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Abstract 9 

Flavonoids are polyphenolic compounds of natural origin. They are extensively studied within 10 

drug discovery programmes due to their wide ranging biological activities such as anti-microbial, 11 

anti-oxidant, anti-tumor, neuroprotective and cardioprotective properties. The ability of 12 

flavonoids to coordinate with metal atoms has provided new leads for drug discovery 13 

programmes, with better pharmacological activities and clinical profiles than the parent 14 

flavonoids. In this review, the enhanced anti-oxidant and anti-cancer activities of flavonoid metal 15 

complexes versus the parent flavonoids are discussed. Possible mechanisms of action for the 16 

metal complexes, such as DNA binding and apoptosis induction, are also presented alongside an 17 

overview of the synthesis of the metal complexes, and the different techniques used for their 18 

characterization.  19 

Keywords 20 

Flavonoid, metal, flavonoid metal complex, anti-oxidant, anti-cancer. 21 

Introduction 22 

Flavonoids are phytochemicals that are mainly found in tea, citrus fruit, berries, apples and 23 

legumes. Chemically, they are polyphenolic compounds with a C6-C3-C6 ring system (Figure 1) 24 

and they are often found in esterified or glycosylated forms [1]. It was not until the 1990’s that 25 

research on flavonoids witnessed significant progress, with the number of publications increasing 26 

by approximately 6-fold, from 524 in 1990 to 3147 in 2017. As a result it is now well established 27 

that flavonoids have a wide and diverse range of biological activities [2, 3] such as anti-viral [4-28 

6], anti-bacterial [7-10], neuroprotective [11-13], cardioprotective [14, 15], anti-oxidant [16-18] 29 

and anti-cancer [3, 19, 20] properties.  30 
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Figure 1. Chemical structures of flavonoids from which organometallic derivatives have been 35 

prepared 36 

With respect to the beneficial health effects of flavonoids, the greatest impact has been seen 37 

within the anti-cancer field [2]. Flavonoids are known to interfere with an array of targets 38 

affecting cancer growth and progression. For example, they have been shown to induce cell cycle 39 

arrest and apoptosis [21] in addition to inhibiting mitotic spindle formation [22] and 40 

angiogenesis [23, 24]. Despite the advantages of having a compound that can interact with 41 

different targets, this can be a limitation due to limited selectivity. Indeed, this has been one of 42 

the biggest obstacles in the use of flavonoids as potential drugs due to its direct relation with 43 

adverse effects and poor in vivo toxicity profiles. However, despite the extensive research and 44 

number of structures and the activity reported for them, no flavonoid has to date reached the 45 
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market and only a limited number are in clinical investigation as anti-cancer agents, eg 46 

flavopiridol (phase-II) [25, 26], silibinin (phase-II) [27, 28], quercetin (phase-II) [29, 30] and the 47 

quercetin derivative QC12 (phase-I) [31] (Figure 2). Arguably, the main drug development 48 

challenge is the poor bioavailability of flavonoids, resulting from water insolubility and 49 

susceptibility to glucourinidation and/or methylation by intestinal and liver metabolism (first 50 

pass effect). There are several studies on the pharmacokinetics of flavonoids indicating their poor 51 

bioavailabilities. Wu et al., for instance, reported the absolute oral bioavailability of silibinin in 52 

rats to be approximately 0.95% [32]. In another study, flavopiridol’s mean oral bioavailability 53 

following bolus intra-gavage was shown to be 20% [33]. Moreover, a study by Gugler et al. 54 

failed to detect any plasma quercetin concentrations in subjects receiving 4 g orally [34].   55 

 56 

Figure 2. Flavonoids in clinical trials as anti-cancer agents 57 

Due to the presence of hydroxyl and oxo groups within flavonoids, they possess metal chelating 58 

abilities that can have profound effects on their pharmacokinetic and pharmacological properties 59 

[35, 36]. The flavonoid structure, type of chelating metal and the pH of the surrounding medium 60 
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are determining factors of the preferred coordination site [37].  Metal atoms have beneficial 61 

biological properties such as chelating free radicals and binding to DNA [38]. These properties 62 

can cause synergistic effects when combined with other active chemical entities such as the 63 

flavonoids. Accordingly, metal complexation is reported to enhance the anti-oxidant, anti-64 

proliferative and chemical properties of parent flavonoids. This review will therefore highlight 65 

important advances within the field of metal-flavonoid complexes with particular emphasis on 66 

their synthesis, methods of characterization, anti-oxidant and anti-proliferative activities.    67 

 68 

 69 

Synthesis and characterization of flavonoid metal complexes 70 

Flavonoid metal complexes are generally synthesized by dissolving a flavonoid salt in an 71 

alcoholic or aqueous solution, followed by the addition of the metal salt also in alcoholic or 72 

aqueous solution. The reaction can be carried out under different conditions of stirring and/or 73 

heating, normally a base is used to deprotonate the hydroxyl groups and facilitate metal 74 

coordination. The complex usually precipitates from solution and is then filtered and air dried 75 

(Table 1). Preparations of ferrocenyl flavonoid complexes, where the ferrocenyl moiety acts as a 76 

replacement for ring B, follow a different synthetic approach. Ferrocenyl aurones are obtained 77 

via a classic Claisen-Schmidt condensation of ferrocene carboxaldehyde and various 2-78 

hydroxyacetophenones to obtain the corresponding ferrocene chalcones [39, 40]. The 79 

synthesized chalcones are then treated with mercury acetate in pyridine to form the ferrocenyl 80 

aurones that can be isomerized into their flavone counterparts by heating in ethanol at reflux with 81 

potassium cyanide (Figure 3) [39, 40].  82 
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Figure 3. Synthesis of ferrocenyl flavonoids 86 

Kowalski et al. reported the synthesis of ferrocenyl flavonoids using the palladium-catalyzed 87 

Heck cross-coupling reaction of vinyl ferrocene with 6-bromochromones (Figure 4) [41].   88 

Fe
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O
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R R

 89 

Figure 4. Synthesis of ferrocenyl flavonoids using Pd 90 

Structural characterization of metal complexes can be achieved using a number of methods 91 

(Table 1). Fourier transform infra-red (FT-IR) spectroscopy can indicate the coordination site of 92 

the metal. Complexation of the metal atom with the C=O group, for instance, causes an increase 93 

in the bond length which is manifested as a decrease in the frequency of the C=O peak. 94 

Coordination with OH groups leads to disappearance of their characteristic broad peaks υ OH at 95 

3600-3200 cm-1. However, this disappearance can be masked by the presence of other OH 96 

groups in the flavonoid structure and in the H2O molecules incorporated in the metal sphere 97 

during complexation.  Therefore, IR spectroscopy is not a helpful tool in determining which OH 98 

groups are specifically coordinated to the metal atom. . 1H NMR spectroscopic analysis can 99 

provide a better alternative where the disappearance of an OH peak from the 1H NMR spectrum 100 

corresponds to coordination at this particular OH group. For example, the disappearance of the 5-101 

