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14 Abstract
15

16 Distally dispersed tephra layers have become an important tool in the investigation of 

17 palaeoenvironmental and archaeological records across the globe. They offer possibilities 

18 for the synchronisation and improved chronological control in those records to which they 

19 can be traced and hence contribute to an improved understanding of the pattern and timing 

20 of environmental and archaeological change during periods of rapid climatic adjustment. 

21 However, their use as robust isochronous markers for synchronising records is frequently 

22 compromised by uncertainties relating to stratigraphical context, precise chronology and 

23 chemical composition. Here we collate and review the tephrostratigraphical information 

24 dating to the Last Glacial-Interglacial Transition (LGIT; c. 16-8 ka BP) in the British Isles 

25 based on published and unpublished records obtained from 54 sites. Based on details of 

26 their stratigraphic position, chronology and chemical composition, we propose that 26 

27 individual eruption events may be represented in this collective record which spans the 

28 LGIT. The great majority of these eruptives can be traced in origin to Iceland, but we also 

29 report on the recent discoveries of ultra-distal tephra from the North American Cascades 

30 range, including for the first time the Mount St Helens J Tephra at a site in southern Ireland. 

31 These particular ultra-distal discoveries have resulted from a reinterpretation of older data, 

32 demonstrating the potential importance of ‘unknown’ analyses in older tephra datasets. The 

33 outcome of this review is a comprehensive but provisional tephrostratigraphic framework for 

34 the LGIT in the British Isles, which helps to focus future research on parts of the scheme  

35 that are in need of further development or testing. The results, therefore, make an important 

36 contribution to the wider European tephrostratigraphic framework, while adding new 

37 discoveries of transcontinental isochronous tephra markers.
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41

42 1. Introduction
43

44 In the last three decades the adoption of (crypto-)tephrochronology as a technique for the 

45 dating and correlation of Quaternary environmental records has greatly increased (Lowe, 

46 2008, 2011; Davies, 2015; Lane et al., 2017). This heightened interest, particularly in distal 

47 environments, reflects a wider appreciation of the unique combination of advantages that 

48 volcanic ash layers offer: (i) many have been shown to serve as precise isochrons that 

49 provide independent tests of stratigraphic correlations based on other approaches (see 

50 Davies et al., 2012; Blockley et al., 2014); (ii) where they can be dated directly, the results 

51 provide independent tests of age models based on alternative methods (e.g. Bourne et al., 

52 2015a; Matthews et al., 2015); and (iii) where there is accordance between tephra-based 

53 and independently-derived age models, integration of the collective results leads to better-

54 resolved chronologies (e.g. Blockley et al., 2008; Matthews et al., 2011; Lowe et al., 2013). 

55

56 For the above applications to yield reliable results, however, secure chemical identification 

57 and robust dating of individual tephra layers are of paramount importance, but achieving 

58 these aims is frequently confounded by a number of practical obstructions. These include 

59 the difficulty of differentiating individual tephra layers that originate from volcanic sources 

60 with near-identical chemical signatures (e.g. Bourne et al., 2010; Bourne et al. 2015b; Lowe, 

61 D. et al., 2017), problems with distinguishing primary fall deposits from secondary reworked 

62 material (e.g. Guðmundsdóttir et al., 2011; Lowe, 2011; Griggs et al., 2015; Wulf et al., 

63 2018), and the need for more robust universal standardisation procedures for the chemical 

64 fingerprinting of volcanic material (Pearce et al., 2014; Tomlinson et al., 2015; Lowe, D. et 

65 al., 2017). In an effort to overcome, or at least minimise, the effects of these complications, 

66 tephrochronologists are progressively developing regional schemes that integrate the 

67 stratigraphic, chemical and chronological information for all individual tephra layers within 

68 specified time intervals. These regionally focused initiatives aim to identify those tephra 

69 layers that best serve as reliable isochrons and the geographical ranges (or ‘footprints’) over 

70 which they can be traced; collectively these constitute a tephrochronological framework or 

71 ‘lattice’ (Lowe et al., 2015). Examples of Late Quaternary regional frameworks that are under 

72 construction include those for Europe and the Mediterranean (Blockley et al., 2014; Bronk 

73 Ramsey et al., 2015; Wulf et al., 2018), Greenland (Abbott and Davies, 2012; Bourne et al., 

74 2015b), the North Atlantic Ocean (Davies et al., 2014; Abbott et al., 2018), North America 
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75 (Davies et al., 2016; Mackay et al., 2016; Pyne-O’Donnell et al., 2016), the Kamchatsky 

76 Peninsula (Ponomareva et al., 2017), Japan and East Asia (Moriwakia et al., 2016; McLean 

77 et al., 2018), southern Patagonia (Wastegård et al., 2013; Fontijn et al., 2016), East Africa 

78 (Blegen et al., 2015; Lane et al., 2018), New Zealand (Lowe, D. et al., 2008) and East 

79 Antarctica (Narcisi et al., 2010). Ultimately it may prove possible to link these regional 

80 frameworks using common ‘ultra-distal’ tephra isochrons which, if successful, would provide 

81 important markers for establishing or testing the alignment of palaeoenvironmental and 

82 archaeological records at the continental and perhaps even global scale (Lane et al., 2017; 

83 Plunkett and Pilcher, 2018).  

84

85 In Europe tephra isochrons have proved especially valuable for highlighting the time-

86 transgressive nature of past environmental changes during the Last Termination and early 

87 Holocene (also referred to as the Last Glacial-Interglacial Transition (LGIT), c. 16-8 ka BP), 

88 particularly when associated with records that can be resolved at sub-centennial timescales 

89 (e.g. Lane et al., 2013; Wulf et al., 2013; Rach et al., 2014). The framework for this region 

90 currently includes approximately 60 different tephra layers, sourced primarily from Icelandic, 

91 Eifel (Germany) and Italian volcanic sources (Figure 1), with overlapping envelopes 

92 extending from Greenland (recorded in ice cores) to southern and eastern Europe (Davies et 

93 al., 2002; Blockley et al., 2014; Bronk Ramsey et al., 2015; Lowe et al., 2015). Collectively, 

94 they provide the potential for assessing environmental shifts across Europe over a refined 

95 timescale and with a greater precision than has previously been attainable. However, the 

96 majority of these tephra ‘linkages’ are based on the detection and analysis of glass shards 

97 forming cryptotephra deposits, which can prove particularly challenging with respect to their 

98 chemical analysis, precise dating and stratigraphic integrity. 

99

100 Here, we evaluate the extent to which the aforementioned problems impact on the LGIT 

101 tephrostratigraphic record of the British Isles, which afford a suitable case study for this 

102 avenue of research for the following reasons: (i) the region is one of the most intensively 

103 studied for cryptotephra deposition anywhere in the world; (ii) a large number of cryptotephra 

104 layers have been traced across different depositional contexts (palaeoenvironmental and 

105 archaeological) over the course of the last 30 years; (iii) many of the sites have been 

106 forensically examined for cryptotephra content either through the analysis of multiple 

107 sequences at a single site, or by the high-resolution contiguous sampling of an individual 

108 record; (iv) the tephrostratigraphical sequences can be compared within a well-established 

109 bio- and lithostratigraphical framework that spans the LGIT (see Walker and Lowe, 2017); 

110 and (v) the British Isles are well positioned with respect to the dominant wind systems that 
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111 transport distal ash from volcanic centres in the Northern Hemisphere, as a number of sites 

112 register multiple ashfall events within the comparatively short interval of the LGIT.

