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Abstract

River flooding is a costly problem worldwide. Timely, accurate prediction of the

behaviour of flood water is vital in helping people make preparations. Mathematical

hydrodynamic models can predict the behaviour of flood water given information about

inputs such as river bathymetry, local topography, inflows, and values for model parame-

ters. Uncertainty in these inputs leads to inaccuracies in model predictions; data assimila-

tion can be used to improve forecasts by combining model predictions with observational

information, taking into account uncertainties in both.

In this thesis we investigate ways to maximize the impact of observational infor-

mation from satellite-based synthetic aperture (SAR) instruments in data assimilation

for inundation forecasting. We show in synthetic twin experiments using an ensemble

transform Kalman filter that using joint state-parameter data assimilation techniques to

correct the model channel friction parameter as well as water levels provides a significant,

long lasting benefit to the model forecast. We show that errors in the channel friction

parameter and inflow are interdependent.

We propose a novel observation operator that allows direct use of measured SAR

backscatter values, potentially allowing the use of many more observations per SAR im-

age. We test our new observation operator in synthetic experiments, showing that we can

successfully update inundation forecasts and the value of the model channel friction pa-

rameter using our new approach. We show that different observation operator approaches

can generate significantly different updates to model forecasts and illustrate the physi-

cal mechanisms responsible. Lastly, we use our new observation operator to assimilate

backscatter values from real SAR images, showing that our new approach can be used to

improve inundation forecasts in a real case study. Improved understanding of the physical

mechanisms by which updates are generated by different observation operators provides

insights into improving the observation impact of SAR data.
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Chapter 1: Introduction

Chapter 1:

Introduction

1.1 Motivation

River flooding is a costly problem in the UK and worldwide (e.g. Ward et al. [2018])

and the number of people exposed to flood risk is expected to increase with future cli-

mate change (see e.g. Yamazaki et al. [2018]). Real-time, accurate inundation forecasts

from numerical models can help to mitigate the damage caused by river inundation events

by alerting people to when and where they are likely to be affected. However, predic-

tions from such numerical inundation models are inevitably subject to uncertainty due

to approximations in the governing equations and uncertainties in model parameters and

driving data. The work in this thesis is part of an effort to improve inundation forecasts

using data assimilation, a powerful mathematical tool which can be used to combine

predictions from a numerical inundation model with observations in order to give better

predictions of flood extent and depth. In particular, the work in this thesis explores ques-

tions about how to make the best use of observational information. We wish to maximise

the observation impact of SAR-derived information, i.e. we seek to improve the accuracy

of inundation forecasts but also to increase the time over which the observations influence

the forecast.

A number of authors have used data assimilation to improve inundation forecasting

in a number of different ways, as we discuss in chapter 2. Some studies (e.g. Ricci et al.

[2011], Lai and Monnier [2009] and Hostache et al. [2010]) have focussed on using obser-

vational information from river gauges, either alone or in combination with information

from satellite images; in this thesis we consider situations in which synthetic aperture

radar (SAR) observations are our only source of information. SAR has the advantage

over optical satellite monitoring that it works day and night and is not affected by cloud
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Chapter 1: Introduction

cover or rain, which could otherwise cause problems in flood situations. The reason for

taking a SAR-only approach is that the number of gauges worldwide is in decline (Vrs-

marty et al. [2001]) and we wish to have a method that will be applicable in ungauged

catchments. Although SAR observations typically show a clear delineation between wet

and dry areas, and can cover a large spatial area, the information they contain is limited

in time. Using SAR-based information to correct only water levels can therefore lead

to short-lived improvement in the forecast. Some authors (e.g. Andreadis et al. [2007],

Matgen et al. [2010], Giustarini et al. [2011], Garcia-Pintado et al. [2015], Garcia-Pintado

et al. [2013] and Mason et al. [2015]) have demonstrated increased observation impact

by correcting errors in inflow (amount of water flowing into the domain of interest) as

well as water levels, but less attention has been paid the role of model parameters. It is

well known that channel friction processes are important in the evolution of flood events

(e.g. Hostache et al. [2010], James et al. [2016]) and in this thesis we therefore investigate

whether using data assimilation to correct the value of the parameter controlling channel

friction can increase observation impact.

There are a number of ways in which information from a SAR image could be used in

data assimilation. Authors such as Neal et al. [2009], Giustarini et al. [2011], Giustarini

et al. [2012] and Garcia-Pintado et al. [2015] have used SAR-derived water levels as

observations. This involves intersecting SAR images with digital elevation models in order

to extract information about water level. Such observations are typically sparse in real

case studies (e.g.Mason et al. [2012]). We have designed and implemented a new approach

to extracting information from SAR images, in which we directly use measured backscatter

values as observations. This approach allows for the use of many more observations

than the derived water level approach and requires less processing of the SAR image,

potentially speeding up the time taken between acquisition and an updated forecast. A

related approach is used in Hostache et al. [2018], in which the authors use SAR images

to produce flood probability maps and use these as observations in a particle filtering

method.

1.2 Thesis aims

The aims of this thesis are to answer the following research questions:

1. How does estimation of the channel friction parameter affect observation

impact in data assimilation for inundation forecasting?
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Chapter 1: Introduction

Can we use joint state-parameter data assimilation techniques to retrieve the correct

channel friction parameter in synthetic experiments using SAR-like observations,

and does this significantly improve the forecast? How is error in the channel friction

parameter related to error in inflows?

2. Can we design and implement a new method of extracting observational

information from a SAR image for use in data assimilation?

How do existing approaches generate an update to the forecast via the observation

operator? Can we design and implement a new observation operator in order to

use raw backscatter observations in data assimilation? Does our new observation

operator work to improve the forecast in synthetic experiments, and can we use it

to recover the true value of the channel friction coefficient?

3. Can we apply our new observation approach to a case study using real

topography and SAR data?

Does our new backscatter observation operator improve the forecast in a real case

study, and do we observe the same physical mechanisms as in the synthetic ex-

periments? How can we measure improvement to the forecast when we have no

synthetic ‘truth’ to compare to?

1.3 Principal new results

The work in this thesis provides the following answers to the research questions posed:

1. In our synthetic experiments using a simplified domain we found that it was possi-

ble to retrieve the correct value for the channel friction parameter using synthetic

SAR-derived water level observations in a joint state-parameter data assimilation

approach. We found that correcting the channel friction parameter has a large,

positive impact on subsequent water depth forecasts, significantly improving obser-

vation impact by extending the time over which observations influence the forecast.

We found that inflow error and channel friction parameter error are interdependent,

making the two sources of error difficult to separate out.

2. We have designed and implemented a new observation operator that directly uses

SAR backscatter values as observations. We have shown that the method can be

used to successfully update a model forecast and concurrently correct the value

of the channel friction parameter in synthetic experiments. We have shown that
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Chapter 1: Introduction

different approaches to observations from SAR images (water level observations

vs backscatter observations) and different observation operators can produce sub-

stantially different updates to modelled inundation predictions. We explain these

differences by illustrating the physical mechanisms responsible for the updates in

the different approaches.

3. We successfully applied our novel backscatter observation operator to a real case

study, using a series of SAR images capturing a flood event near Tewkesbury in

the UK in the winter of 2012. We used a series of binary flood match measures to

demonstrate the benefit to the forecast of updating water levels in this way.

1.4 Thesis outline

This thesis is structured as follows:

• Chapter 2 outlines the principles of data assimilation for inundation prediction, and

describes the work of other authors in approaching this problem. We briefly describe

SAR measurements and approaches to inundation modelling.

• Chapter 3 introduces and describes the Clawpack software that was used to build

our inundation model and run all of the inundation simulations in this thesis.

• Chapter 4 addresses the first research question posed in section 1.2. We describe

a series of synthetic experiments in which we show that we can use joint state-

parameter estimation techniques to successfully retrieve a good value for the channel

friction parameter, and that this has a significant impact on the forecast. We also

show that assuming zero momentum immediately following an assimilation causes

a shock in the solution and demonstrate a simple method for avoiding this problem.

This chapter has been published as Cooper et al. [2018b].

• Chapter 5 addresses the second research question. We outline two existing methods

that can be used to assimilate SAR-derived flood edge water elevation measures. We

then introduce a novel method which directly assimilates backscatter values from a

SAR image. We describe the three different observation operators and show that

the choice of observation operator can have large impact on the updated inundation

forecast. We compare the results of using the three different operators in synthetic

experiments and discuss the physical mechanisms associated with generating an

update in each case. This chapter has been published as Cooper et al. [2018a].
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Chapter 1: Introduction

• Chapter 6 addresses the final research question and shows the results of applying our

new observation operator (described in chapter 5) to a real case study. We show that

assimilating SAR-derived backscatter values generates an update to model predicted

water levels, and that this update improves the forecast at the assimilation time.

• Chapter 7 summarizes the main conclusions of the thesis and outlines possible areas

for future research.
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Chapter 2:

Data assimilation for inundation

forecasting

In this chapter we introduce some of the key topics used in this thesis. In section 2.1

we briefly outline the theory of data assimilation. In section 2.2 we discuss approaches to

fluvial inundation modelling; in section 2.3 we introduce the Synthetic Aperture Radar

(SAR) images used to provide observations for data assimilation in this thesis. We sum-

marise a number of current approaches to data assimilation for inundation forecasting in

section 2.4. In section 2.5 we introduce the forecast verification measures that are used

in chapter 6 to assess the agreement between inundation model predictions and observed

data.

2.1 Introduction to data assimilation

Data assimilation is a powerful mathematical technique in which predictions from

a numerical model of a dynamical physical system are combined with observational in-

formation; this allows us to predict the current and future states of the physical system

more accurately than using either a numerical model or observations in isolation. In this

thesis we consider river flooding, but data assimilation methods are very well established

in operational numerical weather prediction (e.g. Rawlins et al. [2007]) and are employed

in a wide variety of applications including modelling of land surface processes, (e.g. Pin-

nington et al. [2018]), ocean modelling (e.g. Thomas and Haines [2017]) and neuroscience

(e.g. Moye and Diekman [2018]).

In data assimilation we describe the evolution of a dynamical physical process, such

as a flood event, using a forecast model,
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Chapter 2: Data assimilation for inundation forecasting

x(tk+1) = M(x(tk)), (2.1)

where x ∈ RN is the model state vector, t represents time and M : RN → RN is the

forecast model; in this case an inundation model.

We assume that at particular times we have observations of the system, yobs ∈ Rp,

related to the true state, xt, by

yobs = h(xt) + ε. (2.2)

Observations may be indirect measurements of state variables and not located at model

cell centres, so an observation operator, h : RN → Rp is required to map the state vector

into observation space. Observation noise, ε, is assumed to be Gaussian, stochastic and

unbiased, with covariance R ∈ Rp×p.

There are a number of approaches to the data assimilation problem, in which we

seek the state (called the ‘analysis’) that best matches both the model prediction and the

observations, subject to the uncertainties in each. One approach is to minimize a cost

function of the form

J(x) =
1
2

(x− xf )P−1(x− xf ) +
1
2

(yobs − h(xf ))R−1(yobs − h(xf )), (2.3)

where xf is the model prediction at the observation time (often called the ‘background’

state and referred to in this thesis as the ‘forecast’ state). The matrix P ∈ RN×N is

the forecast error covariance matrix, and R ∈ Rp×p is the observation error covariance

matrix. Minimisation of equation 2.3 corresponds to the maximum a posteriori (MAP)

solution. The MAP is equivalent to the minimum variance solution when h and M are

linear, under the assumption that the errors in the forecast state and observations are

Gaussian (Nichols [2010]). The first term on the right hand side of equation 2.3 describes

the difference between the model state and the forecast state, the second term describes

the difference between the model state and the observations, and these terms are weighted

according to the relative uncertainties in the forecast and the observations through P and

R.
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Chapter 2: Data assimilation for inundation forecasting

2.1.1 Variational approaches

In variational data assimilation, the cost function is minimised using numerical it-

erative methods. Variational techniques generally use the same forecast error covariance

matrix at all assimilation times, i.e. uncertainty in the forecast state is assumed to be

fixed and not updated based on observational information. The sequential variational

approach is known as 3D-Var (e.g. Lorenc et al. [2000]). Sequential data assimilation

schemes comprise two steps: a forecast step in which the system is evolved according to

equation 2.1 and an update step, in which we update the model forecast according to the

observations. The updated (analysis) state is then used as the starting point for the next

forecast step and the process can be repeated many times. An alternative to the sequen-

tial approach is the 4D-Var approach (e.g. Rawlins et al. [2007]), in which an assimilation

time window is defined. In 4D-Var techniques, the aim is to find the initial state which

best fits the forecast state at the initial time (the background) and all of the observations

available in the defined window, subject to the model equation 2.1. The advantage of the

4D-Var approach is that observations can be distributed across an assimilation window.

2.1.2 Kalman filter approaches

The Kalman filter (KF) (Kalman [1960]) provides a solution that minimises equation

2.3 in systems with linear forecast models and observation operators. An advantage of the

Kalman filter approach over variational methods is that the forecast state error covariance

matrix is updated at each assimilation time along with the model state. The Kalman filter

is only applicable to systems with linear h and M; the extended Kalman filter (EKF) is

an approximation to the KF which can be used in the case of non-linearity. The EKF

requires linearisation of the observation operator and forward model; this can lead to poor

results in highly non-linear cases (Gelb [1974]).

2.1.3 Ensemble Kalman filter approaches

In this thesis we use an ensemble transform Kalman filter (ETKF) to find the analysis

state. The ETKF is a sequential technique, based on the Kalman filter, which uses an

ensemble of state vectors to represent a number of possible realisations of the dynamic

system. There are a number of different ensemble Kalman filter (EnKF) methods but

in all of them the ensemble mean is used to represent the best estimate of the true

state of the system, and the spread of the ensemble members around the mean gives an
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estimate of the uncertainty in the mean prediction ([Evensen, 1994]). One formulation of

the EnKF uses perturbed observations to ensure that the analysis ensemble retains the

correct statistics (Evensen [2003]); we have used an ETKF which is sometimes known as

a ‘deterministic’ EnKF method as it does not require observation perturbations. Variants

of the deterministic approach are reviewed in Tippett et al. [2003]. The ETKF is one of

a number of square root filters, which are reviewed in Livings et al. [2008]. We use an

ETKF here following the approach of Garcia-Pintado et al. [2013] and Garcia-Pintado

et al. [2015] for a similar application. The ETKF has the advantage of being numerically

efficient in implementation.

The ETKF is valid for non-linear forecast models and observation operators, and

retains the advantage of flow-dependent forecast state covariances. However, since the

ensemble is a statistical sample of state space, there are a number of potential problems

with practical implementation of the technique. Undersampling can lead to underesti-

mation in ensemble spread (ensemble collapse), causing the forecast to give insufficient

weight to observations and diverge from the truth (filter divergence)(Petrie and Dance

[2010]). Inflation techniques can be used to counter this problem (see e.g. Anderson

[2007]). Undersampling can also lead to noise in the state forecast covariance matrix,

producing spurious updates (Petrie and Dance [2010]). Techniques to deal with this

problems include localization (e.g. Hamill et al. [2001]). The Kalman filter and ETKF

update equations are given in section 4.3.2.

2.1.4 Particle filter approaches

Particle filter techniques represent another sequential approach to the data assimila-

tion problem (e.g. van Leeuwen [2009], Doucet et al. [2013]). In particle filter methods the

requirement for errors to be Gaussian is relaxed, and non-linear models and observation

operators are permitted. Particle filter approaches use an ensemble of states, or particles,

to represent forecast and analysis uncertainty in a similar way to EnKF systems. Standard

particle filter techniques are known to suffer from problems such as particle degeneracy

and impoverishment, particularly when the size of the state is large (e.g. Snyder et al.

[2008]).
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2.2 Inundation models

In this section we discuss some approaches to modelling river flood inundation pro-

cesses. In chapter 3 we discuss in more detail the particular hydrodynamic model used

in the remainder of this thesis, which uses Clawpack software (Clawpack Development

Team [2014]).

There are a number of well developed numerical inundation models that can predict

the behaviour of flood water given information about the topography of the domain and

the amount of water flowing into the area, e.g. HEC-RAS [HEC-RAS Development Team],

Telemac [Hervouet, 2000], LISFLOOD-FP [Neal et al., 2012a], Dassflow [Honnorat et al.,

2007]. Most models use a variation of the shallow water equations to predict changes in

water depth in river channels. The shallow water equations are an approximation to the

Navier-Stokes equations, which can be used to model the behaviour of fluids. The shallow

water equations are valid for situations in which

• the vertical scales are much smaller than the horizontal scales, allowing vertical

velocity to be neglected;

• viscous forces can be neglected;

• the fluid being modelled is incompressible.

These approximations are generally met for inundation modelling applications. The shal-

low water equations are given and discussed in the context of Clawpack in section 3.1.

Hydrodynamic inundation models provide approximate solutions to the shallow wa-

ter equations using various numerical schemes. Models can use implicit methods (using

information from the current time as well as the past time to calculate a solution) or ex-

plicit methods (which use information from past timesteps only to calculate the solution).

HEC-RAS and Telemac-2d use implicit methods, whereas Clawpack and LISFLOOD-FP

use explicit solvers. Time steps in the model can be user-specified or can be adaptive

to preserve numerical stability. Models can solve 1D or 2D forms of the shallow water

equations, and use a variety of discretisation approaches. HEC-RAS uses finite differ-

ence methods to solve the full 1D shallow water equations in river channels and makes

assumptions about the conveyance of water onto the floodplain. Telemac-2d uses finite

volume methods to to solve the 2D depth-averaged shallow water equations. Dassflow has

both 1D and 2D capabilities and uses finite volume methods on an unstructured mesh.

LISFLOOD-FP uses an explicit finite difference technique to solve the 1D shallow water
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equations in river channels and a raster-based approach on the floodplain.

The 1D approach is considerably less expensive than using the full 2D shallow water

equations, but has the disadvantage that momentum is not exchanged between water in

the river and on the floodplain. Three different model approaches are compared in Horritt

and Bates [2002], in which HEC-RAS (1D), LISFLOOD-FP (1D and raster approach) and

Telemac-2d (2D) are all separately calibrated for two flood events of the river Severn, UK,

two years apart. The predictions of models calibrated on the first flood are then compared

with satellite-derived inundation extents from the second flood and vice versa. The study

shows that the three models all had similar predictive power when optimally calibrated,

but that the performance of LISFLOOD-FP was sensitive to the type of calibration data

used, requiring calibration against inundation data rather than discharge data to give good

results. In Neal et al. [2012b] the authors use a series of benchmarking tests to compare the

performance of three different approaches to solving the 2D shallow water equations, and

show that for gradually varying flows the simplest representation of the physical processes

performed similarly well to more complex representations, and to industry standards for

commercial inundation codes. However, simpler models are unable to deal with shocks

(hydraulic jumps). In the hydrodynamic model we use for the simulations in this thesis we

use a finite volume, explicit method to solve the 2D shallow water equations throughout

the domain. Our method is able to simulate shocks in the solution.

Numerical models require appropriate boundary conditions in order to generate re-

alistic solutions, and there are a number of different approaches to specifying these. In

many models it is possible to set an inflow rate at the upstream boundary, which can

be based on measured gauging station data. A downstream boundary condition can be

set by specifying the water depth at the boundary, or an outflow rate; either of these

conditions may be available from gauging stations. In our work we use an extrapolating

outflow boundary, to allow water to freely leave the domain (see section 3.1.2 for more

details of the boundary condition options in Clawpack); we treated inflow as a source

term in the equations (see section 4.8.2).

In inundation modelling, the boundary between wet and dry areas on the floodplain

moves as the flood event develops and this moving boundary can cause problems for some

solvers. Approaches that use the 1D equations do not suffer from this problem as the

shallow water equations are only valid in the channel with e.g. a 2D or raster-based

volume filling approach on the floodplain. Clawpack deals with the problem of wet/dry

interfaces by assuming that there is water everywhere in the domain, but that the water
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depth is zero in dry areas.

All inundation models require good topographical information to give accurate re-

sults. Digital Terrain Models (DTMs) are often available for flood plains, although are

not always of a sufficiently high quality for hydrological modelling (see Schumann and

Bates [2018]). DTMs do not typically contain information about river and stream bed

elevations, and accurate, recent representation of river channels can be difficult to obtain.

Further, combining information about flood plain and river topography is non-trivial.

When high resolution topography information is available, the resolution at which the

model is run will depend on the available compute resources; higher resolution models

provide more accurate results but at a higher cost and a longer run time. To address

this problem, LISFLOOD-FP uses a sophisticated sub-grid parameterization technique

for river channels, allowing accurate representations of flow in river channels with dimen-

sions smaller than the grid-scale (see Neal et al. [2012a]); this reduces the cost of the

model by removing the need for a grid resolution that can resolve river channels.

2.3 Synthetic aperture radar (SAR) observations

Synthetic Aperture Radar instruments on satellites (such as CosmoSkymed and Sen-

tinel 1) can provide a large amount of observational information about a river flood event

(e.g. Brown et al. [2016], Schumann et al. [2009], Mason et al. [2012]). SAR instruments

are side-looking active instruments that emit radiation (of wavelength cm to m) towards

the surface of the Earth. SAR instruments use cloud penetrating radiation, giving the

instruments all-weather capability, and can be operational day and night, unlike passive

sensors that rely on solar radiation. The strength of the returned signal measured at the

SAR sensor depends strongly on the roughness properties of the surface from which it

has been reflected.

Figure 2.1 shows an example of a SAR image in a flood situation. Areas of open water

are very smooth and therefore reflect a large proportion of the incoming radiation away

from the sensor. Pixels in flooded or other wet areas therefore have low backscatter values

and appear as dark areas on SAR images. Dry areas have rougher surface properties and

reflect a larger proportion of incoming radiation back towards the sensor; dry areas have

higher backscatter values and therefore appear paler than wet areas. During a flood event

SAR images therefore generally show a clear difference between flooded and non-flooded

areas.
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Figure 2.1: TerraSAR-X 2.5m resolution SAR image of the Severn catchment near Tewkes-
bury, UK, July 2007. Reproduced from Mason et al. [2012]. Dark areas are water.

SAR images can be processed to various different levels of calibration. In chapter 6

we use digital number (DN) values for our observations, whereas in Giustarini et al.

[2011], backscatter values measured in dB are used for data assimilation. When purchas-

ing SAR data, DN values are available at lower cost than backscatter values. This is

because backscatter values are processed to a higher level than DN values; a radiometric

calibration is required to produce backscatter values. Radiometric calibration is essential

when comparing SAR images taken at different times, but it is possible to use DN values

to identify wet and dry pixels contained in one particular image.

There are a number of approaches to identifying pixels as wet or dry based on SAR

backscatter or DN measurements. Techniques include thresholding (e.g. Henry et al.

[2006]) with varying levels of user-interpretation (as compared in Brown et al. [2016])

and region growing/clustering (e.g. Horritt et al. [2001]); it is also possible to use change

detection methods if a number of co-located images are available (e.g. Hostache et al.

[2012]). Identifying wet and dry areas using these methods can be used for flood mapping

and monitoring (as in e.g. Brown et al. [2016], Matgen et al. [2011]) and for validation

and calibration of inundation models (e.g. Mason et al. [2009], Baldassarre et al. [2009]

Wood et al. [2016]).
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Intersection of flood edges with a DTM provides information about the elevation of

water, by using the fact that water elevation must be the same as the terrain elevation at

the location of the flood edge. For model calibration, Mason et al. [2009] and Stephens

et al. [2013] show that better calibration can be achieved by comparing modelled water

levels with SAR derived water levels, rather than using binary wet-dry comparisons.

However, it is not clear whether derived water levels provide better observation impact

than wet/dry observations in data assimilation; this question is addressed in chapter 5.

A difficulty in determining flood edge water levels arises when a flood edge is found to

be on a steeply sloping area of topography, since small errors in pinpointing the position

of the flood edge cause large errors in the elevation assigned to the water. Flood edges in

positions with slopes above a threshold are therefore often excluded from calculations e.g.

Mason et al. [2012]. Complications in accurately determining the flood edge in a SAR

image can include:

• Vegetation: If the flooded area contains plants that are taller than the flood depth,

this can affect the SAR signal return strength, causing wet areas to appear dry.

• In windy conditions the surface of a body of water can be rough due to ripples and

therefore have a higher backscatter values than usual. This potentially risks wet

areas appearing to be dry.

• In urban areas, buildings can prevent substantial amounts of ground being observed

by SAR instruments due to layover and shadowing (see Mason et al. [2014], Mason

et al. [2018], Tanguy et al. [2017]).

2.4 Approaches to data assimilation for inundation fore-

casting

There have been a number of attempts to use data assimilation to improve hydro-

dynamic forecasting, many of which have used data from gauges to provide observational

information. For example, in Madsen [2003] water level data from gauges was used to

successfully update forecasts of water levels on the Sesia River basin in Italy. In Srensen

et al. [2004] and Srensen and Madsen [2004] the authors test various ensemble Kalman fil-

ter techniques, assimilating tidal gauge data into hydrodynamic models. Synthetic tidal

gauge data is assimilated in a twin experiment in Srensen and Madsen [2004], and in

Srensen et al. [2004] real tidal gauge data is assimilated in a hydrodynamic model of
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the North Sea and Baltic Sea system. In Mure-Ravaud et al. [2016] river level and flow

information is used to update real-time operational river forecasts for the city of Dijon in

France.

A number of authors have highlighted the potential of using various different satellite-

based observations in conjunction with flood forecasting models, and a comprehensive

review of current research and future opportunities is presented in Grimaldi et al. [2016].

In this thesis we assimilate only information from SAR images, since a method which can

work on an ungauged catchment is highly desirable. In section 2.4.1 we outline the work

of other authors who have used only SAR-derived observations. In section 2.4.2 we briefly

describe some studies in which gauge observations are assimilated alongside SAR-derived

observations.

2.4.1 Assimilating SAR-derived observations

A number of studies have focussed on using SAR-derived observations to improve

inundation forecasting. These include Matgen et al. [2007a] and Matgen et al. [2007b],

in which water level observations (WLOs) are extracted from SAR images capturing a

flood event in 2003 on the river Alzette in Luxembourg. These observations are used

to successfully update water level forecasts from a pre-calibrated HEC-RAS model to-

wards measured high water marks using a direct-insertion technique. In Andreadis et al.

[2007] the authors use LISFLOOD-FP and a square root EnKF technique to perform

an identical twin experiment. The method uses synthetic SAR-derived WLOs to update

water level and discharge forecasts, and uses an auto-regressive error forecast model to

simultaneously update inflow. The study found that water levels and discharge could be

successfully updated towards the true values, and that the system showed more sensitiv-

ity to observation frequency than to observation error. The authors point out that the

contribution from errors in channel characteristics such as the model friction parameter

values are not investigated in their study, but are likely to play an important role in data

assimilation for depth and discharge estimation.

A perturbed observation ensemble Kalman filter technique is used in Neal et al.

[2009] to update water depth and discharge (flow rate) forecasts from HEC-RAS using

water level observations derived from a SAR image showing flooding of the river Alzette.