OH peak at δ 10.52 ppm of the lanthanum-18 complex  proved coordination at this OH in ring 102 

A [42]. Heteroatom NMR spectroscopic analysis is also extremely useful. For example, 103 

Tabassum et al. used 119Sn NMR spectroscopic analysis to prove the presence of stannous atoms 104 

in the synthesized bi-metallic complexes 31 and 32 (Figure 6) [43]. 195Pt NMR spectroscopic 105 

analysis was also used to prove the structure of complex 68 [44]. Electron Paramagnetic 106 

Resonance (EPR) spectroscopy is also a helpful technique which is similar to NMR spectroscopy 107 

but more sensitive as it explores the interaction between an external magnetic field and unpaired 108 

electrons rather than nuclei. This is attributed to the fact that the amount of energy absorbed by a 109 

spinning electron is higher than that absorbed by a nucleus. This technique is more difficult to 110 

use as it requires background knowledge of subjects like quantum mechanics and mathematical 111 

techniques [45]. However it was used by Tabassum and Naso et al. groups to elucidate structures 112 
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of complexes (31 and 32) and (33, 37, VOhespiridin, VOsilibinin and VOmorin), respectively 113 

[43, 46-49].  114 

 115 

Figure 5. UV absorption bands using quercetin as an illustrative example 116 

Flavonoids display absorption bands in the UV-Vis region due to electronic π – π* transitions 117 

[50, 51]. These transitions are responsible for the two characteristic benzoyl and cinnamoyl 118 

bands of flavonoids at 240-280 nm and 320-385 nm, respectively (Figure 5) which are 119 

bathochromically shifted after chelating with metals [52]. The observation of a red shift in one 120 

band rather than the other verifies chelation with that particular ring [53-55]. Although the shift 121 

is small in many cases, it gives a good insight when overlapped with the parent’s spectrum. UV-122 

Vis absorption bands are also characteristic to binding in other sites. Analysis of the spectra of 123 

VOhespiridin showed complexation with the rutinose sugar part [46]. Its electronic spectra 124 

showed bands at 358, 520 and 702 nm in agreement with the three band pattern at ca. 420, 500 125 

and 700 nm observed for similar sugar vanadyl(IV) complexes coordinated through deprotonated 126 

cis-hydroxyl groups [56]. UV-Vis spectra can also help in detecting the stoichiometry of the 127 

complex. This is achieved by monitoring the absorption intensity of the ligand through a range of 128 

concentrations until the reaction is completed [46, 47, 57, 58]. Different methods can then be 129 

used to represent the data, e.g. Job’s method, from which ligand-metal ratio can be interpreted. 130 

Similarly, fluorescence of free parents can be compared to their complexes at a specific 131 

wavelength. Peaks from complexes are higher in intensity and are shifted to lower wavelengths 132 

ca. 15-20 nm [55]. Elemental analysis and mass spectrometry provide complementary 133 
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information about the molecular formulae of the resulting complexes. In a recent study by Wang 134 

et al. the elemental analysis of a lead-luteolin complex was determined by scanning electron 135 

microscope (SEM) equipped with energy dispersive spectroscopy (EDS) [59]. The experimental 136 

values of weight and atomic number percentages of carbon, oxygen and lead atoms favored a 2:1 137 

rather than 1:1 complex [59]. Analysis of the fragmentation pattern in mass spectrometry 138 

specifies how many metal atoms are coordinated in the complex [43, 60-64]. Roy et al. and Naso 139 

et al. reported the synthesis of two different complexes (36 and 37 respectively) using the same 140 

ligand (Luteolin) and metal (Vanadium) [49, 65]. The two complexes are reported to differ in 141 

their stoichiometries and metal coordination sites which may have resulted from different 142 

ligand/metal ratios added during the synthesis process. Thus for complex 36, two luteolin 143 

molecules are reported to chelate to the oxidovanadium(VI) group via the 4-C=O and 5-OH 144 

functionalities, whilst 37 is reported to contain only one luteolin chelated to the 3’ and 4’ cis-OH 145 

groups in ring B. Among the characterization techniques provided by Roy and his group, mass 146 

spectrometry data supported their structural hypothesis for complex 36. Thus peaks at m/z 147 

623.11, 639.89 and 658.21 represented two luteolin + one vanadium, two luteolin + vanadium 148 

oxide and two luteolin + vanadium oxide with one molecule of water, respectively. When 149 

deducing the structure of complex 37, Nato et al. demonstrated that the FT-IR spectrum showed 150 

no change in the C=O and the C2=C3 bands, in addition to an increase of 44 cm-1 of the 4’-OH 151 

band, indicating chelation with ring B. EPR and UV-Vis spectra of complex 37 also supported 152 

the same findings. Thermal gravimetric studies provide information on the heat-induced 153 

decomposition of the complex as a function of temperature or time. Dehydration happens during 154 

the early stages at temperatures ranging from 100-250 ᴼC. This is followed by decomposition of 155 

the ligand at higher temperatures (400-600 ᴼC). At temperatures as high as 900 ᴼC, the complex 156 

decomposes completely leaving the metal oxide [42, 43, 55, 60, 62, 66].     157 

Nevertheless, the best proven technique to confirm a theoretical structure is X-ray 158 

crystallography. Unfortunately, it is not feasible to apply this to all synthesized molecules due to 159 

the specific crystal requirements needed to run an X-ray. Only structures of complexes 49, 51, 53 160 

and 55 [67, 68]  were proven by X-ray crystallography.  161 

 162 

In general, all the used characterization methods can provide helpful information of varying 163 

importance. NMR and UV-Vis spectroscopy are the most insightful if X-ray is not feasible. 164 
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Other methods like IR spectroscopy, elemental analysis and mass spectrometry can complement 165 

the results obtained and offer the advantages of being easy to interpret and available in most 166 

research facilities.  167 
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Table 1. Summary of synthetic conditions and characterization methods for flavonoid metal complexes 168 

Flavonoid Solution 
Metal 

Base used 

and pH 

Final product 

Formula 
Characterization Ref 

Quercetin.2H2O in 

EtOH 

 

NiCl2·6H2O 
NaOEt 

6-7 
Ni(Que)2(H2O)2 

UV 

IR 

Elemental Analysis 

[54] 

CuCl2.2H2O 

 

NaOEt 

6-7 

 

Cu(Que)2(H2O)2 

UV 

IR 

Elemental Analysis 

[53] 

 

La acetate 

Nd acetate 

Eu acetate 

Gd acetate 

Tb acetate 

Dy acetate 

Tm acetate 

Y acetate 

 

NaOEt 

N.A. 

