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Abstract The equilibrium climate sensitivity (ECS, in K) to CO2 doubling is a large7

source of uncertainty in projections of future anthropogenic climate change. Esti-8

mates of ECS made from non-equilibrium states or in response to radiative forcings9

other than 2 × CO2 are called “effective climate sensitivity” (EffCS, in K). Taking a10

“perfect-model” approach, using coupled atmosphere–ocean general circulation model11

(AOGCM) experiments, we evaluate the accuracy with which CO2 EffCS can be esti-12

mated from climate change in the “historical” period (since about 1860). We find that13

(1) for statistical reasons, unforced variability makes the estimate of historical EffCS14

both uncertain and biased; it is overestimated by about 10% if the energy balance is15

applied to the entire historical period, 20% for 30-year periods, and larger factors for16

interannual variability, (2) systematic uncertainty in historical radiative forcing trans-17

lates into an uncertainty of ±30–45% (standard deviation) in historical EffCS, (3) the18

response to the changing relative importance of the forcing agents, principally CO2 and19

volcanic aerosol, causes historical EffCS to vary over multidecadal timescales by a factor20

of two. In recent decades it reached its maximum in the AOGCM historical experiment21

(similar to the multimodel-mean CO2 EffCS of 3.6 K from idealised experiments), but22

its minimum in the real world (1.6 K for an observational estimate for 1985–2011,23

similar to the multimodel-mean value for volcanic forcing). The real-world variations24

mean that historical EffCS underestimates CO2 EffCS by 30% when considering the25

entire historical period. The difference for recent decades implies that either unforced26

variability or the response to volcanic forcing causes a much stronger regional pattern27

of sea surface temperature change in the real world than in AOGCMs. We speculate28
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that this could be explained by a deficiency in simulated coupled atmosphere–ocean29

feedbacks which reinforce the pattern (resembling the Interdecadal Pacific Oscillation30

in some respects) that causes the low EffCS. We conclude that energy-balance esti-31

mates of CO2 EffCS are most accurate from periods unaffected by volcanic forcing.32

Atmosphere GCMs provided with observed sea surface temperature for the 1920s to33

the 1950s, which was such a period, give a range of about 2.0–4.5 K, agreeing with34

idealised CO2 AOGCM experiments; the consistency is a reason for confidence in this35

range as an estimate of CO2 EffCS. Unless another explosive volcanic eruption oc-36

curs, the first 30 years of the present century may give a more accurate energy-balance37

historical estimate of this quantity.38

Keywords climate sensitivity; climate feedback; volcanic forcing39

1 Introduction40

The equilibrium climate sensitivity (ECS), defined as the steady-state global-mean41

surface air temperature change due to a doubling of the atmospheric carbon dioxide42

concentration, has been used for decades as a benchmark for the magnitude of climate43

change predicted by general circulation models (GCMs) in response to CO2 increase.44

Although an equilibrium climate is not expected in the future, ECS is relevant to45

future climate change because it correlates with global warming under realistic time-46

dependent scenarios for the future, which are dominated by CO2 increase (Gregory47

et al 2015; Knutti et al 2017; Grose et al 2018). Over the past 25 years, GCMs have48

considerably improved in their simulation of present climate and historical climate49

change (Reichler and Kim 2008; Flato et al 2013, where by “historical” we mean since50

the 19th century), but their ECS has had a persistently wide spread. The range of51

ECS simulated by GCMs was 1.9–5.2 K (Mitchell et al 1990) when assessed in the first52

Assessment Report of the Intergovernmental Panel on Climate Change, and 2.1–4.7 K53

in the most recent (the Fifth Assessment Report, AR5, Flato et al 2013).54

This uncertainty has stimulated efforts to evaluate the ECS from observed historical55

climate change. One common approach is to apply the global-mean energy balance of56

the climate system57

N = F −R = F − αT, (1)

where F is the effective radiative forcing (ERF, Myhre et al 2013, calculated from58

observed or estimated forcing agents),N is the global-mean net downward radiative flux59

at the top of the atmosphere (TOA) i.e. the heat flux into the climate system, T is the60

global-mean surface temperature change with respect to an unperturbed equilibrium61

in which N = F = 0, and R = F −N = αT is the radiative response of the system to62

change in T . Note that F is positive downwards, while R is positive upwards.63

Our α in Equation (1) is the positive-stable climate feedback parameter (W m−264

K−1), with α > 0 so that R = αT resists F . This sign convention is convenient for our65

purposes. Some papers on this subject use a negative-stable climate feedback param-66

eter λ, numerically the same as ours but with +λT instead of −αT in Equation (1).67

The advantage of that convention is that those processes which are positive feedbacks68

in a physical sense e.g. water vapour feedback, tending to amplify T , make positive69

contributions to the net λ, which is negative. The reciprocal of α(= −λ) is the climate70

sensitivity parameter S = 1/α (K W−1 m2); the larger α, the smaller S. This quantity71

is always given a positive sign, regardless of the sign convention for α.72
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The energy balance (Equation 1) implies that ECS = F2×/α, where F2× is the ERF73

of 2×CO2, since N = 0 in the perturbed equilibrium. Thus a larger α implies a smaller74

ECS. When α is estimated from climate change which has not reached equilibrium75

(whether historical, future or under idealised scenarios), F2×/α = SF2× is called the76

“effective climate sensitivity” (EffCS), which equals the ECS only if α is a constant,77

as was formerly assumed (e.g. by Gregory et al 2002, among many others). The usual78

method to estimate α in CMIP5 is from Equation (1), by regression of N against T for79

the abrupt4xCO2 experiment, in which CO2 is instantaneously quadrupled at t = 080

with respect to the control state (Gregory et al 2004). Recent work shows that historical81

climate change tends to give a larger median estimate of α, and hence a smaller EffCS,82

than GCMs do under idealised high-CO2 scenarios, such as abrupt4xCO2, which have83

ERF of the magnitude typically projected for the 21st century (Forster 2016).84

Since the unperturbed equilibrium is not a known historical state, in practice Equa-85

tion (1) is applied to the differences (denoted by ∆, in N , F and T ) between two86

historical states (Gregory et al 2002; Otto et al 2013)87

α =
∆R

∆T
=

∆F −∆N

∆T
(2)

or by regression in the differential form88

α =
dR

dT
=

d

dT
(F −N). (3)

Both Equation (2) and Equation (3) eliminate the unknown equilibrium state. If data89

is available throughout the period of interest, regression (Equation 3) is a more efficient90

estimator of the slope than differences (Barnes and Barnes 2015). Either way, this is a91

modified version of the method of Gregory et al (2004), following Forster and Gregory92

(2006) and Tett et al (2007), for the situation where F is time-dependent. Many studies93

have estimated α from real-world historical F , N and T using Equation (1), (2) or (3)94

in various ways (examples are cited in the review by Knutti et al 2017).95

ERF F is not an observable quantity, and has to be calculated using models of96

radiative transfer, calibrated formulae (e.g. supplementary material of Myhre et al97

2013) and atmosphere GCM (AGCM) experiments (Section 3.1; Hansen et al 2005).98

Therefore historical F is a source of systematic uncertainty in estimating α, especially99

on account of anthropogenic tropospheric aerosol forcing (Gregory et al 2002; Myhre100

et al 2013; Forster 2016; Skeie et al 2018).101

Historical N is a source of statistical uncertainty in estimating α, due to the com-102

bination of two circumstances. First, internally generated i.e. unforced variations in103

the climate system add statistical “noise” to the externally forced signal in N . Second,104

the comparative shortness of the observational record of N limits the possibility of105

reducing the imprecision due to the noise. N can be evaluated reasonably precisely106

from satellite measurements of the global TOA Earth radiation budget, especially by107

the Earth Radiation Budget Experiment (ERBE) during 1985–1988 and by the Clouds108

and Earth’s Radiant Energy System (CERES) since 2000, and of global ocean temper-109

ature measurements by Argo floats since 2005 (Allan et al 2014; Roemmich et al 2015;110

Palmer 2017). N can be estimated less precisely from the sparser ocean temperature111

measurements made by ships back to the 1960s, but hardly at all for earlier decades112

(Abraham et al 2013).113

An alternative method for estimating α (Section 6.1) has recently been developed,114

using an AGCM experiment called amip-piForcing, in which observed sea surface tem-115

perature (SST) is a boundary condition, to which simulated N responds (Gregory and116
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Table 1 Notation for the climate feedback parameter.

In this paper α > 0 is the positive-stable climate feedback parameter (W m−2 K−1), evaluated
as the slope from regression of the global-mean annual-mean radiative response R against sur-
face air temperature change T , from real-world estimates or from ensembles of historical simu-
lations with AOGCMs and AGCMs. Various choices for the regression are denoted as shown in
the table, second column for the entire historical period (labelled “All”, time-independent and
marked with an overbar), third for 30-year periods (labelled “30”, time-dependent and marked
with a tilde) where α̃(t) applies to the 30 years centred on time t. Lower-case subscripts denote
ensemble means of integrations from individual models, upper-case denote multimodel means.

All 30
Real world or a single integration α α̃
Mean of slopes of R against T from individual integrations of a single model αi α̃i

Slope of ensemble-mean R against T of a single model αe α̃e

Multimodel mean of slopes of ensemble-mean R against T from individual models — α̃I

Slope of multimodel-mean ensemble-mean R against T αE α̃E

Andrews 2016; Zhou et al 2016; Andrews et al 2018). This method does not involve117

knowing real historical F and N , and thus avoids the uncertainties associated with118

these quantities. The amip-piForcing experiment gives a larger α (smaller EffCS) for119

historical climate change than experiments using the same AGCMs, incorporated in120

coupled atmosphere–ocean GCMs (AOGCMs), to simulate the response to 4 × CO2.121

Moreover, amip-piForcing shows substantial decadal historical variation in α.122

For any transient climate state, the EffCS and α quantify the relationship between123

changes in global-mean R and global-mean T , determined by the response to SST of124

surface and atmospheric processes which affect TOA radiation. The AOGCM, AGCM125

and energy-budget analyses provide evidence that α is not constant in various ways.126

We can distinguish two kinds of reason for the inconstancy of α. First, α might depend127

on the magnitude of global-mean T or F , which could be formalised by making Equa-128

tion (1) non-linear in these quantities (Meraner et al 2013; Good et al 2012; Gregory129

et al 2015; Bloch-Johnson et al 2015). Second, R and α may vary because of changes130

in the pattern of SST, i.e. “pattern effects” (Stevens et al 2016; Gregory and Andrews131

2016; Ceppi and Gregory in press). Such effects cannot be predicted by Equation (1),132

because it deals only with global means, and it becomes nonsensical in limiting cases.133

For instance, if changing SSTs alter R but not T , α is infinite and EffCS is zero.134

The inconstancy of α raises the question which is the title of this paper. To address135

the question, we analyse AOGCM simulations of the historical period. The analysis136

has two aspects. First, we evaluate how accurately we would be able to estimate the137

EffCS for CO2 forcing from the historical record if the real world truly behaved like138

an AOGCM i.e. a “perfect-model” test. The AOGCMs enable this investigation be-139

cause they provide complete datasets for many alternative realisations of the historical140

period, whereas the historical period has occurred only once in the real world and141

the observational dataset of it is incomplete. Second, we investigate the causes of the142

time-variation of α in the historical period. We make use of AOGCM experiments that143

simulate change due to unforced variability alone and to subsets of historical forcings,144

whereas we cannot control these influences in the real world.145

In Section 2 we give details of the AOGCM experiments, and in Section 3 we146

derive estimates of F for the AOGCMs. In Section 4 we show that, if the AOGCMs147
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Table 2 List of models whose results are analysed in this work, showing the number of
members in their ensembles. The amip-piForcing experiment uses only the AGCM component
of the AOGCM identified.