Updated water level and discharge estimates are shown to be closer to independent mea-

surements from wrack marks and gauge data than open loop (no assimilation) predictions,

demonstrating the potential of data assimilation techniques in a real case study of river in-

Page 15



Chapter 2: Data assimilation for inundation forecasting

undation forecasting. The study also shows that forecasts produced by the hydrodynamic

model are sensitive to the way the river channel geometry is represented.

In Matgen et al. [2010] a particle filter approach is used with HEC-RAS and synthetic

water level observations; the authors show that only updating water levels in this way

gave a very short lived improvement to forecast water levels. Simultaneously updating

the inflow, assuming a constant error, is shown to give a longer benefit to the forecast. A

similar approach is used in Giustarini et al. [2011] to assimilate SAR-derived water levels

for a case study on the river Alzette. The authors show that a constant error approach

to inflow estimation has limitations, leading to better results at short timescales, but

overcorrection of inflow at mid to longer time scales. In Giustarini et al. [2012] the

particle filter method with inflow error correction is applied to two different case studies;

on the Po river in Italy and the Sure river in Luxembourg. The authors demonstrate a

correction of modelled water levels towards observed water levels in both cases.

In Garcia-Pintado et al. [2013] an ETKF approach is used with LISFLOOD-FP to

assimilate synthetic water level observations, showing that water levels can be successfully

updated towards the truth. The study also shows that simultaneously updating the inflow

assuming a constant error gives better results than only updating the state (water levels),

and that SAR-like observations from early in a flood event have a larger influence on the

subsequent forecast improvement. In Garcia-Pintado et al. [2015] the authors use similar

techniques in a real case study; SAR-derived water level observations are assimilated into

a LISFLOOD-FP model to produce better estimates of water depth and discharge than

using the model alone.

Various authors have demonstrated that although SAR images cover a large spatial

area, the information they contain is limited in time, e.g. Lai and Monnier [2009], Matgen

et al. [2007b] and Schumann et al. [2009]. This is because the behaviour of the water in

a flood situation is only weakly dependent on past water levels, and depends much more

strongly on the inflow and model parameter values. This leads to a situation in which data

assimilation can effectively correct water levels at the time of an observation, but with

incomplete information about inflow and parameter values, the forecast quickly moves

away from the truth.

In order to address the short-lived improvement in forecast, several authors - e.g.

Andreadis et al. [2007], Matgen et al. [2010], Giustarini et al. [2011], Garcia-Pintado et al.

[2015], Garcia-Pintado et al. [2013] and Mason et al. [2015], have devised data assimilation

schemes that use observational information to correct inflow (or inflow error) as well as
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water levels. These have all been shown to produce longer-lived observation impact than

state-only estimation. Much less attention has been paid to the role of model parameters

controlling processes such as channel friction, despite the fact that the evolution of a flood

is highly sensitive to this parameter in particular; Andreadis and Schumann [2014] and

the comprehensive review paper Grimaldi et al. [2016], indicate that model parameters

are likely to have an important influence on the behaviour of the flow and therefore on

observation impact.

One study which did examine model parameter values is Garcia-Pintado et al. [2015],

in which the channel friction was estimated along with water levels, inflow error and a

number of other parameters. The approach was found to give a good forecast, but correc-

tion of the channel friction parameter along with the inflow did not result in significant

extra improvement to the forecast. Further, the parameter values obtained, though phys-

ically reasonable, could not be validated. This motivates the identical twin experiments

we describe in chapter 4, which have been carried out with a known, unbiased inflow,

allowing us to isolate and examine the effect of estimating the channel friction parame-

ter. This work has allowed us to conclude that channel friction parameter estimation is

possible, and produced a large improvement in observation impact in our experiments.

We showed that simultaneous estimation of inflow error may obscure this improvement.

Another aspect to observation impact is the way in which observational information

is extracted from a SAR image in order to use it in a data assimilation context. All of

the studies mentioned so far assimilate derived water-level observations. In Wood [2016]

and Hostache et al. [2018] flood probability maps are produced from SAR images (see

Giustarini et al. [2016] for details of probability maps) and these are used as observations

in experiments with LISFLOOD-FP and a particle filter. An advantage of this method is

that is removes the need for integration of the SAR image with a DTM in order to derive

water levels. This is also true of the new observation operator approach that we describe

and apply in chapters 4 and 5.

2.4.2 Assimilating SAR-derived and gauge observations

Other approaches to data assimilation for flood prediction use both satellite-derived

and in situ gauge data as observations. These include Ricci et al. [2011] in which a 1D

river model is used with an extended Kalman filter and two sets of observations in a

two-step assimilation process. The authors first test the EKF in an idealised setting and

then apply it to a real case study. In the first step of the data assimilation process, the
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upstream flow is corrected using downstream flow measurements. In the second step, the

authors directly assimilate water levels and discharge (flow) measurements sequentially,

once an hour. The effect of correcting the inflow with data assimilation is found to be

much greater than the effect of correcting water levels and discharge, particularly in the

longer term. This two step process is applied to some real data in a number of catchments

in France and found to give good results in some cases. However, the authors point out

that the success of the method depends on good calibration of parameters (e.g friction) in

the shallow water equations before the assimilation. In common with studies using SAR

observations only, the authors find that the sensitivity of the forecast to the initial water

levels is short lived (hours); here it is shown that the sensitivity of the forecast to initial

water levels is negligible compared to the sensitivity to the upstream flow at longer times.

A 4D variational approach is used to assimilate water levels with a 2D numerical

flood model in the two linked papers Lai and Monnier [2009] and Hostache et al. [2010].

The authors use DassFlow software to numerically solve the 2D shallow water equations.

In part I (Lai and Monnier [2009]) the mathematical method is described and used in a

simple test domain to correct inflow estimation and water levels; in part II (Hostache et al.

[2010]) the method is applied to a real flood event in order to extract Manning’s friction

coefficients for the domain. The authors show in Hostache et al. [2010] that calibrating a

flood model (i.e. retrieving friction coefficients) with SAR derived data alongside in situ

hydrograph data leads to a better result than when using the hydrograph data only. An

identical twin experiment is carried out in order to show that the method can accurately

identify the Manning’s friction coefficients in the channel and on the floodplain. Water

depths extracted from a real SAR image (RADARSAT) are then assimilated along with

hydrograph data; the addition of the SAR-derived water depth information allows the

friction coefficients to be determined. A sensitivity analysis indicates that the channel

friction is much more important to the development of the flood than the friction coef-

ficients on the floodplain in this case; this motivates our work to better understand the

effect of the channel friction parameter in chapter 4.

The approaches of Ricci et al. [2011], Lai and Monnier [2009] and Hostache et al.

[2010] all require the assimilation of some information about the flow in the river, i.e.

from gauges. In this thesis we consider assimilation only of SAR-derived information.

This means that our method can work in ungauged catchments, or in cases where gauge

data are unreliable. Since gauge data are not trustworthy in the very high flow situations

associated with flooding, a method that does not require such information is extremely
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valuable.

2.5 Measuring improvement in inundation forecasting

In the synthetic experiments described in chapters 4 and 5 measuring improvement

to the forecast due to assimilation is straightforward; we have a ‘truth’ flood to which

we can compare the model forecast and analysis predictions. In chapter 6 we apply our

methods to a real case study in which we do not have a true solution for comparison. In

this case we measure the improvement to the forecast using a binary wet/dry compari-

son with observations; despite some problems, such measures may be used to assess the

performance of flood models (see e.g. Stephens et al. [2013]).

In order to use binary measures we first create a contingency table. The form of the

contingency table is as shown in table 2.1.

Modelled

Observed

Wet Dry

Wet A (Correctly predicted wet) C (Wrongly predicted dry)

Dry B (Wrongly predicted wet) D (Correctly predicted dry)

Table 2.1: Contingency table, after Mason [2003], Stephens et al. [2013] and Schumann

et al. [2009].

Each model cell in which there is also an observation is assigned to a category as

defined in table 2.1. The number of cells in each category is then counted to give one

value of A, B, C and D per model prediction. For each case, A can be thought of as the

number of ‘hits’, B can be thought of as the number of ‘false alarms’, C can be thought

of as ‘misses’ and D as ‘correct rejections’. In flooding applications, much of the domain

is likely to be in the D category as there will likely be large areas of the model domain

where the river is never likely to flood.

In the application of this thesis, the model cells and the observation cells are always

assumed to be co-located. In the case where this is not true, some interpolation of either

the observation or the model prediction would be necessary, and the manner of this

interpolation would likely affect the results. We do not consider this question here.

There are various ways to combine the values in the contingency table into measures

that give an idea of how well the model predictions match the observations. Each of the

measures tells us something different about the match between a model prediction and
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observations. We outline eight such measures here; for further details see Stephens et al.

[2013], Schumann et al. [2009] or Hunter [2005]. The measures are referred to slightly

differently by different authors; here we follow the naming conventions of Stephens et al.

[2013].

• Bias, defined as
A+B

A+ C
. (2.4)

The bias score expresses the balance between model overprediction and model un-

derprediction. A forecast that is unbiased in terms of under and overprediction

would score 1; a model that overpredicts flooding scores > 1, and a model that

underpredicts flooding scores < 1.

• Proportion Correct (PC) or F<1>, defined as

A+D

A+B + C +D
. (2.5)

This score measures the proportion of the total cells that are correctly identified

by the model, according to the observations. This score varies between 0 for a

forecast that wrongly predicts in every cell, and 1 for a perfect forecast. This score

is dominated by D, as in any domain there is likely to be a large area in which there

is never likely to be any flooding. Comparison of this score between domains is very

difficult due to the different numbers of cells in category D in different domains.

This weakness is not important in our application, as we only use these scores for

one domain.

• Hit rate (HR), defined as
A

A+ C
. (2.6)

The hit rate is the fraction of the observed flood that is correctly predicted by the

model to be wet. Like the PC score, the value of HR varies between 0 and 1, with

scores closer to 1 for a good forecast.

• False alarm rate (F), defined as

B

B +D
. (2.7)

The false alarm rate is the proportion of observed dry area that is predicted by the

model to be wet. This score value varies between 0 for a good forecast and 1 for a
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poorer forecast.

• Pierce Skill Score (PSS), defined as

AD −BC
(A+ C)(B +D)

. (2.8)

This is equal to HR−F , that is the hit rate minus the false alarm rate. This score

can vary between −1 and +1. A score of more than zero indicates that the forecast

has more hits than misses and is therefore likely to be useful. A perfect forecast,

(where HR = 1 and F = 0) will have a PSS score equal to 1.

• Critical Success Index (CSI) or F<2>, defined as

A

A+B + C
. (2.9)

The CSI is similar to the PC measure, but excludes category D from the calculations

since this can dominate the PC measure. CSI varies between 0 and 1, with a value

of 1 indicating a perfect forecast.

• F<3>, defined as
A− C

A+B + C
. (2.10)

The F<3> measure is similar to the CSI but penalises underprediction for use in

cases when overprediction is preferable to underprediction. A perfect forecast would

give a score of 1.

• F<4>, defined as
A−B

A+B + C
. (2.11)

Like F<4>, the F<3> measure is similar to the CSI but penalises overprediction.

All of the measures detailed here give us different information about model inundation

predictions compared to observations. In Stephens et al. [2013] the authors show that

there are problems when using the CSI in particular to compare model performance in

different catchments and for different sized floods. In the work presented in this thesis

we are only comparing how well forecasts (with and without assimilation) represent the

same floods, so this limitation is not relevant here. We note also that binary measures

generally give better results for overpredictions compared to underpredictions for floods

covering a large area since once the flood water is constrained by valley-like topography
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an increase in predicted flood volume leads to an increase in predicted depth of floodwater

rather than prediction of a greater number of flooded cells.

2.6 Chapter summary

In this chapter we have reviewed and discussed a number of topics relevant to the

thesis. In section 2.1 we presented an overview of data assimilation techniques. The ETFK

method, which we use in chapters 4, 5 and 6 is discussed in more detail in section 4.3.2. In

section 2.2 we outlined various approaches to fluvial inundation modelling; the inundation

model used in this thesis is discussed further in chapter 4. In section 2.3 we discussed

Synthetic Aperture Radar (SAR) images, which we use as observational information in

this thesis. In section 2.4 we outlined a number of studies in which SAR data has been

used in data assimilation for inundation forecasting. In section 2.5 we presented the

forecast verification measures that are used in chapter 6 to test the agreement between

our inundation model predictions and observed data.
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Chapter 3:

Hydrodynamic model

In order to apply data assimilation to river flooding, we require an inundation model.

There are a number of approaches to numerical inundation modelling, as discussed in

section 2.2. In this thesis we used Clawpack [Clawpack Development Team, 2014, Mandli

et al., 2016, LeVeque, 2002] to run our inundation simulations. Clawpack (‘Conservation

LAW’) is an open source collection of FORTRAN and python code that can be used to

solve a wide variety of conservation laws. The software can be downloaded by the user

and adapted to fit the problem of interest. Clawpack uses finite volume methods and

sophisticated Riemann solvers to treat systems of partial differential equations; in this

work the equations of interest are the 2D shallow water equations that describe how river

and flood water will move in space and time. The model splits the user-defined domain

of interest into a number of cells and calculates the water depth in each cell. The code

is capable of dealing with shocks in the solution, such as bores that may occur following

a sudden increase of inflow into a particular river stretch. Clawpack deals effectively

with the wet-dry interfaces that are present in an inundation event, and preserves depth

non-negativity [George, 2008].

We chose Clawpack for the work presented in this thesis rather than a model specif-

ically designed to simulate flooding. The advantages of Clawpack are

• the code is open source and transparent;

• code is very flexible in terms of boundary conditions and topography specification;

• the code uses fast, robust, well developed solvers;

• it is possible to specify the computational mesh resolution separately from the to-

pography resolution.

Page 23



Chapter 3: Hydrodynamic model

The remainder of this chapter is adapted from a University of Reading Mathematics

Report available online as Cooper et al. [2016].

3.1 Modelling the shallow water equations using Clawpack

Systems of partial differential equations (PDEs) can be used to model a wide variety

of physical situations. The Navier-Stokes equations are a set of such equations that

describe how pressure, velocity, temperature and density change with time and in space

in a moving fluid. The Navier-Stokes equations are derived from laws of conservation of

momentum and mass. The equation can be simplified in certain cases to give the shallow

water equations. The shallow water equations hold in situations for which the viscosity

of the fluid can be neglected, and the horizontal scale of the system is much larger than

the vertical scale, i.e. the horizontal domain is large compared to the depth of the water.

A further assumption is that the fluid is incompressible, so that its density is constant.

Figure 3.1: Shallow water equations schematic

The 2D shallow water equations can be written as (e.g. LeVeque [2002])

∂q
∂t

+
∂F(q)
∂x

+
∂G(q)
∂y

= R(q), (3.1)

where q is a vector of conserved quantities

q =


h

hu

hv

 , (3.2)

h represents the depth of the fluid in the z direction (see figure 3.1), g is acceleration

due to gravity, and u and v represent velocity in the x and y directions respectively. The
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bathymetry of the river bed depicted in figure 3.1 is represented by B(x, y), assumed

here to be constant in time. For applications of the shallow water equations to e.g. ocean

modelling it is sometimes useful to refer to a reference or steady state depth; this is shown

in figure 3.1 with a dashed line.

In equation 3.1, F(q) and G(q) represent fluxes of the conserved quantities in the x

and y directions respectively. For the shallow water equations these are

F(q) =


hu

hu2 + 1
2gh

2

huv

 and G(q) =


hv

huv

hv2 + 1
2gh

2

 . (3.3)

The term on the right hand side of equation 3.1, R(q), is a source term; when R(q) = 0,

the system is said to be homogeneous. The homogeneous equations describe a system in

which, within a given volume, any change in the conserved quantities with time is equal

to the value of the flux of the quantities at the boundary of the volume. When R(q) 6= 0

in a volume it means that there is a source of one or more of the conserved quantities

within that volume. (When R(q) has negative values, this is sometimes referred to as a

sink, but source will be used here for both positive and negative R(q)).

Various methods can be used for the numerical solution of PDEs such as the shallow

water equations. These include finite element methods (FEM), finite difference methods,

finite volume methods (FVM) and boundary element methods. Finite volume methods

are particularly suited to situations in which the behaviour of the system is not smooth;

by using the integral (also called the ‘weak’) form of conservation laws it is possible for

FVM solutions to ‘capture’ or ‘track’ shocks in the solutions of the equations (LeVeque

[2002]). Clawpack (Clawpack Development Team [2014]) uses finite volume methods and

can solve homogeneous and non-homogeneous equations.

3.1.1 Source terms in Clawpack

Clawpack can solve systems of partial differential equations with source terms. We

have developed and implemented a new source term to add water to the domain in order

to model river-like flow. We describe the pre-existing approach to treating friction as a

source term in Clawpack in section 4.8.1 and our new inflow source term is described

in section 4.8.2. This material appears in the paper published as Cooper et al. [2018b],

reproduced in this thesis as chapter 4.
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3.1.2 Boundary conditions in Clawpack

Correct specification of the solution at the boundaries of the computational domain

is vital for the stability of any numerical scheme. To achieve this, Clawpack adds a

user-specified number (2 by default) of ‘ghost cells’ next to each cell at a domain bound-

ary. The domain is effectively extended in all directions by the addition of ghost cells.

The behaviour of the solution at the boundaries then depends strongly on the values of

calculated model quantities in the ghost cells.

Clawpack allows for different treatment of domain boundaries, which work by setting

the values of q in ghost cells beyond the edge of the computational domain. There are

four options in the code for specifying the boundary conditions. For the shallow water

equations the available boundary conditions are:

• Non-reflecting outflow (extrapolating). This type of boundary acts as a free bound-

ary, so that water can flow across the it without any (minimal) spurious reflections.

This is most useful when the boundary of the computational domain does not have

any physical significance but is an arbitrary edge of the domain of interest. In this

case, the values of q are extrapolated from the cell next to the boundary into the

ghost cells at each time step. This acts as a no-flow boundary in the case that the

water is not flowing, but for non-zero velocity water flows over the boundary and

leaves the domain. This is called a ‘zero order’ extrapolation in LeVeque [2002],

and can be thought of as letting the numerical scheme collapse to a purely upwind

scheme at the boundary. A first order extrapolation scheme can also be used in the

code, but this has been shown to cause instabilities LeVeque [2002].

• Solid wall. The momentum of the water in the ghost cells is effectively reflected

about the boundary, while the water depth is extrapolated as in the non-reflecting

outflow case.

• Periodic. This is for situations where the behaviour of the system is periodic so

that all water leaving the system at one edge re-enters at the opposite edge. The

values for q in the inflow ghost cells are therefore copied from the cells at the same

distance from the outflow boundary.

• User specified boundary conditions. These could be e.g. outflow conditions, if the

flow across a boundary is known, or a boundary water depth condition if that is a

known parameter for the system.
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3.1.2.1 Topography at the boundary

The behaviour of water at the boundaries of the domain is highly dependent on the

boundary conditions as described above. Another important factor for inundation mod-

elling is the representation of the domain topography at and across the domain boundaries.

In Clawpack, the value of the domain elevation is by default copied from the cells next to

the boundary into the ghost cells. This represents a situation where there is no slope in

bathymetry or topography across any boundaries. This is an adequate description of the

left and right boundaries of the domains used here, since the domain is designed to be

large enough in x that no water is expected to flow across these boundaries. The default

no-slope condition is also used at the upstream boundary here, since very little water is

likely to flow across it. However, at the downstream boundary the situation is very differ-

ent; lots of water flows across the downstream boundary as it leaves the domain. A more

physically realistic situation for the downstream boundary is therefore to extrapolate the

slope of the domain into the ghost cells at the boundary. Changes have been made to

the code to accommodate this, and it is possible to treat the downstream topography

slope as a model parameter, as in Garcia-Pintado et al. [2015]. The effect of varying the

parameter controlling the bathymetry slope at the boundary for a simple simulation can

be seen in section 3.2.2.

3.2 Sensitivity studies

The following sensitivity studies were carried out in a domain with topography as

shown in figure 3.2 with grid-spacing of approximately 10 m in both the x and y directions.

Figure 3.2: Elevation of the test domain in metres.
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The upstream-downstream slope for the river and flood plain is 0.09% and the slope

from the outside of the domain down to the river is 0.8%. The maximum depth of the

channel below the bank is 8.5m and its width is 50m; these are values based on measured

cross sections from the river Severn.

For the results shown in this section, the upstream boundary of the domain was set to

be a solid wall to avoid water being able to leave the domain in that direction, and also to

avoid water effectively being generated in the ghost cells. The other three boundaries are

free (extrapolating) boundaries with an extrapolated slope for the downstream boundary.

3.2.1 Channel friction

In the following simulations, the domain shown in figure 3.2 was initially empty. Wa-

ter was added into the domain close to the upstream boundary at a rate of 160m3s−1 for a

total simulation time of 3000 seconds. A gauge measuring depth (relative to topography)

was simulated in a central position as shown in figure 3.3.

Figure 3.3: Location of gauge in domain marked with black dot and ‘1’. There is no water

in the domain at the time shown; the green colours correspond to ‘dry land’ and are not

shown on the colourbar.

The gauge recorded depth throughout the simulations, which were carried out for

three different values of Manning’s friction coefficient,n in the domain. The friction values

used were n = 0.02, n = 0.002 and n = 0.07. The first of these values is a reasonable

estimate for a river channel; the other values are chosen as extremes of physically realistic
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possible values. For each case the friction coefficient was the same in the whole of the

domain, i.e. the value of n in the rest of the domain was the same as in the channel. The

results are shown in figure 3.4.

Figure 3.4: Water depth at gauge with time for different channel friction parameters

Figure 3.4 shows that the channel friction parameter influences both the time taken to

reach equilibrium, and the equilibrium depth in the channel, where the channel is defined

as the central 5 grid cells in the x direction for all y. The final water levels (after 3000

seconds) are shown in plan view for the three different values of n in figure 3.5. The edges

of the channel are shown by the thin red lines and we can see in figure 3.5c that in the

case in which n = 0.07, some flooding of the domain took place (where x >3000m). This

is because under these conditions water travels so slowly in the channel in the x direction

that it is forced out onto the banks. In all of the cases shown here the Manning’s friction

coefficient on the flood plain was the same as in the channel; making these values different

will clearly affect the evolution of any inundation event.
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(a) n = 0.002 (b) n = 0.02

(c) n = 0.07

Figure 3.5: Water depth in the domain at the end of the simulation for three different

values of n in the channel. The domain is shown in plan view. Note the different scales

for the colourbars.

3.2.2 Slope at downstream boundary

The effect of changing the parameter controlling the bathymetry slope at the down-

stream boundary can be seen in the following simulations. In each case, a symmetrical

domain with a central channel was initially filled with water to a depth of approximately 4

m as shown in cross section in figure 3.6. The domain has a slope of 0.09% which caused

the water to flow downhill under the influence of gravity and leave the domain at the
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downstream end. No extra water was added to the domain during the simulations, which

ran for 1500 seconds. Some water remained in the domain at the end of the simulations.

For one case the downstream slope was extrapolated into the ghost cells, and for the other

case the ‘no slope’ condition was used, where the elevation in each ghost cells is set to be

the same as the domain cell next to it on the inside of the boundary.

Figure 3.6: Cross section of the domain, showing the channel filled with water at the start

of the simulations. The green line shows the elevation of the domain and the blue points

show the water depth.

At the end of the simulations, the water profile is different for the two cases as shown

in figure 3.7. For the extrapolated boundary slope condition, the water is able to leave

the domain cleanly; the flow over the boundary is the same as elsewhere in the domain.

For the no slope condition, water cannot leave the domain as fast and therefore builds up

at the boundary.
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(a) Extrapolated slope; water levels relative to topography

in 3D

(b) No slope; water levels relative to topography in 3D

(c) Extrapolated slope; water levels relative to topography in

plan view

(d) No slope; water levels relative to topography in plan view

Figure 3.7: Water profiles for the slope and no slope boundary conditions after 1500s.

3.3 Chapter summary

In this chapter we have described the inundation model used for the simulations in

chapters 4, 5 and 6 of this thesis. We have described the boundary condition options

in Clawpack; our description of the treatment of source terms is presented as part of

our paper Cooper et al. [2018b], reproduced in this thesis as chapter 4 (see section 4.8

for treatment of source terms). In this chapter we have also presented results of studies

investigating the sensitivity of modelled water levels to the domain friction parameter and

the downstream topography slope.
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Chapter 4:

Effect of channel friction

estimation on observation impact

In this chapter we address the first research question outlined in chapter 1; How does

estimation of the channel friction parameter affect observation impact in data assimilation

for inundation forecasting? In particular we wish to find out:

• Can the ETKF retrieve the correct channel friction parameter in synthetic experi-

ments using SAR-like observations, and does that improve the forecast?

• Is error in the channel friction parameter distinguishable from error in inflows?

• Does it matter if we assume zero momentum when restarting after assimilation?

We describe a series of synthetic experiments. The remainder of this chapter, except

for the chapter summary (section 4.9), has been published and is reproduced from Cooper

et al. [2018b].

4.1 Abstract

Accurate inundation forecasting provides vital information about the behaviour of

fluvial flood water. Using data assimilation with an Ensemble Transform Kalman Filter

we combine forecasts from a numerical hydrodynamic model with synthetic observations

of water levels. We show that reinitialising the model with corrected water levels can

cause an initialization shock and demonstrate a simple novel solution. In agreement

with others, we find that although assimilation can accurately correct water levels at

observation times, the corrected forecast quickly relaxes to the open loop forecast. Our
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new work shows that the time taken for the forecast to relax to the open loop case

depends on domain length; observation impact is longer-lived in a longer domain. We

demonstrate that jointly correcting the channel friction parameter as well as water levels

greatly improves the forecast. We also show that updating the value of the channel friction

parameter can compensate for bias in inflow.

Keywords Data assimilation, inundation forecasting, fluvial flooding, observation

impact, joint state-parameter estimation, ensemble Kalman filter.

Highlights

• Data assimilation is applied to simulated flood forecasts and SAR-like observations

• Reinitialisation shock due to water level correction is removed using a novel method

• Observation impact is linked to domain length when updating only water levels

• Updating the channel friction parameter leads to marked improvement in forecast

skill

• Updating the channel friction parameter can compensate for biased inflow

Software Availability

The inundation simulations in this work were generated using Clawpack 5.2.2, a col-

lection of FORTRAN and python code available from http://www.clawpack.org/. Details

of the amended Clawpack source code as used in this work are freely available on request

from the corresponding author, as is the python code used to perform data assimilation

on the inundation simulation output. Please contact e.s.cooper@pgr.reading.ac.uk for

details.

4.2 Introduction

Data assimilation can improve the accuracy of predictions from flood inundation

models by combining forecasts from the model with observations of the system, taking into

account uncertainty in both the model predictions and the observations. In this study we

use a sequential data assimilation method comprising a forecast-update dynamic feedback

loop. During each forecast step, the numerical model runs an inundation simulation.
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When an observation (or set of observations) is available the simulation is interrupted and

the update step is performed; updating combines observational data and model predictions

to give a better estimate of the state. The next forecast step then starts, with the adjusted

water levels as the initial condition. An update is carried out each time a new observation

or set of observations is available.