 

La(Que)3(H2O)6 

Nd(Que)3(H2O)6 

Eu(Que)3(H2O)6 

Gd(Que)3(H2O)6 

Tb(Que)3(H2O)6 

Dy(Que)3(H2O)6 

Tm(Que)3(H2O)6 

Y(Que)3(H2O)6 

UV 

IR 

1H NMR   

TG-DTA 

Fluorescence analysis 

Electrochemistry 

Elemental analysis 

[55] 
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[Cu(Que)2(H2O)2] 

in MeOH  

SnCl4 N.A. [Cu(Que)2(H2O)6-Sn2Cl4] 

IR 

1H, 13C & 119Sn NMR 

EPR 

ESI-MS  

TG-DTG 

[43] 

[Zn(Que)2(H2O)2] 

in MeOH 

 
SnCl4 N.A. [Zn(Que)2(H2O)6-Sn2Cl4] 

IR 

1H, 13C & 119Sn NMR 

EPR 

ESI-MS  

TG-DTG 

[43] 

Chrysin in EtOH 

 
Vanadyl 

acetylacetonate 

N.A. 

5 
VO(Chry)2EtOH 

UV-Vis  

IR 

EPR  

Spectrophotometric 

titrations 

[58] 

Ph3GeBr 
Na2CO3 

N.A. 
Chry-Ge. C2H6O 

 

IR 

1H & 13C NMR 

Elemental analysis 

 

[69] 
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La acetate 
NaOH 

N.A. 
La(Chry)2.OAc(H2O)7 

IR 

1H NMR  

Elemental analysis 

TG-DTG 

Spectrophotometric 

titrations 

[57] 

Luteolin in H2O 

VOSO4.H2O 
NaOH 

6 
VO(Lut)2 

UV-Vis  

IR 

1H NMR 

ESI-MS  

[65] 

Luteolin 

50% aqueous 

solution of VOCl2 

NaOH 

5 
[VO(Lut)(H2O)2]Na·3H2O 

UV-Vis  

IR 

EPR  

Elemental analysis  

[49] 

Luteolin in EtOH 

Mn(CH3COO)2 
N.A. 

4 
MnO-Lut 

UV-Vis  

IR 

Elemental analysis 

TG-DTG 

[70] 

Hesperidin in H2O 

50% aqueous 

solution of VOCl2 

NaOH 

12 

[VO(Hesp)(OH)3]. Na4(H2O)3 

 

UV-Vis  

IR 

EPR  

Spectrophotometric 

[46] 
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titrations 

Hesperetin in EtOH 

CuCl2.2H2O 
NH3 solution 

7-8 
[Cu(Hespt)2(H2O)2] ·H2O 

UV-Vis 

IR 

ESI-MS  

TG-DTG 

[66] 

Naringin in MeOH 

Cu acetate in 

distilled H2O 
N.A. [Cu (Nar)]+[CH3COO]-·(H2O)5 

UV-Vis 

IR 

1H NMR 

ESI-MS  

Elemental analysis  

[71] 

Naringenin in 

EtOH 
CuCl2.2H2O 

NH3 solution 

7-8 
[Cu(Narg)2(H2O)2] ·H2O 

UV-Vis 

IR 

ESI-MS  

TG-DTG 

[66] 

Apigenin in EtOH 

CuCl2.2H2O 
NH3 solution 

7-8 
[Cu(Apg)2(H2O)2] ·H2O 

UV-Vis  

IR 

ESI-MS  

TG-DTG 

[66] 

Silibinin in EtOH 

50% aqueous 

solution of VOCl2 

NaOCH3 

9 
Na2[VO(Sil)2].(H2O)6 

IR 

EPR 

Spectrophotometric 

titrations 

[47] 
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Morin in MeOH 

50% aqueous 

solution of VOCl2 

NaOCH3 

5 
[VO(Mor)2H2O]. (H2O)5 

UV-Vis 

IR 

EPR 

Spectrophotometric 

titrations 

[48] 

Kaempferol in 

EtOH 

ZnCl2.2H2O 
NaCl 

8-10 
[Zn(Kaem)2(H2O)2] ·H2O 

UV-Vis  

IR 

1H NMR 

ESI-MS  

Elemental analysis 

[64] 

Niffcoumar sodium 

salt in H2O 

Ce(NO3)3.6H2O 

La(NO3)3.6H2O 

Nd(NO3)3.6H2O 

N.A. 

4-5 

Ce(NS)3. (H2O)4 

La(NS)3. (H2O)4 

Nd(NS)3. (H2O)6 

IR 

1H NMR 

Elemental analysis 

[72] 

Niffcoumar in H2O 

Aqueous solution 

of ZrCl4 

NaOH 

5 
Zr(Niff)2(OH)4(H2O)5 

IR 

1H NMR  

Elemental analysis 

TG-DTG 

[73] 

Warfarin in H2O 

Aqueous solution 

of ZrCl4 

NaOH 

5 
Zr(War)2(OH)4(H2O)2 

IR 

1H NMR  

Elemental analysis 

TG-DTG 

[73] 
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Coumachlor in H2O 

Aqueous solution 

of ZrCl4 

NaOH 

5 
Zr(Coum)2(OH)4(H2O)6 

IR 

1H NMR  

Elemental analysis 

TG-DTG 

[73] 

1 in 50% EtOH 

GeO2 in deionized 

H2O 

NaOH 

7 
N.A. 

UV-Vis  

IR 

1H NMR  

MS 

Elemental analysis 

TG-DTG 

[62] 

2-11 in MeOH 
[Ru(η6-p-

cymene)Cl2]2 in 

CH2Cl2 

 

NaOMe 

N.A. 

N.A. 

 

1H & 13C NMR 

Elemental analysis 

X-ray for (49, 51, 53, 

55) 

[67, 68] 

15-18 in CH2Cl2 
[Ru(η6-p-

cymene)Cl2]2 in 

CH2Cl2 

N.A. N.A. 

UV-Vis spectra 

IR 

1H NMR 

 FAB/EI-MS 

[61, 68, 

74] 

7, 12-14 in EtOH 

[Ru(DMSO)4Cl2] 

in EtOH 

TEA 

N.A. 

[Ru(DMSO)2(7)2]2NaNO3(H2O)2 

[Ru(DMSO)2(12)2]2NaNO3. H2O 

[Ru(DMSO)2(13)2]. (NO3)2(H2O)2 

[Ru(DMSO)2(14)2]2NaNO3(H2O)5 

IR 

1H NMR 

ESI-MS 

Elemental analysis 

[63] 
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18 in EtOH 

La(NO3)3.6H2O 

 

TEA 

N.A. 

N.A. 