AOGCM historical historicalGHG historicalNat amip-piForcing
CMIP5 models
ACCESS1-0 2
ACCESS1-3 3 2
CNRM-CM5 10 5 6
CSIRO-Mk3-6-0 10 5 5
CanESM2 5 5 5
GFDL-CM3 5 3 3 6
GFDL-ESM2M 1 1 1 5
GFDL-ESM2G 3
HadGEM2-ES 5 4 3 4
IPSL-CM5A-LR 6 6 3
MIROC-ESM 3 3 3
MIROC5 5
MPI-ESM-LR 3
MPI-ESM-MR 3
MRI-CGCM3 5 1 1
NorESM1-M 3 1 1
Other models
HadCM3 4
MPI-ESM1.1 100 5

are realistic, dR/dT evaluated from historical climate change by Equation (3) may be148

an imprecise and biased estimate of the historical α, owing to the statistical effects of149

unforced variability. In Section 5 we show that α varies during the historical period150

in response to the changing nature of the forcing, which is not due to CO2 alone.151

The AOGCMs indicate that the most recent decades should have α closest to its152

CO2 value, but in Section 6 we present evidence that the historical time-variation153

of α in the AOGCMs may be unrealistic in that regard, by comparison with AGCM154

amip-piForcing experiments. We conclude in Section 7 by discussing the answer to155

the question posed by the paper, in view of the statistical and systematic errors in156

estimating the CO2 α from the historical α.157

Throughout the paper, uncertainties written with ± in the text and shown by158

coloured shading in the diagrams are one standard deviation or one standard error (as159

appropriate). Our notation for different methods of estimating α, discussed throughout160

the paper, is summarised in Table 1.161

2 AOGCM historical experiments162

We analyse results from the historical, historicalNat and historicalGHG experiments163

from 16 AOGCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5,164

Table 2). Climate change is calculated with respect to the piControl experiment, which165

has constant pre-industrial forcing agents. The historical, historicalGHG and histori-166

calNat experiments begin in the latter part of the 19th century from piControl states,167

and run to 2005 with time-dependent historical changes in forcing agents. The histor-168

ical experiment includes all changes in atmospheric composition, anthropogenic and169

volcanic aerosols, solar irradiance and land-use; historicalGHG includes changes only170
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Fig. 1 Comparison of the AR5 estimate of annual-mean historical ERF F (t), relative to
the 1860–1879 time-mean (a period without large volcanic eruptions, approximating pre-
industrial), with diagnoses of F (t) from piClim-histall and piClim-control experiments using
the ECHAM6.3 and HadGEM2-A AGCMs. The vertical dashed lines indicate the years of
major volcanic eruptions.

in greenhouse gas concentrations, historicalNat only in the natural forcing agents of171

volcanic aerosol and solar irradiance.172

Unforced interannual variability in T (pooled standard deviation of 0.11 K in the173

AOGCM piControl experiments) is not negligible compared with the change in T174

during the historical period (about 0.8 K, depending on definition, Hartmann et al175

2013). Therefore, in order to clarify the forced signal, historical experiments with most176

AOGCMs have been run as ensembles of various sizes, with each integration in the177

ensemble beginning from a different state in the piControl experiment. Provided the178

states are sufficiently separated, the unforced variability in the ensemble members is179

not correlated, and its temporal standard deviation is a factor 1/
√
N smaller in the180

ensemble mean of N integrations than in each individually.181

The CMIP5 historical ensembles have no more than 10 members and fewer in182

most cases (Table 2). We also use a much larger historical ensemble of 100 members183

carried out with the MPI-ESM1.1 AOGCM, which is an updated version of the CMIP5184

AOGCM of Giorgetta et al (2013). We assume that variations in global climate in the185

mean of this ensemble are mostly the response to forcing, since unforced variability is186

reduced by a factor of 10. This makes it very useful in a perfect-model approach, since187

we can obtain an accurate estimate of its true α, provided we know F , which is the188

subject of the next section.189
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3 Historical radiative forcing190

To apply the global-mean energy balance to observed climate change, we need to know191

historical ERF. Myhre et al (2013, AR5) estimated F (t) from historical emissions and192

atmospheric composition, radiative transfer calculations, and a variety of models. The193

net forcing goes up as greenhouse gas concentrations increase, partly compensated by194

negative ERF from anthropogenic aerosols (our Figure 1, their Figure 8.18). There is a195

large negative spike for a small number of years following each major volcanic eruption,196

due to reflection of sunlight by aerosol formed from sulphur dioxide injected into the197

stratosphere. A wide systematic uncertainty range of 1.1–3.3 W m−2 is given for the198

net anthropogenic ERF at 2011 relative to 1750.199

In the following sections we diagnose α from CMIP5 historical experiments using200

Equation (1). For that purpose we need to know F in the AOGCMs, which may be201

substantially different from the real world F , on account of various model errors. The202

object of this section is to estimate the model F .203

3.1 Diagnosis using AGCMs204

The historical F (t) can be diagnosed for an AOGCM by running a pair of experiments205

with the AGCM alone, having prescribed unchanging climatological pre-industrial sea206

surface temperature and sea ice concentration. One of the experiments, called piClim-207

histall, has time-dependent atmospheric composition and land use for the historical208

period, while the other is a control, called piClim-control, with constant pre-industrial209

forcings (Hansen et al 2005; Held et al 2010; Andrews 2014; Pincus et al 2016).210

If we assume, despite the forcing, that the surface boundary conditions enforce the211

same surface temperature in the two experiments, T = 0⇒ F = N for the difference in212

energy balance (Equation 1) between them. That is, the historical ERF equals the net213

input N of energy to the climate system due to the forcing agents. Surface temperature214

is free to change over land, for practical reasons (e.g. Kamae et al 2019), giving T ' 10%215

of the equilibrium T (Andrews et al 2012, red crosses in their Figure 1). This effect216

has not been quantified for CMIP5 historical simulations, but it will be possible to217

quantify it in CMIP6 using the experiments piClim-histall and piClim-control.218

We have run the experiments with the ECHAM6.3 and HadGEM2-A AGCMs to219

obtain F (t) for MPI-ESM1.1 and HadGEM2-ES AOGCMs, which incorporate these220

AGCMs respectively. The ECHAM6.3 (MPI-ESM1.1) F (t) is very close to the AR5221

estimate, whereas the HadGEM2 F increases considerably less (Figure 1), in part due222

to strong negative land-use forcing (Andrews et al 2017). The difference between these223

two models illustrates the possibly large but unknown spread in CMIP5 F .224

3.2 Forcing due to tropospheric and volcanic aerosol225

To examine the consistency between our set of AOGCMs and the AR5 regarding forc-226

ing, we estimate the historical annual-mean T (t) expected in response to the AR5 F (t)227

with the “step model”, which uses T (t) in response to a step-change in CO2 in each228

AOGCM as a kernel to be convolved with the forcing timeseries (more detail given in229

Appendix A). The step-model mean shows more warming during the historical period230

than the AOGCM mean (Figure 2a). We suggest that this is because the AR5 F is231
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Ditto with anthropogenic aerosol ERF x 1.5

Fig. 2 Timeseries of historical global-mean annual-mean surface air temperature, relative to
the time-mean of 1900–2005, from observations, from CMIP5 AOGCMs (using the ensemble
mean for each AOGCM) and from the step-model emulation of CMIP5 using the AR5′ ERF
timeseries with scaling factors (described in the text) applied to volcanic and anthropogenic
aerosol ERF. The solid lines show the multimodel mean for the AOGCMs and the emulation
of AOGCMs. In (a) the envelopes show the ensemble standard deviation, and (b) compares
the multimodel means with the observational estimate.
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larger than the AOGCM mean F , due to the negative anthropogenic aerosol forcing232

being stronger in AOGCMs than in reality, consistent with the expert judgement of233

Myhre et al (2013). Alternatively, EffCS may be larger for anthropogenic aerosol forc-234

ing than it is for CO2 (i.e. efficacy greater than unity, defined at the start of Section 5;235

Hansen et al 2005; Shindell 2014; Marvel et al 2016; but cf. Paynter and Frölicher236

2015). The step model implicitly assumes the same EffCS for all forcing agents.237

The multimodel standard deviation of the step-model timeseries is 0.08 K (the238

pink envelope in Figure 2a, pooled over years), which must be due mostly to the239

AOGCM spread in climate feedback, because the step model uses the same AR5 F for240

all AOGCMs. The multimodel standard deviation of the AOGCM historical timeseries241

is 0.14 K (the grey envelope, pooled over years). If the standard deviation of unforced242

interannual variability in T in every AOGCM were 0.11 K, which is the pooled estimate243

from piControl, and if the 64 historical integrations (Table 2) were equally weighted244

(both of these are fair approximations), unforced variability would make a negligible245

contribution of 0.11/
√

64 = 0.013 K to the AOGCM historical multimodel standard246

deviation. Therefore we suggest that the multimodel standard deviation is larger for247

the AOGCMs than the step model because of the AOGCM spread in F . Since different248

choices have been made for numerous aspects of the formulation of AOGCMs, the249

actual ERF in a given CMIP5 historical run will not necessarily be the same as the250

AR5 median estimate for the real world.251

To estimate the uncertainty in F from AOGCMs, we take N ' F/3 for the252

multimodel mean (Gregory and Forster 2008), whereby Equation (2) becomes α =253

(F − N)/T ' 2
3F/T ⇒ T ' 2

3F/α. Therefore the fractional uncertainty in T will be254

the sum in quadrature of the fractional uncertainties in α and historical F , which we255

assume to be uncorrelated (Forster et al 2013). For the time-mean of 1986–2005 (the256

reference period of the AR5 for projections) relative to the time-mean of 1860–1879257

(our reference period for ERF in Figure 1), T has a standard deviation in the step258

model of about ±15%. This uncertainty is attributable to α. It is negligible compared259

with the standard deviation in the AOGCMs in T of ±45%, which must therefore be260

nearly entirely attributable to the AOGCM uncertainty in F . By comparison, if the261

AR5 likely range for F of 1.13–3.33 W m−2 K−1 at 2011 relative to 1750 (Myhre et al262

2013) is assumed to represent the 5–95% range of a normal distribution, its standard263

deviation is ±30%.264

We have evaluated the root-mean-square (RMS) difference in T (t) for 1900 on-265

wards between the step-model mean and the AOGCM mean as a function of a time-266

independent scaling factor applied to the AR5 timeseries of anthropogenic aerosol ERF.267

The smallest RMS difference, meaning the closest mean match of the step models to268

the AOGCMs (dashed red line in Figure 2b), is obtained by making the anthropogenic269

aerosol ERF 50% stronger (more negative) than the AR5 estimate. Consistent with270

this finding, the estimate by Zelinka et al (2014) of the anthropogenic aerosol ERF at271

2000 relative to 1860 in a set of AR5 AGCMs is 1.6 ± 0.4 times larger than the AR5272

median estimate.273

It may also be noted that the negative spikes of F in volcano years are not as274

deep in the AGCMs as in the AR5 estimate (Figure 1). Linear regression of AGCM F275

against AR5 F for the years with strong volcanic forcing gives 0.78 for ECHAM6.3 and276

0.58 for HadGEM2. This is qualitatively consistent with earlier findings that volcanic277

forcing is about 80% of the AR5 estimate in the mean of CMIP5 AOGCMs (Larson278

and Portmann 2016), and about 70% in the HadCM3 AOGCM (Gregory et al 2016),279
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Fig. 3 Timeseries of ensemble-mean annual-mean global-mean surface air temperature T and
radiative response R = F − N , both with respect to the unperturbed climate state, in the
MPI-ESM1.1 historical experiment.

which the latter authors attributed to rapid cloud adjustments not included in the AR5280

estimate.281

3.3 Estimate of CMIP5 historical forcing282

To estimate the historical F (t) in CMIP5 models, in view of the findings of this section,283

we multiply the AR5 volcanic F by 0.8 and the AR5 anthropogenic aerosol F by 1.5.284

Henceforth by “AR5′ forcing” we mean the AR5 F with these modifications. The AR5′285

F is not a revised estimate for the real world. We note that there there is a model spread286

of ±45%, but we do not have estimates for individual CMIP5 models. In CMIP6, the287

historical F for each model will be diagnosed by the AGCM experiments of Section 3.1,288

which are included in the Radiative Forcing Model Intercomparison Project (RFMIP,289

Pincus et al 2016).290

4 Using regression to estimate historical climate feedback291

During the historical period, the net forcing grows, T rises, and the heat loss R to space292

increases. The 100-member MPI-ESM1.1 historical ensemble is useful to illustrate this293

behaviour because it is so large that the noise is fairly small in the ensemble mean, and294

because we have a diagnosis of F for this model (Section 3.1), enabling an accurate295

estimate of R = F −N . We see that the decadal trends of R = F −N and T usually296

have the same sign, both usually being positive, and their interannual variability shows297

some similarity as well, especially regarding the negative excursions caused by volcanic298

forcing (Figure 3). Their agreement on these features means that the ensemble-mean299
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Fig. 4 Regression of annual-mean R = N − F against T and vice-versa in the MPI-ESM1.1
historical experiment. The data points are annual-mean ensemble-mean values, with respect to
the time-mean of the AMIP period 1979–2008, and the lines show regression slopes calculated
as indicated.

annual-mean R and T are positively correlated (with coefficient of 0.94, Figure 4). This300

is consistent with the assumption R = αT of the energy balance (Equation 1), which301

motivates the estimation of α from the covariation of R and T .302

In this section, we summarise some statistical issues that affect the accuracy of303

the estimate. Its findings are important to the interpretation of historical data, but304

its subject is a digression from the physical investigation. Therefore we have put the305

detailed discussion and mathematical demonstrations in appendices.306

Following many other authors, we obtain α according to Equation (3) as the slope307

from linear regression of R against T . Unforced variability affects N and hence R,308

making α statistically uncertain. From the MPI-ESM1.1 historical ensemble, the dis-309

tribution of α obtained by regression of R against T in the individual integrations is310

1.38 ± 0.08 W m−2 K−1 (mean and standard deviation). This is consistent with the311

median of 1.43 W m−2 K−1 estimated by Dessler et al (2018) from the same dataset312

using differences between the means of the last and the first decades (Equation 2). The313

standard deviation of slopes from the difference method is 0.14 W m−2 K−1, larger314

than from the regression method, because the latter uses more data, making it a more315

efficient estimator (Appendix D.1).316

The choice of T as independent variable follows our physical intuition that T deter-317

mines the magnitude of R rather than vice-versa. Using the historical MPI-ESM1.1 en-318

semble, we show that this choice is preferable also on statistical grounds (Appendix B).319

We show further that estimates of historical α made by OLS regression from real-world320