There are a number of numerical inundation models that can predict the behaviour

of flood water given information about the topography of the domain and the amount of

water flowing into the area, e.g. HEC-RAS, Telemac, LISFLOOD-FP [HEC-RAS Devel-

opment Team, Hervouet, 2000, Neal et al., 2012a]. In a real flood situation, topographical

information is often available in the form of a digital terrain model (DTM) and inflow

estimates may come from an upstream gauge, or as output from a hydrological model.

Observations of the flood may be available from a variety of different sources. These in-

clude river depth and flow rate measurements from gauges, and authors have used these

data in assimilation schemes , e.g. Mure-Ravaud et al. [2016]. However, many catchments

are ungauged and the number of gauges worldwide is in decline [Vrsmarty et al., 2001].

Observations of flood extent can be obtained from aerial photos, although the cloudy

conditions associated with heavy rainfall often limit the usefulness of this information

source. Recently, much attention has been paid to the use of synthetic aperture radar

(SAR) satellite images in delineating flood extent, since such observing systems have all

weather and day and night capability. Water depth information can then be retrieved

from SAR satellite images using a high quality digital terrain model (DTM) as described

in Mason et al. [2012] and Brown et al. [2016]. Such techniques for extracting information

from SAR images are well established, e.g.Thornhill et al. [2012], Mason et al. [2010],

Scott et al. [2008] and Scott and Mason [2007].

Various authors e.g. Lai and Monnier [2009], Matgen et al. [2007b] and Schumann

et al. [2009] have used data assimilation techniques to highlight the fact that although

observations from SAR can cover a large spatial area, the usefulness of the information

they contain is limited in time. Assimilating data from one or more river gauges can help

to mitigate this, as shown by Lai and Monnier [2009] and Hostache et al. [2010], but we

consider here the situation in which only time-sparse satellite derived water level data is

available for assimilation. This leads to a situation in which data assimilation can provide

a good analysis - i.e. can correct water levels very well at the time of observations, but the

model forecast then moves quickly away from the true water levels during the subsequent

forecast step. This short lived improvement in the water levels has been shown in studies
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such as Andreadis et al. [2007], Neal et al. [2009] and Garcia-Pintado et al. [2013], which

use ensemble Kalman Filter data assimilation algorithms, as well as in Matgen et al.

[2010], where a particle filter approach is taken. This result indicates that water levels in

a river flood situation are not strongly sensitive to initial conditions. In fact, water levels

are likely to be more dependent on inflow and model parameter values, and updating one

or a combination of these is therefore necessary.

In order to address the short-lived nature of the forecast improvement, authors such

as Andreadis et al. [2007], Matgen et al. [2010], Giustarini et al. [2011], Garcia-Pintado

et al. [2015], Garcia-Pintado et al. [2013] and Mason et al. [2015] have carried out data

assimilation including on-line correction of inflow along with water levels. Inflow correc-

tion is shown in all of these studies to give much better forecast accuracy over time than

correcting water levels alone. Less attention has been paid to the effect of errors in model

parameters in sequential data assimilation, despite the fact that several studies, including

Andreadis and Schumann [2014] and the comprehensive review paper by Grimaldi et al.

[2016], indicate that model parameters are likely to have an important influence on the

behaviour of the flow.

One study in which parameter effects are investigated is Garcia-Pintado et al. [2015],

in which water levels, inflows and several model parameter values were updated simul-

taneously using an ensemble Kalman filter technique. The study used LISFLOOD-FP

to model the flooding of the river Severn and tributaries near Tewkesbury, UK, in 2014,

assimilating real SAR-derived water level observations. A large improvement in forecast

skill was seen when inflow was corrected along with water levels, leading to good agree-

ment between the forecast and independently measured gauge data. In this case, channel

friction parameter estimation alongside estimation of water levels, inflows and other pa-

rameters was not found to improve the forecast significantly, despite the fact that water

behaviour is strongly influenced by this parameter. The question of whether the retrieved

friction parameter value was correct was left open as the true value for the system was

not known.

In this study we address open questions about the role of the channel friction pa-

rameter in data assimilation for inundation modelling. We use a similar data assimilation

technique to that in Garcia-Pintado et al. [2015] in twin experiments with an idealised

topography and an unbiased inflow. This allows us to separate out and further investi-

gate the effect of channel friction retrieval on the forecast. We find that, in contrast with

Garcia-Pintado et al. [2015], online estimation of the channel friction parameter along
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with water levels leads to a large improvement in the forecast skill in our experiments.

The twin experiments also show that our data assimilation method is capable of finding

an accurate value for the channel friction parameter, even when water depth observations

are only available on the flood plain during a flood.

We also investigate the effect of domain length on forecast skill, showing that because

the assimilation is able to correct water levels in areas where there are no observations,

the time taken for corrected water levels to decay back to the open loop (no assimilation)

case is longer for a physically longer domain. Further, we demonstrate that when reini-

tialising the numerical model after an assimilation, an initialisation shock can occur. We

demonstrate an efficient and effective technique for removing this shock, leading to more

accurate forecasts in the hours immediately following an assimilation.

This paper is organised as follows: In section 4.3 the numerical inundation model is

described, the data assimilation method is outlined and our novel re-initialisation method

is demonstrated. In section 4.4 the experimental configurations for various simulations

are described. Section 4.5 shows the effect of including online channel friction parameter

estimation along with water level estimation, and compares results from different length

domains. Section 4.6 draws conclusions about the effects of domain length and channel

friction parameter estimation.

4.3 Methodology

In this section we describe the methods used in this study. In section 4.3.1 the

numerical inundation model is outlined. Section 4.3.2 contains information about the

data assimilation method used. In section 4.3.3 we discuss the impact of assuming the

water has only hydrostatic momentum at the start of a forecast step and describe our

approach to dealing with problems caused by this assumption.

4.3.1 Numerical inundation model

In this study we use a numerical flood model we have developed using Clawpack

[Clawpack Development Team, 2014, Mandli et al., 2016, LeVeque, 2002], an open source

collection of FORTRAN and python code that can be used to solve a wide variety of

conservation laws. Clawpack uses finite volume methods and sophisticated Riemann

solvers to treat systems of partial differential equations; in this work the equations of

interest are the 2D shallow water equations that describe how river and flood water will
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move in space and time. The model splits the domain of interest intoN cells and calculates

the water depth in each cell. The code is capable of dealing with shocks in the solution,

such as bores that may occur following a sudden increase of inflow into a particular river

stretch. Clawpack deals effectively with the wet-dry interfaces which are present in an

inundation event, and preserves depth non-negativity [George, 2008].

The shallow water equations for two spatial dimensions, x and y, can be written as

(e.g.LeVeque [2002])

∂q
∂t

+
∂F(q)
∂x

+
∂G(q)
∂y

= R(q), (4.1)

where R(q) is a source term and q is a vector of conserved quantities

q =


h

hu

hv

 , (4.2)

h represents depth of the fluid, and u and v represent velocity in the x and y directions

respectively.

In equation (4.1), F(q) and G(q) represent fluxes of the conserved quantities in the

x and y directions respectively. For the shallow water equations these are

F(q) =


hu

hu2 + 1
2gh

2

huv

 and G(q) =


hv

huv

hv2 + 1
2gh

2

 , (4.3)

where g is acceleration due to gravity.

The effect of friction is modelled as a source term in Clawpack, since the friction force

acts to reduce the momentum of the water. The magnitude of the momentum reduction

is strongly dependent on a Manning’s friction coefficient, n, and the flow of water is very

sensitive to the value of this parameter. We have also added an inflow source term to the

Clawpack code to model water arriving in the river stretch of interest, as further described

in Appendix section 4.8.2 and Cooper et al. [2016]. The time step for the hydrodynamic

model is variable, and automatically adjusted in the code to preserve numerical stability.

Correct specification of the solution at the boundaries of the computational domain

is vital for the stability of any numerical scheme. To achieve this, Clawpack adds a user-

specified number of ‘ghost’ cells (2 by default) next to each cell at a domain boundary.
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The domain is effectively extended in all directions by the addition of these ghost cells

and the behaviour of the solution at the boundaries then depends strongly on the values

of calculated model quantities in the ghost cells. We use non-reflecting outflow (extrapo-

lating) boundary conditions in which values of q are extrapolated from the cell next to the

boundary into the ghost cells at each time step. This is called a zero order extrapolation

in LeVeque [2002].

Another important factor is the representation of the domain topography at and

across the domain boundaries. The default in the code is to copy the value of the domain

elevation at the boundary into the ghost cells. This represents a situation where there

is no slope in bathymetry or topography across any boundaries. This is not suitable for

the downstream boundary in our experiments, at which the majority of the water leaves

the domain. A more physically realistic situation for the downstream boundary is to

extrapolate the slope of the domain into the ghost cells at the boundary and changes

have been made to the code to accommodate this.

4.3.2 Data assimilation

4.3.2.1 State estimation

In data assimilation, a state vector is used to represent the state of a physical system.

In this work the state vector, x ∈ RN , comprises water depths in each of N computa-

tional cells. Sequential data assimilation algorithms comprise two steps: a forecast (or

prediction) step and an update (or analysis) step. In the prediction step, an estimate of

the state, x is evolved forward in time using the forecast model

x(tk+1) = M(x(tk)), (4.4)

where M is the forecast model, in this case the non-linear numerical shallow water equa-

tion model described in section 4.3.1. In the update step the forecast is updated to take

account of observations of the state. We assume that the observations can be described

by

y = Hx + ε, (4.5)

where y ∈ Rp is a vector of observations and x is the true state of the system. Since

the observations may be indirect and not located at model cell centres, an observation

operator, H : RN → Rp is required, which maps the state vector into observation space.

For this work, H is assumed to be a linear operator. The observation noise, ε is assumed
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to be unbiased stochastic noise with covariance R ∈ Rp×p. The ensemble Kalman filter

used here is based on the Kalman filter. In the Kalman filter, whenever observations are

available the state and error covariance matrix are updated Kalman [1960] according to

xa = xf + K(yobs −Hxf ) (4.6)

and

Pa = (I−KH)Pf , (4.7)

where forecast and analysis quantities are denoted by f and a superscripts respectively,

I ∈ RN×N is the identity matrix and P ∈ RN×N is the state error covariance matrix. The

matrix K ∈ RN×p is the Kalman gain, given by

K = PfHT (HPfHT + R)−1, (4.8)

and R ∈ Rp×p is the observation error covariance matrix.

In the ensemble Kalman filter [Evensen, 1994], an ensemble of state vectors is used

to represent a statistical sample of the forecast or analysis uncertainty. Each ensemble

member represents one possible realisation of the true state of the system, given uncer-

tainties in initial conditions and/or model parameters. For an ensemble comprising M

state vectors, xi, (i = 1, 2...M), a mean state at any time can be defined as

x =
1
M

M∑
i=1

xi. (4.9)

The mean of the ensemble, x, represents an estimate of the true state of the system.

For any ensemble, an ensemble perturbation matrix X ∈ RN×M can be defined as

X =
1√

M − 1
(x1 − x x2 − x ...... xM − x). (4.10)

The ensemble error covariance matrix, P ∈ RN×N can then be calculated from

P = X(X)T . (4.11)

The forecast step for an ensemble system requires each state vector in the ensemble

to be evolved by the forecast model according to equation (4.4). In the update step

the forecast ensemble is combined with observations of the state to produce a ‘corrected’
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ensemble of state vectors called the analysis ensemble. The analysis ensemble is then used

as a set of initial conditions for the next forecast step. This forecast-update cycle can

be repeated many times and an analysis ensemble calculated whenever observations of

the system are available. The ensemble update equations separately update the ensemble

mean and the ensemble perturbations according to

xa = xf + K(y−Hxf ) (4.12)

and

Xa = XfT. (4.13)

The vector xa is the analysis state (the mean of the analysis ensemble), xf is the mean of

the forecast ensemble and K ∈ RN×p is an ensemble version of the Kalman gain (as shown

in equation (4.16)). The matrix T ∈ RM×M updates the perturbations such that the state

error covariance calculated by using Xa in equation (4.11) matches that given by the

Kalman covariance update, equation (4.7) [Kalman, 1960]. There is not a unique solution

for T; here we use an unbiased, symmetric square root formulation known as an ensemble

transform Kalman Filter (ETKF), following the approach of Livings et al. [2008], Livings

[2005] and Garcia-Pintado et al. [2013]. In this approach we define a forecast observation

ensemble comprising M forecast observation vectors, yf
i , (i = 1, 2...M) such that

yf
i = H(xf

i ). (4.14)

The forecast observation ensemble has a mean, and a perturbation matrix Yf , defined in

the same way as for the state ensemble matrix.

We define a matrix D as

D = Yf (Yf )T + R; (4.15)

the Kalman gain K can then be written in terms of the forecast perturbation matrices

Xf and Yf ,

K = Xf (Yf )T D−1. (4.16)

Substituting equation (4.16) for K on the right hand side of equation (4.7), and using

equations (4.13) and (4.11) on the left hand side shows that the matrix T in equation

(4.13) then needs to satisfy

T(T)T = I− (Yf )T D−1(Yf ). (4.17)
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Using the Sherman-Woodbury-Morisson identity for the right hand side of equation (4.17),

as in equation (15) of Tippett et al. [2003], this becomes

T(T)T = (I + (Yf )T R−1Yf )−1. (4.18)

A scaled forecast observation ensemble perturbation matrix can then be introduced,

Ŷf = R− 1
2 Yf . (4.19)

Performing a singular value decomposition [Golub and Van Loan, 1996] of (Ŷf )T gives a

factorisation such that

(Ŷf )T = UΣVT , (4.20)

where U and V are orthogonal matrices with dimensions (M by M) and (p by p) re-

spectively. The columns of U and V are the left and right singular vectors of (Ŷ
f
)T

respectively, and the diagonal elements of the (M by p) matrix Σ are the singular values

of (Ŷ
f
)T . Combining equations (4.18), (4.19) and (4.20) gives

T(T)T = U(I + ΣΣT )−1UT , (4.21)

and a solution for T is therefore

T = U(I + ΣΣT )−
1
2 UT . (4.22)

This is the solution used in this work.

4.3.2.2 Joint state-parameter estimation

Section 4.3.2.1 describes how the ETKF can be used to update the water levels in

a computational domain, given observational data. It is also possible to update values

of uncertain forecast model parameters as part of the same process. This is achieved by

state augmentation, in which parameters are appended to the state vector [Smith et al.,

2013, Navon, 1998, Evensen et al., 1998, Smith et al., 2009, 2011]. The augmented state

vector, xaug, is then given by

xaug =

x

b

 , (4.23)
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where b ∈ Rm is a vector of m parameters and xaug ∈ RN+m. In this work, we are

interested in updating just one parameter, the Manning’s friction coefficient in the river

channel, nch. This means that b is scalar in this case.

We assume that the value of nch does not change with time over the course of a

particular flood. This means that the value of nch is constant during the forecast step

and only updates at assimilation times. The forecast equation for the augmented state

vector is then given by

xaug(tk+1) =

M(x(tk))

b(tk)

 , (4.24)

where M is the forecast model as in equation (4.4).

The ETKF update equations (4.12) and (4.13) can be applied to the augmented state

vector in the same way as described in section 4.3.2.1. The ensemble assimilation scheme

then takes into account covariances between errors in the state vectors and the param-

eter(s). These covariances act to correct the parameter value according to information

from observations as part of the same process that corrects water levels in the domain.

Estimating parameter values in this way has a number of advantages over a more

traditional offline calibration approach. Firstly, the updating of the parameter values

is performed with information from current observations. Calibrating parameters with

data from previous events risks using out of date information which does not take into

account changes to the river bed due to, for example, erosion or sediment transport.

Calculating parameters using data assimilation also allows the value to change on shorter

timescales during a flood event as the value is assumed to be constant during forecast

steps, but updates each time new observational information is available. Additionally,

off-line calibration and tuning of parameters can be computationally costly and needs to

be performed ahead of a flooding event which may occur with little warning.

In our synthetic experiments we have assumed that the channel friction parameter,

nch is the same value for the whole channel. In a real setting, it would be necessary to

take an approach like that in Garcia-Pintado et al. [2015], where different values of nch

were assumed for different types of channel such as large rivers and small streams.

4.3.3 Hydrostatic initialisation shock

The ETKF is a sequential method and this means that each time observations are

available an assimilation can be carried out. In order to perform an assimilation, the

forecast model is interrupted. The ensemble states (water levels) are updated by the
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ETKF and each ensemble member then restarts running in Clawpack, reinitialised with

the new water levels. In some approaches to data assimilation for inundation modelling,

e.g. Lai and Monnier [2009], Hostache et al. [2010], Ricci et al. [2011], the state vector

contains information about water flow or discharge rates as well as water levels. The flow

rates are therefore updated along with water levels as part of the assimilation process. In

contrast, in this study, as in Garcia-Pintado et al. [2015], the state vector contains only

water depth information (plus parameters when considering the joint state-parameter

estimation problem).

In Garcia-Pintado et al. [2015], a hydrostatic assumption was made for reinitialisa-

tion, i.e. the water was assumed to have zero momentum at each forecast restart time.

The effect of this assumption in our domain can be seen by interrupting a simulation

and restarting without performing any data assimilation, i.e. reinitialising with identical

water levels as before, but with zero momentum everywhere. Comparing the root mean

square error (RMSE) between the water depths predicted by a reinitialised version and

continuous version of the simulation then gives a measure of how the hydrostatic assump-

tion at restart affects the forecast. The RMSEs are measured over the whole domain and

defined as

RMSE =

√√√√ 1
N

N∑
i=1

(hr
i − hc

i )2, (4.25)

where hr
i is the forecast water depth after reinitialisation in the ith cell and hc

i is forecast

water depth in the same cell without reinitialisation. The number of cells in the domain

is N , as before.

The open circles in figure 4.1 show RMSEs between the reinitialised forecast and

the continuous forecast. Figure 4.1 shows that the consequence of using a hydrostatic

assumption is that the error between the continuous and restarted cases is large at times

less than approximately four hours in this system. In figure 4.1 the maximum RMSE

caused by reinitialisation is 0.3m compared to depths in the channel of 5 to 6m and up to

0.4m on the floodplain. This means that forecasting the behaviour of flood water at these

times is problematic. The error becomes negligible by approximately four hours after the

assimilation time.

In order to correct for this without adding flow information to the state vector in the

update step, we assume that the water in each cell has the same velocity (u and v in the x

and y directions respectively) after the assimilation as it did before the assimilation. This
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gives a state vector of lower dimension (approximately one third as many entries) than

the approach of Lai and Monnier [2009], Hostache et al. [2010] and Ricci et al. [2011],

thus reducing computational expense, while avoiding problems caused by assuming zero

flow rates at the start of each forecast step as in Garcia-Pintado et al. [2015]. Note that

the state vector for the forecast step still contains water depth and flow rate information.

Reinitialising with the same flow rate (hu and hv) values in each cell would also be

possible, but since the water levels will have changed in some cells due to the assimilation,

this is likely to lead to unrealistic behaviour. Reinitialising the water with the pre-analysis

velocity values removes the large shock shown in figure 4.1; the resulting RMSE values

are shown in figure 4.1 with filled circles. The very small RMSE values shown by the

filled circles show that the method is effective in removing the initialisation shock.

Figure 4.1: RMSE in water depth over the domain. Open circles show the RMSE between
the continuous truth and restarted truth for a hydrostatic assumption. Filled circles show
the RMSE when reinitialising with forecast velocities.

We performed a simple comparison of the values of hu and hv obtained using our

approach (‘simple calculation value’) with those calculated during an assimilation in which

hu and hv were included in the state vector (‘analysis value’). We compared values at

each assimilation time in an identical twin experiment in which we update both the water

levels and the channel friction parameter. Figure 4.2 shows some typical results (from

the assimilation at 28h in the SPL experiment as described in section 4.4.2).
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(a)

(b)

Figure 4.2: Comparison of (a)hu and (b)hv values at one assimilation time.

Figure 4.2a shows the values of hu obtained using the simple method described here

plotted against the values of hu calculated by including hu and hv in the assimilation

state vector; figure 4.2b shows the same results for values of hv. The values are close to

the identity line and therefore in broad agreement. We found that the agreement between

the methods was better at later assimilation times, when the forecast error is low. This is

because both methods provide values close to the pre-assimilation (forecast) values when

the adjustment by the assimilation is relatively small. The values of nch obtained when

including hu and hv in the state vector were almost identical (less than 0.001% difference)

to the values obtained when the state vector comprises only water levels. We observed
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no instabilities in the solution at initialisation times using our technique.

4.4 Experimental design

4.4.1 Model domain

All of the experiments referred to in this paper are carried out in domains with

a simplified river valley-like topography. We use two domains in this work, the ‘long’

domain describes an area of 20 km by 250m and is shown in figure 4.3. Note that the

axes are not to the same scale. The ‘regular’ domain is 5km by 250m, and is identical to

the long domain for 15 ≤ y ≤ 20km and 0 ≤ x ≤ 250m. The domains are gently sloping

symmetrical valleys with a 50m wide central river channel as shown in figure 4.3. The

grid cell size for the computation is 10m by 10m in all cases. The river channel is defined

to be the central 5 grid cells in the x direction for all values of y; the rest of the domain is

defined as the flood plain. The cross section for both domains is the same. The domain

has an upstream-downstream slope of 0.08% and the slope of the floodplain towards the

river is 0.8%.

Figure 4.3: Elevation in metres of the long test domain used for the assimilation experi-
ments. The regular domain is defined by 15 ≤ y ≤ 20km and 0 ≤ x ≤ 250m . The black
circles indicate the positions of water elevation observations used in the data assimilation.
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4.4.1.1 Identical Twin Experiments

In this study, we use an ETKF in identical twin experiments. Identical twin experi-

ments are commonly carried out in order to test a data assimilation system as well as to

generate information about the model to which data assimilation is applied, e.g. Evensen

[1994]. In such experiments, a numerical model is used to generate a ‘truth’ output for

a set of known initial conditions and model parameters. The truth run for these exper-

iments is a continuous run of our inundation model for 112 hours using a time varying

inflow shown by the solid black circles in figure 4.4. For the first four hours, the inflow is

set to be constant in order to fill the river channel with water in a spin-up period. The

inflow from t = 4 hours onwards is based on some real hydrograph data from a flood of

the river Severn near Tewkesbury. The inflow comprises hourly values and linear inter-

polation is used to give flow rates between the hourly points. The truth run uses a value

for the channel Manning’s friction parameter of nch = 0.04, which is the value given for

a natural stream by Maidment and Mays [1988]. The Manning’s friction parameter on

the flood plain, nfp, is likely to be higher due to vegetation and here we use a value of

nfp = 0.05.

The inundation model is also used to generate a 100 member ensemble of flood

realisations. This ensemble represents a forecast of the true flood given uncertainty in

upstream inflow and the channel friction parameter values. The number of ensemble

members is relatively small compared to the dimension of the state vector, which contains

12,500 water depths for the short domain and 50,000 for the long domain. However,

none of the problems which indicate undersampling of a system (spurious correlations or

ensemble collapse as outlined by Petrie and Dance [2010]) are seen, suggesting that this

number of ensemble members is sufficient to represent the system in this case. It was

therefore not necessary to apply any localisation or inflation in these experiments.

Each member of the ensemble is driven by a different inflow and has a different friction

parameter. The ensemble inflows are generated by adding time correlated random errors

to the ‘true’ inflow; the ensemble inflows and true inflow are shown in figure 4.4. The

variance for the inflow distribution is a proportion of the inflow, since the error in measured

or predicted flow is likely to be flow-dependent as in Garcia-Pintado et al. [2015]. The

standard deviation for the generated inflow distribution is 0.15× inflow, which is the same

as the value used by Garcia-Pintado et al. [2015] and fits within the range of errors in

measured flow rates (4% to 43%) reported in Di Baldassarre and Montanari [2009]. No

bias was applied to the inflow ensemble so that the mean inflow is very similar to the true

Page 48



Chapter 4: Effect of channel friction estimation on observation impact

inflow. An unbiased inflow removes the effect of an incorrectly specified inflow, since this

has already been studied elsewhere (e.g. Andreadis et al. [2007], Matgen et al. [2010],

Giustarini et al. [2011], Garcia-Pintado et al. [2015], Garcia-Pintado et al. [2013] and

Mason et al. [2015]). Choosing to use an unbiased inflow allows the effect of the incorrect

channel friction parameter value to be studied in isolation; we briefly address the effect

of biased inflow at the end of section 4.5.2.

Figure 4.4: Inflow ensemble with time. Circles show the true inflow values and the grey
lines show the ensemble inflows.

Ensemble channel friction parameters were generated by selecting from a Gaussian

distribution centered on a ‘wrong’ initial value to reflect the fact that this parameter

varies between catchments and will not generally be known before the start of a flood

event. The channel friction parameter is also not likely to be directly measurable as

it relates to the specific way in which Clawpack models friction. Different numerical

models with different friction parameterisations have been shown to generate different

optimal friction parameters for the same data for this reason [Horritt and Bates, 2002].

Centering the channel friction ensemble on an incorrect value also enables us to test

whether the data assimilation scheme can retrieve the correct value from an incorrect

starting point. The channel friction parameter for each ensemble member was selected

from a Gaussian distribution, N (0.05, 0.01). The true value of nch = 0.04 falls within one

standard deviation of the mean of this distribution. The value for the friction parameter

on the flood plain was set to the true value for all ensemble members, i.e. nfp = 0.05.

Data assimilation using an ETKF is carried out on the forecast ensemble, using

synthetic observations generated from the truth as described in the next section. Since
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the ETKF is a sequential method the ensemble is evolved forward in time with Clawpack

between observation times, and an assimilation is carried out every 12 hours. We also

consider the ‘open loop’ case in which a forecast ensemble runs with no assimilation.

4.4.2 Experimental configurations

Various data assimilation experiments are carried out, each for a total period of 112

hours, including a 4 hour spin-up period with constant inflow to allow the river channel to

fill up (as shown in figure 4.4). Synthetic observations of water depth are taken from the

truth at 12 hourly intervals and assimilated with an ETKF. Twelve hourly assimilation

intervals were chosen as this represents the smallest likely return time for SAR-equipped

satellites at present.

Since we are running identical twin experiments, we know the true water levels every-

where in the domain, as well as the water levels forecast by the ensemble. It is theoretically

possible to use SAR derived flood extent observations along with a high quality digital

terrain model (DTM) to derive water levels in all parts of a real domain. One approach

in a synthetic experiment is therefore to directly use water level observations in all parts

of the domain as a proxy for SAR derived information. Such an approach is used by, for

example, Lai and Monnier [2009]. In reality, SAR images can reliably provide informa-

tion about water elevation only at a few points along the flood extent, as demonstrated

in Mason et al. [2012].