113

114 The main aim of this paper, therefore, is to provide a critical overview of the current potential 

115 for building a robust tephrostratigraphical framework for the British Isles spanning the LGIT. 

116 In the sections which follow we focus on (i) those tephra layers that can confidently be 

117 assigned to the same eruption events and hence represent isochronous stratigraphic 

118 markers; (ii) examples of proposed tephra correlations for which the evidence is presently 

119 less certain, with proposals for more stringent tests of their credibility; and (iii) general 

120 recommendations for advancing the construction of tephrostratigraphical frameworks in 

121 distal and ultra-distal locations, where the available evidence consists entirely or 

122 predominantly of cryptotephra deposits.

123

124 2. Background: distal tephras detected in the British Isles
125

126 The development of tephrochronology in Northern Europe can be traced to the seminal 

127 works of (inter alia) Þórarinsson (1944), Noe-Nygaard (1951) and Persson (1966), who first 

128 demonstrated the potential of Icelandic tephras to serve as isochronous markers in 

129 Scandinavia. However, it wasn’t until the late 1980s and early 1990s, following 

130 methodological advances facilitating the routine identification and chemical characterisation 

131 of invisible micro- or cryptotephra horizons, that the potential for (crypto-)tephrochronology in 

132 distal locations was fully realised. In the British Isles, this potential was first demonstrated for 

133 sites in mainland Scotland by Dugmore (1989), Blackford et al. (1992), Dugmore and 

134 Newton (1992), extended to the Orkney and Shetland Isles by Bunting (1994) and Bennett et 

135 al. (1992) and to Northern Ireland by Pilcher and Hall (1992). All of those studies were 

136 focused on the investigation of Holocene sediments, from which the tephras could be 

137 detected by combusting or dissolving the organic-rich or carbonate-rich substrate and 

138 analysing the latent residues (cf. Gehrels et al., 2008). This procedure was not suitable, 

139 however, for the processing of pre-Holocene sediments, because of their comparatively high 

140 minerogenic content. It was therefore not until the application and further development of a 

141 density-controlled sediment flotation procedure that the detection of cryptotephra layers in 

142 Lateglacial sequences was made possible (Eden et al., 1992; Lowe and Turney, 1997; 

143 Turney, 1998a; Blockley et al., 2005). The success of this relatively straightforward and 

144 inexpensive laboratory method led to a rapid proliferation of the number of scientists 

145 engaged in cryptotephra research, significantly increasing the number of tephras identified 

146 across the British Isles and Europe, whilst simultaneously revising the eruptive history and 
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147 dispersal range of many volcanic centres at the global scale (e.g. Swindles et al., 2011; Lane 

148 et al., 2017; Pilcher and Plunkett, 2018).

149

150 In the British Isles, the Quaternary tephrostratigraphic record is largely confined to the period 

151 post-19 ka, because much of the region was still covered by the Late Devensian (last) ice 

152 sheet until that time, while the ice did not retreat from Scotland and northern Ireland (where 

153 most of the cryptotephra discoveries have been made) until after c. 16 ka (Clark et al., 2012; 

154 Hughes et al., 2016). A brief and spatially-restricted resurgence of glaciers, locally termed 

155 the Loch Lomond Readvance and dating approximately to the Younger Dryas cold phase, 

156 occurred between c. 12.9 and 11.7 ka, which was followed by rapid and complete 

157 deglaciation of the British Isles during the early Holocene (Ballantyne 2010, 2012; Walker 

158 and Lowe, 2017; Bickerdike et al., 2018). The receding ice from these glacial episodes 

159 uncovered large lake basins and many small kettle depressions that formed within 

160 abandoned glacial deposits; these have subsequently infilled with lake sediments over 

161 millennia, serving as archives for the accumulation of volcanic ash, whether delivered 

162 directly by fallout from ash clouds, or washed in from surrounding catchment slopes. 

163

164 At the time of writing, tephrostratigraphic investigations have been conducted on sediments 

165 dating to the LGIT in 54 individual lake basins in the British Isles (e.g. Bennett et al., 1992; 

166 Bunting, 1994; Lowe and Turney, 1997; Wastegård et al., 2000; Davies et al., 2001; 

167 Bondevik et al., 2005; Ranner et al., 2005; Turney et al., 2006; Pyne-O’Donnell, 2007; 

168 MacLeod 2008; Matthews et al., 2011; MacLeod et al., 2015; Jones et al., 2017; Kelly et al., 

169 2017; Timms et al., 2017, 2018; Housely et al., 2018; Figure 2) and it is this evidence that is 

170 reviewed in this paper. The majority of the individual tephra layers have been traced in origin 

171 to volcanic centres in Iceland, which reflects the position of the British Isles with respect to 

172 the dominant cyclonic circulation in the North Atlantic, and the westerly storm tracks that it 

173 promotes. Ejection of ash clouds into these systems means that the British Isles not only lay 

174 within the likely dispersal envelope of a large proportion of eruptions derived from the 

175 Icelandic province, but are also well within the dispersal envelope of ‘ultra-distal’ ashes 

176 derived from volcanic centres across the Northern Hemisphere (Jensen et al., 2014; Plunkett 

177 and Pilcher, 2018). Whilst the occurrence of ultra-distal ashes has been documented for 

178 Holocene sequences across Europe (e.g. Van der Bilt et al., 2017; Watson et al., 2017; 

179 Plunkett and Pilcher, 2018), the occurrence of ultra-distal ashes in records spanning the 

180 LGIT are a more recent discovery and hence are less well researched, but nevertheless 

181 promise exciting opportunities in the development of trans-continental tephra frameworks 

182 (Pyne-O’Donnell and Jensen, 2018).

183
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184 3. Tephrostratigraphy of the British Isles, 16-8 ka BP
185

186 3.1. The nature of the tephra record

187 The primary data that underpin tephrostratigraphic frameworks are robust chemical 

188 signatures of the glass, crystal, pumice and lithic phases of an eruption, combined with 

189 precise stratigraphic superposition, supported where possible, by independent dating of 

190 individual tephra layers. In volcanically distal environments such as the British Isles, 

191 however, the precise characterisation and correlation of tephra horizons presents a 

192 significant technical challenge. The absence of crystal, pumice and lithic phases, owing to 

193 the unfavourable transport of these components over longer distances, means that greater 

194 emphasis is placed on the far travelled glass shard component. However, low glass shard 

195 concentrations and small shard sizes in the distal environment hinder the application of 

196 standard lithological methods, e.g. measures of physical properties such as grain-size, 

197 colour, bed thickness etc., which are usually only feasible if the ash layer remains visible. 

198 With few exceptions, tephras detected in the British Isles are ‘crypto’ in nature, which means 

199 that the glass shards must first be extracted from their host sediments before 

200 characterisation and correlation procedures can be adopted (see Lowe and Hunt, 2001). 