UV-Vis spectra 

IR 

1H NMR  

Elemental analysis 

TG-DAT  

[42] 

19 in H2O Aqueous solution 

of Ce 

La 

Nd 

 

NaOH 

5 

Ce(19)(OH)(H2O)2 

La(19)(OH).H2O 

Nd(19)(OH).H2O 

IR 

1H & 13C NMR 

Elemental analysis 

[75] 

20 in EtOH Aqueous solution 

of K2PtCl4 
N.A. cis - [Pt(20)2Cl2] 

IR 

1H & 195Pt NMR 
[44] 

 169 

N.A.: Not available 170 

 171 

 172 

 173 

174 
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40 

O

O

O

HO

OH

O
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HO
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41 

O
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O
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42 

 

O

O

O

OH
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Zn
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43 
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OH
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X
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OH

CH

O

X

O

4

 
 

44, X = NO2; 45, X = H; 46, X = Cl 
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HO

OH

Ge(IV)
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O

O

O

Ru Cl

R

 
48, R = H; 49, R = p-CH3; 50, R = p-F;  

51, R = m-F; 52, R = o-F; 53, R = p-Cl; 

 54, R = m-Cl; 55, R = o-Cl; 56, R = p-Br; 

57, R = m-Br; 58, R = p-OCH3;  

59, R = p-NO2; 60, R = p-NMe2 
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Figure 6. Chemical structures of flavonoid metal complexes 176 
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Anti-oxidant activities of flavonoid metal complexes 177 

Complexation of flavonoids with metals often increases the anti-oxidant activity of the parent 178 

flavonoids as shown in table 2. Metal complexes demonstrate enhanced activities in free radical 179 

scavenging assays such as DPPH. (1,1-diphenyl-2-picrylhydrazyl radical), ABTS+ [2,20-azino-180 

bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt)], H2O2, OH. and O2
-.. Superoxide 181 

dismutase (SOD) like activity is often used to measure the anti-oxidant activities of the 182 

complexes as it is considered to be one of the body’s first line free radical defense enzymes.   183 

However, it is important to note that even where the complexes showed better SOD like activity 184 

than their free parents they are still far above the limit for good SOD like activity which is IC50 ≤ 185 

20 µM. 186 

Table 2. Summary of anti-oxidant activities of reviewed flavonoids and their metal complexes 187 

Complex Assay Results Ref 

 

23 

24 

25 

26 

27 

28 

29 

30 

 

 

O2
-. 

 

 

 

 

Enhanced activity 

at 120 µM, 

90% 

85% 

84% 

97% 

77% 

92% 

87% 

88% 

quercetin = 42%  

[55] 

33 

DPPH. 

 

Enhanced activity 

at 100 µM, 45%  

chrysin = 18% 
[58, 76] 

ABTS+ 

Enhanced activity 

3.96 mM   

chrysin = 0.9 mM 
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SOD 
IC50 = 157 µM 

chrysin = no activity 

OH. 

Enhanced activity 

at 100 µM, 75%   

chrysin = 45% 

36 

DPPH. 

 

Enhanced activity 

at 100 µM, 40%   

luteolin = 25% 
[65] 

ABTS+ 

Enhanced activity 

at 10 µM, 64%   

luteolin = 40% 

37 

DPPH. 

Lower activity 

IC50 = >100 µM 

luteolin = 66.7 µM 

[49] OH. 

Enhanced activity 

IC50 = 17 µM 

luteolin = 50.7 µM 

O2
-. 

Lower activity 

IC50 = 417 µM 

luteolin = 384 µM 

38 

DPPH. 

Enhanced activity 

at 1 mM, 90%   

luteolin = 75% 
[70] 

OH. 

Enhanced activity 

at 1 mM, 80%   

luteolin = 74% 

VOhesperidin 
DPPH. 

ABTS+ 

No enhancement in 

activity 
[46] 

40 DPPH. 

Enhanced activity 

at 10 µM, 35.5%  

naringin = 2% 

[71] 
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VOmorin 

SOD 

Slightly enhanced 

activity  

IC50 = 45 µM  

morin = 66 µM 

[48] 

DPPH. 

Similar activity 

at 10 µM, 22%  

morin = 15% 

ABTS+ 

Similar activity 

at 10 µM, 81%  

morin = 76% 

OH. 

Enhanced activity 

at 10 µM, 26%  

morin = 2% 

ROO. No effect on radical 

47 

OH. 

Enhanced activity 

at 100 µM, 65%  

2 = 43% 
[62] 

DPPH. 

Lower activity 

at 80 µM, 60%  

2 = 95% 

 188 

As shown in table 2, rare earth metal complexes (23-30) increased O2
-. scavenging activity of 189 

quercetin by, on average, 2-fold [55]. The difference in activity between the eight metal 190 

complexes is not significant, however, the gadolinium complex (26) showed the best activity. 191 

Whether this increase in activity is attributed to incorporation of the metal atom or to the higher 192 

molar ratio of quercetin present in the complex (as opposed to 1 quercetin molecule) needs 193 

further investigation.  Figure 7 illustrates the main structural features responsible for the anti-194 

oxidant activity of flavonoids. The 3’, 4’ ortho-dihydroxyl group is the most significant 195 

contributor to flavonoids’ anti-oxidant activity [3]. These two catechol moieties form ortho-196 

semiquinone radicals that are highly stabilized by the electron delocalization and intra-molecular 197 

hydrogen bonding. The combination of C2=C3 and 4-C=O group in ring C also assists in the 198 
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delocalization of the π-electrons in ring B. This in turn influences the dissociation of phenolic 199 

hydroxyl groups as well as the stability of the formed phenoxy radicals in ring B [3].  Ring A 200 

meta-hydroxyl groups are less important than ring B dihydroxyl groups which are oxidized more 201 

readily [77]. The highest increase in activity can be seen upon complexation of metals with 202 

flavonoids lacking the essential structural features of anti-oxidant activity (Figure 7), such as 203 

chrysin and naringin [78]. For instance, complexation of vanadium metal with chrysin (33) 204 

increased ABTS.+ scavenging activity from 0.9 mM for chrysin to 3.96 mM [58]. This value is 205 

close to that of quercetin (4.7 mM) [79] that fulfills anti-oxidant structural activity requirements 206 

(Figure 7) and is therefore one of the best flavonoid anti-oxidants. 207 

 208 

Figure 7. Summary of structural features responsible for anti-oxidant activity of flavonoids 209 

As illustrated in Figure 8, metal complexation demonstrated a positive impact on the DPPH. 210 

scavenging activity of ligands which was higher than that of vitamin C in only one case, the Cu-211 

Naringin complex 40. Despite the witnessed increase in DPPH. scavenging activity of chrysin 212 

(18%) upon complexation with vanadium (33) (45%) at 100 µM, it is still far less than that of 213 

ascorbic acid (98%) at the same concentration [58]. However, metal complexation did not 214 

always result in enhanced DPPH. scavenging activity. The vanadium-luteolin complex 37 215 

showed a loss in the DPPH. scavenging activity of luteolin due to chelation of the vanadium 216 

metal with the 3’ and 4’-OH groups that are essential for anti-oxidant activity of flavonoids [49]. 217 

Pi et al. attributed the loss of the polyphenol ligand’s (2) high DPPH. scavenging activity (95%) 218 
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after coordination with germanium (47) to steric hindrance factors [62]. This might be caused by 219 

the presence of the two ethyl ether groups rather than the germanium atom.  220 

 221 

Figure 8. DPPH. scavenging activity of metal complexes compared to their parent flavonoids 222 

and vitamin C at different concentrations 223 

Cytotoxic activities of flavonoid metal complexes 224 

One of the milestones in the history of chemotherapy was the discovery of cisplatin in 1969 [80]. 225 

Cisplatin is effective and still widely used against various types of cancers, such as testicular, 226 

ovarian, breast, bladder, lung cancer and brain tumors.  It demonstrates remarkable curing rates 227 

for testicular cancer (over 90% and near 100% with early discovery) [81]. Inside the body, 228 

cisplatin crosslinks DNA and initiates apoptosis. Despite this promising profile, cisplatin suffers 229 

from limitations such as nephrotoxicity, neurotoxicity and drug resistance [82, 83]. This ongoing 230 

interest in the design and development of metal-based anti-cancer drugs has also influenced the 231 

flavonoid field, where a number of flavonoid-metal complexes have been synthesized and 232 

evaluated as anti-cancer agents.  233 

 234 
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Cytotoxic activity of quercetin metal complexes 238 

Table 3. Summary of in vitro anti-tumor activity of quercetin metal complexes 239 

Complex Cell line 
Activity (µM) 

(IC50 or suppression % or GI50) 

Quercetin 

activity (µM) 
Ref. 