R and T are biased low, giving an overestimate of historical EffCS, due to noise T ′ in321

T which does not produce proportionate variability αT ′ in R (Appendix C).322
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Evaluating the statistics for all the AOGCMs, we find that the bias is larger in323

α̃ (multimodel mean of 20%) for a 30-year period than in α (10%) for the entire324

historical period. The bias affects the difference method as well as OLS regression325

(Appendix D.1). Total least-squares regression is a method that would avoid the bias,326

but it is not obviously applicable because it depends on information that we do not327

have (Appendix D.5).328

As well as the mean bias, individual integrations give a spread of slopes due to the329

noise. The consequent uncertainty is larger in α̃ than in α (multimodel mean respec-330

tively of 0.42 W m−2 K−1 or ∼30%, and 0.11 W m−2 K−1 or ∼10%, Appendix C).331

For the real world, random error in the observational dataset, due to instrumental332

uncertainty or sampling, is a possible source of noise in T that is uncorrelated with R,333

but this is not relevant to the model world, where we have perfect information. In both334

worlds, unforced variability in the climate system, unrelated to F , is the likely source335

of bias, through two physical mechanisms (both demonstrated in Appendix D.6).336

First, if variability is driven by spontaneous fluctuations in N that have some337

persistence, and if the response in T to these fluctuations has some thermal inertia,338

α will be biased low (the second case considered by Proistosescu et al 2018). This339

effect could be caused for example by interannual variability in cloudiness, and hence340

planetary albedo, produced by regional climate variability; such variations may persist341

with anomalies of SST, and the heat capacity of the upper ocean sets the timescale of342

response. The effect causes α to be underestimated by OLS because the spontaneous343

fluctuation in N is misattributed to R.344

Second, if spontaneous variability in SST produces a response in N with a different345

α from the externally forced response, probably because it has a different geographical346

pattern (Dessler et al 2018), the OLS slope is contaminated by α from the variability.347

Unlike the first mechanism, this one can produce variability in α in either sense.348

5 Time-variation of historical climate feedback related to forcing agents349

The original motivation for estimating ECS from historical climate change depends on350

the assumption that α is constant. If it is not, the historical α may differ from α for351

idealised CO2-forced climate change (Paynter and Frölicher 2015). In this section, we352

examine the dependence of α in AOGCMs on time, and relate this to the changing353

nature of the forcing, in order to work out how CO2 α may best be estimated from354

historical α.355

The relationship between forcing and climate response is often discussed in terms356

of the efficacy, defined as T forced by unit F of the given agent divided by T for357

unit forcing of CO2 (Hansen et al 2005). Our discussion is related to this concept,358

but it is framed in terms of α because we are interested in the variation of R with T359

due to climate feedbacks. In contrast, efficacy quantifies the dependence of T on F ,360

which involves ocean heat uptake as well, and its definition therefore requires a choice361

of scenario and timescale for the temperature response. For example, efficacy may be362

defined using T after a specified elapsed time in an AOGCM experiment with constant363

forcing (as by Hansen et al 2005) or the equilibrium T under constant forcing of an364

AGCM with a slab ocean.365
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Fig. 5 Time-dependent climate feedback parameter α̃E (the same solid black line in all panels,
labelled “CMIP5 E” in panel (a) and “historical” in the other two) for the multimodel mean of
the CMIP5 historical experiment, (a) compared with the mean α̃I of individual CMIP5 models
(labelled “CMIP5 I”), and with α̃e and α̃i from the MPI-ESM1.1 ensemble, (b) compared with
α̃E for the multimodel means of the CMIP5 historicalGHG and historicalNat experiments, and
with the time-mean (dotted horizontal line) of α̃ for 30-year periods in the CMIP5 piControl
simulations, (c) compared with α̃E for the multimodel means of the AGCM amip-piForcing
the CMIP5 historicalNat experiments, and an estimate made from observational datasets for
N and T . The lightly coloured regions around the some of the lines are ±1 standard error, with
±1 standard deviation for CMIP5 I in (a). In (b) and (c) the vertical dashed lines indicate
the beginning of the three periods of the regression analysis of Figure 6a, centred on 1930,
1960 and 1990. Note that α̃ decreases upwards on the vertical axis, in order that the effective
climate sensitivity increases upwards.
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Fig. 6 Regression of annual-mean R = F −N against T (a) for the CMIP5 AOGCM means in
historical, historicalGHG and historicalNat experiments in three consecutive periods, centred
on 1930, 1960 and 1990, (b) for the CMIP5 AOGCM means in the historical and historicalNat
experiments and the AGCM mean in the amip-piForcing experiment, for the entire historical
period and for 1975 onwards (to 2005 for CMIP5, 2011 for amip-piForcing). The periods
are distinguished by the choice of symbol for the data points and the style of line for the
regression slope. For the historical experiment, the circles mark the years with volcanic ERF
< −0.2 W m−2 in (a), and sequences of such years are joined by a solid line in (b). The
same T -axis is used for all experiments and periods, relative to time-mean of 1979–2005 i.e.
the AMIP period omitting 2006–2008, because the CMIP5 historical period ends in 2005. On
the R-axis the experiments are shifted so that they can be seen separately and their slopes
compared conveniently, and in (a) the individual periods of historical and historicalNat are
also shifted for the same reason.
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5.1 Time-variation of climate feedback in the historical experiment366

Using the AOGCM historical experiments, we evaluate the time-variation of α̃i(t) and367

α̃e(t) by regression in overlapping 30-year periods e.g. α̃ for the 30 years centred on 1st368

January 1940 is obtained from regression of annual means for 1925–1954. In the MPI-369

ESM1.1 historical ensemble, α̃e(t) shows significant decadal variation (solid orange370

line in Figure 5a). For example, α̃e = 1.14 ± 0.30 W m−2 K−1 in 1924 and 2.63 ±371

0.36 W m−2 K−1 in 1955, whose difference of 1.49± 0.47 W m−2 K−1 is significant at372

the 1% level. This variation must be evidence of time-dependence which is synchronous373

across the ensemble of integrations, and therefore attributable to external forcing.374

On the other hand, α̃i(t) does not depend significantly on time (dotted orange line375

in Figure 5a), judged by comparison with its standard deviation of 0.35 W m−2 K−1376

due to unforced variability (the standard deviation among the 100 integrations, pooled377

over years, not shown). This is because unforced variability has a greater effect on378

individual integrations, and obscures the response to forcing that can be discerned in379

the ensemble mean.380

Since the historical ensembles with CMIP5 models are much smaller than the MPI-381

ESM1.1 ensemble, to suppress the unforced variability we aggregate the models, by382

calculating a time-dependent climate feedback parameter, denoted by α̃E (Table 1),383

from the multimodel-mean R(t) and T (t) of the ensemble means of individual CMIP5384

models i.e. treating the models as equally weighted members of a “super-ensemble”.385

(We use the word “multimodel” instead of just “model” to emphasise that it is a386

mean over all models, rather than the mean over all integrations of a single model.)387

We assume that the forced response will have correlated time-dependence among the388

models, whereas the unforced variability will be uncorrelated. The multimodel mean is389

used for similar reasons in statistical studies of attribution of climate change to forcing390

agents (e.g. Jones et al 2013; Hua et al 2018).391

The small standard error of α̃E (grey envelope in Figure 5b) means that its time-392

variation is well-defined and statistically significant. It is moreover rather similar to393

α̃e of MPI-ESM1.1 (compare solid black and orange lines in Figure 5a), corroborating394

the idea that the time-variation is forced, and thus similar among all models. There395

is a minimum in α̃E around 1930, a maximum during 1945–1974, and the absolute396

minimum (highest EffCS) occurs after 1980. The time-variation cannot be an artefact397

arising from the OLS bias because the minima in α̃ occur when the rate of warming398

is largest (around 1930 and after 1980), and hence the bias towards small α̃ due to399

unforced variability is of minimal importance compared with the response to forcing.400

The time-variation of α̃E in the CMIP5 historical experiment is similar in amplitude401

and period to the time-variation of α̃ in the AGCM amip-piForcing experiment with402

observed historical sea-surface temperature (described in Section 1; Andrews et al403

2018), but different in time-profile (compare black and blue lines in Figure 5c). We will404

study amip-piForcing in Section 6, once we have drawn conclusions from the present405

section concerning the response to forcing in the AOGCMs.406

For comparison, we also calculate a multimodel mean, denoted by α̃I(t) (dotted407

black line in in Figure 5a), from the α̃i(t) timeseries of the individual models. Like α̃i408

of MPI-ESM1.1, α̃I has insignificant forced time-variation, judged by comparison with409

the standard deviation among integrations (grey envelope, calculated for each model410

ensemble and pooled over models; if also pooled over years, the standard deviation is411

0.42 W m−2 K−1). The lack of significant forced variation is due to the dominance of α̃412

by unforced variability in individual integrations, while the greater OLS bias (Section 4)413
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caused by larger unforced variability explains why α̃I < α̃E at all times (compare solid414

and dotted black lines in Figure 5a).415

5.2 Greenhouse-gas forcing416

Since the largest historical forcing is CO2, we consider the possibility that the response417

to CO2 could somehow cause forced time-variation in α̃E . Most CMIP5 models have418

a tendency for α to decrease with time under constant CO2 (Armour et al 2013;419

Andrews et al 2015). In our set of CMIP5 AOGCMs, regression of −N against T for420

years 1–20 and years 1–140 of abrupt4xCO2 gives multimodel-mean α = 1.26 and421

1.02 W m−2 K−1 respectively. In some AGCMs and AOGCMs, it has been found that422

α decreases as CO2 concentration rises (Good et al 2012; Jonko et al 2012; Gregory423

et al 2015). Either of these effects might explain the long-term decreasing tendency in424

historical α̃E (Figure 5b), although not its decadal variation.425

To test this hypothesis, we calculate αE in the historicalGHG experiment, whose426

forcing is predominantly CO2, using the AR5 estimate of greenhouse-gas F (t). We find427

that R and T in historicalGHG have a high correlation coefficient of 0.99 over the428

historical period (1871–2005, shown in red in Figure 6a for the period since 1915), and429

there is little time-variation in α̃E in the historicalGHG experiment (solid red line in430

Figure 5b). Therefore we reject the hypothesis that the long-term decreasing trend in431

historical α̃E is due to CO2 forcing. After about 1960, historical α̃E decreases strongly,432

This tendency is opposite to that of historicalGHG α̃E , which increases slightly, per-433

haps due to reduction of OLS bias as the greenhouse-gas forcing grows relative to the434

unforced variability (Appendices D.3 and D.6).435

5.3 Comparison of historicalGHG and abrupt4xCO2 climate feedback436

The historicalGHG αE = 1.03 ± 0.01 W m−2 K−1 (EffCS 3.6 K, Figure 6a) is close437

to multimodel-mean α = 1.02 W m−2 K−1 from years 1–140 of abrupt4xCO2 (Sec-438

tion 5.2). The correlation coefficient across models between abrupt4xCO2 α and his-439

toricalGHG αe is 0.55 for years 1–20 and 0.68 for years 1–140, both significant at440

the 10% level. This similarity is expected, since historicalGHG is dominated by CO2441

forcing, but because CO2 α varies with time and perhaps with CO2 concentration,442

and α might differ among the various greenhouse gases, we cannot expect a perfect443

correlation. We suppose that it is larger for years 1–140 because this timescale is more444

similar to the length of the historicalGHG experiment.445

The correlation might also be reduced by our neglect of model-dependence in the446

greenhouse-gas F (t), which we do not know for any of the models. To take this approx-447

imately into account, we recalculate historicalGHG αe using the AR5 greenhouse-gas448

F scaled for each AOGCM by the ratio of that AOGCM’s abrupt4xCO2 ERF to the449

multimodel-mean value. The correlation coefficients with abrupt4xCO2 α are increased450

to 0.61 for years 1–20 and 0.77 for years 1–140 (Figure 7a), supporting the conjecture451

that the model spread in greenhouse-gas forcing is substantial (Andrews et al 2012;452

Chung and Soden 2015). The historicalGHG αe is about 10% larger than abrupt4xCO2453

α for years 1–140 in the multimodel mean.454
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5.4 Volcanic and anthropogenic aerosol forcings455

We have seen that the time-dependence of historical α̃E is statistically significant456

(Section 5.1), but not related to greenhouse-gas forcing (Section 5.2). Therefore we457

suppose that it is due to the varying relative importance of the other forcing agents.458

Such an effect could occur if α depends on the nature of the forcing. As discussed at459

the start of Section 5, this idea is related to the efficacy of forcing agents. For many460

agents, including anthropogenic aerosols, α is found to be close to CO2 α (efficacy is461

near unity), provided ERF is used to quantify forcing (Hansen et al 2002; Shine et al462

2003; Sherwood et al 2015). For volcanic aerosol, α may be larger than for CO2 (EffCS463

smaller, efficacy less than unity; Marvel et al 2016; Gregory et al 2016; Ceppi and464

Gregory in press).465

In this discussion, we frequently consider and contrast three consecutive historical466

periods, which have different mixtures of forcing, as described in the following para-467

graphs. We choose them each to be 30 years, like the sliding window used to evaluate468

α̃, because that means the OLS bias will not affect their comparison (Section 4).469