201 Inevitably, because the data contributing to the British tephrostratigraphic framework have 

202 been accrued over a period of approximately 25 years (see references in Supplementary 

203 Table S1), sampling and analytical procedures have evolved and hence are not (at least in 

204 raw format) fully standardised. Consequently, data comparisons should take into 

205 consideration the following potential inconsistencies and limitations. Firstly, laboratory 

206 procedures for cryptotephra (glass shard) extraction and separation have been progressively 

207 refined. Early studies relied on destructive chemical procedures to eliminate non-tephra 

208 particulate matter, but these were later shown to distort the chemical signatures of certain 

209 compositions of tephra (Pollard et al., 2003; Blockley et al., 2005); as a result, the density 

210 separation procedure of Turney (1998a) was modified to eliminate the need for chemical 

211 digestion. Secondly, sieve sizes of a greater aperture range are now employed as routine, 

212 usually 15-125 μm compared with the older and more restricted 25-80 μm range; this 

213 change has assisted in the detection of shards that may have previously been missed (e.g. 

214 Timms et al., 2017; 2018; Kearney et al., 2018). Thirdly, improvements to the spatial 

215 resolution of characterisation techniques such as Electron Probe Microanalysis (EPMA) has 

216 help facilitate the characterisation of smaller glass shards (Hayward, 2012). Fourthly, 

217 although it is now common practice to sample sediment sequences contiguously, this has 

218 not always been the case, for some studies have deliberately targeted specific stratigraphic 

219 intervals in an effort to trace selected tephra layers (e.g. Roberts, 1997; Wastegard et al., 

220 2000; Pyne-O’Donnell et al., 2008; Bramham-Law et al., 2013). In these cases and 
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221 particularly in older studies employing ‘less-refined’ methods, absence of evidence is not 

222 necessarily evidence of absence and hence the succession of cryptotephra layers in some 

223 studies could be incomplete. Fifthly, most cryptotephra studies are based on one or a few 

224 core sequences taken from the deepest part of a lake basin, where it is assumed that the 

225 most complete sequence is to be found. So far as tephra layers are concerned, however, 

226 this may not be the case, for comprehensive basin-wide studies have shown that not all 

227 cryptotephras are evenly distributed and concentrated in the same part of a basin, possibly 

228 due to variations in lake level and/or point of sediment focussing, or other taphonomic 

229 complications (e.g. Boygle, 1999; Pyne-O’Donnell, 2011; Bertrand et al., 2014). Hence it 

230 cannot be assumed that single-core studies have captured the full tephrostratigraphic 

231 sequence that is preserved in a lake basin infill. Finally, studies in the British Isles and NW 

232 Europe have historically relied on the analysis of major and minor elements for the 

233 fingerprinting of glass shards from cryptotephras. There is now, however, an increasing 

234 realisation of the potential of trace and rare earth element analyses, particularly in 

235 circumstances when major and minor element ratios prove equivocal (Tomlinson et al., 

236 2015; Lowe, D. et al., 2017). In the British Isles and NW Europe, initial applications are 

237 yielding results of varying success (e.g. Lane et al., 2012a; Lind et al., 2016; Cook et al., 

238 2018a), but may return dividends if more widely adopted.

239

240 In the following section we review the evidence for the tephrostratigraphy of the British Isles 

241 for the period c. 16-8 ka BP, taking into account the difficulties summarised above. Sediment 

242 records from the British Isles that span this interval often show a clear demarcation of 

243 lithostratigraphic units that date to the Dimlington Stadial (DS), Windermere Interstadial (WI), 

244 Loch Lomond Stadial (LLS) and early Holocene (Figure 3), a structure which is similarly 

245 expressed in the bio-stratigraphic record (see Walker and Lowe, 2017). This pattern can also 

246 be observed in climate records spanning the same interval in Europe and Greenland, 

247 however, caution must be exercised in declaring synchronicity between these regions, as it 

248 remains to be established whether these changes were genuinely time-parallel or offset 

249 temporally (Björck et al., 1998; Walker et al., 1999; Walker and Lowe, 2017). With this in 

250 mind, the DS can be roughly equated with the Late Weichselian/Late Wisconsinan or 

251 Greenland Stadial 2 (GS-2), the WI corresponds to the Bölling-Alleröd period, or Greenland 

252 Interstadial 1 (GI-1), and the LLS equates approximately with the Younger Dryas or GS-1 

253 cold episode (Björck et al., 1998; Walker et al., 1999; Rasmussen et al., 2006). The 

254 individual tephra layers detected in each of these stratigraphic intervals are presented in 

255 chronological order in Table 1 and discussed in the same order below, together with 

256 summaries of their key diagnostic data and any significant uncertainties that impact their 

257 potential use as isochrons. Collectively these tephra are distributed across the 54 individual 
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258 sites located in Figure 2. A more detailed schematic which includes additional site 

259 information is presented in Supplementary Figure S1, while Supplementary Table S1 

260 provides a comprehensive overview of the sites investigated for glass-shard content, the 

261 sampling strategies that were adopted and any caveats concerning their stratigraphic 

262 context and use as isochronous markers.

263

264 3.2 Tephra records of Dimlington Stadial (DS) age

265 In the basal sediments of three basins in the Summer Isles, which lie off the NW coast of 

266 Scotland and two sites on Orkney (Figure 1; 2; Supplementary Figure S1), cryptotephra 

267 shards have been detected that date to the later part of the DS (Weston, 2012; Valentine, 

268 2015; Timms, 2016; Timms et al., 2018). Although none of the layers has been dated 

269 directly, their ages can be bracketed on the following grounds. First, they all lie within clastic 

270 sediments that pre-date the deposition of WI organic-rich sediments, and although the age of 

271 the base of these deposits is uncertain, they must pre-date c. 14.1 ka BP, the age of the 

272 Borrobol Tephra, which is consistently found at the base of the organic sediments that 

273 overlies them (see section 3.3.1). A maximum age for the basal tephras in the Summer Isles 

274 sites is c. 16 ka BP, the age estimate for the retreat of the last ice sheet from this vicinity, 

275 while deglaciation on Orkney may have been slightly earlier, by c. 17.0-16.5 ka BP (Phillips 

276 et al., 2008; Ballantyne et al., 2009; Hughes et al., 2016; Ballantyne and Small, 2018).  

277

278 At Tanera Mòr 2 in the Summer Isles (Figure 1), the tephra that pre-dates the WI has a sub-

279 alkaline rhyolitic glass signature similar to that of tephras produced by the Katla volcano in 

280 Iceland. The Dimna Ash, discovered previously at a single site in Norway, also has this 

281 chemical signature and has been dated to 15.1 ± 0.6 cal. ka BP (Koren et al., 2008). Given 

282 the age constraints for the Tanera Mòr 2 basin outlined above, we tentatively correlated this 

283 ash layer (TM2 504) with the Dimna Ash (Figure 4; Table 1). Glass shards with a similar 

284 Katla-type chemistry and morphology have also been detected in the basal deposits of two 

285 other Summer Isles sequences, at Tanera Mòr 1 (Timms, 2016) and at a site on the 

286 neighbouring Priest Island (Valentine, 2015). However, these records are more complex. In 

287 the Tanera Mòr 1 sequence, two tephra horizons were identified within the basal DS clays 

288 (TM1 553 and TM1 546; Supplementary Figure S1), both yielding bi-modal glass chemical 

289 data, one component matching the Dimna Ash, and the second showing a chemical affinity 

290 to glass of the sub-alkaline Borrobol-type tephras (Figure 4). In the Priest Island record, 

291 glass shards are spread diffusely through the basal DS clay deposits, but two shard peaks 

292 were identified. The lowermost (PRI 811) did not yield sufficient glass shards for chemical 

293 identification, but it is considered to correlate with the Dimna Ash on the basis of shard 

294 morphology and stratigraphic position (Valentine, 2015; Supplementary Figure S1). An upper 
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295 peak, which lies closer to the transition between the DS and the WI (PRI-700), shows shard 

296 morphological and chemical affinities with Borrobol-type tephras (Figure 4; Table 1). The 

297 presence of a DS age Borrobol-type tephra has also been identified at Quoyloo Meadow on 

298 Orkney (QM1 242; Timms, 2016; Supplementary Figure S1). In total, there are three sites in 

299 the British Isles that show evidence for a Borrobol-type tephra of DS age and collectively 

300 they are named here the ‘Tanera Tephra’ after the island where this tephra is presently most 

301 clearly defined.