In this paper, we do not use all the available water levels. Instead we use synthetic

observations of water levels taken directly from the truth run in the positions shown by

black circles in figure 4.3. This approach replicates a situation in which four reliable flood

delineation positions are available from a SAR image at y = 16, 17, 18 and 19km. We

assume that we have a SAR image covering the domain from y = 15 to 20km, and that

water elevation at each of the four flood edge positions can be obtained from a DTM; this

water level can then be extrapolated perpendicular to the channel to give water elevation

in each floodplain cell in the cross sections where we have delineation observations (i.e.

y = 16, 17, 18, 19km). Although extrapolating water elevation across a cross section in

this way would also give information about the water elevation in the channel, we exclude

observations in the channel in this experiment. This is because topography information

in the channel is likely to be much less accurate than that for the floodplain, making

water depths less certain. In a real case, water depth observations obtained in this way

would have correlated errors, but since we use synthetic observations this is not the case
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here. Noise was added to the synthetic observations to represent uncertainty due to

instrument error, flood extent determination and typical DTM errors. The noise added

to the observations is Gaussian with a standard deviation of 0.25m; this is the same value

as used in experiments with real data in Garcia-Pintado et al. [2015] and empirically

determined in Mason et al. [2012].

We perform a series of experiments using both the regular and long domain. Further

details of the individual experiments are as follows:

• Case SOR: State-only estimation in the regular domain, with the ensemble of

channel friction parameters distributed about an incorrect ‘first guess’ as described

in section 4.4.1.1.

• Case SOL: State-only estimation in the long domain; all other details as for case

SOR.

• Case SPR: State and channel friction parameter estimation in the regular domain

with the initial channel friction parameter distributed about an incorrect ‘first guess’

as described in section 4.4.1.1 .

• Case SPL: State and channel friction parameter estimation in the long domain; all

other details as for case SPR.

• Case OR: Open loop ensemble forecast in the regular domain; this is a free run-

ning ensemble forecast with the same initial conditions as cases SOR and SPR but

without assimilation of observations.

• Case OL: Open loop ensemble forecast for the long domain.

The positions of the observations are the same for both the long and regular domains.

This corresponds to observations spread throughout the whole of the regular domain, and

observations only in the upstream part of the long domain. The observation errors are

the same for the four different configurations that use observations.

4.5 Results and discussion of assimilation

4.5.1 State only estimation (SOR and SOL)

Results from state-only assimilation experiments are shown in figure 4.5. The graphs

shows the RMSE over the whole domain between the forecast ensemble mean water depths
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and the true water depths at three hourly intervals from the time of the first assimilation

at 16h. Here, RMSE is defined as

RMSE =

√√√√ 1
N

N∑
i=1

(hf
i − ht

i)2, (4.26)

where hf
i and ht

i are the forecast ensemble mean and true water depth in cell i respectively.

This definition means that the error is averaged over a larger area for the longer domain

than for the regular domain. The values of RMSEs, though broadly similar, are therefore

not directly comparable between domains.
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(a) RMSE between the ensemble forecast mean and the true water depth (xf − xt)

in the regular domain. Triangles show results for state only estimation (SOR), with

assimilation carried out at t=16h, 28h, 40h, 52h, 64h, 76h, 88h and 100h. Circles show

the open loop (OR) case for the regular domain (no assimilation).

(b) RMSE between the ensemble forecast mean and the true water depth (xf − xt)

in the long domain. Triangles show results for state only estimation (SOL), with

assimilation carried out at t=16h, 28h, 40h, 52h, 64h, 76h, 88h and 100h. Black circles

show the open loop case (OL) for the long domain (no assimilation).

Figure 4.5: RMSEs for state-only estimation in the regular and long domains.

Figure 4.5a shows the RMSE between the forecast ensemble mean and true water

depths with time for the regular domain (SOR). Figure 4.5b shows the same results for

the longer domain (SOL). In both domains the ETKF produces a good analysis. The

difference between the analysis ensemble mean water levels and the true water levels is

very small at the time of each observation, and a large improvement is seen compared to

the open loop forecast. However, for the regular domain in particular, the forecast skill is
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quickly lost during each subsequent forecast step and the RMSE quickly relaxes towards

the open loop case. Comparing 4.5a and 4.5b shows that the RMSE at each analysis time

is broadly similar for the two different domains. The results also show that the forecast

skill persists for longer in the long domain; the forecast takes longer to relax to the open

loop case in the longer domain than in the regular domain. This means that the same

observations are having a longer-lived impact on the forecast when a longer stretch of

river and floodplain is considered.

In order to further understand why the observation impact is longer-lived in the long

domain, the evolution of the error during the forecast step can be investigated. Figure 4.6

shows the long domain in plan view with the error between the forecast ensemble mean

and the true water levels in each cell. The errors are shown at several times during the

forecast after assimilation at t = 52h and before assimilation at t = 64h. In this particular

forecast period the inflow is increasing steadily, but similar patterns are seen for forecast

periods in which the inflow is varying in other ways.
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(a) t = 0 (b) t = 1 hours (c) t = 2 hours

(d) t = 5 hours (e) t = 8 hours (f) t = 12 hours

Figure 4.6: Forecast (ensemble mean) water depth minus true water depth in the long

domain, shown in plan view for case SOL. Times are measured from assimilation at 52h,

i.e. the forecast at 0h is the analysis calculated at 52 hours and figures 4.6c to 4.6f

show results in the subsequent forecast step. For reference, the true water depth on

the floodplain varied between 0 and 0.4m during this forecast period. Water depth in

the centre of channel varied between 5.9m and 6.4m. Note that the pale areas close to

y = 20, 000m are due to water arriving in the domain with zero momentum in these areas.

Figure 4.6a shows the difference between the forecast ensemble mean water depths
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and the true water depths at the observation/assimilation time. The error between the

forecast ensemble mean and true water depths is small at all points in the domain at

this time. The difference between the forecast ensemble mean and the truth is highest in

the channel; this reflects the fact that there are no observations of channel water depth

used in the assimilation. Figure 4.6b shows the error between the forecast ensemble mean

and the truth 1 hour after the assimilation. The error at the downstream end of the

domain remains small, while a large, positive error can be seen in the upstream part. A

positive error here means that the forecast is overestimating the water depth. In figure

4.6c, the errors at 2 hours after assimilation are shown. The physical area in which the

forecast is overestimating water depths has grown in the hour between 4.6b and 4.6c,

and penetrated further downstream into the domain. This pattern of error growth from

upstream to downstream continues over time in figures 4.6d (5 hours after assimilation),

4.6e (8 hours after assimilation) and 4.6f (12 hours after assimilation).

The observed pattern of error growth explains why the observations have impact in

the longer domain for a longer time. The regular domain is defined by 15 ≤ y ≤ 20km

and 0 ≤ x ≤ 250m (as shown in figure 4.3). The errors in water depth in this part of the

long domain become very large within a few hours of the assimilation, as can be seen in

figure 4.6c. This means that the error in the whole of the regular domain becomes large

very quickly. In contrast, the RMSE for the long domain includes the downstream area

where the water levels are still corrected from the assimilation; the RMSE is therefore

lower for a longer time as the error takes a longer time to reach the downstream part of

the longer domain.

During the forecast step, figure 4.6 shows that the error in the forecast resulting from

incorrect specification of the nch parameter starts at the upstream end of the domain,

and propagates downstream with time. This pattern of error growth is the same as that

which would be expected from a bias in inflow, as noted in e.g. Andreadis et al. [2007]. A

biased inflow acting on corrected water levels will clearly degrade the forecast water levels

close to the upstream boundary first and this error will propagate downstream with the

flow. The results shown in figure 4.6 therefore indicate that errors due to incorrect inflow

specification and those due to incorrect specification of the channel friction parameter

may be difficult to separate out in a real flood event.

The low RMSEs between the analysis and the truth in the long domain highlight

the fact that the ETKF is able to correct the water levels in areas for which there are no

observations. The state error covariance matrix generated by the ensemble perturbations
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is such that information from the observations is spread throughout the domain, enabling

corrections to be made to the state at the downstream part of the domain when obser-

vations are available only at the upstream end. This is further demonstrated in figure

4.7, which shows the difference between the forecast ensemble mean and the truth pre-

assimilation (figure 4.7a) and post-assimilation (figure 4.7b), plotted in the long domain

at t = 52h. Figure 4.7c shows the increments applied in the long domain as a result

of observations in the upstream part of the domain only. The figure clearly shows that

adjustments are made to water levels in the whole domain.
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(a) Difference between the forecast ensemble mean and

the truth (xf − xt) plotted in the long domain (pre as-

similation) at t = 52 hours.

(b) Difference between the analysis ensemble mean and

the truth (xa − xt) plotted in the domain (after assimi-

lation) at t = 52 hours.

(c) Increments applied to the forecast ensemble mean for

the assimilation at t = 52 hours

Figure 4.7: Difference between the forecast ensemble mean and the truth at t = 52 hours,

(a) pre assimilation and (b) post assimilation; (c) shows the increment applied to the

forecast to compute the analysis (xa − xf ). In each plot the black circles show the

position of the observations.
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For a reliable ensemble, the RMSE should be close to the spread of the ensemble,

where the spread is defined as the square root of the average ensemble variance (see e.g.

Fortin et al. [2014]). Reliability plots (of RMSE vs. spread) should therefore produce

points which lie close to the identity line. Such plots can be used to diagnose ensemble

collapse, where the spread of an ensemble becomes unrealistically small.

Figure 4.8: Reliability plot for the SOR and SOL experiments, showing forecast and

analysis RMSE vs ensemble spread at each assimilation time. Circles are for the long

domain, crosses for the regular domain. For an ideal ensemble, all points would lie on the

identity line.

Figure 4.8 is a reliability plot for the SOR and SOL experiments. The points all lie

close to the identity line, indicating that the ensemble spread is adequate to capture the

uncertainty in the forecast. There is no indication of ensemble collapse. We note that

in these experiments the time between observations is much larger than the time taken

for the forecast to relax to the open loop case. If the observations were frequent enough

to update the model before it relaxed back to the open loop, the risk of overfitting to

the observations would be increased and in such cases inflation or localisation techniques

may be required. The points in figure 4.8 form two clusters, with large error, large spread

values before an assimilation and low error, small spread values for analysis ensembles.
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4.5.2 State and parameter estimation (SPR and SPL)

Considering a longer stretch of river in our idealised domain, as in section 4.5.1,

shows an improvement in the forecast skill of the ETKF, in that the RMSE increases

more slowly. By design, much of the error between the truth and the forecast comes from

the incorrect channel friction parameter in these experiments. In this section we show

results from using data assimilation to jointly estimate the state and the channel friction

parameter in both domains.

Figure 4.9: RMSE between the ensemble mean and the truth over the whole domain for

joint state-parameter estimation; crosses denote RMSE for the long domain (SPL) and

squares denote RMSE for the regular domain (SPR).

Figure 4.9 shows the RMSEs with time for the state-parameter estimation experi-

ments in the regular and long domain. Comparison of figures 4.5 and 4.9 demonstrates

a very clear improvement in the forecast for joint state-parameter estimation over the

state only case (note the different scales on the y axes). Joint state-parameter estimation

markedly increases the observation impact for exactly the same observations. The extra

computational cost of estimating the friction parameter along with the state is extremely

small, as it adds only a single extra component to the state vector. Joint state-parameter

estimation is therefore a very efficient way of producing a much better forecast in this

situation.

The small RMSE between the truth and the forecast for joint state-parameter estima-

tion is smaller than the order of the observation error. There is no longer any significant

difference between the results for the different length domains and this implies that the
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error growth must occur at similar rates along the length of the long domain when the

friction parameter is estimated.

(a) t = 0 (b) t = 1 hours (c) t = 2 hours

(d) t = 5 hours (e) t = 8 hours (f) t = 12 hours

Figure 4.10: Forecast (ensemble mean) water depth minus true water depth in the long

domain, shown in plan view for case SPL. Times are measured from assimilation at t=52h.

For reference, the true water depth on the floodplain varied between 0 and 0.4m during

this forecast period. Water depth in the centre of channel varied between 5.9m and 6.4m.

Figure 4.10 shows the the difference between the forecast ensemble mean and the true

water levels, plotted in plan view in the long domain, at several times during the forecast

step starting at t = 52 hours for the SPL experiment. Note that the scale in figure 4.10 is

ten times smaller than in figure 4.6. Figure 4.10a shows the difference between the forecast
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ensemble mean water depths and the true water depths at the observation/assimilation

time. As in the SOL experiment, the error between the forecast ensemble mean and true

water depths is small at all points in the domain at this time. Figure 4.10b shows the error

between the forecast and the truth 1 hour after the assimilation; figures 4.10c (2 hours

after assimilation), 4.10d (5 hours after assimilation), 4.10e (8 hours after assimilation)

and 4.10f (12 hours after assimilation) show how the error evolves. Unlike in the SOL

experiment, the error does not propagate from upstream to downstream; instead, the

error grows at a similar rate along the length of the domain. This further suggests that

the upstream-downstream error growth seen in the SOL experiments is due to incorrect

friction parameter specification.

Figure 4.10 shows that the mean forecast overestimates water depth on the floodplain

but underestimates water depth in the channel. This reflects the fact that although each

ensemble member predicts a physically realistic water level that is flat in cross section,

the ensemble mean forecast is not necessarily flat and therefore not physically realistic.

This is because the forecast mean water depth in each cell is the average value predicted

by the ensemble members. An example of this situation is shown in figure 4.11.
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(a)

(b)

Figure 4.11: Cross section of the domain showing bathymetry as a solid black line. The

true water level is shown as a dashed red line, water levels predicted by each ensemble

member are shown as blue circles. The mean forecast in each model cell is shown as a

cross. Figure 4.11a shows the central part of the domain from 65 ≤ x ≥ 185m. Figure

4.11b shows the forecast water levels and resulting forecast mean in the cell centred at

75m in greater detail.

Figure 4.11 shows the true flood level at one cross section of the domain and the

water level predicted by each ensemble member. The crosses show the mean ensemble

water level in each cell in the cross section. In the channel (e.g. at x = 125m), figure 4.11a

shows the ensemble predictions are such that the ensemble mean is slightly lower than

the true water level. Beyond the edge of the true flood on the flood plain, the true water

depth relative to the topography is zero, and most ensemble members also predict zero

water depth. However, as shown in figure 4.11b for the cell at x = 75m, there are cells

beyond the flood edge in which some ensemble members predict non-zero water depth and

the ensemble mean is therefore a very small positive water depth; this simply follows from

equation 4.9. It is therefore possible for the ensemble mean to predict water levels deeper

than the truth in cells beyond the true flood edge where there are a number of ensemble

members which predict non-zero depth, even when the water level is under-predicted in
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the channel. It should be noted that the errors are very small.

We note that updated ensemble water levels used at restart times may also be non-

physical (not flat). We did not encounter any problems related to this in our experiments

but such water levels could potentially cause some initialisation shock behaviour as small

amounts of water run off the flood plain into the river.

Figure 4.12: Calculated (analysis) mean channel friction parameter values at each assimi-

lation time. The true value is shown by the horizontal line. Open circles show the values

for the long domain, crosses for the regular domain. The error bars show one standard

deviation of the analysis parameter distribution for the long domain; values for the regular

domain are very similar.

Figure 4.12 shows the analysis ensemble mean value of the channel friction parameter

at each assimilation time. The true value of the channel friction parameter, nch, indicated

by the solid horizontal line, and the incorrect initial mean value is shown at time zero.

The error bars show one standard deviation of the analysis nch distribution. The results

show that the joint-state parameter data estimation produces a good estimate of the

value of nch, and that the ensemble mean values are almost identical for both the regular

and long domains. It is notable that the convergence of the estimated channel friction

parameter value to the truth is achieved with water depth observations only taken on the

floodplain.
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(a)

(b)

Figure 4.13: Reliability plot for the SPR and SPL experiments. Circles are for the long

domain, crosses for the regular domain. Plots show error vs spread for (a) the ensemble

of water levels and (b) the nch distribution.

Reliability plots for the ensemble of state vectors are given in figure 4.13a and for the

calculated parameter distributions in figure 4.13b. The plots show no evidence of ensemble

collapse, which can be a problem in ensemble data assimilation schemes. In fact the spread

of the state and parameter distributions remains broader than the size of the error in our

experiments, which minimises the risk of overfitting the value of nch at a particular time

in the simulation. If the spread of either the parameter or the state ensembles became

too small it would be necessary to use inflation techniques (see e.g. Anderson [2007]).
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We note that the joint state-parameter ensembles are over-dispersive; the state parameter

spread relative to the error is higher than for the state-only experiments. This may be

related to the fact that we see smaller errors between the forecast and the truth in the

joint state parameter experiments.

These results show a clear advantage in jointly estimating the channel friction pa-

rameter alongside the model state; this contrasts with the findings of Garcia-Pintado

et al. [2015], where no clear improvement in forecast water levels was seen. There are a

number of possible reasons for this, one being that in Garcia-Pintado et al. [2015] con-

vergence of the channel friction parameter value to a steady value was slow compared

to the timescales of the flood event. The difference between our results and those in

Garcia-Pintado et al. [2015] may also be related to the fact that there are more sources

of uncertainty in Garcia-Pintado et al. [2015], which used real data and real topography,

rather than the idealised situation in this study. One significant source of time-varying

error not accounted for in the setup used by Garcia-Pintado et al. [2015] and not present

in our experiments is lateral inflows (see Bermudez et al. [2017]). It may also be that

the initial parameter value used in Garcia-Pintado et al. [2015] was already close to the

true value, such that the error in the parameter was not a large source of error, whereas

our initial guess was incorrect by design. A better initial guess would also explain the

smaller changes to nch produced by the data assimilation in Garcia-Pintado et al. [2015].

Alternatively, it may be that the presence of the initialisation shock in Garcia-Pintado et

al. (2015) prevented convergence to a more accurate channel friction parameter.

Another possible reason for the contrasting importance to the forecast of updating the

channel friction parameter may be that in Garcia-Pintado et al. [2015] a bias correction

was also made to the inflow as part of the data assimilation. It may be that inflow

correction was also indirectly including some of the effects of the incorrect nch parameter.

This seems likely, since the upstream-downstream error propagation pattern seen in figure

4.6 would also be expected for an incorrectly specified inflow. Thus it may be that

no added benefit was gained from including nch estimation in addition to inflow bias

estimation because correcting error in inflow bias also compensates for any error in nch.

To test the interdependence of inflow error and error in nch we conducted some state-

parameter estimation experiments exactly as for the SPL experiments but with biased

inflows. No correction was made to the biased inflow, but the value of nch was updated

at each assimilation time.
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Figure 4.14: RMSEs between the mean forecast and the truth for positive inflow bias

in the long domain shown as open circles. The corresponding RMSEs for the unbiased

inflow are shown as crosses for comparison.

Figure 4.14 shows water level RMSEs with time for the long domain with biased

and unbiased inflows, and demonstrates that correction of the channel friction parameter

allows the forecast to predict accurate water levels, even with a biased inflow. The

correction to the value of nch is therefore compensating for inflow bias.

Figure 4.15: Calculated values of mean nch for biased inflow in the long domain shown as

squares. Circles show the corresponding values for unbiased inflow. The horizontal line

shows the true value and the error bars show one standard deviation of the calculated nch

distribution.

The updated values of nch with time for biased inflow are shown in figure 4.15. When

the inflow is biased, the value of nch does not converge to the true value, but instead to a

value which allows it to compensate for inflow bias and minimise errors in water levels in
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the domain. This clearly indicates an interdependence between errors in channel friction

parameter value and inflow.

Whatever the reason for the differences to the results in Garcia-Pintado et al. [2015],

the work presented here shows that our inundation forecast model is sensitive to the

channel friction parameter, and that the correct value of the parameter can be retrieved

from observations of water depth by using joint state-parameter data assimilation during

a flood event with unbiased inflow information.

4.6 Conclusions

In this study, we have investigated the effect of domain length and channel friction

parameter estimation in data assimilation for flood inundation forecasting. We have also

demonstrated that assuming water has zero momentum at the start of each forecast step

can cause an initialisation shock. The period of time for which this shock then causes

problems for the forecast is likely to be domain dependent; in this study we found that the

impact of the shock disappeared within a period of approximately 4 hours. We developed

a novel method to reinitialise water velocities in each model grid cell with pre-assimilation

values, and showed that this approach eliminated the initialisation shock.

In agreement with Andreadis et al. [2007], Neal et al. [2009], Garcia-Pintado et al.

[2013] and Matgen et al. [2010], we found that assimilating SAR-like water levels in a

state-only data assimilation system gives a time limited improvement in the forecast skill,

since such improvement can only persist for as long as the information is relevant in the

domain. We have shown that considering a longer domain extends the time over which

observations have an impact on the forecast, even when no extra observations are used.

This is because the ETKF is able to correct water levels downstream of the observations

due to strong covariances between the errors in water levels in different parts of the

domain. In a domain with more realistic topography, the correlations between the errors

in water depth in different parts of the domain may not be as strong, and are likely to be

more complex. However, work by authors such as Garcia-Pintado et al. [2015] indicates

that water level errors in large, real domains are correlated, as depths can be corrected at

considerable distances from SAR-derived observations. Additionally, understanding the

effects of domain length and friction parameter estimation without the extra complications

of topographical features is important in understanding the fundamental sensitivities of

such systems.
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We have shown that in the forecast period following an assimilation, the difference

between the forecast and the truth when the channel friction parameter is incorrectly

specified and not updated grows faster in the upstream part of the domain, and then

propagates downstream. This error propagation is the reason that the forecast ensemble

retains skill for a longer time in the long domain; the errors grow more slowly in the

downstream areas which are not considered in the regular domain.

Jointly estimating the channel friction parameter along with the water levels is shown

to produce a significantly better forecast for the same observations at very little extra

cost. This was not seen in Garcia-Pintado et al. [2015], in which inflow and parameters

were estimated simultaneously. Correcting the channel friction parameter also eliminates

the differences in forecast error growth for the two different domain lengths, as errors

grow at similar rates in the upstream and downstream parts of the domain. We have

shown that it is possible to estimate a good value for the channel friction parameter, even

when water level observations are available only on the floodplain.

In summary, we have shown that in the case where there is no inflow bias but channel

friction is incorrectly specified, assimilating SAR-like water levels from floodplains pro-

vides a time limited improvement in the forecast when only water levels are corrected.

The time over which the forecast is improved depends on the length of the domain of

interest. Authors such as Andreadis et al. [2007], Matgen et al. [2010], Giustarini et al.

[2011], Garcia-Pintado et al. [2015, 2013] have shown that inflow correction can lead to a

marked improvement in forecast skill. We have shown that jointly estimating the channel

friction parameter along with the water levels also provides a clear improvement in the

forecast at all times and can retrieve an accurate channel friction parameter value. Our

results suggest that it may be difficult to separate out errors due to incorrect specifica-

tion of inflow and incorrect specification of channel friction when carrying out ensemble

data assimilation for inundation modelling. This is because the character of the errors in

the forecast resulting from these two sources of uncertainty are similar; this interdepen-

dence explains our finding that updating the value of the channel friction parameter can

compensate for a bias in inflow. Further study is required to see how well each of these

conclusions are applicable to more complex and realistic topography, and for real satellite

derived observations. In this way, the work here may serve to enhance operational flood

forecasting potential.
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Appendices

4.8 Inflow and friction source terms

In order to model fluvial flooding in a stretch of river, the amount of water flowing

into that stretch needs to be modelled. Here we describe the implementation of a new

inflow source term in Clawpack. Clawpack is able to solve systems of partial differential

equations with or without source terms and is designed such that the user can introduce

new code to describe additional source terms. Our new inflow source term has been

implemented in the code in a similar way to the pre-existing friction source term. The

code for the friction source term is outlined in section 4.8.1 and the new inflow source

term is described in section 4.8.2.

4.8.1 Pre-existing friction source term

Friction between the fluid and the channel in which it is flowing acts as a momentum

source in the shallow water equations. This is represented in Clawpack with a source

term of the form

R(q)friction =


0

−γ(hu)

−γ(hv)

 , (4.8.1)

where γ is given by

γ =
gn2

√
(hu)2 + (hv)2

h
7
3

, (4.8.2)
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h is water depth and u and v are velocities in the x and y directions. Acceleration due to

gravity is denoted g and n is Manning’s friction coefficient. This coefficient describes the

roughness of the channel bed in which the water is flowing and in practical applications

its value is usually determined empirically. The value of n is specified by the user in the

Clawpack code, and can vary over the domain if specified in the simulation setup. The

units of n are sm−1/3.

In Clawpack, inhomogeneous sets of equations are solved using the method of frac-

tional stepping described in LeVeque [2002] p.380-395. This method splits the equation

into two simpler problems; one homogeneous conservation law and one inhomogeneous

partial differential equation - which can be solved independently over the same time step.

The solutions are then combined in an alternating fashion to give a solution to the whole

problem. For a friction source term, the set of problems to be solved are the homogeneous

system

∂q
∂t

+
∂F(q)
∂x

+
∂G(q)
∂y

= 0, (4.8.3)

and the source term equation

∂q
∂t

= R(q)friction, (4.8.4)

with R(q)friction as in 4.8.1 and q a vector of conserved quantities (see equation (4.2)).

For each time step in the code, equation (4.8.3) is advanced from ti to ti+1 to give

intermediate values of h∗, hu∗ and hv∗ in q∗. The values in q∗ are then used to solve

equation (4.8.4) over the same time step. This introduces a ‘splitting error’ into the

solution of order ∆t = ti+1-ti, making the whole method only first order accurate. A

more accurate splitting method (‘Strang splitting’) is available for implementation in the

code, but the first order accuracy has been found to be more stable and sufficient in

practice for a wide range of applications [LeVeque, 2002, 1997].

4.8.2 Inflow source term

For inundation simulations, water entering the domain of interest can be modelled

as a source term. Many existing hydrodynamic models have such functionality; we have

added an inflow source term to the Clawpack code in order to use it to model river-like

flow. In operational situations, information regarding this source term may be available

from an upstream gauge as a mass flow rate, Q, measured in m3s−1. In an ungauged
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catchment, the same information could be generated using a rainfall run-off model. Here

we use hourly values of Q based on gauge data; linear interpolation is carried out between

the hourly values. A water mass flow rate can be turned into a source term, S expressed

in ms−1 (c.f. the term ‘Sce’ in Hervouet [2007] p.31, which has the same units and can

include rainfall, infiltration etc) as long as the area of the domain or ‘footprint’ over which

the water is added is known. For water added over an area A, S = Q/A. The equation

for the inflow source term is then given by

∂q
∂t

= R(q)inflow, (4.8.5)

where

R(q)inflow =


S

0

0

 . (4.8.6)

Equations 4.8.5 and 4.8.6 show that for each time step ∆t, the change in h due to

the incoming water will depend on the value of the inflow source, S, over the same ∆t.