The time-dependence of α̃E in historicalNat, in which the forcing is dominated by470

volcanic aerosol (Figure 1), shows large decadal variation (Figure 5b). During 1915–471

1944 there were no large volcanic eruptions, so the variation of T and R and their472

correlation of 0.41 are all relatively small (green crosses in Figure 6a) and must be due473

nearly entirely to unforced variability. For historicalNat during this period regression474

gives α̃E = 0.7± 0.4 W m−2 K−1 (solid green line), which is not distinguishable from475

historicalGHG α̃E = 1.0 W m−2 K−1 (solid red line, Section 5.2).476

Unlike in historicalNat, T and R have substantial trends in the historical experi-477

ment during 1915–1944 (black crosses in Figure 6a) due to anthropogenic forcing, es-478

pecially by greenhouse gases (Figure 1). The historical α̃E = 1.4± 0.1 W m−2 K−1 of479

this period (solid black line) is somewhat larger than for greenhouse gas forcing (solid480

red line). This could be explained by the growth of negative anthropogenic aerosol481

forcing during this period, with a smaller α (larger EffCS) than for greenhouse-gas482

forcing; the combination would produce a larger α than either alone (Appendix B in483

supplementary online material of Gregory and Andrews 2016).484

For historicalNat for the period since 1945, during which there were three large485

volcanic eruptions, α̃E is fairly constant (green line in Figure 5b). The regression of R486

against T gives α = 2.5± 0.2 W m−2 K−1 for 1945–1974 and 2.4± 0.1 W m−2 K−1 for487

1975 onwards, which are very similar (EffCS 1.5 K), and more than twice historicalGHG488

α̃E (compare the dotted and dashed red lines in Figure 6a with the dotted and dashed489

green lines). These results suggest that the climate feedback parameter for volcanic490

forcing is larger (smaller EffCS) than for greenhouse gases (predominantly CO2) in491

CMIP5 AOGCMs on average.492

For 1945–1974 (30 years centred on 1st January 1960) historical α̃E = 2.1 ± 0.2493

W m−2 K−1, similar to historicalNat (dotted black and green lines in Figure 6a), and494

distinct from historicalGHG (dotted red line). We suggest that historical and histori-495

calNat α̃E are similar during this period because the increase in greenhouse-gas forcing496

in the historical experiment is offset by the increase in negative anthropogenic aerosol497

forcing, leaving only a small net anthropogenic forcing trend (Figure 1), so the strong498

volcanic forcing from Agung is the greatest influence in both experiments.499

For 1975–2005 (a period of 31 years, centred in 1990 and running up to the end500

of the CMIP5 historical integrations), historical α̃E = 1.2 ± 0.1 W m−2 K−1 diverges501

from historicalNat and comes much closer to historicalGHG (black approaches red in502
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Fig. 7 Relationships in CMIP5 AOGCMs between abrupt4xCO2 α and (a) historicalGHG
αe, (b) historical αe, (c) historical α̃e for 1975–2004 (in black), amip-piForcing α̃e for 1925–
1954 (in red), (d) time-mean piControl α̃. In (a) we plot α for years 1–140 of abrupt4xCO2,
and in (b,c,d) years 1–20. In (a) we use the AR5 estimate for historicalGHG F (t), scaled for
each AOGCM by its own abrupt4xCO2 ERF (as discussed in the text), and for (b,c) we use
our AR5′ estimate for historical F (t) for all AOGCMs except HadGEM2-ES and MPI-ESM1.1
(models J and P), for which we use F (t) diagnosed in these models individually (compared
in Figure 1). The dotted line in all panels is 1:1; all models lie to the left of this line in (d),
indicating that piControl α̃ < abrupt4xCO2 α.

Figure 5b, dashed black and red lines have a similar slope in Figure 6a). We suggest503

that the historical and historicalGHG α̃E are similar during this period because the net504

anthropogenic forcing grows much more rapidly due to greenhouse gas increase, once505

the aerosol forcing is steady (Figure 1). Despite the further years of volcanic forcing506

from El Chichon and Pinatubo, the greenhouse-gas forcing dominates the historical F507

and the consequent rise in T (Figure 3).508

In summary, the time-variation of historical α̃E in CMIP5 can be mainly explained509

by the varying importance of forcings due to greenhouse gases and volcanic aerosol, if510

α is larger for the latter. This means the EffCS is higher (α smaller) when volcanic511

forcing is relatively less important, around 1940 (when there were no major eruptions)512

and since 1975 (when greenhouse-gas forcing has rapidly increased). The growth of513

negative anthropogenic aerosol forcing during the intermediate period meant that the514

increase in net anthropogenic forcing was less important than the volcanic forcing, so515

the EffCS was dominated by response to volcanic forcing, and was relatively low. This516

explanation does not require EffCS for anthropogenic aerosol to differ substantiantially517

from the CO2 EffCS.518
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5.5 Comparison of historical and abrupt4xCO2 climate feedback519

Despite the large time-variation of αE (black in Figure 5), multimodel-mean R and T520

are highly correlated (coefficient of 0.94 for 1871–2006, black symbols in Figure 6b).521

Moreover, αE = 1.27± 0.04 W m−2 K−1 for the entire historical period (dotted black522

line in Figure 6b) is very close to the multimodel-mean α = 1.26 W m−2 K−1 for years523

1–20 of abrupt4xCO2 (Section 5.2).524

However, for individual AOGCMs, the correlation of αe with abrupt4xCO2 α is525

much weaker, and insignificant at the 10% level, at 0.24 for years 1–20 (Figure 7b) and526

−0.02 for years 1–140. The multimodel standard deviation of the difference between527

αe and abrupt4xCO2 α is 37% (0.47 W m−2 K−1). The likely reason is the large528

AOGCM spread in F , which we have estimated as ±45% (Section 3.2), due principally529

to anthropogenic aerosol. Scaling the greenhouse-gas forcing using the ratio of abrupt-530

4xCO2 ERF, as we did for historicalGHG, raises the correlation coefficients somewhat,531

to 0.37 and 0.24, but they are are still insignificant at the 10% level, confirming the532

dominant effect of uncertainty in non-greenhouse-gas forcing.533

A more accurate estimate might be obtained from periods which are dominated by534

CO2 forcing, when historical α̃ should be closer to CO2 α and F is more accurately535

known. One possibility is the recent decades, when the greenhouse-gas forcing has536

been increasing rapidly and the anthropogenic sulphate aerosol forcing has been fairly537

constant (Section 5.4; Gregory and Forster 2008; Bengtsson and Schwartz 2013), so538

historical and historicalGHG α̃E are consequently close (Figure 5b). For 1975–2004539

(30 years centred on 1st January 1990) the correlation of α̃e with abrupt4xCO2 α is540

0.64 (Figure 7c), a considerably stronger correlation than for αe, and the standard541

deviation of the difference is smaller, at 27%. Scaling the greenhouse-gas forcing using542

the ratio of abrupt4xCO2 ERF improves the correlation only a little in this case.543

For most of the historical period, α̃E(t) is much larger (EffCS smaller) in histori-544

cal than historicalGHG (the time-mean difference between the black and red lines is545

0.75 W m−2 K−1 in Figure 5b), but the multimodel-mean difference between historical546

αe and abrupt4xCO2 α is only 2% (0.03 W m−2 K−1). We can understand this ap-547

parent contradiction by considering multimodel-mean R(t) and T (t). The slope during548

intervals of volcanic forcing (joined by solid orange lines in Figure 6b) is evidently549

greater than at other times, consistent with time-varying historical α̃E(t) (Figure 5b).550

However, the volcanic forcing is small on the long-term mean, and although the periods551

affected by volcanic forcing are of several years, they are only temporary digressions552

from the long-term trend. Hence the large volcanic α̃ has little effect on the best-fit553

slope for the entire historical period (dotted black line in Figure 6b), which is only a554

little larger than α̃E = 1.19 ± 0.10 W m−2 K−1 for the last 30 years of the timeseries555

(dashed black line, the same as in Figure 6a).556

In summary, in the AOGCMs, as an estimate of abrupt4xCO2 α, historical αE has a557

small positive bias, because of the influence of volcanic forcing, and a large uncertainty,558

due principally to anthopogenic aerosol forcing. In the real world, we cannot evaluate559

α accurately because we do not have adequate estimates of F and N for the entire560

historical period. Response to volcanic forcing has a much stronger effect on the time-561

dependent α̃E than it does on αE . Therefore α̃E from periods that are affected by562

volcanoes has a large positive bias as an estimate of abrupt4xCO2 α. In the AOGCMs,563

the bias is smallest in the period since 1975, during which we have the best observations564

of the real world.565
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5.6 Comparison of unforced and abrupt4xCO2 climate feedback566

In Section 5.4 we noted that historicalNat α̃E and historicalGHG α̃E for 1915–1944567

are not distinguishable. Since there are no volcanic eruptions during this period, his-568

toricalNat has no forcing. Therefore it is of interest to know what α̃ to expect from569

unforced variability alone, which we evaluate from the piControl experiments by re-570

gressing R (= −N since F = 0) against T in overlapping 30-year segments. We use571

480 (= 16×30) years from each AOGCM, and exclude ACCESS1.0, for which we have572

only 250 years.573

For the population of α̃, taking all segments from all models together, the mean574

α̃ = 0.70 (dotted horizontal line in Figure 5b). Neglecting autocorrelation for lags575

greater than 30 years, the population contains 16 independent values from each of 15576

experiments. The population standard deviation is 0.69 W m−2 K−1, so the standard577

error of the time-mean α̃E is 0.69/
√

16× 15 = 0.044 W m−2 K−1 (grey envelope around578

the dotted horizontal line). Hence historical α̃E(t) is always distinct from time-mean579

piControl α̃.580

HistoricalGHG and piControl are different in the character of the covariation of R581

and T , which is highly correlated in the former but not in the latter (correlation coeffi-582

cient of 0.24 between annual-mean R and T in the piControl population). Nonetheless,583

their regression slopes are similar. Although historicalGHG α̃E is greater than pi-584

Control α̃ during nearly all the historical period, their difference is rarely statistically585

significant (Figure 5b, 5% two-tailed significance level) before about 1970. This explains586

the simularity of historicalNat and historicalGHG α̃E during 1915–1945.587

For each model we compare the piControl α̃ for unforced variability with abrupt-588

4xCO2 α for CO2 forcing. These quantities have a modest but significant correlation589

across models (0.55, Figure 7d), as found by Zhou et al (2015) for the cloud component.590

Colman and Power (2018) note both similarities and differences in feedbacks for decadal591

variability and CO2 forcing. It is clear that abrupt4xCO2 α is larger than piControl α̃592

in all models, leading us to infer that historicalGHG α̃e and α̃E are also larger than593

piControl. In some models, piControl α̃ < 0.5 W m−2 K−1, implying EffCS exceeding594

7 K, and it is negative in one model (MIROC5). Dessler (2013) found similar results for595

piControl experiments of AOGCMs from the Coupled Model Intercomparison Project596

Phase 3 (CMIP3). These low values result from a pronounced OLS bias due to noise597

in T that is not correlated with R (Section C). There is a more complex relationship598

between R and T for internally generated fluctuations, and it is physically incorrect to599

treat R simply as an instantaneous response to T (Xie and Kosaka 2017; Lutsko and600

Takahashi 2018; Proistosescu et al 2018)601

6 Time-variation of historical climate feedback related to SST patterns602

Previously published work has shown that the variation of α is mostly determined603

by the pattern and magnitude of sea surface change in response to radiative forcing604

(Armour et al 2013; Andrews et al 2015; Gregory and Andrews 2016; Haugstad et al605

2017; Ceppi and Gregory in press). The effect of the agent comes mainly via the606

surface forcing, which is rapidly modified by climate feedbacks, ocean heat uptake and607

atmospheric and oceanic dynamical responses. We depend on AOGCMs to project the608

consequent sea surface changes, but we do not know whether their results are realistic609

in the characteristics relevant to α.610
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In this section we compare α from historical AOGCM simulations, driven by forcing611

agents, with α from AGCM simulations driven by sea surface conditions prescribed612

from observations. AMIP experiments have shown that AGCMs reproduce the time-613

variation of TOA radiation and other quantities quite well when given realistic surface614

conditions (Allan et al 2014). Thus the advantage of the AGCM simulations is their615

closer resemblance than the AOGCM simulations to the real historical record, while616

their disadvantage is that they do not allow us to isolate the effects of the individual617

forcing agents and unforced variability, which have imprinted their effects all together618

on the observational sea surface conditions.619

6.1 Time-variation of climate feedback in the amip-piForcing experiment620

The AGCM experiment named amip-piForcing, using observationally derived time-621

dependent historical sea-surface boundary conditions from the Atmosphere Model In-622

tercomparison Project (AMIP, Gates et al 1999; Hurrell et al 2008), with constant623

pre-industrial forcing agents (atmospheric composition etc.), has recently been car-624

ried out with various AGCMs (Andrews 2014; Gregory and Andrews 2016; Zhou et al625

2016; Silvers et al 2018; Andrews et al 2018). In this experiment, F = 0 ⇒ R =626