302

303 Cook et al. (2018a) have recently reported the discovery of glass shards with Borrobol-type 

304 chemistry within the Greenland Stadial 2 (GS-2) interval in the Greenland ice-core record, 

305 which is broadly equivalent to the DS (Rose, 1985; Walker, 1995; Björck et al. 1998; Figure 

306 3), and thus suggestive of a match with records from the Summer Isles, and Quoyloo 

307 Meadow. However, analyses from the British records are few in number and glass shards 

308 exhibit consistently lower CaO wt % values than those identified in the ice cores, with the 

309 former (British) tephras being more akin to the glass chemical signatures obtained from 

310 Borrobol-type tephras dating to the WI (Figure 4). The current evidence is therefore 

311 equivocal, as to whether a tephrostratigraphic correlation can be drawn between records in 

312 the British Isles and the Greenland ice-core records during this interval, but the possibility 

313 justifies further exploration of this layer. 

314

315 Finally, a single glass shard dating to the Dimlington Stadial has also been recovered from 

316 the site of Crudale Meadow on Orkney (CRUM1 676) although, in this instance, the chemical 

317 results bear no consistent resemblance to any known Icelandic volcanic source and has 

318 tentatively been matched to a source in Kamchatka (Timms et al., 2018). Hence the status of 

319 this record and its potential as an isochron remain uncertain.

320

321 3.3 Tephra records  of Windermere Interstadial (WI) age

322

323 3.3.1 Borrobol-type tephras

324 The number, climatostratigraphic position, age, source and glass chemical composition of 

325 the Borrobol-type tephras have been a focus of research for more than 20 years (Turney et 

326 al., 1997; Davies et al., 2004; Pyne-O’Donnell, 2007; Pyne-O’Donnell et al., 2008; Lind et al., 

327 2016; Cook et al., 2018a). Glasses of Borrobol-type tephras are sub-alkaline rhyolites with 

328 high potassium values and characteristically low FeO (c. 1.5-1.3 wt %) and CaO (c. 0.7-0.6 

329 wt %) totals (Table 1). The exact source of these Borrobol-type tephras has yet to be 

330 established, but a growing body of evidence points toward an as yet unknown volcano in 

331 Iceland (e.g. Pyne-O’Donnell, 2007; Lind et al., 2016; Cook et al., 2018a; Plunkett and 
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332 Pilcher, 2018). Current evidence suggests that there were two, or possibly three, eruption 

333 events during the WI that delivered chemically indistinguishable Borrobol-type tephra to the 

334 British Isles. In order of their date of discovery and stratigraphic superposition, these are 

335 defined as the Borrobol Tephra, first reported from a site in NE Scotland (Lowe and Turney, 

336 1997), the Penifiler Tephra, first reported from a site on the Isle of Skye (Pyne-O’Donnell, 

337 2007) and the CRUM1 597 Tephra, first reported from, and presently unique to, Crudale 

338 Meadow and the adjoining Spretta Meadow site on Orkney (Timms, 2016; Timms et al., 

339 2018; Supplementary Figure S1). Of the three, the Borrobol Tephra is recognised in the 

340 largest number of sequences in the British Isles, and in the majority of sites it consistently 

341 coincides with the onset of organic deposition that reflects the influence of the warmer 

342 temperatures of the WI (Matthews et al., 2011; Cook et al., 2018a). The Penifiler Tephra, on 

343 the other hand, appears mostly to coincide with a later short-lived phase of enhanced clastic 

344 sediment deposition and reduced summer temperatures, thought to equate with the GI-1d 

345 interval (cf. Older Dryas) in the Greenland stratotype sequence (Pyne-O’Donnell, 2007; 

346 Matthews et al., 2011; Candy et al., 2016; Figure 3). The CRUM1 597 Tephra, dated to 

347 12,457 ± 896 cal. BP (Timms et al., 2018), falls close to the WI-LLS transition, but since it 

348 has been detected only on Orkney Mainland, its potential to serve as an isochron has still to 

349 be tested, although there is some tentative evidence to suggest that it could be represented 

350 in other sequences (Table 2; Supplementary Figure S1). 

351

352 These three tephras are critically positioned with respect to important climatic transitions and 

353 hence offer the potential for precise correlation of records that span the LGIT. However, their 

354 overlapping glass chemical signature, can at times, make correlations problematic. This 

355 difficulty has been exacerbated by inconsistent stratigraphic interpretations and terminology 

356 in the literature reporting the British records, as illustrated by successive changes in 

357 perspective concerning the WI tephrostratigraphic record in the Borrobol type-site (Figure 5). 

358 Initially, Turney et al. (1997) proposed two stratigraphically distinct but chemically 

359 indistinguishable WI tephra layers (Figure 5A), the lower considered a primary deposit and 

360 named the Borrobol Tephra, but the upper not named because it was considered to be 

361 reworked Borrobol material (Turney, 1998b). A reinvestigation of this sequence by Pyne-

362 O’Donnell et al. (2008) confirmed the two peaks near the base of the WI reported by Turney 

363 et al. (1997), but additionally traced a third tephra layer at a higher level within the WI 

364 sediments (Figure 5B), a sequence in accord with new WI tephra records from sites on the 

365 Isle of Skye (Pyne-O’Donnell, 2005). These apparent consistent tephrostratigraphic series 

366 were considered to indicate that all three chemically-identical layers represented primary 

367 ash-fall events and so the two distinct tephra peaks originally reported by Turney et al. 

368 (1997) were re-named the ‘Borrobol A’ and ‘Borrobol B’ tephras, while the new younger peak 
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369 was considered the correlative of the Penifiler Tephra, a newly-discovered tephra detected in 

370 the Druim Loch sequence on Skye (Figure 5B; Pyne-O’Donnell, 2007). A subsequent 

371 reinvestigation of the Borrobol type site by Lind et al. (2016) led to a further revised scheme, 

372 in which the upper tephra layer reported by Pyne-O’Donnell et al. (2008) was not 

373 recognised, only the two basal layers originally reported by Turney et al. (1997). Lind et al. 

