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Abstract 

Major depressive disorder is commonly associated with altered processing of social stimuli, 

as well as with impaired learning from non-social outcomes. While a plethora of research has 

examined these aspects in isolation, few integration attempts have been made. That is to say, 

studies that examine social learning in depression and link task-based measures to real-life 

interpersonal experiences are lacking. Given that learning from social outcomes is crucial for 

successful interpersonal interactions, it is important to assess how this process may be 

affected in depression. The current work aimed to address this question, on both the 

behavioural and the neural level.  

Specifically, study 1 explored task-based social learning in individuals with high (HD) and low 

(LD) depressive symptomatology and related learning parameters derived from computational 

modelling to reports of everyday social experiences. Study 2 extended this approach to the 

neural level, examining how the neural encoding of social learning signals is altered in HD 

subjects and how these alterations relate to real-life interpersonal experiences. Moreover, 

study 3 investigated the involvement of different neurotransmitters in the learning process by 

assessing neural and behavioural responses during social learning after dietary dopamine or 

serotonin (precursor) depletion in healthy volunteers. 

It was found that HD individuals demonstrated deficits in social learning, which were 

associated with increased experiences of negative interpersonal encounters (study 1) and 

reduced social engagement motivation (study 2) in everyday life. In addition, HD subjects 

displayed altered social reward prediction signals in the insula, temporal lobe and parietal 

lobe, the latter of which were linked to decreased real-life social engagement motivation (study 

2). Notably, the changes in social reward prediction encoding observed in HD individuals 

closely resembled those found in healthy subjects after serotonin depletion, while prediction-

related dopamine depletion effects were mainly seen in frontal cortex areas (study 3). These 

findings suggest that depression symptoms are associated with impaired social learning 

responses, on both the behavioural and the neural level, which are linked to changes in real-

life social experiences and may be underpinned by altered serotonin functioning.  
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1 General Introduction 

Major Depressive Disorder (MDD) is thought to affect 4.4% of the world population and is 

among the leading causes of global disease burden (Ferrari et al., 2013). The core diagnostic 

criteria for depression are sustained sad mood and loss of interest or pleasure in previously 

enjoyable activities (i.e. anhedonia). Other symptoms include weight loss/ gain, insomnia/ 

hypersomnia, psychomotor agitation/ retardation, fatigue, diminished self-esteem, decreased 

concentration, decision-making difficulties, and suicidal thoughts (American Psychiatric 

Association, 2013).  

Depression is commonly associated with deficits in social processing (Kupferberg, Bicks, & 

Hasler, 2016; Rottenberg & Gotlib, 2008), as well as with altered learning performance (Chen, 

Takahashi, Nakagawa, Inoue, & Kusumi, 2015). However, there seems to be little integration 

of the evidence for these impairments, with most studies examining either learning-unrelated 

responses to social stimuli or learning from non-social feedback in MDD. Given that learning 

from social outcomes is crucial for successful interpersonal interactions, it seems particularly 

important to assess how social learning may be affected in depression. The current work 

aimed to address this question on both the behavioural (study 1) and the neural (study 2) level. 

Additionally, the involvement of neurotransmitters in social learning was investigated (study 3) 

to identify possible pharmacological treatment targets for the potential social learning deficits 

in MDD. Below, relevant studies on social processing and (mostly non-social) learning in 

depression are reviewed, and the involvement of different neurotransmitters in the learning 

process is highlighted.  
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1.1 Social Processing in Depression 

1.1.1 Behavioural Studies 

Major depressive disorder has been linked to a range of social factors. For instance, not having 

a close friend or partner to confide in is associated with an increased vulnerability to MDD 

(Brown, 1986), and the loss of an intimate relationship, through breakup or death, is a major 

trigger for depression onset (Kendler et al., 1995). In addition, experiencing interpersonal 

problems has been related to longer MDD episode duration (Brown & Moran, 1994), and 

perceived social criticism is predictive of depression relapse (Hooley & Teasdale, 1989). 

Moreover, depression chronicity has been linked to reduced social integration and the 

experience of more negative social encounters (Hölzel, Härter, Reese, & Kriston, 2011). 

Conversely, high perceived emotional support and large social networks appear to have a 

protective effect against developing depression (Santini, Koyanagi, Tyrovolas, Mason, & Haro, 

2015), and greater interpersonal support is associated with better responses to antidepressant 

treatment (Trivedi et al., 2005). 

Given the positive effect of social engagement, it is particularly problematic that depressed 

subjects commonly show signs of social withdrawal. Specifically, studies using a variety of 

methodologies, including self-report, interviews, and corroboration by family members, have 

found that depressed individuals have smaller social networks and spend less time with people 

in their social circle compared to healthy controls (Brim, Witcoff, & Wetzel, 1982; Gotlib & Lee, 

1989; Rottenberg & Gotlib, 2008; Youngren & Lewinsohn, 1980). Moreover, withdrawn 

behaviour in children is a predictor of the development of depression in adolescence or 

adulthood (Caspi, Moffitt, Newman, & Silva, 1996; Ollendick, Greene, Weist, & Oswald, 1990), 

and reduced social network sizes are apparent even after MDD remission (Gotlib & Lee, 

1989). Thus, social withdrawal appears to occur throughout the trajectory of MDD, making it 

a potential trait marker for depression and an important target for further investigation. 
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It has been proposed that social withdrawal in MDD may be linked to reduced (i.e. anhedonic) 

responsiveness to pleasant social interactions, or to heightened sensitivity to unpleasant 

social outcomes (Kupferberg et al., 2016; Rottenberg & Gotlib, 2008). That is to say, 

depressed subjects may withdraw from social situations because they do not find them 

pleasurable, or because they want to protect themselves from potential interpersonal rejection 

(Kupferberg et al., 2016). In line with this suggestion, individuals with depression symptoms 

demonstrate higher social anhedonia scores and expect to experience weaker positive 

responses to social situations than controls (Setterfield, Walsh, Frey, & McCabe, 2016). 

Moreover, MDD patients show reduced pleasure in response to peer approval (Davey, Allen, 

Harrison, & Ycel, 2011) and a negative association between depression symptom severity and 

positive responses to social acceptance feedback has been observed (Caouette & Guyer, 

2016). Importantly, such signs of  social anhedonia have been linked to heightened levels of 

social withdrawal (Silvia & Kwapil, 2011).  

In addition, social withdrawal in depression may also be related to hyper-responsivity to 

negative social outcomes. Notably, depression symptoms are associated with increased 

expectancies of negative evaluations from others (Caouette & Guyer, 2016), and individuals 

with high levels of depressive symptomatology report expecting stronger negative responses 

to social situations than controls (Setterfield et al., 2016). Moreover, women with high, 

compared to low, rejection sensitivity have been shown to develop more depression symptoms 

in response to negative social outcomes (Ayduk, Downey, & Kim, 2001). Additionally, 

heightened expectation of peer rejection has been linked to subsequent social withdrawal, 

which, in turn, has been found to predict increases in depressive symptomatology (Zimmer-

Gembeck, Nesdale, Webb, Khatibi, & Downey, 2016).  

Given the above link between hyper-responsivity to negative social outcomes and social 

withdrawal, another factor that could contribute to social disengagement in MDD is the 

presence of negative biases in the interpretation of, and attention to, social cues (reviewed in 

Bourke, Douglas, & Porter, 2010). Specifically, it has been shown that depressed individuals 
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are more likely to classify ambiguous facial expressions as negative, and are less likely to 

categorise them as positive, compared to controls (Hale, 1998; Leppänen, Milders, Bell, 

Terriere, & Hietanen, 2004; Levkovitz, Lamy, Ternochiano, Treves, & Fennig, 2003; 

Surguladze et al., 2004). Further, it has been observed that the tendency to see sadness in 

ambiguous faces is predictive of depression maintenance at six months follow-up (Hale, 

1998), and that ambiguous faces are perceived as less negative during MDD remission 

(Bouhuys, Geerts, & Gordijn, 1999; although lower classification accuracy of neutral faces 

persists; Leppänen et al., 2004). Moreover, individuals with and at risk for MDD demonstrate 

an enhanced ability to recognise fearful faces, while their recognition accuracy for happy faces 

is impaired (Bhagwagar, Cowen, Goodwin, & Harmer, 2004; Gur et al., 1992; Masurier, 

Cowen, & Harmer, 2007; Surguladze et al., 2004). 

In addition, depressed individuals display attentional biases towards negative facial 

expression (see Peckham, McHugh, & Otto, 2010 for a meta-analysis including social and 

non-social stimuli). For instance, in a dot-probe task, in which a target is preceded by faces 

with different expressions, depressed subjects respond more quickly when the target is shown 

following a negative rather than a positive expression (Gotlib, Krasnoperova, Yue, & 

Joormann, 2004; Joormann, Talbot, & Gotlib, 2007; Leyman, De Raedt, Schacht, & Koster, 

2007). Similarly, depressed participants demonstrate slower responses than controls when 

asked to detect a happy face in a ‘crowd’ of neutral faces compared to detecting a sad face (- 

an effect that is especially strong in individuals with comorbid anxiety; Suslow, 2005; Suslow 

et al., 2004). 

While the above research did not link the observed negative biases to social withdrawal, other 

studies have examined responses to faces especially in relation to approach and avoidance 

behaviour. For instance, it has been found that depressed subjects demonstrate higher 

withdrawal tendencies than controls when shown an image of a face and asked how many 

steps they would take towards or away from the depicted person (Derntl et al., 2011; Seidel 

et al., 2010). Moreover, in a task in which a joystick needed to be pulled (signalling approach) 
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or pushed (signalling withdrawal/ avoidance) in response to happy or angry faces, depressed 

patients, unlike controls, did not show faster approach towards happy compared to angry faces 

(Radke, Güths, André, Müller, & de Bruijn, 2014). 

The above evidence indicates that depressed subjects show reduced sensitivity to positive 

social feedback, such as peer approval and positive facial expressions, and increased 

responsiveness to negative social stimuli, like peer rejection and negative facial expressions, 

with some support for the suggestion that these factors are related to social withdrawal.  

1.1.2 Neuroimaging Studies 

In line with the behavioural findings, a range of neuroimaging studies have observed 

alterations in the neural processing of social stimuli in depressed subjects (reviewed in 

Stuhrmann, Suslow, & Dannlowski, 2011). For instance, during a gender classification task 

with faces displaying different emotional expressions, depressed individuals demonstrate 

higher amygdala, insula, cingulate gyrus, temporal lobe, fusiform gyrus and parietal lobe 

activity to negative faces than controls (Fu et al., 2008; Godlewska, Norbury, Selvaraj, Cowen, 

& Harmer, 2012). Similarly, the presentation of masked negative faces has been shown to 

result in stronger amygdala, insula, medial frontal, medial temporal and fusiform gyrus 

responses in depressed compared to healthy participants (Sheline et al., 2001; Suslow et al., 

2010). Notably, in both the gender classification and the masking paradigm, the emotional 

expressions were task-irrelevant (and in the second task subliminal). Thus, the increased 

responses to negative faces in visual and salience processing regions appears to be 

‘automatic’ in depression, which is consistent with the behavioural findings of (involuntary) 

negative biases. Accordingly, it has been found that depressed individuals with high, 

compared to low, levels of negative biases show increased inferior frontal gyrus activation to 

task-irrelevant negative social (and non-social) scenes (in a visual search task; Gollan et al., 

2015). The increased engagement of frontal regions may indicate an enhanced need for, or 

decreased efficiency of, a mechanism that downregulates the bottom-up processing of 
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negative stimuli. In line with this suggestion, functional connectivity studies have shown that 

PFC and ACC regions, which are thought to be involved in emotion regulation (Bush, Luu, & 

Posner, 2000), show decreased functional connectivity with the amygdala during facial 

processing in depression, potentially indicating an impaired downregulation mechanism (Chen 

et al., 2008; Dannlowski et al., 2009). 

However, it should be noted that not all findings are consistent. Other studies using the gender 

classification task have observed decreased activity to negative faces in depressed compared 

to control participants in the amygdala, hippocampus, parietal lobe, superior frontal lobe and 

dorsolateral to medial prefrontal cortex (PFC; Fu et al., 2008; Lawrence et al., 2004). Similarly, 

in an emotion matching task, depression scores were found to be negatively correlated with 

dorsolateral PFC responses to angry faces (MacNamara, Klumpp, Kennedy, Langenecker, & 

Phan, 2017). A possible partial explanation for these inconsistencies is that the observed 

results may depend on what contrasts are used in the fMRI analysis. In particular, most of the 

above studies which found increased neural activation in depressed subjects contrasted 

negative faces (or scenes) with positive ones (Godlewska et al., 2012; Gollan et al., 2015; 

Suslow et al., 2010), while studies reporting decreased responses in depression used neutral 

faces or shapes as a contrast for negative stimuli (Lawrence et al., 2004; MacNamara et al., 

2017). Notably, a study examining the neural response to facial expressions against baseline 

showed that, numerically, depressed subjects displayed bilaterally increased responses to 

neutral faces in the amygdala (Sheline et al., 2001). Thus, it is possible that the apparently 

decreased responses to negative stimuli in depressed subjects are, in fact, due to enhanced 

responses to the neutral contrast condition.  

Additionally, which neural effects are observed in depression may also depend on the 

relevance of the emotional faces to the task. For instance, a review of facial expression 

processing studies in depression noted that most studies using subliminal or implicit 

processing of faces found abnormal amygdala activity in depression, whereas only half of the 
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studies using explicit emotion matching or emotion recognition paradigms did. This difference 

may partly be due to more cognitive processing during explicit tasks (Stuhrmann et al., 2011). 

The above results indicate that depression is associated with altered neural processing of 

negative faces, although the direction and location of these neural effects depends on the 

utilised contrasts and paradigms. Similarly, evidence suggests that positive faces are 

processed differently in depressed compared to healthy individuals. Specifically, it has been 

found that, compared to controls, depressed subjects display reduced activity to happy faces 

in the striatum, amygdala, temporal lobe, insula, thalamus, and midbrain (Gotlib et al., 2017; 

Lawrence et al., 2004; Victor, Furey, Fromm, Öhman, & Drevets, 2010). These neuroimaging 

results are in line with the abovementioned behavioural findings of decreased sensitivity to 

positive social stimuli (i.e. social anhedonia) in depression. 

Notably, the link between brain responses to positive social stimuli and social anhedonia has 

been directly examined with the use of a social evaluation task. In this task, subjects are shown 

photographs of strangers and asked to rate their liking of the depicted individuals. Additionally, 

participants are told that some of the depicted people have, in turn, rated whether they like the 

participant. In the MRI scanner, subjects are shown images of individuals who supposedly 

liked them, and whom they either liked or did not like in return, to assess brain responses to 

mutual compared to non-reciprocated liking. Using this task, it has been found that both higher 

social anhedonia and higher depression scores are associated with enhanced responses to 

mutual liking in the medial PFC, dorsolateral PFC and precuneus, as well as with stronger 

dmPFC - ventral striatum functional connectivity (Healey, Morgan, Musselman, Olino, & 

Forbes, 2014). Similarly, another study, which used the same paradigm to examine neural 

responses to the receipt of positive social feedback independent of the participants’ own 

preferences, observed increased amygdala, insula, inferior parietal, inferior frontal, and 

temporal cortex activity to received liking in depressed compared to control participants 

(Davey et al., 2011). The authors of both studies propose that the observed findings may 

indicate that depressed subjects interpret positive social feedback more negatively than 
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controls, potentially because they expect that initial liking may eventually result in rejection. 

This negative processing signal may be downregulated by frontal regions, in line with the PFC 

– striatum connectivity results. However, it should be noted that, while the functional 

complexity of the task makes the findings difficult to interpret, the authors’ suggestion does 

not appear particularly plausible. What is especially problematic is that the authors’ argument 

relies heavily on reverse inferences based on the engaged brain regions, rather than an a 

priori functional definition of the task (see below).  

The authors of the above studies further argue that the (suggested) enhanced negative 

interpretation of social feedback in depressed individuals may be linked to social withdrawal. 

While this was not examined by the above research, other studies have directly assessed the 

relation between neural responses to social cues and withdrawal behaviour. For this purpose, 

a paradigm was developed in which participants were shown images with emotional facial 

expressions and instructed to pull (signalling approach) or push (representing avoidance or 

withdrawal) a lever depending on the background colour of the image. In this task, depressed 

individuals, compared to controls, demonstrated decreased orbitofrontal cortex (OFC) 

responses to the avoidance (vs. approach) of angry faces, while their OFC activity was 

increased to the approach (vs. avoidance) of happy faces (Derntl et al., 2011). Notably, the 

region of the OFC in which group effects were found has previously been implicated in the 

anticipation of negative events (Kringelbach & Rolls, 2004). Consequently, the authors argue 

that the above results suggest that depressed subjects associate approach behaviour with 

potential negative outcomes (e.g. rejection), even in the presence of positive social cues (such 

as a happy expression). Moreover, depressed individuals may not be able to appropriately 

anticipate and engage with negative social cues, showing less adaptive withdrawal/ avoidance 

processing than controls (Derntl et al., 2011). Again, this interpretation relies mainly on reverse 

inferences. 

The above findings indicate that depressed individuals demonstrate altered neural processing 

of both positive and negative social stimuli in a range of tasks, including gender discrimination, 
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emotion matching, social evaluation and approach-withdrawal paradigms. However, as 

mentioned above, for many of the utilised tasks it is not clearly defined which functions are 

engaged in either or both of the conditions that are contrasted in the fMRI analysis. Thus, 

many of the aforementioned result interpretations rely on reverse inferences based on the 

assumed function of the brain regions in which group effects were observed. This approach is 

somewhat problematic, especially because social cognition is complex and engages several 

functions that may partly be supported by the same brain area (Lieberman, 2006). Further 

research with functionally more well-defined tasks is thus called for. It may be particularly 

beneficial to utilise learning tasks with social outcomes, as learning mechanisms have been 

made explicit with the use of computational modelling, and social learning in depression is an 

important, but under-investigated, research area (see below). 

1.1.3 Relation between Social Processing and Learning 

It is noteworthy that in most of the above studies, especially in those using paradigms in which 

facial expressions were task-irrelevant, participants did not need to ‘utilise’ the social/ 

emotional information they were presented with. This stands in contrast to real-life situations 

in which emotional information is not merely passively or incidentally processed but is crucial 

to navigate the social environment. That is to say, in everyday life, individuals are actively 

engaged in social encounters, and it is possible that the very interaction of depressed subjects 

with other people may create situations that foster depressive behaviours (Joiner, 2000). A 

particularly interesting mechanism through which this may occur has been suggested by the 

behavioural theory of depression. This theory holds that reductions in pleasant and increases 

in unpleasant social experiences may partly be the result of depressed subjects’ impaired 

ability to evoke positive responses from other people (Lewinsohn, 1974; Lewinsohn, Sullivan, 

& Grosscup, 1980). In other words, it is not merely the case that depressed individuals 

subjectively experience the social environment as more negative, but they may, though their 

own behaviour, be objectively exposed to more negative social encounters. 
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In line with this suggestion, previous studies have found that depressed individuals show less 

appropriate behaviour during social interactions than controls, as they make less eye contact, 

smile less, speak more monotonously, time their responses less fittingly, and are less likely to 

offer help to others (reviewed in Rottenberg & Gotlib, 2008 and Segrin, 2000; see also 

Setterfield et al., 2016). Importantly, inappropriate social behaviour has been shown to elicit 

fewer positive responses to, and even rejection of, depressed subjects by their interlocuters 

(Segrin & Abramson, 1994). The ability to elicit positive social feedback, which is based both 

on general social skills and on a more specific capacity to adjust behaviours to particular 

situations, is thought to be learned through repeated interpersonal interactions (Ladd & Mize, 

1983). This raises the possibility that the increased (objective) experience of negative social 

interactions in depression may, at least partly, be the result of deficits in learning from social 

feedback. 

Additionally, it is also possible that potential social learning deficits in depression may 

contribute to the subjective experience of the social environment as more negative. This could 

be the case because impaired learning may lead to increased uncertainty about what to expect 

from interpersonal encounters, and the association between uncertainty, which tends to be 

regarded as aversive by depressed individuals (Carleton et al., 2012), and social situations 

may make the latter appear more negative. 

Based on the above reasoning, it could thus be hypothesised that potential social learning 

impairments in depression may contribute to the increased (subjective and objective) 

experience of negative social encounters and may, thereby, contribute to social withdrawal.  

1.1.4 Summary 

In summary, the studies discussed above indicate that depression is associated with social 

withdrawal, as well as with deficits in social processing, on both the behavioural and the neural 

level. Specifically, it has been found that depressed subjects have fewer close relationships 

and spend less time with people in their social circle than controls. This social disengagement 
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appears to be present before, during and after acute depression episodes and may contribute 

to the onset and maintenance of MDD. Moreover, social withdrawal may be linked to other 

social processing deficits observed in depression. For instance, depressed subjects 

demonstrate decreased pleasure in response to positive social outcomes (i.e. social 

anhedonia), expect more negative social feedback, and display negative bias in the 

interpretation of and attention to social cues (such as emotional facial expression). 

Additionally, on the neural level, altered responses in a variety of regions, including the 

amygdala, insula, temporal gyrus, precuneus and PFC, have been observed in depressed 

subjects in response to positive and negative social outcomes. However, the direction of these 

effects depends on the utilised fMRI contrasts and paradigms, and findings are often difficult 

to interpret due to the use of tasks that are not functionally well-defined. Moreover, links 

between task-based responses and everyday social behaviour are often not experimentally 

assessed, and many of the utilised paradigms involve only passive or incidental processing of 

social/ emotional stimuli. Given that in real life the active use of social information is necessary, 

it is important to consider how depressed individuals utilise and learn from positive and 

negative information to guide their expectations and behaviour. The limited available research 

on social learning in depression, as well as evidence relating to learning from non-social 

outcomes, is discussed below.   

1.2 Learning in Depression  

1.2.1 Behavioural Studies 

Learning what outcomes to expect, either in response to one’s actions or while passively 

observing a situation, is crucial for everyday functioning. This is particularly true for social 

situations, in which other people’s responses need to be predicted to enable successful 

interpersonal interactions. As discussed above, it has been suggested that the impaired ability 

to elicit positive feedback from others, due to a lack of learned social skills, may contribute to 

the onset and maintenance of depression (Lewinsohn, 1974). However, despite this 
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theoretical motivation, the importance of social stimuli in everyday life, and the 

abovementioned evidence for impaired social processing in MDD, very few studies have 

examined learning from social outcomes in relation to depression.  

The limited available evidence indicates that individuals at risk for depression may 

demonstrate reduced learning from positive social feedback, while showing enhanced learning 

from negative social outcomes (Pechtel, Dutra, Goetz, & Pizzagalli, 2013; Wiggert et al., 

2017). The former evidence was obtained with the use of a signal detection paradigm, in which 

participants are asked to distinguish between two highly similar stimuli, while receiving more 

positive feedback for the correct identification of one of the stimuli. Using this task, it has been 

found that remitted depressed participants demonstrate reduced reward biases; i.e. they are 

less bias towards identifying a given stimulus as the one that is more highly reinforced, 

compared to controls. This effect was seen across monetary and purported social 

reinforcement (Pechtel et al., 2013). However, it should be noted that subjects were aware 

that the ‘social’ outcomes – the words ‘Well done!’ displayed on the screen – were computer-

generated. It is thus questionable whether this feedback can be regarded as truly social. 

More convincing social feedback was utilised by research assessing the relation between 

depression symptoms and social conditioning. In this study, participants were presented with 

pictures of a person with a neutral facial expression, followed by a short video of the same 

individual making a neutral statement (e.g. ‘It’s windy outside’) or a negative comment about 

the participant (e.g. ‘You’re getting on my nerves’). One month after this conditioning phase, 

subjects were asked to rate their arousal in response to the neutral faces that had been 

displayed during the task. Interestingly, depression scores positively correlated with arousal 

ratings to the pictures of those individuals who had made negative statements during the task, 

indicating that the social conditioning effect may have been stronger in subjects who 

experienced more depression symptoms (Wiggert et al., 2017).  

The above research provides limited evidence for an association between MDD (risk) and 

changes in learning from social feedback. In addition, there is a plethora of studies examining 



13 
 

learning from non-social outcomes in depression. For instance, using the same signal 

detection task as Pechtel and colleagues (2013) with monetary outcomes, a range of studies 

have observed reductions in reward biases in medicated (Fletcher et al., 2015; Liu et al., 2011; 

Vrieze et al., 2013) and unmedicated (Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008) 

depressed participants. Moreover, decreased reward biases have been reported in individuals 

at risk for MDD, although these effects were only seen if subjects demonstrated high 

depression scores, and not if they were experiencing few depression symptoms themselves 

(Liu et al., 2016; Luking, Pagliaccio, Luby, & Barch, 2015).  

At first sight, the above findings may suggest that deficits in learned reward biases are linked 

to acute MDD symptoms rather than to depression risk. However, it should be noted that 

impaired reward biases have been observed in remitted MDD patients, even when controlling 

for residual depression symptoms (Pechtel et al., 2013). Additionally, no alterations in reward 

biases have been found in individuals with subclinical levels of depression, although the 

severity of their symptoms was similar to that of a clinically depressed group which did 

demonstrate diminished reward learning (Liu et al., 2011). A potential explanation for the 

inconsistent findings may be that reduced reward biases are not related to depression 

symptoms in general, but are specifically linked to a lack of pleasure or interest in rewarding 

experiences (i.e. to anhedonia). This suggestion is in line with the observation that individuals 

at risk for depression who did not demonstrate impaired reward bias learning also did not show 

any signs of (anticipatory) anhedonia compared to controls (in questionnaire measures; Liu et 

al., 2011, 2016; Luking et al., 2015). By contrast, depressed individuals who displayed 

decreased reward biases demonstrated increased anhedonia levels compared to controls 

(Pizzagalli, Iosifescu, et al., 2008; Vrieze et al., 2013), and an association between heightened 

anhedonia scores and reduced reward biases has previously been reported (Huys, Pizzagalli, 

Bogdan, & Dayan, 2013; Luking et al., 2015). These findings highlight the importance of linking 

learning impairments to specific deficits or symptoms to aid the result interpretation. 



14 
 

Learning in MDD has been further examined with Pavlovian conditioning paradigms in which 

participants are presented with cues followed by positive, neutral, or negative non-social 

outcomes. In such tasks, no group differences in punishment learning were found with the use 

of explicit assessments such as outcome predictions or choices between the conditioned cues 

(Lawson et al., 2017; Robinson, Overstreet, Charney, Vytal, & Grillon, 2013). By contrast, 

implicit skin conductance measures have provided some evidence for enhanced punishment 

conditioning in MDD patients (Nissen et al., 2010), although other studies have found signs of 

reduced aversion conditioning in individuals with and at a familial risk for depression (Otto et 

al., 2014; Waters, Peters, Forrest, & Zimmer-Gembeck, 2014). These inconsistent findings 

may partly be due to variations in the utilised unconditioned stimuli (shocks vs. unpleasant 

tones) and differences in the tested samples (adult depression patients vs. children at risk for 

MDD). Further studies using systematic variations in stimuli and sample characteristics are 

needed to clarify under which circumstances implicit physiological conditioning responses are 

increased or decreased in individuals with or at risk for depression. 

With regards to reward processing, Pavlovian conditioning studies have demonstrated 

reduced reward learning in both medicated and unmedicated depression patients, with 

patients providing less accurate contingency predictions during or after the conditioning phase 

than controls (Kumar et al., 2008; Robinson et al., 2013). However, it should be noted that not 

all studies have found group differences in Pavlovian reward learning (Lawson et al., 2017; 

Rupprechter, Stankevicius, Huys, Steele, & Seriès, 2018). Interestingly, there appears to be 

a relation between the utilised paradigms and the observed effects. Specifically, studies that 

showed impaired reward conditioning in depressed individuals used paradigms in which 

outcome contingencies changed throughout the task, while studies that observed no group 

effects utilised tasks with stable contingencies. It may thus be the case that Pavlovian reward 

conditioning in depression is particularly impaired in uncertain, unstable environments.  

 



15 
 

Further evidence for abnormal learning in depression comes from decision-making paradigms 

in which participants are required to choose between two or more options which 

probabilistically or deterministically yield positive, neutral, or negative outcomes. At least three 

different types of paradigms can be distinguished, namely magnitude-based, interleaved 

valence-based, and coupled valence-based tasks. In magnitude-based tasks, the different 

choice options are associated with varying outcome magnitudes, with rewarding and aversive 

outcomes being presented in separate blocks. Thus, throughout each block, participants only 

experience feedback of one valence, and their aim is to maximise or minimise the magnitude 

of rewarding or aversive outcomes, respectively. Moreover, in interleaved valence-based 

tasks, each option (or combination of options) is associated with neutral outcomes or feedback 

of one particular valence (e.g. rewards). In other words, for a given stimulus (combination), 

subjects can only receive neutral outcomes or feedback of one valence (i.e. rewards or 

punishments), although stimuli (combinations) that can yield rewards are interleaved with 

stimuli (combinations) that can yield punishments. Finally, in coupled valence-based tasks 

participants choose between options that are probabilistically associated with rewards and 

punishments. That is to say, for every stimulus (combination), subjects will obtain rewards on 

some trials and punishments on other trials, but the probability with which a given choice yields 

positive or negative outcomes differs between options.  

Using magnitude-based decision-making tasks, it has been shown that individuals with high 

depression scores demonstrate enhanced punishment and impaired reward learning 

compared to controls (Beevers et al., 2013; Blanco, Otto, Maddox, Beevers, & Love, 2013; 

Cooper et al., 2014; Maddox, Gorlick, Worthy, & Beevers, 2012). Findings from these studies 

are generally consistent, except that Beevers and colleagues (2013), unlike the others, did not 

observe any group differences in reward learning. The authors argue that this may be the case 

because their task did not require much cognitive effort, and more automatic processing may 

not be impaired in depression. However, it is worth noting that reward learning deficits in 

depression have been found in another paradigm that presumably involved even less cognitive 
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effort than Beevers and colleagues’ task (as it included only two instead of four choice options 

and more gradual magnitude changes; Blanco et al., 2013). Thus, other factors besides 

cognitive effort requirements are likely to play a role in the absence of group differences in the 

study of Beevers and colleagues (as further discussed below). 

Contrary to the above observations, research examining learning performance with 

interleaved valence-based tasks has found no alterations in punishment learning in depressed 

subjects compared to controls (Johnston et al., 2015; Kumar et al., 2018; Wen Hua Liu, Valton, 

Wang, Zhu, & Roiser, 2017; Rothkirch, Tonn, Köhler, & Sterzer, 2017). Moreover, findings 

regarding reward learning are notably inconsistent: while some studies have observed 

impaired learning from deterministic and probabilistic rewards in MDD (Herzallah et al., 2013; 

Kumar et al., 2018), others have found no such reward learning deficits in depressed 

individuals (Bakker et al., 2018; Gradin et al., 2011; Johnston et al., 2015; Liu et al., 2017; 

Rothkirch et al., 2017). Rothkirch and colleagues (2017) argue that these inconsistencies may 

be due to variations in the medication status of the participants. Specifically, they suggest that 

the blunted reward learning observed in some studies may be the result of antidepressant 

treatment, given that past research has shown that commonly prescribed serotonergic 

antidepressants can reduce reward processing (McCabe, Mishor, Cowen, & Harmer, 2010). 

However, this argument is not consistent with findings of impaired reward learning in 

unmedicated depressed patients (Herzallah et al., 2013; Kumar et al., 2018). In fact, evidence 

from a study assessing medicated and unmedicated MDD patients with the same paradigm 

suggests that serotonergic antidepressants blunt punishment learning while leaving reward 

learning unaffected (i.e. impaired; Herzallah et al., 2013). Thus, an alternative explanation is 

needed to account for the above inconsistencies (see below). 

Findings from research using coupled valence-based tasks are similarly inconsistent. For 

instance, impaired reward learning in subjects with high levels of depression symptoms has 

been found in some studies (Kunisato et al., 2012), but not in others (Cavanagh, Bismark, 

Frank, & Allen, 2011; Chase et al., 2010). However, it is noteworthy that the study which 
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observed group effects included a very short decision time limit (750ms) compared to the other 

studies (2500ms – 4000ms). Thus, as the authors concede, it cannot be ruled out that the 

group differences were driven by depressed subjects’ inability to respond within the small time 

window due to motor impairments (which are commonly seen in depression; Caligiuri & 

Ellwanger, 2000).  

The above findings of decision-making paradigms reveal that when group effects are found 

they quite invariably demonstrate impaired reward and improved punishment learning in 

depressed individuals compared to controls. However, an inconsistency arises from the fact 

that a range of studies do not find any group effects in learning from either valence. In this 

context, it is interesting to note that most paradigms which observed enhanced aversion 

learning in depression included separate reward and punishment blocks, while tasks in which 

no group effects were found incorporated positive and negative outcomes in an interleaved or 

coupled manner. A factor that may contribute to the inconsistent findings is, therefore, that in 

interleaved or coupled tasks participants are often instructed to maximise their winnings, while 

in paradigms with separate punishment blocks subjects are asked to minimise negative 

outcomes. Notably, it has been argued that task performance is optimised when the task goals 

are framed in a way that is in line with the participants’ motivational state (Maddox & Markman, 

2010). Given that depressed individuals are thought to be more motived by punishment 

avoidance than by reward seeking (Trew, 2011), it may thus be the case that the emphasis of 

aversion minimisation in tasks with separate punishment blocks facilitates aversion learning 

in depression.   

Moreover, with regards to reward learning, a detailed comparison of the utilised tasks points 

to an intriguing possible explanation of why inconsistent results have been observed: across 

different decision-making paradigms, most studies that reported reward learning deficits in 

depression used high magnitude reinforcements, while studies that did not find any group 

effects utilised comparatively low magnitude outcomes (see Table 1). Two studies arguably 

do not fit this pattern. However, as discussed above, one of these studies may have found 
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group differences due to the use of unusually short decision-making times (Kunisato et al., 

2012). Moreover, in the other study, different reimbursements were used for depressed and 

control participants, (namely a free analysis of an anatomical MRI scan, and money based on 

task points, respectively,) which could have influenced performance differentially (Liu et al., 

2017). For all other studies, the abovementioned pattern holds, namely that larger, but not 

smaller, reinforcements were associated with group differences in reward learning 

performance. It is thus possible that individuals with or at risk for depression mainly 

demonstrate reward learning deficits when high magnitude outcomes are involved. This may 

be the case because reduced reward sensitivity in depression is particularly apparent for high 

reward magnitudes, or because healthy controls perform particularly well for high incentives, 

thus making group differences more apparent. This suggestion is in line with previous findings 

that healthy subjects enhance their performance as reward magnitudes increase, while 

depressed individuals show no such magnitude-dependent performance changes (Cléry-

Melin et al., 2011).  

It should be noted that the effect of reward magnitude may be specific to (explicit) decision-

making tasks, as the abovementioned signal detection paradigm (in which more implicit 

learning biases are assessed) revealed reduced reward learning in depression even when 

small monetary rewards were used. Moreover, the observed pattern of findings leaves open 

the question of whether depressed individuals display impaired learning from social outcomes. 

This is the case because, on the one hand, social outcomes are not easily quantifiable, but, 

on the other hand, impairments in the processing of social stimuli have been observed in 

depression (as discussed above).  
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Table 1: Overview of findings from decision-making tasks using differing outcomes  

 

Study 

reference 

Reward learning 

deficits found in 

depression? 