−N = αT . Because amip-piForcing does not have time-varying forcing agents, the627

evaluation of its αe is not affected by the uncertainty in anthropogenic aerosol ERF,628

unlike the CMIP5 historical αe. In this section we use the amip-piForcing ensembles629

of ECHAM6.3, HadGEM2-A, GFDL-AM2.1 and GFDL-AM3 (the AGCMs of MPI-630

ESM1.1, HadGEM2-ES, GFDL-ESM2M and GFDL-CM3; data from Andrews et al631

2018) and HadCM3-A (the AGCM of HadCM3, Gordon et al 2000, employed for fur-632

ther experiments in this section). The amip-piForcing experiment is included in the633

Cloud Feedback Model Intercomparison Project of CMIP6 (Webb et al 2017).634

In each of these AGCMs, αe obtained by regression of −N against T from amip-635

piForcing for the entire historical period is larger (EffCS smaller) than in the abrupt-636

4xCO2 experiment with the corresponding AOGCM (Andrews et al 2018). Regression637

of multimodel-meanR against T for the five AGCMs gives αE = 1.59±0.08 W m−2 K−1638

for amip-piForcing (blue crosses and dotted line in Figure 6b), about 30% larger than639

both historical α̃E (black crosses and dotted line), and multimodel mean abrupt4xCO2640

α = 1.25 W m−2 K−1 for years 1–20 (Section 5.5).641

When computed in a 30-year window, α̃(t) shows large decadal variation, but the642

spread of α̃ among the integrations of each AGCM is rather small, because most of643

the interannual variability is prescribed through the sea surface conditions (Gregory644

and Andrews 2016, who show as well that SST patterns dominate the effect, and sea645

ice variations are relatively uninfluential). In each AGCM, there is consequently little646

difference between α̃i(t) and α̃e(t), unlike in AOGCMs. Owing to the strong influence of647

the common surface boundary conditions, the AGCMs furthermore have synchronised648

time-variations in α̃ (Andrews et al 2018), illustrated by α̃E of the multimodel mean649

(blue in Figure 5c), but they have different time-means and vary with roughly constant650

offsets. Their spread is similar to that of α in the standard idealised amip-p4K AGCM651

experiment, which imposes a uniform SST warming of 4 K (Ringer et al 2014).652

The minimum α̃E (maximum EffCS) of amip-piForcing is close to historicalGHG653

α̃E (1.03 W m−2 K−1, Section 5.5), and occurs in the middle of the longest interval654

without major volcanic eruptions, when forced climate change was therefore anthro-655

pogenic. This is consistent with the inference that EffCS for greenhouse-gas forcing656
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Fig. 8 (a,b) Timeseries of ensemble-mean global-mean radiative response R with respect to
the time-mean of 1860–1899 in the HadCM3-A experiments (see text for explanation), CMIP5
historical and historicalNat experiments. The timeseries have been smoothed by calculating
a three-year running mean. Linear regressions for R(t) during 1925–1954 and 1975–2004 are
shown by dotted and dashed lines respectively for all experiments except historicalNat. (c)
Time-dependent climate feedback parameter α̃e computed with R(t) from the HadCM3-A
experiments indicated and T (t) from HadCM3-A amip-piForcingClimI. All panels follow the
legend in (a).
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is higher than for volcanic forcing. For the five AGCMs in our ensemble of amip-657

piForcing experiments, we have compared α̃e for 1925–1954 with abrupt4xCO2 α of658

the corresponding AOGCM (red in Figure 7c). The rank correlation is perfect, and659

the (product–moment) correlation coefficient is 0.94, consistent with the dominance of660

CO2 forcing during this period.661

The maximum α̃E (minimum EffCS) of amip-piForcing is attained in the period662

since 1960, during which it is fairly constant, while CMIP5 historical α̃E is declining663

(EffCS increasing), due to the dominance of the greenhouse-gas increase over volcanic664

forcing once anthropogenic aerosol has stabilised (as found above, Section 5.4). The665

large recent α̃E ' 2.5 W m−2 K−1 of amip-piForcing is outside the range of all indi-666

vidual CMIP5 historical integrations since 1960 (Marvel et al 2018) and of all indi-667

vidual CMIP5 piControl integrations, whose maximum α̃ are 2.3 and 2.2 W m−2 K−1668

respectively for 30-year periods, and it is about twice the CMIP5 multimodel-mean669

abrupt4xCO2 α (Section 5.5).670

6.2 Effect of patterns of SST change on radiative response671

Since amip-piForcing and historical experiments both reproduce observed T (t) closely,672

the differences in α̃ = dR/dT between amip-piForcing and historical, which are particu-673

larly large around 1940 and 1990 (Figure 5c), must be due to differences in R(t). During674

1925–1954 (30 years around 1940), R = F − N in the CMIP5 historical multimodel675

mean has an increasing trend, but R = −N in the HadCM3-A amip-piForcing experi-676

ment has no trend (black in Figure 8b and blue in Figure 8a respectively), consistent677

with α̃ being smaller in amip-piForcing (EffCS larger). By contrast, during 1974–2004678

(30 years around 1990), R is increasing about twice as fast in amip-piForcing, which679

has larger α̃ (EffCS smaller).680

To investigate how the two sets of sea surface fields (one from CMIP5 AOGCMs,681

the other from observations) produce the same T (t), but different R(t), we use three682

further HadCM3-A experiments with constant pre-industrial forcing agents, like amip-683

piForcing. These experiments have no interannual variation in sea ice concentration,684

which follows the climatological annual cycle of the AMIP dataset for 1871–1900. The685

first of the three is the amip-piForcingClimI experiment (Gregory and Andrews 2016),686

which has the same SST fields as amip-piForcing, and yields very similar R(t) (blue687

and cyan in Figure 8a), confirming that the interannual variation is due almost entirely688

to SST changes (rather than sea ice changes).689

The other two experiments follow Zhou et al (2016). One of them applies the global690

warming but no change in SST pattern, while the other applies the pattern of change691

but no global warming. They aim to distinguish the effects on α from variation of692

global-mean T and from the changing pattern of SST. The monthly SST fields for693

1871–2012 for both experiments are derived from the AMIP SST fields TS(x, y,M, Y ),694

where x, y are longitude and latitude, M the month within the year and Y the year.695

First we calculate the monthly SST climatology TSC(x, y,M) of the late nineteenth696

century (1871–1900), which we treat as the unperturbed climate, then we calculate the697

anomaly δTS = TS(x, y,M, Y ) − TSC(x, y,M) of the SST in a given month from698

the unperturbed climatological mean. In one experiment, a geographically uniform699

warming δTSU is added to the climatological SST, equal to the global-mean of the700

anomaly,701

δTSU (x, y,M, Y ) = G(δTS(M,Y )),
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where G(·) denotes a global mean. In the other experiment, the local perturbation702

δTSD to the climatology is the deviation of the local anomaly from its global mean,703

δTSD(x, y,M, Y ) = δTS(x, y,M, Y )−G(δTS(M,Y ))

= δTS(x, y,M, Y )− δTSU (x, y,M, Y ).

By construction,704

δTSU + δTSD = δTS

and705

G(δTSD(M,Y )) = 0.

In the experiment with the uniform perturbation δTSU , the time-mean global-mean706

surface air temperature anomaly is T = 0.37 K for 1975–2004 with respect to the707

1871–1900 climatology, almost the same as amip-piForcingClimI, and 15% less than708

T = 0.44 K from amip-piForcing because of omitting the effect of the recent decline in709

Arctic sea-ice.710

The zero-mean perturbation δTSD to SST produces negligible global-mean temper-711

ature change, but the time-varying changes to the pattern of SST have a strong effect712

on cloudiness and thus affect N and hence R. During 1975–2004, the trends in R in the713

HadCM3-A uniform and deviation experiments are positive (dR/dT > 0) and about714

the same size (dotted red and grey lines in Figure 8a). Each alone is similar to the715

trend in the CMIP5 historical experiment (dotted black line in Figure 8b), consistent716

with our finding above that in amip-piForcing, whose SST perturbation is the sum of717

the uniform and deviation perturbations, the trend of R is about twice the size as in718

the historical experiment, making the EffCS smaller in amip-piForcing.719

During 1925–1954, the trends in R in the HadCM3-A uniform and CMIP5 historical720

experiments are positive and similar, but the R in the HadCM3-A deviation experiment721

has a negative trend. That is, although global-mean T is rising, the changing pattern722

of SST tends to produce an increasing trend in heat uptake (dN/dT > 0,dR/dT < 0)723

by the climate system. The opposed trends due to the global mean and its pattern lead724

to the weak net trend of R and make the EffCS larger in amip-piForcing during this725

period.726

Thus R is not a response to T alone, but depends also on the changing patterns727

of SST. It could be that both the global mean and the patterns have the same causes728

(unforced or forced), but they do not have a consistent relationship. The time-variation729

of α̃ in amip-piForcingClimI (and therefore amip-piForcing) is mainly due to the pat-730

terns of δTSD, while α̃ for the uniform δTSU is fairly constant through the historical731

period (Figure 8c). Assuming that HadCM3-A is typical of AGCMs in amip-piForcing,732

we suppose that the common time-variation of α̃ is due to the patterns, while the fairly733

time-constant model spread is due to model-dependent climate feedback in response734

to uniform warming.735

6.3 Differences between simulated and observed responses to volcanic forcing736

In Section 5.4 we concluded that the time-dependence of historical α̃E could be mainly737

explained by the varying relative importance of forcings due to greenhouse gases and738

volcanic aerosol, if α is larger for the latter. In Sections 6.1 and 6.2 we have seen739

that the time-variation of α̃E is different for amip-piForcing and historical, due to the740
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changing patterns of deviation of SST from its global mean. The amip-piForcing α̃E741

is particularly small around 1940 because the pattern and global mean have opposite742

effects on the trend in R, while it is particularly large around 1990 because their effects743

have the same sign. We conjecture that these findings could be linked if volcanic forcing744

has a pattern effect that gives large α̃ in both amip-piForcing and historical, but with745

different time-dependence.746

For information about the effect of volcanoes, we turn to historicalNat. There is747

greater similarity in time-dependence of α̃E since 1930 between historicalNat and amip-748

piForcing than between historical and amip-piForcing (Figure 5c). Although all three749

have smaller α̃E in the first half of the twentieth century (higher EffCS), the minimum750

has a similar magnitude and date (around 1940) in amip-piForcing and historicalNat,751

while historical is increasing by then, having reached its minimum earlier and at a752

larger value. Moreover, α̃E is minimum (highest EffCS) in recent decades in historical,753

but maximum (lowest EffCS) and similar in amip-piForcing and historicalNat. During754

this period in the latter two experiments α̃E is close to 2.3 W m−2 K−1 (magenta cross755

in Figure 5c, EffCS 1.6 K), which is the value calculated from observational estimates756

for 1985–2011 for T (HadCRUT4 blended land and sea surface temperature, Morice757

et al 2012) and N (ERBE and CERES satellite measurements of TOA radiative flux,758

Allan et al 2014) with the AR5 F .759

Despite the similarity of the timeseries of α̃E(t) in amip-piForcing and historical-760

Nat, their R(t) timeseries look quite different (Figure 8a,b). In historicalNat, imme-761

diately after each major volcanic eruption, there is a large negative spike in R, which762

then returns to zero over ∼10 years. The same structure is apparent in R in the histor-763

ical experiment, where it is superimposed on the positive trend due to global warming.764

The episodic covariation of volcanically forced T and R gives the large α̃E ' 2.5765

W m−2 K−1 of historicalNat for the period since 1975 (green in Figure 6b).766

In the same period, while amip-piForcing has a similar α̃E (blue line), it does not767

show unusually large variations in R at the times of eruptions (Figure 8a); on the con-768

trary, it has larger excursions at other times, presumably due to unforced variability.769

The same difference of character can be seen when comparing T from the CMIP5 his-770

torical experiment with the observational estimate (Figure 2). Rapid cooling following771

major eruptions is clear in CMIP5, but not in observations.772

The forced response in R to volcanoes in obvious in the historicalNat multimodel773

mean (green line in Figure 8b), because the unforced variability has been intentionally774

suppressed by taking the mean. The negative spikes in R should also be present in amip-775

piForcing if the CMIP5 simulated forced response is realistic. Because amip-piForcing776

is driven by the observed record of SST, which is a single realisation of history rather777

than a mean, we expect that unforced variability will be larger than in the historicalNat778

multimodel mean, and could cancel out a volcanic spike by chance.779

However, it seems unlikely that all the historical major eruptions would have been780

obscured in this way. The historicalNat multimodel mean R(t) falls below −0.3 W m−2781

following the eruptions of Krakatau, Agung, Santa Maria and Pinatubo (green line in782

Figure 8b). The same is true for all four of these eruptions in the majority of the 31783

individual historicalNat integrations (Table 2), where we count R < −0.3 W m−2 in the784

year of the eruption or in either of the following two years as a volcanic signal. There785

is no historicalNat integration in which fewer than two of these four eruptions produce786

such a signal, but none of them does in amip-piForcing R (blue line in Figure 8a).787