374 (2016) opted to assign the ‘Borrobol A’ layer to the Borrobol Tephra, but the ‘Borrobol B’ 

375 layer to the Penifiler Tephra (Figure 5C). It appears, therefore, that the Borrobol Tephra is 

376 stratigraphically consistent, but the designation of a ‘Penifiler Tephra’ has proved more 

377 contentious. 

378

379 The above example illustrates the difficulty of resolving tephra layers with near-identical 

380 glass chemical signatures which are in close stratigraphical and/or chronological occurrence: 

381 it may not always be possible to resolve individual ash layers, which may represent separate 

382 ash-fall events, if the rate of sedimentation is too low.  But other factors may also obscure 

383 matters, including one already alluded to, namely the possibility of secondary reworking of 

384 volcanic ash. The stratigraphic inconsistency of tephra layers assigned to the Penifiler 

385 Tephra, which often appear to merge with the underlying Borrobol Tephra (e.g. in the 

386 Borrobol, Tynaspirit West and Whitrig Bog records; see Supplementary Figure S1), might 

387 favour a reworking hypothesis to account for its origin. The Borrobol Tephra was deposited 

388 relatively soon after the end of the DS during a phase of active paraglacial readjustment 

389 when it is likely that slopes surrounding many newly formed lake basins were still sparsely 

390 vegetated, supporting immature, loosely-bound materials at the land surface (Walker, 1984; 

391 Ballantyne and Harris, 1994; Ballantyne, 2002). This setting could have promoted the 

392 reworking of such materials containing glass shards, especially in high-altitude sites exposed 

393 to flushing by melting snow and ice (Davies et al., 2007). Relevant in this context is that 

394 layers assigned to the Penifiler Tephra generally coincide, or closely align, with a climatic 

395 oscillation at c. 14.0 ka BP (broadly equivalent to GI-1d), a period that witnessed a cooling of 

396 mean summer temperatures of c. 2-3°C in Scotland (Brooks and Birks, 2000; Brooks et al., 

397 2012, 2016); this could have provoked a resurgence of periglacial conditions and increased 

398 disturbance of surface materials, resulting in continued or renewed reworking of glass 

399 shards (cf. Boygle, 1999; Pyne-O’Donnell, 2011; Larsen, 2013).

400

401 On the other hand, reworking of Borrobol Tephra is a less probable explanation for tephra 

402 layers assigned to the Penifiler Tephra in the following contexts: i) where there is a clear 

403 stratigraphic separation between the  Borrobol and Penifiler layers, as is the case of the 

404 Abernethy Forest and Muir Park Reservoir profiles (Supplementary Figure S1); ii) where the 

405 peak values in shard concentration for the Penifiler Tephra post-date the GI-1d interval, as in 
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406 the Pulpit Hill, Loch Ashik and Tanera Mòr 1 profiles; iii) where the basin catchment size is 

407 restricted and the earliest sediments to accumulate in the basin post-date the Borrobol 

408 Tephra, as is the case in the Druim Loch and Tirinie profiles; iv) where the glass shard 

409 concentrations of the Penifiler Tephra are greater than those in the underlying Borrobol 

410 Tephra as at Quoyloo Meadow and Muir Park Reservoir (Supplementary Figure S1). It would 

411 therefore be premature to dismiss the possibility that at least two eruptive events are 

412 represented in the sometimes diffuse Borrobol-type tephra record that is to be found in early 

413 WI and GI-1d deposits in the British Isles (Davies et al., 2004). 

414

415 On current evidence, therefore, the Borrobol Tephra appears stratigraphically secure and its 

416 best estimated age is 14,098 ± 94 cal. BP, derived from a Bayesian age model based on 

417 radiocarbon dates obtained from the Abernethy Forest sequence (Bronk Ramsey et al., 

418 2015). The Penifiler Tephra is less secure, except in those sites where it can be shown to be 

419 stratigraphically distinct from the Borrobol Tephra; the two isochrons may only be resolvable 

420 where sedimentation rates have been relatively high during the early WI. In cases where the 

421 Penifiler Tephra is considered to be robustly represented, it can be assigned a provisional 

422 age of 13,939 ± 132 cal. BP.  This is considered provisional because (a) it has been derived 

423 from an amalgamation of one age estimate based on the Abernethy Forest age model and 

424 another based on what is assumed to be the correlative of the Penifiler Tephra in the 

425 Hässeldala port sequence in Sweden (Bronk Ramsey et al., 2015); and (b) the layer 

426 assigned to the Penifiler in the Abernethy Forest sequence extends over 20 cm, raising 

427 doubts about the precision with which the isochron can be stratigraphically defined (Lind et 

428 al., 2016). There is also some confusion over the interpretation of the Borrobol-type tephra 

429 registered in the Hässeldala port sequence, since it has been ascribed to both the Borrobol 

430 Tephra (Davies et al., 2003; Lind et al., 2016) and the Penifiler Tephra (Pyne-O’Donnell et 

431 al., 2008; Bronk Ramsey et al., 2015), but the position of the layer near the end of the ‘Older 

432 Dryas’ (GI-1d) interval and its age, as estimated by Davies et al. (2003) and Wohlfarth et al. 

433 (2006), would seem to favour the latter. This confusion over a singular Borrobol-type tephra 

434 at Hässeldala port also extends to other records across Europe, as it is only from sites in 

435 Scotland and the Greenland ice-core records that multiple layers with identical Borrobol-

436 chemical signatures have been reported for the WI (see Lind et al., 2016; Cook et al., 

437 2018a). Elsewhere in Europe only a single Borrobol-type horizon is registered for this 

438 interval, leading to some confusion as to which, if any, of the three potential British layers it 

439 may be linked to (e.g. Davies et al., 2003; 2004; Pyne-O’Donnell et al., 2008; Koren et al., 

440 2008; Larsen, 2013; Lilja et al., 2013; Lind et al., 2016; Jones et al., 2018).
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442 Stratigraphic and chronological issue with the Penifiler Tephra may be reduced if routine 

443 application of magnetic separation procedures were applied to ‘Penifiler’ Intervals. The 

444 rationale for this approach stems from the discovery of glass shards with basaltic chemistry 

445 alongside the Penifiler Tephra at the site of Loch Ashik, Isle of Skye (Pyne-O’Donnell et al., 

446 2008; Table 1; Supplementary Figure S1). This basaltic component has a major and minor 

447 element signature matching glass of the Katla volcanic system, and is indistinguishable from 

448 the basaltic glass component of the Vedde Ash (Figure 6). In the NGRIP ice-core record, a 

449 tephra of similar stratigraphic position and chemistry has been identified (Mortensen et al., 

450 2005; Figure 6). This tephra is clearly defined at a depth of 1573 m within NGRIP where it is 

451 dated to 14,020 ± 84 a b2k (before the year 2000; Abbott and Davies, 2012), overlapping 

452 with the accepted age of the Penifiler Tephra identified in the British Isles. The robustness of 

453 this link and utility of this layer is difficult to assess as, at present, the basaltic component of 

454 the Penifiler has only been recognised at Loch Ashik and attempts to trace this layer to other 

455 sites has proved unsuccessful (e.g. Timms et al., 2017). It seems unlikely that the basaltic 

456 component of the Penifiler Tephra is as widespread as the rhyolitic fraction, but the 

457 opportunity this layer presents to reduce the stratigraphic and chronological uncertainties 

458 associated with the Penifiler Tephra suggests that it warrants further systematic testing.