The extra water arriving in the domain creates extra water height, and is assumed here

to arrive without any momentum; the water is subject only to hydrostatic momentum

effects. This inflow source term has been implemented in the code in the following way

• determine in which grid cells the source term will be applied. This is reasonably

arbitrary but must be such that the solution remains stable (we used trial and error

in this experiment);

• calculate the total area that the inflow cells cover in the domain, A;

• for a given mass flow rate Q, calculate S for each value of Q by dividing by A;

• at the relevant grid points extract depth , h∗, as calculated from equation (4.8.3);

• calculate the change to h∗ due to incoming water from a discretisation of equation

(4.8.6) using a Crank-Nicholson scheme [Crank and Nicolson, 1996]

h = h∗ + ∆t
S(t) + S(t+ ∆t)

2
; (4.8.7)

• use the new value of h from equation (4.8.7) to solve for the next time step.
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4.8.3 Combining friction and inflow source terms

The source terms described in this section are applied in a sequential manner in the

code. For each time step, the inflow source term calculates the new water depths in the

relevant parts of the domain and then the friction source term is applied to the new water

depths.

4.9 Chapter summary

In this chapter we have shown that in our simplified domain we were able to retrieve

the correct channel friction parameter using SAR-like observations and an ETKF. We

showed that correcting the value of the parameter at the same time as water levels led

to a significant increase in the observation impact, i.e. an increase in the time over

which the observations influenced the forecast. We showed that error in the channel

friction parameter can compensate for error in inflows, making the two sources of error

difficult to distinguish. We also found that assuming zero momentum when restarting

our simulations after an assimilation caused an initialisation shock in the solution, and

devised and implemented a novel method for dealing with this.
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Chapter 5:

Observation operators for

inundation forecasting - theory and

idealised experiments.

This chapter is concerned with the second question from from chapter 1, which asks

whether we can devise a new way to extract observational information from a SAR image.

We would like to know the following:

• Can we find a new way to extract observational information from a SAR image,

and can we design and implement a new observation operator in order to in order

to use these observations in data assimilation?

• What are the physical mechanisms by which observation operators (including our

new operator) update water levels?

• Does our new observation operator work to improve the forecast in synthetic exper-

iments?

This work has been published as Cooper et al. [2018a]. The remainder of this chapter,

except for the chapter summary (section 5.9), is reproduced from the revised manuscript.

5.1 Abstract

Images from satellite-based synthetic aperture radar (SAR) instruments contain large

amounts of information about the position of flood water during a river flood event.

This observational information typically covers a large spatial area, but is only relevant
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for a short time if water levels are changing rapidly. Data assimilation allows us to

combine valuable SAR-derived observed information with continuous predictions from a

computational hydrodynamic model and thus to produce a better forecast than using the

model alone. In order to use observations in this way a suitable observation operator is

required. In this paper we show that different types of observation operator can produce

very different corrections to predicted water levels; this impacts on the quality of the

forecast produced. We discuss the physical mechanisms by which different observation

operators update modelled water levels and introduce a novel observation operator for

inundation forecasting. The performance of the new operator is compared in synthetic

experiments with that of two more conventional approaches. The conventional approaches

both use observations of water levels derived from SAR to correct model predictions. Our

new operator is instead designed to use backscatter values from SAR instruments as

observations; such an approach has not been used before in an ensemble Kalman filtering

framework. Direct use of backscatter observations opens up the possibility of using more

information from each SAR image and could potentially speed up the time taken to

produce observations needed to update model predictions. We compare the strengths and

weaknesses of the three different approaches with reference to the physical mechanisms

by which each of the observation operators allow data assimilation to update water levels

in synthetic twin experiments in an idealised domain.

5.2 Introduction

During a fluvial flood it is possible to use a numerical hydrodynamic model to predict

future water levels and flood extents. Such predictions are subject to uncertainties and can

be inaccurate; data assimilation can therefore be used to improve predictions by updating

model forecasts based on various types of observations (e.g. Lai and Monnier [2009],

Matgen et al. [2007a], Garcia-Pintado et al. [2013], Garcia-Pintado et al. [2015], Ricci et al.

[2011], Barthlmy et al. [2016], Schumann et al. [2009], Oubanas [2018], Oubanas et al.

[2018a], and Oubanas et al. [2018b]). For flooding, useful observations of river flow rate

or water depth could come from river gauges. However the number of gauges is declining

worldwide (Vrsmarty et al. [2001]) and a method that can work in ungauged catchments

is therefore desirable. For this reason satellite images, and in particular synthetic aperture

radar (SAR) images of flooded areas can be a good source of information (Grimaldi et al.

[2016]).

SAR sensors are active, side-looking sensors included on several satellites, e.g. Cos-
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moSkymed and Sentinel 1. Radiation (of wavelength cm to m) is emitted from the

satellite and directed towards the surface of the Earth. The returning signal is recorded

at a sensor and can be used to reconstruct information about the observed terrain. SAR

radiation is cloud penetrating, giving the instruments all-weather capability. SAR instru-

ments can also produce observations day and night, unlike passive sensors that rely on

solar radiation.

The strength of the returned signal measured at the SAR sensor depends strongly

on the roughness properties of the surface from which it has been reflected. During

a flood event SAR images therefore generally show a clear difference between flooded

and non-flooded areas. Pixels in flooded or other wet areas such as lakes and rivers

have low backscatter values and appear as dark areas on SAR images; dry areas have

higher backscatter values and dry pixels therefore appear paler. There are a number of

techniques for separating pixels into wet and dry areas based on backscatter. Methods

include thresholding (e.g. Henry et al. [2006]) with varying levels of user-interpretation

(as compared in Brown et al. [2016]), region growing/clustering (‘snakes’) (e.g. Horritt

et al. [2001]) and change detection (e.g. Hostache et al. [2012]). These techniques can

be used to provide observational information for data assimilation frameworks, but are

also used for flood mapping and monitoring (as in e.g. Brown et al. [2016], Matgen et al.

[2011]) and for validation and calibration of inundation models (e.g. Mason et al. [2009],

Baldassarre et al. [2009], Wood et al. [2016]). In the case of model calibration, Mason

et al. [2009] and Stephens et al. [2013] suggest that comparing modelled and observed

derived water level measures from SAR images results in better calibration than when

using binary wet-dry comparisons. However, it is not clear whether derived water levels

provide better observation impact than wet/dry observations in data assimilation.

In this work we consider different ways in which information from a SAR image can

be used to correct inundation forecasts using data assimilation. The use of observations

requires two steps. First, we must extract relevant, useable information from a SAR image.

This involves processing the raw SAR data in some way to produce an observation, or

set of observations, per image. In the second step we need to use an observation operator

to map our model state vector into observation space - i.e. we extract the equivalent

information from our model in order to compare it to the observations. The size of

the difference between the observation and the equivalent information from the model

forecast is then used to calculate an update or correction to the forecast. The observation

operator depends on the type of observational information used and we show in this
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paper that the impact of observations on the forecast can be strongly dependent on the

observation operator approach used. Despite this, the mechanisms through which different

observation types and different observation operators update hydrodynamic forecasts have

not received much attention in the literature.

In order to extract observational information from a SAR image, authors such as

Mason et al. [2012], Giustarini et al. [2011], Neal et al. [2009] and Matgen et al. [2007a]

have used an approach which relies on identifying the flood edge. Terrain information,

e.g. from a digital terrain model, is then used to infer information about water levels

on the floodplain. Water level observations (WLOs) can then be compared with model

forecast water levels. Examples of two observation operators using flood edge WLOs

are described further in section 5.4. A different type of observation is used for data

assimilation in Wood [2016] and Hostache et al. [2018], in which flood probability maps

are produced from SAR images using the method in Giustarini et al. [2016]. Particle filter

data assimilation techniques are then used to update a hydrodynamic model using flood

probability maps as observations.

We propose a new type of observation operator which directly uses pixel-by-pixel

backscatter values as observations. As in Wood [2016] and Giustarini et al. [2016], we

rely on the fact that SAR images yield distinct distributions of wet and dry backscatter

values. However, our method employs an ensemble transform Kalman filter (ETKF)

approach with a novel observation operator; we directly use measured SAR backscatter

values as observations rather than derived flood probability measures.

In this paper we examine the performance of our new observation operator and

that of two flood-edge observation operators in a series of synthetic experiments. We

compare the physical mechanisms by which the different approaches update predicted

water levels in the ETKF; to the authors’ knowledge these physical mechanisms have not

been discussed in the literature before. We outline the ETKF data assimilation algorithm

in section 5.3 and in section 5.4 we describe the three observation operators which we have

compared. Further details of our experiments are given in section 5.5, including an outline

of the hydrodynamic model. In section 5.6 we demonstrate how well the assimilation can

update model forecast water levels towards the truth with each observation operator and

explore the different physical mechanisms by which updates are made. We also test the

ability of the three operators to successfully update the model channel friction parameter

through an augmented state vector approach. We find that our new backscatter operator

generates better corrections to the state and parameter values than the simplest approach
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to assimilating flood edge observations, but does not always perform as well as the ‘nearest

wet pixel’ approach. In section 5.7 we discuss issues relating to the application of our

new observation operator to real data. In section 5.8 we conclude with a comparison of

the relative strengths and weaknesses of the three different observation operators.

5.3 Data assimilation

In this paper we explore the use of observations from SAR images in updating fore-

casts from a hydrodynamic flood model. In section 5.3.1 we outline the ETKF data

assimilation framework we use in our experiments (Bishop et al. [2001]), following the

approach of Garcia-Pintado et al. [2013], Garcia-Pintado et al. [2015] and Cooper et al.

[2018b]. In section 5.3.2 we describe the joint state-parameter estimation method we use

to update the channel friction parameter value.

5.3.1 Ensemble transform Kalman filter (ETKF)

In data assimilation, forecasts from a numerical model are combined with observa-

tions of the same system. We use a state vector, x(tk) ∈ RN to represent the state of

the dynamical system at time tk. Here, our model domain is split into N computational

cells and the state vector contains N water depths at a given time. In this paper we

use an ensemble of state vectors, where each state vector in the ensemble represents a

possible state of the system. For an ensemble made up of M state vectors (members),

xi, (i = 1, 2, ...,M) the best estimate of the true state of the system is represented by the

mean state, x, where

x =
1
M

M∑
i=1

xi. (5.3.1)

We can define a perturbation matrix, X ∈ RN×M , that can be used to derive a measure

of uncertainty in the mean state. The perturbation matrix is

X =
1√

M − 1
(x1 − x x2 − x ...... xM − x). (5.3.2)

We can then express the ensemble error covariance matrix, P ∈ RN×N as

P = X(X)T . (5.3.3)

The ETKF is a two-step sequential data assimilation technique. In the forecast step,
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each vector xi, is evolved in time using the forecast equation,

xi(tk+1) = M(xi(tk)), (5.3.4)

where M is the forecast model. Here, M is a hydrodynamic model built using Clawpack

code (see section 5.5.1); the model evolves water levels in each ensemble member with

time, generating an ensemble of flood forecast realisations.

In the update step the mean state vector and the error covariance matrix are both

updated based on observational information. We use the ETKF in its standard application

as a sequential filter. As such we perform an update step at the time of each available

observation. We assume that the observations are related to the true state of the system,

xt according to

yobs = h(xt) + ε, (5.3.5)

where the vector yobs ∈ Rp contains p observations. The vector ε represents observation

error, which we assumed to be unbiased and stochastic with covariance R ∈ Rp×p.The

observation operator, h : RN → Rp maps the state vector into observation space. If the

state vector and the observation vector contain the same quantity (e.g. water depth)

then the observation operator is generally just required to pick out the values in the state

vector corresponding to the spatial position of the observation(s); this may involve spatial

interpolation if observations are not located at model grid points. However, it is commonly

the case that observations are different quantities to those in the state vector and the

observation operator therefore contains information about how the observed and state

vector quantities are related as well as positional information. Different observation types

(e.g. water elevation or wet/dry pixel information) therefore require different observation

operators for the same model (i.e. for the same state vector).

In order to update the model forecast it is useful to create a forecast-observation

ensemble, which contains M forecast-observation vectors, yf
i , (i = 1, 2...M) such that

yf
i = h(xf

i ). (5.3.6)

Equation (5.3.6) shows that the observation operator, h, is applied to each state vector

in order to extract observation equivalent information; each forecast-observation vector,

yf
i ∈ Rp is what would be observed if the corresponding state vector, xf

i represented the

true state of the system. The model equivalent of the observation vector is given by the

mean of the forecast-observation ensemble, yf ∈ Rp, where
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yf = h(x) =
1
M

M∑
i=1

h(xi). (5.3.7)

Note that when the observation operator is nonlinear,

h(x) 6= h(x). (5.3.8)

We can also define a perturbation matrix Yf ∈ Rp×p for the forecast-observation ensemble

matrix:

Y =
1√

M − 1
(y1 − y y2 − x ...... yM − y). (5.3.9)

The mean state vector and error perturbation matrix are updated separately in the

ETKF. The mean state is updated according to

xa = xf + K(yobs − yf ), (5.3.10)

where xa ∈ RN and xf ∈ RN are the means of the analysis and forecast ensemble

respectively. The ETKF uses an ensemble version of the Kalman gain, K ∈ RN×p is,

as defined in equation (5.3.13). The ensemble Kalman update (5.3.10) can be written in

terms of the innovation, δy, where

δy = yobs − yf . (5.3.11)

The innovation is calculated in observation space. The term

K(δy) (5.3.12)

is known as the increment, and is the difference between xa and xf . The increment is

calculated in state space.

We use a square root formulation for the ETKF, following Ott et al. [2004], Livings

et al. [2008] and Livings [2005]. This formulation is also used in Garcia-Pintado et al.

[2013] and Cooper et al. [2018b]. In this approach the ensemble version of K is written

as

K = Xf (Yf )T (Yf (Yf )T + R)−1. (5.3.13)
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The state error perturbation matrix is updated in the ETKF according to

Xa = XfT. (5.3.14)

The perturbation matrix is updated by the matrix T ∈ RM×M . We use an unbiased,

symmetric square root formulation of the matrix T, constructed in a way that ensures

that the analysis state error covariance, Pa = Xa(Xa)T is the same as the analysis error

covariance calculated in the Kalman covariance update (in e.g. Kalman [1960]). The

formulation makes use of a singular value decomposition (Golub and Van Loan [1996]),

(R
1
2 Yf )T = UΣVT , (5.3.15)

where U ∈ RM×M and V ∈ Rp×p are orthogonal. The columns of U and V are the left

and right singular vectors of (R
1
2 Yf )T respectively. The diagonal elements of the matrix

Σ ∈ RM×p are the singular values of (R
1
2 Yf )T . A solution for T is then

T = U(I + ΣΣT )−
1
2 UT , (5.3.16)

where I is the identity matrix. See Livings et al. [2008], Cooper et al. [2018b] for further

details of how T is computed.

5.3.2 Joint state-parameter estimation

State augmentation techniques can be used to correct values of uncertain forecast

model parameters at the same time as the state is updated. In this approach, parameters

are appended to the state vector ( see Smith et al. [2013], Navon [1998], Evensen et al.

[1998], Smith et al. [2009, 2011]), producing an augmented state vector, xaug:

xaug =

x

b

 , (5.3.17)

where xaug ∈ RN+q. The vector b ∈ Rq contains q parameters. In this paper only one

parameter is being updated, so that b is scalar. The parameter we are updating in this

paper is the Manning’s friction coefficient in the river channel, nch, as the evolution of a

flood is known to be very sensitive to this parameter.
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The forecast equation for the case of an augmented state vector can be written as

xaug(tk+1) =

M(x(tk))

b(tk)

 . (5.3.18)

Equation 5.3.18 shows that we assume the value of nch remains constant during the

forecast step and changes only when the update equation is applied.

The augmented state vector is updated by the ETKF algorithm through equations

(5.3.10) and (5.3.14). Parameter value(s) are updated according to the observations due

to covariances between errors in the model state and errors in the parameter(s).

Model friction parameter values are more traditionally calculated using offline cali-

bration techniques and data from previous flood events. Updating parameter values using

a state augmentation approach has the advantage that it uses information from observa-

tions of the flood event of interest as it occurs. State augmentation can therefore take

into account any recent changes to the river and its environment.

5.4 Observation operators for inundation forecasting

Much existing work on data assimilation for fluvial inundation forecasting has fo-

cussed on assimilating derived water level observations. Water level extraction is based

on the fact that it is usually possible to differentiate between wet and dry areas in a SAR

image; the contrast in backscatter between wet and dry pixels means that it is therefore

possible to determine the position of the edge of a flooded area. Along this edge, the

water elevation is the same as the elevation of the topography. This means that as long

as a flood edge can be accurately identified and topographical information is available

(e.g. a digital terrain model (DTM)), water levels at the flood edge can be derived from a

SAR image. This approach has also been used for operational flood mapping, e.g. Brown

et al. [2016]. In practise, it is not possible to accurately determine flood extents from

SAR images over the whole ‘edge’ of a flooded area. This is clearly shown in Mason et al.

[2012] and can lead to few, sparse observations of this type.

In the remainder of this section we describe the three different observation operators

used in this study. In section 5.4.1 we describe the simplest way to use flood edge water

level observations; the results in section 5.6.1.2 illustrate the problems with this approach.

Section 5.4.2 gives an outline of the more sophisticated approach to using water level

observations used in Garcia-Pintado et al. [2013] and Garcia-Pintado et al. [2015]. In
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section 5.4.3 we describe our new observation operator.

5.4.1 Observation operator hs: simple flood edge assimilation

In this approach, we assume yobs comprises p water level observations at flood edge

positions. The simplest way to use these observations to calculate an innovation is to

extract water level information from each ensemble member at each observed flood edge

location. The observation operator in this approach, hs, picks out water level predictions

at the positions of the observed flood edges for each ensemble member. Some method of

interpolation will generally be necessary in order to locate the closest cell to the measured

flood edge location, but this was not needed in our identical twin experiments as the truth

and forecast simulations use the same grid. The simple observation operator hs in our

case is therefore described by a sparse matrix, Hs dimension (p by N) containing one and

zero values such that water elevation predictions corresponding to the positions of flood

edge observations are mapped with weight one and all other values with weight equal to

zero, i.e.

hs(x
f
i ) = Hsx

f
i . (5.4.1)

The value of yf is then calculated according to equation (5.3.7).

This approach can lead to problems in application and is therefore not widely used,

but we include it here to show the importance of how observations are used in data

assimilation. The problem with this simple method is essentially that it does not use all

of the available information. All ensemble members that predict shallower local water

levels than the truth at the position of the observation will make the same contribution

to yf ; they will all predict zero water depth at the flood edge position no matter how

much shallower the ensemble prediction is than the truth.

5.4.2 Observation operator hnp : nearest wet pixel approach

In this approach we assume again that yobs comprises p water level observations at

flood edge positions. In Garcia-Pintado et al. [2013] and Garcia-Pintado et al. [2015] the

authors use flood edge water level observations with a more sophisticated observation op-

erator, referred to here as the ‘nearest wet pixel’ method. The new observation operator,

hnp ∈ Rp×N can be described as a sparse matrix containing values of one and zero, so

that
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hnp(xf
i ) = Hnpx

f
i . (5.4.2)

Now however, water elevation values are mapped differently. Each row of hnp contains

a one at the positions corresponding to a flood edge locations observation only if the

corresponding water elevation value in xf
i is greater than the observed flood edge elevation.

Where this is not the case, the entry in xf
i corresponding to the ‘nearest wet pixel’ (i.e.

the local flood edge position as predicted by the ith ensemble member) is instead given

a weighting of one. Unlike the simple approach, this method allows information to be

included from ensemble members that predict shallower water levels than the truth, since

the contribution to yf will depend on the position of the flood edge predicted by each

shallower ensemble member.

Figure 5.1: Schematic of hnp in the case of ensemble member shallower than observed.

Figure 5.1 shows how when an ensemble member predicts shallower water levels than

the observation, the nearest wet pixel operator acts to effectively move the observation to

the predicted flood edge, i.e. to a position at which the ensemble member predicts non-

zero water depth. This allows ensemble members which are shallower than the truth to

contribute information to the assimilation scheme by allowing calculation of an increment

and innovation.

Finding the ‘nearest wet pixel’ can be difficult in practice, since is it important to find

the local flood edge that corresponds to the observation. In simplified topography such

as used in this study, this can be assumed to be the first wet model grid cell encountered

when moving from the observation towards the centre of the river along a cross section

perpendicular to the flow of the river. In situations where the topography is complex (e.g.

the local direction of flow is not clear, or the river has tight meanders) finding the nearest

wet pixel becomes more complicated. One approach is to require that the nearest wet

pixel is in the direction of the steepest downhill descent from the observation location.

A related approach has been successfully used by Matgen et al. [2007a], Giustarini
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et al. [2011], Neal et al. [2009] and Matgen et al. [2010], in which it is assumed that the

water level measured at a flood edge can be used to define the water level along the whole

horizontal cross section of river valley perpendicular to the flow of the river. In other

words, the observed water elevation at the flood edge is extrapolated across the river

valley in a direction perpendicular to the flow of the river. Again, this could potentially

cause problems in situations in which the local direction of flow is not clear or the river

has tight meanders. There may also be problems if the observations relate to bodies of

water on the floodplain that have become hydraulically separate from the river when the

flood is receding; such ponding was observed in the floods of the Severn and Avon rivers

near Tewkesbury, UK in 2014 (Waller et al. [2018]).

5.4.3 New observation operator, hb: backscatter approach

We have developed an alternative method for extracting observations from a SAR

image, which directly uses SAR backscatter measurements as observations, rather than de-

rived water elevation information. This means that the observation vector yobs comprises

pb backscatter values at a number of selected pixel locations. The method potentially

allows for more information to be used per SAR image, as information can be used from

areas excluded from water elevation calculations. This could reduce the time taken to

process a SAR image and produce useable observations.

The observations used in this method are measured SAR backscatter values; we

follow the approach of Giustarini et al. [2016] in assuming that the backscatter values

from a SAR image can be characterised as belonging to two separate probability density

functions; one for wet pixels and one for dry pixels. We assume that we can create a

histogram of backscatter values in the area of interest (Giustarini et al. [2016]). Two

Gaussian curves are then fitted to the histogram, corresponding to the wet and dry

probability density functions. These distributions represent the probability that a pixel

has a particular backscatter value, given that the pixel is wet (or dry). An example of

such a histogram is given in figure 5.2.

The distribution of wet pixels has a mean backscatter value mw and variance σ2
w. The

distribution of dry pixels has mean and variance md and σ2
d. Dividing the SAR image

into tiles may be necessary for this to work optimally; otherwise the distribution of dry

pixels is likely to dominate the histogram and make the wet pixel distribution difficult to

resolve (see e.g. Chini et al. [2017]).

A new observation operator is required in order to use backscatter observations in
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Figure 5.2: Example of backscatter histogram for flooded domain. Grey lines show fitted
Gaussian distributions and black vertical lines show the mean backscatter values for each
distributions

data assimilation. The operator needs to take each state vector (containing water levels

in each pixel) and transform that information into model equivalent backscatter values.

This could potentially be achieved using a SAR simulator to generate a synthetic SAR

image, but this would be computationally expensive and would require detailed knowledge

of the underlying terrain and land-use cover. Instead we take a statistical approach that

makes use of the wet and dry pixel backscatter distributions obtained from a SAR image.

The observation operator comprises two steps. We can describe this such that

yf
i = hb(x

f
i ) = hb2(Hb1x

f
i ), (5.4.3)

where Hb1 is a sparse matrix, dimension (pb × N) which extracts values corresponding

to observation location positions; each row contains a 1 at positions corresponding to

backscatter observation locations and all other values are zero. The non linear operator

hb2 is then applied to Hb1x
f
i ∈ Rpb . This operation transforms each entry in the vector

Hb1x
f
i into mw if water is predicted in the cell, or md if the cell is predicted to be dry.

As for the other observation operators, interpolation will be necessary when observed

backscatter cells do not correspond to the positions of model forecast information. As

already mentioned, this was not necessary in our synthetic study as we used the same

model to generate both the forecast values and synthetic observations; cell locations were
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therefore the same. The observation equivalent forecast vector is then given by

yf =
1
M

M∑
i=1

hb2(Hb1x
f
i ). (5.4.4)

This method potentially allows the use of more observations: in general the number of

available backscatter values from a SAR image, pb is much larger than the number of

reliable flood edge observations.

A different approach to using binary-type observations in data assimilation is used

by the authors of Rochoux [2014], Rochoux et al. [2014] and Rochoux et al. [2017] in

an application in which the spread of wildfires is modelled. This approach uses shape

recognition and front mapping; these ideas would be applicable to flood modelling but

are not investigated here.

5.5 Experimental design

5.5.1 Hydrodynamic model

The inundation model used in this work is a non-linear hydrodynamic model. The

model uses Clawpack code (Clawpack Development Team [2014], Mandli et al. [2016],

LeVeque [2002]) to solve the two dimensional shallow water equations everywhere in

the domain, in order to simulate water flowing in a channel and overtopping onto a

flood plain. Clawpack solves the shallow water equations using Riemann solvers and

finite volume methods, and is able to simulate the wet-dry interfaces that occur during

a flood George [2008]. The software considers the domain of interest as a user-defined

number of cells, N , and calculates changes in depth and velocity of the water in each

cell. In our simulations the boundary condition is extrapolating (outflow) on the y =

0 boundary; all other boundaries are solid wall. Clawpack uses a source term in the

momentum equation to model friction effects. Momentum reduction depends on a user-

specified Manning’s friction coefficient. Our experiments required an inflow source term

to model water arriving in the river from upstream; we added this functionality to the

Clawpack code, see Cooper et al. [2018b] for details. The time step for the calculations

is automatically adjusted to preserve numerical stability.
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5.5.2 Domain

Experiments to compare the performance of the three operators have been carried

out in an idealised river valley-like domain. The use of an idealised domain is important

here so that we can examine the effects of the operators under ideal conditions, without

the complications of complex topography. It will also be important to understand how

the operators work under real conditions, but experiments in an idealised topography are

a vital first step.

Figure 5.3: Test domain used in all assimilation experiments.

The test domain used in the experiments in this paper is the same as that used in

Cooper et al. [2018b] and is shown in figure 5.3. The domain has dimensions of 20km by

250m and describes a gently sloping valley and river channel (with upstream-downstream

slope of 0.08%). The domain is split into grid cells of size 10m by 10m for computation.

The river channel is prescribed to be the central 5 grid cells in the x direction for all

values of y and is 50m wide; the flood plain is defined as the rest of the domain. The

slope of the floodplain towards the river is 0.8% based on values derived from a DTM of

a stretch of the river Severn in the U.K.

5.5.3 Twin experiments

We have carried out a number of twin experiments in order to illustrate and compare

how well forecasts can be corrected when using the three different observation operator

approaches. The experiments use a ‘truth’ flood simulation and a forecast ensemble

of flood realisations comprising 100 members. The forecast ensemble is updated using

synthetic observations at several times during the simulation time; synthetic observations
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are created from the truth as described in section 5.5.4. The analysis water levels (and

parameter values) can then be compared to the true water levels (and parameter values)

to see how well the assimilation corrects the forecast.