21 

HepG2  14.4 ± 0.9 * 33.7 ± 1.0 * 

[84] SMMC7721  19.6 ± 0.6 * 42.1 ± 1.0 * 

A549  35.6 ± 0.8 * 72.1 ± 1.2 * 

22 A549  21.5 ± 0.5 * 34.9 ± 1.0 * [53] 

23 Bel-7402  46.03%  20%  

[55] 25 Bel-7402 62.32%  20%  

26 Bel-7402  45.30%  20%  

31 
U373MG, PC3, 

Hop62, HL60, 

HCT15 and HeLa 
< 8.7  N.A. 

[43] 

32 HeLa 7.7  N.A. 

* = IC50,  = Suppression % at 10 µM,  = GI50 240 
Hepatocellular carcinoma (HepG2), hepatoma (SMMC7721), lung carcinoma (A549), liver cancer (Bel-241 
7402), central nervous system (U373MG), prostate cancer (PC3), lung cancer (Hop62), leukemia 242 

(HL60), colon carcinoma (HCT15) and cervical cancer (HeLa). 243 
 244 

It is evident that complexation with metals enhances the anti-proliferative activity of quercetin. 245 

Compound 21 (Ni-quercetin) had better activity on the hepatic cancer cell lines (HepG2 and 246 

SMMC7721) than on the lung carcinoma cell line (A549). Pro-apoptotic ability has been 247 

investigated for complexes 21 and 22 (Cu-quercetin) as a possible cytotoxic mechanism (Figure 248 

9) [53, 84]. This is indicated by changes in the levels of key apoptotic proteins like survivin and 249 

caspases along with morphological changes observed using the DNA-sensitive Hoechst33258 250 

stain. Possible mechanisms of action of 21 on the A549 cell line were not evaluated. This might 251 

have given a better idea of the behavior of complexes in different cell lines and the reasons 252 

behind the witnessed difference in activities.  253 
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 254 

Figure 9. Summary of pro-apoptotic studies done on complexes 21 and 22. Survivin expression 255 
was measured by immunocytometry and caspase activity by absorption spectra. 256 

 257 

Metal atoms in flavonoid complexes can interact with DNA nucleotides by either electrostatic 258 

interactions with the phosphate groups, or covalent binding to nucleobases (Figure 10). The 259 

ROS and free radicals resulting from flavonoids’ auto-oxidation are thus generated in proximity 260 

to the DNA [37]. This leads to oxidative damage of DNA and induces apoptosis (Figure 10) [85, 261 

86]. Flavonoid metal complexes are also more planar than the free ligands which facilitates their 262 

binding to DNA via intercalation [37]. Tan et al. reported the selective binding of the nickel 263 

quercetin complex (21) to GC-rich DNA sequences using fluorescence emission and molecular 264 

modelling. This, in addition to decreased survivin activity, led them to conclude that down 265 

regulation of survivin via interference with the GC-rich survivin protein promoter gene might be 266 

a plausible mechanism by which the complex 21 exerts its anti-tumor activity [84].  267 
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 268 

Figure 10. Plausible mechanism of oxidative DNA damage by flavonoid metal complexes  269 

The quercetin rare earth metal complexes (23, 25 and 26) showed increased activities compared 270 

with free quercetin on the liver cancer cell line (Bel-7402) (Table 3) [55]. Complex 23 (La-271 

quercetin) can intercalate with DNA as evidenced by DNA fluorescence studies. Tabassum and 272 

her colleagues were able to synthesize two unique hetero-bimetallic complexes quercetin–CuII–273 

Sn2
IV (31) and quercetin–ZnII–Sn2

IV (32) [43]. The Cu complex (31) showed significant activity 274 

on various human cancer cell lines (Table 3) except for ovarian cancer (A2780). The Zn 275 

complex (32), however, did not demonstrate good activity except on the HeLa cell line (Table 276 

3). Complexes 22, 31 and 32 were able to promote the conversion of substrate DNA to cleaved 277 

forms (nicked and linear) as studied by gel electrophoresis [43, 53, 54]. To better understand 278 

whether this DNA cleavage is promoted through an oxidative pathway, the effect of different 279 

radical scavengers was evaluated where only H2O2 markedly promoted plasmid DNA breakage 280 

caused by the complexes. Increased level of thiobarbituric acid reactive species (TBARS) with 281 

increasing concentrations of complex 22 backs up the role of oxidative damage as a mechanism 282 

of CT-DNA cleavage [53, 54]. At 30 µM of complex 31, DNA relaxation activity of 283 



29 
 

Topoisomerase-I was significantly inhibited. This does not necessarily correlate with direct 284 

inhibition of the enzyme and may instead result from strong binding with DNA which prevents 285 

the enzyme from exercising its function [43]. To exploit binding of complexes 31 and 32 with 286 

the minor groove of DNA, the complexes were docked into the DNA duplex of sequence 287 

d(CGCGAATTCGCG)2 dodecamer (PDB ID: 1BNA). Both complexes bound to the narrow 288 

minor groove region of DNA within the GC rich region and were stabilized by hydrogen 289 

bonding (2.8–3.0 Å) between the –OH groups of quercetin with O4/N2 atoms of C8/G8 bases in 290 

DNA. 291 

Complex 31 also showed good binding modes with the human-DNA–Topo-I complex (PDB ID: 292 

1SC7) and bovine erythrocyte Cu, Zn superoxide dismutase (PDB ID: 2SOD) [43]. 293 

Cytotoxic activity of chrysin, luteolin and silibinin metal complexes 294 

Table 4. Summary of in vitro anti-tumor activity of metal complexes of chrysin, luteolin and 295 

silibinin  296 

Complex Cell line Activity (µM) 
(IC50 or suppression %) 

Flavonoid activity (µM) Ref. 