An alternative possibility is that unforced variability in R is larger in the real world788

than in CMIP5 AOGCMs, and dwarfs all variations of the size of the forced volcanic789
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signal. Indeed, the magnitude and duration of accelerated trade winds and sea level790

trends in the Pacific during this period also exceed their occurrence in piControl exper-791

iments (England et al 2014; Bilbao et al 2015). Such large unforced variability would792

dominate the T–R relationship throughout the historical period, Neither anthropogenic793

nor natural forced signals would be discernible; instead α̃E would be fairly steady, like794

in the individual historical integrations (α̃i of MPI-ESM1.1 and α̃I of CMIP5 in Fig-795

ure 5a, Section 5.1). This is quite unlike what we see in amip-piForcing (Figures 5c796

and 6b).797

Therefore we suggest that CMIP5 AOGCMs are not realistic in their response to798

volcanic forcing. In the real world, represented by amip-piForcing, volcanic forcing does799

not cause a large rapid cooling of T , as it does in CMIP5. Instead, volcanic forcing800

“sucks” heat from the ocean beneath. The system reacts as though it had a large heat801

capacity, so that T ' 0 ⇒ R ' 0 ⇒ N ' F < 0, yielding a negative spike in N . We802

suggest that, in both the real world and CMIP5, the volcanically forced SST pattern803

gives a large α, but that it lasts for longer in the real world. Following the eruption,804

the pattern of SST change causes R > 0 for a decade or two, perhaps through some805

persistent response to the subsurface cooling (discussed in Section 7). Consequently the806

volcanic episodes since 1960 are not distinct in the real world, but form a continuous807

period.808

In support of this suggestion, we note that the normalised patterns of SST varia-809

tion during 1975–2004 in historicalNat and observations have some similarities (Fig-810

ure 9a,b), especially regarding features in the North and low-latitude Pacific. On the811

other hand, the normalised patterns of the historical and historicalGHG experiments812

(Figure 9c,d) resemble each other in these regions. For these “normalised patterns”, we813

exclude areas poleward of 65◦, where observational SST data is sparse and the com-814

parison with model data is complicated by the treatment of sea-ice. We regress local815

annual-mean SST over the 30 years against its area-mean within 65◦S–65◦N, to obtain816

a pattern in K K−1 with unit mean. Note that any correlated variation of local SST817

and global mean will contribute to this pattern, both trends and variability. Finally we818

subtract unity uniformly, and divide by the spatial standard deviation. The result is a819

field with zero mean and unit standard deviation.820

The observed and historicalNat patterns could be consistent with a low EffCS821

because the warming in the west Pacific in these patterns leads to large upper tropo-822

spheric warming, giving large negative lapse-rate feedback, and increased stability in823

the low-cloud regions, giving small or negative cloud feedback (Zhou et al 2016; Ceppi824

and Gregory 2017; Andrews and Webb 2018). Further GCM experiments or analyses825

are needed to establish how the differences in the observed and CMIP5 SST patterns826

lead to their various values of α.827

Although the pattern of SST change in historicalNat is somewhat similar to ob-828

servations, it is much less pronounced, as shown by smaller magnitude of SST vari-829

ation explained by regression in historicalNat (0.025 K) compared with observations830

(0.100 K). (This number is the spatial standard deviation of the field obtained from831

multiplying the pattern in K K−1 from the regression, before normalisation, by the832

temporal standard deviation of T . This field quantifies the local temporal variation of833

SST due to the global-mean temporal variation.) The comparison suggests that the834

AOGCMs respond with a realistic pattern to volcanic forcing, but too weakly. Conse-835

quently the stronger SST variation due to greenhouse-gas forcing (0.044 K) is able to836

overwhelm the volcanic pattern during 1975–2004 in the CMIP5 historical experiment,837

making α̃E similar to historicalGHG (Figure 5c). In the real world, on the other hand,838
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the volcanic response is persistent and dominant, and accounts for the low EffCS of839

the AMIP period.840

7 Summary, discussion and conclusions841

7.1 How accurately can CO2 EffCS be estimated from historical EffCS?842

Many calculations have been published of the effective climate sensitivity (EffCS),843

i.e. the equilibrium warming of global-mean surface air temperature for doubled CO2,844

as estimated from non-equilibrium states or radiative forcings other than 2 × CO2.845

Some calculations use observed climate change during the historical period, others846

use GCM simulations of climate change with idealised elevated CO2 concentration.847

For convenience, we refer to these two kinds of estimate as “historical” and “CO2”.848

Both historical EffCS and CO2 EffCS have a wide spread (Knutti et al 2017). We have849

quantified several reasons for the differences among these estimates, in order to address850

the question which supplies the title of this work.851

First, the estimate of the climate feedback parameter α using ordinary least-square852

regression (OLS) of the global-mean top-of-atmosphere radiative response against the853

global-mean surface temperature change from a single realisation of historical change854

(such as the real world) is both uncertain and biased towards low values by the presence855

of unforced variability. The bias causes EffCS ∝ 1/α to be overestimated, in the mul-856

timodel mean by about 10% for regression of the entire historical period, and 20% for857

30-year periods. It is unimportant in scenarios of strong forcing, such as abrupt4xCO2,858

but cannot be neglected when considering historical variations.859

Second, evaluating historical EffCS is hampered by the systematic uncertainty in860

the forcing F , which in CMIP5 AOGCMs gives a ±45% uncertainty in historical Eff-861

CS. The present phase of the Coupled Model Intercomparison Project contains new862

experiments which should greatly reduce the spread in all the model forcings, but an863

accurate estimate of real-world historical EffCS from the global-mean energy balance864

depends on reduction of the uncertainty in real-world historical F , assessed as about865

±30% by the AR5.866

Third, α varies substantially on multidecadal timescales, according both to AOGCM867

historical experiments, which simulate climate change in response to forcing agents, and868

to AGCM amip-piForcing experiments, in which observed historical sea surface tem-869

perature is prescribed. This means that historical EffCS depends on the period from870

which it is evaluated. The historical and amip-piForcing experiments indicate that for871

most of the historical period the EffCS was smaller (α larger) than CO2 EffCS, by up872

to a factor of ∼ 2 at some times. This bias is in the opposite direction to and therefore873

not explained by bias in the OLS slope.874

The time-variation of α in the historical experiments can mainly be explained by the875

varying relative importance of greenhouse gas and volcanic aerosol forcing, provided876

that the EffCS for volcanic aerosol forcing is smaller than for CO2 forcing (i.e. its877

efficacy is less than unity), so that historical EffCS falls below CO2 EffCS during878

volcanically affected periods. As a result, the EffCS from regression of the historical879

multimodel mean for the entire historical period is about 5% lower than CO2 EffCS.880

The time-variation of α in the amip-piForcing experiments is due to the evolving881

patterns of SST, and synchronised in all the AGCMs because of their common boundary882

conditions. The EffCS from regression of the amip-piForcing multimodel mean for the883
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entire historical period is about 30% less than CO2 EffCS, a much greater bias than884

in the historical multimodel mean.885

AOGCM historical and AGCM amip-piForcing experiments agree that the Eff-886

CS was relatively high in the period around 1940, when there were no large volcanic887

eruptions, and both greenhouse-gas and anthropogenic aerosol forcings were increasing888

in magnitude. The EffCS for this period in amip-piForcing has a range of 2.1–4.6 K, and889

is highly correlated with AOGCM CO2 EffCS across models. The agreement increases890

confidence in this range as an estimate of CO2 EffCS.891

Since 1960, there have been three large volcanic eruptions. During this period, Eff-892

CS falls to its lowest values in amip-piForcing, of around 1.6 K, in agreement with our893

observational estimate for the 27 years around 1998, and consistent with low EffCS for894

volcanic forcing. On the other hand, EffCS increases since 1960 in the historical ex-895

periment, converges with the historicalGHG EffCS, and is correlated across AOGCMs896

with the CO2 EffCS. We further discuss the disagreement between historical and amip-897

piForcing in Section 7.2.898

Nearly 30 years have now passed since the eruption of Pinatubo, similar to the899

interval between the eruption of Katmai and 1940, so we might expect that the Eff-900

CS has returned to its CO2 value, although another decade of observations may be901

required to demonstrate it clearly. Because greenhouse-gas forcing is increasing more902

rapidly now than in the early 20th century, the OLS bias in α will be less important.903

We therefore consider that the EffCS of the first 30 years of the present century may904

give the most accurate energy-balance historical estimate of CO2 EffCS, especially if905

the uncertainty in F can be reduced, unless another explosive volcanic eruption occurs.906

7.2 SST and EffCS since 1975907

We have carried out AGCM experiments to show that the observed pattern of SST908

change during 1975–2004 (the final 30 years of the CMIP5 historical experiments) in-909

duces heat loss from the climate system, producing the historically low EffCS that910

is simulated in amip-piForcing, and suppressing the greenhouse warming. In some re-911

spects this pattern (Figure 9a,b) resembles the Interdecadal Pacific Oscillation, which912

has been associated with the reduced rate or hiatus of global warming during the early913

twenty-first century, through the influence of accelerated Pacific trade winds on ocean914

heat uptake (England et al 2014; Meehl et al 2016; Oka and Watanabe 2017; Xie and915

Kosaka 2017).916

The observed pattern of SST change during 1975–2004 has some similarities to917

the pattern that results during the same period from volcanic forcing in the AOGCM918

historicalNat experiment, including for instance the contrast between strong warming919

in the western Pacific and cooling or weak warming in the east, consistent with feed-920

backs giving a low EffCS (Zhou et al 2016; Ceppi and Gregory 2017; Andrews and921

Webb 2018). However, the amplitude is much weaker in historicalNat than in observa-922

tions. Therefore in the historical experiment the volcanic pattern is overwhelmed by923

the greenhouse-gas pattern as the latter forcing increases, whereas in the real world924

the similar but stronger pattern has continued to dominate. This explains why α for925

recent decades is larger (EffCS smaller) when estimated from observations or AGCM926

amip-piForcing experiments than from AOGCM historical experiments.927

There are several possible causes of the observed SST pattern, apart from volcanic928

forcing. It could be forced by anthropogenic aerosol (Smith et al 2016), which is not929
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distinguished in our analysis of the time-dependence of the EffCS. It could be due to930

an internal mode of Pacific interannual variability that is stimulated by the response931

to or recovery from volcanic forcing (Emile-Geay et al 2008; Maher et al 2015; Khodri932

et al 2017; Hua et al 2018; Eddebbar et al 2019), or it could be due entirely to unforced933

variability.934

Whatever the cause, it is striking that α in amip-piForcing, associated with this935

pattern, reaches such a large value, given that it is derived from the single realisation of936

observed climate history. This contrasts with the AOGCMs, in which we found α eval-937

uated from a single integration to be biased low by the presence of unforced variability938

(Appendix C), and comparably large values are attained only in the multimodel mean.939

We speculate that there are coupled atmosphere-ocean feedbacks which reinforce this940

SST pattern in the real world but are lacking in models (McGregor et al 2014; Raedel941

et al 2016; Yuan et al 2018; Liu et al 2018; McGregor et al 2018).942

The divergence of historical and amip-piForcing α indicates either that the AOGCM943

forced response is unrealistic, or that unforced variability has recently taken the Eff-944

CS outside the range it shows in piControl experiments. Either explanation implies a945

deficiency in AOGCMs, and calls for further investigation.946

7.3 Prospects for estimating the climate response to CO2947

There are powerful reasons for wanting to evaluate the CO2 EffCS from existing his-948

torical data, rather than waiting until we have accumulated enough further years of949

greenhouse-gas-forced climate change to enable an accurate energy-budget estimate.950

For the period since the 1980s, an estimate of EffCS can already be made from the951

observed energy budget (subject to systematic uncertainty in F ), but this may be an952

underestimate of the CO2 EffCS, due to pattern effects (Sections 7.1 and 7.2). To953

avoid this problem, GCMs have been used to obtain relationships between historical954

and CO2-forced EffCS that may be used to correct observationally derived estimates955

of the EffCS (Armour 2017; Andrews et al 2018). However, such methods suffer from956

systematic uncertainty owing to their dependence on the SST patterns being correctly957

represented by GCMs.958

In order to make better use of the observed data and to refine or constrain AOGCM959

projections of the future, we need to study the interactions of the forcings, climate960

feedbacks and ocean heat uptake with the spatiotemporal patterns of SST change.961

Although such an analysis is more difficult than appealing to the historical global962

energy balance, it is necessary because the assumption that a single constant global963

climate feedback parameter can describe the responses to all forcings on all timescales964

is clearly inadequate.965

Appendices966

A The step model967

The step model (Good et al 2011; Hansen et al 2011; Good et al 2013; Gregory et al 2016)968

is based on the assumption that the climate responses Xi(t) in the quantities of interest (T969

and N) to separate forcings Fi(t) combine linearly to give X(t) =
∑

i Xi(t) in response to970

the forcings applied together as F (t) =
∑

i Fi(t). By assuming further that the response to971

any step-change in forcing depends only on the size of the step and not the nature of the972
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forcing agent, we can estimate the response to historical time-dependent net forcing F (t)973

due to all agents by treating it as the sum of a set of discrete steps in forcing, such that974

F (t) =
∑t

j=1 [F (j) − F (j − 1)] where j are successive instants of time (we use a timestep of975

one year) and F (0) = 0. The response of an AOGCM at time t to the forcing increment which976

occurred at time j < t is estimated as X4×(t − j + 1)[F (j) − F (j − 1)]/F4×, where X4× is977

the AOGCM’s time-dependent response to the step-change forcing F4× in the abrupt4xCO2978

experiment, since time t is timestep t − j + 1 since the forcing increment [F (j) − F (j − 1)]979

occurred. Hence, adding up the response to all previous increments,980

X(t) =
t∑

j=1

X4×(t− j + 1)
F (j)− F (j − 1)

F4×
.