459

460 3.3.2 Mount St Helens J and Glacier Peak G, B

461 The site of Finglas River in SW Ireland is a 60 cm exposure of limnic organic muds which 

462 date to the latter part of the WI (named the Woodgrange Interstadial in Ireland; Bryant, 

463 1974). It was one of the early sites to be examined for cryptotephra using the experimental 

464 density separation techniques (Turney 1998a,b). Those investigations revealed a tephra 

465 layer toward the base of the sequence (c. 53 cm; Supplementary Figure S1), which, when 

466 analysed, yielded four shards of a mixed chemical composition (Supplementary Table S2). 

467 Two shards (group A) are defined by relatively low Al2O3 (c. 11.84 wt %), FeO (c. 0.95 wt %), 

468 CaO (c. 1.12 wt %) values; one shard (shard B) has higher Al2O3 (12.82 wt %), FeO (1.15 wt 

469 %), CaO (1.34 wt %) totals in comparison (Table 1); and a third shard (shard C) reveals 

470 Al2O3 (11.82 wt %), FeO (1.44 wt %), CaO (0.75 wt %) totals. At the time of study these 

471 shards with multiple compositions could not be correlated with any known tephra, being 

472 chemically different from the Vedde Ash and the limited number of Borrobol Tephra analyses 

473 available at the time (Turney 1998b; Figure 7). However, a re-examination of these results in 

474 the present study has revealed similarities with eruptions of WI equivalent age from Glacier 

475 Peak and Mount St Helens, two volcanic centres in the North American Cascades range 

476 (Figure 1).
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478 Mount St Helens is known to have erupted several times though the LGIT producing two 

479 main tephra units, the older set S (c. 16.0 cal. ka BP) and the younger set J (c. 13.8-12.8 cal. 

480 ka BP), with each set consisting of multiple tephra layers from separate eruptions (Clynne et 

481 al., 2008; Pyne-O’Donnell et al., 2016). Cumulatively these tephras are referred to as the 

482 ‘Swift Creek’ stage, and at present there are no reliable means by which these tephras can 

483 be separated chemically (Pyne-O’Donnell et al., 2016). Interstadial-age volcanic activity at 

484 Glacier Peak followed that at Mount St Helens and consisted of a series of closely spaced 

485 eruptions leading to the formation of at least three tephra sets (Porter, 1978). The most 

486 widely dispersed are sets G and B, which have a current best age estimate of 13.71-13.41 

487 cal. ka BP (Kuehn et al., 2009). These phases can be distinguished from one another using 

488 abundance ratios of CaO and FeO, and can be further differentiated from the Mount St 

489 Helens tephras using K2O (Kuehn et al., 2009; Pyne-O’Donnell et al., 2016; Figure 7).

490

491 At Finglas River, group A shards compositionally match with those of the Glacier Peak set G, 

492 the group B shard with those of Mount St Helens, and the group C shard with those of the 

493 Borrobol-type series (Figure 7). The presence of both Glacier Peak and Mount St Helens in 

494 the same ‘single’ layer is not unusual—across North America these tephras are frequently 

495 reported as a visible tephra couplet (Kuehn et al., 2009), and in cryptotephra investigations 

496 in south-eastern Canada these tephras have also been identified within the same mixed 

497 horizon (Pyne-O’Donnell et al., 2016). At Finglas River, as in North America, the coeval 

498 expression of these tephra can be explained by a low sedimentation rate at the site of 

499 deposition and a conflation of these individual isochrons. Presently this is the only confirmed 

500 incidence of a Mount St Helens tephra shard being identified in interstadial deposits outside 

501 of North America, and only one of two reported occurrences of Glacier Peak shards 

502 identified in an ultra-distal setting. The second finding has recently come from western 

503 Scotland, where shards of Glacier Peak B and G sets have also been identified alongside 

504 shards of the Borrobol-type tephra series, and specifically those correlated to the Penifiler 

505 Tephra (Pyne-O’Donnell and Jensen, 2018; Supplementary Table S1; S2). Whether these 

506 shards identified in Ireland and Scotland are of sufficient concentration to declare the 

507 presence of an isochron is perhaps a contentious matter. Nevertheless the presence of 

508 these ultra-distal glass shards at two sites does suggest that given thorough investigation it 

509 may be possible to define and constrain these ‘tephra’ more precisely in the British Isles.

510

511 The interstadial eruptions from Mount St Helens and Glacier Peak are well documented in 

512 North America and have become important regional marker horizons for the dating and 

513 correlation of palaeoenvironmental and archaeological records (see Kuehn et al., 2009; 

514 Pyne-O’Donnell et al., 2016). Their detection in the British Isles over 7000 km from source 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

515 raises the exciting potential for inter-continental correlation and synchronisation of records 

516 dating to the LGIT. Focus must now be on refining their presence within the known records 

517 in Ireland and Scotland, as well as searching for these ultra-distal tephras, and others, in 

518 records across the British Isles and NW Europe, especially in sequences that can be 

519 examined at a high temporal resolution. This aim, however, may prove difficult given the 

520 prominence of other ash layers dating to around the same time and possible ‘masking’ by 

521 recycled tephra shards (e.g. Davies et al., 2007; Timms et al., 2017). Trace amounts of the 

522 Mount St Helens and Glacier Peak tephras are likely to be obscured by the similarly-aged 

523 Penifiler Tephra in some sites (Pyne-O’Donnell and Jensen, 2018). Such difficulties might, 

524 however, be overcome by a more thorough ‘forensic’ approach in the examination of shard 

525 distributions, morphological properties and chemical compositions, with a higher sampling 

526 resolution than has been the norm hitherto (e.g. Pyne-O’Donnell, 2011; Timms et al., 2017; 

527 McLean et al., 2018; Pyne-O’Donnell and Jensen, 2018).

528

529 3.3.3 Roddans Port Tephra

530 Two tephra layers have been reported from sediments of WI age preserved at the site of 

531 Roddans Port, an intertidal sequence that is intermittently exposed off the coast of County 

532 Down, Northern Ireland (Turney et al., 2006). Labelled Roddans Port A and B, the precise 

533 age of these tephra layers is uncertain, but they lie within the middle part of deposits 

534 assigned to the WI. While their glass-derived chemical signatures have been suggested as 

535 Icelandic in origin (Turney et al., 2006), they do not resemble those of either the Borrobol-

536 type or silicic Katla tephras known to have been deposited through this interval (Figure 8; 

537 Table 1; see section 3.4), and Turney et al. (2006) were uncertain as to whether they 

538 represent two closely-timed primary ash-fall events or a primary and reworked event. A 

539 chemically similar distal volcanic ash has been reported from the site of Vallensgård Mose 

540 on Bornholm Island, Denmark (Turney et al., 2006), but it lies within sediments assigned to 

541 the Younger Dryas interval. Some similarity can be observed between the Roddans Port B 

542 Tephra and the Glacier Peak G Tephra, but this similarity is not consistent across all major 

543 and minor elements (Figure 8) and tephrostratigraphic studies across sites in the British Isles 

544 have failed to reveal any ash layer with a comparable glass chemical signature. In view of 

545 their uncertain origins, ages and geographical footprints, the potential of the Roddans Port 

546 tephras to serve as isochrons remains limited.