33 
MG-63  16 * >100 * [76] 

HT-29  45%  No effect  
[87] 

VOsilibinin HT-29 45%  No effect  

34 

HepG2  30%  20%   

[69] 
Colo205  25%  10%  

MCF-7  45%  20%  

MCF-7 10A  15%  10%  

35 A549 73.5 %  4.9 %  [57] 

37 
A549 60.5 * 66.3 * 

[49] 
MDAMB-231 17 * 88.3 * 

* = IC50,  = Suppression % at 10 µM,  = Suppression % at 100 µM 297 
Osteosarcoma (MG-63), colon adenocarcinoma (HT-29), hepatocellular carcinoma (HepG2), caucasian 298 
colon adenocarcinoma (Colo205), breast cancer (MCF-7), breast cell line (MCF-7 10A), lung carcinoma 299 
(A549) and triple negative breast cancer (MDAMB-231).  300 
 301 
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The vanadium chrysin complex (33) showed significant cytotoxic activity on a human 302 

osteosarcoma cell line (MG-63) with an IC50 value of 16 µM (Table 4) [76]. This activity is 303 

higher than the reported activity of cisplatin on the same cell line (IC50 = 28.5 µM), yet lower 304 

than that of doxorubicin (IC50 = 3.35 µM) [88]. According to Leon et al. complex 33 showed a 305 

multi-factorial anti-tumor mechanism of action. For example, it demonstrated cytotoxicity to 306 

lysosomes and mitochondria of MG-63 cell line (at concentrations from 2.5 to 25 µM) as 307 

evidenced using neutral red (NR) uptake and the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-308 

diphenyltetrazolium bromide (MTT) assays, respectively. Genotoxicity was also evident through 309 

induced micronuclei formation and DNA breaks using the Comet assay, in the concentration 310 

range 2.5-5 µM. In addition to that, compound 33 lowered GSH/GSSG ratio in MG-63 cell line 311 

especially at higher doses (40%, 50 and 100 µM). In a protein array platform test, 33 upregulated 312 

82 proteins and downregulated 9 such as PKB/AKT, Cdk 4, 6 and 7, NAK, and JNK [89]. It 313 

induced apoptosis via: 314 

 Externalization of the phosphatidyl serine (PS), at the outer plasma membrane leaflet 315 
measured by Annexin V-FITC fluorescent probe. 316 
 317 

 Alteration of the mitochondria membrane potential (MMP) measured by Rhodamine 123 that 318 
leads to the release of cytochrome c and finally to DNA fragmentation. 319 

 320 

 Activation of caspase pathway measured by caspase 3 activation (350% basal at 100 µM). 321 
 322 

In another report the anti-tumor activities of vanadium complexes of chrysin (33) and silibinin 323 

(VOsil) were tested on the HT-29 cell line (Table 4) [87]. 33 and VOsil showed better anti-324 

proliferative activities than cisplatin at 100 µM (inhibition rate = 12 %) on the same cell line. 325 

However, 33 did not show pro-apoptotic effects in the MG-63 cell line despite it causing cell 326 

cycle arrest in the G2/M phase after 24 and 48 hours incubation. VOsil, on the other hand, 327 

increased the percentages of apoptotic/necrotic cells, induced caspase 3 activation and reduced 328 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) that controls DNA 329 

transcription and is aberrantly activated in many cancers. Moreover, VOsil fully inhibited 330 

topoisomerase-IB using plasmid relaxation assay at 100 µM. The germanium complex of 331 

chrysin, (34) also had activity on several targets. Its cytotoxic effect on HepG2, Colo250 and 332 

MCF-7 cell lines was not significantly high nor much better than chrysin [69, 90]. The mean 333 

apoptotic population detected on MCF-7 and Colo205 cell lines by Annexin-V were 19.5% and 334 
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12.5% for 20 µg/ml, respectively. Additionally, cellular ROS production increased in MCF-7 335 

cell line upon addition of high doses of complex 34. This could be a possible etiology for 336 

apoptosis alongside with caspase-3, 8 and 9 activation whose levels increased from 100% to 337 

214.5%, 181.1% and 286.0%, respectively at 20 µg/ml. Some caspase activation was also 338 

observed on the Colo205 cell line with an increase from 100% to 129.3%, 146.5 and 119.3%, for 339 

caspase-3, 8 and 9, respectively. Cell cycle arrest at the G2/M phase was detected on MCF-7 and 340 

Colo205 (high doses) cell lines and at the S phase with low doses of the complex on the Colo205 341 

cell line. Complex 35 (La-chrysin) showed a significant increase (73.5%) in the anti-proliferative 342 

activity of chrysin (4.9%) on A549 cell lines. The complex intercalated with DNA base pairs as 343 

illustrated by an increase in viscosity and fluorescence of DNA upon addition of complex 35 344 

[57]. The vanadium luteolin complex (37) significantly improved the cytotoxic activity of its 345 

parent on the MDAMB-231 cell line (IC50 = 17 µM) as shown in table 4 [49]. However, it 346 

showed a trivial improvement on the A549 cell line (IC50 = 60.5 µM, luteolin IC50 = 66.3 µM). 347 

Naso et al. carried out high content cytotoxicity assays on complex 37 to investigate its 348 

mechanism of action on the MDAMB-231 cell line. The tests included ROS production, MMP, 349 

plasmatic membrane damage, nuclear membrane damage and mitotic arrest. Complex 37 showed 350 

significant increase in the levels of ROS production (650%) and percentage of depolarized cells 351 

(20%). Lactate dehydrogenase (LDH) levels in the culture media were measured as an indication 352 

for plasmatic membrane damage. Complex 37 demonstrated 212% increase compared with the 353 

basal levels as opposed to 98% for luteolin. The vanadium complex (37) also showed DNA 354 

damage and mitotic arrest activities using H2AX and PHH3 assays, respectively.   355 

Cytotoxic activity of hesperidin, naringin, hesperitin, naringenin, apigenin, morin, 356 
kaempferol, warfarin and mendiaxon metal complexes 357 

 358 
Table 5. Summary of in vitro anti-tumor activity of hesperidin, naringin, hesperitin, naringenin, 359 
apigenin, morin, kaempferol, warfarin and mendiaxon metal complexes. 360 

Complex Cell line 
Activity  

(suppression %) 
Flavonoid Activity Ref. 

VOhesperidin Caco-2  60% (at 100 µM) No effect [46] 

40 K562 38.4% (at 100 µM) 13.2% (at 100 µM) [71] 

La-18 
HL60 50% (at 0.01 µM) N.A. 