 

Rewarding  

outcome 

Blanco et al., 2013 Yes 40-100 points 

Maddox et al., 2012 Yes 40-100 points 

Cooper et al., 2014 Yes 20-100 points 

Herzallah et al., 2013 Yes 25 points 

Kumar et al., 2018 Yes 10 Dollars 

Kunisato et al., 2012 Yes *10 Yen 

Bakker et al., 2018 No 0.2 Euros 

Rothkirch et al., 2017 No 0.5 Euros 

Johnston et al., 2015 No 1 voucher 

Beevers et al., 2013 No 0-10 points 

Cavanagh et al., 2011 No ‘correct’ 

Chase et al., 2010 No ‘correct’ 

Gradin et al., 2011 No 2 drops of water 

Liu et al., 2017 No **50 points + smiley face 

*The decision time limit was very short in this study (750ms). 

**Healthy control participants were given money for these points, while depressed participants 

received an MRI scan analysis. 
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1.2.2 Computational Modelling Studies 

The findings discussed above have given an indication that, under certain circumstances, 

depression is associated with reduced reward and enhanced punishment learning. However, 

learning relies on many subprocesses, including the formation and updating of outcome 

predictions, memory mechanisms, and the valuation of received rewards and punishments. 

Given that standard analyses do not provide any information as to which of these aspects may 

be affected in depression, computational modelling methods have been utilised to address 

this question.  

Computational models (as used in psychology) provide a mathematical description of the sub-

processes underlying a particular behaviour and give insights into individual differences in this 

behaviour through the use of mechanistically meaningful parameters. Specifically, models 

aiming to capture learning performance usually include the following steps: firstly, the 

prediction value of the available cues (i.e. of the conditioned stimuli or decision-making 

options) is initialised. This prediction value reflects how strongly a given cue is associated with 

positive or negative outcomes and it is commonly initialised at the midpoint between the 

largest and smallest possible outcome values. For instance, if the model codes rewards as 1 

and punishments as -1, the starting prediction value may be set to 0, indicating that it is initially 

unknown which outcome a given cue is more strongly associated with. Secondly, once an 

outcome has been received (following passive observation or an active choice), a prediction 

error is calculated by subtracting the prediction from the outcome value. The outcome value 

may either be set to a fixed number for all participants (e.g. 1 for rewards and -1 for 

punishments) or it may be determined with the use of an individualised valuation parameter 

that represents the reward and punishment sensitivity of a given participant. Thirdly, the 

prediction value of the cue (/chosen option) that preceded the outcome is updated by adding 

the prediction error, multiplied by a learning rate parameter, to the previous prediction value. 

The learning rate determines how large the change in the prediction value is, with smaller 

learning rates resulting in smaller updates, and thus in the integration of prediction errors 



21 
 

across a larger number of trials. Moreover, if the received outcome was larger than expected, 

future prediction values will be increased, whereas if the outcome was smaller than expected, 

future prediction values will be decreased. In this way, predictions become increasingly 

accurate over time.  

In addition to the above steps, models for decision-making (rather than passive conditioning) 

include a step in which a so-called softmax (or similar) function is used to calculate the 

probability of the participant’s choices under the model. This sigmoidal function depends on a 

temperature parameter, as well as on the relative prediction values of the available options 

(which, in turn, depend on all other model parameters). The temperature parameter 

determines how close the prediction values of the available options need to be for the 

participant to reliably choose (i.e. exploit) the option with the higher value, rather than making 

exploratory choices of the alternative option. Given that the probability of the participant’s 

choices under the model, as indicated by the softmax function, depends on all model 

parameters, the best fitting parameters for a particular participant can be determined by 

maximising this probability. Specifically, using an optimisation procedure such as gradient 

ascent, the log likelihood of the joint probability of the participant’s choices across all trials can 

be maximised by strategically adjusting the model parameter values (until the global maximum 

of the log likelihood estimate is reached). This method reveals the learning rate, outcome 

valuation, and temperature parameters, as well as any additional parameters added to more 

advanced models, that are likely to underlie a given participant’s learning performance 

(assuming an appropriate model was identified). These parameter values can then be 

compared between depressed individuals and controls to assess which aspects of the learning 

process may be impaired in depression. 

Using this approach, a number of studies have found that depression is associated with altered 

model parameter values. For instance, the examination of temperature parameters has shown 

that depressed individuals make more exploratory choices than controls in coupled valence-

based tasks, as well as in paradigms in which only rewarding and neutral outcomes are 
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present (Kunisato et al., 2012; Rupprechter et al., 2018). By contrast, in a punishment 

minimisation magnitude-based learning task, individuals with high depression scores 

displayed temperature parameter values that were indicative of increased exploitation 

compared to healthy volunteers (Beevers et al., 2013). However, it should be noted that 

whether exploration or exploitation is the better strategy depends on the task structure, and 

the above studies observed impaired reward and enhanced punishment learning performance 

in depressed participants, respectively (Beevers et al., 2013; Kunisato et al., 2012). Thus, it 

may be the case that depressed individuals’ exploration behaviour is suboptimal during reward 

maximisation but not during punishment minimisation. This suggestion is supported by the 

previous finding that depressed subjects show particularly increased exploratory behaviour on 

reward trials on which exploitation would have been the ideal strategy (Blanco et al., 2013). 

Thus, alterations in learning performance in depression may partly be driven by the fact that 

depressed individuals make more random, exploratory choices when aiming to gain rewards, 

whereas they are able to exploit even small value differences to make optimal choices when 

aiming to avoid aversion.  

In addition, several studies have reported reduced positive and increased negative learning 

rates in depression (Beevers et al., 2013; Chase et al., 2010; Cooper et al., 2014). These 

findings suggest that, compared to controls, depressed individuals adjust their predictions less 

when receiving outcomes that are better than expected and more when obtaining feedback 

that is worse than expected. Interestingly, this finding may be linked to negative attention 

biases in MDD, as training depressed subjects to attend to positive stimuli appears to 

‘normalise’ their negative learning rates (Cooper et al., 2014). However, it should be noted 

that, contrary to the findings above, some studies have observed decreased negative and 

heightened positive learning rates in depressed subjects (Beevers et al., 2013; Chase et al., 

2010; Dombrovski et al., 2010). Yet, again, it needs to be considered that as tasks (and 

models) differ, optimal learning rates will also vary. Notably, despite the differing directions of 

the learning rate results, the above studies consistently observed improved punishment and 
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impaired reward learning in depression (or no group effects). This implies that, compared to 

controls, depressed subjects’ learning rates were likely more optimal when updating 

predictions based on negative feedback and less optimal when updating predictions based on 

positive outcomes. 

Moreover, evidence from somewhat more advanced models with additional parameters 

suggests that depressed individuals show reduced memory-based integration of values over 

time, as well as increased punishment and decreased reward sensitivity (Byrne, Norris, & 

Worthy, 2016; Dombrovski et al., 2010; Huys et al., 2013; Mkrtchian, Aylward, Dayan, Roiser, 

& Robinson, 2017; Rupprechter et al., 2018). The latter findings are in line with the observation 

of negative biases and anhedonia in depression (as discussed in relation to social processing 

above; Kupferberg et al., 2016).  

It is worth mentioning that a number of studies have not found any differences in model 

parameters between depressed and healthy individuals (Bakic et al., 2017; Kumar et al., 2008; 

Wen Hua Liu et al., 2017; Moutoussis et al., 2018; Rothkirch et al., 2017). In this context, it 

should be considered that parameter values are derived from the best fitting assessed model 

in a given study, but that this does not guarantee that the utilised model accurately captures 

the participants’ learning processes. In some studies, a different (non-assessed) model, which 

may have yielded parameter group differences, may have been able to better account for 

subjects’ learning performance. The latter criticism could, of course, be aimed at any 

computational modelling study, but extensive model validation can partly address this issue. 

For instance, the estimated model parameters can be used for data simulation to assess 

whether the simulated data captures the performance pattern observed in the participants’ 

data. Moreover, fitting the model back to the simulated data can determine how well the 

utilised parameters can be recovered. Given that this type of validation was not conducted in 

some of the abovementioned studies, it cannot be ruled out that the use of inappropriate 

models may partly account for the lack of observed group differences in the model parameters. 
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All in all, the above studies suggest that some aspects of the learning process, such as the 

exploration vs. exploitation trade-off, prediction updating, or outcome sensitivity, appear to be 

altered in depressed individuals. The behavioural manifestations of these alterations are likely 

underpinned by changes in depressed subjects’ neural processing during learning, which have 

been examined with the use of neuroimaging, as discussed below. 

1.2.3 Neuroimaging Studies 

As is evident from computational models described above, learning involves at least two 

crucial steps: firstly, at the time of the cue presentation, the predicted value of the available 

stimuli is assessed. This value is formed based on repeated associations between the stimuli 

and positive or negative outcomes. Secondly, at the time of the outcome receipt, the predicted 

and actual outcome values are compared and a prediction error (PE) is computed. The latter 

is then used to update the prediction value of the preceding stimulus to allow for a more 

accurate outcome prediction in the future. Moreover, decision-making (as opposed to passive, 

Pavlovian learning) additionally requires the selection of an action, such as the approach of 

one of several stimuli based on the predicted stimulus values.  

A range of brain areas have been implicated in the above learning processes (e.g. reviewed 

in Ernst & Paulus, 2005; Khani & Rainer, 2016; Lee, Seo, & Jung, 2012). Specifically, a 

network of regions including the striatum, amygdala, insula, orbitofrontal cortex (OFC) and 

anterior cingulate cortex (ACC) is thought to be involved in the representation of prediction 

(/expected) values during cue presentation. In this network, the subcortical regions provide 

value representations which are integrated with other information, such as uncertainty and 

effort or delay costs, in the OFC and ACC (Bezzina et al., 2008; Croxson, Walton, Reilly, 

Behrens, & Rushworth, 2009; Holland & Gallagher, 2004; Palminteri et al., 2012; Rushworth 

& Behrens, 2008). 

Moreover, the prediction error signal is thought to be computed in the midbrain, with the 

substantia nigra and ventral tegmental area (VTA) representing reward PEs and the habenula 
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encoding punishment PEs (Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Cohen, Haesler, 

Vong, Lowell, & Uchida, 2012; Schultz, Dayan, & Montague, 1997). This PE signal is passed 

on to the hippocampus and striatum, where it is involved in memory acquisition and updating 

(Fernández, Boccia, & Pedreira, 2016) and value computation and action selection, 

respectively (Chase, Kumar, Eickhoff, & Dombrovski, 2015; Frank, 2006; O’Doherty et al., 

2004).  

It should be noted that the evidence for the varying roles of different brain regions in the 

learning process is mostly derived from animal research. As is evident in the findings describes 

below, this distinction may be less apparent in human neuroimaging studies. This is the case 

because brain areas encoding PEs likely receive inputs from prediction encoding regions, and 

vice versa (see section 1.3 for further details). This may lead to an overlap between areas 

found to encode prediction and PE values with the use of neuroimaging, especially given the 

low spatial resolution of functional magnetic resonance imaging and the fact that BOLD signals 

may reflect the inputs to specific areas (as represented in local field potentials; Logothetis, 

2003).    

Evidence suggests that in depressed individuals the above neural learning processes may be 

impaired. Only few studies report findings relating to neural prediction encoding, with most 

papers focusing on PE-related results. The little research assessing prediction signals has 

yielded somewhat inconsistent results. For instance, it has been found that during Pavlovian 

conditioning with electric shocks MDD patients display reduced punishment prediction 

representations in the habenula compared to controls (Lawson et al., 2017). Moreover, in a 

decision-making paradigm with water drop rewards, depressed individuals were shown to 

demonstrate lower reward prediction-related activity in the hippocampus and posterior 

parahippocampus than controls (Gradin et al., 2011). By contrast, no group differences in 

prediction encoding were observed during either conditioning or decision-making tasks when 

monetary outcomes were utilised (Lawson et al., 2017; Rothkirch et al., 2017). These limited 

findings suggest that depressed subjects may display abnormal neural prediction signals in 
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regions related to behavioural avoidance and memory encoding, but that these deficits may 

potentially be limited to primary (and not secondary) rewards and punishments. 

Research into neural PE encoding in depression is somewhat more extensive. For instance, 

it has been found that medicated depressed subjects show reduced reward PE encoding in 

the ventral and dorsal striatum, the midbrain, and the hippocampus (Gradin et al., 2011). 

Moreover, higher self-reported depression scores in unmedicated individuals have been 

shown to be associated with decreased reward PE encoding in the NAcc and putamen (Bakker 

et al., 2018), while higher anhedonia scores in unmedicated depressed individuals appear to 

be correlated with lower reward PE signals in the medial OFC (Rothkirch et al., 2017). 

Moreover, medicated depressed patients have been reported to display decreased reward PE 

signals in the ventral striatum and in the dorsal ACC, while reward PE encoding in the VTA, 

rostral ACC, hippocampus, and posterior cingulate cortex (PCC) was shown to be increased 

when compared to controls. Notably, the heightened PE-related responses in the latter regions 

were due to reduced ‘deactivation’ in depressed subjects compared to healthy volunteers. The 

authors interpret these findings as indicating that PE signals are blunted in depressed subjects 

by arguing that increased ‘deactivation’ represents stronger PE encoding (Kumar et al., 2008).  

The above suggestion is plausible, given that higher ‘deactivation’ indicates a stronger 

negative covariation between BOLD responses and model-derived PE values. However, these 

results raise the question of why the PE signal was negatively encoded in this study. In this 

context, it is worth considering that a negative covariation between BOLD responses and PE 

values that are computed by coding rewards as 1 and omissions as 0 is equivalent to a positive 

covariation between BOLD signals and PE values that are calculated by coding rewards as 0 

and omissions as -1. Thus, it may be the case that the rostral ACC, hippocampus, and PCC 

(positively) encoded reward omission (i.e. ‘punishment’) PEs and that this signal was reduced 

in the depressed sample. By contrast, the ventral striatum and dorsal ACC may have encoded 

reward PEs (showing a positive covariation with BOLD responses) which were equally 

attenuated in MDD patients.   
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At first sight, the above proposal may seem to be inconsistent with previous findings of 

enhanced punishment PE signals in depression. Specifically, in an interleaved valence-based 

decision-making task depressed subjects have been found to display increased NAcc and 

substantia nigra punishment PE encoding (Liu et al., 2017). However, when considering the 

regions in which group effects were seen, it becomes apparent that enhanced or reduced 

punishment PE encoding in depressed individuals was mainly seen in areas with high 

dopamine or serotonin innervation, respectively (De Deurwaerdère & Di Giovanni, 2017). It 

may thus be the case that varying neurotransmitter deficits in depression may differentially 

affect punishment learning (potentially depending on the utilised task or the tested sample). 

This suggestion is in line with the distinct roles of dopamine and serotonin in the learning 

process, which are discussed in detail below (see section 1.3). 

The above findings indicate that depressed individuals show impaired prediction 

representations in the midbrain and hippocampus (when primary outcomes are used), as well 

as altered PE encoding in regions such as the midbrain, striatum, hippocampus and ACC. It 

should be noted that, besides the above learning related research, there are a number of 

studies that have examined neural responses in anticipation and response to positive and 

negative outcomes using tasks with no learning component. An exhaustive description of 

these studies is beyond the scope of the current discussion which is focused specifically on 

learning in depression. However, some of these studies are relevant in the current context, as 

they have assessed neural prediction and PE responses (despite the lack of learnable 

associations). Using this approach, it has been found that depressed subjects show increased 

PE encoding in the rostral ACC and parahippocampus (Steele, Meyer, & Ebmeier, 2004), as 

well as marginally decreased prediction-related activity in the ACC (Chase et al., 2013), 

compared to controls. By contrast, prediction and PE representations in the striatum appear 

to be unaffected in depression when non-learning paradigms are used (Chase et al., 2013; 

Greenberg et al., 2015; Rutledge et al., 2017). 
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Based on the latter findings, it has been argued that PE computation per se is not impaired in 

depression. However, there are several issues with this interpretation. Firstly, it is not 

statistically valid to draw a conclusion based on the absence of group differences (as the null 

hypothesis of no group effects can only be rejected and not confirmed based on available 

evidence when standard, non-Bayesian analyses are conducted). Secondly, the depressed 

participants included in the above studies were medicated, which leaves open the possibility 

that antidepressant treatment may have ‘normalised’ striatal PE responses (although some 

learning studies have observed blunted striatal reward PEs in medicated patients; Gradin et 

al., 2011). Thirdly, while it is plausible that PE ‘surprise’ signals are present in non-learning 

contexts, these signals cannot be used to update future outcome predictions when there are 

no contingencies to be learned (which participants are aware of). Thus, the processing of PE 

signals may differ depending on the context in which they occur. Consistent with this 

suggestion, previous research has shown that striatal, hippocampal and frontal regions are 

differentially engaged depending on whether or not outcome contingencies are predictable/ 

learnable (Rodriguez, 2009; Tanaka et al., 2006). Therefore, it does not seem justified to draw 

conclusions about learning-related PE encoding in depression based on non-learning 

paradigms.  

1.2.4 Summary 

In summary, the above studies suggest that learning from non-social outcomes is altered in 

depression, on both the behavioural and the neural level. While some behavioural studies do 

not observe any group differences in learning, this appears to only be the case when the task 

goals are not framed in line with participants’ motivational state, or when low magnitude 

rewards are used. Otherwise, behavioural studies have consistently demonstrated impaired 

reward and enhanced punishment learning in depressed compared to control participants. 

This finding is consistent with the broader literature indicating that depression is associated 

with reduced sensitivity to reward (i.e. anhedonia) and increased responsivity to aversion (as 

discussed in the context of social processing above; Kupferberg et al., 2016). 
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Furthermore, neuroimaging findings tentatively suggest that neural prediction encoding in 

depression may be especially impaired when primary outcomes are utilised, with group effects 

seen in the habenula and (para-)hippocampus for punishment and reward prediction, 

respectively. Moreover, depressed individuals display diminished reward PE signals in the 

dorsal and ventral striatum and dorsal ACC, as well as potentially blunted punishment (/reward 

omission) PE representations in the rostral ACC, hippocampus, and PCC. In addition, 

increased punishment PE encoding has been observed in the NAcc and substantia nigra of 

depressed subjects. As mentioned above, these seemingly inconsistent findings may be due 

to the distinct effects of dopamine and serotonin on punishment learning (which may be more 

or less apparent depending on the utilised tasks or the tested samples). It is thus important to 

gain a better understanding of the roles of these neurotransmitters in the learning process, 

which will also provide insights into how different pharmacological treatments may impact the 

learning deficits observed in depression.  

1.3 Neurotransmitter Involvement in Learning 

1.3.1 Role of Dopamine in Learning 

1.3.1.1 Mechanistic Considerations based on Animal Studies 

The neurotransmitter dopamine (DA) has been widely implicated in the learning process (e.g. 

see Watabe-Uchida, Eshel, & Uchida, 2017 for a review). Specifically, DA neurons are thought 

to be involved in the computation of outcome prediction and prediction error signals. Evidence 

for this suggestion comes from studies in primates and rodents showing that DA neurons 

demonstrate the following firing pattern during reward learning: initially, phasic DA activity is 

minimal when prediction cues are presented, while high DA firing rates are observed in 

response to (unexpected) rewarding outcomes, paralleling the presence of a large prediction 

error (PE).  During learning, the DA response gradually shifts from the time of the outcome to 

the time of the cue presentation, mirroring the formation of outcome predictions and the 

decrease of reward PEs. That is to say, after cue-outcome associations have been learned, 
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many DA neurons fire in response to the predictive cue and show no phasic activity to the 

reward receipt, in line with the absence of PEs for fully predicted outcomes. Moreover, if an 

expected reward is omitted, DA firing drops below baseline at the time point when the outcome 

was predicted to occur, representing a negative PE signal (Schultz, Apicella, & Ljungberg, 

1993). Thus, the response pattern of DA neurons closely resembles the computational 

modelling mechanisms described above (Suri & Schultz, 1999), which has been corroborated 

by several more recent studies (Day, Roitman, Wightman, & Carelli, 2007; Enomoto et al., 

2011; Flagel et al., 2011; Hart, Rutledge, Glimcher, & Phillips, 2014). 

However, the mere fact that PEs are computed by DA neurons does not necessarily mean 

that these signals are utilised in a behaviourally relevant way during the learning of cue-action-

outcome associations, as predicted by computational modelling. Evidence for a causal link 

between DA-mediated PE signals and associative learning has been provided by a number of 

animal experiments (Steinberg et al., 2013; Tsai et al., 2009; Witten et al., 2011). A particularly 

interesting example is a study showing that the optogenetic activation of DA neurons enables 

the association of new cues with fully predicted outcomes (thus eliminating the blocking effect). 

In this study, rats were conditioned to enter a port to receive a sucrose reward whenever a 

tone stimulus was presented. After initial learning had occurred, a light stimulus was displayed 

in addition to the tone before the reward was obtained. Crucially, in this phase, rats in the 

experimental group (but not those in the control group) received DA stimulation during reward 

receipt, simulating a PE signal. Following repeated pairings of the tone + light combination 

with the reward, the light was displayed on its own (not followed by any outcome) and the rats’ 

tendency to enter the port in expectation of a reward was assessed. Notably, during the initial 

learning phase, the tone fully predicted the reward, which is why no DA-mediated PE signal 

occurred following the tone + light stimulus combination. Therefore, it was expected that 

control rats would not learn any associations between the light and the reward, thus 

demonstrating a blocking effect. By contrast, in the experimental group, the optogenetic DA 

neuron activation during reward receipt created the impression that a PE signal had occurred, 
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indicating the need for an update of the predictive value of the tone + light stimulus 

combination. Thus, rats in the experimental group were hypothesised to show learning of an 

association between the light and the rewarding outcome. In line with these expectations rats 

in the experimental group showed a higher tendency than controls to enter the reward port 

when only the light was presented (Steinberg et al., 2013). This study, as well as others (Tsai 

et al., 2009; Witten et al., 2011), suggests that DA-mediated PE signals appear to be causally 

involved in the learning of cue-action-outcome associations.  

This raises the question of how this learning process is implemented; i.e. how dopaminergic 

PE representations are formed and propagated through the brain to initiate or inhibit actions. 

Evidence suggests that dopaminergic PE signals may originate in the midbrain where they 

are computed based on the integration of prediction and outcome information. Specifically, it 

has been suggested that, in the ventral tegmental area (VTA), the prediction signal may be 

encoded by sustained activity of gamma-aminobutyric acid (GABA) neurons, potentially based 

on inputs from the orbitofrontal cortex. This GABA signal may exert an inhibitory influence on 

reward-related DA activity if received rewards were expected, resulting in a PE signal (Cohen, 

Haesler, Vong, Lowell, & Uchida, 2012). In line with this suggestion, stimulating GABA 

neurons in the interval between cue presentation and outcome receipt results in reduced DA 

responses to the reward (as if it was more expected), while inhibiting GABA firing at this time 

leads to enhanced reward-related DA activity (as if the reward was less expected; Eshel et al., 

2015). Similarly, GABAergic inhibition of DA neurons is thought to be involved in the negative 

PE signal following reward omission, with GABA neurons being excited by habenula neurons 

that are phasically activated by aversive outcomes (Bromberg-Martin, Matsumoto, & 

Hikosaka, 2010; Cohen et al., 2012). Thus, midbrain DA neurons seem to integrate excitatory 

reward information with inhibitory (GABA-mediated) prediction and aversion signals to 

‘compute’ PE representations.  
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Moreover, the dopaminergic PE signal generated in the midbrain is thought to be propagated 

to other brain regions to be used for action initiation or inhibition in a decision-making context 

(see Frank, 2011 for a review of relevant models). The hypothesised trajectory of the PE signal 

though the brain has, for instance, been outlined in a computational model of the basal ganglia 

proposed by Frank, 2006 (see Figure 1). In this model, the dopaminergic PE signal is relayed 

from the midbrain to the dorsal striatum (DS). If this signal encodes a positive PE, associated 

with increased DA firing, a population of neurons responsible for ‘go’ responses in the DS is 

activated via DA binding to D1 receptors. In addition, a population of DS neurons responsible 

for ‘no-go’ responses is inhibited via DA binding to D2 receptors. The activation of the former 

population of neurons leads to the inhibition of neurons in the internal segment of the globus 

pallidus (GPi), which, in turn, disinhibits the inhibitory control this region exerts over the 

thalamus. The disinhibition of the thalamus, in turn, elicits the excitation of frontal cortical 

regions, such as the premotor area, and thereby facilitates action execution. Thus, positive 

dopaminergic PE signals, which may e.g. have resulted from a rewarding outcome that was 

received after a favourable choice, promote action (repetition). By contrast, if the dopaminergic 

PE signal relayed from the midbrain to the DS is negative, associated with a suppression of 

tonic DA firing, the abovementioned population of ‘no-go’ neurons in the DS is disinhibited via 

reduced DA binding to D2 receptors. This disinhibition in the DS leads to the inhibition of 

neurons in the external segment of the globus pallidus (GPe), which, in turn, elicits the 

disinhibition of neurons in the GPi. The latter, in turn, evokes increased inhibition of the 

thalamus and, thereby, decreases the excitation of frontal cortical regions such as the 

premotor area. Thus, negative dopaminergic PE signals, which may e.g. have resulted from 

an aversive outcome that was received after an unfavourable choice, inhibit action (repetition; 

Frank, 2006). 
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Figure 1: Model of dopamine prediction error modulation of frontostriatal ‘go’ and ‘no-go’ 

pathways; from Frank, 2006; see text for details 

 

GPi: internal segment of globus pallidus; GPe: external segment of globus pallidus; SNc: 

substantia nigra pars compacta; STN: subthalamic nucleus 

In line with the above model, animal studies have shown that the activation of D1 and D2 

receptors in the dorsal striatum has differential effects, with the former resulting in increased 

behavioural preference and the latter in heightened avoidance. For instance, when provided 

with a choice between a touch trigger that has no effect and a touch trigger that induces 

optogenetic activation of D1 receptor expressing neurons in the dorsomedial striatum, mice 

express a preference for the D1-linked trigger. By contrast, when given a choice between an 

inactive trigger and a trigger leading to the optogenetic activation of striatal D2 receptor 

expressing neurons, mice avoided the D2-linked trigger (Kravitz, Tye, & Kreitzer, 2012). 

Similarly, in a task in which a cue is followed by a reward that is probabilistically delivered in 

a port on the left or on the right side, stimulation of D1 expressing neurons in the dorsal 

striatum biases mice towards choosing the port on the contralateral side to the stimulation. On 

the other hand, activation of striatal D2 expressing neurons biases mice towards avoiding the 

port contralateral to the stimulation side (thus inducing them to select the port on the ipsilateral 

side; Tai, Lee, Benavidez, Bonci, & Wilbrecht, 2012).   
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These findings (as well as the observations in humans described below) are consistent with 

the abovementioned model of the influence of dopaminergic midbrain PE signals on the basal 

ganglia. In addition, midbrain DA signals are also passed to other regions, such as the 

hippocampus, amygdala, hypothalamus, OFC and ACC, where they may impact the memory 

and emotional salience of unexpected outcomes (Bromberg-Martin et al., 2010).  

1.3.1.2 Human Studies 

The role of DA in learning has been further investigates by studies using DA manipulations in 

humans. Behavioural studies have found that low doses of D2 receptor agonists impair reward 

and enhance punishment learning in decision-making tasks (Frank & O’Reilly, 2006), while 

they reduce reward biases in signal detection paradigms (Pizzagalli, Evins, et al., 2008). By 

contrast, low doses of D2 receptor antagonists have been shown to increase reward and 

decrease punishment learning (Frank & O’Reilly, 2006; Jocham, Klein, & Ullsperger, 2011; 

Van Der Schaaf et al., 2014). The authors of the above studies argue that these (initially 

counterintuitive) findings are likely due to the binding of D2 agents to presynaptic 

autoreceptors when they are given in low doses, resulting in diminished or enhanced DA 

availability following the administration of D2 agonists or antagonists, respectively. Moreover, 

higher doses of D2 antagonists (presumably acting on postsynaptic receptors) have been 

found to evoke deficits in reward prediction and learning, as well as decreases in learning 

rates and increases in temperature parameters (indicating a tendency to make more 

exploratory choices; Diederen et al., 2017; Eisenegger et al., 2014). 

Additionally, manipulations with more general (receptor unspecific) effects on DA functioning 

have yielded quite consistent results. For instance, enhancing DA levels with (meth-) 

amphetamines has been found to induce context conditioning, leading to the preference of a 

drug-paired over a placebo-paired location (Childs & de Wit, 2013; Mayo et al., 2013). 

Moreover, administration of the DA precursor levodopa has been shown to improve reward 

learning in both younger and older adults, as indicated by larger total wins and higher learning 

rates in decision-making paradigms (Chowdhury et al., 2013; Pessiglione, Seymour, Flandin, 
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Dolan, & Frith, 2006). Similarly, it has been found that Parkinson’s Disease (PD) patients on, 

compared to off, levodopa (and D2 agonists) medication show enhanced learning from 

rewards, higher reward sensitivity and learning rates, and enhanced remembrance of reward 

contingencies (Coulthard et al., 2012; Frank, Seeberger, & O’Reilly, 2004; Rutledge et al., 

2009). In addition, low levels of DA have been associated with improved punishment learning, 

both in PD patients off their medication and in healthy volunteers after DA precursor depletion 

(Cox et al., 2015; Frank et al., 2004; Robinson, Standing, Devito, Cools, & Sahakian, 2010). 

Notably, the above findings of enhanced reward and punishment learning after increases and 

decreases in DA levels, respectively, are in line with the basal ganglia model of dopaminergic 

PE propagation described above (Frank, 2006). This is the case because high tonic DA levels 

result in a bias towards the excitation of the ‘go’ pathway (by reward-induced positive PEs), 

while low tonic DA levels lead to a bias towards the disinhibition of the ‘no-go’ pathway (by 

punishment-induced negative PEs – this mechanism has been formally confirmed with the use 

of computational modelling by Frank et al., 2004).   

The basal ganglia model is further supported by findings from neuroimaging studies, with the 

most direct evidence coming from positron emission tomography (PET) research. For 

instance, older adults with reduced D1 binding potentials throughout the striatum have been 

found to demonstrate impaired reward learning, and D1 receptor availability in the striatum is 

positively correlated with reward learning performance (Cox et al., 2015; De Boer et al., 2017). 

In addition, fMRI studies have shown that enhancing DA levels with levodopa or low doses of 

D2 antagonists increases the encoding of reward PEs (and of unexpected rewards) in the 

striatum (Chowdhury et al., 2013; Jocham et al., 2011; Pessiglione et al., 2006; Van Der 

Schaaf et al., 2014). Conversely, lowering DA availability with DA precursor depletion has 

been found to decrease PE representations in the striatum, thalamus, and amygdala (Tobia 

et al., 2014). Thus, there appears to be a close relation between DA functioning and PE 

encoding (especially in the striatum). 
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With regards to prediction value representations, it has been observed that DA precursor 

depletion decreases reward prediction encoding in the striatum, thalamus, and midbrain 

(Tobia et al., 2014), while D2 antagonist administration enhances reward prediction 

representations in the ventromedial PFC (Jocham et al., 2011). The authors of the latter study 

argue that their findings may have resulted from a drug-induced shift to preferential D1 

functioning in the frontal cortex, which has been found to lead to more stable stimulus 

representations than preferential D2 functioning (Jocham et al., 2011; Seamans & Yang, 

2004). A similar argument has been put forth by a pattern classification study which observed 

that D2 antagonist administration, compared to placebo, resulted in a more accurate 

distinction between OFC activity patterns in response to reward-associated cues and reward-

unrelated cues. The authors suggest that this effect may be due to reduced destabilisation of 

value representations after blocking of frontal D2 receptors (Kahnt, Weber, Haker, Robbins, & 

Tobler, 2015). Therefore, generally decreased DA levels and preferential D2 binding seems 

to be associated with reduced reward prediction value representations.  

Contrary to the above findings, it has been reported that increasing DA levels via 

methamphetamine administration reduces PE and prediction encoding in the ventral striatum 

and vmPFC, respectively (Bernacer et al., 2013). The latter result is particularly surprising 

given that (somewhat) heightened levels of DA are thought to be associated with preferential 

D1 binding, which would be expected to enhance prefrontal prediction representations 

(Durstewitz & Seamans, 2008). A possible explanation for these inconsistencies is that the 

study may have included a participant sample with particularly high baseline levels of DA. 

Notably, the relation between DA levels and DA-related functioning is thought to follow an 

inverted U-shaped pattern, with both suboptimally low and suboptimally high levels of DA 

expected to result in impaired functioning (and preferential frontal D2 binding; Durstewitz & 

Seamans, 2008; see also below). This would explain the diminished prediction and PE 

encoding after methamphetamine administration, if participants had high baseline levels of 

DA. 
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Overall, the above studies demonstrate that (when starting from a ‘normal/ average’ baseline) 

higher levels of DA appear to facilitate reward learning, on both the behavioural and the neural 

level, while lower levels of DA seem to be associated with enhanced punishment learning.  

1.3.2 Role of Serotonin in Learning 

1.3.2.1 Mechanistic Considerations based on Animal Studies 

Like DA, serotonin (5-hydroxytryptamine; 5-HT) is thought to be involved in learning. However, 

the mechanism underlying 5-HT’s role in the learning process is much less well understood 

than that of DA (e.g. see reviews by Boureau & Dayan, 2011; Cools, Roberts, & Robbins, 

2008). This is partly the case because it is difficult to target 5-HT neurons in vivo, which is why 

it has not been possible to examine the firing patterns of 5-HT neurons to the same extent as 

those of DA neurons (Cools, Nakamura, & Daw, 2011).  

Nevertheless, theoretical accounts have proposed that 5-HT firing may encode punishment 

learning signals (Boureau & Dayan, 2011; Daw, Kakade, & Dayan, 2002), which may be 

relayed from the dorsal raphe nucleus to the amygdala, thalamus, hippocampus and the PFC 

(including the ACC; Moore, Halaris, & Jones, 1978). This suggestion is tentatively supported 

by a limited number of studies, if reward omission is regarded as an aversive event. For 

instance, during a saccade-based learning task, some dorsal raphe nucleus (DRN) neurons 

of rhesus monkeys show enhanced activity to cues that predict reward omission, as well as to 

the reward omission itself (Bromberg-Martin, Hikosaka, & Nakamura, 2010). Similarly, in a 

decision-making paradigm with probabilistic outcomes, some DRN neurons increase their 

firing rate when an expected reward is omitted (Ranade & Mainen, 2009), and, in a non-

learning context, serotonergic DRN neurons respond to unexpected aversive events (Takase 

et al., 2004). 

The above findings are consistent with the firing pattern that would be expected in neurons 

that encode punishment prediction and PE signals. However, it should be noted that the 

temporal trajectory of the firing was not assessed. Thus, it is not clear whether the neural 
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activity to the predictive cue increased and the (putative PE) response to the outcome 

decreased throughout the learning process, as would be expected from learning-related 

signals. Moreover, it is worth mentioning that not all recorded neurons in the above studies 

showed the same response pattern, and, importantly, in the former two studies it was not 

confirmed that the recorded neurons were serotonergic (although this is likely due to the large 

proportion of 5-HT neurons in the DRN; Moore et al., 1978). 

While the above studies very tentatively support the notion that 5-HT neurons may encode a 

punishment prediction value, they leave open the behavioural relevance of this signal. 