In this work, the truth flood is driven by a time-varying inflow based on data taken

from a gauge on the River Severn during a flood in November-December 2012. The

true inflow is shown in figure 5.4; the figure also shows the inflows driving the ensemble

members. All the inflows used here were also used in the experiments reported in Cooper

et al. [2018b]. Inflows for each ensemble member were generated by perturbing the true

inflow with additive, time correlated random errors. Time correlated errors were generated

for each ensemble inflow using a first order autoregression (AR(1)) technique (Wilks

[2011]) with zero mean, according to

ei,0 = wi,0,

ei,k = rei,k−1 + (1− r2)wi,k,
(5.5.1)

where ei,k is the error added to the inflow at the kth timestep in the ith ensemble member.

The term wi,k is taken from a normal distribution N (0, 0.15× true inflow); i refers to

ensemble member and k refers to the timestep. The autocorrelation coefficient, r < 1

was set to 0.997; this very high coefficient means that the errors are close to persistent

in time for each ensemble member and that each inflow ensemble member is smooth.

The standard deviation of the random part of the error corresponds to the value used

to generate inflow errors in Garcia-Pintado et al. [2015] and results in inflows that fit

within the range given in Di Baldassarre and Montanari [2009] (4% to 43%). The mean

of the inflow ensemble has negligible bias relative to the true inflow. The experiments

shown here all use the same inflow for the truth and the same set of perturbed inflows

for the forecast ensemble. For a different true inflow and different ensemble inflow error

realisations, the results obtained using the different observation operators may compare

slightly differently. However, the mechanisms we describe would be the same.

Each ensemble member was run with a different value of the channel friction param-

eter, nch. The behaviour of flood water is highly sensitive to nch (Hostache et al. [2010],

James et al. [2016]), with low channel friction parameter values leading to water travelling

through and leaving the domain more quickly. This leads to shallower water levels (and

less flooding) in our simple domain for a given inflow. Conversely, higher channel friction

parameter values lead to water moving slowly through the domain, leading to deeper

water levels in the channel and more flooding. We chose a true value of nch = 0.04, equal
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Figure 5.4: Inflows with time. True inflow values are represented with circles and ensemble
inflows are shown by grey lines.

to the value for a natural stream given in Maidment and Mays [1988]. For the initial

forecast step, a value of nch for each forecast ensemble member was drawn from a normal

distribution with mean, µ, that is different to the true value and standard deviation σ.

This imposed bias in the forecast ensemble channel friction parameter means that we can

test how well data assimilation with different observation operators can correct the fore-

cast state and parameter value towards the truth. In our state estimation experiments,

the value of nch assigned to each ensemble member remained constant throughout the

simulation. For joint state-parameter experiments, the values of nch were updated at

each assimilation time through the ETKF equations, as described in section 5.3.2. Using

an incorrectly specified channel friction parameter in the forecast is realistic, as the true

value is unlikely to be known in operational situations. Initial forecast channel friction

parameters are randomly drawn from a normal distribution with µ = 0.05 and σ = 0.01

for experiments with positive bias in nch and with µ = 0.03 and σ = 0.01 for experiments

with negative bias in nch. The true value of nch falls within one standard deviation of the

mean of each initial nch distribution and our choices of friction parameter values fit with

the range used in Horritt and Bates [2002]. On the flood plain the value of the friction

parameter is likely to be higher than nch due to the effects of vegetation. In this paper

we used a true value for the flood plain friction parameter of nfp = 0.05; the same, true

value for nfp was used for each ensemble member. The value of this parameter is likely to

have an impact on the dynamics of a flood event, but flooding is commonly understood

to be less sensitive to nfp than nch (e.g. Hostache et al. [2010]). Here we focus on the

ability of the observation operators to update nch only.

Page 90



Chapter 5: Observation operators for inundation forecasting - theory and idealised experiments

5.5.4 Synthetic observations

In identical twin experiments, observations are generated from a truth run; in this

case the ‘truth’ flood simulation is described in section 5.5.3. For the two conventional

observation operators we selected six synthetic observations of water elevation at the true

flood edge at y = 500m, 700m, 900m, 1100m, 1300m, 1500m. The elevation at these

points is directly available from the state vector of water levels provided by our truth run.

Each synthetic observation mimics a SAR-derived water level observation at a given cross

section by locating a flood edge and using the true, calculated water elevation at this

position as the observation. Here we define the flood edge WLO to be the elevation at

the first ‘dry’ model cell encountered when moving in a perpendicular direction from the

centre of the channel along one of our defined cross sections. (We use observations on the

left hand side of the domain, i.e. where x < 125m, but since the domain and inflows are

symmetrical in our simple experiments this choice is arbitrary; we could have instead used

observations from the right hand side of the channel, or a combination of the two.) We

added unbiased, Gaussian noise with a standard deviation of 0.25m to each observation;

this is the same as the observation error used by Garcia-Pintado et al. [2015] in a case

study. Observation error may be due to SAR instrument error or errors in determination

of flood extent. The spacing of 200m between observations represents an optimistic best

case situation, and is the same as the smallest recommended distance between thinned

flood edge values for use in an assimilation system in Mason et al. [2012] (note that the

other selection criteria used in the paper are not applicable here due to the use of synthetic

observations). In fact, more recent work suggests a much longer correlation length scale

between observation errors in a real case study (Waller et al. [2018]), in which the authors

point out that part of the observation error correlation is due to the observation operator.

In order to test our backscatter observation operator we require synthetic backscatter

observations; we therefore create a synthetic SAR image from our truth run, comprising

backscatter values in each cell. We can then extract synthetic backscatter observations

at desired locations. We have taken a very simple approach to generating a simplified

synthetic SAR image in order to perform proof-of-concept experiments with our new

observation operator; we will apply the method to a real case study and real SAR images

at a later date. To generate a synthetic SAR image, we have taken our truth run water

level output and applied a threshold water level of 5cm in each cell to determine which

cells are wet and which are dry. Water levels below a threshold of a few cm are likely

to be misclassified as dry in a real SAR image due to vegetation. Synthetic backscatter
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values are then assigned to each cell: dry cells are assigned a backscatter value drawn

from N (md, σ
2
d) and wet cells a value from N (mw, σ

2
w). For this, we have used values of

mw = −14.84, σw = 2.25,md = −8.59 and σd = 1.53, which are experimentally derived

from a SAR image in Giustarini et al. [2016]. An example simplified synthetic SAR image,

generated from the truth run at t = 40h, is shown in figure 5.5.

Figure 5.5: Synthetic SAR image generated from truth run water levels as described in
section 5.5.4

In order to derive synthetic observations from the synthetic SAR image, the obser-

vation process is then carried out, i.e. we

• bin all the synthetic backscatter values in a histogram - see figure 5.2

• fit two Gaussian curves to the synthetic backscatter values (using python fitting

algorithm scipy.optimize.curve fit) - see figure 5.2

• extract new values of mw1,σw1,md1 and σd1 from these distributions; these values

are naturally very similar to the experimental values used to create the synthetic

SAR image. We use a different realisation of observation error for each synthetic

image (i.e. at each observation time); typical values of mw1,σw1,md1 and σd1 are

within 1% of mw,σw,md and σd.

We then extract backscatter values to be synthetic observations. Although it would

be possible to use a large number of backscatter observations in this method, for the

experiments presented here we have not used all of the available synthetic observations.

There are a number of reasons for limiting the number of observations. Firstly, observation
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errors are likely to be correlated for observations that come from positions close to each

other in physical space. Some thinning of the observations is therefore necessary to

meet the requirement that the observations used in the assimilation have uncorrelated

errors (Mason et al. [2012]); this allows use of a diagonal observation error covariance

matrix. Secondly, without ensemble localisation, using a number of observations larger

than the number of ensemble members can cause the assimilation algorithm to overfit the

observations (Kepert [2004]).

In this study we wish to investigate the differences in the updates generated by differ-

ent observation operator approaches. We therefore use equivalent observation information

for each of the operators. In the case of the water level observation operators we have

used flood edge water level observations at six locations, where the flood edge location is

defined as the position of the first dry model cell (see section 5.5.4). For the new operator

we use two backscatter observations for each transect.

Figure 5.6: Schematic of observation locations used in this study for each transect in cross
section. The thick black line shows the discretised domain elevation, the dashed blue line
shows the observed flood water level. The arrows and green crosses show locations of the
observations as labelled.

Figure 5.6 shows a schematic of the locations of the observations we have used in this

study, relative to the edge of the flood. All observations used in this study come from

transects at y = 500m, 700m, 900m, 1100m, 1300m and 1500m. In practical application

of the backscatter operator, observations could be used from any location covered by the

SAR image.

5.5.5 Observation error covariance matrices

It is important to specify the observation error statistics in data assimilation. In all

cases we assume that our observation errors are uncorrelated so that we can use a diagonal
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error covariance matrix, R. We assume that the error in flood edge WLOs is 0.25m. This

is close to the calculated error in SAR-derived water level observations in Mason et al.

[2012], and is the same value used in Cooper et al. [2018b] and Garcia-Pintado et al.

[2015].

The uncertainty in each backscatter observation reflects the distribution to which it

belongs (wet or dry). We assume that each entry can be set to be σ2
d1 corresponding to

a dry observation or σ2
w1 for a wet observation.

5.5.6 Further experimental details

We present here the results from a number of data assimilation experiments, each

lasting for a total simulation time of 112 hours. This includes an initial spin-up period

with constant inflow for 4 hours (as shown in figure 5.4) to allow the water to reach an

equilibrium state. In each experiment we use 100 forecast ensemble members. Assimi-

lations are carried out at 12 hourly intervals. This is currently the shortest likely time

between observations due to return times for satellites equipped with SAR instruments.

The ETKF is used without localisation or inflation in all of the experiments as we did

not encounter any spurious correlations or problematic ensemble collapse (see Petrie and

Dance [2010]). This suggests that 100 ensemble members is sufficient in this particular

case.

Experiments were run as follows

• State only estimation. State estimation experiments show how well data assimilation

is able to correct forecast water levels at each observation time using the three

different observation operators. In all of the experiments, a large bias is present in

the forecast channel friction parameter values, which means that by design the error

between the ensemble forecast and the truth grows quickly during each forecast step;

the forecast corresponding to each of the observation operators relaxes to the same

no assimilation (open loop) forecast. This allows us to examine the effect of each

observation operator on the water levels in isolation at each observation/assimilation

time, as the operators are each acting on very similar pre-assimilation forecasts.

State only estimation experiments were carried out using a positive bias in the

forecast channel friction parameter, which leads to forecast water levels that tend

to be deeper than the truth (experiment PBSO) at any given cross section, and

with a negative bias in the channel friction parameter, leading to shallower forecast

water levels (experiment NBSO).
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• Joint state and parameter estimation. Updating the value of nch along with water

levels allows us to see the effect of the observation operators on the forecast when the

large parameter bias can also be corrected by the assimilation process. Correcting

the channel friction parameter in this way leads to better persistence in the forecast

correction (Cooper et al. [2018b]). Experiments were again carried out using both

a positively biased initial channel friction parameter distribution for the forecast

ensemble (experiment PBJ) and negatively biased initial channel friction parameter

distribution (experiment NBJ).

5.6 Results and discussion of update mechanisms

5.6.1 State only estimation

5.6.1.1 Positive bias in forecast ensemble channel friction parameter

(PBSO)

Figure 5.7: Improvement in the forecast at each assimilation time, PBSO experiment.
The hatched white bars show improvement for the hs operator, the black bars show
improvement for the hnp observation operator and the grey bars show the improvement
for the hb observation operator.

Figure 5.7 shows improvement in the analysis compared to the forecast at each ob-

servation time for the PBSO experiment. Improvement is defined as

improvement =
(xf − xt)− (xa − xt)

xf − xt
× 100, (5.6.1)

where xt is the true state of the system. This improvement measure is positive when

the error in the analysis is smaller than the error in the forecast, while negative values
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imply a larger error in the analysis than the forecast. A perfect analysis (xa = xt) would

result in a 100% improvement measure. Figure 5.7 shows that in the PBSO experiment

all of the operators reduce the difference between the forecast mean and the truth at

each observation time. We found that the error in the forecast then quickly relaxed back

to the no assimilation (open loop) case for all of the observation operators. This short

lived persistence in forecast improvement (less than approximately 3 hours here) when

only water levels are updated is typical for such systems and is reported in many studies,

including Cooper et al. [2018b], Andreadis et al. [2007], Neal et al. [2009], Garcia-Pintado

et al. [2013] and Matgen et al. [2010].

5.6.1.2 Negative bias in forecast ensemble channel friction parameter

(NBSO)

Figure 5.8: Improvement in the forecast at each assimilation time, NBSO experiment.

The hatched white bars show improvement for the hs operator, the black bars show

improvement for the hnp observation operator and the grey bars show improvement for

the hb observation operator.

Figure 5.8 shows the improvement in the forecast at each the assimilation time for

the NBSO experiment. Here, the ensemble channel friction parameters are such that the

mean forecast water level tends to be shallower than the truth at any given cross section

in our domain. Unlike in the PBSO experiment, the operators do not all provide a good

analysis at every observation time. In fact, assimilation of flood edge observations using

the simple flood edge observation operator, hs, makes the forecast significantly worse at

many assimilation times. The reason for this is illustrated by considering the innovation
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produced by the simple flood edge operator when the forecast is shallower than the truth.

The types of innovations produced for mean forecasts that are either deeper or shallower

than the truth are shown in a schematic in figure 5.9.
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Figure 5.9: Schematic showing innovation for flood edge observation. In all cases blue

lines represent the true water level and blue circles represent the corresponding flood edge

observation, yobs. Green lines show the mean forecast water level and green circles show

the corresponding mean forecast-observation equivalent, yf . Innovations (δ) are shown

with green arrows and increments by thinner black arrows - see equation (5.3.11) for

definitions. The red arrow shows the difference between the observation location and the

nearest wet pixel location.

Figure 5.9(a) shows a simple domain in a cross section where the mean forecast is

deeper than the truth, with the innovation generated by the simple flood edge operator.
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The innovation is such that the data assimilation algorithm can generate an increment and

adjust the forecast water levels to be closer to the true water levels. However, as shown

in figure 5.9(b), when the mean forecast is shallower than the truth, the simple flood edge

assimilation method generates an innovation equal to zero. This is because the observation

implies that at the flood edge, the water depth relative to the topography is zero; the

ensemble forecast mean also predicts that the water depth is zero at the observation

position. The increment is therefore also zero and the forecast cannot be adjusted to be

closer to the truth (i.e. to shallower water levels), even though the observation clearly

indicates that this is necessary. Figure 5.9(c) illustrates the way that the nearest wet pixel

approach solves this problem by taking the water elevation at the observation position

and extrapolating it in space (as also shown in section 5.4.2). This effectively moves

the observation location to the nearest wet pixel, allowing a non-zero innovation to be

calculated.

Figure 5.9 illustrates the fact that the simple flood edge operator cannot produce

a useful update when the mean of the forecast ensemble is shallower than the observed

water level. Figure 5.8 shows that in our experiments the simple flood operator in fact

makes the forecast worse, increasing error relative to the truth at several assimilation

times. The reason for this is linked to the fact that it is possible for the mean of the

forecast ensemble to be deeper than the truth on the floodplain but shallower than the

truth in the river channel.

Figure 5.10: Cross section of the domain showing bathymetry as a solid black line. The
true water level is shown as a dotted red line, water levels predicted by each ensemble
member are shown as blue circles. The mean forecast in each model cell is shown as a
cross. Figure 5.10(a) shows the central part of the domain from 65 ≤ x ≤ 185m. Figure
5.10(b) shows the forecast water levels and resulting forecast mean in the cell centred at
75m in greater detail. Reprinted from Cooper et al. [2018b] with permission from Elsevier

Figure 5.10 shows the domain at one cross section. In figure 5.10 we see that in
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the channel (e.g. at x = 125m) the true water level is deeper than the ensemble mean.

At the edge of the flood, the true water depth is (by definition) zero relative to the

topography and the majority of ensemble members also predict zero water depth in these

cells. However, there are a small number of ensemble members that predict non-zero

water depth at the flood edge; it follows that the ensemble mean at this location is

therefore a small non-zero water depth as per equation (5.3.1). The flood edge operator

therefore generates an innovation such that the mean forecast water depth at the flood

edge is reduced and the analysed water depths are closer to the truth at this location.

Correlations between water levels in the domain mean that the water depth in the channel

is also reduced by the update step; this increases the error relative to the truth in the

channel. This explains the overall increase in error at assimilation times seen in figure 5.8.

The results in figures 5.7 and 5.8 show that the new backscatter operator works well

at most of the observation times. The mechanism by which the backscatter observation

operator works is illustrated in figure 5.11.
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Figure 5.11: Schematic of innovation (in backscatter/observation space) and increment (in

physical space) for one backscatter observation. The horizontal blue line represents the

true water level and the blue circle represents a corresponding backscatter observation,

yobs. The solid green line shows the mean forecast water level and the green circle shows

the corresponding mean forecast-observation equivalent in observation space, yf . The

innovation (defined in equation (5.3.11)) is shown in observation space with a green arrow

and the increment in physical space at the observation position (equation (5.3.12)) is

represented by a thinner black arrow.

Figure 5.11 shows a simplified river channel in cross section. The lower part of the

figure shows an example of a true and mean forecast water level, as in figure 5.9. The upper

part of the figure shows the same cross section, but is a representation in observation space

of an example (single) observation and equivalent mean forecast backscatter value, yf .

The green circle in observation space shows yf in the cell at the observation position. The

value of yf is calculated using water levels forecast by all the ensemble members, through

equation (5.4.3), and is essentially a measure of the proportion of ensemble members

which predict that cell to be wet (or dry). The mean forecast backscatter, yf , will always

take a value between the mean observed wet value, mw1 and the mean observed dry

value, md1; if half the ensemble members predict a cell to be dry and half predict it to be

wet, the value of yf will lie halfway between mw1 and md1. If most ensemble members

predict the cell to be wet (dry), the value of yf will be close to the mean observed wet
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(dry) backscatter value. The observed backscatter value, yobs, is shown as a blue circle

in observation space.

The innovation is shown in observation space in figure 5.11. The innovation is the

difference between the observed backscatter value, yobs, and the mean forecast backscatter

value, yf . Figure 5.11 shows that for the hs and hnp the state variables and observed

variables are the same. In the approach using hb, the observations are different to the

state variables. For hb the increment is the calculated difference in water level between

the forecast and the analysis in metres, but this is calculated using an innovation that is

a difference in backscatter value between the model and the observation. In the example

shown, the mean forecast backscatter value indicates that most of the ensemble members

predict the cell containing the observation position to be dry. This corresponds to the

shallow mean water level prediction shown in physical space. The backscatter observation

indicates that the cell is wet. The innovation is therefore large, and indicates that the

cell is more likely to be wet than the forecast indicates. This maps into an increment in

physical space through equation (5.3.12) such that the calculated analysis water level at

the observation position is deeper than the forecast water level.

A potential problem with the backscatter operator can be illustrated through inspec-

tion of equations (5.3.13) and (5.3.10). Equation (5.3.10) shows that when the value of the

Kalman gain matrix is zero, there can be no update to the forecast through assimilation

of observations, even when there is a large innovation - i.e. a large difference between a

model prediction and an observation. Equation (5.3.13) shows that this K = 0 condition

can be met if either X = 0 or Y = 0. For Y = 0 to be true, it is only required that the

ensemble members all predict the cell containing the observation to be dry, or all ensemble

members predict the cell to be wet. This is because if all ensemble members predict a cell

to be wet then they all give the same value of yf
i = mw through equation (5.4.4). Equa-

tion (5.4.3) then shows that the value of yf will then also be equal to mw, and each term

in Y must therefore be zero according to equation (5.3.9), since all the ensemble members

are the same as the mean. This means that if all the ensemble members predict different

but positive water depths (i.e. no non-zero water depths are predicted in the ensemble),

no increment can be generated and no update made to the forecast, regardless of whether

the observation indicates a wet or dry condition. For this reason, observations at or near

the edge of the flood are most valuable to the data assimilation algorithm when using

the backscatter observation operator, since these are locations where it is most likely that

the ensemble members will predict a variety of wet/dry predictions. We did not observe
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any situation in which Y = 0 in these experiments. It would in principle be possible to

add a small amount of noise to each value of yf
i in order to prevent Y = 0, but this risks

generating an innovation and increment such that the analysis error is larger than the

forecast error.

5.6.2 Joint state-parameter estimation

The large source of error in these experiments is, by design, due to a large bias in the

forecast ensemble channel friction parameter values. In this section we show the results of

updating the forecast channel friction parameter values as part of the assimilation process.

One way to measure the effectiveness of a data assimilation approach is to compute the

root mean square error (RMSE) between the resulting forecast and the truth. Here,

RMSE is defined as

RMSE =

√√√√ 1
N

N∑
j=1

(dt
j − d

f
j )2, (5.6.2)

where dt
j is true water depth in the jth cell; df

j is mean forecast water depth in the same

cell. As before, N represents the number of cells in the domain.

5.6.2.1 Positive bias in forecast ensemble channel friction parameter

(PBJ).

Figure 5.12: RMSE between forecast and truth, PBJ experiment. Open triangles show
the RMSE between the open loop forecast and the truth. Blue stars, green squares and
red circles show the RMSE between the forecast mean and the truth using the hs, hnp

and hb observation operators respectively.

Figure 5.12 shows the RMSE between the mean water levels predicted by the model

and the true water levels for the PBJ experiment. The mean value of nch and the mean
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value of the predicted water levels are updated at 12 hourly intervals starting from 16h.

At each assimilation time the RMSE for both the forecast (pre-assimilation) and analysis

(post-assimilation) water levels are shown; points within a forecast step are joined with

a line. The results show that the assimilation leads to a much improved forecast of water

levels for all of the operators at all times. There is persistence in the improvement to

the forecast, and each of the observation operators provides a better forecast than the

open loop ensemble for the whole of the simulation time. The results obtained using the

hs operator converge to higher RMSE values than the other two operators. Use of the

hb operator shows a gradual reduction in RMSE over successive forecast-analysis cycles.

The results for the hnp operator show faster reduction in the RMSE values, but the final

analysis value (at 112h) has a much higher RMSE. This is because at 112h the inflow

has reduced such that the water is well back within bank and in these conditions the

assumptions used to derive water elevation observations break down; the sides of the

river are too steep for the water edge position to accurately determine elevation. In an

operational setting, it would be necessary to test for an in-bank condition and discard

observations for the hnp operator when the river is within bank. This means that it is not

possible to calibrate a hydrodynamic model on a river using SAR images when it is not in

flood if water level observations are being used (i.e. with either the hs or hnp observation

operator).

Figure 5.13 shows the calculated (analysis) mean channel friction parameter values

at each assimilation time for the three observation operators. All of the operators produce

values for the parameter that are closer to the truth than the initial value. The value of

the channel friction parameter calculated using the hb observation operator converges to a

value close to the truth after 6 observations and then remains there. The value calculated

using hnp converges more quickly to a value close to the truth, but the last value in the

time series (at 112h) then diverges from the true value. This is because the river is now

well within bank and water elevation observations cannot be reliably determined.

5.6.2.2 Negative bias in forecast ensemble channel friction parameter

(NBJ)

Figure 5.14 shows the RMSE between the forecast and the truth for the NBJ ex-

periment. The nearest wet pixel approach provides a forecast which is very close to the

truth for most of the simulation time. The backscatter operator performs well after the

first two assimilation steps, showing a slower convergence to the true solution as in the
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Figure 5.13: Calculated analysis mean channel friction parameter, PBJ experiment. Hor-
izontal red line shows true value of channel friction parameter. Error bars show one std
of ensemble parameter distribution.

PBJ experiments. The simple flood edge operator performs badly, leading to a forecast

which is worse than the open loop case for most of the time. The reason for the poor

performance in this particular experiment is likely due to the mechanisms outlined in

section 5.6.1.2. The forecast is adjusted in the wrong direction at the first assimilation

time (at 16h) such that the water levels are too shallow; the mechanism by which this

can happen is demonstrated in figure 5.10. All subsequent corrections are very close to

zero, due to the mechanisms illustrated in figure 5.9, so that the blue line appears to be

unbroken.

Figure 5.15 shows the calculated analysis mean channel friction parameter values at
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Figure 5.14: RMSE between forecast and truth, NBJ experiment. Open triangles show
the RMSE between the open loop forecast and the truth. Blue stars, green squares and
red circles show the RMSE between the forecast mean and the truth using the hs, hnp

and hb observation operators respectively.

each assimilation time in the NBJ experiment for the three observation operators. The

results for the simple flood edge operator support the scenario outlined above, whereby

the water levels are initially adjusted in the wrong direction and then cannot be updated

towards the truth. Although the details of this will depend on topography, observation

error and choice of forecast inflows and parameters, this is nevertheless an important

mechanism to consider when choosing an observation operator. Both the hnp and hb

operators do successfully correct the value of the parameter towards the truth, with the

hnp operator recovering a good value in a shorter time than the hb operator. Both figures

5.14 and 5.15 show that at the final assimilation time, the analysis and parameter value

provided by the nearest wet pixel operator are not close to the truth. Again, this is

because the river is well within bank so the flood edge observation is on ground which

is too steep to provide a good observation; in operational settings observations such as

these would be screened out and no update would be made with the operator.

5.7 Discussion

In this study we have chosen to use a small number of backscatter observations for our

experiments. This allowed us to compare updates between the three observation operators

when the observation operators were all given equivalent information; in this way we can

draw conclusions about the physical mechanisms responsible for the different updates. In

a real case, one of the major advantages of using our new backscatter observation operator

is that it would be possible to use a large number of backscatter observations compared to
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Figure 5.15: Calculated analysis mean channel friction parameter, NBJ experiment. Hor-
izontal red line shows true value of channel friction parameter. Error bars show one std
of ensemble parameter distribution.

the number of water level observations which are typically available. The availability of a

large number of observations may be a major strength of our new approach; in our simple

experiments (not shown) we found that assimilating a larger number of observations with

the backscatter operator provided a better analysis than using only a few. Another merit

of the backscatter operator is that there is less processing involved in using backscatter

observations directly, potentially reducing the amount of time between acquisition of a

SAR image and its use to update an inundation forecast. The backscatter operator also

removes the need for locating the nearest wet pixel in the model forecast, which can be

computationally costly.
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There are a number of potential problems with practical implementation of the

backscatter operator. One is that using histograms to produce SAR-derived inundation

maps can lead to errors in assigning pixels to wet/dry categories. One way to deal with

this would be to use region growing techniques (see e.g. Horritt et al. [2001]) or change

detection techniques (see e.g. Hostache et al. [2012]) to produce robust wet/dry maps

for SAR images, and then perform a quality control procedure to discard any backscatter

observations which would lead to mis-classification due to e.g. emergent vegetation. This

procedure would remove the advantage of fewer processing steps for the backscatter oper-

ator, but may not be necessary. Further research is required to understand how robust the

method is to the proportion of misclassified SAR pixels in a real case study. We note that

the backscatter operator would not generate an update the forecast in model cells that

all the ensemble members predicted to be dry (or wet) as discussed in the last paragraph

of section 5.6.1.2. This means that SAR pixels far from the river wrongly classified as

wet, or SAR pixels in the river channel wrongly classified as dry would not degrade the

forecast through an erroneous update.