Note that the step-model makes no assumption about the value or time-variation of α, except981

that it is the same for all magnitudes and kinds of forcing.982

B Choice of independent variable for regression983

Ordinary least-squares (OLS) linear regression assumes that all variations in the independent984

variable x cause proportionate variations in the dependent variable y. If there is “noise” in y,985

meaning fluctuations that are linearly uncorrelated with the “signal”, which is a function of986

x, the OLS estimate of the slope dy/dx is imprecise, with a standard error that increases with987

the amplitude of the noise (Appendix D.2), but it is unbiased, meaning that expectation value988

of the estimate equals the true value. On the other hand, if our data for x contain some noise989

which does not cause variations in y i.e. the “true” independent x on which y depends is not990

precisely known (possible sources of such noise are considered in Section 4), the OLS estimate991

of the slope is biased. It is expected to be smaller than the true value, and the bias grows with992

the amplitude of the noise (Appendix D.3).993

Therefore if one of the variables contains noise which is not correlated with the other994

variable, the former should be chosen as dependent and the latter as independent, in order to995

obtain an unbiased estimate of the slope. This is the natural choice for a situation where the996

independent variable is chosen precisely by the experimenter, and the dependent variable is997

measured with some uncertainty. In our application, N and T are physically both dependent998

on the prescribed F , so it is not obvious which of R = F − N or T we should select as the999

independent variable.1000

Because random error is small in the MPI-ESM1.1 historical ensemble mean, we expect1001

the bias in the estimated slope to be small, regardless of whether T or R is chosen as the inde-1002

pendent variable. The correlation between T and R is less than unity, so the slopes for the two1003

choices are not quite equal (Appendix D.4), but they are close, namely 1.36±0.04 W m−2 K−1
1004

for regression of ensemble-mean R against ensemble-mean T , denoted by αe (Table 1, solid line1005

in Figure 4), and 1.54 ± 0.05 W m−2 K−1 for T against R (dashed line), where the standard1006

error is inferred from the residual of the fit. Therefore the historical slope for the ensemble1007

mean is αe =1.4–1.5 W m−2 K−1, assuming the underlying physical relationship is truly linear.1008

The mean of the ensemble of slopes obtained by regression of R against T in the individual1009

integrations is αi = 1.38±0.01 W m−2 K−1 (mean and standard error), not shown in Figure 4)1010

because it is statistically indistinguishable from αe. However, the mean of the slopes from1011

individual members when we regress T against R is quite different (dotted line in Figure 4,1012

slope of 2.08 ± 0.01 W m−2 K−1), and looks like a poor fit to the ensemble-mean data. This1013

bias is the expected outcome of OLS regression of y against x when x contains noise which is1014

uncorrelated with y (Appendix D.3). If there is uncorrelated noise in R, linear regression of T1015

against R gives an estimate of dT/dR which is biased low, and hence its reciprocal α = dR/dT1016

is biased high.1017

To minimise the bias, we prefer to choose T as the independent variable for OLS regression1018

(Appendix D.4), assuming that the noise in R is not correlated with T . Certainly, there appears1019

to be more noise in R than in T (Figure 3), consistent with physical understanding that T1020

is related to the time-integral of N , (although a similar bias in the slope could be caused by1021

correlated noise in T and R, Appendix D.6). The results from the MPI-ESM1.1 are consistent1022

with assuming that T contains no noise, but this may not hold for other AOGCMs.1023
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Fig. 10 Relationships in CMIP5 AOGCM historical experiments between α evaluated from
the ensemble-mean R(t) and T (t), and the ensemble-mean of α evaluated from R(t) and T (t) in
individual integrations, (a,b) between αi and αe, (c) between time-mean α̃i and time-mean α̃e

(see Table 1 for notation). Only those AOGCMs which have more than one ensemble member
are included (see Table 2). We use our AR5′ estimate for historical F (t) for all AOGCMs
except HadGEM2-ES and MPI-ESM1.1 (models J and P), for which we use F (t) diagnosed in
these models individually (compared in Figure 1). The dotted line in (b) is zero on the vertical
axis; all models lie very near or above this line, indicating that αe−αi ≥ 0. The dotted line in
(a,c) is 1:1; all models lie very near or to the right of this line in (a), indicating that αe ≥ αi

(consistent with b), and in (c), indicating that time-mean α̃e ≥ time-mean α̃i.
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C Error in estimating climate feedback from a single ensemble member1024

Using the HadGEM2 historical F (Section 3.1), we carry out the calculations of Appendix B1025

for the HadGEM2-ES historical ensemble, which comprises only five members, a typical size for1026

CMIP5 submissions. We obtain αi = 0.94±0.10 W m−2 K−1 and αe = 1.22±0.14 W m−2 K−1,1027

thus αe > αi, unlike MPI-ESM1.1, in which we found above that αe ' αi. The correlation1028

coefficient between ensemble-mean R and T is 0.59, weaker than for MPI-ESM1.1 due to the1029

smaller ensemble size and consequently greater noise in the ensemble mean.1030

For the same calculations with the historical experiments of other CMIP5 AOGCMs we use1031

our AR5′ estimate for F (t) (Section 3.3), because F has not been diagnosed in these models.1032

Since F is model-dependent, it may differ from the AR5′ estimate, so α from the regression1033

could be inaccurate; that would be a systematic error that affects all the ensemble members1034

of each model equally, rather than a statistical uncertainty affecting them randomly. Within1035

each model ensemble, noise produces a spread of α. The geometrical multimodel mean of the1036

ensemble standard deviation of α is 0.11 W m−2 K−1, ∼10% of the multimodel-mean αe.1037

Across AOGCMs, the correlation cofficient of αi and αe is very high (0.96, Figure 10a)1038

but αe > αi (Figure 10b), as for HadGEM2-ES, except in the MPI and CanESM2 AOGCMs,1039

in which αe ' αi. This is consistent with the bias of OLS regression whereby the slope is1040

underestimated when there is noise in T that is not correlated with R (Appendix B); because1041

the noise is larger in individual integrations than in the ensemble mean, αi is underestimated1042

more severely than αe. Furthermore, the bias tends to be greater for larger αe (Figure 10b,1043

correlation 0.61), consistent with the same explanation (Appendix D.3). The multimodel-mean1044

underestimate of αi with respect to αe is 10%.1045

As mentioned in Section 1, estimates of α using observed N can be made only from the1046

more recent ∼30 years, since interannual variation of N is not well enough known at earlier1047

times. To evaluate the effect of the OLS bias on α estimated from a 30-year period, denoted by1048

α̃ (Table 1), with each AOGCM we regress R against T for 30-year periods starting in every1049

year (i.e. they overlap) in every integration, obtaining a timeseries α̃(t) for each integration1050

(following Gregory and Andrews 2016). From these we calculate the ensemble-mean timeseries,1051

denoted by α̃i(t), and its historical time-mean. The time-mean is the expectation value of α̃ for1052

a randomly chosen 30-year period of a single integration. The geometrical multimodel mean1053

of the ensemble standard deviation of α̃, pooled over years in each model, is 0.42 W m−2 K−1,1054

30% of the multimodel-mean time-mean α̃e. Similarly, from the ensemble-mean R and T of1055

each model we compute the α̃e(t) for 30-year periods and its historical time-mean.1056

Across models, the correlation coefficient of the time-means of α̃i and α̃e is high (0.88),1057

but time-mean α̃e is greater in all cases (Figure 10c), consistent with a greater bias of OLS1058

regression for a randomly chosen 30-year period of a single integration than of the ensemble1059

mean, just as for αi and αe, but the effect is more pronounced because the noise is more1060

important for a shorter period. The multimodel-mean underestimate of α̃i with respect to α̃e1061

is 20%. Since the CMIP5 ensembles are fairly small, it is likely that α̃e is also biased, and the1062

underestimate of the true value therefore greater.1063

D Statistical issues in regression1064

In this appendix, we consider various statistical issues related to the estimation of α as the1065

slope of the regression of R against T . These issues apply more generally than to those specific1066

variables. The general problem is to estimate the slope m in the linear relationship y(t) =1067

mx(t), where x and y are timeseries of length n with values at times t = τ1, τ2, . . . , τn, given1068

the data x̂i and ŷi, which may differ from x and y because of random noise. (To simplify1069

the formulae we have chosen the origin so that the means of x and y are zero.) In the model1070

world, we may have an ensemble of integrations i = 1, . . . N , with the same x and y in all but1071

different noise in each. For ensemble member i, we obtain an estimate m̂i = cov(x̂i, ŷi)/var(x̂i)1072

of m = dy/dx by ordinary least-squares linear regression (OLS) of ŷi(t) against x̂i(t). The OLS1073

estimate minimises the root-mean-square (RMS) of the residuals of the yi(t) from the fitted1074

line in the y-direction. By doing so it maximises the likelihood that the residuals are consistent1075

with independent identically distributed random noise εi(t) in y.1076
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Fig. 11 Illustration of the effect of random noise on ordinary least squares regression. We take
the x(t) shown in black in (a), with a slope of unity so that y = x, generate many sets of x̂i(t)
and ŷi(t) by adding noise either to y or x, and calculate the distribution of estimated slopes.
(a) Red shows an example with noise in y of standard deviation 0.075 and its regression line,
grey envelope is the 5–95% range of regression lines; (b) distribution of correlation coefficients
between x̂i(t) and ŷi(t) with noise in either x or y; (c,d) distribution of slopes of regression
lines when there is noise in y or x respectively; (b,c,d) each show results for noise with three
different standard deviations, as indicated by the key in (d).

D.1 The difference method is a special case of regression1077

In the special case of n = 2, whatever the noise may be, a straight line can be drawn exactly1078

through the two points x̂ = x0 ± 1
2

∆x and ŷ = y0 ± 1
2

∆y, leaving zero residual. Denoting1079

a mean by M(·), we obtain M(x̂) = x0, M(ŷ) = y0, var(x̂) = M(x̂2) − (M(x̂))2 = ( 1
2

∆x)2,1080

cov(x̂, ŷ) = M(x̂ŷ) −M(x̂)M(ŷ) = 1
4

∆x∆y. Hence for this case the OLS formula gives m̂ =1081

var(x̂)/cov(x̂, ŷ) = ∆y/∆x, the slope of the line passing through the points. Therefore m̂1082

estimated as the slope between the endpoints in x̂ is a special case of OLS, using a minimal1083

amount of data, and the results derived in this appendix, that m̂ is uncertain and may be1084

biased on account of noise in x and y, apply to the difference method (Equation 2) just as1085

they do to regression (Equation 3).1086
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D.2 No bias in m̂ due to uncorrelated noise in y1087

The rationale for the use of OLS is that the the independent variable x̂i is perfectly known1088

but the dependent variable ŷi is noisy,1089

x̂i(t) = x(t) ŷi(t) = y(t) + εi(t) = mx(t) + εi(t). (4)

With these assumptions, var(x̂) = var(x), and1090

cov(x̂, ŷ) = cov(x,mx+ ε) = M(x(mx+ ε))−M(x) M(mx+ ε) = m var(x) + M(xε)

since M(x) = 0. Therefore the OLS slope1091

m̂ =
cov(x̂, ŷ)

var(x̂)
= m+

M(xε)

var(x)

is an imprecise estimate of m. However, the expectation value E(m̂) = m, because E(M(xε)) =1092

0 if there is no correlation between x and ε; we call the noise “uncorrelated” to indicate that is1093

not correlated with x or y. Thus, the OLS estimate of the slope is not biased by the presence1094

of uncorrelated noise in y.1095

To illustrate this, we choose a set of n = 10 random numbers x(t) in the interval 0–1,1096

and take m = 1 ⇒ y = x (x, y and y = x are shown in black in Figure 11a). We generate1097

N = 105 instances of ŷi(t) from y(t) by adding independent normally distributed εi(t) with1098

standard deviation of 0.075. The correlation coefficients of x with ŷi have a positively skewed1099

distribution (red in Figure 11b). We regress each ŷi(t) against x(t) to obtain m̂i (an example1100

ŷi and its regression line are shown in red in Figure 11a). The distribution of m̂ is normal,1101

its mean is m = 1 and its standard deviation 0.079 (red in Figure 11c). If we increase the1102

amplitude of noise to 0.100 and 0.125, m̂ remains unbiased but becomes less precise (standard1103

deviation of 0.105 for green and 0.131 for blue in Figure 11c), and the correlation is degraded1104

gradually (Figure 11b).1105

Although x was chosen randomly, there is no uncorrelated noise in x in this example,1106

because x̂i = xi. For example, we might have1107

x̂i(t) = xi(t) = x(t)+ξi(t) ŷi(t) = yi+εi(t) = mxi(t)+εi(t) = mx(t)+mξi(t)+εi(t), (5)

where x(t) is the response to external forcing and the same in all ensemble members, while1108