[42] 
A549 100% (at 0.003 µM) N.A. 
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39 

HeLa 22.5% 15% 

[66] 

SGC-7901 45% 30% 

HepG2 45% 30% 

41 

HeLa 24% 27% 

SGC-7901 25% 33% 

HepG2 35% 15% 

42 

HeLa 25% 10% 

SGC-7901 45% 5% 

HepG2 35% 5% 

VOmorin 
T47D 43% (at 10 µM) No effect 

[48] 
SKBR3 38% (at 10 µM) 14% (at 10 µM) 

43 EC9706 72% (at 30 µg/ml) 45 % (at 30 µg/ml) [64] 

45 HL60 30% (at 100 µM) N.A. [73] 

Colon adenocarcinoma (Caco-2), chronic myeloid leukemia (K562), leukemia (HL60), lung carcinoma 361 
(A549), cervical carcinoma (HeLa), gastric carcinomas (SGC-7901) and hepatocellular carcinoma 362 
(HepG2), breast cancer (T47D), breast cancer overexpressing Herceptin-2 (SKBR3) and oesophageal 363 
cancer cell line (EC9706). 364 
 365 
As shown in table 5, VOhesperidin showed 60% inhibition in cellular proliferation of the colon 366 

adenocarcinoma cell line (Caco-2) while its parent hesperidin showed no effect at all on the same 367 

cell line at 100 µM [46]. The Cu naringin complex (40) exhibited better inhibition of the K562 368 

cell lines (Table 5). Cell cycle analysis showed a 50% decrease in viable cells at the S/G2/M 369 

phases after 24 h. The number of hypodiploid cells tremendously increased from 5.5% (control) 370 

to 38.4% indicating the complex led to cell death in the first 24 h [71]. The lanthanum complex 371 

with ligand 18 exhibited a stronger suppression rate (100% inhibition at 0.003 µM) than cisplatin 372 

(100 % inhibition at 0.004 µM) on the A549 cell line [42]. Lanthanum complexes like 35 and 373 

La-18 have significantly high suppression rates on A549 cell line.  374 

As shown in table 5, complexation of copper with the flavonoids hesperetin (39) and apigenin 375 

(42) did enhance the anti-proliferative activity of their free flavonoids whilst the naringenin 376 

complex (41) did not show any improvement except on the HepG2 cell line [66]. 41 and 42 had 377 

the same suppression rate (35%) on the HepG2 cell line. This indicates that unsaturation of ring 378 

C has no effect on the activity whilst the addition of an OH group on ring B, as in complex 39, 379 

results in 30% increase in the activity. This may be due to the enhanced anti-oxidant activity of 380 
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compounds featuring two m-hydroxyl groups on ring B (Figure 7). Several DNA binding studies 381 

(UV-Vis spectral, fluorescence and CD measurements) were performed with the complex 39 that 382 

indicated DNA binding via intercalation with higher affinity than the free ligand.  383 

The vanadium morin complex (VOmor) showed promising cytotoxic activity on human breast 384 

cancer cell lines (Table 5). It did not have deleterious effects on the non-tumorigenic breast 385 

epithelial mammal cells indicating its selectivity towards cancer cells [48]. Naso et al. suggest 386 

that the VOmor complex causes cell death by induction of apoptosis. This can be correlated to 387 

perturbation of the mitochondrial membrane potential which results in release of cytochrome c 388 

from the mitochondria to cytosol. This process leads to the activation of caspases-9, 3 and 7. 389 

However, mitochondrial membrane potential was only observed in the SKBR3 cell line which 390 

suggests the apoptotic potential on the T47D is achieved via a different mechanism that needs 391 

further investigation. The MTT assay was used to determine the anti-proliferative activity of the 392 

Kaempferol Zn complex (43) on EC9706 cells (Table 5) [64]. Cell viability decreased nearly by 393 

half in the EC9706 cell line while no significant effect was observed on the normal kidney cells 394 

(HK-2 cells). Atomic force microscopy (AFM) morphological data showed that complex 43 395 

could deform and shrink EC9706 cells at the nanoscale. To measure apoptosis induction ability, 396 

Annexin V-FITC/PI was used. The apoptosis ratio of EC9706 cells increased from 3.4 ± 0.9% 397 

for control cells to 33 ± 7.6% upon raise of 43 concentrations from 0 to 30 µg/mL, respectively. 398 

Complex 43 was able to increase the intracellular calcium ion level in cancer cells that can 399 

mediate cell death.  400 

Cytotoxic activity of metal complexes 47-71 401 

Table 6. Summary of in vitro anti-tumor activity of complexes 47-71 402 

Complex Cell line 
Activity (µM) 

(IC50 or suppression%) 
Flavonoid activity (µM) Ref. 

47 HepG2 65%  35%   

51 

CH1  

1.5 * N.A. 

[67, 68] 
53 0.86 * 0.6 * 

54 1 * N.A. 

55 1.2 * N.A. 

61 DMBC12  0.96 * N.A. [61] 
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62 1.13 * N.A. 

63 
2.53 * N.A. 

DMBC11  4.14 * N.A. 

64 

MCF-7  

16 * 17.2 * 

[63] 
65 28 * 29.5 * 

66 32.1 * 35.4 * 

67 36.2 * 38.4 * 

Ce-19 HL60 21.37 * N.A. [75] 

69  CCRF-CEM  37.5 * N.A. [41] 

70 
Jurkat  2.97 * N.A. 

[91] 
HeLa  

7.23 * N.A. 

71 7.4 * N.A. 

* = IC50,  = Suppression % at 160 µM  403 
Hepatocellular carcinoma (HepG2), ovarian cancer (CH1), patient derived (not-established) melanoma 404 
(DMBC11 and DMBC12), breast cancer (MCF-7), lung carcinoma (A549), cervical carcinoma (HeLa), 405 
chronic myelogenous leukemia (K562), leukemia (HL60), T lymphoblast-like polymorph cancerous cell 406 
line (CCRF-CEM) and acute T-lymphoblastic leukemia (Jurkat) 407 
 408 
Pi et al. reported the DNA binding of the germanium complex of compound 1 (47) [62]. 409 

Compound 47 showed an increase in fluorescence emission by 46% (at 550 nm) while that of the 410 

free parent 1 showed insignificant increase by 8% (at 536 nm). Intercalation with DNA was also 411 

confirmed by a UV absorption method through the hypochromism of complex 47 upon addition 412 

of CT-DNA. The anti-proliferative evaluationof  47 on the HepG2 cell line (Table 6) was 413 

followed by AFM that showed deformation of HepG2 cells and increase in the size of cell 414 

membrane particles. The effect on cell cycle, measured by flow cytometry, demonstrated that 415 

complex 47 causes cell cycle arrest at the G0/G1 phase.  416 

The ruthenium complexes 48-57 were tested on a number of human cancer cell lines; CH1 417 

(ovarian carcinoma), SW480 (colon carcinoma), and A549 (non-small cell lung carcinoma), 418 

human urinary bladder (5637), human large cell lung (LCLC-103H), and human pancreatic 419 

carcinoma cell lines (DAN-G) [67, 68]. The most significant anti-proliferative activities were 420 

observed on the CH1 cell line with IC50 values ranging from 0.89 to 7.9 µM (Table 6) [67]. The 421 

SW480 cell line also showed high sensitivity to these complexes (IC50 from 3.4 - 26 µM) while 422 

A549 was the least affected with moderate activities (IC50 from 8.6 - 30 µM). Kurzwernhart et al. 423 
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attempted to determine the mode of action of complexes 48-57 via CDK2 and topoisomerase IIα 424 

inhibition assays as well as flow cytometry cell cycle analysis. Despite showing inhibition of 425 