Theoretical accounts have proposed that the 5-HT learning signal may, in interaction with DA, 

play a role in passive punishment avoidance, with some potential involvement in active escape 

behaviour. For instance, it has been proposed that serotonergic punishment prediction signals 

may result in the suppression of reward-seeking actions when there is a potential for aversive 

outcomes (which may be mediated by the inhibition of DA via 5-HT2C receptors; Dayan & 

Huys, 2009). This suggestion is in line with findings from reversal learning tasks in which 

animals are presented with a choice between two options and it is varied across time which of 

the options is more likely to yield a reward. Using this paradigm, a range of animal studies 

have reported that lower levels of 5-HT are associated with worse (reversal) learning 

performance (e.g. Brigman et al., 2010; Clarke, Walker, Dalley, Robbins, & Roberts, 2007; 

Izquierdo et al., 2012; Rygula et al., 2015; see below for human studies). More specifically, 

several studies have observed that 5-HT depletion (especially in the frontal cortex and 

amygdala) reduces punishment-induced behavioural suppression, leading to repeated 

choices of items that were initially rewarded but now result in (‘aversive’) reward omission 

(Clarke et al., 2007; Rygula et al., 2015). These findings may be taken to indicate that reducing 

serotonergic learning signals impairs the inhibition of reward-seeking behaviour in the 

presence of aversive outcomes (Dayan & Huys, 2009), which is consistent with a role of 5-HT 

in aversion prediction and passive avoidance.  
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Active avoidance, by contrast, has been argued to rely mainly on DA functioning, with only 

limited involvement of 5-HT. Specifically, while 5-HT firing may signal the prediction of an 

aversive outcome, the learning of active escape behaviour may be reinforced by a 

dopaminergic PE response which signals relief from (potential) aversion when an avoidant 

action was taken (Dayan & Huys, 2009). This suggestion is in line with observations 

demonstrating that passive, but not active, avoidance is affected by 5-HT manipulations 

(Lorens, 1978; Soubrié, 1986). 

1.3.2.2 Human Studies 

The role of 5-HT in learning and aversion prediction is further supported by human studies. 

For instance, it has been reported that 5-HT precursor depletion impairs punishment and 

reversal learning and increases the negative value of punishments in decision-making 

contexts (Rogers et al., 1999; Seymour, Daw, Roiser, Dayan, & Dolan, 2012; Tanaka et al., 

2007). Similarly, acute doses of serotonergic antidepressants, which are thought to lower 5-

HT levels due to increased 5-HT autoreceptor binding, have been shown to reduce reversal 

learning performance (Chamberlain et al., 2006; Skandali et al., 2018). 

Moreover, in line with the animal literature, it has been found that 5-HT precursor depletion 

seems to specifically affect the passive prediction, but not the active avoidance, of 

punishments. This finding was obtained by presenting participants with differing proportions 

of blue and yellow squares and asking them to quickly indicate which colour was more 

prevalent. Crucially, in one condition, incorrect selections of one colour were punished, 

whereas incorrect choices of the other colour resulted in no outcome. In another condition, 

incorrect selections were never punished. While participants on placebo showed slower 

responses in the punishment condition than in the condition with no aversive outcomes, this 

difference was absent in the 5-HT depletion group. Notably, this effect was observed across 

all choices, rather than only being present when the punished colour was chosen. The authors 

argue that this finding indicates that 5-HT plays a role specifically in Pavlovian, rather than 

instrumental, punishment learning (i.e. in the formation of stimulus/state-outcome, rather than 
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stimulus-action-outcome, associations; Crockett, Clark, Apergis-Schoute, Morein-Zamir, & 

Robbins, 2012). This suggestion is consistent with the abovementioned proposal that 5-HT 

may be involved in the (passive Pavlovian) prediction of punishments, while DA may reinforce 

the (active instrumental) avoidance of potentially aversive outcomes (Dayan & Huys, 2009).  

In line with the behavioural findings, neuroimaging studies have reported effects of 5-HT on 

neural aversion learning signals. Specifically, it has been found that 5-HT depletion results in 

reduced aversion prediction encoding in the OFC and amygdala in a Pavlovian conditioning 

paradigm (Hindi Attar, Finckh, & Büchel, 2012). Moreover, it has been observed that increased 

5-HT functioning after repeated administration of serotonergic antidepressants is associated 

with stronger encoding of aversive (effort cost) PEs in the dorsal ACC (Scholl et al., 2017). 

These findings indicate that higher 5-HT functioning may be involved in the stronger 

representation of punishment learning signals. 

However, it should be noted that not all findings are in agreement with the above notion. For 

instance, in a Pavlovian conditioning-based task in which participants were asked to predict 

whether a particular stimulus would be followed by a rewarding or an aversive outcome, 5-HT 

depletion has been found to improve punishment prediction (Cools, Robinson, & Sahakian, 

2008; Robinson, Cools, & Sahakian, 2012). The authors initially argue that these results may 

have arisen because lower tonic levels of 5-HT after the depletion manipulation result in an 

enhanced signal-to-noise ratio, which, in turn, allows punishment PEs to have a stronger 

impact, leading to better punishment learning (Cools, Robinson, et al., 2008). However, the 

authors abandon this idea in a later paper, arguing instead that participants on placebo may 

make more errors during punishment prediction because they are more successful at inhibiting 

punishment-related thoughts than 5-HT depleted individuals (Robinson et al., 2012).  

However, the above interpretations do not explain why previous studies have observed the 

opposite effect of 5-HT on punishment learning. A possible explanation of these 

inconsistencies is that the paradigms utilised in different studies may have differentially 

engaged 5-HT functioning. Notably, the task used by Robinson and colleagues could be 
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solved with a simple win-stay/ lose-switch strategy, while previous paradigms often involved 

probabilistic outcomes or other complexities that required learning in accordance with gradual 

(e.g. Rescorla-Wagner) reinforcement learning. Evidence from the animal literature suggests 

that these strategies may be differentially affected by 5-HT manipulations. For instance, it has 

been found that the optogenetic stimulation of 5-HT neurons in the dorsal raphe nucleus of 

mice increased the learning rate for a decision-making task condition that elicited gradual 

learning. By contrast, no effects of 5-HT stimulation were seen in a condition that induced win-

stay/ lose-shift behaviour (Iigaya, Fonseca, Murakami, Mainen, & Dayan, 2018). Although 

these findings do not directly explain why punishment learning was observed to be enhanced 

after 5-HT depletion in the studies by Robinson and colleagues, they raise the possibility that 

varying tasks may differentially engage 5-HT functioning. This may explain the diverging 

results revealed by the deterministic task utilised by Robinson et al. compared to (mostly) 

probabilistic paradigms used in previous research (that observed a relation between 

decreased 5-HT levels and reduced punishment learning).  

Besides playing a role in punishment learning, 5-HT has also been implicated in reward 

learning. For instance, it has been found that low levels of 5-HT after precursor depletion or 

short-term administration of serotonergic antidepressants result in reduced (reward) prediction 

value representations in the dorsolateral and ventromedial PFC, the ACC and the precuneus, 

as well as in diminished reward PE encoding in the rostral ACC, putamen, and hippocampus 

(Kumar et al., 2008; Seymour et al., 2012; Tobia et al., 2014). Conversely, increasing 5-HT 

functioning with longer-term administration of serotonergic antidepressants has been shown 

to enhance the encoding of reward PEs in the ACC, ventromedial PFC, parietal cortex and 

(marginally) in the striatum compared to placebo treatment (Scholl et al., 2017). Thus, 5-HT 

appears to facilitate the representation of reward learning signals. The involvement of 5-HT in 

both reward and aversion prediction PE encoding has led some authors to argue that 5-HT 

firing may represent unsigned (salience) learning signals (Matias, Lottem, Dugué, & Mainen, 
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2017). Others have suggested that the serotonergic modulation of reward learning may be 

due to 5-HT’s excitatory effect on DA neurons via 5-HT2A receptors (Seymour et al., 2012).  

All in all, behavioural and neuroimaging studies in humans indicate that 5-HT enhances 

punishment learning, with some findings suggesting a faciliatory effect of 5-HT on reward 

learning. 

1.3.3 Summary 

In summary, both DA and 5-HT are implicated in the learning process. Animal studies suggest 

that DA neurons appear to encode a reward prediction and PE signal which causally 

contributes to the learning of cue-action-outcome associations. These reward PE signals may 

be generated in the midbrain through an integration of DA responses to primary rewards and 

inhibitory GABAergic activity following reward-predicting cues. From the midbrain, the PE 

signals may be passed on to the (dorsal) striatum, where a cascade of inhibition and 

disinhibition is triggered that results in the facilitation or inhibition of actions by positive or 

negative dopaminergic PEs, respectively. Potentially through biasing these processes away 

from ‘go’ and towards ‘no-go’ responses, low levels of DA appear to be associated with 

diminished reward and enhanced punishment learning. This theoretical account is supported 

by a range of behavioural and neuroimaging findings in humans.  

While the mechanism through which 5-HT affects learning is less well understood, it has been 

proposed that 5-HT firing may encode punishment predictions which, potentially through 

inhibition of DA responses, suppress reward-seeking behaviour when aversive outcomes are 

expected. In line with this suggestion, a number of behavioural and neuroimaging studies have 

observed that lower levels of 5-HT are associated with impaired reversal learning, punishment 

prediction and PE encoding, especially in the frontal cortex. Additionally, some studies show 

that reduced 5-HT availability results in deficits in reward learning (representations), which 

may be due to a reduction in the excitation of DA via 5-HT2A receptors. Thus, low levels of 5-

HT seem to be linked to reduced reward and punishment learning. Yet, it should be noted that 
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it has been widely acknowledged that there are many complexities and inconsistencies in the 

literature on 5-HT’s involvement in learning which are not (yet) fully understood (Boureau & 

Dayan, 2011; Cools et al., 2011; Dayan & Huys, 2009). Thus, further research is needed to 

elucidate the role of 5-HT in the learning process. 

1.4 Research Objectives 

1.4.1 Examining the Link between Depression, Social Processing, and Learning 

The discussion in sections 1.1 and 1.2 has highlighted that depression is associated with 

deficits in both social functioning and learning. Moreover, it was pointed out that there is a 

potential link between these impairments. Specifically, it was suggested that decreased 

learning from social outcomes in depression may lead to suboptimal social behaviour, which, 

in turn, may result in the receipt of more negative feedback from other people. Additionally, 

impaired social learning may lead to enhanced uncertainty about social outcomes, which may 

give rise to the subjective perception of social situations as being more aversive. Importantly, 

the (subjective or objective) experience of more negative interpersonal encounters may 

contribute to social withdrawal, which is particularly problematic because social 

disengagement has been implicated in the onset and maintenance of depression.  

As described above, a plethora of research has examined the impact of depression on social 

processing, social withdrawal and (non-social) learning in isolation. Yet, few attempts have 

been made to integrate these factors. That is to say, studies examining social learning in 

depression (and linking task-based measures to real-life social experiences) are lacking. It 

seems plausible that the core learning mechanisms (as posited by the abovementioned 

computational models; see section 1.2.2) underpin both social and non-social learning, and 

that these mechanisms may be altered in a similar manner for different outcome types in 

depressed subjects. Thus, based on the literature described in section 1.2, it would be 

expected that social and non-social reward learning is impaired in depression, if the utilised 

outcomes have a sufficiently high value (otherwise no group effects may be observed). This 
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deficit may be particularly pronounced when rewarding stimuli are paired/ interleaved with 

aversive stimuli, because (as discussed in section 1.1) depressed individuals display biases 

towards negative stimuli, which may impede reward learning by directing attentional 

processes away from positive outcomes. 

At first sight, it appears plausible that the above mechanism may also enhance learning from 

negative outcomes in depression. Indeed, a negative attention bias may partly explain why 

previous studies have observed increased non-social punishment learning in depressed 

individuals (Beevers et al., 2013; Cooper et al., 2014). However, it is hypothesised here that 

a different process, namely rumination, may have a more dominant influence on social 

aversion learning. Given the strong link between negative interpersonal events and 

depression (as outlined in section 1.1), negative social stimuli may be particularly likely to 

induce rumination in depressed subjects (Watson & Andrews, 2002). This is likely to result in 

a distraction from the task, which may lead to impaired learning from negative social outcomes 

(Whitmer, Frank, & Gotlib, 2012). 

In order to test the above hypotheses, and to examine how social learning relates to real-life 

social experiences, two studies were conducted. In study 1 (reported in section 2), 

participants with high and low depression scores completed questionnaires about their 

everyday social interactions and performed a learning task with two other people. During the 

task, subjects repeatedly made choices between items for which they received positive, 

neutral, or negative feedback. In the social condition, participants were told that the feedback 

came from the other two people, whereas, in reality, it was computer-generated. A non-social 

condition with monetary outcomes was also added to assess the specificity of potential 

findings. A computational modelling approach was used to examine group differences in the 

mechanisms underlying the learning process, and model parameters were linked to real-life 

measures. It was hypothesised that, compared to controls, subjects with high depression 

scores would show impaired reward learning in the social and non-social conditions, while 

aversion learning was predicted to be enhanced (or unchanged) in the non-social condition 
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and reduced in the social condition (due to the abovementioned effect of rumination). In 

addition, it was expected that diminished social learning may be linked to decreases in the 

quality of real-life interpersonal encounters (based on the previous findings discussed in 

section 1.1.3).  

These hypotheses were further investigated in study 2 (reported in section 3) which extended 

the above approach to the neural level, with the aim of examining which neural processing 

abnormalities may underpin the social learning deficits observed in individuals with high 

depression scores in study 1. As part of study 2, participants with high and low depression 

scores completed a questionnaire about their everyday interpersonal experiences and 

performed a social learning task in the MRI scanner. During the task, name cues were 

presented followed by faces that probabilistically displayed happy, neutral, or fearful 

expressions. Subjects were asked to learn how likely it was that a given cue was followed by 

a positive or negative social outcome (/facial expression). A computational model was applied 

to the data to assess neural representations of social reward (happy faces) and aversion 

(fearful faces) prediction and prediction error signals. It was hypothesised that individuals with 

high depression scores would show impairments in behavioural and neural responses during 

social reward and aversion learning, and that these deficits would be linked to reduced social 

engagement in real life. 

1.4.2 Examining the Link between Neurotransmitter Functioning and Social Learning  

The observation of social learning deficits in individuals with high depression scores in studies 

1 and 2 raised the question which pharmacological treatments may be suitable to alleviate 

these impairments. As discussed in section 1.3, two neurotransmitters that play a role in 

reward and punishment learning are dopamine (DA) and serotonin (5-HT). Crucially, these 

neurotransmitters have not only been implicated in learning, but also in the psychopathology 

of depression (Belujon & Grace, 2017; Nemeroff & Owens, 2009), as well as in social 
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processing (Kiser, Steemer, Branchi, & Homberg, 2012; Skuse & Gallagher, 2009; 

Steenbergen, Jongkees, Sellaro, & Colzato, 2016).  

Study 3 (reported in section 4) therefore aimed to assess how altered DA or 5-HT functioning 

affects social learning, on both the behavioural and the neural level, to elucidate potential 

treatment targets for social learning deficits in depression. For this purpose, a dietary depletion 

manipulation was utilised which is a commonly used method to lower DA or 5-HT levels in 

healthy volunteers. This is achieved by giving participants a drink that contains a range of 

amino acids but is devoid of the precursor(s) of the neurotransmitter that is meant to be 

depleted (i.e. tyrosine and phenylalanine in case of DA, and tryptophan in case of 5-HT). Given 

that amino acids compete for uptake at the blood-brain-barrier, the consumption of this drink 

leads to decreased precursor availability, and thus to reduced DA or 5-HT synthesis, in the 

brain (Dingerkus et al., 2012). The efficacy of this procedure has been confirmed in animal 

and human positron emission tomography studies (McTavish et al., 1999; Montgomery et al., 

2003; Nishizawa et al., 1997; Stancampiano et al., 1997).  

As part of study 3, healthy volunteers were given one of the abovementioned dietary depletion 

drinks to lower DA or 5-HT levels (or they received a balanced placebo drink). After 

consumption of the drink, participants performed the same social learning task that was 

utilised in study 2 during MRI scanning. In the task, subjects were presented with name cues 

that were probabilistically followed by happy, neutral or fearful expressions and were asked to 

learn how likely it was that a given name was followed by one of the emotional expressions. 

Computational model-derived prediction and prediction error values were used as parametric 

modulators in the fMRI analysis to examine depletion effects on the encoding of social learning 

signals. It was hypothesised that on the behavioural and the neural level both depletion 

manipulations would impair learning from social reward (i.e. happy faces), while learning from 

social aversion (i.e. fearful faces) may be reduced after 5-HT depletion and enhanced 

following DA depletion.  
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2 Social Reinforcement Learning as a Predictor of Real-Life 

Experiences in Individuals with High and Low Depressive 

Symptomatology  

[Study 1] 

2.1 Abstract 

Background: Several studies have reported impaired learning from non-social outcomes in 

depressed individuals (reviewed in Chen, Takahashi, Nakagawa, Inoue, & Kusumi, 2015); 

however, it is not clear how depression impacts learning from social feedback. Notably, mood 

disorders are commonly associated with deficits in social processing (Kupferberg et al., 2016; 

Rottenberg & Gotlib, 2008), which raises the possibility that potential impairments in social 

learning may negatively affect real-life social experiences in depressed subjects.   

Methods: In the current study, 40 individuals with high (HD) and 52 subjects with low (LD) 

depression scores were tested. Participants performed a learning task during which they 

received monetary outcomes or social feedback (thumbs up/down) that they were told came 

from other people. Additionally, subjects answered several questions about their everyday 

social experiences. A computational model was applied to the task data and model parameters 

were related to social experience measures. 

Results: HD subjects reported a reduced quality and quantity of social experiences compared 

to LD controls, including an increase in the amount of time spent in negatively perceived social 

situations. Moreover, HD subjects showed lower learning rates than LD individuals in the 

social (but not the monetary) condition of the task. Interestingly, across all participants, 

reduced social learning rates predicted higher amounts of time spent in negatively perceived 

social situations, even when depression scores were controlled for.  

Conclusion: These findings suggest that HD subjects have an impaired ability to use social 

feedback to appropriately update future actions, which may be linked to their increased 



48 
 

reported experience of negative social situations. Specifically, social learning deficits in HD 

individuals may lead to suboptimal interpersonal behaviour, which, in turn, may evoke negative 

feedback from others. Additionally, impairments in social learning may increase HD subjects’ 

uncertainty about what social outcomes to expect, which, if uncertainty is perceived as 

negative, may contribute to the report of more unpleasant social encounters.   

2.2 Introduction 

Major depressive disorder (MDD) is commonly associated with impairments in social 

functioning, including reductions in the quantity and quality of interpersonal interactions 

(Hirschfeld et al., 2000; Kupferberg et al., 2016; Rottenberg & Gotlib, 2008; Segrin, 2000; 

Segrin & Abramson, 1994). For instance, children who tend to withdraw from social situations 

have a heightened chance of developing depression as adults (Katz, Conway, Hammen, 

Brennan, & Najman, 2011), currently depressed individuals display impaired social skills and 

have fewer close relationships than controls (Brim et al., 1982; Gotlib & Lee, 1989; Lewinsohn, 

1974; Segrin, 2000; Youngren & Lewinsohn, 1980), and deficits in social functioning persist 

even after recovery from MDD (Gotlib & Lee, 1989; Ladegaard, Videbech, Lysaker, & Larsen, 

2016; Rhebergen et al., 2010). Conversely, high perceived emotional support and large social 

networks appear to have a protective effect against developing depression (Santini et al., 

2015), and greater interpersonal support is associated with better responses to antidepressant 

treatment (Trivedi et al., 2005). 

It has been proposed that depressed subjects may withdraw from social interactions, thus 

demonstrating a reduced quantity of social engagement, because they experience anhedonic 

or negatively biased responses to interpersonal encounters (Kupferberg et al., 2016; 

Rottenberg & Gotlib, 2008). In line with this suggestion, MDD patients have been found to 

derive less pleasure from peer approval than controls (Davey et al., 2011; Dedovic, Slavich, 

Muscatell, Irwin, & Eisenberger, 2016), and an association between heightened depression 

severity and diminished pleasure responses to social acceptance feedback has been 
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observed (Caouette & Guyer, 2016). Additionally, MDD symptoms have been related to 

increased expectancies of negative peer evaluation (Caouette & Guyer, 2016), as well as to 

the anticipation of weaker positive and stronger negative responses to social situations 

(Setterfield et al., 2016). Importantly, both elevated negative expectancies (Zimmer-Gembeck 

et al., 2016) and anhedonia (Silvia & Kwapil, 2011) have been linked to social withdrawal. 

Besides displaying reductions in the quantity of social engagement, depressed subjects also 

demonstrate decreases in the quality of interpersonal interactions. For instance, experience 

sampling studies have shown that individuals with MDD symptoms encounter fewer positive 

(Bylsma, Taylor-Clift, & Rottenberg, 2011; Peeters, Nicolson, Berkhof, Delespaul, & De Vries, 

2003; van Roekel et al., 2016) and more negative (Bylsma et al., 2011) social and non-social 

events than controls. It is obvious that anhedonic or negatively biased processing of pleasant 

and unpleasant social outcomes is likely to contribute to these findings. However, it is equally 

plausible that impaired learning from social feedback in MDD may play a role in the diminished 

quality of interpersonal encounters. Specifically, deficits in learning may diminish depressed 

subjects’ ability to appropriately adjust their behaviour in response to social feedback, which, 

in turn, may bring about the experience of more unpleasant interpersonal encounters. 

Additionally, impaired learning may result in increased uncertainty about what social outcomes 

to expect, which, due to depressed subjects’ tendency to regard uncertainty as negative 

(Carleton et al., 2012), may give rise to more negatively perceived social interactions. 

Surprisingly, despite the importance of social stimuli in everyday life, research on learning 

from social outcomes in depression is lacking. One exception is a signal detection study which 

found a reduction in social reward biases in remitted MDD patients (Pechtel et al., 2013). 

However, in this study, subjects were aware that the ‘social’ outcomes – the words ‘Well done!’ 

displayed on the screen – were computer-generated. It is thus questionable whether this 

feedback can be regarded as truly social. 
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While there is little evidence regarding social learning in depression, a range of studies have 

examined learning from non-social feedback in MDD. For instance, in signal detection tasks 

with monetary outcomes, individuals with or at risk for depression fail to develop reward biases 

(e.g. Fletcher et al., 2015; Liu et al., 2016; Pechtel et al., 2013; Pizzagalli, Iosifescu, Hallett, 

Ratner, & Fava, 2008; Vrieze et al., 2013). Moreover, depressed subjects demonstrate 

impaired reward maximisation, but, interestingly, enhanced punishment minimisation, in 

magnitude-based decision-making paradigms (Beevers et al., 2013; Blanco et al., 2013; 

Cooper, Arulpragasam, & Treadway, 2018; Maddox et al., 2012). Similarly, reward learning 

deficits have been observed in depressed individuals with the use of probabilistic and 

deterministic decision-making tasks that included interleaved positive and negative feedback 

(Herzallah et al., 2013; Kumar et al., 2018; Kunisato et al., 2012).  

The above observations of altered learning in depression have been refined with the use of 

computational models, in which value representations of stimulus-action pairs are formed and 

updated using the difference between expected and actual outcomes (i.e. prediction errors).  

Fitting these models to participants’ choice behaviour by adjusting model parameters allows 

for the assessment of group differences in various aspects of the learning process. Using this 

approach, it has been found that depressed individuals are less sensitive to rewarding 

outcomes (Huys et al., 2013) but more responsive to punishments (Byrne et al., 2016; 

Mkrtchian et al., 2017) than controls. Additionally, depression has been associated with 

alterations in learning rate (Beevers et al., 2013; Chase et al., 2010; Cooper et al., 2014; 

Dombrovski et al., 2010) and exploration (Beevers et al., 2013; Kunisato et al., 2012; 

Rupprechter et al., 2018) parameters, with results suggesting that depressed individuals’ 

reward learning parameters are suboptimal.  

The above findings indicate that depression is associated with altered learning from non-social 

outcomes. However, it is not clear whether these deficits extend to the social domain, and, if 

so, how they relate to everyday social experiences. The current study aimed to address this 

question. For this purpose, participants with high and low depression scores completed a 
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learning task with two other people. During the task, subjects made choices between party 

decoration items for which they received positive, neutral, or negative feedback. In the social 

condition, participants were told that the feedback came from the other two people, whereas, 

in reality, it was computer-generated. A non-social condition with monetary outcomes was also 

added to assess the specificity of potential findings. In both conditions, subjects’ learning 

performance, as well as their negative expectancy biases, were measured. Additionally, 

participants completed questionnaires assessing their social anhedonia and depression 

severity and answered a number of questions about the quantity and quality of their daily 

interpersonal interactions. A computational modelling approach was used to examine group 

differences in the mechanisms underlying the learning process, and model parameters were 

linked to real-life measures. 

It was hypothesised that, compared to controls, subjects with high depression scores would 

show deficits in learning from social (and non-social) outcomes. As described above, impaired 

social learning may lead to increased negatively-perceived uncertainty about social outcomes 

or to suboptimal interpersonal behaviour that elicits more negative feedback from others. 

Thus, it was predicted that, in the current study, impairments in social learning would be 

associated with decreases in the quality of real-life interpersonal encounters. Additionally, it 

was predicted that increased social anhedonia scores and negative social expectancy biases 

would be linked to reductions in the reported quantity of social engagement, based on the 

abovementioned relation between these constructs and social withdrawal. 
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2.3 Methods 

2.3.1 Participants 

The current study included 92 volunteers between the age of 18 and 45 years who scored 

below 8 (LD; N = 52) or above 16 (HD; N = 40) on the Beck Depression Inventory (Beck, Steer, 

& Brown, 1996). Some participants were tested at the university psychology department (NHD 

= 20, NLD = 30), while others performed the experiment online (NHD = 20, NLD = 22). This 

allowed for the collection of data from volunteers in different geographical locations with 

diverse backgrounds. The final sample consisted of participants living in the US (8%), Canada 

(7%) and the UK (85%). Of the HD subjects, 3% were Black, 20% Asian, and 78% Caucasian; 

15% were employed, 30% unemployed, and 55% students in higher education. Of the LD 

participants, 8% were Black, 12% Asian, and 80% Caucasian; 31% were employed, 6% 

unemployed, and 63% students in higher education. 

All participants were screened using an online version of the structured clinical interview for 

DSM-IV (SCID; adapted from First, Spitzer, Gibbon, & Williams, 1996). Given that the current 

study was focused more generally on individuals with depression symptoms, rather than 

specifically on those with clinical levels of MDD, the SCID was not used for diagnostic 

purposes, but merely to determine if any exclusion criteria were met. Specifically, LD 

volunteers were excluded if they reported a history of any Axis I disorder, and HD subjects 

were ineligible if they had ever experienced any Axis I disorder besides depression or low 

levels of anxiety (with anxiety symptoms being secondary to depression). Moreover, 

individuals in either group were excluded if they had taken any psychiatric medication in the 

past year or had used recreational drugs in the past three months.  

Ethical approval for the study was obtained from the University of Reading Ethics Committee 

(2016-152-CM) and all participants provided informed consent. Subjects received £15 as 

reimbursement for their time.  
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2.3.2 Procedure 

After completing the SCID, BDI, and a screening form, which assessed the general exclusion 

criteria listed above, eligible participants were asked to fill in the following questionnaires 

online: Temporal Experience of Pleasure Scale (TEPS, low scores indicate high anhedonia; 

Gard, Gard, Kring, & John, 2006), Revised Social Anhedonia Scale (RSAS, low scores 

represent low anhedonia; Eckblad, Chapman, Chapman, & Mishlove, 1982), Social Anxiety 

Questionnaire (SAQ, low scores signify low anxiety; Caballo, Salazar, Irurtia, Arias, & 

Hofmann, 2012) and a demographics form. Additionally, subjects answered a number of 

questions about their real-life social experiences, reporting how many friends they have, how 

close they feel to these friends, how much time they spend interacting with these friends, and 

how pleasant they find these interactions. Participants were also asked how difficult they find 

it to make new friends, and how much time they spend engaged in pleasant (e.g. going for 

dinner with friends or listening to music) and unpleasant (e.g. having a disagreement or doing 

chores) social and non-social activities. 

Once participants had completed the above questionnaires, a testing session was scheduled. 

At the beginning of the session, all participants were asked to choose an avatar that would 

represent them during the task. Additionally, they were introduced to two other people with 

whom they would (purportedly) perform the task. These introductions included the other 

people’s names, as well as some personal details, and took place online for the online 

participants and in person for those tested at the university. All participants then completed 

the task alone on an online platform.  

Subjects were told that, as part of the task, they would be planning a party by making choices 

between party decoration items for which they would receive feedback. They were further 

instructed that, in the social condition, the feedback (thumbs up, horizontal, or down) was 

provided by the other people (in real time through the online platform), whereas, in the non-

social condition, monetary feedback (wins, no change, or losses) was given by the computer. 
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In reality, the feedback in both conditions was computer-generated and, apart from the stimuli 

and feedback type, the social and non-social conditions were identical. 

After each condition, participants were asked to rate how emotionally arousing they found the 

positive, neutral, and negative feedback. Moreover, at the end of the testing session, subjects 

indicated how sure they were that the feedback they received during the social condition came 

from other people (1 = very doubtful; 10 = very sure). Subsequently, participants were given 

a debrief sheet which clearly described and justified the deception involved in the study. 

2.3.2.1 Learning Task 

During the task, participants’ aim was to make choices that maximised positive and minimised 

negative outcomes. At the beginning of each trial, subjects were shown two party decoration 

items side-by-side, and were asked to select one item by pressing the ‘C’ or ‘M’ key. The 

images were displayed until a selection was made, and after each choice the words ‘waiting 

for feedback from others’ or ‘waiting for computer-generated feedback’ were presented for 

between 3300ms and 7500ms. This relatively long and variable interval was chosen to give 

the impression that, in the social condition, the other people were truly selecting the feedback. 

Subsequently, participants were given positive, neutral or negative feedback, determined 

probabilistically as described below. Moreover, subjects were asked to rate how they felt about 

the outcome, using a visual analogue scale ranging from ‘very bad’ to ‘very good’ (0 to 100). 

The feedback stayed on the screen until the rating was submitted (see Figure 1). 

The task consisted of a social and a non-social condition, which were completed in 

counterbalanced order. In the social condition, the feedback consisted of ‘like’ and ‘dislike’ 

signs as used on social media (thumb up or down), as well as neutral feedback in the form of 

a horizontal thumb. Participants were told that the feedback came from the other two people, 

with ‘likes’ or ‘dislikes’ indicating that both of the others approved or disapproved of their 

selection, respectively, and horizontal thumbs reflecting that one of the two others liked and 

the other disliked their choice. The latter outcome was chosen, rather than e.g. stating that no 
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ratings were available on neutral trials, because the outcomes would have seemed unrealistic 

if the other two people had always agreed on their feedback. Note that, in reality, all feedback 

was computer-generated. In the non-social condition, monetary feedback was provided in the 

form of winning 5 pence, no outcome, or losing 5 pence, represented by an image of a golden 

coin, a circle, or a crossed-out coin, respectively.  

It may be argued that the horizontal thumb used in the social condition (as a representation of 

one ‘like’ and one ‘dislike’) is not an entirely neutral outcome, if the perceived pleasantness of 

‘likes’ is stronger than the perceived unpleasantness of ‘dislikes’, or vice versa. However, it 

should be noted that, depending on a given participant’s focus, receiving no monetary 

outcome could similarly have been be regarded as slightly positive (‘not a loss’) or slightly 

negative (‘not a win’). Thus, the two conditions were matched in this regard, and the fact that 

‘neutral’ outcomes were potentially not perceived as entirely neutral was taken into account in 

the computational modelling of the task data (see below). 

Figure 1: Illustration of the social (left) and non-social (right) conditions of the learning task 
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Eight party decoration items were used as stimuli during the task (balloons, garlands, lanterns, 

pinwheels, party hats, party horns, candles, and confetti). For each participant, four items were 

randomly allocated to the social condition and the other four items to the non-social condition. 

Moreover, for each condition, each item was randomly assigned to one of the following 

outcome contingencies: 75% (item 1) or 25% (item 2) chance of yielding positive rather than 

neutral feedback, or 75% (item 3) or 25% (item 4) chance of yielding negative rather than 

neutral feedback.  

Given that there were four items per condition, there were six possible pairings. Each of the 

pairings was repeated twelve times (six times with item A displayed on the left side of the 

screen and item B on the right side, and six times vice versa), yielding a total of 72 trials per 

condition. 

During the task, participants’ choices, their reaction times, and their ratings in response to the 

feedback were recorded. Additionally, explicit outcome expectancies were assessed by asking 

participants to rate each item twice: once on how likely they thought selecting this item would 

result in positive feedback, and once on how likely they thought choosing this item would result 

in negative feedback. Ratings were made on a visual analogue scale ranging from ‘very 

unlikely - 0%’ to ‘very likely - 100%’ and were collected in the middle and at the end of each 

condition. 

2.3.3 Analysis 

2.3.3.1 Behavioural Analysis 

The questionnaire data were not normally distributed. Thus, non-parametric Mann-Whitney U 

tests were performed to assess group differences.  

For the learning task, reaction time (RT) data were log transformed due to a positive skew. 

RTs were compared between groups and conditions using mixed-measure analyses of 
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covariance (ANCOVAs), in which the testing location (online or at the university) was added 

as a control variable. 

Moreover, to examine participants’ reward and ‘punishment’ learning performance, the 

frequencies of selecting the most rewarded item and of avoiding the most ‘punished’ item were 

calculated for the social and non-social conditions for each subject. Subsequently, a group by 

valence by condition mixed-measure ANCOVA (with the testing location as a covariate) was 

conducted.  The data of one online LD participant were removed from all task analyses 

because their performance was substantially below chance, indicating that they may have 

misunderstood the task.  

To assess participants’ negative biases, negative outcome expectancy ratings from the middle 

and the end of the task were averaged for those items which never yielded negative feedback 

(items 1 and 2), while positive outcome expectancies were averaged for those items which 

never yielded positive feedback (items 3 and 4). The mean positive expectancy rating was 

then subtracted from the mean negative expectancy rating to obtain a negative bias score. 

This score indicates how much more negative than positive feedback participants expected to 

receive independently of the actually experienced outcomes (i.e. for choices that never yielded 

negative or positive outcomes, respectively). To account for the fact that participants’ 

expectancy ratings for the individual items may be influenced by the overall amount of positive 

and negative outcomes they experienced throughout the task, relevant analyses were also 

run with the difference between the overall positive and negative feedback counts as a control 

variable.  

In addition, group by condition by valence mixed-measure ANCOVAs were performed on the 

feedback pleasantness ratings, arousal ratings and negative expectancy bias scores. Where 

Mauchly's Test of Sphericity indicated that the sphericity assumption was not met, 

Greenhouse-Geisser corrected results are reported. 
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Moreover, to assess whether social anhedonia and negative biases contribute to social 

disengagement, a multiple regression analysis was conducted. Specifically, the amount of 

time spent with friends was predicted using RSAS and negative bias scores while controlling 

for BDI depression and SAQ anxiety measures. Given that for the raw data the assumption of 

normally distributed residuals was not met, the regression was performed on rank transformed 

data. As suggested by Thomas, Nelson, and Thomas (1999), F-statistics were thus converted 

to L-statistics (N-1* r2), degrees of freedom were obtained by multiplying the number of 

independent variables with the number of dependent variables, and p-values were derived by 

evaluating the L-statistic on the χ2 table. Some of the rank transformed predictor variables 

were weakly correlated; however, collinearity assumptions were not violated (all Variance 

Inflation Factors; VIFs < 2). 