ξi(t) is unforced variability that is different in each member. Although ξ might be called “noise1109

in x”, it is perfectly correlated with noise mξ in y. If all variations x′ in x̂, however they are1110

caused, produce corresponding variations mx′ in ŷ, m̂ will be an unbiased estimate of m. If x1111

and y are T and R, this is the case which Proistosescu et al (2018) call “ocean-forced”.1112

D.3 Bias in m̂ due to uncorrelated noise in x1113

If y is not noisy but x contains uncorrelated noise δi(t) in ensemble member i, we have1114

x̂i(t) = x(t) + δi(t) ŷi(t) = y(t) = mx(t), (6)

which differs from Equation (5) because the variations δ in x̂ do not produce proportionate1115

variations mδ in ŷ. In this situation1116

cov(x̂, ŷ) = cov(x+ δ,mx) = M((x+ δ)mx)−M(x+ δ) M(mx)

= m var(x) +mM(xδ),

and1117

var(x̂) = M((x+ δ)2)− (M(x+ δ))2 = var(x) + var(δ) + 2M(xδ). (7)

Similiar to Section D.2, E(M(xδ)) = 0 for uncorrelated noise, giving1118

m̂ =
cov(x̂, ŷ)

var(x̂)
'

m

1 + var(δ)/var(x)
< m
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i.e. the estimate of the slope is not only imprecise, but also biased low if there is uncorrelated1119

noise in x. (We have written this as an approximation because the expectation value of a ratio1120

does not exactly equal the ratio of expectation values.) The slope is underestimated, through1121

the appearance of var(δ) in the denominator, because OLS assumes that all variations in x̂1122

cause variations in ŷ. The larger the ratio of noise to signal var(δ)/var(x), the greater the bias.1123

This bias has been called “regression dilution” (Frost and Thompson 2000).1124

We illustrate this case with the same x(t) and y(t) as the previous case, but this time we1125

take ŷ(t) = y(t) and generate N instances of x̂i(t) from x(t) by adding independent normally1126

distributed δi(t). The distribution of m̂i from regressing y(t) against x̂i(t) is negatively skewed1127

and biased low (median 0.95, 5–95% range 0.85–1.09, red in Figure 11d). For larger noise, the1128

spread and the bias both increase (median 0.92 for green and 0.88 for blue in Figure 11d). The1129

distribution of correlation coefficients in the three cases are the same as for noise in y, because1130

the formula is symmetrical in x and y.1131

In our application we are estimating m = α from R = y and T = x. The expected1132

magnitude of the bias in α̂ is therefore1133

E(α̂)− α =
−var(δ)

var(T ) + var(δ)
α.

If var(T ) and var(δ) are independent of α, this formula predicts that the expected bias in1134

α̂ will increase in proportion to α. In our set of model simulations of the past, var(T ) is1135

not independent of α, because we expect that a model with a larger α (smaller EffCS) will1136

produce a smaller historical T increase. This makes var(T ) smaller, 1/(var(T ) + var(δ)) larger,1137

and strengthens the dependence of the expected negative bias E(α̂)− α upon α.1138

D.4 Correct choice of independent variable1139

If y is independent and perfectly known while x is dependent and noisy, we should instead1140

minimise the RMS deviations of the x from the fitted line in the x-direction, obtaining from1141

ensemble member i an estimate m̂†i = cov(x̂i, ŷi)/var(ŷi) of the slope dx/dy. The product1142

m̂†i m̂i = (cov(x̂i, ŷi))
2/(var(x̂i)var(ŷi)) = r2i , where ri is the (product-moment) correlation1143

coefficient between x̂i and ŷi. Thus the lines fitted in the two ways have equal slopes m̂i = 1/m̂†i1144

if and only if x̂i and ŷi are perfectly correlated or anticorrelated (ri = ±1).1145

In the usual situation of imperfect correlation, the choice of independent variable therefore1146

makes a difference to the OLS estimate of the slope. This is because of the bias caused by1147

noise in the independent variable (Section D.3). If one of the variables is noisy and the other1148

is not, we must treat the noisy variable as the dependent one to get an unbiased estimate of1149

the slope.1150

D.5 Uncorrelated noise in both x and y1151

If there is independent noise in both x and y, we cannot get an unbiased estimate of m using1152

OLS. This case can be be treated with “orthogonal” or “total least-squares” regression, in1153

which the RMS deviation of the points from the line is minimised in a direction orthogonal1154

to the line, but that requires a prior estimate of the relative size of δ and ε, which we do not1155

have. Other methods, called “error in variables”, have been developed for this case (e.g. Cahill1156

et al 2015).1157

D.6 Correlated noise in x and y1158

Another situation to consider is that of correlated noise in x and y. Suppose that1159

x̂i(t) = x(t) + ξi(t) ŷi(t) = mx(t) + µξi(t) + εi(t), (8)
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where µ is a constant and ξi is noise that is different in each ensemble member. Because1160

ξi affects both x̂i and ŷi, the noise x̂i(t) − xi(t) = ξi(t) in x and the noise ŷi(t) − yi(t) =1161

µξi(t) + εi(t) in y have a non-zero correlation coefficient µ var(ξ)/
√
µ2var(ξ) + var(ε). Now by1162

following the method of Appendix D.3 we obtain1163

E(m̂) = E

(
cov(x̂, ŷ)

var(x̂)

)
'
m var(x) + µ var(ξ)

var(x) + var(ξ)
= m

1 + (µ/m)(var(ξ)/var(x))

1 + (var(ξ)/var(x))
,

assuming x and ξ are uncorrelated.1164

This case is more general than, and encompasses, all of those previously considered. If1165

var(ξ) � var(x), the noise in x is negligible, and we recover E(m̂) = m. If µ = m, yi(t) =1166

m(xi(t) + ξi(t)), as in Equation (5), in which case we have shown that E(m̂) = m still (Ap-1167

pendix D.2). If µ = 0, the noise in x and y is decorrelated, and E(m̂) = m/(1+var(ξ)/var(x)) <1168

m (as in Appendix D.3). The general formula with µ 6= 0 applies to two relevant physical sit-1169

uations in which T is x, R is y and m is the climate feedback parameter for forced climate1170

change on multidecadal timescales.1171

Firstly, suppose there is unforced variability that arises spontaneously in N and causes1172

correlated variability T ′ in T . This is the case which Proistosescu et al (2018) call “radiatively1173

forced”, and we describe it qualitatively in Section 4. We can illustrate the effect with a simple1174

model. Suppose that that the spontaneous random variability Φ(t) in N(t) has a stepwise1175

behaviour, such that Φ(t) = Φj for τj ≤ t < τj+1, with a step-change in N of Φj − Φj−1 at1176

t = τj . According to the step model (Appendix A), the response of T ′ to Φ is1177

T ′(t) =

j∑
k=−∞

Θ(t− τk)(Φk − Φk−1) = Θ(t− τj)Φj +

j∑
k=−∞

Φk−1(Θ(t− τk−1)−Θ(t− τk))

for τj ≤ t < τj+1, where Θ(t) is the response of T per unit step-change in forcing at t = 0. This1178

T ′ response will add a further perturbation αT ′ to N , assuming the same climate feedback1179

parameter α applies to both forced and unforced variations. If TF (t) is the response of T to1180

external forcing F (t), we have T = TF + T ′, N = F − αTF + Φj − αT ′ and R = F − N =1181

αTF − Φj + αT ′. We can rewrite this as1182

T (t) = TF (t) +H(t) + Θ(t− τj)Φj R(t) = α(TF (t) +H(t)) + Φj(αΘ(t− τj)− 1)

with1183

H(t) ≡
j∑

k=−∞
Φk−1(Θ(t− τk−1)−Θ(t− τk)).

This has the form of Equation (8) for correlated noise, with x = TF + H, ξ = Θ(t − τj)Φj ,1184

y = R, µ = (αΘ(t− τj)− 1)/Θ(t− τj) = α− 1/Θ(t− τj) and m = α, where H is the response1185

of T to Φ earlier than τj .1186

Physically, the correlation arises because the noise in T is the response to Φj , while the1187

noise in R is the sum of Φj itself and the response in N to Φj . Since the responses to Φj in both1188

N and T are proportional to Φj , the noise in R and T is correlated. From µ = m−1/Θ(t− τj)1189

we obtain µ−m = −1/Θ(t−τj) < 0 because for climate stability we must have Θ(t) > 0. Hence1190

µ < m⇒ E(m̂) < m. The climate feedback parameter will inevitably be underestimated if the1191

correlation is due to spontaneous fluctuations in N . The effect is therefore similar to regression1192

dilution (Appendix D.3) but it is not formally the same.1193

The correlation is present because both Φ and T have non-zero timescales of change. A zero1194

timescale of response in T means it changes instantly when the energy balance is perturbed,1195

keeping the system always in equilibrium with αT = F + Φ. This requires Θ(t) = 1/α for all1196

t > 0, and hence µ = 0, so the correlation vanishes. With stepwise variation, Φ has persistence1197

with a non-zero timescale. This can be removed by replacing its step-changes at times τj1198

with δ-function spikes. In that case Φ = 0 between these times, and Φj does not appear in1199

R = α(TF + T ′). This is the situation of perfectly correlated noise described by Equation (5),1200

with ξ = T ′, effectively the same as no noise, because signal and noise cannot be distinguished.1201

Secondly, ξ could represent unforced variability that arises spontaneously in T on inter-1202

annual timescales, causing an immediate radiative response in R that may have a climate1203

feedback parameter µ 6= m. The estimate of m obtained by regression of R against T will be1204

biased in the direction of µ by unforced variability. The larger var(ξ)/var(x), the greater the1205
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bias. The ratio will be large if unforced variability is large, or if the record is short and hence1206

shows little forced change. Unlike the previous cases, the bias in m̂ could be in either direction;1207

when µ ≶ m, E(m̂) ≶ m.1208
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Paynter D, Frölicher TL (2015) Sensitivity of radiative forcing, ocean heat uptake, and cli-1444

mate feedback to changes in anthropogenic greenhouse gases and aerosols. J Geophys Res1445

120:98379854, DOI 10.1002/2015JD0233641446

Pincus R, Forster PM, Stevens B (2016) The Radiative Forcing Model Intercomparison Project1447

(RFMIP): Experimental protocol for CMIP6. Geosci Model Devel 9:3447–3460, DOI1448

10.5194/gmd-9-3447-20161449

Proistosescu C, Donohoe A, Armour KC, Roe GH, Stuecker MF, Bitz CM (2018) Radiative1450

feedbacks from stochastic variability in surface temperature and radiative imbalance. Geo-1451

phys Res Lett 45:5082–5094, DOI 10.1029/2018GL0776781452

Raedel G, Mauritsen T, Stevens B, Dommenget D, Matei D, Bellomo K, Clement A (2016)1453

Amplification of El Nino by cloud longwave coupling to atmospheric circulation. Nat Geosci1454

9:106–111, DOI 10.1038/NGEO26301455

Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am1456

Meteorol Soc 89(3):303–311, DOI 10.1175/BAMS-89-3-3031457

Ringer MA, Andrews T, Webb MJ (2014) Global-mean radiative feedbacks and forcing in1458

atmosphere-only and coupled atmosphere-ocean climate change experiments. Geophys Res1459

Lett 41:4035–4042, DOI 10.1002/2014GL0603471460

Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S (2015) Unabated plan-1461

etary warming and its ocean structure since 2006. Nature Climate Change 5:240–245,1462

DOI 10.1038/NCLIMATE25131463

Sherwood S, Bony S, Boucher O, Bretherton C, Forster P, Gregory J, Stevens B (2015) Ad-1464

justments in the forcing-feedback framework for understanding climate change. Bull Am1465

Meteorol Soc 96():217–228, DOI 10.1175/BAMS-D-13-00167.11466

Shindell D (2014) Inhomogeneous forcing and transient climate sensitivity. Nature Climate1467

Change 4:274–277, DOI 10.1038/NCLIMATE21361468

Shine KP, Cook J, Highwood EJ, Joshi MM (2003) An alternative to radiative forcing for esti-1469

mating the relative importance of climate change mechanisms. Geophys Res Lett 30:2047,1470

DOI 10.1029/2003GL0181411471

Silvers LG, Paynter D, Zhao M (2018) The diversity of cloud responses to twentieth century1472

sea surface temperatures. Geophys Res Lett 45:391–400, DOI 10.1002/2017GL0755831473

Skeie RB, Berntsen T, Aldrin M, Holden M, Myhre G (2018) Climate sensitivity estimates—1474

sensitivity to radiative forcing time series and observational data. Earth Sys Dyn 9(2):879–1475

894, DOI 10.5194/esd-9-879-20181476

Smith DM, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL,1477

Thompson V (2016) Role of volcanic and anthropogenic aerosols in recent slowdown in1478

global surface warming. Nature Climate Change 6:936–940, DOI 10.1038/NCLIMATE30581479

Stevens B, Sherwood SC, Bony S, Webb MJ (2016) Prospects for narrowing bounds on earth’s1480

equilibrium climate sensitivity. Earth’s Future 4:512–522, DOI 10.1002/2016EF0003761481

Tett SFB, Betts R, Crowley TJ, Gregory J, Johns TC, Jones A, Osborn TJ, Öström E, Roberts1482
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