The new backscatter operator is likely to work well in cases where good separation

of the wet/dry distributions can be obtained through a histogram, and less well in cases

where the distributions overlap. The new observation operator does not require a digital

elevation model to generate forecast-observation equivalents, although the hydrodynamic

model would require topography information to generate a forecast. Water level obser-

vations cannot be accurately determined in areas with high slope, whereas backscatter

observations will be unaffected. Like the other observation operators, the new operator

will likely provide better results in rural settings than urban settings; double-bounce and

layover effects due to buildings are potential sources of problems for all of the operators

(Mason et al. [2018]).

5.8 Conclusions

We have carried out a series of experiments to test the performance of three different

types of observation operators in an ETKF approach to data assimilation for fluvial

inundation forecasting. Although the results are for one specific idealised domain, one

realisation of true inflow and a single realisation of observation error per observation type,

we believe that many of our conclusions will be applicable much more widely through

the mechanisms we describe. Repeats of experiments (not reported here) with different

realisations of observation error show evidence of the same behaviour in terms of the
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mechanisms we have described. Our experiments show that:

• Simple assimilation of flood edge water elevation observations can result in no cor-

rection to the forecast even when there is a large difference between the forecast

and the observation. This happens when both the model prediction and the ob-

servation predict no flooding at the observation location. We have illustrated the

physical mechanism responsible for this (figure 5.9) and shown an example in which

this happens in our experiments (see assimilation times from 28h onwards in figure

5.14). The simple flood edge operator can also generate an update such that the

analysis has a larger error than the forecast. This can occur when the forecast is

deeper than the truth at the observation position, but shallower than the truth in

the channel. In such cases the assimilation updates the water levels to shallower

levels as required at the observation position, but also wrongly updates the channel

water levels to be shallower. The mechanism for this is shown in figure 5.10; this is

responsible for the negative improvement measures in the NBSO experiments (see

figure 5.8). We have shown in our experiments that the simple flood edge operator

fails in these ways when the mean ensemble channel friction parameter is negatively

biased but it would also fail if, for example, the mean forecast inflow was negatively

biased since errors in friction parameter and inflow are correlated (Cooper et al.

[2018b]). Since in operational settings both forecast inflow and channel friction pa-

rameter values are uncertain, we conclude that the simple flood edge operator is

not a good choice.

• The nearest wet pixel approach provides better assimilation accuracy than simple

flood edge assimilation: in our experiments we find no evidence of negative ‘im-

provement’ scores or zero increments when the forecast and observations are very

different. In our idealised system it is the best choice of observation operator in

terms of better forecast accuracy in the state only experiments and in terms of

rapid convergence to the true solution for both water levels and mean channel fric-

tion parameter value in the joint state-parameter experiments. However, we have

shown that using water edge observations when the river is well within bank can

lead to a degradation of the forecast. Also, locating the nearest wet pixel is likely

to be difficult in practise for operational applications using real, more complicated

topography. One way to limit the distance between the flood edge observation posi-

tion and the nearest wet pixel is to locate the nearest pixel at which some threshold

of ensemble members predict a positive water depth. The predicted water elevations
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at this location could then be used to create yf . This approach balances out the

need to include information from ensemble members predicting shallow water levels

at the observation position with the requirement that the nearest wet pixel is not

too far from the observation location.

• Our new backscatter observation operator performs well compared to more conven-

tional options in our idealised domain using synthetic observations. The operator

does not suffer from the problems of the simple flood edge operator and is able to

correct the forecast for the state only assimilation cases. The backscatter operator

approach also allowed the forecast to converge to the true solution for both water

levels and channel friction parameter value in the joint state-parameter experiments,

although in our experiments convergence was slower than for the nearest wet pixel

approach. Using backscatter values operationally may speed up the time taken from

image acquisition to assimilation and an improved forecast due to fewer steps in the

processing. The new operator could also potentially allow the use of much more

information from any given SAR image, although there is likely to be a limit to

the number of backscatter observations that can be used without causing variance

collapse in the channel friction parameter distribution. Tests using larger numbers

of backscatter observations have not been presented here; we plan to address this

question in a real case study so that the results will be more directly applicable to

real world situations.

This work has shown that our novel backscatter operator has the potential to im-

prove inundation forecasting in fluvial floods, and we believe it may have applications

in other types of flooding where SAR images are available. Further work is required to

test the operator against the hnp approach in a real case study, using real SAR data and

real topography in order to further assess the strengths and weaknesses of the different

approaches. We have explained the physical mechanisms associated with the assimila-

tion increments for each type of observation operator; these mechanisms will also be

applicable to variational data assimilation methods using similar observations. Improved

understanding of these physical mechanisms provides insight into the best approaches to

improve the effectiveness of assimilation of SAR data in the future.
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5.9 Chapter summary

In this chapter we have designed and implemented a novel method to extract obser-

vational information from a SAR image for use in data assimilation. We have used our

novel approach in synthetic experiments and showed that the new method can update

modelled water levels towards the truth. We have compared the water level updates pro-

duced by our new approach to those generated by two more conventional approaches and

discussed the physical mechanisms by which observation operators (including our new

operator) update water levels.
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Chapter 6:

New observation operator for

inundation forecasting - case study.

In this chapter we address the last question from chapter 1: How does our new

backscatter observation operator work with real topography and SAR data? We have

shown in chapter 5 that our new backscatter observation operator can improve the forecast

in an idealised domain with synthetic observations; here we want to answer the following

questions:

• Can we apply our new observation operator to a real case study using real topog-

raphy and SAR images?

• Does our new observation operator improve the forecast in a real case study?

The new backscatter observation operator described in chapter 5 has been applied to

a flood event in the Severn catchment, U.K, in November/December of 2012. We chose

this event as we have access to a set of SAR images over the course of the flood to use

as observational data. The first SAR overpass happened after the start of the flooding

and we show here results from assimilating data from six images. Our experiments cover

a subdomain of the area used in Garcia-Pintado et al. [2015] and Garcia-Pintado et al.

[2013], in which the hydraulic model LISFLOOD-FP (Neal et al. [2012a]) was used to

model the same flood event. We used a subdomain in order to simplify the analysis of

our new observation operator and also due to the high computational cost of running our

inundation model at high resolution (see section 6.1.1).

This chapter is organised as follows: In section 6.1 we describe the application of our

hydrodynamic model to part of the Severn catchment. We describe the observations used

in our data assimilation experiments in section 6.2; in section 6.3 we briefly describe the
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experimental design of the data assimilation experiments we have carried out. In section

6.4 we discuss the results of our experiments and in section 6.5 we conclude that our new

observation operator can be successfully applied to a real SAR data.

6.1 Inundation model

6.1.1 Topography and computational grid resolution

The inundation model used for the work in this chapter used the same Clawpack code

as in chapters 4 and 5. The terrain elevation data for the simulations was adapted from

the 75m resolution elevation data used in Garcia-Pintado et al. [2015] and Garcia-Pintado

et al. [2013]; this was based on upscaling the NEXTMAP British digital terrain model

(Intermap Technologies).

Figure 6.1 shows the terrain elevation in m used for our inundation simulations, with

three gauge locations. Data from gauges at Knightsford Bridge and Worcester Barbourne

were used to drive the model inflows; data from the gauge at Saxon’s Lode were used for

validation of results. Gauge data were not assimilated. The domain includes a stretch

of the river Severn (traversing north-south) north of Tewkesbury, U.K. The domain also

includes part of the river Teme (east-west), which is one of the Severn’s larger tributaries.

We used reflecting boundaries at the north, east and west boundaries of the domain, and

an extrapolating outflow boundary at the southern end of the domain in order to allow

water to flow out freely.

It was necessary to make changes to the elevation used in Garcia-Pintado et al. [2015]

and Garcia-Pintado et al. [2013] due to differences in the way Clawpack and Lisflood-FP

represent topography. Lisflood-FP uses a sophisticated sub grid parameterisation tech-

nique to represent river channels (see Neal et al. [2012a]). This gives the model the capa-

bility to use low resolution digital terrain maps while still resolving all the river channels;

the 30-50m wide rivers in the Severn-Avon catchment can therefore be accurately repre-

sented using a 75m grid resolution. This sub-grid approach was used in Garcia-Pintado

et al. [2015] and Garcia-Pintado et al. [2013] to model river channels in LISFLOOD-FP as

rectangular cross sections, with paramaterised depths and widths of the channels chosen

to match measured cross sections. Clawpack does not have sub-grid capability. Since we

used the 75m terrain model, we necessarily assumed the river channels were all 75m wide

and adapted the bed elevation in the river model cells in order to satisfy the requirements

that:
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Figure 6.1: Experimental domain, elevation shown in metres. Axes co-ordinates (x and
y) are OSGB 1936 British National Grid projection in m. White circles show the location
of gauges. Data from Knightsford Bridge and Worcester are used for inflow generation.
Data from the Saxon’s Lode gauge are used for comparison with model prediction.

• the cross sectional area of the channels approximates the parameterised cross sec-

tional area used in Garcia-Pintado et al. [2015] and Garcia-Pintado et al. [2013]

and

• the bed elevations are smoothly varying.

We found that matching the cross sectional area exactly in each river grid cell meant

that the bed elevations were not smooth enough to accurately represent the rivers. Some

river cells had bed elevations much higher than all their neighbours, resulting in water

going out of bank in unrealistic conditions (i.e. even for very low flows, and in areas

that do not show flooding on the SAR images). We therefore smoothed the bed eleva-

tions to generate more realistic behaviour. All models of this type are required to make

approximations and parameterisations for river and floodplain topography, resulting in
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flows which are not completely realistic. Nevertheless, the updates generated using our

new observation operator are still of interest as we are able to examine the impact of the

observations and assess to what extent the data assimilation is able to compensate for

the inaccuracies of the model.

Although Clawpack does not have sub-grid capabilities, it is possible to specify a

computational grid resolution that is different to the topography resolution. We therefore

used a computational grid resolution of 25m with the topography grid of 75m resolution.

This means that each topography grid cell was split into nine smaller cells for calculation

of the solution, each with the same elevation defined by the topography map. Each

75m-wide river cross section is therefore modelled by three 25m grid cells. Using this

finer resolution for the computational grid results in longer run times for the simulation

experiments, but we found it was necessary in order that the simulated flow rates matched

the measured flow rates at the Saxon’s Lode gauging station at low flows. To illustrate

this, we used reported flow rates from Knightsford Bridge and Worcester Barbourne over

a (no flooding, low-flow) 10 day period before the floods as driving inflow and measured

the resulting model prediction at the location of the Saxon’s Lode gauge. The simulation

period here runs from 0100 11th November 2012 to 0100 21st November 2012.

Figure 6.2: Measured and modelled flow rates at Saxon’s Lode gauge location. The
red crosses show measured hourly values. The blue line is modelled flow rate for 75m
computational grid resolution, the green line is modelled flow rate for 25m computational
grid resolution; all other experimental conditions and model parameters are the same.

Figure 6.2 shows modelled flow rates at the location of the Saxon’s Lode gauging

station for 25m (green line) and 75m (blue line) resolution computational grid. In both

cases the Manning’s friction coefficients were set to 0.02 in the river channels and 0.06

elsewhere. The red crosses show hourly flow rates reported by the Environment Agency
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at the gauge. The discharge spikes seen in the observed data are due to tidal backwater

effects, sometimes observed at this location (Neal [personal communication, 2019]). This

figure shows that our model is unable to successfully reproduce the in-bank flow rates

when using the 75m resolution computational grid; this was true for a range of realistic

channel friction parameter values. Using a 25m resolution grid gives results that match

the reported values better. The increased computational cost of running the model at

25m resolution is the main reason for using a subdomain of the area covered by the SAR

observations.

It was also necessary to switch off terrain interpolation in Clawpack for the elevation

model. Clawpack is designed to take a (coarse) topography map and interpolate model

cell corner elevations in order to give a good approximation for the elevations of the

terrain in the centre of each computational cell. In the case of a river profile, this can

have the effect of changing the cross section of the river channel. In order to use the bed

elevations that were specified with no additional smoothing it was necessary to write a

new ‘no-interpolation method’ to set up the topography exactly as specified.

6.1.2 Choice of value for Manning’s friction coefficient

Unlike in the synthetic twin experiments of previous chapters, we do not have a truth

run, nor a known value for the true friction parameters. In order to determine a likely

range of values for nch we compared modelled flow rates at Saxon’s Lode for a number

of channel friction parameter values. As in section 6.1.1 we used pre-flood, low measured

flow rates at the inflows from 0100 11th November 2012 to 0100 21st November 2012 to

drive the model.

Figure 6.3 shows predicted flow rates for three different values of nch. Initially there is

no water anywhere in the domain and in all cases the domain is the 75m topography with

a 25m resolution computational grid. As expected, higher channel friction parameters

result in the water taking longer times to reach the location of Saxon’s Lode. After this,

there are only small differences between the flow rates predicted by different channel

friction parameter values. The green and blue lines are not smooth because flow rates are

plotted at every model time step, which can be very small (a few seconds).

Based on our simple investigations, we randomly sampled values of nch for each

ensemble member from a normal distribution centred on 0.03, with standard deviation

0.01. We used the same values in both the Severn and the Teme for each ensemble

member; this follows the approach of Garcia-Pintado et al. [2015] and Garcia-Pintado
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Figure 6.3: Gauged and modelled flow rates at Saxon’s Lode gauge location. Red crosses
show hourly gauged values. The black line shows modelled flow rate when nch = 0.015,
the green line shows the modelled flow rate nch = 0.02, the blue line shows modelled flow
rate when nch = 0.04. In all cases the friction parameter outside the channels is set to
0.06

et al. [2013]. Since the Teme is narrower than the Severn and we have represented both

with 75m wide channels, it would make sense to attempt to parameterise the friction

coefficients to try to compensate for this. In practice, initial investigations showed little

effect on the resulting flow rates of using differing friction parameters; this is perhaps

because the main contribution to the flow at Saxon’s Lode comes from the river Severn.

Outside of the river we used a friction coefficient of 0.06, which is the same value used

in Garcia-Pintado et al. [2015] and Garcia-Pintado et al. [2013]. It would be interesting to

investigate the effects of using different values for friction coefficients in the river and flood

plain, or on different branches of the river, but we did not consider this here. We carried

out only brief calibration experiments for the friction coefficients because the purpose of

our experiments is to assess the impact of our new observation operator; this does not

rely on the model giving the best possible forecast, just a broadly realistic one.

6.1.3 Inflow ensemble generation for assimilation experiments

We used measured flow rates from gauges at Knightsford Bridge and Worcester Bar-

bourne before and during the flood to generate inflows for the forecast ensemble. We

created an ensemble of inflows for both inflow gauges by adding time correlated errors to

the gauged inflows in the same way as described for the synthetic experiments in section

5.5.3. Each inflow simulation started 21:00 on 17th November 2012, approximately 10

days before the first SAR observations, to account for any spin-up effects. The simulation
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time period ended at the time of the final SAR overpass, at 18:14 on 2nd December 2012.

Figure 6.4: Inflow at Worcester gauging station. Red circles show measured data from

gauging station, black lines show flows for ensemble members. Blue vertical lines show

the times of the satellite overpasses used for observational information.
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Figure 6.5: Inflow at Knightsford Bridge gauging station. Red circles show measured data

from gauging station, black lines show flows for ensemble members. Blue vertical lines

show the times of the satellite overpasses used for observational information

Figures 6.4 and 6.5 show the inflows used for each of the 100 ensemble members for

the Worcester and Knightsford Bridge inflows respectively. Time is measured in hours

from the start of the simulation at 2100h on 17th November 2012. For dates and times

of the overpasses see table 6.1.

6.2 Observations

6.2.1 SAR observations

We used digital number (DN) backscatter observations from SAR images obtained

by the COSMO-SkyMed (CSK) constellation at 6 times during the course of the flood.

Table 6.1 shows the times and dates of the SAR observation overpasses. The SAR data

we used is processed to level 1C-GEC (Garcia-Pintado et al. [2015]) and comprises digital

number (DN) values. Each image covers a larger area than our subdomain, and DN

measurements are at a higher resolution (2.5m) than our inundation model (25m). We

therefore used ENVI image analysis software to extract backscatter DN measurements

co-located with model cell centres. An alternative approach would be to take an average

of the measured DN values covered by each model cell. Using cell centre DN values means
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that only one out of every 10 DNs in the x and y directions is used. The observations

are therefore thinned at this stage, reducing the risk that there will be correlations in the

observation errors unaccounted for in the data assimilation algorithm. Such correlations

between observation errors are found to have longer than expected lengthscales in Waller

et al. [2018].

We only used the first six of the images for our data assimilation experiments. We

were unable to extract the observations needed from the seventh image as there were

insufficient wet pixels. See section 6.2.2 for more details.

6.2.2 Extraction of wet/dry distributions

In order to use our backscatter operator we require histograms of wet and dry pixel

DN or backscatter values for each image. In the work of Giustarini et al. [2016], backscat-

ter values in dB are used to identify wet and dry areas. To get from DN to backscatter

in dB it is necessary to first calibrate the DN values using a radiometric calibration

constant; backscatter values are therefore usually a more expensive product to purchase

from SAR data providers. The backscatter value for each cell in dB, b, is then given by

b = log10(DNc), where DNc is the radiometrically calibrated DN value. Here, we did not

apply radiometric calibration and instead used raw DN to extract histograms of wet and

dry pixels. We did work with values of log10(DN) in order to be able to discriminate

better between the values. Using the DN rather than the backscatter values means that

it is not possible to compare values between images. This would be important if we were

employing change detection techniques to identify wet/dry areas (as in e.g. Hostache

et al. [2012]), but this is not the case here.

Figures 6.6 and 6.7 show an example of an extracted backscatter map and resulting

histogram for the overpass on 28th November 2012.

Figure 6.6 shows the log10(DN) values obtained from the 2nd SAR satellite overpass.

Timestamp (UTC) Pass
27/11/12 19:20 Descending
28/11/12 18:01 Descending
29/11/12 18:20 Descending
30/11/12 19:32 Descending
01/12/12 05:38 Ascending
02/12/12 05:56 Ascending
04/12/12 18:14 Descending

Table 6.1: Times of Cosmo-Skymed satellite overpasses.
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Figure 6.6: log10(DN) values for SAR image obtained on 28/11/2012. Red rectangle
shows the area used to create a histogram of log10(DN) values.

The values inside the red rectangle were used to create the histogram shown in figure

6.7. Two different distributions of log10(DN) values can clearly be seen in figure 6.7;

the dotted grey line shows two Gaussian distributions fitted to the peaks using python

fitting algorithm scipy.optimize.curve fit. The fitting algorithm uses a non-linear least

squares method to generate the curves. The method was moderately sensitive to initial

‘guess’ data for the Gaussian distribution parameters; these were chosen by eye for each

distribution. The solid grey line shows the sum of the two distributions. We use only

the values inside the red rectangle in figure 6.6 so that the wet and dry distributions can

be separately identified. There are many more dry pixels than wet in the whole image,

meaning that a histogram of all the values shown in 6.6 is dominated by dry pixels. It is

then not possible to fit a Gaussian distribution to the wet pixel distribution. We chose

the area used for making the histograms in this chapter by trial and error, following Chini

et al. [2017] in making sure that the Asham D criterion for separation of the Gaussian

distribution peaks was met for each image. The quality of fits of the distributions would

likely be better if we used a more complex method for extracting the cells to use in a

histogram, as in Chini et al. [2017], since this would result in identifying a greater number

of cells and therefore a larger number of values in each histogram. In these experiments

we are more interested in the observation operator and data assimilation approaches.

Unfortunately in the case of the seventh image we were unable to extract a histogram
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Figure 6.7: Histogram of a selection of log10(DN) values (see rectangle in figure 6.6) for
SAR image obtained on 28/11/2012. The blue bars show the number of cells in each bin.
The dotted grey lines show the two Gaussian fitted distributions, and the solid grey line
shows their sum. The inset table contains the mean and standard deviation values for the
wet and dry pixel distributions; mw and md are the mean wet and dry log10(DN) values
respectively (shown with vertical red lines), σw and σd are the corresponding standard
deviations.

showing two peaks. This is because the water was back in bank at this point and extracting

DN values at model cell centres produced only a very small number of wet cells. We

therefore carried out an assimilation at the first six times detailed in table 6.1.

6.2.3 Observation thinning and quality control

As stated in section 6.2.1, the SAR image DN values are thinned to match the

resolution of the inundation model. We then thinned the observations further before

assimilating them. We did this so that

• we further reduce the chance of spatial correlations between observation errors

• the assimilation of the observations is less computationally costly

• we reduce the risk of overfitting to the observations in the assimilation

We thinned the observations by taking every second observation in the x direction

and every 10th observation in the y direction. We thinned in this way in order to try
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to maximise the chance of locating flood edges associated with the Severn river. This

step reduces the number of observations from ∼ 180, 000 to ∼ 9000. We also reduce the

number of observations of (dry) pixels far from the river, since these do not add any

useful information to the assimilation. We then quality control the observations based on

their log10(DN) value and the fitted distributions shown in 6.7, rejecting any observations

which are far from either of the distribution means. We also discard observations with

very high or low log10(DN) values as instrument outliers. We reject any observation, yDN

which does not satisfy

mw − 3σw ≤ yDN ≤ mw + σw (6.2.1)

or

md − σd ≤ yDN ≤ md + 3σd (6.2.2)

These procedures result in a set of ∼ 5000 observations per image.

Figure 6.8: Top panel shows observation values taken from SAR image on 28th November
2012 (∼ 180000); bottom panel shows the subset of observations used in assimilation after
thinning and quality control (∼ 5000). Horizontal lines show the values of mw and md.

Figure 6.8 shows the observation values from the SAR image obtained on 28/11/2012

(top panel) with the subset of observations used in the assimilation (bottom panel). The

figure shows that a large number of observations which fall between mw and md in 6.7

are removed; This is desirable as these observations are the most uncertain in terms of

which distribution they belong to.
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Figure 6.9: Spatial locations of thinned and quality controlled observations used in as-
similation. The mean forecast (pre assimilation) water depth predictions at the time of
the second overpass are shown in blue. Backscatter observation locations for the second
SAR image are shown as red dots.

Figure 6.9 shows the locations of the observations used in the assimilation for the SAR

image dated 28th November 2012. The image covers the same area as shown figure 6.1 but

is stretched in the x direction in order to better show the locations of the observations.

6.3 Experimental design

We ran an assimilation experiment using the inundation model, inflows and obser-

vations as described in sections 6.1 and 6.2. At the time of each available SAR image

we assimilated ∼ 5000 DN observations using an ETKF as described in section 4.3.2.1

and used our novel observation operator as described in section 5.4.3. For each SAR

image, values of mw, md, σw and σd were obtained as described in section 6.2.2. Using

our new observation operator, these values were applied to each ensemble member at the

corresponding assimilation time in order to generate an ensemble of forecast observations.

We also ran an ‘open loop’, no assimilation experiment for comparison with the analy-

sis solution to allow us to assess the impact of the assimilation. Our forecast ensemble

comprises 100 members in each case.
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6.4 Results

In section 6.4.1 we examine the effect of the assimilation on the forecast at Saxon’s

Lode gauge and compare measurements of depth in the river with our model predictions.

In section 6.4.2 we examine the effect of the assimilation on the spatial pattern of flooding,

using the binary flood map measures described in section 2.5.

6.4.1 Depth at Saxon’s Lode gauge

(a) Openloop case.

(b) Case with assimilation

Figure 6.10: Measured and modelled water depths at Saxon’s Lode. Solid blue line shows

measured data from the gauging station, red and green lines show ensemble member

predictions. Dotted vertical lines show times of satellite overpasses.

Figure 6.10 compares the measured depths at Saxon’s Lode with depths predicted

by the model at the gauge location. Figure 6.10a shows the depths predicted by the

open loop (no assimilation experiment) and figure 6.10b shows the depths produced by

assimilating SAR DN observations at the overpass times shown. In each case the ensemble
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shows a greater range of values for low, in-bank depths than for deeper water predictions.

This is because once the water is out of bank the physically possible range of depths

becomes very small. Figure 6.10 shows raw depths for the ensemble members; we note

that the depths predicted by the model are not expected to be exactly the same as the

measured values due to the parameterisation of the river channel in our hydrodynamic

model. An alternative would be to compare EA reported and modelled flow rates but

since the reported flow rates are calculated using a rating curve and not likely to be

reliable at high flows we do not show these here.

Comparing figures 6.10a and 6.10b shows that the effect of the assimilation is small

in terms of changing the depth in the river. Physically we expect only a small variation

in river depth when the river is in flood; even a small change to the in-river depth can

have a large effect on the resulting flood volume.
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(a) Mean depths.

(b) Magnified view of mean depths.

Figure 6.11: Measured and mean predicted water depths at Saxon’s Lode. Solid blue

line shows measured data from the gauging station, red lines show open loop case, green

lines show case with assimilation. Dotted vertical lines show times of satellite overpasses.

Figure 6.11a shows the mean depths at all times, figure 6.11b is a magnified view of the

depths over the time of the assimilations.

Page 127



Chapter 6: New observation operator for inundation forecasting - case study.

Figure 6.11 shows measured depths at Saxon’s Lode with the mean depth predicted

by the open loop and with-assimilation ensembles. Comparison of the open loop and

assimilation mean depths shows a small and short-lived update to the mean predicted

water levels. Figure 6.11b shows more clearly that at the first three overpass times the

assimilation update acts to slightly increase the mean water depth at Saxon’s Lode; at

the second three assimilation times the mean water depth is updated to a shallower level.

The fact that the update to the water depths is short-lived is expected and agrees with

the work in chapters 4 and 5 for state-only estimation. It is also expected that the update

is small at this location. This occurs because the physically possible range of river depths

is very small once the river is out-of-bank; extra water will flow overbank to cause more

flooding rather than increase river depth. There is therefore only a small range of possible

water depths available to ensemble members, and a locally narrow ensemble spread leads

to a small local update (see equations 5.3.12 and 5.3.13).

Figure 6.12: Square root of forecast variance in each cell of the domain at second overpass

Figure 6.12 shows the standard deviation of the ensemble of water depths (i.e. the

square root of the variance) in the domain before the assimilation at the second overpass

time. Larger values of standard deviation/variance correspond to larger spread in the

ensemble, higher uncertainty in the model prediction and permit larger updates to the

mean. We note that the large uncertainty at the downstream boundary is due to the fact
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that this is the edge of the numerical domain. An alternative approach would have been

to extend the domain beyond the domain of interest in order to minimise edge effects.