2.3.3.2 Computational Modelling 

Q-learning models were fit separately to the data of the social and non-social condition. Q-

values, which indicate the predicted value of choosing a given item, were initialised at 0 and 

updated on each trial (t) for the selected item (A) as follows: 

𝑄𝐴(𝑡 + 1) =  𝑄𝐴(𝑡) + 𝛼𝐺 ∗ max[0, 𝑟(𝑡) − 𝑄𝐴(𝑡)] + 𝛼𝐿 ∗ min [0, 𝑟(𝑡) − 𝑄𝐴(𝑡)] 

where r(t) is the outcome value and αG and αL are the learning rates for positive and negative 

prediction errors, respectively. The outcome value was fit individually for each participant with 

the use of the free parameter d (as in Gold et al., 2012). Specifically, r(t) was set to 1-d for 

rewards, to -d for ‘punishments’, and to the midpoint between these values [i.e. (1 − d) − ((1 −

d) − (−d))/2] for ‘neutral’ outcomes (which provided a better fit than using d = 0). Note that, 

from a theoretical perspective, setting the value of ‘neutral’ outcomes to the midpoint between 

reward and punishment values is appropriate, particularly in the social condition in which 

‘neutral’ outcomes represented receiving a ‘like’ from one person and a ‘dislike’ from the other 

person. It should further be noted that d values need to be interpreted relative to the initial Q-
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value of 0. That is to say, the d parameter determines how large the impact of rewards and 

‘punishments’ is in relation to the initial outcome expectation. 

To account for the potential forgetting of the implicitly learned Q-values while making ratings 

in the middle of the task (after trial 36), all Q-values were decayed towards 0 for trial 37, with 

a free parameter (ω) determining the strength of this decay as follows (similar to Collins & 

Frank, 2012): 

𝑄𝑖(37) =   𝑄𝑖(37)  +  𝜔 ∗ [0 −   𝑄𝑖(37)] 

Moreover, on every trial the probability of a given participant’s choice (of item A over B) under 

the model was computed using a softmax function: 

𝑃𝐴(𝑡) =
𝑒

𝑄𝐴(𝑡)+ 𝑐𝐴(𝑡)∗φ

𝜏

𝑒
𝑄𝐴(𝑡)+𝑐𝐴(𝑡)∗φ

𝜏 + 𝑒
𝑄𝐵(𝑡)+ 𝑐𝐵(𝑡)∗φ

𝜏

  

where τ is the explore/ exploit temperature parameter, 𝑐𝐴(𝑡) is an indicator variable which is 

set to 1 if item A was chosen the last time it was presented and to 𝛾 ∗ 𝑐𝐴(𝑡 − 1) otherwise 

(where  γ is a decay parameter), and φ is the choice bias parameter representing how likely 

participants are to repeat an item choice independently of the outcome it yields (i.e., “sticky 

choice”;  Schonberg, Daw, Joel, & O’Doherty, 2007).  

Models containing different combinations of the free parameters (αG, αL, d, φ, γ, ω, τ; see 

Table 2) were fit to each participant’s data by maximising the log likelihood estimate (LLE) of 

the participant’s choices under the model across all trials, thus maximising:  

𝐿𝐿𝐸 = log (∏ 𝑃𝑖,𝑡

𝑡

) 

The model fitting was conducted in two hierarchical steps. In step 1, the maximum likelihood 

estimation (MLE) was conducted without a prior, as described above. In step 2, the MLE was 

re-run using a multivariate Gaussian prior on the parameter values. The prior was 
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parameterised with the mean and covariance (across all participants) of the parameter 

estimates from step 1. That is to say, each parameter value was evaluated on the 

abovementioned prior, and the log of this value was added to the LLE, thereby causing a 

higher increase in the LLE for parameter estimates that are more likely under the prior. This 

“shrinkage” procedure reduces the variance in the parameter estimates by bringing extreme 

values closer to the overall mean (Daw, 2011) and approximates hierarchical Bayesian 

estimation (although, unlike in Bayesian estimation, the same prior was applied to the data of 

all subjects, rather than using group-specific priors). Even though this approach does not 

implement the full Bayesian solution (i.e. it does not yield posterior distributions over 

parameters), our testing confirmed that this procedure improved the parameter recovery from 

data simulated based on the same task and trial number.  

To assess the relative fit of the different models, Akaike's Information Criterion weights were 

computed (as outlined in Wagenmakers & Farrell, 2004). Two models (Q16 and Q4 in Table 

2) were among the best fitting models for both the social and the non-social condition. For one 

of these models (Q16) the mean values of two of the parameters (learning rate and memory 

decay) were numerically similar for the two conditions. Thus, three further models were fit in 

which one or both parameters were shared for the social and non-social data fitting, while the 

other parameters could vary. AIC weights were used to compare the fit of the models with 

partly shared and entirely independent parameters. 

Moreover, for the purpose of model validation, parameters from the best fitting model were 

used to simulate data. Subsequently, the generating model was fit back to the simulated data 

(using the two-step procedure described above) to assess if the parameters used in the 

simulation could be recovered. The latter was confirmed by running Spearman correlations 

between the initial and recovered parameters. 

Additionally, the fit of the best model was compared to chance with the use of pseudo-R2 

values, which (as in Frank, Moustafa, Haughey, Curran, & Hutchison, 2007) were calculated 

as follows: pseudo-R2 = (LLE learning model - LLEnull model) / LLEnull model, where LLEnull model is the log 
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likelihood estimate of the data under a model that assumes random choices [i.e. LLEnull model = 

number of trials * log(0.5)]. The data of one LD participant in the social condition and of five 

LD and five HD subjects in the non-social condition demonstrated a better fit for the null model 

than for the learning model. When data from these participants were excluded from the 

analyses, the same pattern of findings arose. Therefore, these data were included for the 

reported results. 

Parameter values from the best fitting model were compared between groups using Mann-

Whitney U tests. Additionally, to examine whether social learning deficits relate to the 

experience of positive or negative social outcomes in real life, a multiple regression analysis 

was performed. Specifically, the reported amount of time spent in pleasant and unpleasant 

social situations was predicted using social learning rate, outcome valuation, and temperature 

parameters (from model Q16; see Table 2 and below), as well as RSAS, SAQ and negative 

bias scores (while controlling for BDI depression scores). Again, the assumption of normally 

distributed residuals was violated for the raw data, which is why the regression was performed 

on rank transformed data using L-statistics as described above. Some of the predictor 

variables were moderately correlated; however, collinearity assumptions were not violated (all 

VIF < 5).  

To confirm the robustness of our findings, the above analyses were also performed on the 

estimated parameters of a different model (Q4 in Table 2) which had an AIC weight close to 

that of the best fitting model. Given that the rank-transformed learning rate and temperature 

parameters were highly correlated in this model, the collinearity assumption was violated (VIF 

> 10). Notably, when conducting the regression analysis on the parameter estimates of model 

Q16 (as described above), the temperature and learning rate parameters did not show a 

significant predictive effect for the time spent in unpleasant and pleasant social situations, 

respectively. Thus, these parameters were removed from the respective regressions for the 

analysis related to model Q4.  
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2.4 Results   

2.4.1 Demographic and Questionnaire Measures 

Mann-Whitney U tests revealed no significant group differences in age (U = 941, p = 0.431), 

or consummatory TEPS scores (U = 1128, p = 0.167). As expected, BDI (U = 0, p < 0.001), 

social anhedonia RSAS (U = 510, p < 0.001), and social anxiety SAQ (U = 386, p < 0.001) 

scores were significantly higher for HD than for LD participants. Moreover, anticipatory TEPS 

scores were significantly lower in the HD than in LD group, indicating higher levels of 

anhedonia in HD subjects (U = 1390, p < 0.001; see Table 1). 

Table 1: Demographic data and questionnaire scores for individuals with low (LD) and high 

(HD) depressions scores.  

 LD (N = 52) HD (N = 40) 

 
Mean SD Mean SD 

Age (years) 24.02 6.59 25.33 7.59 

N females/ males 41/ 11 - 31/ 9 - 

BDI* 2.52 2.47 30.73 9.29 

RSAS* 10.27 7.96 17.39 8.89 

TEPS - A* 47.23 7.37 41.35 8.05 

TEPS - C 37.29 7.10 35.59 6.64 

SAQ* 95.56 20.17 120.63 19.65 

SD, standard deviation; BDI, Beck Depression Inventory; RSAS, Revised Social Anhedonia Scale; 

TEPS, Temporal Experience of Pleasure Scale (C, consummatory; A, anticipatory); SAQ, Social Anxiety 

Questionnaire; *asterisks indicates significant group differences  
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2.4.2 Real-Life Social Interactions 

Mann-Whitney U tests demonstrated that, compared to LD controls, HD participants reported 

having significantly fewer friends (U = 1232, p = 0.007; see Figure 2A), finding it less pleasant 

to spend time with their friends (U = 1122, p = 0.042), feeling less close to their friends (U = 

1169, p = 0.014), and finding it more difficult to form new friendships (U = 531, p = 0.001). 

When adjusted for the reported number of friends, the amount of time spent with friends did 

not differ between groups (U = 773, p = 0.293). 

Additionally, compared to LD participants, HD individuals indicated spending significantly 

more time engaged in social (U = 486, p < 0.001) and non-social (U = 575, p = 0.005) situations 

that were regarded as unpleasant. By contrast, the reported amount of time spent in pleasantly 

perceived social (U = 1047, p = 0.173) or non-social (U = 998, p = 0.351) situations did not 

differ significantly between groups (see Figure 2B). 

Figure 2: A) Number of friends and B) reported time spent in pleasant and unpleasant social 

and non-social situations for individuals with high (HD) and low (LD) depressions scores. 
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2.4.3 Learning Task Performance 

A mixed measure ANCOVA (group x valence x condition, controlling for testing location) on 

participants’ emotional responses to the positive, neutral and negative feedback showed the 

expected main effect of valence (F (1.21, 106.22) = 124.82, p < 0.001), with participants feeling 

better after receiving positive than after getting neutral (t(90) = 16.22, p < 0.001) or negative 

(t(90) = 17.50, p < 0.001) feedback and after receiving neutral than after getting negative 

feedback (t(90) = 14.32, p < 0.001) across the social and non-social conditions. No other 

significant main effects or interactions were observed (all F < 0.4).  

In addition, a mixed measure ANCOVA (group x condition x valence, controlling for testing 

location) on participants’ arousal ratings for positive, neutral and negative feedback 

demonstrated a significant main effect of condition (F(1, 83) = 6.48, p = 0.013), with higher 

reported arousal in the social than in the non-social condition. Additionally, a significant main 

effect of valence was found (F(2, 166) = 33.48, p < 0.001) due to higher arousal to positive 

feedback than to negative (t(88) = 4.39, p < 0.001) or neutral (t(88) = 12.84, p < 0.001) 

outcomes, as well as higher arousal to negative than to neutral feedback (t(88) = 6.94, p < 

0.001). Moreover, a group by condition by valence interaction was observed (F(2, 166) = 5.47, 

p = 0.005). Follow-up one-way ANCOVAs showed that HD subjects reported significantly 

higher arousal than LD participants for negative social feedback (F(1, 85) = 4.84, p = 0.030), 

with no significant group differences for any other feedback type (all F < 1.6).  

Furthermore, a mixed-measure ANCOVA (group x valence x condition, controlling for testing 

location) of the learning performance revealed a significant main effect of valence (F(1, 88) = 

4.13, p = 0.045), with participants demonstrating better reward than punishment learning. 

Moreover, a trend for a group effect was observed (F(1, 88) = 3.50, p = 0.065), as HD 

individuals’ learning performance tended to be worse than that of LD subjects. None of the 

other main effects or interactions were significant (all F < 2.2). 
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A mixed-measure ANCOVA (group x condition, controlling for testing location) on the log-

transformed reaction time data found no significant main effects of group (F(1, 88) = 0.40, p = 

0.530) or condition (F(1, 88) = 0.20, p = 0.658), nor a significant interaction (F(1, 88) = 0.02, 

p = 0.877).  

To examine differences in negative feedback expectancy biases, a mixed measure ANCOVA 

(group x condition, controlling for testing location) was conducted. A significant main effect of 

group was found (F(1, 88) = 5.33, p = 0.023), as HD participants’ bias scores were significantly 

higher than those of LD subjects across both social and non-social conditions. This group 

effect remained significant when controlling for the difference in the overall amounts of 

negative and positive feedback received throughout the task (F(1, 88) = 5.70, p = 0.019). 

Moreover, a regression analysis revealed that negative expectancy biases (β = -0.17, p = 

0.063) marginally, and RSAS social anhedonia scores (β = -0.62, p < 0.001) significantly, 

predicted the amount of time participants reported spending with their friends (while controlling 

for SAQ social anxiety, β = 0.17, p = 0.127, and BDI depression, β = 0.13, p = 0.254, scores; 

L(4) = 25.70, p < 0.001, R2 = 0.31). It should be noted that it cannot be ruled out that the 

negative biases observed in the task were the result of a generalisation from negative social 

experiences in real life to the experimental setting (see discussion). It could therefore be the 

case that, in the regression analysis, the negative bias values act as a ‘proxy’ for an effect of 

negatively perceived interpersonal encounters on social withdrawal. Thus, the regression 

analysis was rerun with the reported amount of time spent in unpleasant social situations as 

an additional control variable. The observed pattern of results was similar, with both negative 

biases (β = -0.19, p = 0.046) and RSAS scores (β = -0.61, p < 0.001) contributing significantly 

to the prediction of the amount of time spent with friends. This indicates that, independent of 

how many negatively perceived social situations they encounter, individuals who are more 

anhedonic and who expect more negative social outcomes spend less time with their friends. 
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Finally, a Mann-Whitney U test was performed on participants ratings of how sure they were 

that the feedback in the social condition of the learning task came from other people. There 

were no group differences (U = 887, p = 0.909), with average ratings of around 5 out of 10 in 

both groups (MHD = 5.08, SDHD = 2.82; MLD = 5.06, SDLD = 3.03). Although this indicates that 

participants did not fully believe that the feedback was provided by other people, it should be 

noted that, as long as subjects thought there was a chance that the feedback came from the 

others, they are likely to have behaved as if it did. Moreover, the very question itself may have 

induced participants to be uncertain about the source of the feedback, and in response to a 

more open question (‘Did you notice anything strange or unexpected during the task? If so, 

what?’) only two participants expressed doubt over whether the feedback was provided by 

other people. 

2.4.4 Computational Modelling 

For the data from the social condition, the best fitting model for both groups included one 

learning rate (α; αG = αL), as well as the outcome valuation (d), memory decay (ω), and 

temperature parameters (τ; model Q16 in Table 2). For the data from the non-social condition, 

the best fitting model for both groups contained one learning rate, and the outcome valuation, 

choice bias (φ), and temperature parameters (model Q5 in Table 2). The involvement of a 

sticky choice bias parameter in the non-social but not the social condition may indicate that 

participants were more likely to find a strategy and stick with it in the non-social condition, 

potentially because they perceived the latter to be less volatile than the social condition.  

It should be noted that model Q16 fit the non-social data similarly well as the best fitting model 

(Q5), and the numerical values of the mean learning rate and memory decay parameters for 

Q16 were similar for the social and non-social condition. Thus, three further models were fit in 

which either or both of the latter parameters were shared between the conditions. AIC weights 

indicated that the model in which all parameters varied between conditions provided the best 

fit (AIC weight = 0.293), closely followed by the model in which the memory decay parameter 
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was shared (AIC weight = 0.292). The models in which the learning rate (AIC weight = 0.190) 

or both learning rate and memory decay parameters (AIC weight = 0.226) were shared fit 

slightly less well. The analysis below thus focuses on model Q16 with no shared parameters 

(as well as on other well-fitting models, namely Q4 for the social condition, and Q5 and Q4 for 

the non-social condition).   

Mann-Whitney U tests on parameters form the social condition found significantly lower 

learning rates (Q16: U = 1277, p = 0.040; Q4: U = 1314, p = 0.019) in HD subjects compared 

to LD controls. No group differences were observed for the outcome valuation (Q16: U = 1095, 

p = 0.549; Q4: U = 1157, p = 0.273), memory decay (Q16: U = 1047, p = 0.829; Q4: N/A), or 

temperature (Q16: U = 1099, p = 0.528; Q4: U = 1242, p = 0.076) parameters (see Figure 3A 

for parameters from model Q16). In the non-social condition, there were no significant group 

differences in the learning rate (Q5: U = 1025, p = 0.968; Q4: U = 1019, p = 0.994; Q16: U = 

1017, p = 0.981 ), choice bias (Q5: U = 1105, p = 0.497; Q4 & Q16: N/A), outcome valuation 

(Q5: U = 1035, p = 0.905; Q4: U = 1094, p = 0.554; Q16: U = 1097, p = 0.538), or temperature 

(Q5: U = 885, p = 0.280; Q4: U = 876, p = 0.250; Q16: U = 854, p = 0.184) parameters (see 

Figure 3B for parameters from model Q5). Although the numerical group difference in the 

learning rate value went in the same direction for the social and non-social condition, the main 

effect of group (based on the average learning rate across conditions) did not reach 

significance (U = 1222, p = 0.106). 

 

 

 

 

 

 



68 
 

Figure 3: Parameter estimates for the A) social (Q16) and B) non-social (Q5) condition for 

individuals with high (HD) and low (LD) depressions scores. 

α, 

learning rate; ω, memory decay; d, outcome valuation; τ; explore-exploit/ temperature; φ, choice bias  

A regression analysis revealed a significant association of social model parameter values (and 

questionnaire measures) with the reported amount of time spent in unpleasantly perceived 

social situations (Q16: L(6) = 16.21, p = 0.013, R2 = 0.19; Q4: L(5) = 16.80, p = 0.005, R2 = 

0.20). This predictive relation was driven by outcome valuation (Q16: β = 0.31, p = 0.016; Q4: 

β = 0.29, p = 0.025) and learning rate (Q16: β = -0.45, p = 0.046; Q4: β = -0.31, p = 0.020; 

see Figure 4) parameter values, as well as BDI depression scores (Q16: β = 0.28, p = 0.018; 

Q4: β = 0.28, p = 0.017). By contrast, SAQ social anxiety scores (Q16: β = 0.15, p = 0.188; 

Q4: β = 0.15, p = 0.205), negative biases (Q16: β = 0.03, p = 0.949; Q4: β = 0.09, p = 0.374), 

and temperature parameter values (Q16: β = 0.23, p = 0.252; Q4: N/A; removed due to 

collinearity) had no significant effect. Thus, individuals with higher outcome valuation 

parameters (i.e. with lower responsiveness to rewards and higher sensitivity to punishments), 

lower learning rates and higher BDI depression scores reported spending more time in 

unpleasantly perceived social situations. The highly similar results obtained when using 

parameters from models Q16 and Q4 provide evidence for the robustness of this effect. 
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Figure 4: Association between learning rate parameters and time spent in unpleasant social 

situations (shown data is rank-transformed) 

 

In addition, the abovementioned measures also significantly predicted the reported amount of 

time spent in social situations that were regarded as pleasant (Q16: L(5) = 18.06, p = 0.003, 

R2 = 0.22; Q4: L(4) = 19.32, p = 0.001, R2 = 0.23). When utilising parameter estimates from 

model Q16, this association was driven by RSAS social anhedonia scores (β = -0.49, p < 

0.001), with temperature parameters only marginally contributed to this relation (β = 0.34, p = 

0.065). By contrast learning rate (β = -0.37, p = 0.091), outcome valuation parameters (β = 

0.01, p = 0.944) and BDI depression scores (β = -0.01, p = 0.896) had no significant effect. 

When using parameters from model Q4, RSAS social anhedonia scores similarly had a 

significant predictive effect (β = -0.46, p < 0.001), but it was the outcome valuation parameters 

that additionally made a significant contribution (β = 0.24, p = 0.030), while temperature 

parameters (β = 0.10, p = 0.377), and BDI scores (β = 0.02, p = 0.863) had no significant 

effect. The same pattern of results was observed when learning rate values (β = 0.08, p = 

0.547) were included as predictors instead of temperature parameters. The fact that the 
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regression results vary depending on which model parameters are used indicates that the 

findings are not robust and should thus be interpreted with caution.   

In terms of model validation (based on models Q16 and Q5 for the social and non-social 

conditions, respectively), it can be seen from Figure 5 that the relative accuracy pattern of the 

two groups in the simulated data closely resembled that of the real data (although the overall 

accuracy was slightly overestimated). Additionally, pseudo-R2 values indicated that in both the 

social (pseudo-R2 = 0.34) and non-social (pseudo-R2 = 0.33) condition the model provided a 

relatively good fit for the data, and no group differences in pseudo-R2 values were observed 

in either condition (U = 1116, p = 0.443 and U = 1229, p = 0.095, respectively). Moreover, in 

both the social and non-social condition, participants’ parameter values and the parameter 

estimates from the simulated data were significantly correlated (see Table 3), and, for the 

social condition, group differences in the learning rate could be recovered from the simulated 

data (U = 1349, p = 0.009). 
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Figure 5: Percent of accurate choices in six bins of twelve trials for the participants’ data in 

the A) social and C) non-social condition, as well as for the data simulated using parameters 

from the best fitting model in the B) social and D) non-social condition. 
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Table 2: Overview of the models that were fit to the data and the associated Akaike's 

Information Criterion (AIC) weights for the social and non-social condition. 

Model 

Learning 
rate 

(αG, αL) 

Outcome 
valuation 

(d) 

Choice 
bias (φ) 

Choice 
bias 

decay (γ) 

Memory 
decay 

(ω) 

Tempe-
rature 

(τ) 

AIC 
weight 
social 

AIC 
weight 

non-social 

Q1 1     x 0.007 0.010 

Q2 1  x   x 0.018 0.023 

Q3 1  x x  x 0.026 0.024 

Q4 1 x    x 0.086 0.087 

Q5 1 x x   x 0.066 0.096 

Q6 1 x x x  x 0.066 0.056 

Q7 2     x 0.030 0.023 

Q8 2  x   x 0.046 0.031 

Q9 2  x x  x 0.035 0.037 

Q10 2 x    x 0.078 0.067 

Q11 2 x x   x 0.075 0.057 

Q12 2 x x x  x 0.035 0.033 

Q13 1    x x 0.005 0.007 

Q14 1  x  x x 0.011 0.015 

Q15 1  x x x x 0.017 0.018 

Q16 1 x   x x 0.089 0.080 

Q17 1 x x  x x 0.062 0.073 

Q18 1 x x x x x 0.021 0.055 

Q19 2    x x 0.023 0.012 

Q20 2  x  x x 0.029 0.023 

Q21 2  x x x x 0.026 0.024 

Q22 2 x   x x 0.066 0.060 

Q23 2 x x  x x 0.042 0.054 

Q24 2 x x x x x 0.042 0.036 

For models Q1 to Q6 and Q13 to Q18, the same learning rate was used for positive and negative 

prediction errors (i.e. αG = αL), while for the remaining models separate learning rates were utilised. An 

x indicates that the parameter was estimated in the model, while the other parameters were fixed at 0 

(for choice bias and decay) or removed (for d, with r(t) being set to 1, 0, and -1 for positive, neutral, and 

negative outcomes, respectively). The dark grey shading highlights the best fitting models, and the light 

grey shading indicates similarly well-fitting models.  
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Table 3: Correlations between participant parameters used for data simulation and 

parameters recovered from the simulated data for the social and non-social condition. 

 social non-social 

 rs value p value 

(one-tailed) 

rs value p value 

(one-tailed) 

learning rate (α) 0.54 <0.001 0.39 <0.001 

choice bias (φ) N/A N/A 0.52 <0.001 

outcome valuation (d) 0.42 <0.001 0.45 <0.001 

memory decay (ω) 0.32 0.001 N/A N/A 

temperature (τ) 0.53 <0.001 0.61 <0.001 
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2.5 Discussion 

Addressing a lack of research on social learning in depression, the current study assessed 

the performance of individuals with high (HD) and low (LD) depression scores in a learning 

task with both social and non-social feedback. Additionally, measures of participants’ everyday 

interpersonal interactions were collected, which allowed for the examination of how task-

based social learning relates to real-life social experiences.  

2.5.1 Learning from social feedback predicts the quality of social experiences 

In the task, it was found that HD participants tended to demonstrate reduced learning across 

all trials compared to LD controls. Due to the lack of an interaction, it was not possible to 

ascertain whether this effect may have been driven by reward or ‘punishment’ learning deficits 

in the social or non-social condition. Nevertheless, the finding is consistent with previous 

reports of impaired learning in depression (Herzallah et al., 2013; Kumar et al., 2018; Kunisato 

et al., 2012; Maddox et al., 2012; Pechtel et al., 2013; Robinson, Cools, Carlisi, Sahakian, & 

Drevets, 2012).  

To examine which learning mechanisms may be affected in HD individuals, computational 

modelling was performed. This approach revealed that, in the social (but not the non-social) 

condition of the task, HD subjects demonstrated significantly lower learning rates than LD 

participants. Hence, HD individuals made smaller updates to their outcome predictions based 

on social feedback than controls. This result is in line with previous observations of altered 

learning rates in depressed subjects (Beevers et al., 2013; Chase et al., 2010; Cooper et al., 

2014; Dombrovski et al., 2010) and extends these findings to the social domain.  

Interestingly, the present study further demonstrated that social learning model parameters 

were related to real-life interpersonal experiences. Specifically, it was found that, across all 

participants, higher outcome valuation parameters were associated with more time spent in 

unpleasantly perceived social situations. That is to say, individuals who showed enhanced 



75 
 

sensitivity to negative outcomes and diminished responsivity to positive feedback (relative to 

the initial expectation of an outcome value of zero) reported experiencing more negative social 

encounters. This is likely due to these subjects subjectively perceiving more social interactions 

as unpleasant, resulting in elevated reporting of negative encounters.   

Moreover, an increased amount of time spent in unpleasant social situations was also 

associated with lower learning rate values. This may partly be the case because reduced 

updating of outcome predictions based on social feedback may give rise to enhanced 

uncertainty about what to expect from social interactions. Considering that uncertainty can be 

regarded as negative (e.g. in depressed individuals; Carleton et al., 2012), heightened 

uncertainty may result in more social encounters being subjectively perceived as unpleasant. 

Additionally, it is possible that individuals with low learning rates objectively experience more 

unpleasant social encounters, because their impaired ability to use social feedback to 

appropriately update future actions may lead to suboptimal interpersonal behaviour (see 

below).  

The current study further showed that the reported amount of time spent in pleasantly 

perceived social situations was mainly predicted by social anhedonia scores. This finding 

could be a result of anhedonic individuals’ reduced motivation to engage in social activities or 

due to their tendency to experience and categorise fewer social encounters as pleasant.  

It is worth noting that, compared to controls, HD subjects showed heightened social anhedonia 

scores, as well as reduced learning rates, and reported spending numerically lower and 

significantly higher amounts of time in pleasantly and unpleasantly perceived social situations, 

respectively. Taken together with the above results, these findings suggest that HD individuals’ 

increased levels of social anhedonia may reduce their experience of positively perceived 

social encounters. Moreover, the impaired ability to update outcome predictions based on 

social feedback may expose HD individuals to more negatively (perceived) interpersonal 
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experiences, potentially due to higher uncertainty about social outcomes, or due to an inability 

to appropriately adjust behaviours based on other people’s responses.  

The latter suggestion is in line with previous proposals that increased experience of negative 

social encounters in depression may be the result of an impaired (learned) ability to evoke 

pleasant responses from other people (Carvalho & Hopko, 2011; Lewinsohn et al., 1980). This 

notion is partly supported by findings that, compared to controls, depressed individuals show 

less appropriate behaviour during social interactions, as they make less eye contact, smile 

less, speak more monotonously, time their responses less fittingly, and are less likely to offer 

help to others (reviewed in Rottenberg & Gotlib, 2008 and Segrin, 2000; see also Setterfield 

et al., 2016). Importantly, inappropriate social behaviour has been shown to elicit fewer 

positive responses to, and even rejection of, depressed subjects by their interlocuters (Segrin 

& Abramson, 1994). Following on from the current results, it would therefore be interesting for 

future studies to investigate whether the relation between learning performance and the 

(objective) frequency of negative social encounters is mediated by individuals’ (learned) social 

skills.  

2.5.2 Responses to social feedback predict the quantity of social engagement 

Contrary to expectations, no group differences were observed in participants’ emotional 

responses to the feedback they received during the learning task. This finding is at odds with 

previous reports of associations between depression symptoms and reduced positive 

responses to social acceptance feedback (Caouette & Guyer, 2016; Davey et al., 2011). A 

possible explanation for this discrepancy is that in past research the relevant feedback 

indicated whether other people liked the participant or not, whereas in the present study the 

feedback was related to subjects’ party planning choices. It may thus be the case that group 

differences in emotional responses to social outcomes are specific to more personal feedback.  

Despite the absence of group differences in emotional responses to the task feedback, the 

current study observed that HD individuals reported heightened arousal to negative social 
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outcomes, as well as enhanced negative feedback expectancy biases, compared to controls. 

Notably, the latter group effect remained significant even when the amount of actually 

experienced positive and negative feedback was controlled for. It is possible that the elevated 

arousal experienced by HD subjects in response to negative social feedback may have made 

negative outcomes more salient than positive ones, which may have contributed to increases 

in negative expectancy biases. Alternatively, the latter may have been the consequence of a 

generalisation from heightened levels of (actual or perceived) negative experiences in real life 

to the experimental setting. That is to say, based on unpleasant social encounters in everyday 

life, HD subjects may have formed the belief that others often respond negatively to their 

actions, and this belief may have biased the expectancy ratings in the task. In either case, the 

current findings are in line with past observations that depression symptoms are associated 

with enhanced expectancies of negative evaluations from others (Caouette & Guyer, 2016), 

as well as with our own work showing that individuals with high levels of depressive 

symptomatology expect to experience more negative responses to social situations than 

controls (Setterfield et al., 2016).  

The present study further found that higher social anhedonia scores and, marginally, negative 

social expectancy biases predicted a reduction in the quantity of social engagement (time 

spent with friends). Notably, HD subjects showed increased anhedonia and negative bias 

scores. Taken together, these findings suggest that HD individuals’ reduced responsiveness 

to pleasant social interactions, as well as their increased expectancies of negative social 

outcomes, may result in withdrawal from close relationships. This disengagement, in turn, may 

prevent future exposure to positive social experiences, thereby sustaining anhedonia levels 

and maintaining (or further exacerbating) negatively biased expectancies in HD subjects. 
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2.5.3 Conclusion 

All in all, the current study found that individuals with high depressions scores demonstrate 

deficits in learning from social feedback. Interestingly, this impairment was linked to more time 

spent in unpleasantly perceived social situations, potentially due to increased uncertainty 

about social outcomes or suboptimal interpersonal behaviour. Moreover, HD participants 

displayed increased negative feedback expectancy biases and higher levels of social 

anhedonia compared to controls, with both of these factors predicting decreased social 

engagement. These findings lend support to the suggestions that impaired social learning, 

diminished pleasure derived from social feedback, and negative expectancy biases contribute 

to the decreased quality and quantity of social interactions in depression (Kupferberg et al., 

2016; Lewinsohn, 1974). In future studies, it would be of interest to examine the neural 

underpinnings of social learning deficits in depressed individuals. 
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3 Behavioural and Neural Responses during Social Learning in 

Individuals with High and Low Depressive Symptomatology  

[Study 2] 

3.1 Abstract 

Background: Major depressive disorder is associated with altered social functioning and 

impaired (non-social) learning, on both the behavioural and the neural level (Chen et al., 2015; 

Kupferberg et al., 2016; Stuhrmann et al., 2011). These deficits are likely related, considering 

that successful social interactions require learning to accurately predict other people’s 

emotional responses. Yet, there is little research examining this relation. 

Methods: In the current study, 43 individuals with high (HD; N = 21) and low (LD; N = 22) Beck 

Depression Inventory scores answered questions regarding their real-life social experiences 

and performed a social learning task during fMRI scanning. As part of the task, name cues 

were presented followed by faces that probabilistically displayed happy, neutral, or fearful 

expressions. On each trial, subjects rated the likelihood of seeing a particular emotional 

expression after the name cue. Using computational modelling, behavioural and neural 

correlates of social learning were examined and related to measures of real-life social 

experiences.  

Results: HD participants reported reduced motivation to engage in real-life social activities and 

demonstrated elevated uncertainty about social outcomes in their task likelihood ratings, 

compared to LD controls. On the neural level, HD subjects displayed reduced encoding of 

social reward (i.e. happy expression) predictions in the insula, temporal lobe and parietal lobe. 

Interestingly, across all subjects, higher task uncertainty (in interaction with the perceived 

negativity of uncertainty) and reduced parietal prediction encoding were associated with 

decreased motivation to engage in real-life social activities (even when depression scores 

were controlled for). 
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Conclusion: The results indicate that HD individuals show reduced social engagement 

motivation, as well as impaired learning from social outcomes, on both the behavioural and 

the neural level. Moreover, subjects who demonstrated greater uncertainty about social 

outcomes in the task, and who regarded uncertainty as negative, displayed lower motivation 

to engage in real-life social activities. Taken together, these findings suggest that reduced 

learning from social outcomes may impair depressed individuals’ ability to predict other 

people’s emotional responses in real life, which renders social situations uncertain. This 

negatively perceived uncertainty, in turn, may contribute to reduced social engagement in 

depression. 

3.2 Introduction 

Deficits in social functioning are commonly observed in major depressive disorder (MDD; Katz, 

Conway, Hammen, Brennan, & Najman, 2011; Rhebergen et al., 2010; Rottenberg & Gotlib, 

2008). Compared to controls, depressed individuals have fewer friends (Brim et al., 1982; 

Frey, Frank, & McCabe, 2019; Youngren & Lewinsohn, 1980), fewer intimate relationships 

(Gotlib & Lee, 1989), and spend less time with people in their social circle (Youngren & 

Lewinsohn, 1980). Additionally, depressed subjects show inappropriate behaviour during 

social interactions (reviewed in Rottenberg & Gotlib, 2008; Segrin, 2000), which can result in 

the receipt of negative feedback from other people (Segrin & Abramson, 1994). 

Successful interpersonal interactions require learning to predict other people’s responses and 

to adjust one’s own behaviour accordingly. Therefore, social functioning abnormalities in MDD 

may partly be linked to impaired learning from interpersonal outcomes. In line with this 

suggestion, we previously found that subjects with depression symptoms show deficits in 

learning from social feedback and demonstrate heightened negative feedback expectancy 

biases during a social decision-making task. Interestingly, impaired learning predicted the 

experience of more negatively perceived social encounters in real life, while negative biases, 

as well as social anhedonia, were associated with decreased amounts of time spent with 
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friends ([study 1]; Frey et al., 2019). Additionally, using a social conditioning paradigm, it has 

been observed that elevated depression scores are correlated with heightened arousal ratings 

in response to faces that were previously paired with negative statements about the 

participant. This effect was still seen three months after the conditioning phase, indicating that 

the learning of negative social associations may be stronger in individuals with higher levels 

of depressive symptomatology (Wiggert et al., 2017).  

The above research provides limited evidence for changes in social learning in depressed 

individuals. Additionally, a range of studies have reported altered non-social learning in MDD. 

For instance, using decision-making tasks, it has been observed that depressed subjects 

display impaired reward learning (Blanco et al., 2013; Cooper et al., 2014; Herzallah et al., 

2013; Kumar et al., 2018; Kunisato et al., 2012; Maddox et al., 2012; Pechtel et al., 2013;  

Robinson, Cools, Carlisi, et al., 2012), while their punishment learning is either enhanced 

(Beevers et al., 2013; Maddox et al., 2012) or unchanged (Herzallah et al., 2013; Kumar et al., 

2018; Kunisato et al., 2012; Robinson, Cools, Carlisi, et al., 2012), when compared to controls. 

Moreover, in Pavlovian conditioning paradigms, depressed participants tend to demonstrate 

less accurate reward contingency predictions during or after the conditioning phase (Kumar et 

al., 2008; Robinson et al., 2012, although see Lawson et al., 2017 and Rupprechter, 

Stankevicius, Huys, Steele, & Seriès, 2018 for no group differences). By contrast, behavioural 

punishment conditioning does not seem to differ between depressed and control subjects 

when assessed with explicit measures (Lawson et al., 2017; Robinson et al., 2012; although 

neural group effects have been observed, see below). 

