ∈ C. Then

|f̃(z)− f(z)| =
∣∣∣∣∫

C
(f(w)− f(z))|kz(w)|2e−2ϕ(w)dA(w)

∣∣∣∣
≤ ωr(f)(z) + 2‖f‖∞

∫
C \Dr(z)

|kz(w)|2e−2ϕ(w)dA(w)

≤ ωr(f)(z) + 2ε ≤ 3ε,

when |z| is large enough. Thus, f̃(z)− f(z)→ 0 as |z| → ∞. �

For f ∈ L∞, the Hankel operator Hf on F 2
ϕ with symbol f is defined by

Hf (g) = (I − P )(fg).

Note that Hf is a bounded linear operator from F 2
ϕ into L2

ϕ and ‖Hf‖ ≤ ‖f‖∞. A useful
relationship between Toeplitz and Hankel operators is the well-known multiplication formula

TfTg = Tfg −H∗f̄Hg, (2)

which holds for f, g ∈ L∞.
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In order to characterize compact Hankel operators, we state the definition of functions of
vanishing mean oscillation. We say that f ∈ L2

loc(C) is in VMO if

lim
z→∞

MO(f)(z) = 0,

where

MO(f)(z) =

(
1

A(D1(z))

∫
D1(z)

|f − f̂(z)|2dA
)1/2

and

f̂(z) =
1

A(D1(z))

∫
D1(z)

f dA.

The following two results can be found in [5].

Proposition 6. We have that

VMO = V O + V A,

where

V A = {h ∈ L2
loc(C) : lim

z→∞
|̃h|2(z) = 0} = {h ∈ L2

loc(C) : lim
z→∞
|̂h|2(z) = 0}.

Theorem 7. Let f ∈ L∞. Then Hf and Hf are both compact operators from F 2
ϕ into L2

ϕ if
and only if f ∈ VMO.

We finish this section with some basic properties of the Fock spaces F 2
|z|β , where β > 0.

For any non-negative integer n, we define en by

en(z) =
zn

Cn
, (3)

where

C2
n = 〈zn, zn〉β =

∫
C
|zn|2 e−|z|

β

dA(z) =
2π

β
Γ

(
2n+ 2

β

)
. (4)

Then {en}n≥0 is an orthonormal basis for F 2
|z|β , and it follows that the reproducing kernel

function is given by

Kβ(z, w) =
∞∑
n=0

(zw)n

C2
n

,

for z, w ∈ C, and the orthogonal projection has the following integral representation

Pβf(z) =

∫
C
f(w)Kβ(z, w)e−|w|

β

dA(w)

=
∞∑
n=0

zn

C2
n

∫
C
f(w)wne−|w|

β

dA(w). (5)
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4. Proofs of the main results

For the proof of the following approximation result, see [2, Lemma 17] and [1, Proposi-
tion 9].

Proposition 8. Let f : C→ C be a continuous function in A, where A = L∞(C) ∩ V O or
A = L∞(C) ∩ VMO. Then f is bounded away from zero on C \D(0, R), for some R > 0, if
and only if there is a continuous function g ∈ A such that f(z)g(z)→ 1 as z →∞.

Theorem 9. If f ∈ C(C) and f(z)→ 0 as z →∞, then Tf is compact on F 2
ϕ.

Proof. It directly follows from the proof of (2)⇒ (1) in [8, Theorem 5.4]. �

Proof of Theorem 1. Let f ∈ L∞(C) ∩ V O and suppose that there are constants R > 0 and
m > 0 such that |f(z)| ≥ m when |z| > R. By Proposition 8, there exists g ∈ L∞(C) ∩ V O
such that fg − 1→ 0 as |z| → ∞. Then

TfTg = I + Tfg−1 − PMfHg,

where Mf is the multiplication operator on L2
ϕ defined by Mf (h) = fh. By Theorems 7 and

9, both Tfg−1 and Hg are compact. Therefore, TfTg = I +K for some compact operator K.
Similarly, TgTf = I + K1, where K1 is a compact operator. Thus, Tf has a regularizer and
hence it is Fredholm.

Conversely, suppose that there are zj ∈ C such that |zj| → ∞ and |f(zj)| → 0. Then, by

Lemma 5, we have that |̃f |(zj)→ 0. Since

|̃f |2(z) =

∫
C
|f(w)|2|kz(w)|2e−2ϕ(w)dA(w) ≤ ‖f‖∞|̃f |(z),

for z ∈ C, we get that |̃f |2(zj)→ 0. Now (2) gives that

|̃f |2(zj) = 〈T|f |2kzj , kzj〉 = 〈(Tf̄Tf +H∗fHf )kzj , kzj〉
= 〈Tfkzj , Tfkzj〉+ 〈Hfkzj , Hfkzj〉 = ‖Tfkzj‖2

ϕ + ‖Hfkzj‖2
ϕ.

Moreover, since kzj → 0 weakly in F 2
ϕ and Hf is compact on F 2

ϕ (by Theorem 7), ‖Hfkzj‖2
ϕ →

0. Therefore, ‖Tfkzj‖2
ϕ → 0, and hence Tf is not invertible modulo compact operators, or

equivalently, Tf is not Fredholm. �

We now switch our focus and consider Toeplitz operators on F 2
|z|β with β > 0. To prove

the index formula of Theorem 2, we consider first Toeplitz operators with symbols of the
simple form (z/|z|)m.

Lemma 10. For m ∈ N, let ψm(z) = (z/|z|)m. Then Tψm is an m-weighted shift operator
on F 2

|z|β , that is, there are numbers αm,n > 0 such that Tψmen = αm,nen+m for all n ≥ 0,

where {en}n≥0 is defined by (3). Moreover, for any m ∈ N, αm,n → 1 as n→∞.

Proof. By (5),

Pβ(ψmen)(z) =
1

Cn

∞∑
k=0

zk

C2
k

∫
C
wk
wn+m

|w|m
e−|w|

β

dA(w)

=
1

Cn

zn+m

C2
n+m

∫
C
|w|2n+me−|w|

β

dA(w).
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Therefore,

Pβ(ψmen) =
en+m

CnCn+m

∫
C
|w|2n+me−|w|

β

dA(w) =
en+m

CnCn+m

2π

β
Γ

(
2n+m+ 2

β

)
,

and so Tψmen = αm,nen+m with

αm,n =
1

CnCn+m

2π

β
Γ

(
2n+m+ 2

β

)
.

Then, by (4), Stirling’s formula shows that, for any m, αm,n → 1 as n→∞. �

Proposition 11. For every m ∈ N, the Toeplitz operator Tψm is a Fredholm operator on

F 2
|z|β of index m.

Proof. Let

f(z) =
∞∑
n=0

λnen

be a function in F 2
|z|β . By Lemma 10,

Tψmf =
∞∑
n=0

λnTψmen =
∞∑
n=0

λnαm,nen+m,

where αm,n 6= 0, for any n ≥ 0, and αm,n → 1 as n → ∞. It follows that dim kerTψm = 0
and dim(F 2

|z|β/Tψm(F 2
|z|β)) = m. Therefore, Tψm is a Fredholm operator of index −m, and

hence Tψm = T ∗ψm is Fredholm of index m. �

We can now prove the index formula of Toeplitz operators on F 2
|z|β with symbols in the

class L∞ ∩ V O.

Proof of Theorem 2. Taking into account Proposition 8 and its proof, Theorem 9, (2), and
Proposition 11, this proof is mutatis mutandis the proof of [1, Theorem 20]. �
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