CDK2 comparable with the standard reference roscovitine, CDK2 inhibition was excluded by the 426 

authors as a mechanism of action. This is due to miscorrelation with the in vitro anti-tumor assay 427 

activity pattern and poor influence on the G1/S transition of the cell cycle in which CDK2 is 428 

involved. On the other hand, complexes 48-57 showed good inhibition of topoisomerase IIα 429 

catalytic activity at ≥ 10 µM, which correlated well with the cytotoxic activity (compounds with 430 

lowest IC50 in MTT assay showed the highest topoisomerase IIα inhibition).  431 

Compounds 61-63 showed promising IC50 values on the patient derived (not-established) 432 

melanoma cell lines (DMBC11 and DMBC12) as shown in table 6 [61]. Only complex 63 433 

exhibited potency on both DMABC11 and DMBC12 cell lines (IC50 = 2.53 and 4.14 μM, 434 

respectively). Singh et al. developed four flavonoid ruthenium DMSO complexes (64-67) and 435 

tested their anti-proliferative activities on the MCF-7 cell line (Table 6) in addition to their 436 

action on different phases of the cell cycle [63]. Both the free ligands, and their ruthenium 437 

complexes, showed similar activities with complex 64 being the most potent with IC50 = 16 μM. 438 

Analysis of the cell cycle showed that compound 64 dramatically increased the G1 phase and 439 

decreased the S phase which might be explained by G1 arrest via inhibition of DNA synthesis in 440 

the S phase. 441 

Kostova et al. tested the cytotoxicity of three metal complexes (Cerium, lanthanum and 442 

neodymium) with a bis-coumarin (19) [75]. Only the cerium complex demonstrated promising 443 

anti-proliferative effect on the HL-60 cell line (Table 6).     444 

Among four ferrocenylvinyl-flavone derivatives synthesized by Kowalski et al., compound 69 445 

was the most potent (Table 6) [41]. The mechanism of action was induction of apoptosis and 446 

necrosis as shown by double staining of cells with Hoechst 33258 and propidium iodide.    447 

Although anti-tumor activity was evaluated on four human cancer cell lines (HepG2, MCF-7, 448 

MDA-MB-231 and CCRF-CEM), CCRF-CEM was the only affected cell line.  449 

Janka and his colleagues also developed a number of ferrocenyl chalcones of which compound 450 

70 showed high activity on Jurkat cell line with IC50 = 2.97 μM (Table 6) [91].  Complex 71 has 451 

an additional ferrocenyl-vinyl group in its structure, however, it didn’t show increase in the 452 
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activity on the HeLa cell line (IC50 = 7.4 μM) when compared with complex 70 (IC50 = 7.23 453 

μM).  454 

 455 

Figure 11. Summary of the effect of chelating different metals on the anti-proliferative activities 456 

of parent flavonoids 457 

It can be deduced from Figure 11 that 64% of the complexes showed enhanced anti-proliferative 458 

activities when compared to their parents while 11% maintained the same activity and 25% had 459 

lower activity. It should be noted that not all of the complexes’ activities were compared to their 460 

respective parent flavonoid, depending on the availability of data. All of iron, zinc and 461 

germanium complexes showed higher activity than the free flavonoids. However, the total 462 

number of zinc complexes is too low to establish a clear view on the effect of complexation. On 463 

the other hand, 84%, 69% and 62% of the vanadium, copper and lanthanum complexes, 464 

respectively, exhibited better anti-proliferative activities than the free flavonoid. Ruthenium 465 

metal complexes showed inconsistent results as 36% showed enhanced activity while 21% had 466 

the same activity and 43% showed lower activities than their parent flavonoids.  467 

 468 

Future perspectives 469 

 470 

Flavonoids have gained significant interest from researches since the early times. This is due to 471 

their therapeutic activities in a broad range of fields alongside their natural abundance, with the 472 

anti-oxidant and anti-cancer effects of flavonoids being of the greatest impact. Consequently, 473 

flavonoids like quercetin and flavopiridol have reached clinical trials as anti-cancer agents. 474 

However, none of them are available on the market as anti-cancer drugs due to their poor 475 
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pharmacokinetic profiles. The structural ability of flavonoids to coordinate with metal atoms has 476 

provided a new strategy for the development of flavonoid metal complexes with better 477 

pharmacological profiles. Although chelation of flavonoids with metals enhanced the anti-478 

oxidant and anti-proliferative activities of their free parents in the majority of cases reported 479 

herein, more research is needed to confirm if this is a predictable and general phenomenon. 480 

Additionally, more research is required to probe whether this enhancement of activity is 481 

sufficient to afford new drugs that offer enhanced clinical outcomes when compared to drugs 482 

present in the market for the same indications. Larger scale studies probing the impact of 483 

complexing different metal atoms with sets of structurally similar and/or different flavonoids on 484 

anti-oxidant and anti-proliferative activities are therefore greatly needed. This would pave the 485 

way for a better understanding of their structural activity relationships. Furthermore, the use of 486 

computational studies like molecular modelling and quantitative SAR (QSAR) can provide 487 

valuable information about possible targets and mechanisms of action of these complexes. This 488 

will in turn lead to well informed and targeted structural designs. 489 

Executive summary 490 

Introduction 491 

 Flavonoids are polyphenolic compounds with a C6-C3-C6 ring system. 492 

 Flavopiridol, silibinin and quercetin flavonoids have reached clinical trials as anti-cancer 493 

agents for various tumors. 494 

 Flavonoids have poor pharmacokinetic properties which limit their clinical applications. 495 

 Flavonoids have the ability to form metal complexes that can change their pharmacological 496 

and pharmacokinetic properties. 497 

 498 

Synthesis and characterization of flavonoid metal complexes 499 

 Flavonoid metal complexes are synthesized by reacting alcoholic or aqueous solutions of both 500 

the flavonoid and the metal under stirring and/or heating conditions. 501 

 Structural characterization techniques of flavonoid metal complexes are versatile and are often 502 

complementary to one another. 503 

 504 

Anti-oxidant activities of flavonoid metal complexes 505 

 Flavonoid metal complexes demonstrate better radical scavenging activities than their free 506 

parents. 507 

 Anti-oxidant activity is measured by the ability to scavenge free radicals like DPPH., ABTS+, 508 

H2O2, OH. and O2
-. in addition to measuring SOD like activity. 509 
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 Some flavonoid metal complexes showed DPPH. scavenging activity higher or comparable to 510 

vitamin C. 511 

 512 

Cytotoxic activities of flavonoid metal complexes 513 

 The discovery of cisplatin had an important role in directing researchers’ focus on the 514 

development of metal based drugs. 515 

 Flavonoid metal complexes showed promising results on various human cancer cell lines. 516 

 Cytotoxic activity of flavonoid metal complexes is caused by induction of apoptosis and/or 517 

oxidative damage of DNA. 518 

 64% of the flavonoid metal complexes showed better anti-proliferative activities than their 519 

parents, 11% maintained the same activity and 25% had lower activity. 520 

 521 
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