The above behavioural research has been extended by neuroimaging studies which have 

examined neural learning signals with the use of computational models. In these models, the 

predictive value of a given cue is iteratively updated based on the difference between current 

outcomes and previous predictions. The latter difference, referred to as a prediction error (PE), 

as well as model-derived prediction values, have been used as parametric modulators in fMRI 

analyses.   
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Using this approach, it has been found that depressed individuals display reduced reward PE 

encoding in the midbrain, striatum, medial orbitofrontal cortex, dorsal anterior cingulate cortex, 

and hippocampus, compared to controls (Gradin et al., 2011; Kumar et al., 2018, 2008; 

Rothkirch et al., 2017). Notably, the magnitude of the striatal reward PE signal has been shown 

to moderate the relationship between real-life anticipatory and consummatory pleasure in 

depressed subjects (Bakker et al., 2018). Moreover, while some studies have observed 

attenuated habenula punishment PE representations in depression (Liu et al., 2017), others 

have found these representations to be unchanged in MDD (Rothkirch et al., 2017). 

In addition, examinations of neural prediction encoding have found that depressed subjects 

display reduced reward prediction-related responses in the hippocampus and 

parahippocampus (Gradin et al., 2011), as well as decreased inverse correlations between 

reward prediction and PE signals in the ventral striatum (Greenberg et al., 2015), compared 

to controls. Additionally, depressed patients demonstrate reduced punishment prediction 

encoding in the habenula (when shocks are used as outcomes; Lawson et al., 2017). 

The above findings suggest that depression is associated with learning deficits, both on the 

behavioural and the neural level, partly due to impaired generation and updating of outcome 

predictions. However, it should be noted that most previous studies assessing learning in MDD 

utilised non-social outcomes. Given the ubiquity of social stimuli in everyday life, it is important 

to further examine how far depressed subjects’ learning impairments extend to the social 

domain, and whether these impairments are related to the abovementioned social functioning 

deficits in MDD. The current study aimed to address this question. For this purpose, a social 

learning task was developed in which name cues were presented followed by faces that 

probabilistically displayed happy, neutral, or fearful expressions. Participants with high and 

low depression scores completed the task during fMRI scanning and were asked to learn the 

average likelihood of seeing a particular emotional expression after a given name cue. 

Additionally, subjects answered a number of questions about their real-life social experiences. 

A computational model was applied to the learning task data and model-derived prediction 
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and PE values were used as parametric modulators in the fMRI analysis to assess the neural 

correlates of social learning. It was hypothesised that individuals with high depression scores 

would show impairments in the behavioural and neural prediction of social outcomes and that 

these deficits would be related to altered reports of real-life social engagement. 

3.3 Methods 

3.3.1 Participants 

The current study included 43 right-handed volunteers between the age of 18 and 45 years 

who scored below 8 (LD; N = 21) or above 16 (HD; N = 22) on the Beck Depression Inventory 

(BDI, Beck, Steer, & Brown, 1996).  Subjects were screened using the structured clinical 

interview for DSM-IV (SCID; First, Spitzer, Gibbon, & Williams, 1996). LD volunteers were 

excluded if they had a history of any Axis I disorder or had ever taken any psychiatric 

medication. HD subjects were ineligible if they had ever experienced any Axis I disorder, apart 

from depression and moderate levels of secondary anxiety symptoms, or if they had taken any 

psychiatric medication in the past year. Additional exclusion criteria for volunteers in either 

group were the current use of any medications besides contraceptives, the use of recreational 

drugs in the past three months, smoking more than five cigarettes per week, or demonstrating 

any contraindications to MRI scanning.  

The study received ethical approval from the University of Reading Ethics Committee (UREC-

16/08). All subjects provided informed consent and received £30 for their participation. 

3.3.2 Procedure 

Before the testing session, potential participants attended a screening visit during which the 

SCID, as well as an l interview about past and current medical conditions, were conducted to 

ascertain that none of the exclusion criteria were met. Subsequently, eligible subjects 

completed the following online questionnaires at home: trait subscale of the State and Trait 

Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983), Revised 
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Social Anhedonia Scale (RSAS, Eckblad, Chapman, Chapman, & Mishlove, 1982), 

Uncertainty Intolerance Scale (UIS, Buhr & Dugas, 2002), and a demographics form.  

In addition, subjects answered several questions about their everyday social interactions, 

indicating how many friends they have, how close they feel to these friends, and how difficult 

they find it to make new friends. Participants also rated their anticipatory, motivational and 

consummatory responses to social and non-social activities.  

After the above questionnaires had been completed, a testing session was arranged. At the 

beginning of the session, participants filled in the Positive and Negative Affect Scale (PANAS; 

Watson, Clark, & Tellegen, 1988). Subsequently, they performed a name learning test and 

some practice trials of the social learning task, as well as two other tasks not reported here, 

outside the MRI scanner. Following the practice, subjects completed the social learning task 

in the MRI scanner, and, after the scan, filled in a task feedback questionnaire. 

3.3.2.1 Name Learning Test 

Before completing the social learning task, subjects were asked to rate their familiarity and 

their positive and negative associations with a list of modified Scandinavian and Eastern 

European names (on a scale from 0 = ‘no association/ familiarity’ to 10 = ‘strong association/ 

familiarity’). The names with which participants were least familiar, and with which they had 

the weakest associations, were chosen as cues for the social learning task on an individual 

basis.  

As described below, the social learning task involved learning how likely it is that a given name 

cue is followed by a face with a happy, neutral or fearful expression, while the face identity 

that a particular name is paired with stayed constant. To ensure that participants were fully 

focused on learning the name-emotion associations during the task, subjects were asked to 

memorise the name-face identity pairings beforehand. For this purpose, participants were 

shown the selected names together with the (neutral) faces that were going to be used during 

the task (i.e. three male and three female faces from the Pictures of Facial Affect Series; 
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Ekman & Friesen, 1976). Subjects were given as much time as they needed to memorise the 

name-face identity pairings. Once they felt ready, participants completed a name learning test, 

during which the six faces were numbered and displayed in a random order together with one 

of the learned names. Subjects were instructed to select the number of the face that was 

associated with the presented name. After each choice, the words ‘correct’ or ‘wrong – the 

correct face is:’ were displayed for one second together with the correct face. The name test 

continued until participants had correctly matched each name with the corresponding face 

three times. The order in which the names were displayed was pseudo-random. Participants’ 

memorising time, as well as their accuracy, reaction times, and number of trials needed to 

reach criterion were recorded.   

3.3.2.2 Social Learning Task 

During the social learning task, participants’ aim was to learn how likely it is that a given name 

cue is followed by a happy, neutral or fearful facial expression. At the beginning of each trial, 

subjects saw one of the six names that they had learned during the name test (1000ms), 

followed by a visual analogue rating scale (5000ms; see below). Subsequently, the face 

associated with the name was displayed (1000ms), showing either a neutral or an emotional 

expression, as determined by the probabilistic contingencies described below. The stimulus 

presentations were separated by a 2000ms inter-stimulus interval, and the inter-trial interval 

was jittered by drawing from an exponential distribution with a minimum of 2000ms and a 

mean of 2500ms (see Figure 1).  

The task was divided into social reward and social aversion blocks which were performed in 

counterbalanced order. In the social reward block, three of the six faces were displayed, each 

of which had a different likelihood (25%, 50% or 75%) of showing a happy rather than a neutral 

expression. In the social aversion block, the other three faces were presented, each of which 

had a different likelihood (25%, 50% or 75%) of displaying a fearful rather than a neutral 

expression. The six faces were randomly assigned to the blocks and likelihoods for each 

participant and were presented in a pseudo-random order. 
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Subjects were asked to learn how likely it was, on average, that a given face displayed an 

emotional expression. They indicated this likelihood on a visual analogue scale, ranging from 

0% to 100%, in response to the question ‘How likely is it that [name] is [HAPPY / AFRAID]?’. 

Participants were told to start with a guess, and to subsequently base their ratings on the 

intuition or ‘gut feeling’ they derived from all the times they had seen a given name-face pairing 

before. 

 

Figure 1: Example of a social learning task trial (see main text for details). 

 

The task practice consisted of 8 repetitions of each name-face pair, resulting in 24 trials per 

block and 48 practice trials in total (which were performed outside the MRI scanner). The 

experimental phase (which was completed inside the MRI scanner) included 12 presentations 

of each name-face pair, resulting in 36 trials per block and 72 experimental trials in total.  
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3.3.2.3 fMRI Data Acquisition  

A three-Tesla Siemens scanner (Siemens AG, Erlangen, Germany) with a 32-channel head 

coil was used to acquire blood oxygenation level dependent (BOLD) functional images. A 

GRAPPA multiband sequence was utilised with an acceleration factor of 6, a repetition time 

(TR) of 700ms, an echo time (TE) of 30ms, and a flip angle (FA) of 90°. The whole brain was 

covered by the field of view (FOV) with a voxel resolution of 2.4 x 2.4 x 2.4mm3. Additionally, 

structural T1-weighted images were obtained with a magnetisation prepared rapid acquisition 

gradient echo sequence (TR = 2020ms, TE = 3.02ms, FA = 9°) with a FOV covering the whole 

brain and a voxel resolution of 1 x 1 x 1mm3.   

3.3.3 Analysis 

3.3.3.1 Behavioural Analysis 

Normality assumptions were not met for the questionnaire or name learning data. Group 

differences in these measures were therefore assessed using Mann-Whitney U tests.  

Due to technical difficulties, the name test and social learning task practice data were lost for 

four HD and nine LD participants. The mixed-measure (group x valence x probability) ANOVA 

reported in the main text was performed on the likelihood ratings averaged across all available 

(practice and/or experimental) data for each participant. However, to ensure that the results 

were not biased by the missing data, the analysis was repeated using only the data from the 

experimental trials (which were available for all participants). The pattern of findings was 

almost identical for the two approaches (see supplement).    

Moreover, to examine subjects’ uncertainty regarding the task outcomes, likelihood ratings 

were converted into uncertainty scores. For this purpose, 50 (i.e. the value indicating maximal 

uncertainty) was subtracted from each likelihood rating of a given participant, separately for 

social reward and aversion blocks. The resulting values were transformed into absolutes and 

then averaged across probabilities (separately for the two blocks). This yielded two scores for 
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each subject, with lower scores indicating higher uncertainty about what outcomes to expect. 

To make the result interpretation more intuitive, scores were reversed by subtracting each 

value from the maximum score across all participants. Thus, the final uncertainty scores are 

high for high levels of uncertainty. A mixed-measure (group x valence) ANOVA was performed 

on the scores. 

Additionally, to relate the task performance to real-life measures, uncertainty scores were 

entered into a regression analysis. Given that the scores for social reward and aversion blocks 

were highly correlated (r = 0.57; p < 0.001), they were averaged across the two blocks for the 

regression. The overall uncertainty score was then mean-centred and used to predict 

participants’ motivation to engage in real-life social activities, together with BDI depression, 

RSAS, and mean-centred UIS negativity scores (calculated based on Sexton & Douglas 2009; 

note that very similar results were obtained when using the inhibitory subscale of the UIS, 

calculated based on Carlton Norton et al 2007; see supplement). An uncertainty score*UIS 

negativity interaction term was also included in the analysis, as it is likely that uncertainty about 

social outcomes primarily affects social engagement motivation when uncertainty is perceived 

as negative. STAI scores were not entered into the analysis, because this would have resulted 

in a violation of the multicollinearity assumption (Variance Inflation Factor > 10) due to a high 

correlation between STAI anxiety and BDI depression scores. This high correlation is in line 

with previous findings demonstrating that the STAI contains many items that map onto 

depression rather than specifically onto anxiety (Bados, Gómez-Benito, & Balaguer, 2010). 

However, it should be noted that STAI scores did not significantly contribute to the prediction 

of motivation when they were included in the regression model and BDI scores were removed.   
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3.3.3.2 Computational Modelling  

A Rescorla-Wagner model (Rescorla & Wagner, 1972) was applied to the data, in which the 

prediction error (δ) for a given trial (t) is calculated as the difference between the predicted 

value (V) and the actual outcome (r):  

δ = r(t) – V(t). 

Moreover, the predicted value for the next trial is updated by adding the prediction error, 

multiplied by a learning rate (α), to the previous prediction:  

V(t+1) = V(t) + α*δ 

The predicted value was (at first, see below) initialised at 0.5, which reflects the mean 

probability of encountering an emotional (rather than a neutral) expression, as well as the fact 

that it is reasonable for participants to initially rate the likelihood of seeing an emotional 

expression as 50% (expressing maximal uncertainty). Moreover, outcome values were set to 

0 for neutral expressions and to 1 for happy or fearful faces, thus capturing the prediction of 

salient emotional outcomes. It should be noted that coding fearful faces as -1 (and initialising 

V at -0.5) simply leads to a change in sign of the prediction and prediction error values 

compared to coding fearful expressions as 1. The negative encoding of fear predictions can 

thus be assessed by examining negative covariations between prediction values and BOLD 

responses in the below parametric modulation fMRI analysis.  

Given that the same stimuli and outcome contingencies were used during the practice and 

experimental phases of the social learning task, the computational model was fit to 

participants’ data across both phases, but separately for social reward (happy) and aversion 

(fear) blocks. To account for the fact that forgetting was likely to occur between the practice 

and experimental trials, which were performed outside and inside the MRI scanner, 

respectively, prediction values were decayed towards the initial value of 0.5 for all stimuli after 

the 48 practice trials:  
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V(49) = V(49)+ γ*(0.5-V(49)) 

where γ is the decay parameter determining the strength of the ‘forgetting’ effect. (Note that a 

similar method has been used by Collins & Frank, 2012 to capture the effects of working 

memory decay.)  

The decay and learning rate parameters were estimated for each participant by minimising 

the sum of squared errors between the model prediction value (V*100) and the participant’s 

likelihood ratings (similar to Hindi Attar, Finckh, & Büchel, 2012). Given that the practice data 

was missing for some participants, this fitting procedure was performed in two steps. Firstly, 

the model was fit to only the data of those participants for whom the practice data was 

available. Using the estimated parameters, the prediction values (V) for the first experimental 

trial of each stimulus were obtained for each included participant. These prediction values 

were then averaged across subjects. Subsequently, the model fitting was repeated for all 

participants for only the experimental trials (thus estimating only α and not γ), utilising the 

average prediction values from the first fitting step to initialise V (instead of using 0.5). In this 

way, the learning that occurred during the practice trials was taken into account for all subjects, 

without biasing the model fitting depending on whether or not practice data was available for 

a given participant (as V was initialised at the same value for all participants). Note that, for 

the participants for whom both practice and experimental data were available, the model fit 

and the parameter estimates were highly similar during the first and second step of this 

procedure, indicating that this approach does not seem to negatively affect the parameter 

estimation. 

To assess group differences, Mann-Whitney U tests were conducted on the parameter 

estimates, as well as on the sum of squared error values which provide a measure of model 

fit. 
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3.3.3.3 fMRI Analysis 

Preprocessing and analysis of the fMRI data was performed using the Statistical Parametric 

Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm). Functional images were 

realigned to the average position and motion parameters were saved for inclusion as 

regressors of no interest in the first-level analysis. Structural images were co-registered with 

the functional images and aligned to the SPM MNI space tissue probability map using 

segmentation. The resulting normalisation parameters were applied to the functional images 

which were subsequently smoothed with a Gaussian kernel of 6mm full-width at half-

maximum.  

Three first-level GLM analyses were run. GLM1 examined covariations between BOLD 

responses and values derived from the computational model described above. For this 

purpose, model-derived prediction values were entered as parametric modulators at the time 

of the cue, using separate regressors for the social reward and aversion blocks. In line with 

the previous literature, prediction values were calculated using average learning rate 

parameters across all participants (social reward block: α = 0.12, social aversion block: α = 

0.08) to ensure that any group differences in the fMRI results were not due to the use of 

varying parameter values (Bakker et al., 2018; Daw, O’Doherty, Dayan, Seymour, & Dolan, 

2006; Daw, 2011; Pessiglione et al., 2006; Schonberg et al., 2007, 2010). However, for 

completeness, the above analysis was also run with individual learning rate values (GLM2), 

which yielded very similar results (see supplement). 

As has been commonly reported in the previous literature (e.g. Behrens, Hunt, Woolrich, & 

Rushworth, 2009; Chowdhury et al., 2013; Rothkirch et al., 2017; Tobia et al., 2014), the 

outcome and prediction error (PE) values were highly correlated in the current study. It was, 

therefore, not feasible to unambiguously identify PE-related BOLD responses by using PE 

values as parametric modulators at the time of the outcome. Notably, brain responses 

encoding a canonical PE should, at the time of the outcome, covary positively with outcome 

values and negatively with prediction values. As in previous studies (e.g. Chowdhury et al., 
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2013; Rothkirch et al., 2017; Rutledge et al., 2017), these two PE components were thus 

entered into the first-level analysis as separate parametric modulators at the time of the 

outcome (for the social reward and aversion block). Subsequently, MarsBar (Brett, Jean-Luc, 

Valabregue, & Poline, 2002) was used to extract average parameter estimates for outcome 

and inverse prediction encoding from a 6mm sphere around striatal coordinates that have 

been found to encode PEs in a previous meta-analysis (left ROI: -10 8 -6; right ROI: 10 8 -10; 

Chase et al., 2015). The extracted values were then compared between groups by conducting 

one-way ANOVAs. 

Additionally, a third GLM analysis was performed (GLM3) to assess valence-dependent BOLD 

responses to the cues and outcomes. Onset timings of the following events were entered as 

regressors: name cues from the social aversion block, name cues from the social reward 

block, fearful faces, happy faces, and neutral faces. Subsequently, contrasts were run for 

social reward vs. aversion cues, fearful vs. neutral faces, and happy vs. neutral faces.  

In all three GLM analyses, the regressors of interest, as well as their temporal derivatives, 

were convolved with the haemodynamic response function. Moreover, the six motion 

parameters from the realignment preprocessing step and a constant, as well as the onsets of 

the rating scale, were included as regressors of no interest.  

On the second level, one-sample t-tests were performed on the data of the LD control group 

to assess main effects, and one-way ANOVAs were conducted for group comparisons. All 

results are reported at a voxelwise threshold of 0.01 (uncorrected) and are family wise error 

(FWE) corrected at p<0.05 at the cluster-level.  

Finally, to relate the fMRI results to real-life measures, parameter estimates were extracted 

from the peak voxels of the prediction-related group comparison and were correlated with 

participants’ reported motivation to engage in positive social interactions (similar to Gradin et 

al., 2011). 
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3.4 Results 

3.4.1 Demographic and Questionnaire Measures 

Mann-Whitney U tests revealed that there were no significant group differences in age (U = 

219, p = 0.970). As expected, BDI (U = 0, p < 0.001), RSAS (U = 22, p < 0.001), STAI-T (U = 

0, p < 0.001), UIS negativity (U = 17, p < 0.001), and PANAS Negative Affect Scale (U = 65, 

p < 0.001) scores were significantly higher in HD than in LD participants. Additionally, PANAS 

Positive Affect Scale scores were significantly lower in HD than in LD subjects (U = 349, p = 

0.001; see Table 1). 

Table 1: Demographic data and questionnaire scores for individuals with high (HD) and low 

(LD) depression scores.  

 HD (N = 21) LD (N = 22) 

 Mean SD Mean SD 

Age (years) 23.20  5.66 22.45 4.35 

N females/ males 17/4  -  14/8  - 

BDI* 26.05 9.63 1.36 1.84 

RSAS* 18.57 6.43 5.77 4.31 

STAI-T* 57.75 7.12 27.85 6.92 

UIS - neg* 94.71  17.81 52.76 17.19 

PANAS - pos* 24.38 5.71 31.52 6.57 

PANAS - neg* 21.29 7.27 13.43 5.26 

SD, standard deviation; BDI, Beck Depression Inventory; RSAS, Revised Social Anhedonia Scale; 

STAS-T, trait score of the State Trait Anxiety Inventory; UIS - neg, Uncertainty Intolerance Negativity 

Scale; PANAS-pos/neg, positive and negative mood scores of the Positive and Negative Affect Scale; 

* asterisks indicate significant group differences 
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3.4.2 Real-Life Social Interactions 

Compared to LD subjects, HD participants indicated having significantly fewer friends (U = 

320, p = 0.001; see Figure 2A), feeling less close to their friends (U = 364, p < 0.001), and 

finding it more difficult to form new friendships (U = 47, p < 0.001).  

Moreover, HD individuals demonstrated significantly reduced motivation to engage in positive 

social activities (U = 294, p = 0.003), as well as significantly decreased anticipation (U = 316, 

p < 0.001) and enjoyment (U = 323, p < 0.001) of pleasant social activities, compared to LD 

controls (see Figure 2B). By contrast, no group differences were observed for anticipatory (U 

= 223, p = 0.365), motivational (U = 227, p = 0.309), or consummatory (U = 226, p = 0.322) 

responses to pleasant non-social activities. 

Figure 2: A) Number of friends and B) motivational, anticipatory, and enjoyment ratings for 

pleasant social activities in individuals with high (HD) and low (LD) depression scores.  
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3.4.3 Name Learning Test Performance 

For the name learning test, Mann-Whitney U tests showed no significant group differences in 

the memorising time (U = 86, p = 0.320), accuracy (U = 88, p = 0.363), reaction times (U = 

135, p = 0.320), or number of trials needed to reach criterion (U = 126, p = 0.536). Thus, there 

was no indication that HD subjects displayed any general deficits in associative learning 

(between names and face identities). 

3.4.4 Social Learning Task Performance 

A mixed measure ANOVA (group x valence x probability) performed on participants’ likelihood 

ratings revealed the expected main effect of probability (F(2, 82) = 94.95, p < 0.001), with 

participants rating the likelihood of seeing an emotional expression higher after cues that were 

more likely to be followed by an emotional face. Moreover, a main effect of valence was 

observed (F(1,41) = 8.30, p = 0.006) which indicated that participants rated the overall 

likelihood of seeing happy faces as higher than the likelihood of seeing fearful faces. 

Additionally, a group by probability interaction was found (F(2,82) = 11.77, p < 0.001) which 

was followed up as described below. All other main effects and interactions were not 

significant (all F < 2.3). 

Follow-up one-way ANOVAs revealed that, compared to LD controls, HD participants’ 

likelihood ratings were significantly lower on trials with a 75% chance of showing a happy 

(F(1,41) = 9.12, p = 0.004) or fearful (F(1,41) = 3.98, p = 0.053) expression. By contrast, HD 

subjects’ ratings were significantly higher than those of controls on trials with a 25% chance 

of showing a happy (F(1,41) = 9.82, p = 0.003) or fearful (F(1,41) = 10.18, p = 0.003) face. No 

group differences were found on trials with a 50% chance of displaying a happy (F(1,41) = 

0.15, p = 0.698) or fearful (F(1,41) = 0.07, p = 0.796) expression.  

Visual inspection of the data revealed that the above group effects seemed to be due to HD 

participants’ ratings being generally closer to 50% than those of controls, potentially indicating 
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increased uncertainty about what outcomes to expect (see Figure 3). To formally test this 

suggestion, a mixed-measure (group x valence) ANOVA was conducted on participants’ 

uncertainty scores (which indicate the average difference between subjects’ ratings and 50%; 

see Analysis section). This analysis revealed that HD subjects, indeed, tended to be more 

uncertain about the social task outcomes than controls (F(1,41) = 3.67, p = 0.062). 

Additionally, a significant main effect of valence indicated that subjects were more uncertain 

about aversive than about rewarding outcomes (F(1,41) = 6.62, p = 0.014). No significant 

interaction effect was observed (F(1,41) = 0.160, p = 0.692). 

Figure 3: Likelihood ratings by chance of seeing an emotional face for A) the social reward 

and B) the social aversion block in individuals with high (HD) and low (LD) depression scores. 

 

Moreover, a multiple regression analysis revealed that task uncertainty scores (averaged 

across blocks), together with questionnaire measures, predicted participants’ motivation to 

engage in pleasant social activities (F(5, 32) = 8.57, p < 0.001, R2 = 0.51). Predictors 

significantly contributing to this relation were the main effect of UIS negativity (β = -0.55, p = 

0.008), the UIS negativity * task uncertainty interaction term (β = -0.32, p = 0.015; see Figure 

4), and, marginally, RSAS social anhedonia scores (β = -0.37, p = 0.061). By contrast, the 

main effect of task uncertainty (β = -0.21, p = 0.096) and BDI depression scores (β = 0.32, p 

= 0.149) had no significant effect. Thus, the motivation to engage in pleasant social activities 
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was particularly reduced in individuals who were uncertain about what social outcomes to 

expect and who experienced uncertainty as negative.  

Figure 4: Scatter plot showing the association between motivation to engage in pleasant 

social activities and uncertainty intolerance (UIS) * task uncertainty interaction values. 

 

3.4.5 Task Feedback Questionnaire Responses 

Finally, in a task feedback questionnaire, HD subjects demonstrated a tendency to show 

higher emotional responses to fearful expressions than controls (U = 142, p = 0.069), while 

their self-rated ability to remember happy faces was marginally decreased (U = 280, p = 

0.065). No group differences were found for emotional responses to happy faces (U = 229, p 

= 0.615), or for the reported ability to remember fearful faces (U = 245, p = 0.363). 
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3.4.6 Computational Modelling  

Mann-Whitney U tests on the model parameters revealed that learning rates were significantly 

lower in HD than in LD participants, both in the social reward (U = 351, p = 0.004) and in the 

social aversion (U = 355, p = 0.003) block. The model fit, as indicated by the sum of squared 

errors, did not differ significantly between groups in either the social reward (U = 171, p = 

0.145; U = 169, p = 0.132) or aversion (U = 189, p = 0.308; U = 182, p = 0.234) block when 

using individual or averaged parameters (respectively).  

3.4.7 fMRI Results  

3.4.7.1 Neural Prediction Value Encoding 

In the LD group, a significant covariation between BOLD responses and model-based social 

reward (i.e. happy expression) prediction values was observed in a right-lateralised cluster 

ranging from the superior to the inferior temporal lobe and the fusiform gyrus (see Table 2). 

No significant (positive or negative) covariations between BOLD responses and social 

aversion (i.e. fearful expression) prediction values were observed.  

Group comparisons revealed reduced social reward prediction encoding in HD, compared to 

LD, subjects in the superior parietal lobe/ precuneus, as well as in a cluster including the right 

insula, supramarginal gyrus and superior temporal lobe (see Table 3 and Figure 5). No group 

differences were found for social aversion prediction encoding. 

Across all subjects, correlation analyses revealed a significant positive correlation between 

participants’ motivation to engage in pleasant social activities and parameter estimates 

extracted from the peak group comparison voxels in the parietal lobe (r = 0.49, p = 0.002) and 

insula (r = 0.36, p = 0.023). This relationship remained significant for the parietal lobe (r = 0.36, 

p = 0.027), but not the insula (r = 0.25, p = 0.137), when BDI depression scores and task 

uncertainty scores were controlled for (in a partial correlation). 
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3.4.7.2 Neural Prediction Error Encoding 

One-way ANOVAs were conducted on the average parameter estimates extracted from the 

left and right striatal ROI for the encoding of outcome and inverse prediction values (i.e. the 

two PE components). This analysis revealed no significant group differences for either the 

social reward or the social aversion block (all F <  2.9).  

 

Figure 5: Clusters showing lower social reward prediction encoding in individuals with high 

(HD) than with low (LD) depression scores, as well as parameter estimates extracted from A) 

the right insula peak voxel and B) the parietal peak voxel. 
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Table 2: Parametric modulation results for social reward prediction encoding in control 

participants (LD) only. 

Voxelwise thresholded at p<0.01; whole-brain cluster p values are family-wise error corrected at p 
< .05 

 

 

 

Table 3. Parametric modulation results for social reward prediction encoding in individuals 

with low (LD) vs. high (HD) depression scores. 

Voxelwise thresholded at p<0.01; whole-brain cluster p values are family-wise error corrected at p 
< .05 

 

 

 

 MNI coordinates   

Brain Region X Y Z Z score  p value 

Right Inferior Temporal Lobe  
52 -36 -22 4.40 0.025 

Right Superior Temporal Lobe 44 -24 -4 3.21  

Right Fusiform Gyrus  38 -34 -22 3.12  

 MNI coordinates   

Brain Region X Y Z Z score p value 

LD > HD 
     

Superior Parietal Lobe/ Precuneus -18 -58 68 3.80 0.001 

Right Insula  48 -20 18 3.47 0.045 

Right Supramarginal Gyrus 58 -32 24 3.28  

Right Superior Temporal Lobe 68 -22 12 3.17  
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3.4.7.3 Neural Responses to Name Cues and Emotional Faces 

None of the name cue or face contrasts resulted in any significant clusters in the LD group 

alone. Yet, group comparisons revealed significantly higher activation to fearful (vs. neutral) 

faces in HD compared to LD subjects in the bilateral supramarginal gyrus, right fusiform gyrus, 

bilateral inferior temporal lobe, dorsal anterior cingulate, and in a cluster ranging from the 

dorsolateral to the ventrolateral PFC and to the insula (see Table 4). No group differences 

were observed for the happy vs. neutral face contrast or for the social reward vs. social 

aversion name cue contrast. 

 

Table 4: Regions showing higher responses to fearful (vs. neutral) faces in individuals with 

high (HD) vs. low (LD) depression scores. 

Voxelwise thresholded at p<0.01; whole-brain cluster p values family-wise error corrected at p < .05; 
ACC, anterior cingulate cortex; MCC, mid cingulate cortex; dlPFC, dorsolateral prefrontal cortex; vlPFC, 
ventrolateral prefrontal cortex; BA, Brodmann Area 

 

 MNI coordinates   

Brain Region X Y Z Z score p value 

HD > LD 
     

Dorsal ACC/ MCC -2 10 28 4.73 <0.001 

Right Occipital Lobe 18 -92 -8 4.30 0.033 

Right Fusiform Gyrus 34 -76 -18 3.56  

Right dlPFC (BA 8) 50 24 42 4.25 <0.001 

Right vlPFC (BA 45) 54 32 10 3.50  

Right Insula 46 10 12 3.18  

Right Supramarginal Gyrus 36 -46 50 4.01 <0.001 

Right Inferior Temporal Lobe 58 -54 -4 3.99 0.002 

Left Inferior Temporal Lobe -54 -58 -14 3.96 0.034 

Left Supramarginal Gyrus -28 -48 52 3.36 0.001 
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3.5 Discussion 

3.5.1 Uncertainty about social outcomes predicts reduced social engagement 

motivation 

The current study examined learning from social outcomes in individuals with high (HD) and 

low (LD) depression symptoms, linking task performance to measures of real-life social 

experiences.  

It was found that HD participants reported having fewer friends and feeling less close to their 

friends than LD controls. Additionally, HD subjects showed reduced anticipatory, motivational 

and consummatory responses to pleasant social (but not non-social) activities. These results 

replicate our previous findings ([study 1]; Frey et al., 2019) and are in agreement with past 

observations of increased social anhedonia (Blanchard, Horan, & Brown, 2001; Szczepanik 

et al., 2017) and decreased social network sizes in depression (Brim et al., 1982; Gotlib & Lee, 

1989; Youngren & Lewinsohn, 1980). 

Moreover, in both the social reward and the social aversion block of our learning task, HD 

individuals underestimated the likelihood of being presented with emotional faces on high 

probability trials, while they overestimated this likelihood on low probability trials. In other 

words, HD subjects provided ratings close to 50% across all trial types, indicating a general 

uncertainty about what social outcomes to expect.   

These findings are partly consistent with previous reports of impaired reward conditioning in 

depression (Kumar et al., 2008; Robinson et al., 2012; see also Chen et al., 2015). Yet, it may 

seem somewhat surprising that HD subjects demonstrated higher uncertainty (and thus 

decreased learning) in the social aversion block, considering that past studies have observed 

enhanced punishment learning in depression (Beevers et al., 2013; Maddox et al., 2012). A 

possible explanation of this finding is that the social stimuli used in the current study may have 

been particularly likely to induce rumination in HD individuals, which may have interfered with 

the aversion learning process (Whitmer et al., 2012). Moreover, it is worth noting that, unlike 
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previous tasks, the current paradigm required the continuous formation, updating and working 

memory maintenance of explicit outcome contingencies. This may have been particularly 

difficult for HD individuals (independent of the stimulus valence), which would explain the 

general learning deficit and increase in uncertainty observed in this group.  

Notably, in everyday social cognition both implicit and explicit processes play a role (Frith & 

Frith, 2008). Thus, HD individuals’ impaired ability to learn to explicitly predict other people’s 

responses is likely to have an effect on real-life social functioning. In line with this suggestion, 

the current study found that task-based uncertainty, in interaction with the perceived negativity 

of uncertainty, significantly predicted participants’ motivation to engage in positive social 

activities (even when depression scores were controlled for). That is to say, subjects who 

demonstrated more uncertainty about (and thus worse learning from) social outcomes in the 

task, and who were more averse to uncertainty in general, were less motivated to engage in 

pleasant social activities in real life. Importantly, HD subjects demonstrated high levels of task 

uncertainty, regarded uncertainty as negative, and displayed reduced social engagement 

motivation. Taken together, these findings suggest that deficits in learning from social 

outcomes may contribute to social withdrawal in depressed individuals. Social 

disengagement, in turn, may further increase depressed subjects’ uncertainty regarding social 

encounters by reducing their exposure to situations in which social outcome contingencies 

can be learned.  

The current findings are consistent with previous observations of increased intolerance of 

uncertainty in depression (Carleton et al., 2012). Moreover, past studies have reported a link 

between uncertainty intolerance and depressive rumination (Yook, Kim, Suh, & Lee, 2010), 

and it has been argued that uncertainty leads to behavioural inhibition when it is regarded as 

negative (Carleton, 2016). It may thus be the case that, in response to higher social outcome 

uncertainty, depressed individuals are prone to ruminate about possible negative outcomes, 

which reduces (/inhibits) their motivation to engage in social activities. This idea is supported 

by the supplementary analysis of the present study which shows that the interaction between 
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task uncertainty and inhibitory uncertainty intolerance predicts reduced social engagement 

motivation. In addition, the above suggestion is in line with our previous findings showing that 

increased negative social feedback expectancies are associated with social disengagement 

in individuals with high depressive symptomatology ([study 1]; Frey et al., 2019). It would be 

of interest for future studies to examine whether the relation between uncertainty and social 

withdrawal is indeed mediated by rumination-induced negative expectancies.  

3.5.2 Neural predication of social rewards is impaired in HD subjects 

Consistent with the behavioural findings, the current study found that HD individuals showed 

impaired learning signals on the neural level. Specifically, compared to controls, HD 

participants displayed lower covariation between social reward prediction values and BOLD 

responses in the superior parietal lobe, as well as in a cluster extending from the insula to the 

supramarginal gyrus and superior temporal lobe. 

Given the superior parietal lobe’s involvement in attentional processing (Behrmann, Geng, & 

Shomstein, 2004), this region may have been recruited after the repeated pairing of cues with 

happy expressions because this association made the cues a more salient target for active 

attentional processing. Moreover, the insula, supramarginal gyrus and temporal lobe have 

previously been implicated in the processing (Fusar-Poli et al., 2009) and working memory 

maintenance (Nichols, Kao, Verfaellie, & Gabrieli, 2006) of faces. Hence, the increased 

engagement of these regions by cues that were more frequently paired with task-relevant 

happy expressions may reflect a working memory mechanism that aids the learning 

processes.  