547

548 3.3.4 LAS-1

549 At Loch an t’Suidhe on the Isle of Mull, a tephra layer has been identified at the WI-LLS 

550 transition at a depth of 842 cm (Davies, 2003; Supplementary Figure 1). Termed the LAS-1, 

551 chemical analysis of glass shards from this layer revealed six shards of a mixed chemical 
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552 composition (Supplementary Table S2); two shards (group A) are defined by relatively high 

553 FeO (2.17-2.53 wt %) and TiO2 (0.63-0.89 wt %) totals; two shards (group B) exhibit low 

554 FeO values (1.05-1.17 wt %) and similar TiO2 totals (0.67-0.69 wt % ); a single shard (shard 

555 C) is characterised by FeO values of (1.37 wt %) and lower TiO2 (0.14 wt %) totals; and one 

556 further shard (shard D) expresses comparatively low FeO (0.47 wt %) totals and 

557 comparatively high TiO2 (0.71 wt %) values. This mixed chemical assemblage and the 

558 stratigraphic occurrence of the layer within sediments relating to an unstable landscape and 

559 transitioning climate, might suggest a reworked origin, a hypothesis further supported by low 

560 analytical totals of c. 93 wt %, which may indicate some degree of post-depositional 

561 alteration. Whilst caution must therefore be expressed in interpreting these analyses, the 

562 chemical signature of at least two of the groups bears some resemblance to known tephras 

563 of WI age. Group B shows some chemical similarity to eruptives of Mount St Helens, 

564 particularly in plots of FeO, CaO and K2O (Figure 8). However, this overlap is not consistent 

565 across all major and minor elements, with TiO2 in particular exhibiting significantly higher 

566 values than those expected from the Cascades range (Figure 8). Shard C shows an affinity 

567 with the Borrobol-type tephras, whereas group A and shard D do not appear to overlap with 

568 any rhyolitic tephra analyses known to occupy this interval (Figure 8). During a 

569 reinvestigation of the Loch an t’Suidhe site by Pyne-O’Donnell (2005), multiple cores were 

570 investigated and several of these revealed comparable peaks in shard concentration at 

571 similar stratigraphic intervals to those of the LAS-1 tephra layer. However, no glass 

572 compositional analyses were undertaken. At present therefore the significance of the LAS-1 

573 analyses and the relationship these may have to known tephras of Interstadial-Stadial age 

574 cannot be resolved. However, the possible occurrence of the ultra-distal Mount St Helens J 

575 Tephra should be enough to warrant a re-investigation of the tephrostratigraphic record.

576

577 3.4 Tephra records  of Loch Lomond Stadial (LLS) age

578

579 3.4.1 The Vedde Ash

580 The Vedde Ash is one of the best documented, securely-dated and widely-distributed 

581 volcanic ash layers dating to the LGIT. The source of the ash is generally believed to be 

582 from the Katla volcanic system on Iceland (Mangerud et al., 1984; Lacasse et al., 1995; 

583 Lane et al., 2012a; Tomlinson et al., 2012; Figure 1) and was first detected as a component 

584 of the North Atlantic Ash Zone 1 (e.g. Ruddiman and McIntyre, 1981), and later as a 

585 distinctive individual marker horizon by Mangerud et al. (1984) in several lake sequences 

586 (including at the locality of Vedde) in the Ålesund area of western Norway. Since then, the 

587 Vedde Ash has been detected in sites ranging from as far north as the Greenland ice sheet 

588 to Italy and Slovenia in the south (Grönvold et al., 1995; Mortensen et al., 2005; Lane et al., 
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589 2011a; Bronk Ramsey et al., 2015). Typically it is the rhyolitic glass fraction which is most far 

590 travelled, however, the Vedde Ash also comprises less well-distributed basaltic glass (Table 

591 1), and an intermediate dacitic glass component currently restricted to a number of sites in 

592 western Norway (see Lane et al., 2012a). 

593

594 The Vedde Ash has consistently been found in sediments of Younger Dryas age across 

595 Europe, and was first identified in the British Isles as a cryptotephra by Lowe and Turney 

596 (1997) in their experimental use of the now widely applied density separation procedure 

597 (Turney, 1998a; Blockley et al., 2005). At present, glass shards of the Vedde Ash have been 

598 detected and chemically analysed in a total of 23 sites in the British Isles, while a further six 

599 occurrences have been proposed on stratigraphic grounds (Supplementary Figure S1; 

600 Supplementary Table S1), making it the most frequently recognised tephra layer in British 

601 LGIT records. It is generally only the rhyolitic end member of the Vedde Ash that is reported 

602 from sites in the British Isles, which may in part reflect an inherent bias in density separation 

603 protocols toward the lighter (felsic) fraction (Turney, 1998a). The basaltic component is 

604 noticeable, however, in two sequences where the Vedde Ash forms a visible layer (Figure 2), 

605 on the Isle of Skye (Davies  et al., 2001) and on Orkney Mainland (Timms, 2016), and can 

606 be detected in cryptotephra layers by the application of magnetic separation techniques 

607 (Mackie et al., 2002; Timms et al., 2017, 2018). 

608

609 The Vedde Ash has been detected in the Greenland ice cores, with an age estimated as 

610 12,171 ± 114 a b2k; Rasmussen et al., 2006), while radiocarbon dates are available from a 

611 number of terrestrial sites (e.g. Lohne et al., 2014). The most widely employed estimate, 

612 however, is 12,023 ± 43 cal. BP, derived using a composite Bayesian age model that 

613 combines the radiocarbon evidence for the age of the Vedde Ash obtained from several 

614 records (Bronk Ramsey et al., 2015). Thanks to its precise age and extensive distribution, 

615 the Vedde Ash is a key isochron within the British and European tephrostratigraphic 

616 frameworks, enabling the detection of regional time-transgressive environmental changes 

617 during the Younger Dryas/LLS interval (e.g. Bakke et al., 2009; Lane et al., 2013; 

618 Muschitiello and Wohlfarth, 2015; Brooks et al., 2016).

619

620 3.4.2 The Abernethy Tephra

621 A tephra layer that lies close to, or coincides with, the LLS/Holocene boundary has recently 

622 been proposed, based on evidence from a number of Scottish, Swedish and Norwegian 

623 records; it has been named the Abernethy Tephra, after the site in NE Scotland where it is 

624 best represented (Matthews et al., 2011; MacLeod et al., 2015). Its dominant glass chemical 

625 signature suggests it originated from the Katla volcanic system, with a composition similar to 
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626 that of the Vedde Ash and several other tephra layers dating to the LGIT (Table 1), including 

627 the Dimna Ash (Koren et al., 2008), the R1 (Thornalley et al., 2011), the IA2 (Bond et al., 

628 2001), and the Suduroy tephras (Wastegård, 2002). With the exception of the Vedde Ash, 

629 however, confusion of the Abernethy Tephra with these others can be resolved on 

630 stratigraphic grounds. The LLS is clearly marked in LGIT sequences in the British Isles by a 

631 prominent minerogenic lithological unit (Figure 3); the Suduroy post-dates this unit and the 

632 Dimna, R1 and IA2 tephras all pre-date it. The uncertain issue that remains is whether the 

633 Abernethy Tephra represents a primary ash-fall event, or reworked material derived from 

634 older tephras with similar chemical composition.