We see in figure 6.12 that there is low variance (low uncertainty) in the river channels

where the river is in flood, and particularly at the Saxon’s Lode location (see figure 6.1),

leading to small updates to water depths at these points. We note that the variances look

smooth; covariance plots (not shown) also look smooth and this justifies not using any

localisation in these experiments. Larger domains with larger state vectors may require

covariance localisation in order to avoid spurious updates, but care would need to be

taken to preserve physical structures in covariances (e.g. see Garcia-Pintado et al. [2015]

in which an along-network localisation scheme is implemented).

Figure 6.13: Mean analysis water depths minus mean forecast water depths at second

overpass

Figure 6.13 shows the difference between the mean forecast and the mean analysis

(analysis increments) at the second overpass time. The pattern of increments is clearly

more complex than those shown in figure 4.7c for the simple domain used in chapters 4 and

5. This is because the more realistic topography used in this chapter leads to more complex

correlations and covariances between errors in water depth at physical locations in the

domain. Figure 6.13 shows updates to water levels throughout the domain, including in

the channel at some distance from the assimilated observations (see figure 6.9). Updating

of water levels at locations far from observations was also seen in the work in chapters 4

and 5 in the simple domain. Updates at locations far from observations can sometimes
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indicate that localisation is needed. Here, however, the increments are smooth, and

locations with larger updates correspond to larger variances; comparing figures 6.13 and

6.12 we see that the patterns in these are very similar. We therefore conclude that the

updates generated in our experiments are physically reasonable.

6.4.2 Spatial flood measures

6.4.2.1 Binary flood pattern measures

In section 2.5 we introduced contingency tables and eight binary flood pattern match-

ing measures. Differences in these measures can be used to indicate the extent to which the

assimilation of DN observations affects how well the model agrees with the observations.

Here, we can only compare the goodness of fit to observations from the same images that

we used in the assimilation as we only have one source of spatial flood information avail-

able; a completely independent set of observations from e.g. aerial photography would

give us more confidence in our conclusions. However, when computing contingency table

values (A,B,C,D) and the pattern matching measures we use a much larger set of obser-

vations than the thinned subset we used for assimilation; we use all of the observations at

model cell centres rather than the thinned set of observations. We also quality controlled

the validating observations slightly differently in order to reduce the number of false wet

observations; these can be seen as darker blue patches/speckles in areas far from the river

in figure 6.6. Such false wet observations do not affect the assimilation as there will be no

update in cells that all the ensemble members predict to be dry (see the last paragraph

of section 5.6.1.1). For calculating binary flood pattern matching we reject any validating

observation, VDN , which does not satisfy

mw − 2σw ≤ VDN ≤ mw + σw (6.4.1)

or

md − σd ≤ VDN ≤ md + 2σd. (6.4.2)

This results in ∼ 140, 000 observations (in a total of 180, 550 available cells) used for

validation; we used ∼ 5000 in the assimilation. Comparing equations 6.4.1 and 6.4.2 with

equations 6.2.1 and 6.2.2 we see that we are using observations with higher uncertainty for

the assimilation than we are for the validation. This is because the data assimilation can

allow for uncertain observations whereas the validation measures used here assumes the

observations are correct (they do not allow for uncertainty). We investigated excluding
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more or less observations for validation based on distance from the mean but although

this resulted in the raw numbers in the contingency table being slightly different there

was very little difference in terms of the resulting binary flood pattern measures.

Figures 6.14 to 6.19 show the binary flood pattern match measures, each of which is

made up of a combination of A, B, C and D values as defined in section 2.5. The values

of each of the eight measures are shown at each of the six assimilation times for the mean

modelled forecast (pre-assimilation), mean modelled analysis (post-assimilation) and the

open loop simulation. In all of the figures it is clear that the differences in these measures

at each assimilation time between the forecast, analysis and open loop cases are very

Figure 6.14: Bias at each assimilation time. Red circles are values for the mean of the
forecast ensemble, blue circles are for the mean of the analysis ensemble, green crosses
are for the mean of the open loop ensemble.

Figure 6.15: PC (proportion of cells correct) at each assimilation time. Symbols as in
figure 6.14
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Figure 6.16: CSI (Critical Success Index) at each assimilation time. Symbols as in figure
6.14

Figure 6.17: HR (hit rate for wet cells) at each assimilation time. Symbols as in figure
6.14

small. This is because there are a very large number of model/observation grid cells

(∼ 140, 000) and only a small proportion of these will change from wet to dry, or dry to

wet during each assimilation provided the forecast is not very different to the observation.

Figure 6.14 shows that the forecast and open loop models underpredict the number

of wet cells at two assimilation times (bias < 1), and overpredict the number of wet

cells at the other two times (bias> 1). In figure 6.15 all of the PC (proportion correct)

values are close to the optimal value of 1; at each assimilation time the value for the

analysis prediction scores very slightly better than the forecast, indicating that the data

assimilation is moving the analysis closer to the observations as required. The fact that

the PC values are generally close to 1 might help to explain why we see only small
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Figure 6.18: F (false alarms) at each assimilation time. Symbols as in figure 6.14

Figure 6.19: PSS (Pierce Skill Score) at each assimilation time. Symbols as in figure 6.14

improvements in the forecast at assimilation times: the match to the observations in terms

of wet and dry pixels is already reasonably good. Figure 6.16 shows the CSI (critical

success index) score; the CSI measures the proportion of the cells correctly modelled,

excluding the D category. As expected, the CSI values are lower than the PC scores as

we have excluded a large number of correctly specified dry cells in this measure. As in

the case of the PC measure, the analysis CSI values score slightly higher than the forecast

values at all times. The open loop score is very similar to the forecast score in each case

and this agrees with our findings in chapters 4 and 5, where we saw short-lived observation

impact and a rapid relaxation to the open loop case when only water levels were adjusted

through the assimilation. Figure 6.17 shows the hit rate, i.e. the proportion of correctly

identified wet cells. Again, all the values at each assimilation time are very similar, and
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the analysis scores slightly better than the forecast. The false alarm rate is the proportion

of dry cells wrongly predicted to be wet; this shown in figure 6.18. The optimal value

for this score is zero, and all of the values of this score are low. The open loop often has

the lowest score, indicating that the assimilation is causing a small overprediction of wet

cells relative to the open loop. The HR and F scores are combined in the PSS measure

(Pierce Skill score), which is shown in 6.19. All of the PSS scores are greater than zero,

indicating that there are more hits than misses for both the open loop and the forecast.

Again we see that the analysis scores slightly better (closer to 1) than the forecast at

each assimilation time, and the open loop score is similar to the forecast score, indicating

short-lived observation impact. For the PSS score the open loop slightly outperforms

the forecast and analysis at the 5th assimilation time; this could indicate that the long

term impact of the assimilation is slightly detrimental to the forecast at some assimilation

times.

Taken together, these results indicate that in general the assimilation is making a

small improvement to the forecast at the time of the assimilation, i.e. the wet/dry cells

predicted by the analysis are closer to all the observations (not just those used for the

assimilation) than the forecast. There is no evidence that this improvement persists

through the forecast step, since the (pre-assimilation) forecast does not tend to score

more highly than the open loop; the open loop and forecast values are generally very

similar, and in some cases the open loop scores better than the forecast. This short-lived

observation impact agrees with the results shown in chapters 3 and 4.

6.4.2.2 A, B, C, D counts

In order to get a better understanding of the effect of assimilating observations, we

can look directly at differences in the raw values of A,B,C and D at each assimilation time.

These values are more sensitive to changes when examined alone than when combined

into the measures we reported section 6.4.2.1. We can compare values of A,B,C and D

between

• the mean forecast prediction and mean analysis prediction at each observation time;

this will tell us whether the assimilation is moving the analysis towards the obser-

vations.

• the mean forecast and the open loop; this will tell us whether there is persistence

in improvements through the forecast step.
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A better forecast at given any time is likely to have larger values of A (more correctly

identified wet cells). An increase in A for a given image is identical to a decrease in C

as the total of (A+C) is equal to the total number of cells observed to be wet and must

therefore remain constant. A better forecast will also likely produce higher values of D

(more correctly identified dry cells). An increase in D is the same as a decrease in B,

since (B +D) is constant.

Figure 6.20: Bar chart showing differences in the values of A and D between the mean

forecast and mean analysis at each assimilation time. Blue bars represent the change in

A from forecast to analysis, i.e. the number of extra cells correctly identified as wet in

the analysis compared to the forecast. Green bars show the change in D from forecast to

analysis, i.e. the number of extra cells correctly identified as dry in the analysis compared

to the forecast. The hatched white bar shows the net increase in the number of cells

correctly identified by performing data assimilation (difference in A + difference in D.)

Figure 6.20 shows differences in the values of A (blue bar) and D (green bar) between

the mean forecast and mean analysis at each assimilation time. Positive values represent

improvement due to assimilation. When the blue bar shows a positive number, there are

more cells correctly identified as wet in the analysis compared to the forecast. When the

green bar shows a positive number, there are more dry cells correctly identified in the

analysis then in the forecast; when the green bar is negative there are fewer correctly

identified dry cells in the mean analysis compared to the mean forecast. The hatched

white bar is the sum of the blue and green bars (difference in A + difference in D), we

consider this to be a measure of the ‘net’ improvement of the analysis compared to the

forecast. A positive value for the hatched white bar means that of the cells which are
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changed in the assimilation (wet to dry or dry to wet), more have been correctly updated

than wrongly updated.

Figure 6.20 shows a modest overall improvement in the analysis compared to the

forecast at overpasses 1, 3 and 4 (hatched white bar has positive values). In overpasses

1, 2, 3 and 4 the analysis correctly identifies more wet cells, but also incorrectly identifies

a similar number of dry cells as wet; this gives a small net improvement for overpasses

1, 2 and 4 and a very small decrease (1 model cell) in the quality of the prediction

at overpass 3. For overpasses 5 and 6 the analysis again correctly identifies more wet

cells than the forecast, but also increases the number of correctly identified dry cells.

The overall improvement score is therefore higher for these two times. In all cases, the

percentage of observed cells in which the forecast is changed from wet to dry or vice versa

by the assimilation is small. The maximum percentage of cells changed is for the sixth

overpass and is approximately 0.2% of the total number of observed cells. Despite the

small percentage change, this represents an area of over 165,000m2 in which the forecast

is changed from wet to dry or vice versa.

One reason that the assimilation has more of an impact at overpasses 5 and 6 may

be due to the inability of the hydrodynamic model to ‘dewater’ the floodplain as the flood

recedes. Pools of water on the flood plain that become hydraulically disconnected from

the flood water cannot be removed by the hydrodynamic model, but could be removed in

an assimilation step. This would explain the larger numbers of dry cells being correctly

identified at overpasses 5 and 6.
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Figure 6.21: Bar chart of data comparing the mean forecast and mean open loop pre-

dictions. Blue bars represent the difference in A, green bars the difference in D and

hatched white bars the net difference in the number of correctly identified cells in the

(pre-assimilation) forecast compared to the open loop. When the hatched white bar is

greater than zero we consider the forecast to be better than the open loop as it has a

higher net number of correctly identified cells.

Figure 6.21 shows the differences in A and D between the mean open loop prediction

and the mean forecast (pre-assimilation) prediction. At the first overpass time the forecast

and the open loop solution are the same as no assimilation has yet been carried out; the

difference at this time is therefore zero. We see that the differences between the open

loop and the pre-assimilation forecast at other times are small, and much smaller than

the differences between the forecast and analysis shown in figure 6.20. The percentage of

observed cells which are different between the forecast and open loop cases is very small,

with a maximum at the 5th overpass time of less than 0.1%. This indicates that the

improvements seen at the assimilation time disappear during the forecast step. Since we

are only correcting water levels, this is an expected result, and agrees with our previous

results in chapters 4 and 5, where we saw the assimilated solution relax quickly back to

the open loop solution following an assimilation.

At overpasses 4, 5 and 6 we see that the forecast is not as good as the open loop in

terms of the difference in A and D, though the difference is small. This is particularly the

case at overpass 5, where the forecast is wrongly predicting many more wet cells than the

open loop. We believe that this may be due in part to the way that we have treated the

terrain in our model. We have split each 75m topography cell into nine 25m x 25m cells,
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each of which has the same elevation. If the assimilation acts to change one of the cells

in a group of nine from dry to wet, the water will naturally spread into the other eight

cells once the simulation restarts, even if these cells are observed to be dry. This effect is

likely to taper away throughout each forecast step as water drains back towards the river,

but we note that the shortest time between overpasses is from 4 to 5 (∼ 10hours), so this

might explain why the effect is more pronounced at this time.

(a) Forecast. (b) Analysis.

Figure 6.22: Spatial plot of cells assigned to category A(blue), B(red), C(black) and

D(green) at overpass 2. Yellow circles show the cells at which the assimilation changed

cells from wet to dry, i.e cells which are different between figures 6.22a and 6.22b. White

cells are those with no observations due high uncertainty, or in the case of the rectangle at

the bottom left corner because of a lake visible in the observations but not in the model

simulation.

Figure 6.22 shows an example of the spatial variation in A,B, C and D for the second

overpass time. The yellow circles show the locations of clusters of cells which are updated

from wet to dry or vice versa during the assimilation. They are spread throughout the

domain; this spread in locations is common to all overpass time. It is notable that in both

the forecast and analysis case there are cells registering as red (B) overprediction following
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the course of the river Severn, and this is also true for all of the overpasses. These are

likely cells in which the river is really flooded but vegetation (e.g. trees and large bushes)

growing at the sides of the river are causing the SAR to misclassify them as dry. The

model is therefore likely correct at some of these cells rather than the observation. Dry

observations in such cells, where all the ensemble members make a wet prediction, will

not be updated due to a false dry observation, and this is one of the potential strengths of

this operator. An alternative way to deal with such cells is to do a much more thorough

wet/dry classification before assimilation and/or validation using clustering techniques

(see e.g. Mason et al. [2012] and section 5.7).

Figure 6.23: Example of update to small number of cells at step 2. Left hand panel shows

forecast classifications and right hand panel shows analysis classifications. Colours as in

figure 6.22.

Figure 6.23 shows a group of cells, eight of which were updated at the time of the

second overpass, i.e. a subset of the cells shown in figure 6.22. The left panel shows

the forecast (pre-assimilation) and the right panel the analysis (post-assimilation). The

cells which were updated are marked with yellow circles. Five of the eight cells which

are updated change from black (C, underprediction) to blue (A, correctly modelled as

wet). However, a further three cells change from green (D, correctly modelled dry) to red

(B, overprediction). This example shows that cells near each other are likely to all be

moved in the same direction (wet to dry or dry to wet) by the assimilation. This results

from strong spatial state error correlations between neighbouring cells and means that a

desirable increase in A following an assimilation is often accompanied by an undesirable

decrease in D as seen in figure 6.20.
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In figure 6.22, a total of 61 cells are changed in the assimilation, i.e. are updated due

to observations from the 2nd overpass and change from figure 6.22a to figure 6.22b. This

is a very small proportion of the total observed cells (∼ 0.04%), but still represents an

area of 61 × 25 × 25 = 38, 125m2 in which the prediction is changed from wet to dry or

vice versa. Additionally, water depths are changed throughout the domain due to forecast

error correlations between depths in different places.

6.4.3 Comparison to results from related studies

The SAR images used here were also used for assimilation experiments in Garcia-

Pintado et al. [2015]. We used our new backscatter observation operator, while the authors

of Garcia-Pintado et al. [2015] used water level observations (WLOs) and a ‘nearest wet

pixel’ type approach; the domain used in our work is a subdomain of the one used in

Garcia-Pintado et al. [2015] and in both cases an ETKF was used. Predicted flow rates

and depths are compared with gauged values in Garcia-Pintado et al. [2015] in order

to assess the effectiveness of the assimilation when estimating water depths along with

combinations of inflow, friction parameters, bathymetry and downstream river bed slope.

Corrections to gauged water depths are in some cases larger in Garcia-Pintado et al. [2015]

than those seen in this study, but this is not necessarily due to differences in observation

operator approach as there are a number of other differences between the studies. In this

chapter we only update water levels, whereas in Garcia-Pintado et al. [2015] other model

inputs are also updated. We use gauge reported inflows to drive our model, whereas

outputs from a hydrological model are used in Garcia-Pintado et al. [2015]. Additionally,

the studies use different hydrodynamic models, with different approaches to representing

channel shape.

Another related study is Hostache et al. [2018], in which a different series of SAR

images (from the Envisat Wide Swath Mode imagery archive) is used in assimilation

experiments for four different flood events in the same spatial domain used in Garcia-

Pintado et al. [2015]. In Hostache et al. [2018], the authors use the SAR images to create

flood probability maps, and use these as observations. The observation operator therefore

takes wet/ dry predictions from each forecast ensemble member, and combines these

into a forecast-equivalent probability flooding per model cell. A particle filter technique

is used to combine the observational and forecast probabilities at update times. The

study in Hostache et al. [2018] uses output from a hydrological model to create inflows;

perturbations in rainfall inputs to the hydrological model create an inflow ensemble as
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in Garcia-Pintado et al. [2015]. Since a particle filter technique is used in Hostache

et al. [2018], the inflow ensembles are effectively updated at each assimilation time. This

means we cannot directly compare the results with the work in this chapter (where we

only update water levels), but there are nevertheless some interesting comparisons.

In terms of water depths, the results in Hostache et al. [2018] show larger assimilation

increments than we see here. This could be due to the fact that the inflow is updated

Hostache et al. [2018], or it could be because we are comparing different flood events

and images between the studies. Comparison of our results with binary flood match

measures reported for one assimilation in Hostache et al. [2018] show some similarity;

in both studies assimilation results in a small, desirable increase in A (number of cells

correctly predicted wet). There is an increase in A of 108 cells, (∼ 0.3% of total cells) in

Hostache et al. [2018] c.f. a maximum of 133 (∼ 0.1% of total observed cells) in our study.

The increase in A due to assimilation reported in Hostache et al. [2018] is associated with

a smaller increase in D (cells wrongly predicted to be wet), which we also observed at

several assimilation times in our experiments and attributed to situations like the one

illustrated in figure 6.23. The authors of Hostache et al. [2018] report no change in the

PC measure (to 3d.p.) due to assimilation, and a small increase in the CSI measure with

assimilation. Our results generally show the same pattern as this. An expected difference

between the results in Hostache et al. [2018] and the results in this chapter is that in the

former case there is good persistence in the forecast improvement, i.e. the observation

impact is longer-lived. This is due to the fact that inflow is updated in Hostache et al.

[2018], whereas in this study we are updating only water levels.

6.5 Conclusions

We have presented a number of ways of measuring how the assimilation of SAR data

using our novel observation operator updates model forecasts. We conclude:

• we faced a number of challenges relating to the hydrodynamic model we used. The

representation of river geometry (wide, shallow channels) may have caused some

issues for predicted flow rates and hence for inundation prediction and this is likely

why binary measures such as the CSI give relatively low values. The lack of sub-

grid river channel representation also led to the need for fine computational mesh

resolution and increased computational expense. Despite this, the new observation

operator was successfully applied to forecasts.
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• predicted depths at the Saxon’s Lode gauge show small changes at assimilation

times. This is due to small ensemble spread (low uncertainty) at this position in the

domain, particularly when the river is out of bank. These small changes in water

depth in the river can correspond to large differences in the volume of water on the

floodplain.

• a series of binary flood pattern measures show small positive changes to the forecast

at assimilation times, broadly in line with results from a related study, Hostache

et al. [2018].

• our results show short-lived observation impact in agreement with the work in chap-

ters 4 and 5 when only water levels are updated; this effect has also been seen in

other studies (e.g. Lai and Monnier [2009], Matgen et al. [2007b] and Schumann

et al. [2009]).

• looking directly at values of A, B, C and D shows that at every overpass time,

assimilation of SAR observations using our new approach increased the number of

correctly identified wet cells.

• for overpasses 1,2,3 and 4 the update also increased the number of wrongly identified

wet cells, i.e. generated more false positives; this effect was also observed in Hostache

et al. [2018].

We conclude we have successfully applied our novel observation operator to a real

case study. We have shown that our observation operator generates updates to water

levels throughout the domain, and is able to change the numbers of predicted wet and

dry cells. The results show small improvements to model prediction when using our new

observation operator and an ETKF. We believe that the improvements would be larger

in cases where the model prediction is more different to the observations, or where the

topography is defined to be different in each cell. We see a short-lived improvement in the

forecast; this is in agreement with our results from state-only assimilation in synthetic

experiments in chapters 4 and 5. This work has shown that our new observation operator

shows potential to be useful in data assimilation for inundation forecasting. Further

work is required to see how the operator compares against other observation approaches

when using real SAR data; it would also be interesting to test performance of the new

observation operator with a different hydrodynamic model.
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6.6 Chapter summary

In this chapter we have shown that we can successfully apply our novel observation

operator approach to a real case study, using real SAR data. We have demonstrated a

benefit to the forecast using an ETKF with our new approach.
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Chapter 7:

Conclusions and Future work

7.1 Conclusions

This thesis has considered aspects of how we can best use information from satellite-

based SAR instruments in data assimilation for river inundation forecasting. We have

considered various ways in which we can maximise the impact of SAR observations. We

have carried out synthetic data assimilation experiments, designed a new observation

approach and applied our novel observation operator to a real flooding case study. The

main conclusions, which answer the three questions posed in chapter 1, are:

1. How does estimation of the channel friction parameter affect observation

impact in data assimilation for inundation forecasting?

• In chapter 4 we showed that it was possible to retrieve the correct value for

the channel friction parameter in our synthetic experiments in a simplified

domain, and that correcting the parameter in this way significantly increased

the impact of the observations compared to state-only estimation.

• The results in chapter 4 showed that inflow error and channel friction parameter

error are interdependent in our idealised domain, making the two sources of

error difficult to separate out; this demonstrates that equifinality can be an

issue for hydrodynamic models even in a simple system.

• We discovered an initialisation shock in our idealised synthetic experiments in

chapter 4 when we assumed zero velocity for all water at restart times following

assimilation. We showed that using pre-assimilation velocities worked as well as

updating flow rates as part of the assimilation and is computationally cheaper.
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2. Can we design and implement a new method of extracting observational

information from a SAR image for use in data assimilation?

• In chapter 5 we designed and implemented a new observation operator which

directly uses SAR backscatter values as observations in data assimilation, and

showed that the method can successfully update a model forecast and the value

of the channel friction parameter in synthetic experiments. Such an approach

has the potential to increase the number of observations which can be used

from each SAR image.

• We showed in chapter 5 that different approaches to SAR observations and

different observation operators can produce substantially different observation

impacts in synthetic experiments. We explained these differences by illus-

trating the physical mechanisms responsible for the updates in the different

approaches. Better understanding of the mechanisms which generate assimila-

tion increments will be important in designing future approaches to inundation

forecasting.

3. Can we apply our new observation approach to a case study using real

topography and SAR data?

• We successfully applied our novel backscatter observation operator to a real

case study in chapter 6, using a series of SAR images showing flooding near

Tewkesbury in the UK in the winter of 2012. We used a series of binary

flood match measures to demonstrate benefit to the forecast of updating water

levels in this way. The method shows great potential for use in real-time flood

forecasting systems.

7.2 Future work

The work in this thesis has provided answers to the research questions posed in

chapter 1. There are many interesting related topics which require further research, and

we summarize some ideas for future work in the remainder of this section.

7.2.1 Extension of observation operator case study

Extension of the work in chapter 6 to compare the results already obtained with

the new observation operator with those using the ‘nearest wet pixel’ approach would be
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extremely useful in further analysing how well the new operator can perform. Further

understanding of the observation operator approach (in terms of, for example, number

of observations used, location of observations) would also be interesting. Alternatively,

direct comparison of results from another case study using a WLO approach (as in Garcia-

Pintado et al. [2015]) and the backscatter approach would be highly beneficial in under-

standing the differences in the updates generated by the two approaches in realistic use.

This would require running experiments using the same hydrodynamic model, model

domain and SAR images in each case.

The work in chapter 6 could be extended to test whether updating the channel

friction parameter in the case study in chapter 6 would increase the time over which we

see observation impact, i.e. would increase persistence in the forecast improvement as

seen in the twin experiments in chapters 4 and 5. There is also scope for investigating

whether we could show interdependence in inflow and friction parameter errors as in

the synthetic experiments in chapter 4. More broadly, it would be very useful to try to

understand interdependences in errors in other model inputs including (as well as inflow

and channel friction parameter), channel depth, width and shape, floodplain friction

parameter, downstream slope, topography resolution and model compute grid resolution.

All of these model inputs are likely to be correlated to some extent, and it would be

really interesting to design and run a set of data assimilation experiments in which these

correlations be explored further. This would potentially be valuable to the hydrodynamic

community, and could feed back into the design and calibration of hydrodynamic models.

7.2.2 Data assimilation approaches

There are a number of questions which remain unanswered regarding the performance

of different data assimilation approaches in the context of inundation forecasting. In

particular, it would be interesting to compare the updates generated by an ETKF and

the 3D-Var assimilation method introduced in Smith [2010], Smith et al. [2013] and Smith

et al. [2009]. This hybrid 3D-Var method, which has has been shown to produce very

promising results in 1D experiments, takes into account covariances between parameter

and state variables, and is potentially a cheaper scheme than an ensemble method.

It would also provide new insight to directly compare results from particle filter and

ETKF approaches, both of which have been used in an inundation forecasting context

(e.g. Matgen et al. [2010] and Garcia-Pintado et al. [2015] respectively), in the same case

study. Differences in the updates generated by different data assimilation methods would
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be of interest to the data assimilation and hydrology communities, as noted in Grimaldi

et al. [2016].

One advantage of using a PF approach is that there is no requirement that parameter

values have Gaussian errors. We note that when updating the channel friction parameter

in chapters 4 and 5, the analysis parameter distributions did not always (‘by eye’) conform

to Gaussian distributions. It would be interesting to investigate this further, and to

analyse the potential consequences of non-Gaussianity of model parameters.

We did not consider model error in this thesis. In chapters 4 and 5 neglecting

model error was sensible, as we had a truth run to compare forecasts to, and all the

simulations came from the same model. A model error term could be added to the data

assimilation scheme in chapter 6 to see what effect this would have on the results. It

would also be interesting to run identical twin experiments where the truth run and the

forecast ensemble had different resolutions, to see what the effect of this, and the required

interpolation schemes would be.

7.2.3 SAR data

There are a number of unanswered questions regarding use of SAR data in an inun-

dation forecasting context. One avenue of enquiry would be to investigate the optimal

number of backscatter-type observations when using our new backscatter observation ap-

proach. More observations are generally beneficial to data assimilation schemes, but too

many can cause filter divergence and ensemble collapse, and can also increase the time

and expense of an update calculation. A better quantification of the impact of observa-

tions based on location, perhaps relative to the flood edge, would allow us to maximise

the benefits of using such observations.

It would also be interesting to investigate the effect of DN vs backscatter value

in data assimilation, i.e. to investigate whether the extra radiometric calibration step

is beneficial in a backscatter observation approach. If the results are similar without

radiometric calibration, this potentially speeds up the time taken for processing of a SAR

image for use in data assimilation and reduces the cost of purchasing data (DN products

are generally less expensive than backscatter products).
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