Based on the above, the current findings of reduced social reward prediction encoding in HD 

individuals could be taken to indicate that the latter display deficits in neural attention and 

working memory processing during learning. However, it should be noted that BOLD 

responses were not simply reduced in HD subjects, but were instead reversed. That is to say, 

rather than being close to zero, parameter estimates extracted from the peak voxels of the 
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group contrast were significantly below zero in the HD group (and significantly above zero in 

the LD group; see supplement). This indicates that, in HD individuals, BOLD responses were 

higher the more frequently cues were associated with neutral faces. A possible explanation 

for this finding is that, due to negative processing biases, HD individuals perceived the 

ambiguous neutral faces as negative, especially when they were displayed amongst happy 

expressions. Such a negative perception may have made the neutral faces particularly salient, 

and may thus have led to the recruitment of attentional and working memory resources to 

represent and predict neutral rather than happy faces.  

The above suggestion is consistent with previous behavioural observations showing that 

depressed individuals tend to perceive neutral expressions as negative (Bouhuys et al., 1999; 

Hale et al., 1998; Leppannen et al., 2004). Moreover, the increased salience of neutral faces 

may also have contributed to the behavioural findings of the current study. Specifically, the 

mismatch between task demands (of happy expression prediction) and neural processes 

(supporting neutral expressions prediction) may have given rise to the uncertainty reflected in 

HD participants’ task ratings. Notably, a similar mechanism could play a role in real life, if 

automatic processing supports learning from negative social feedback and reflective 

processes are needed (but potentially unable) to accurately predict the positive value of 

engaging in social activities (along the lines of the dual process model of Beevers, 2005). 

It thus seems plausible that the neural processes of HD subjects supported the prediction of 

negatively perceived neutral expressions rather than that of happy faces. Following on from 

this suggestion, it may have been expected that the neural response to happy vs. neutral faces 

would have differed between groups, due to increased (aversive) processing of neutral faces 

in HD participants. Yet, such a group effect was not observed. This may potentially be the 

case because the prediction of neutral expressions in HD subjects, after some learning had 

occurred, may have engaged preparatory downregulation processes resulting in similar neural 

responses to neutral faces in HD and LD individuals. 
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Interestingly, the current study further found that lower social reward prediction encoding in 

the parietal lobe was significantly correlated with reduced motivation to engage in positive 

social activities in real life, even when task uncertainty and depression scores were controlled 

for. Considering the abovementioned involvement of the parietal lobe in attentional processing 

(Behrmann et al., 2004), this may indicate that individuals who demonstrate diminished 

attentional processing of positive social feedback, or enhanced attentional processing of 

ambiguous and negative feedback, may be less motivated to engage in social activities 

(although the direction of this relation cannot be determined based on the present data). This 

may especially be the case in HD subjects, who displayed decreased parietal prediction 

encoding, as well as reduced motivation to engage in pleasant social activities.  

With regards to social aversion processing, the current study found that HD individuals 

demonstrated increased responses to fearful (vs. neutral) faces in a range of areas, including 

the fusiform gyrus, insula, dorsal ACC, ventrolateral PFC and dorsolateral PFC. These regions 

have, among other functions, previously been implicated in the processing of fearful faces 

(Fusar-Poli et al., 2009), as well as in emotion regulation (Frank et al., 2014), and have been 

shown to be abnormally engaged during emotional processing in depression (Groenewold, 

Opmeer, de Jonge, Aleman, & Costafreda, 2013). The increased responsiveness of these 

regions to fearful faces in HD individuals is consistent with the observed behavioural results 

of marginally stronger self-reported emotional responses to fearful faces in HD compared to 

LD participants.  
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3.5.3 Conclusion 

All in all, the results of the current study suggest that individuals with high depression 

symptoms demonstrate impaired learning from social outcomes, on both the neural and the 

behavioural level. Importantly, this deficit is associated with reduced motivation to engage in 

real-life social activities, partly due to increased negatively-perceived uncertainty about what 

to expect from social situations. To identify potential treatment targets for these impairments, 

future studies are called for to examine how different neurotransmitters are involved in learning 

from social outcomes. It would be of particular interest to assess the contribution of dopamine 

and serotonin to the social learning process, given that these neurotransmitters have been 

implicated in the psychopathology of depression (Belujon & Grace, 2017; Nemeroff & Owens, 

2009), social processing (Kiser et al., 2012; Skuse & Gallagher, 2009; Steenbergen et al., 

2016), and learning from non-social outcomes (Boureau & Dayan, 2011; Cools et al., 2011; 

Homberg, 2012; Schultz, 2010). 
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4 Effects of Dopamine and Serotonin Depletion on Behavioural and 

Neural Responses during Social Learning  

[Study 3] 

4.1 Abstract 

Background: In previous research, we have shown that individuals with high depression 

scores demonstrate impaired social learning, and that these deficits are associated with 

reduced motivation to engage in real-life social activities ([study 2]; Frey & McCabe, 2019). 

Given that depression has been linked to abnormal dopamine (DA) and serotonin (5-HT) 

functioning (Belujon & Grace, 2017; Nemeroff & Owens, 2009), the current study aimed to 

elucidate the role of these neurotransmitters in social learning with the use of a dietary 

depletion manipulation. 

Methods: In a double-blind design, 70 healthy volunteers were randomly allocated to the 5-HT 

depletion (N = 24), DA depletion (N = 24), or placebo (N = 22) group. Participants performed 

a social learning task during fMRI scanning in which they were shown name cues followed by 

faces that probabilistically displayed happy, neutral, or fearful expressions. After each name 

cue, subjects were asked to rate the likelihood of seeing one of the emotional expressions. 

Using computational modelling, the behavioural and neural effects of the depletion 

manipulation on social learning were examined.  

Results: Behaviourally, the likelihood ratings of 5-HT depleted subjects were indicative of 

reduced learning from social rewards (i.e. from happy expressions) compared to placebo 

controls, with a marginal effect in the same direction in the DA depletion group. On the neural 

level, whole brain analysis revealed that 5-HT depletion reduced social reward prediction 

encoding in the insula, temporal lobe, dorsal anterior cingulate, and lateral to medial prefrontal 

cortex compared to placebo. Moreover, DA depletion decreased the representation of social 

reward predictions in the dorsal anterior cingulate and medial prefrontal cortex.  
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Conclusion: These results indicate that 5-HT depletion impairs learning from social rewards, 

on both the behavioural and the neural level, possibly partly by increasing attentional and 

working memory processing of negatively interpreted neutral faces. DA depletion had a 

similar, although less pervasive, effect. Interestingly, the behavioural and neural responses 

observed after 5-HT depletion in the current study closely resemble our previous findings in 

individuals with high depression scores. It may thus be the case that decreased 5-HT levels 

contribute to deficits in social learning in depression. 

4.2 Introduction 

Being able to predict other people’s responses is crucial for successful interpersonal 

interactions, and deficits in learning from social outcomes are likely to have far-reaching 

consequences. For instance, we have previously found that impaired (task-based) social 

learning is associated with diminished social engagement motivation and more frequent 

experiences of negative social encounters in real life  ([studies 1 & 2]; Frey, Frank, & McCabe, 

2019; Frey & McCabe, 2019). This association may be particularly relevant to the 

understanding of social deficits in major depressive disorder, as we have shown that 

individuals with depression symptoms demonstrate reduced learning from social feedback. 

Specifically, subjects with high depression scores displayed decreased updating of their 

behaviours in response to interpersonal feedback and were less certain about what social 

outcomes to expect compared to controls. Moreover, on the neural level, individuals with high 

depression scores demonstrated weaker social reward prediction encoding in the insula, 

temporal lobe, and parietal lobe compared to controls ([studies 1 & 2]; Frey et al., 2019; Frey 

& McCabe, 2019).  

Given that social functioning deficits are thought to contribute to the onset and maintenance 

of depression (Kupferberg et al., 2016; Segrin, 2000), the abovementioned impairments may 

be potential targets for pharmacological treatments. It is thus important to gain a better 

understanding of which neurotransmitters may contribute to reduced social learning in 
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depression. Based on previous research, it seems likely that altered dopamine (DA) or 

serotonin (5-HT) functioning may play a role in these deficits, given that these 

neurotransmitters have been implicated in the psychopathology of depression (Belujon & 

Grace, 2017; Nemeroff & Owens, 2009), social processing (Kiser et al., 2012; Skuse & 

Gallagher, 2009; Steenbergen et al., 2016), and non-social learning (Boureau & Dayan, 2011; 

Cools et al., 2011; Homberg, 2012; Schultz, 2010).  

While studies using DA or 5-HT manipulations in combination with social learning paradigms 

are lacking, there is extensive research on the effect of these neurotransmitters on learning 

from non-social outcomes. For instance, behavioural studies have found that high doses of 

D2 antagonists impair reward learning and prediction (Diederen et al., 2017; Eisenegger et 

al., 2014; Jocham, Klein, & Ullsperger, 2014), and low doses of D2 agonists reduce the 

acquisition of reward biases, potentially due to autoreceptor binding (Pizzagalli, Evins, et al., 

2008). In addition, DA depletion has been shown to enhance punishment learning in 

probabilistic selection and reversal learning tasks (Cox et al., 2015; Robinson et al., 2010), 

whereas levodopa and (meth)amphetamine have been reported to improve reward-based 

decision-making and context conditioning, respectively  (Childs & de Wit, 2013; Chowdhury et 

al., 2013; Coulthard et al., 2012; Frank et al., 2004; Mayo et al., 2013; Pessiglione et al., 2006). 

Interestingly, it has further been shown that higher reward-induced DA release in the striatum 

(as measured by positron emission tomography) is not only associated with better learning 

task performance, but also with more reward-oriented behaviour in real life (Kasanova et al., 

2017). 

Regarding the involvement of 5-HT in learning, it has been demonstrated that lowering 5-HT 

levels via tryptophan depletion impairs punishment- and reward-based decision-making and 

reversal learning (Crockett, Clark, Apergis-Schoute, Morein-Zamir, & Robbins, 2012; Rogers 

et al., 1999; Seymour, Daw, Roiser, Dayan, & Dolan, 2012; Tanaka et al., 2009; although 

enhanced prediction accuracy for negative outcomes has also been observed; Cools, 

Robinson, et al., 2008; Robinson, Cools, & Sahakian, 2012). Similarly, acute doses of 
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selective serotonin inhibitors (SSRIs), which are thought to lower 5-HT levels via autoreceptor 

effects, have been found to impair reversal learning (Chamberlain et al., 2006; Skandali et al., 

2018), while increasing 5-HT functioning via chronic SSRI treatment has been reported to 

improve reward learning (Scholl et al., 2017). 

On the neural level, animal studies have provided insights into the mechanistic role of DA and 

5-HT in learning. Such studies have shown that midbrain DA neurons fire in the presence of 

cues that reliably predict rewards, as well as when unexpected rewards are encountered. 

Moreover, if expected rewards are omitted, tonic DA firing drops below baseline levels (Schultz 

et al., 1997). This activity pattern is thought to represent prediction error encoding during 

outcome receipt, indicating that DA neurons compute the discrepancy between predicted and 

actual rewards (e.g. Suri & Schultz, 1999). In addition, it has been proposed that 5-HT 

responses may have an analogous role to DA activity in punishment learning. That is to say, 

5-HT neuron firing may represent the computation of punishment (Boureau & Dayan, 2011; or 

salience, Matias, Lottem, Dugué, & Mainen, 2017) prediction errors. However, partly due to 

difficulties with identifying 5-HT neurons in vivo, this suggestion is somewhat tentative (Cools 

et al., 2011). 

The mechanistic roles of DA and 5-HT during the learning process have been formalised using 

computational models. In these models, the (presumed) pattern of phasic DA or 5-HT firing is 

represented numerically, as an outcome prediction value (at the time of the cue) and a 

prediction error value (PE; at the time of the outcome). Throughout the learning process, PEs 

are used to update prediction values, which results in increasingly accurate predictions and 

decreasing PEs over time.  

Model-derived prediction and PE values have been used as parametric modulators in 

functional magnetic resonance imaging (fMRI) analyses to examine the encoding of neural 

learning signals in humans. Using this approach, it has been found that increasing DA levels 

with low doses of D2 antagonists enhances reward prediction and PE encoding in the 

ventromedial prefrontal cortex (PFC) and striatum, respectively (Jocham et al., 2011). 
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Similarly, levodopa administration has been shown to increase reward PE encoding in the 

ventral striatum and putamen (Chowdhury et al., 2013; Pessiglione et al., 2006). By contrasts, 

reducing DA functioning with high doses of D2 antagonists decreases striatal PE 

representations (Jocham et al., 2014), and lowering DA levels via tyrosine and phenylalanine 

depletion results in diminished prediction responses in the caudate, thalamus, and midbrain, 

as well as in reduced PE encoding in the caudate, thalamus, and amygdala (Tobia et al., 

2014). Overall, low levels of DA thus appear to be associated with impaired reward prediction 

and PE encoding, while heightened DA functioning enhances the representation of these 

learning signals. 

5-HT manipulations have similarly been shown to affect neural learning processes. 

Specifically, lowering 5-HT levels via tryptophan depletion has been found to reduce 

punishment prediction encoding in the orbitofrontal cortex and amygdala (Hindi Attar et al., 

2012). In addition, tryptophan depletion has been reported to decrease reward prediction 

respresentations in the dorsolateral and ventromedial PFC, anterior cingulate cortex (ACC), 

insula and precuneus (Seymour et al., 2012; Tobia et al., 2014), while also diminishing reward 

PE responses in the putamen (Seymour et al., 2012). Moreover, acute SSRI administration 

has been shown to attenuate (inverse) reward PE encoding in ACC and hippocampus (Kumar 

et al., 2008), while longer-term SSRI treatment has been found to strengthen representations 

of reward PEs in the ACC, ventromedial PFC, parietal cortex and (marginally) in the striatum 

(Scholl et al., 2017). 

The above findings demonstrate that 5-HT and DA play a role in behavioural and neural 

learning processes when non-social outcomes are used. However, it is less clear whether, or 

how, these neurotransmitters are involved in social learning. The current study examined this 

question by lowering DA or 5-HT levels in healthy volunteers using acute tyrosine/ 

phenylalanine or tryptophan depletion, respectively. After consumption of the depletion drink 

(or a placebo), participants performed a social learning task in the MRI scanner during which 

they learned associations between name cues and rewarding (happy faces) or aversive 
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(fearful faces) social outcomes. Computational modelling was applied to the data to assess 

depletion effects on the neural encoding of social learning signals. It was hypothesised that 

both depletion manipulations would impair social reward learning, while social aversion 

learning may be enhanced after DA depletion and reduced following 5-HT depletion. 

4.3 Methods 

4.3.1 Participants 

Seventy healthy, right-handed individuals between the age of 18 and 45 years took part in the 

current study. Volunteers were screened using the structured clinical interview for DSM-IV 

(SCID; First et al., 1998), and were asked a number of questions about their medical history. 

Subjects were ineligible if they had a history of any Axis I disorder, a significant current or past 

medical condition, or any contraindications to MRI scanning. Further exclusion criteria were 

the current use of any medications besides contraceptives, the use of any psychotropic 

medications or recreational drugs within the past three months, and smoking more than five 

cigarettes per week.  

In a double-blind, between-subject design, eligible participants were randomly allocated to the 

DA depletion (N=24), 5-HT depletion (N=24), or placebo (N = 22) group (see further details 

below). 

The study was approved by the University of Reading Ethics Committee (UREC 15/61). All 

subjects provided written informed consent and received a reimbursement of £40. 

4.3.2 Procedure 

Several days before the testing session, volunteers attended a screening visit during which 

the medical and SCID interviews were conducted to ensure that none of the exclusion criteria 

were met. Eligible participants were sent online versions of the Beck Depression Inventory 

(BDI; Beck, Steer, & Brown, 1996) and a demographics form to fill in at home.  
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Once the questionnaires had been completed, subjects were invited to attend the testing 

session. They were asked not to consume any food or drinks, besides water, after 10pm on 

the previous day, and to arrive at the study location at 9am on the testing day. At this point, 

participants completed the Positive and Negative Affect Scale (PANAS; Watson, Clark, & 

Tellegan, 1988) and gave a blood sample which was used to assess baseline amino acid 

levels. Subsequently, subjects consumed one of the three depletion drinks and were given a 

protein free breakfast bar. During the following 3.5 hours, participants occupied themselves in 

a waiting room, with lunch (protein free pasta with tomato sauce) being provided at 12 noon. 

This waiting period was chosen to ensure that the MRI scan took place 5 hours after 

consumption of the depletion drink, as the maximum depletion effect has been shown to occur 

around this time (Dougherty et al., 2008).   

After the waiting period, subjects filled in the PANAS again, as well as a questionnaire 

assessing the potential experience of side effects. Subsequently, participants practiced the 

social learning task, as well as two other tasks not reported here, outside the MRI scanner. 

Additionally, subjects gave a second blood sample which was used to assess whether amino 

acid levels had been successfully depleted. Participants then performed the social learning 

task in the MRI scanner, and, after the scan, completed a task feedback questionnaire and 

guessed which drink they had consumed (see Figure 1 for an overview of the procedure). 
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Figure 1: Flow chart of the study procedure; see main text for details. 

 

 

4.3.2.1 Amino Acid Depletion Drink 

The relative amino acid amounts for the depletion drinks were based on previous 5-HT 

(Crockett, Clark, Smillie, & Robbins, 2012) and DA (Kelm & Boettiger, 2013) depletion studies. 

However, to reduce the experience of side effects, the absolute amounts were adjusted to 

each participant’s body weight (which has been shown to lead to a reliable depletion effect 

with a slightly different mixture; see Dingerkus et al., 2012). 

Specifically, the placebo drink contained the following amounts for a subject weighing 83.6kg 

(i.e. the average male weight in the UK), which were adjusted proportionally for lower or higher 

body weights: L-alanine, 4.1 g; L-arginine, 3.7 g; L-cystine, 2.0 g; glycine, 2.4 g; L-histidine, 

2.4 g; L-isoleucine, 6 g; L-leucine, 10.1 g; L-lysine, 6.7 g; L-methionine, 2.3 g; L-proline, 9.2 g; 

L-phenylalanine, 4.3 g; L-serine, 5.2 g; and L-valine, 6.7 g; L-threonine, 4.9 g; L-tyrosine, 5.2 

g; L-tryptophan; 3.0 g.  



116 
 

The depletion mixtures were identical to that of the placebo drink, except that the 5-HT 

depletion mixture did not contain tryptophan and the DA depletion mixture did not include 

tyrosine or phenylalanine. 

The drinks were prepared by stirring the amino acids and a pinch of salt (to neutralise the 

bitter taste) into 120mL of tap water, 30mL of caramel syrup, and a tablespoon of oil (with 

liquid quantities being adjusted proportionally to the amino acid amounts). 

4.3.2.2 Name Learning Test 

Prior to performing the social learning task, participants completed a name selection and 

learning test, the procedure of which was identical to that reported in our previous study ([see 

method section of study 2]; Frey & McCabe, 2019). Briefly, participants rated a list of modified 

Scandinavian and Eastern European names regarding their familiarity and indicated the 

strength of any positive and negative associations they had with the names. The six lowest 

rated names were chosen as cues for the social learning task.  

To familiarise participants with the name-face identity pairings, a name test was performed. 

During the test, the six selected names were coupled with three male and three female neutral 

faces from the Pictures of Facial Affect Series (Ekman & Friesen, 1976) and participants were 

asked to memorise the pairings. Subsequently, the names were replaced with numbers and 

only one name was shown at the top of the screen. Subjects were asked to select the number 

of the face that had been associated with the presented name. After their choice, participants 

were shown the correct face. The name test continued until subjects had completed three 

correct trials for each of the name-face pairings. Participants’ memorising time, accuracy, 

reaction times and number of trials needed to reach criterion were recorded.  

4.3.2.3 Social Learning Task 

Participants’ aim during the social learning task was to learn how likely it was that a given 

name cue was followed by a happy, neutral or fearful facial expression. Details of the task 

procedure can be found in our previous paper ([see methods section of study 2]; Frey & 
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McCabe, 2019). In brief, the task consisted of 48 practice and 72 experimental trials, which 

were divided into a social reward and a social aversion block. The blocks were performed in 

counterbalanced order and three name-face pairings were randomly allocated to each block. 

On a given trial, participants were presented with a name cue, followed by a rating scale (see 

below) and the face that had been paired with the name (see Figure 2). In the social reward 

block, each face had a different likelihood (25%, 50% or 75%) of displaying a happy rather 

than a neutral expression, while in the social aversion block each face had a different likelihood 

(25%, 50% or 75%) of showing a fearful rather than a neutral expression. Participants were 

asked to learn how likely it was that a given name was followed by an emotional face and to 

indicate this likelihood on a visual analogue scale (ranging from 0% to 100%). Subjects were 

instructed to start with a guess and to subsequently base their ratings on the intuition they 

gained from all the times they had seen the name-face pairing before.  

 

Figure 2: Example of a social learning task trial (see text for details). 
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4.3.2.4 fMRI Data Acquisition  

Blood oxygenation level dependent (BOLD) functional images were acquired using a three-

Tesla Siemens scanner (Siemens AG, Erlangen, Germany) with a 32-channel head coil. 

During the social learning task, around 1500 volumes were obtained for each participant, using 

a multiband sequence with GRAPPA and an acceleration factor of 6. Other sequence 

parameters included a repetition time (TR) of 700ms, an echo time (TE) of 30ms, and a flip 

angle (FA) of 90°. The field of view (FOV) covered the whole brain with a voxel resolution of 

2.4 x 2.4 x 2.4mm3. Moreover, structural T1-weighted images were acquired utilising a 

magnetisation prepared rapid acquisition gradient echo sequence (TR = 2020ms, TE = 

3.02ms, FA = 9°) with a FOV covering the whole brain and a voxel resolution of 1 x 1 x 1mm3.   

It should be noted that the MRI scanner was upgraded half-way through the study (from a 

MAGNETOM Trio to a MAGNETOM Prisma). However, scanning parameters were equivalent 

before and after the upgrade, and the groups were approximately matched before the upgrade 

(5-HT depletion N = 13; placebo N = 11; DA depletion N = 12). Moreover, a control variable 

indicating whether a given participant was scanned before or after the upgrade was included 

in the second-level fMRI analysis.  

4.3.3 Analysis 

4.3.3.1 Analysis of Amino Acid Plasma Levels  

Blood samples (4mL) were taken using sodium heparin tubes and were centrifuged to obtain 

plasma, which was stored at -80C degrees. Before the biochemical analysis, plasma samples 

were deproteinised and filtered (using the procedure described by Prinsen et al., 2016). 

Relative amounts of tryptophan, tyrosine, phenylalanine and other large neutral amino acids 

(LNAA; leucine, isoleucine and valine) were determined using liquid chromatography. To 

assess the depletion effect, the ratio of each of the amino acids of interest (i.e. tryptophan, 

tyrosine, and phenylalanine) to the sum of the other LNAAs was calculated. This ratio is 

commonly used as a measure of the depletion effect (Evers et al., 2005; Hindi Attar et al., 
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2012; Tobia et al., 2014), as the competition of the LNAAs at the blood brain barrier determines 

the uptake of the amino acids into the brain (Dingerkus et al., 2012; Oldendorf & Szabo, 1976). 

A group x time x amino acid mixed-measure analysis of variance (ANOVAs) was performed 

on the ratios to assess the depletion effects. As sphericity assumptions were not met, 

Greenhouse-Geisser corrected results are reported. 

4.3.3.2 Behavioural Analysis 

Where normality assumptions were met, questionnaire and task measures were analysed 

using one-way ANOVAs. Otherwise Kruskal-Wallis H tests were used. Additionally, chi-square 

tests were performed on categorical data. 

Visual inspection of the learning task likelihood ratings revealed several clear outliers. 

Therefore, participants with values outside +/- 2 standard deviations of the mean were 

removed from the data set (N5-HT depletion = 3, Nplacebo = 3, NDA depletion = 4). Subsequently, a group 

x valence x probability mixed-measure ANOVA was conducted, and interactions were followed 

up with one-way ANOVAs. As the sphericity assumption was violated for the probability factor, 

Greenhouse-Geisser corrected results are reported for the associated effects. 

Moreover, to assess participants’ uncertainty regarding the task outcomes, task likelihood 

ratings were converted into uncertainty scores, separately for social reward and aversion 

blocks (as in our previous study; see [study 2] Frey & McCabe, 2019). For this purpose, 50 

(i.e. the value representing maximal uncertainty) was subtracted from the likelihood ratings of 

each subject. The resulting values were converted to absolutes and then averaged across 

probabilities (separately for the two blocks). This yielded two scores for each participant, with 

higher scores indicating lower uncertainty about what outcomes to expect. To make the result 

interpretation more intuitive, scores were reversed by subtracting each value from the 

maximum score across all participants. Thus, the final uncertainty scores are high for high 

levels of uncertainty.  
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4.3.3.3 Computational Modelling  

As in our previous study using the same task ([see study 2]; Frey & McCabe, 2019), a 

Rescorla-Wagner model (Rescorla & Wagner, 1972) was applied to the data. In this model, 

prediction errors (δ) are computed for a given trial (t) by subtracting predicted (V) from actual 

(R) outcome values: 

δ = R(t) – V(t) 

The prediction error, in turn, is multiplied by a learning rate (α) and added to the previous 

prediction to determine the prediction value for the subsequent trial:  

V(t+1) = V(t) + α*δ 

Given that, at the beginning of the task, is was reasonable for participants to guess that cues 

had a 50% chance of being followed by a neutral or an emotional expression, prediction values 

were initialised at 0.5. Moreover, outcome values were set to 0 for neutral expressions and to 

1 for happy or fearful faces. 

Considering that some forgetting of the likelihoods may have taken place between the 

performance of the practice and the experimental trials (which were completed outside and 

inside the MRI scanner, respectively), the prediction values for all stimuli were decayed 

towards the initial value of 0.5 after the 48 practice trials: 

V(49) = V(49)+ γ*(0.5-V(49)) 

The decay parameter, γ, indicates the strength of this forgetting effect  (similar to the approach 

reported in Collins & Frank, 2012).  

To estimate the learning rate and decay parameters, the model was fit to each participant’s 

combined practice and experimental data (separately for social reward and aversion blocks) 

by minimising the mean squared error between the model prediction value (V*100) and the 

participant’s likelihood ratings (as in Hindi Attar et al., 2012 and in our previous study [2], Frey 

& McCabe, 2019) 
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Kruskal-Wallis H tests were used to assess group differences in the parameter estimates, as 

well as in the model fit for individual and averaged parameters, with the latter being used in 

the fMRI analysis as described below. 

4.3.3.4 fMRI Analysis 

Statistical Parametric Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm) was used 

for the preprocessing and analysis of the fMRI data. Realignment to the average position and 

co-registration to the structural images was applied to the functional images. Additionally, the 

latter were moved into normalised space by aligning the structural images to the SPM MNI 

space tissue probability map using segmentation and applying the resulting transformation 

parameters to the functional images. Images were smoothed with a Gaussian kernel of 6mm 

full-width at half-maximum. 

Three first level GLM analyses were run which were identical to those reported in our previous 

study ([see study 2]; Frey & McCabe, 2019). GLM1 assessed covariations between BOLD 

responses and model derived prediction values by using the latter as parametric modulators 

at the time of the cue (separately for the social reward and aversion blocks). The mean 

parameters across all participants were used to calculate the model-derived prediction values 

(social reward block: α = 0.14, ƴ = 0.29; social aversion block α = 0.12, ƴ = 0.46). This approach 

is commonly used and ensures that any observed group differences are not resulting from 

varying model parameters (Bakker et al., 2018; Daw et al., 2006; Daw, 2011; Pessiglione et 

al., 2006; Schonberg et al., 2007, 2010). Yet, for completeness, a second analysis (GLM2) 

was conducted in which prediction values were based on individual parameters, which yielded 

very similar results (see supplement). 

The outcome and prediction error (PE) values in our data (as in many previous studies; e.g. 

Behrens et al., 2009; Chowdhury et al., 2013; Rothkirch et al., 2017; Tobia et al., 2014) were 

highly correlated. Thus, using PE values as parametric modulators at the time of the outcome 

would not have unambiguously identified PE-related BOLD responses. Therefore, the 
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approach outlined in our previous paper ([study 2] Frey & McCabe, 2019) was used to assess 

prediction error encoding. Briefly, the two PE components, i.e. inverse prediction values and 

outcome values, were used as parametric modulators at the time of the face presentation 

(separately for social reward and social aversion blocks). Subsequently, MarsBar (Brett et al., 

2002) was used to extract average parameter estimates for the two components from a 6mm 

sphere around striatal coordinates that have been found to encode PEs in a previous meta-

analysis (left ROI: -10 8 -6; right ROI: 10 8 -10; Chase et al., 2015). The extracted values were 

then compared between groups by conducting one-way ANOVAs. 

To assess valence-dependent BOLD responses to the cues and outcomes, a third GLM 

analysis was performed (GLM3). For this purpose, the onsets of the following stimuli were 

included as regressors: name cues from the social aversion block, name cues from the social 

reward block, fearful faces, happy faces and neutral faces. Moreover, contrasts were run for 

social aversion vs. social reward cues, fearful vs. neutral faces, and happy vs. neutral faces.  

In all three GLM analyses, the onsets of the rating scale, the six motion parameters from the 

realignment preprocessing step, and a constant were included, in addition to the regressors 

of interest and their temporal derivatives (convolved with the haemodynamic response 

function).   

On the second level, main effects were examined by conducting one-sample t-tests on the 

placebo group data, and one-way ANOVAs were performed for group comparisons (placebo 

vs DA depletion, placebo vs 5-HT depletion, and DA vs 5-HT depletion). In the latter analysis, 

a covariate indicating whether a given participant was scanned before or after the scanner 

upgrade was included to control for any potential effects of the scanner upgrade. All results 

are reported at a voxelwise threshold of 0.005 (uncorrected) and are family wise error (FWE) 

corrected at p<0.05 at the cluster level. 
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4.4 Results 

4.4.1 Questionnaires and Demographic Measures 

No significant group differences were observed for age (H(2) = 0.11, p = 0.949), BDI scores 

(H(2) = 1.11, p = 0.574), or for the change in pre- to post-depletion PANAS ratings on the 

positive (F(2, 66) = 1.38, p = 0.260) or negative (F(2, 66) = 0.57, p = 0.567) mood subscales 

(see Table 1). Moreover, chi-square tests showed no significant group differences in gender 

(χ2(2) = 0.41, p = 0.814), drink guess (χ2(2) = 0.86, p = 0.071), or in the number of people who 

indicated experiencing side effects (such as mild nausea or tiredness; χ2(2) = 1.56, p = 0.458).  

Table 1: Questionnaire and demographic measures by group. 

 

 

 

5-HT Depletion  

(N = 24) 

Placebo 

(N = 22) 

DA depletion 

(N = 24) 

 
 
 

Mean SD Mean SD Mean SD 

N female/ male 19/ 5  -  18/ 4  -  19/ 5  -  

N reported side effects 2 - 4 - 5 - 

N guessed drink correctly 6 - 8 - 6 - 

Age (years) 21.50 3.52 21.95 4.18 21.70 4.53 

BDI 2.13 2.29 2.32 2.59 3.26 3.84 

PANAS dif – pos -2.75 5.23 -1.23 4.82 -3.65 4.77 

PANAS dif – neg  -1.63 3.10 -0.77 2.35 -1.09 2.68 

SD, standard deviation; BDI, Beck Depression Inventory; PANAS dif – pos/neg, difference 

between pre- and post-depletion ratings on the positive and negative subscales of the Positive 

and Negative Affect Scale 
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4.4.2 Amino Acid Depletion Efficacy 

A mixed-measure (group x time x amino acid) ANOVA on the ratio of the amino acids of 

interest to the sum of other LNAAs revealed a significant main effect of time (F(1, 57) = 46.75, 

p < 0.001) and amino acid (F(1.16, 65.98) = 128.02, p < 0.001), as well as time by amino acid 

(F(1.34, 64.57) = 8.23, p < 0.001), group by time (F(2, 57) = 19.03, p < 0.001), group by amino 

acid (F(2.27, 64.57) = 8.66, p = 0.003), and group by time by amino acid (F(2.28, 64.96) = 

82.13, p < 0.001) interactions (see Figure 3).  

Figure 3: Ratios of tyrosine (tyr), phenylalanine (phen) and tryptophan (trp) to the sum of other 

large neutral amino acids (LNAAs) before (T1) and 5 hours after (T2) consumption of the 

depletion drinks. 

 

One-way ANOVAs conducted to follow up the interactions showed significant group effects for 

post-depletion tryptophan (F(2, 57) = 35.00, p < 0.001), tyrosine (F(2, 57) = 47.12, p < 0.001), 

and phenylalanine (F(2, 57) = 75.76, p < 0.001) ratios, but no group differences for pre-

depletion levels (all F < 1). Post-hoc tests revealed that these differences were driven by 

significantly lower tyrosine and phenylalanine ratios after DA depletion than after 5-HT 
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depletion or placebo (all p < 0.020) and significantly lower tryptophan ratios after 5-HT 

depletion compared to DA depletion or placebo (all p < 0.001). Additionally, the 5-HT depletion 

group showed higher tyrosine and phenylalanine ratios compared to the placebo group (all p 

< 0.001).  

4.4.3 Name Learning Test Performance 

Independent-samples Kruskal-Wallis H tests conducted on the name test performance 

revealed no group differences in the memorising time (H(2) = 0.365, p = 0.833), accuracy 

(H(2) = 1.79, p = 0.409),  the reaction times (H(2) = 5.26, p = 0.072), or in the number of trials 

needed to reach criterion (H(2) = 1.54, p = 0.464). These findings suggest that the depletion 

manipulations did not seem to result in generally impaired associative learning (between 

names and faces). 

4.4.4 Social Learning Task Performance 

As expected, the mixed measure ANOVA (group x valence x probability) of participants’ 

likelihood ratings revealed a significant main effect of probability (F(1.36, 77.65) = 209.71, p < 

0.001), as participants made higher ratings after names with a greater chance of being 

followed by an emotional face. Additionally, significant valence by probability (F(1.92, 109.45) 

= 3.35, p = 0.040), group by probability (F(2.73, 77.65) = 4.42, p = 0.008), and group by 

valence by probability (F(3.84, 109.45) = 3.72, p = 0.008) interactions were observed.  

Follow-up one-way ANOVAs showed significant group differences in the 75% (F(2, 57) = 4.81, 

p = 0.012), 50% (F(2, 57) = 3.29, p = 0.044) and 25% (F(2, 57) = 7.03, p = 0.002) social reward 

conditions, with no group effect in any of the social aversion conditions (all F < 2.65). 

Bonferroni corrected post-hoc tests indicated that, compared to placebo, 5-HT-depleted 

subjects made significantly lower likelihood ratings on trials with a 75% chance of displaying 

a happy expression (p = 0.010), but made significantly higher ratings on trials with a 25% 

chance of showing a happy face (p = 0.002). Moreover, DA-depleted participants made 
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significantly higher ratings than placebo controls on 25% social reward trials (p = 0.040), as 

well as significantly higher ratings than 5-HT-depleted individuals on 50% social reward trials 

(p = 0.045;).  

Visual inspection of the data revealed that the likelihood ratings of the depletion groups 

appeared to be generally closer to 50% than those of the placebo group, indicating higher 

uncertainty about social outcomes in the former groups (see Figure 4). To formally examine 

this observation, a mixed-measure (group x valence) ANOVA was performed on participants’ 

uncertainty scores (which indicate the average difference between subjects’ ratings and 50%; 

see Analysis section). This analysis revealed a main effect of valence (F(1, 72) = 5.41, p = 

0.023), with subjects demonstrating higher uncertainty about aversive than about rewarding 

outcomes. The main effect of group did not reach significance (F(2, 72) = 1.20, p = 0.308). 

However, a significant group by valence interaction was found (F(2, 72) = 3.26, p = 0.044). 

Follow-up one-way ANOVAs indicated that there were significant group differences in 

uncertainty scores for the social reward (F(2, 68) = 4.71, p = 0.012) but not for the social 

aversion (F(2, 70) = 0.40, p = 0.670) block. Bonferroni corrected post-hoc tests revealed that, 

in the social reward block, 5-HT depleted subjects were more uncertain about what outcomes 

to expect compared to the placebo group (p = 0.012), with a trend in the same direction for 

the DA depletion compared to the placebo group (p = 0.086). No significant differences in 

uncertainty were found between the DA and 5-HT depletion groups (p = 0.999).  
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Figure 4: Likelihood ratings by group and probability in A) the social reward and B) the social 

aversion block 

 

4.4.5 Task Feedback Questionnaire Responses 

Kruskal-Wallis H tests performed on task feedback questionnaire responses showed a 

significant group differences in participants’ self-reported ability to remember happy faces 

(H(2) = 7.55, p = 0.023). Pairwise comparisons revealed that this effect was driven by 

significantly lower remembrance ratings in the 5-HT depletion compared to the placebo group 

(p = 0.023). No group differences were found for reported emotional responses to the happy 

(H(2) = 1.08, p = 0.583) or fearful (H(2) = 1.74, p = 0.419) faces, or for the indicated ability to 

remember fearful faces (H(2) = 2.58, p = 0.275).  
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4.4.6 Computational Modelling 

There were no significant group differences in the learning rate (social reward block: H(2) = 

1.89, p = 0.389; social aversion block: H(2) = 0.80, p = 0.672), or decay (reward block: H(2) = 

3.37, p = 0.185; aversion block: H(2) = 1.56, p = 0.459) parameters. Similarly, no significant 

group effects were observed for the model fit, as indicated by mean squared errors, when 

using individual (reward block: H(2) = 2.77, p = 0.250; aversion block: H(2) = 1.14, p = 0.565) 

or averaged (reward block: H(2) = 2.35, p = 0.309; aversion block: H(2) = 1.81; p = 0.406) 

parameters. 

4.4.7 fMRI Results  

4.4.7.1 Neural Prediction Value Encoding 

Parametric modulation analyses revealed significantly reduced social reward prediction 

encoding in 5-HT depleted subjects, compared to placebo controls, in the dorsal anterior 

cingulate cortex (ACC)/ dorsomedial prefrontal cortex (PFC), premotor cortex/ dorsolateral 

PFC, bilateral temporal lobe/ fusiform gyrus, and the in the right insula (see Figure 5A and 

5B). Moreover, social reward prediction representations were significantly weaker in the DA 

depletion than in the placebo group in the dorsal ACC and dorsomedial PFC/ pre-

supplementary motor area (see Table 2 and Figure 5C). Contrasts between the depletion 

groups and main effects for the placebo group did not reveal any significant clusters. 

In the social aversion condition, no significant main effects of placebo were found, either for 

the ‘positive’ or for the ‘negative’ encoding of aversion prediction values (based on the coding 

of aversive outcomes as 1 or -1 in the computational model, respectively). 5-HT depleted 

subjects demonstrated stronger (‘positive’) prediction encoding than DA depleted individuals 

and placebo controls in the precentral gyrus and in the thalamus, respectively (see Table 2). 

All other group contrasts revealed no significant clusters.  
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Figure 5: Clusters showing lower social reward prediction encoding in 5-HT depleted (A & B) 

or DA depleted (C) subjects than in placebo controls, as well as parameter estimates extracted 

from the peak voxel of the group contrasts in the insula (A) and the dorsal anterior cingulate 

cortex (dACC; B & C). 
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Table 2. Parametric modulation results for prediction encoding.  

Voxelwise thresholded at p<0.005; whole-brain cluster p values family-wise error corrected at p < .05; 
ACC, anterior cingulate cortex, PFC, prefrontal cortex; BA, Brodmann Area 

 

 MNI coordinates   

Brain Region X Y Z Z score p value 

Social Reward Prediction Encoding 

Placebo > 5-HT Depletion      

Premotor (BA 6) extending to  

Dorsolateral PFC (BA 8) 

-26 6 48 4.35 <0.001 

Dorsal ACC 8 20 30 3.67  

Dorsomedial PFC -8 48 34 3.64  

Left Superior Temporal Lobe -44 -44 16 4.20 0.015 

Right Middle Temporal Lobe 54 -40 4 4.03 <0.001 

Right Lingual/ Fusiform Gyrus 22 -72 -2 3.86  

Right Insula 40 -10 -10 4.13 0.004 

Left Fusiform Gyrus -32 -66 -12 3.89 <0.001 

Placebo > DA Depletion      

Pre-Supplementary Motor Area/ 

Dorsomedial PFC 

-10 10 60 3.66 0.005 

Dorsal ACC 8 22 26 3.07  

Social Aversion Prediction Encoding 

5-HT Depletion > Placebo      

Right Thalamus 28 -30 8 4.70 0.012 

5-HT Depletion > DA Depletion      

Precentral Gyrus 22 -8 52 3.80 0.001 



131 
 

4.4.7.2 Neural Prediction Error Encoding 

One-way ANOVAs were conducted on the average parameter estimates extracted from a left 

and a right striatal ROI for the encoding of outcome and inverse prediction values (i.e. the two 

PE components). This analysis revealed no significant group differences for either the social 

reward or the social aversion block (all F <  0.8).  

4.4.7.3 Neural Responses to Names Cues and Emotional Faces 

In the placebo group, the fearful vs. neutral face contrast revealed activation in the right 

dorsolateral to medial PFC, as well as in the pregenual ACC extending to the vmPFC. No 

significant responses were observed for the happy vs. neutral face or social aversion vs 

reward name cue contrasts. 

In the fearful vs neutral face contrast, the placebo group displayed higher BOLD activity than 

the 5-HT depletion group in the vmPFC. Moreover, in the social aversion vs. reward name cue 

contrast 5-HT depleted subjects demonstrated higher responses than DA depleted individuals 

in a cluster ranging from the inferior parietal lobe to the insula, as well as in a cluster 

encompassing the mid- to anterior cingulate cortex and the dlPFC (see Table 3). All other 

comparisons yielded no significant clusters. 
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Table  3: Name cue and facial expression contrasts  

 

Voxelwise thresholded at p<0.005 whole-brain cluster p values family-wise error corrected at p < .05; 
PFC, prefrontal cortex; ACC, anterior cingulate cortex 

 

 

 

 MNI coordinates   

Brain Region X Y Z Z score p value 

Fearful Face > Neutral Face 

Placebo      

Right Dorsolateral PFC 34 44 16 4.12 0.003 

Dorsomedial PFC 10 42 26 3.21  

Pregenual ACC -2 28 12 3.92 0.002 

Ventromedial PFC -16 46 14 3.73  

Placebo > 5-HT Depletion      

Ventromedial PFC 18 42 14 4.23 0.032 

Social Aversion Name Cue > Social Reward Name Cue 

5-HT Depletion > DA Depletion      

Inferior Parietal Lobe 40 -36 30 4.05 <0.001 

Right Insula 48 -26 22 3.79  

Mid-/Anterior Cingulate Cortex -12 10 42 3.68 0.005 

Dorsolateral PFC 36 14 40 3.30 <0.001 
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4.5 Discussion 

4.5.1 Effects of 5-HT depletion on behavioural social learning 

The current study aimed to examine the effects of 5-HT and DA depletion on learning from 

social outcomes. The behavioural results revealed that 5-HT depletion impaired participants’ 

ability to learn from social rewards. Specifically, in a social learning task, 5-HT depleted 

subjects underestimated the likelihood of being presented with happy faces on high probability 

trials, while they overestimated this likelihood on low probability trials. This effect was due to 

5-HT depleted participants providing ratings closer to 50% than placebo controls across all 

trial types, thus expressing more uncertainty about what social outcomes to expect. 

Interestingly, this pattern of results is similar to our previous findings in individuals with high 

depression scores, who, in the same task, likewise tended to make ratings closer to 50% 

compared to healthy controls ([study 2]; Frey & McCabe, 2019). Given that low 5-HT 

functioning is strongly implicated in the psychopathology of depression (Nemeroff & Owens, 

2009), it is therefore possible that reduced learning (and thus increased uncertainty) about 

social outcomes in depression may be linked to low levels of 5-HT. 

The current findings of impaired learning after 5-HT depletion are in line with previous 

observations of deficits in decision-making and reversal learning performance following 

reductions in 5-HT functioning in humans (Chamberlain et al., 2006; Crockett, Clark, Apergis-

Schoute, et al., 2012; Rogers et al., 1999; Seymour et al., 2012; Skandali et al., 2018; Tanaka 

et al., 2007). Moreover, contrasting findings of past conditioning studies, which have observed 

improved (punishment) learning after 5-HT depletion (Cools, Robinson, et al., 2008; Robinson, 

Cools, & Sahakian, 2012), may be the result of task characteristics. Specifically, in previous 

paradigms participants made binary predictions regarding whether they expected positive or 

negative outcomes following a cue, while in our task continuous outcome predictions needed 

to be formed, updated, and maintained in working memory. Notably, the previously-used 

binary learning task could be solved with a simple win-stay/ lose-switch strategy, while our 
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task required learning in line with a standard (e.g. Rescorla-Wagner) reinforcement learning 

model. Evidence from the animal literature suggests that these strategies may be differentially 

affected by 5-HT manipulations. For instance, it has been found that the optogenetic 

stimulation of 5-HT neurons in the dorsal raphe nucleus of mice increased the learning rate 

for a decision-making task condition that elicited gradual learning. By contrast, no effects of 5-

HT stimulation were seen in a condition that induced win-stay/ lose-shift behaviour (Iigaya et 

al., 2018). Although these findings do not directly explain why punishment learning was 

observed to be enhanced after 5-HT depletion in the studies by Robinson and colleagues, 

they raise the possibility that varying tasks may differentially engage 5-HT functioning. This 

may explain the diverging results revealed by the probabilistic paradigm used in the current 

study (and in most previous research) compared to the deterministic task utilised by Robinson 

and colleagues. 

4.5.2 Effects of DA depletion on behavioural social learning 

The current study further found that DA depleted participants, similar to 5-HT depleted 

subjects, showed a tendency to be less certain about what social rewards to expect compared 

to placebo controls, although these findings were at trend level. The absence of a strong effect 

of DA depletion on learning in the present study stands in contrast with previous findings 

showing that lowering DA levels via DA depletion or high doses of D2 antagonists impairs 

reward and improves punishment learning (Cox et al., 2015; Diederen et al., 2017; Eisenegger 

et al., 2014; Jocham et al., 2014; Robinson et al., 2010), while increasing DA functioning with 

levodopa, methamphetamine or low doses of D2 antagonists enhances reward learning 

(Chowdhury et al., 2013; Coulthard et al., 2012; Frank et al., 2004; Jocham et al., 2011; Mayo 

et al., 2013; Pessiglione et al., 2006). Again, task characteristics may have contributed to 

these discrepancies. For instance, it is possible that the stimuli used in the current study 

(happy faces of strangers) were not salient or rewarding enough to elicit a robust DA response. 

As a result, the influence of DA on behavioural performance in our task may have been rather 
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subtle, although the (potentially more sensitive) fMRI analysis did reveal an effect of DA 

depletion on the neural encoding of learning signals (see below). 

4.5.3 Effects of 5-HT depletion on neural prediction and PE encoding 

Consistent with the behavioural findings, 5-HT depletion had an effect on neural learning 

processes. Specifically, 5-HT depleted subjects demonstrated a decreased covariation 

between social reward prediction values and BOLD responses in the dorsal ACC, dorsolateral 

and dorsomedial PFC, the insula, and the temporal lobe compared to placebo controls. These 

findings are in line with previous observations of reduced reward prediction signals in the ACC, 

PFC, and insula after 5-HT depletion (Seymour et al., 2012; Tobia et al., 2014).  

The engagement of the insula and temporal lobe by cues that were more frequently paired 

with happy expressions may be explained by the role of these regions in the working memory 

maintenance of faces (Nichols et al., 2006), which may aid the learning process. Moreover, 

the dorsolateral PFC may have played a role in directing attentional resources toward cues 

that were more salient due their repeated pairing with happy faces (Kane & Engle, 2002), or 

directly in the prediction of future states (as suggested by Tanaka et al., 2006). Similarly, the 

involvement of the dorsal ACC may have resulted from this region’s contribution to cue value 

computations (Amiez, Joseph, & Procyk, 2006; Kennerley, Behrens, & Wallis, 2011) and is in 

line with previous findings of prediction-related ACC activity during a social learning task in 

healthy volunteers (Jones et al., 2011). 

At first sight, the above may be taken to suggest that 5-HT depleted subjects displayed 

reduced prediction encoding in the abovementioned regions due to reduced working memory 

and attentional processing. However, it should be noted that 5-HT depletion not merely 

lowered, but instead reversed, the neural prediction signal. That is to say, prediction-related 

parameter estimates were significantly above zero in the placebo group, while they were 

significantly below zero in the 5-HT depletion group. Moreover, on the whole-brain level, 

several regions were found to encoded inverse social reward prediction values in 5-HT 
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depleted subjects, while no such effects were seen in placebo controls (or in DA depleted 

participants; see supplement). This indicates that, instead of tracking the prediction of happy 

faces (as in individuals on placebo), brain responses of 5-HT depleted subjects seemed to 

track the prediction of neutral faces.  

A possible explanation for this finding is that 5-HT depletion may have given rise to negative 

biases (Harmer, 2008), which may have led to the perception of ambiguous neutral faces as 

negative. This may have made the latter more salient, resulting in the recruitment of attentional 

and working memory processes to support the prediction of neural faces. Interestingly, using 

the same task, we previously found a similar pattern of reversed social reward prediction 

encoding in the insula and temporal lobe in individuals with high depression scores ([study 2]; 

Frey & McCabe, 2019). Taken together, these findings suggest that low levels of 5-HT may 

contribute to impaired social reward learning in depression by biasing learning towards 

negatively perceived stimuli. 

Following the above interpretation, it may seem surprising that no group differences were 

found in the happy vs. neutral expression contrast. However, it is possible that the increased 

engagement of the PFC in anticipation of neutral faces may have led to a preparatory 

downregulation of limbic regions in 5-HT depleted subjects. This preparatory response may 

have equalised the otherwise potentially stronger activation to neutral faces in the 5-HT 

depletion compared to the placebo group.  

4.5.4 Effects of DA depletion on neural prediction and PE encoding 

Again paralleling the behavioural findings, DA depletion affected neural learning signals, but 

to a lesser extent than 5-HT depletion. Specifically, DA depleted subjects showed a decreased 

covariation of BOLD responses with social reward prediction values in the dorsomedial PFC 

and dorsal ACC compared to placebo controls. A possible explanation of this finding is that 

DA depletion may have reduced the stability of prefrontal prediction representations. More 

concretely, it is thought that the strength of input representations in the frontal cortex is 
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influenced by the balance between D1 and D2 binding. Moreover, low DA levels induce 

preferential D2 (rather than D1) binding, which is associated with weak input representations 

that are prone to interference by distractors (Seamans & Yang, 2004). Therefore, it is possible 

that DA depletion may have impaired the stability of prediction representations in the frontal 

cortex, especially for more strongly represented cues with a higher probability of being 

followed by a happy face. This interpretation is in line with that of Jocham and colleagues 

(Jocham et al., 2011), who found that the D2 receptor antagonist amisulpride increased 

predictive value signals in the vmPFC, which the authors argue may have resulted from a shift 

to more stable D1- (rather than D2-) mediated value representations.  

4.5.5 Conclusion 

Taken together, the results of the current study indicate that 5-HT depletion impairs social 

reward prediction on both the behavioural and the neural level, possibly partly by increasing 

attentional and working memory processing of negatively perceived neutral faces. DA 

depletion had a similar, although less pervasive, effect. Interestingly, the behavioural and 

neural responses observed after 5-HT depletion in the current study closely resemble our 

previous findings in individuals with high depression scores. It may thus be the case that 

decreased 5-HT levels contribute to deficits in social learning in depression. 
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5 General Discussion 

5.1 Summary of Findings 

The overall aim of this work was to gain an insight into the behavioural and neural mechanisms 

of social learning in depression. Specifically, studies 1 and 2 assessed to what extent 

individuals with high depressive symptomatology (HD) display impairments in social learning 

compared to controls (LD), and how these deficits impact real-life social experiences. 

Moreover, studies 2 and 3 investigated the neural underpinnings of social learning in HD 

subjects, as well as in healthy individuals after the depletion of dopamine or serotonin 

(precursors), which are implicated in the psychopathology of depression (Belujon & Grace, 

2017; Nemeroff & Owens, 2009). As part of the studies, participants answered questions about 

their real-life social interactions (studies 1 and 2) and performed social learning tasks 

behaviourally (study 1) or during functional magnetic resonance imaging (fMRI; studies 2 and 

3).  

It was found that HD individuals demonstrated impairments in social learning, which were 

associated with increased experience of negative social encounters (study 1) and reduced 

social engagement motivation (study 2) in everyday life. Additionally, HD subjects displayed 

altered neural encoding of social reward predictions in the insula, temporal lobe and parietal 

lobe (study 2). Notably, the latter alterations closely resembled those observed in healthy 

individuals after serotonin depletion, while prediction-related dopamine depletion effects were 

mainly seen in other (frontal lobe) areas (study 3).  

These findings suggest that depression symptoms are associated with social learning deficits, 

on both the behavioural and the neural level, which may be linked to real-life social withdrawal 

and may be underpinned by altered serotonin functioning. 



139 
 

5.2 Integration of Findings 

When considering the study findings in conjunction, it is notable that studies 1 and 2 yielded 

very consistent results. For instance, HD subjects in both studies indicated having fewer 

friends, feeling less close to their friends, and finding it more difficult to form new friendships 

than controls. These findings are in line with previous research reporting that depressed 

individuals have smaller social networks than healthy volunteers (Brim et al., 1982; Gotlib & 

Lee, 1989; Rottenberg & Gotlib, 2008; Youngren & Lewinsohn, 1980).  

Moreover, both studies 1 and 2 observed that HD subjects displayed impairments in learning 

from social outcomes which were associated with deficits in real-life social interactions. 

Specifically, taken together, the results of study 1 indicated that HD individuals’ tendency to 

spend increased amounts of time in negatively perceived social situations may be related to 

their diminished updating of social outcome predictions based on interpersonal feedback. This 

may partly be the case because HD subjects’ impaired ability to adjust their behaviour based 

on social feedback may result in suboptimal social behaviour which may lead to more negative 

social interactions. Additionally, it is possible that HD participants’ reduced learning from social 

outcomes may make social interactions appear more uncertain, which, if uncertainty is 

regarded as negative, may lead to the perception of more social situations as unpleasant. 

Notably, the findings of study 2 were in line with the latter suggestion, demonstrating that HD 

subjects showed higher uncertainty about social outcomes and perceived uncertainty as more 

negative than LD participants. Moreover, this (negatively perceived) social outcome 

uncertainty was associated with reduced motivation to engage in pleasant social interactions. 

Thus, studies 1 and 2 provide consistent, novel evidence that social learning deficits in 

depression may contribute to a reduced quality and quantity of social encounters, potentially 

through increased uncertainty about social outcomes.  

The neuroimaging findings of study 2 parallel the above behavioural observations, with HD 

subjects displaying reduced social outcome prediction encoding in the insula, temporal lobe 

and parietal lobe. Notably, a very similar pattern of results was observed in healthy volunteers 
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after 5-HT depletion (in study 3), who showed decreased social outcome prediction 

representations in the insula, temporal lobe, dorsal ACC, and dorsal PFC (as well as reduced 

behavioural social reward learning). This raises the possibility that reduced 5-HT functioning 

may be involved in social learning deficits in depression. By contrast, the potential role of DA 

in these impairments is less clear, as the effects of DA depletion on social learning were at 

trend level behaviourally, and neural alterations were observed only in frontal regions, which 

were not differentially engaged in HD and LD subjects in study 2 (although see below). 

Interestingly, in both HD and 5-HT depleted subjects the encoding of social reward predictions 

was not merely reduced but instead reversed compared to controls, indicating that neural 

responses in these groups appeared to track the occurrence of neutral (rather than happy) 

faces. This may be the case because negative biases in these groups may have led to the 

perception of neutral faces as negative, which may have resulted in the allocation of neural 

attentional, working memory and valuation resources to the prediction of (the more salient) 

neutral faces. This suggestion seems particularly plausible given that it is thought that negative 

biases in depression are partly linked to reduced 5-HT levels, with selective serotonin reuptake 

inhibitor treatment alleviating negatively biased processing (Harmer, 2008). 

The findings of studies 1, 2 and 3 were thus largely consistent. Nevertheless, some divergence 

was seen for the results of studies 2 and 3, as HD and 5-HT depleted (healthy) subjects 

displayed altered prediction encoding in the parietal and frontal lobe, respectively. Notably, 

however, these regions are thought to be part of the same cognitive control network which 

supports executive function across domains (such as working memory and flexibility) and 

engages attentional processing according to task demands (Niendam et al., 2012). It is thus 

possible that functionally both HD and 5-HT depleted participants displayed very similar 

deficits, but that these alterations were apparent to varying extents (e.g. at sub- or 

suprathreshold level) in different parts of the cognitive control network in the two groups. 

Indeed, using a slightly different analysis in study 3 (with individual parameters in the 

computational model; see chapter 4 supplement) revealed reduced social reward prediction 
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encoding in 5-HT depleted subjects in a similar parietal region as observed in HD participants 

in study 2. This finding supports the idea that 5-HT depletion had an effect on parietal 

prediction representations, and that this effect may have been present at a subthreshold level 

in the main analysis. Additionally, it should be noted that depression is associated with a range 

of non-serotonergic neurobiological abnormalities (Willner, Scheel-Krüger, & Belzung, 2013) 

and that acute lowering of 5-HT levels with the depletion manipulation is likely to have 

differential effects from chronic reductions of 5-HT functioning in MDD. These factors will likely 

have contributed to the partly divergent results of studies 2 and 3. 

5.3 Critical Discussion  

5.3.1 General Strengths 

A major strength of the current work was the use of social learning paradigms. Social stimuli 

are of high importance in everyday life, and, as outlined in the general introduction, there is a 

close link between deficits in social processing and the onset and maintenance of depression 

(Kupferberg et al., 2016; Rottenberg & Gotlib, 2008; Segrin, 2000). Given that successful 

social interactions require learning to predict other people’s responses and to adjust one’s 

behaviour accordingly, it is particularly vital to understand the relation between learning and 

social functioning in depression. There are many studies examining depressed individuals’ 

responses to social stimuli, either in the lab or in real life (Bourke et al., 2010; Kupferberg et 

al., 2016; Rottenberg & Gotlib, 2008; Segrin, 2000; Stuhrmann et al., 2011), as well as a range 

of research assessing non-social learning performance in depression (reviewed in Chen, 

Takahashi, Nakagawa, Inoue, & Kusumi, 2015). However, there appears to be a disconnect 

between these research areas, with surprisingly few studies attempting to examine the relation 

between these aspects. A particular strength of the current work was, therefore, that it included 

social learning paradigms and linked the performance in these tasks to measures of real-life 

social experiences.  
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Another strength of the present work was the examination of social learning with the use of a 

variety of methodologies, including computational modelling (studies 1, 2 and 3), 

neuroimaging (studies 2 and 3) and neurotransmitter depletion (study 3).  The integration of 

findings across studies provides deeper insights than the separate studies in isolation. For 

instance, as discussed above, the similarity of the findings in HD individuals in study 2 and 5-

HT depleted subjects in study 3 suggests (although not conclusively, see below) that 5-HT 

deficits may be involved in impaired social learning in depression. This evidence is 

strengthened by the inclusion of DA depletion as an active ‘control’ condition which exerted 

weaker effects on learning compared to 5-HT depletion. Moreover, the use of computational 

modelling provided a (tentative) link between the observed behavioural and neuroimaging 

findings and potential underlying neural mechanisms.  

5.3.2 General Limitations 

Besides the above strengths, the current work had several limitations. For instance, the 

studies contained a relatively small sample size, which means that some group effects which 

are present in the population may not have reached significance due to a lack of power. As a 

result of practical difficulties with recruitment (especially given the strict exclusion criteria), 

issues with equipment, and time constraints, it was not possible to recruit a larger number of 

participants. Given the small sample size, as well as the novelty of the utilised tasks, the 

findings of the current work should thus be considered with caution, and replication studies 

with larger samples are called for. 

Moreover, in all three studies, more female than male participants were tested. As depression 

is about twice as common in females than in males (Piccinelli & Wilkinson, 2000), examining 

social learning in female subjects is of particular importance. Nevertheless, future studies 

should aim for a more gender balanced sample to allow for better generalisability of the 

findings and for the assessment of gender effects in the collected measures. 
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Another potential issue with studies 1 and 2 was that HD subjects were included on the basis 

of high Beck Depression Inventory scores, rather than based on a clinical diagnosis of 

depression. This had the advantage that participants did not received any pharmacological 

treatments, which could have confounded the study results. Moreover, given that social 

processing deficits are not only implicated in acute depression, but are also a risk factor for 

depression onset (Caspi et al., 1996; Ollendick et al., 1990), it is important to consider the link 

between learning and social experiences across individuals with a range of depression 

symptom levels, independent of their diagnosis status. Nevertheless, it needs to be kept in 

mind that depressed individuals who receive a clinical diagnosis as a result of seeking 

treatment may differ from those who do not seek medical help. For instance, the former group 

may have more (severe) symptoms that interfere with their everyday life. This should be taken 

into account when considering the clinical implications of the current findings (see section 5.4).  

In addition, testing individuals with high depression scores without a clinical assessment does 

not make it possible to distinguish whether the observed effects are a precursor (/trait marker) 

or a consequence (/state marker) of clinical depression, as some volunteers may have met 

MDD diagnosis criteria while others may not. However, in either case, the reported social 

learning deficits could be a treatment target for MDD. Specifically, the results tentatively 

suggest that improving social learning may reduce negative social encounters and enhance 

social engagement motivation (although further research is needed to confirm the 

directionality of this effect). The experience of more positive social feedback may, in turn, 

improve depression symptoms (Lewinsohn, 1974; see section 5.4.1 for more details). It is 

possible that this mechanism may also contribute to the prevention of depression onset, if 

social learning is a trait marker for MDD (which the current work did not address). Thus, it 

would be informative for future longitudinal research to assess whether early impairments in 

social learning are associated with an increased risk of demonstrating social withdrawal and 

(clinical) depression later in life.  
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Furthermore, it is worth noting that HD individuals in studies 1 and 2 were not only 

experiencing depression symptoms, but also moderate levels of anxiety. During the screening 

process, it was attempted to ensure that anxiety symptoms were secondary to depression 

symptomatology in included HD subjects (e.g. by asking participants if they felt the former or 

the latter had a larger impact on their everyday life). Moreover, the potential confounding 

effects of anxiety symptoms were partly controlled for in the statistical analysis by including 

anxiety measures as a control variable. Nevertheless, it cannot be ruled out that some of the 

observed effects were related to anxiety symptomatology. Yet, this does not detract from the 

importance of the present findings, especially given the high comorbidity of anxiety and 

depression in the general population (Kessler et al., 2008). Still, in future studies it would be 

of interest to examine the specificity of the current observations, not only in subgroups of 

depression patients (e.g. with and without anxiety symptoms), but also across disorders, given 

that other conditions such as schizophrenia have also been linked to deficits in social 

functioning and cognition (Green, Horan, & Lee, 2015). 

Finally, when considering the findings of all three studies, it should be kept in mind that, 

although learning is functionally well-defined by computational models, it is a complex 

construct which relies on many cognitive processes, including attention, working memory, and 

(when using emotional stimuli) emotion regulation. While these components are considered 

in the interpretations of the study findings, their involvement is difficult to dissociate and is 

often derived from reverse inferences based on the engaged brain regions and their supposed 

functions. This approach is problematic, not merely because brain regions are often implicated 

in several functions, but specifically because the social learning paradigm used in the current 

work may engage several cognitive processes that may be supported by the same brain region 

(Hutzler, 2014; Poldrack, 2006). As a result, the interpretations of the neuroimaging results of 

studies 2 and 3 should be regarded as tentative suggestions rather than conclusive statements 

regarding the underlying cognitive functions. Future studies would benefit from including 

measures of the subcomponents of the learning construct, such as working memory (e.g. n-
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back) and attention (e.g. continuous performance) tasks, in addition to a learning paradigm, 

to get a better understanding of what particular cognitive impairments may contribute to 

deficits in social learning. Additionally, a non-social control condition (which was included in 

study 1 but not in studies 2 and 3) should be used to assess whether potential findings are 

specific to the social domain.  

5.3.3 Critical Discussion of Chapter 2 

5.3.3.1 Potential Biases in Social Experience Reports  

In study 1, participants were asked to retrospectively report how much time they spent in 

positive and negative social situations. Such reports are likely prone to interference by memory 

biases, which is particularly problematic when testing individuals with depression symptoms, 

who demonstrate a bias towards preferentially accessing negative autobiographical memories 

(Dalgleish & Werner-Seidler, 2014). This bias may have led HD individuals to report spending 

more time in negative situations than they objectively did. However, it should be noted that all 

interpretations of the findings of study 1 carefully distinguished between potential effects 

relating to increased subjective vs. objective experiences of negative events. Moreover, study 

2 somewhat improved on the measures of study 1 by using inherently subjective questions 

(e.g. ‘How motivated are you to engage in social activities?’), which are not affected by 

memory biases and remove the ambiguity between objective events and their subjective 

experience. 

Nevertheless, future studies would benefit from including additional or alternative measures 

of real-life social experiences, such as ecological momentary assessments which prompt 

participants to rate their current experiences several times a day (Myin-Germeys et al., 2018). 

A potential criticism that could be levelled against these measures is that they may be affected 

by experiential interpretation biases in HD individuals. That is to say, the experience of the 

same situation may be interpreted, and thus reported, as more negative by HD than by LD 
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subjects. However, this is not a substantial concern, given that it is the subjective perception 

of a given social situations that is behaviourally relevant.  

5.3.3.2 Variability of Social Learning Task Feedback 

Another potential issue with study 1 was the use of probabilistic outcomes in the social learning 

task. As a result of this setup, it appeared as if the other people, who were purportedly 

providing the feedback, occasionally changed their mind about whether they liked the 

participant’s choice or not, which could have seemed unrealistic. It should, however, be noted 

that a given item could only yield positive and neutral or negative and neutral (never positive 

and negative) feedback. Thus, it could only seem as if one (not both) of the other people 

revised their feedback. It seems plausible that this could have occurred if real people had 

provided the feedback. For instance, if person A had no strong opinion about a particular 

choice, they may have provided somewhat random feedback for that option, or they could 

have been induced to change their mind by seeing the feedback of person B.  

This process was not made explicit to the participants, as any elaboration on the potential 

reasoning of the other people would likely have cast doubt on the veracity of the feedback 

source. Thus, it is possible that the variable feedback appeared unusual to some participants. 

Indeed, in the task feedback questionnaire, some subjects mentioned this aspect in response 

to the question ‘Did you notice anything strange or unexpected during the task? If so, what?’. 

Yet, the phrasing of the responses implied that the outcome variability did not seem to make 

participants suspicious about the source of the feedback. For instance, some subjects stated 

that they found it bothersome that the other people sometimes changed their mind, but (apart 

from two participants) they did not mention that it seemed to them as if the feedback was not 

provided by other people. Thus, the probabilistic outcomes do not seem to have interfered 

substantially with the believability of the task setup.  
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5.3.3.3 Monetary Outcomes and Specificity of Findings  

A further consideration regarding study 1 was the use of low magnitude monetary outcomes 

in the non-social control condition. The discussion of previous research in the general 

introduction revealed that studies that observed group differences in reward learning between 

healthy and depressed subjects overwhelmingly used high magnitude outcomes, while studies 

utilising low magnitude feedback mostly found no group effects (Bakker et al., 2018; Beevers 

et al., 2013; Blanco et al., 2013; Chase et al., 2010; Cooper et al., 2014; Gradin et al., 2011; 

Herzallah et al., 2013; Johnston et al., 2015; Kumar et al., 2008; Maddox & Markman, 2010; 

Rothkirch et al., 2017). In study 1, it was nevertheless decided to use small monetary 

outcomes (5p) in the non-social condition of the learning task. This decision was made to 

match the social and non-social conditions as closely as possible, by attempting to use 

monetary and social outcomes with a similar value. While the exact value of social outcomes 

likely depends on the specific stimuli and task setup, previous research showed that social 

feedback (in form of a genuine smile) received during a learning task was regarded as having 

a worth of about 0.4 pence (Shore & Heerey, 2011). Using only a fraction of a pence as an 

outcome in study 1 would likely not have provided enough incentive, thus a slightly higher, but 

still relatively low, magnitude outcome was used to match the assumed value of the social 

feedback. This also ensured that there was no ‘carry over’ effect for participants who 

performed the non-social condition first, who might have been substantially less motivated in 

the social condition if the monetary outcome had been disproportionally large.  

Nevertheless, it should be kept in mind that group differences in the non-social learning 

condition might have been observed if a larger monetary outcome had been used. Thus, no 

claims can be made with regards to the specificity of the findings of study 1 to social outcomes. 

It would, therefore, be advisable for future studies to further investigate whether some of the 

observed learning deficits are specific to social feedback. However, it should be noted that 

this issue does not detract from study 1’s findings in the social condition, as the association 

between real-life social functioning deficits and learning impairments in depression is an 
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important observation, no matter whether the learning impairments are specific to social 

feedback or not. 

5.3.4 Critical Discussion of Chapter 3 (partly applicable to chapter 4) 

5.3.4.1 Use of Fearful Faces in the Social Aversion Block 

A question that arises when considering the use of emotional faces as outcomes in study 2 

(and 3) is whether fearful faces were the most appropriate choice. Fearful faces are thought 

to evoke negative emotional responses by signalling the presence of a threat in the 

environment which may or may not be social (Hooker, 2006). It could thus be argued that it 

may have been better to utilise angry or disappointed faces which are more unambiguously 

social and are potentially more relevant to depression symptoms such as guilt, worry, and lack 

of self-esteem. However, using these expressions would have been similarly problematic: 

anger may evoke varying responses, as it could trigger either anxiety and submissive 

withdrawal or counter-aggression in different individuals (Honk & Schutter, 2007). This would 

have introduced additional variability in the data and may have made it more difficult to detect 

group differences. Moreover, disappointment is not a basic emotion and may, therefore, have 

been difficult to recognise. This may have been especially the case for depressed subjects, 

given that depression is associated with impaired emotion recognition (Kohler, Hoffman, 

Eastman, Healey, & Moberg, 2011), which could have confounded the results. Another 

alternative would have been to utilise sad expressions; however, this appears similarly 

problematic as sad faces may evoke a more self-focused or other-focused response in HD 

and LD individuals, respectively (Likowski et al., 2011). 

Thus, while using fearful faces in the social aversion block may not have been ideal, there are, 

similarly, drawbacks to using alternative emotional expressions. Additionally, many previous 

studies assessing social processing in depression (as well as in response to 5-HT depletion) 

have included fearful faces (Daly et al., 2010; Kroes et al., 2014; Marsh et al., 2006; Sheline 

et al., 2001; Van Der Veen, Evers, Deutz, & Schmitt, 2007; Zhong et al., 2011). Given that the 
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social learning task was newly developed specifically for study 2 (and 3), it seemed advisable 

to at least keep the utilised stimuli in line with previous studies to make results more 

comparable, thus enabling a better integration of the study’s findings with the previous 

literature. It would be of interest for future studies to further examine the neural underpinnings 

of social learning in depression with a range of different stimuli, including alternative emotional 

facial expressions, ‘like’ and ‘dislike’ signs purportedly provided by other people (as in study 

1), and more personal stimuli such as images of friends (vs. strangers). 

5.3.4.2 fMRI Analysis Thresholding 

Another potential criticism of study 2 (and 3) is the use of a somewhat lenient voxelwise 

threshold in the fMRI analysis. Current recommendations suggest the use of a voxelwise 

threshold of p = 0.001 with family wise error or false discovery rate correction at the cluster 

level (or using nonparametric permutation tests; Eklund, Nichols, & Knutsson, 2016; Woo, 

Krishnan, & Wager, 2014; Yeung, 2018). The use of more lenient voxelwise thresholds in 

study 2 (and 3) could thus be regarded as problematic, due to an increased likelihood of false 

positive findings (i.e. type I errors). However, it has been acknowledged that overly stringent 

thresholds would require a very large sample (of over 200 participants) to detect effects of 

moderate size (around 0.6), and that using such conservative thresholds for small samples 

increases the likelihood of false negatives (i.e. type II errors; Carter, Lesh, & Barch, 2016). 

Based on these points, it has been suggested that the use of somewhat more lenient 

thresholds is acceptable, especially when the precise localisation of significant effects (e.g. in 

very small brain regions) is not necessary (Carter et al., 2016). Using a more lenient threshold 

in study 2 (and 3) thus provided a balance between the likelihood of type I and type II errors 

given the relatively small sample size.   

Moreover, the consistency of the results between different analyses and studies provides 

some support for the legitimacy of the results. Firstly, neural responses during social learning 

in study 2 (and 3) were observed in regions which have been commonly reported to be 

engaged in the previous learning literature. Secondly, using somewhat different analysis 
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methods (e.g. utilising individual or averaged parameters in the computational model) yielded 

highly similar results. Thirdly, the brain areas that showed differential responses in HD and LD 

subjects in study 2 were largely similar to (or in the same functional network as) regions that 

displayed differential responses in 5-HT depleted subjects and placebo controls in study 3. It 

seems unlikely that these consistencies would have been observed if the effects had been 

false positives. Thus, while caution with drawing conclusions from the findings is advised, it 

seems likely that the observed effects are genuine. Nevertheless, the current results should 

be regarded as preliminary and are in need of replication in larger samples. 

5.3.4.3 Computational Modelling Parameters for fMRI Analyses 

Another noteworthy point regarding study 2 (and 3) is that similar results were obtained when 

using individual or averaged parameters in the computational model to calculate the prediction 

values for the parametric modulation analysis. There is some controversy in the literature 

regarding the methodology used to derive these values. On the one hand, it has been argued 

that using individual parameters introduces additional variability into the fMRI analysis which 

can result in noisy fMRI regression weights, thereby obscuring group differences. Moreover, 

using averaged model parameters (across all subjects) ensures that any observed fMRI group 

effects are not due to differences in the model parameters (Daw, 2011; Schonberg et al., 

2010). On the other hand, it could be argued that using individual parameters (as in several 

previous studies; see Chase, Kumar, Eickhoff, & Dombrovski, 2015 for a review) provides a 

closer link between behavioural and brain responses, and using average parameters may 

induce group differences in the (behavioural) model fit. It is thus not immediately clear which 

approach is more advantageous. 

Interestingly, a relatively recent meta-analysis compared the two approaches and found higher 

prediction error (PE) related activation in the ventral striatum, frontal operculum and occipital 

lobe/ fusiform gyrus in studies using individual compared to averaged/ fixed learning rate 

parameters. Additionally, the reverse contrast yielded higher midbrain and thalamus activity, 

while both approaches revealed putamen responses (Chase et al., 2016). The authors argue 
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that the different brain regions that are observed to encode PEs when individual or average 

parameters are used may be part of different learning systems. Specifically, they suggest that 

activity in the medial striatum may represent a variable learning signal reflected in trial-by-trial 

choices (and thus found when using individual parameters), while the midbrain may encode a 

slower learning signal that is not strongly linked to task performance (and thus observed when 

using averaged parameters; Chase et al., 2016).  

The above proposal is generally plausible, especially considering that several authors have 

provided detailed descriptions and justifications of different learning systems in the brain (e.g. 

Frank et al., 2007; Niv, 2009; see below). However, for the above suggestion to be convincing, 

it requires additional elaboration regarding the roles of the slow and the fast learning system, 

how the learning systems interact (over time), and why the particular brain regions would be 

involved. Moreover, the findings of the meta-analysis were obtained across studies using 

individual or averaged parameters in combination with different paradigms (e.g. Pavlovian 

learning or decision-making), with a variety of outcome types (e.g. liquid, social, monetary 

etc.), and with different computational models (e.g. Rescorla-Wagner or temporal difference 

learning). Thus, it is difficult to determine whether the observed differences were indeed due 

to the use of individual vs. averaged parameter values, or if they were the result of the use of 

varying tasks and analysis methodologies. 

The fact that study 2 (and 3) of the current work obtained similar results when using individual 

or average parameters (applied to data from the same task) indicates that, at least in some 

cases, these approaches do not reveal separate learning systems. This is in line with a 

previous systematic exploration of the effect of model parameter values on fMRI results, which 

revealed that parametric modulation results for prediction and PE values did not differ 

substantially as learning rates were varied (Wilson & Niv, 2015).  

It should, however, be noted that the observation of only one learning system with different 

analysis techniques in study 2 (and 3) could also partly be due to a higher dependence of the 

social learning task on only one learning system compared to other paradigms. It has been 
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suggested that learning ordinarily engages a working memory-based and a habitual learning 

system, both of which are involved throughout the learning process but to differing extents 

(Frank et al., 2007). Specifically, the PFC has been hypothesised to support working memory-

related processes that are heavily implicated in learning during early trials. By contrast, during 

later trials, when responses to cues get more automated, the influence of the PFC-mediated 

working memory system decays, while the habitual basal ganglia system starts to dominate 

the learning process (Frank et al., 2007). Given the necessity of making explicit continuous 

likelihood ratings, the social learning task in study 2 (and 3) may have remained more 

dependent on the working memory system, rather than deferring control to the habitual system 

(especially since the task did not include a large number of trials). This may partly be why only 

one (prediction encoding) learning system seemed to be revealed with the use of individual 

and average parameters. Additionally, this may also explain why many of the regions that 

were differentially engaged in the HD and LD (and the 5-HT depletion and placebo) groups 

were areas implicated in working memory processing.   

5.3.5 Critical Discussion of Chapter 4 

5.3.5.1 Mechanistic Roles of 5-HT and DA in Learning 

As discussed in the general introduction, dopamine (DA) firing is thought to encode reward 

predictions and PEs (Schultz, 2016), while serotonin (5-HT) activity may represent punishment 

learning signals (Boureau & Dayan, 2011; Daw et al., 2002). In addition, it has been proposed 

that 5-HT firing may be involved in reward learning, either directly (thus encoding unsigned 

prediction errors; Matias et al., 2017), or through 5-HT’s excitatory effect on DA neurons via 

5-HT2A receptors (Seymour et al., 2012). However, somewhat surprisingly, no effects of DA 

or 5-HT depletion on reward PE representations were found.  

The lack of 5-HT depletion related findings may have been due to the examination of PEs in 

only a striatal region of interest. It is possible that 5-HT depletion effects would have been 

observed if other areas had been considered. By contrast, it is less clear why no effects of DA 
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depletion were found. Based on the computational basal ganglia model outlined in the 

introduction, it may have been expected that DA depletion would affect PE responses in the 

dorsal striatum. Specifically, the model posits that positive and negative dopaminergic PE 

signals are propagated from the midbrain to the dorsal striatum to facilitate ‘go’ or ‘no-go’ 

responses, respectively, via globus pallidas – thalamus – frontal cortex pathways (Frank, 

2006). At first sight, it may seem doubtful whether this mechanism would have been involved 

in the social learning task utilised in study 3, as the paradigm did not include action-dependent 

outcomes. Moreover, as mentioned above, learning in the task was likely heavily dependent 

on working memory processing, especially due to the need for explicit continuous 

representations of outcome contingencies. However, it appears plausible that basal ganglia-

mediated habitual learning may at least have supported this process, using task outcomes 

(facial expressions) to update future actions (e.g. pressing button 1 or 2 to move the rating 

indicator to the left or right of 50%).  

Yet, as mentioned above, DA depletion, unexpectedly, did not significantly affect reward PE 

encoding in the dorsal striatum. A potential explanation for the absence of a DA depletion 

effect may be that the utilised stimuli (happy faces of strangers) may not have been rewarding 

enough to elicit a strong dopaminergic PE response, which is why the depletion effect may 

have been relatively weak. At first sight, this reasoning may seem questionable considering 

that DA depletion did have an effect on frontal reward prediction encoding. However, it is 

possible that dopaminergic PE representations may be more localised than prediction-related 

activity, potentially making the former more difficult to detect than the latter when (differences 

in) DA responses are weak. This explanation is speculative and future studies are needed to 

assess whether more rewarding social stimuli (such as positive pictures of close friends, 

partners or family members) may elicit more robust PE responses that can be significantly 

modulated with dopaminergic manipulations.  
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5.3.5.2 Effect of Dietary Precursor Depletion on Neurotransmitter Release 

A question arising when considering the methodology of study 3 is how (far) the depletion of 

the 5-HT and DA precursors tryptophan and tyrosine/ phenylalanine, respectively, impacts 

neurotransmitter functioning. In study 3, as in previous research, the efficacy of the depletion 

manipulation was assessed based on precursor levels in collected plasma samples, which is 

an indirect measure of the assumed changes in DA and 5-HT functioning in the brain. Indeed, 

the effect of precursor depletion on neurotransmitter release is somewhat controversial. While 

positron emission tomography studies have shown that depletion procedures influence central 

DA and 5-HT synthesis in humans (Nishizawa et al., 1997), they do not provide specific 

information about the release of these neurotransmitters (Van Donkelaar et al., 2011). 

Surprisingly, some animal studies have found that tryptophan depletion had no effect on 5-HT 

release in the prefrontal cortex or raphe nucleus, despite decreased tryptophan plasma levels 

or diminished 5-HT metabolite amounts (Trulson, 1985; Van Der Plasse, Meerkerk, Lieben, 

Blokland, & Feenstra, 2007). Based on these studies, it has been argued that tryptophan 

depletion may not affect 5-HT release, potentially because neurons can ‘recycle’ 5-HT back 

into the presynaptic cell (Van Donkelaar et al., 2011).  

However, the above view has been challenged. Specifically, it has been argued that the cited 

animal studies have only taken measures of 5-HT release at baseline and in a limited number 

of brain regions. This leaves open the possibility that tryptophan depletion may have an effect 

on 5-HT release when the latter is stimulated or when baseline levels in other brain areas are 

assessed (Crockett et al., 2013). This suggestion is supported by findings showing that 

tryptophan depletion decreases 5-HT release in the hippocampus following 5-HT stimulation 

(Stancampiano et al., 1997). Similarly, tyrosine depletion has been found to diminish DA 

release after amphetamine-induced stimulation, while leaving basal DA functioning unaffected 

(McTavish et al., 1999). Thus, depletion procedures do appear to decrease neurotransmitter 

release, although potentially only when relevant neurons are stimulated (i.e. when the 

neurotransmitters’ utilisation is higher than their synthesis; Feenstra & van der Plasse, 2010).  
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Notably, study 3 assessed depletion effects using a task that is assumed to stimulate DA and 

5-HT activity, and tested participants in the unfamiliar environment of the MRI scanner, which 

likely led to increased arousal and novelty related 5-HT and DA release (Young, 2013). Thus, 

even if it is assumed that depletion effects are only seen when the release of the relevant 

neurotransmitters is stimulated, it seems plausible that these effects were present in study 3. 

5.3.5.3 Depletion-related Effects on Other Neurotransmitters 

Another point to note about the depletion procedure is that it may have had an impact on other 

neural mechanisms besides DA and 5-HT release. For instance, tyrosine and phenylalanine 

depletion does not only affect DA functioning, but also lowers norepinephrine (NE) levels, as 

the latter is synthesised from DA (Fernstrom & Fernstrom, 2007). It is, therefore, possible that 

some of the observed effects in study 3 were due to decreases in NE rather than DA levels. 

However, upon closer inspection this seems unlikely for two reasons: firstly, while tyrosine 

depletion has been found to significantly decrease (amphetamine-induced) DA release, no 

effects on NE release have been observed (McTavish et al., 1999). Secondly, NE appears to 

be involved in the processing of unexpected uncertainty (i.e. variations in the probabilistic 

contingencies across a task; Yu & Dayan, 2005), while DA functioning is thought to be linked 

to expected uncertainty (i.e. outcome probabilities which stay stable throughout a task; Fiorillo, 

Tobler, & Schultz, 2003). Give that study 3 utilised a task involving expected uncertainty, it is 

reasonable to assume that DA functioning played an important role in the observed effects.  

Regarding tryptophan depletion, it has similarly been argued that other neural effects besides 

lowered 5-HT functioning may play a role in reported findings. Based on evidence from animal 

studies, it has been proposed that tryptophan depletion may decrease nitric oxide levels in the 

hippocampus, which could affect cognitive functioning in a 5-HT independent manner (Van 

Donkelaar et al., 2011). However, evidence for this suggestion appears rather indirect and the 

exact mechanism through which tryptophan depletion is thought to affect nitric oxide is 

uncertain (Young, 2013). Moreover, the depletion procedures used in the cited animal studies 
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differed substantially from those utilised in humans. Thus, it is not clear if the effect of 

tryptophan depletion on nitric oxide is robust and applicable to human depletion studies 

(Young, 2013). Additionally, it has been argued that the notion that tryptophan depletion 

affects cognitive functions via lowered 5-HT functioning (rather than a different mechanism) is 

supported by its parsimony, as well as by the consistency between findings of depletion 

studies and research utilising other pharmacological 5-HT manipulations (Crockett et al., 

2013). Thus, it seems likely that the findings of study 3 were a result of reduced 5-HT 

functioning. 

It should, however, be noted that the findings observed in study 3 could also have been 

influenced by interactions between neurotransmitters. As no neurotransmitter system 

functions in isolation, this is the case for any pharmacological manipulation. However, of 

particular note in the current context is that the 5-HT and DA systems interact, which means 

that caution needs to be applied when considering the specificity of the findings of study 3. 

While there is little evidence for an influence of DA on 5-HT functioning, the reverse effect is 

well documented (De Deurwaerdère & Di Giovanni, 2017). Specifically, 5-HT2C receptors 

seem to tonically inhibit DA functioning, whereas other 5-HT receptor subtypes appear to 

enhance DA activity when 5-HT release is stimulated (Alex & Pehek, 2007). Notably, in study 

3, both DA and 5-HT depletion reduced social reward prediction-related responses in the 

dACC/ dmPFC. It can thus not be ruled out that 5-HT depletion led to reduced DA activity in 

the frontal cortex, and that decreased DA rather than 5-HT functioning played a crucial role in 

the observed PFC effects. However, even if this was the case, other findings of study 3 (e.g. 

in the temporal lobe and insula) were more unambiguously 5-HT related, as they were present 

only under 5-HT and not under DA depletion. Importantly, it was these findings (and not those 

observed in the PFC) that were highly similar between 5-HT depleted subjects in study 3 and 

HD individuals in study 2. Thus, the main conclusions drawn from integrating the results of 

studies 2 and 3 remain unaffected by the potential interactions of 5-HT and DA. 
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5.4 Broader Implications  

5.4.1 Psychotherapeutic Interventions for Depression 

The findings of study 1 indicate that social learning deficits in depression are associated with 

increased amounts of time spent in negative social interactions. This may be the case because 

HD subjects’ impaired ability to use social feedback to appropriately update future actions may 

lead to suboptimal interpersonal behaviour, thus resulting in negative responses from others. 

This suggestion is in line with findings that depressed individuals show less appropriate 

behaviour during social interactions (reviewed in Rottenberg & Gotlib, 2008 and Segrin, 2000; 

see also Setterfield et al., 2016), which may lead to the rejection of depressed subjects by 

their interlocuters (Segrin & Abramson, 1994). Along these lines, the results of study 1 may 

be taken to indicate that it is important to incorporate a social skills training component into 

psychological therapies for depression. Indeed, a meta-analysis of psychotherapeutic 

interventions (Barth et al., 2013) has shown that both interpersonal therapy (Klerman, 

Weissman, Rounsaville, & Chevron, 1984) and social skills training (Becker, Heimberg, & 

Bellack, 1987) are effective in treating depression. 

However, it should be noted that training depressed individuals on how to behave 

appropriately in social situations potentially does not address the root of the social functioning 

impairments. Specifically, the results of study 1 tentatively suggest that potential social skills 

deficits in depressed subjects (which may have been the source of the reported negative social 

encounters) may partly be due to reduced social learning. Providing social skills training, 

although important, may therefore merely addresses the manifestation, but not the cause, of 

social functioning deficits in depression. That is to say, depressed subjects may be able to 

learn to improve their social skills during highly structured training sessions that include clear 

instructions and explicit feedback. This may eventually result in more optimal social behaviour 

and in the receipt of more positive feedback from other people in real life. However, depressed 

individuals may not be able to fully benefit from these improvements if learning deficits prevent 
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them from using the (more subtle, real-life) positive social feedback to update their predictions 

about future social encounters. This issue was further highlighted in study 2, which showed 

that depressed subjects demonstrated increased uncertainty in their social outcome 

predictions (/likelihood ratings), with this uncertainty contributing to reduced social 

engagement motivation.  

Thus, the findings of studies 1 and 2 suggest that it may be beneficial for psychotherapeutic 

depression treatments to include not only a social skills training component, but also an 

element that is aimed at enhancing social learning. It should, however, be kept in mind that 

the participants of studies 1 and 2 did not have a clinical diagnosis of depression. Due to the 

abovementioned potential differences between depressed individuals who do and do not seek 

treatment, the above suggestion should be considered with caution and replications of the 

current findings in a clinical sample are needed.  Nevertheless, it is interesting to note that  a 

previous study has found that attention training towards positive outcomes abolished 

depressed individuals’ deficits in non-social reward learning (Cooper et al., 2014). If similar 

findings were obtained in relation to social learning (in a clinical sample), this may suggest 

that training depressed individuals to attend to positive social outcomes as part of 

psychotherapeutic interventions may improve their social reward learning, which, in turn, may 

enhance their social engagement motivation. 

At first sight, the above approach may seem problematic, because selectively enhancing 

attention to positive outcomes could result in reduced learning from negative feedback, 

therefore increasing aversion-related uncertainty. This may have negative consequences on 

social functioning, especially given the link between high valence-unspecific uncertainty and 

reduced social engagement motivation observed in study 2. However, as mentioned above, 

the reduced learning from, and thus the enhanced uncertainty about, social aversion in HD 

subjects may have been partly due to increased rumination in response to negative outcomes, 

which may have interfered with the learning process (Whitmer et al., 2012). Notably, it has 

been suggested that rumination may be linked to a narrowed attentional scope induced by 
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negative mood (Whitmer & Gotlib, 2013). Moreover, attentional bias modification training has 

been shown to alleviate depression symptoms (Jonassen et al., 2018; Wells & Beevers, 2010). 

Thus, attention training towards positive social outcomes may lead to more positive affect 

(possibly partly due to increased learning from and experience of pleasant social encounters), 

which may result in a widening of the attentional scope, thereby decreasing ruminative 

tendencies. Reduced rumination, in turn, may lead to ‘normalised’ aversion learning (and thus 

lower uncertainty) due to decreased interference of intrusive thoughts with the learning 

process.  

The above tentatively suggests that integrating social attentional bias modification into 

psychotherapeutic treatments for depression may improve social learning, thereby reducing 

uncertainty about social outcomes and potentially enhancing social engagement motivation. 

It would be of interest for future studies to examine this hypothesised effect of attentional bias 

modification on social learning and real-life social functioning (especially in a clinical sample). 

5.4.2 Pharmacological Interventions for Depression 

Regarding pharmacological interventions, the findings of studies 2 and 3 tentatively suggest 

that medications enhancing 5-HT functioning, such as selective serotonin reuptake inhibitors 

(SSRIs), may be particularly effective in treating social learning deficits in depression. By 

contrast, dopaminergic drugs may potentially be less well suited to address these 

impairments, although replication studies with larger sample sizes and more rewarding social 

stimuli are needed to provide more conclusive evidence for this proposal.  

It should be noted that the above suggestion is based on the similarities between the findings 

of studies 2 and 3, and the assumption that SSRI medication will have the opposite effect to 

5-HT depletion. This does not take into account the differences between specific 5-HT 

functioning deficits after depletion in healthy volunteers and potentially much more global 

neural abnormalities in depressed individuals, nor the differential effects of acute vs. chronic 

5-HT manipulations (Burghardt & Bauer, 2013), or the fact that treatment-seeking depressed 
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individuals may potentially display different (neural) deficits than those who do not seek help. 

Nevertheless, it is noteworthy that SSRIs have been found to improve some aspects of social 

functioning in clinical depression (Dubini, Bosc, & Polin, 1997). Considering the plethora of 

evidence indicating that serotonergic medication may abolish negative biases (often in relation 

to social stimuli such as facial expressions, Harmer, 2008), it seems likely that SSRIs may 

improve social functioning by providing depressed subjects with a more positive outlook on 

social encounters. That is to say, SSRI treatment may shift the attentional focus from negative 

(or negatively perceived ambiguous) towards positive social cues (Browning, Reid, Cowen, 

Goodwin, & Harmer, 2007), which may improve learning from positive social feedback, and, 

thereby, increase social engagement motivation. Future studies are needed to examine this 

suggestion, and to assess whether chronic SSRI treatment in depressed subjects can 

eliminate the social learning deficits observed in study 2. It would also be interesting to 

examine if early improvements in social learning with SSRIs predict later enhancements of 

real-life social engagement.  

In addition, it is noteworthy that impaired social learning is not the only factor influencing social 

engagement in depression. For instance, the findings of study 1 indicate that heightened social 

anhedonia, i.e. the reduced pleasure and interest in social interactions, also contributes to 

social withdrawal. Notably, motivational anhedonia in depression has been linked to DA 

functioning (Argyropoulos & Nutt, 2013, although a relation between social motivation and 

norepinephrine has also been described; Briley & Moret, 2010). Thus, it is possible that DA 

functioning may influence social processing through other mechanisms besides social 

learning, such as by impacting social anhedonia tendencies. This gives rise to the interesting 

possibility that social functioning deficits may arise through different mechanisms in specific 

subgroups of depressed individuals with distinct underling neurotransmitter deficits. Future 

studies could examine if it is indeed the case that in some (clinically) depressed individuals 

social learning impairments contribute most strongly to social functioning deficits, while in 

others social anhedonia may play a more important role. Additionally, it could be investigated 
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if the former group responds better to 5-HT medication, while the latter is more responsive to 

DA (or NE) treatments. If there is indeed a dissociation between, for instance, 5-HT-mediated 

social learning deficits and DA-mediated social anhedonia, this would call for a personalised 

treatment approach in which different depression patient subgroups are treated with 

medications that are targeting their specific symptom profiles. 

5.5 Conclusion 

All in all, the current work provides evidence that depression symptoms are associated with 

impaired learning from social feedback, which, in turn, may contribute to negative social 

experiences and reduced social engagement motivation. These deficits may be associated 

with abnormal serotonin functioning and may result from preferential attention to negatively 

perceived (rather than positive) social outcomes. Thus, serotonergic medication, as well as 

psychotherapeutic interventions focused on improving attention to positive social outcomes, 

may be particularly effective in treating social learning impairments and social functioning 

deficits in depression.  
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7 Appendices 

7.1 Supplement for Chapter 3 

7.1.1 Supplementary Behavioural Results 

7.1.1.1 Prediction of Social Engagement Motivation with Inhibitory Uncertainty Intolerance 

Inhibitory uncertainty intolerance (UI) scores were significantly higher in HD than in LD 

participants (U = 31.5, p < 0.001; HD: M = 17.00, SD = 4.34; LD: M = 8.18, SD = 3.19).  

Moreover, similar results were obtained when predicting social engagement motivation using 

inhibitory UI than when utilising UIS negativity scores (as in the main paper). Specifically, a 

multiple regression analysis revealed that task-based uncertainty scores and questionnaire 

measures predicted participants’ motivation to engage in pleasant social activities (F(5, 33) = 

9.35, p < 0.001, R2 = 0.52). Predictors significantly contributing to the relation were the main 

effect of inhibitory UI (β = -0.53, p = 0.005), the inhibitory UI* task uncertainty interaction term 

(β = -0.32, p = 0.011), and RSAS social anhedonia scores (β = -0.40, p = 0.036). By contrast 

the main effect of task uncertainty (β = -0.17, p = 0.161) and BDI scores (β = 0.31, p = 0.143) 

had no significant effect. Thus, the motivation to engage in pleasant social activities was 

particularly reduced in individuals who were uncertain about what social outcomes to expect 

and for whom uncertainty had an inhibitory effect.  
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7.1.1.2 Prediction Task Performance – Experimental Data Only 

When only using the data from the experimental phase to assess prediction task performance, 

a very similar pattern of results emerged than when including both practice and experimental 

data (where available; see main paper). Specifically, a mixed measure ANOVA (group x 

valence x probability) performed on participants’ likelihood ratings revealed the expected main 

effect of probability (F(2, 82) = 82.39, p < 0.001), as participants rated the likelihood of seeing 

an emotional expression higher after cues that were more likely to be followed by an emotional 

face. Moreover, a main effect of valence was observed (F(1,41) = 4.35, p = 0.043) which 

indicated that participants rated the overall likelihood of seeing happy faces as higher than the 

likelihood of seeing fearful faces. Additionally, a group by probability interaction was found 

(F(2,82) = 8.46, p < 0.001) which was followed up as described below. All other main effects 

and interactions were not significant (all F < 2.1). 

Follow-up one-way ANOVAs revealed that, compared to LD controls, HD participants’ 

likelihood ratings were significantly lower on trials with a 75% chance of showing a happy face 

(F(1,41) = 7.59, p = 0.009). By contrast, HD subjects’ ratings were significantly higher than 

those of controls on trials with a 25% chance of showing a happy (F(1,41) = 7.69, p = 0.008) 

or fearful (F(1,41) = 6.95, p = 0.012) face. There were no group differences on trials with a 

50% chance of showing a happy (F(1,41) = 0.001, p = 0.976) or fearful (F(1,41) = 0.07, p = 

0.794) expression, nor on trials with a 75% chance of displaying a fearful face (F(1,41) = 1.38, 

p = 0.248). 
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7.1.2 Supplementary fMRI Results 

7.1.2.1 Neural Prediction Value Encoding – One Sample T-Tests 

Visual inspection of the parameter estimates extracted from the peak voxels of the group 

contrast suggested that LD participants encoded social reward predictions positively, while 

HD participants appeared to encode them negatively. To formally test this effect, one-sample 

t-tests against zero were performed separately for the two groups on the extracted parameter 

estimates. It was found that insula (t(21) = 2.59; p = 0.017) and parietal (t(21) = 2.86; p = 

0.009) parameter estimates were significantly above zero in the LD group, while they were 

significantly below zero in the HD group (t(20) = 3.06; p = 0.006; t(20) = 3.06; p = 0.006, 

respectively). This suggests that BOLD responses of LD individuals tracked the prediction 

value for happy faces, while neural responses of HD subjects appeared to track the prediction 

value for neutral faces. 

This suggestion was further supported by whole-brain one sample t-tests, which revealed that 

HD subjects demonstrated inverse social reward prediction encoding in a parietal lobe cluster 

(MNI coordinates: 22 -64 56; Z = 3.69; p uncorrected = 0.003; although this result did not quite 

reach significance after family wise error correction on the cluster level; p FWE-corrected = 0.192). 

By contrast, LD participants did not show any encoding of inverse social reward prediction 

values (even at an uncorrected cluster level threshold). However, as reported in the main 

paper, LD subjects did display positive reward prediction encoding in the temporal lobe and 

fusiform gyrus, while no such effects were seen in HD individuals. 
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7.1.2.2 Neural Prediction Value Encoding – ROI Analysis 

A recent meta-analysis identified the subgenual anterior cingulate cortex (sgACC) as the only 

region which consistently encoded model-derived prediction values across studies (Chase et 

al., 2015). Thus, a region of interest analysis was performed on this area. For this purpose, 

MarsBar (Brett et al., 2002) was used to extract prediction-related parameter estimates from 

a 8mm sphere (as in Ham, Greenberg, Chase, & Phillips, 2016) around the sgACC 

coordinates indicated in the meta-analysis (ROI 1: 4 34 -6; ROI 2: -6 28 -20). A one-way 

ANOVAs performed on the extracted parameter estimates revealed no group differences for 

social reward prediction (ROI 1: F(1,41) = 0.01, p = 0.932; ROI 2: F(1,41) = 0.37, p = 0.545) 

or social aversion prediction (ROI 1: F(1,41) = 2.56, p = 0.117; ROI 2: F(1,41) = 1.22, p = 

0.276) encoding. 

7.1.2.3 Neural Prediction Value Encoding – Individual Parameters 

When individual parameter values were used in the computational model to derive prediction 

values for the parametric modulation analysis, similar results were obtained as when average 

parameters were used (as in the main paper). Specifically, it was found that HD subjects 

showed reduced social reward prediction encoding in the precuneus, inferior parietal lobe and 

superior temporal lobe compared to LD controls (see Table S1). No significant group 

differences were observed for social aversion prediction encoding. 
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Table S1. Parametric modulation results for social reward prediction encoding in individuals 

with low (LD) vs high (HD) depression scores using individual modelling parameters 

Voxelwise thresholded at p<0.01; whole-brain cluster p values family-wise error corrected at p < .05 

 

 

 

 

 

 

 

 

 

 MNI coordinates   

Brain Region X Y Z Z score p value 

LD > HD 
     

Precuneus 20 -50 46 3.18 0.005 

Inferior Parietal Lobe 32 -58 48 3.12  

Superior Temporal Lobe 38 -56 18 3.26 0.001 
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7.2 Supplement for Chapter 4 

7.2.1 Supplementary fMRI Results 

7.2.1.1 Neural Prediction Value Encoding – One Sample T-Tests 

Visual inspection of the parameter estimates extracted from the peak voxels of the placebo vs 

5-HT group contrast suggested that participants on placebo encoded social reward predictions 

positively, while 5-HT depleted subjects appeared to encode them negatively. To formally test 

this effect, one-sample t-tests against zero were performed separately for the two groups on 

the parameter estimates. It was found that, for participants on placebo, all extracted parameter 

estimates were significantly above zero, including in the premotor cortex (t(21) = 2.44; p = 

0.024), the dorsal anterior cingulate cortex (ACC; t(21) = 3.92; p = 0.001), the superior (t(21) 

= 1.88; p = 0.074) and middle (t(21) = 2.63; p = 0.016) temporal lobe, the insula (t(21) = 2.44; 

p = 0.024), and the fusiform gyrus (t(21) = 2.65; p = 0.015). By contrast, for 5-HT depleted 

subjects, all extracted parameter estimates were significantly below zero, including in the 

premotor cortex (t(23) = 5.28; p < 0.001), the dorsal ACC (t(23) = 2.60; p = 0.016), the superior 

(t(23) = 3.56; p = 0.002) and middle (t(23) = 4.04; p = 0.001) temporal lobe, the insula (t(23) = 

3.42; p = 0.002), and the fusiform gyrus (t(23) = 2.87; p = 0.009). This suggests that the BOLD 

response in individuals on placebo tracked the prediction of happy faces, while the neural 

response of 5-HT depleted subjects appeared to track the prediction of neutral faces. 

This suggestion was furthers supported by whole brain one sample t-tests, which revealed 

that 5-HT depleted individuals demonstrated inverse social reward prediction encoding in a 

range of areas, including the bilateral temporal lobe and precuneus (see Table S1). By 

contrast, neither DA depleted participants nor subjects on placebo showed any encoding of 

inverse reward prediction values.  
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Table S1. Regions encoding inverse social reward predictions in 5-HT depleted subjects 

Voxelwise thresholded at p<0.005; whole-brain cluster p values family-wise error corrected at p < .05 

 

7.2.1.2 Neural Prediction Value Encoding – ROI Analysis 

In a recent meta-analysis the subgenual anterior cingulate cortex (sgACC) was reported to be 

the only region which consistently encoded model-derived prediction values across studies 

(Chase et al., 2015). Thus, a region of interest analysis was performed on this area. For this 

purpose, MarsBar (Brett et al., 2002) was used to extract mean prediction-related parameter 

estimates from a 8mm sphere  (as e.g. in Ham et al., 2016) around the sgACC coordinates 

indicated in the meta-analysis (ROI 1: 4 34 -6; ROI 2: -6 28 -20).  

One-way ANOVAs performed on the extracted parameter estimates revealed no group 

differences for social reward (ROI 1: F(2,67) = 1.95, p = 0.151; ROI 2: F(2,67) = 0.94, p = 

0.398) or social aversion (ROI 1: F(2,67) = 1.87, p = 0.162; ROI 2: F(2,67) = 0.26, p = 0.774) 

prediction encoding. 

 

 MNI coordinates    

Brain Region X Y Z  Z score p value 

Left Superior Temporal Lobe -44 -44 14  4.36 <0.001 

Cerebellum (extending to the 

Fusiform Gyrus) 
-8 -56 -12  4.31 <0.001 

Right Middle Temporal Lobe 68 -46 8  3.86 0.001 

Precuneus 6 -62 54  4.44 <0.001 
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7.2.1.3 Neural Prediction Value Encoding – Individual Parameters 

Using individual parameter values in the computational model to calculate prediction values 

for the parametric modulation fMRI analysis yielded similar results as using average 

parameters. Specifically, it was found that social reward prediction encoding was significantly 

reduced in 5-HT depleted subjects, compared to placebo controls, in the dorsal anterior 

cingulate cortex (ACC)/ dorsomedial prefrontal cortex (PFC), the premotor cortex/ dorsolateral 

PFC, the bilateral temporal lobe/ fusiform gyrus, and the precuneus (see Table S1).  

Moreover, stronger social aversion prediction representations were observed in the 5-HT 

depletion compared to the DA depletion group in the precentral gyrus, motor gyrus/ mid 

cingulate cortex and dorsolateral PFC (see Table S2).  All other group comparisons and main 

effects revealed no significant clusters.  
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Table S2. Parametric modulation results for social prediction encoding using individual model 

parameters 

Voxelwise thresholded at p<0.005; whole-brain cluster p values family-wise error corrected at p < .05; 

ACC, anterior cingulate cortex, dlPFC, dorsolateral prefrontal cortex; BA, Brodmann Area 

 

 

 

 MNI coordinates   

Brain Region X Y Z Z score p value 

Social Reward Prediction Encoding 

Placebo > 5-HT Depletion      

Premotor Cortex (BA 6) extending 

to the dlPFC (BA 8) 

-26 8 46 4.08 0.005 

Dorsal ACC 10 24 26 3.72 0.001 

Dorsomedial PFC -10 48 32 3.49  

Left Superior Temporal Lobe -46 -42 16 4.13 0.037 

Right Middle Temporal Lobe 54 -42 4 3.57 0.043 

Right Lingual/ Fusiform Gyrus 22 -74 0 3.60 0.017 

Cerebellum -14 -68 -20 3.98 <0.001 

Left Fusiform Gyrus -32 -66 -12 3.33  

Precuneus -16 -64 24 3.13 0.043 

Social Aversion Prediction Encoding 

5-HT Depletion > DA Depletion      

Precentral Gyrus -16 -8 54 4.21 <0.001 

Motor cortex/ Medial Cingulate 14 -14 50 4.14 0.044 

Dorsolateral PFC 34 18 44 4.03 0.013 
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