635

636 The strongest evidence for primary airfall comes from the detection of the Abernethy Tephra 

637 in glaciolacustrine varve records from Lochaber, Scotland (MacLeod et al., 2015). In this 

638 composite record two tephra horizons were detected, the lower exhibiting morphological 

639 properties typical of the Vedde Ash: i.e. platy featureless shards (see Mangerud et al., 1984; 

640 Lane et al., 2012a), whilst the upper revealed a silicic Katla signature and was assigned to 

641 the Abernethy Tephra (MacLeod et al., 2015). Importantly, these tephra layers are separated 

642 by a minimum of c. 300 years with no evidence of shard remobilisation in the intervening 

643 sediments. This paucity is despite sedimentological evidence indicating that the local 

644 catchment was susceptible to erosion and remobilisation (Palmer et al., 2010). At several 

645 other sites in Scotland, a lower peak in shard concentration (the Vedde Ash) and an upper 

646 peak (the Abernethy Tephra), are separated by an interval where no shards have been 

647 detected (see MacLeod et al., 2015). In these cases, the possibility of reworking of older 

648 Katla tephra layers (i.e. the Vedde Ash) into a discrete layer at the Holocene transition also 

649 seems unlikely. At Kingshouse 2 on the Rannoch Plateau, sedimentation of the basin began 

650 only toward the latter phases of the LLS. This timing precludes reworking as a hypothesis to 

651 explain the presence of the Abernethy Tephra because the basin was not in existence during 

652 the eruption of the Vedde Ash (Lowe et al., in prep). In these examples it is more likely that 

653 the silicic Katla-type tephra identified, and assigned to the Abernethy Tephra, is derived from 

654 a separate eruption event dating to the latter stages of the LLS (cf. Younger Dryas). It is 

655 worth noting that evidence from Iceland indicates that the Katla volcano erupted several 

656 times during the Younger Dryas (Van Vliet-Lanoë et al., 2007). Hence it is reasonable to 

657 suggest multiple Katla-derived ash clouds may have crossed the British Isles and NW 

658 Europe during this period.

659

660 In some cases, however, interpretation of the Abernethy Tephra as a primary deposition 

661 event is less certain. Shard concentrations of the Abernethy Tephra tend to be low, and in 

662 the British Isles are always less than in the accompanying Vedde horizon where these 
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663 tephra are found together (Supplementary Figure S1). In many cases there is also a 

664 background of shards spanning the interval between the Vedde and Abernethy tephras, 

665 which suggests recycling of Vedde Ash shards may be responsible for the secondary 

666 ‘Abernethy’ peak in these circumstances. Furthermore, the glass chemical signature of the 

667 Abernethy Tephra obtained from records in the British Isles, is in many instances, mixed 

668 (Table 3; Figure 9). Whilst this heterogeneous chemical signal may represent a coeval 

669 eruption of two or more volcanic centres, it may also be further evidence of shard 

670 remobilisation. The harsh climatic conditions that prevailed during the LLS are known to 

671 have resulted in the reworking of soils, pollen and other biological remains into lake basins 

672 (Lowe and Walker, 1986; Lowe and Lowe, 1989), and there is no reason why tephra would 

673 be exempt from these processes. 

674

675 In view of the evidence presented by MacLeod et al. (2015) from sites where two well-

676 defined and stratigraphically discrete peaks in shard concentrations have been identified, the 

677 possibility that the Abernethy Tephra reflects a primary fall event should be retained. 

678 However, it is important to be mindful of the impact of enhanced sediment remobilisation 

679 processes operating during periods of abrupt climatic change, and the interpretation of 

680 tephrostratigraphic records that span these intervals. There is also a need to refine the age 

681 of the Abernethy Tephra because the present estimate of 11,462 ± 122 cal. BP has a large 

682 error range and is based on interpolation of an age model in which investigation of the 

683 Abernethy Tephra was not the focus of the dating programme (Matthews et al., 2011; Bronk 

684 Ramsey et al., 2015).

685

686 3.5 Tephra records of early Holocene age

687

688 3.5.1 CRUM1 561 (Crudale Tephra)

689 In recent tephrostratigraphical investigations at Crudale Meadow, Timms et al. (2018) 

690 identified tentative evidence for an eruption of Tindfjallajökull, a volcano that lies within the 

691 Icelandic Eastern Volcanic Zone (Figure 1). Only a few analyses were obtained (Table 1), 

692 and these were from shards spread over a 26 cm interval spanning the LLS-early Holocene, 

693 and which were mixed with shards of a silicic Katla signature. Shards are defined by FeO 

694 values of (c. 2.55 wt %), and relatively low CaO (c. 0.38 wt %) and high K2O (c. 4.09 wt %) 

695 totals. Timms et al. (2018) commented upon the similarity of the CRUM1 561 analyses with 

696 those of the Torfajökull volcano, but the overall glass chemical signature presented a 

697 stronger correlation to the Tindfjallajökull centre. This correlation was based principally on 

698 published glass and pumice data of the Thórsmörk Ignimbrite eruption believed to have 

699 originated from Tindfjallajökull c. 57,300 cal. BP (Jørgensen, 1980; Tomlinson et al., 2010). 
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700 However, new field survey and petrological data from Moles et al. (2018) and Moles et al. (in 

701 review) would suggest that this correlation requires revision and that the Thórsmörk 

702 Ignimbrite eruption instead originated from the Torfajökull complex. 

703

704 In a re-examination of existing chemical data for this study, shards of a similar chemical 

705 composition to those of the CRUM1 561 analyses were identified amongst data correlated to 

706 the Vedde Ash at Tynaspirit West (Figure 10; Roberts, 1997). Accepting the proposal of 

707 Moles et al. (2018, in review), the tephra evidence from Crudale Meadow and Tynaspirit 

708 West would suggest that an eruption of Torfajökull occurred during the Pleistocene-

709 Holocene transition and that it was large enough, or atmospheric conditions were suitably 

710 favourable, to disperse tephra over the British Isles. Presently, because of poor 

711 stratigraphical control, a precise age estimate for the Torfajökull-type tephra identified at 

712 Crudale Meadow and Tynaspirit West cannot be given, only that one or more eruptions 

713 occurred between c. 12,111 and 11,174 cal. BP (Timms et al., 2018). As tephra of this 

714 chemical composition can now be tentatively identified at two sites, we propose ‘Crudale 

715 Tephra’ as a formal name to refer to shards exhibiting this chemical signature, and which are 

716 positioned within the Pleistocene-Holocene transition.

717

718 Interestingly glass analyses of the Crudale Tephra bear a stronger chemical resemblance to 

719 the older Torfajökull rhyolites than those which erupted later in the Holocene (Figure 10). 

720 McGarvie et al. (1990) noted there are several temporal trends in the postglacial rhyolites 

721 originating from the Torfajökull complex (whole rock analyses), most notably a depletion in 

722 SiO2 and an enrichment in TiO2, Al2O3, MgO and CaO wt %. Accepting the limitations of 

723 comparing glass and whole-rock data, these trends potentially could explain some of the 

724 chemical differences observed in Figure 10 between the older Crudale Tephra and the 

725 younger Ashik, An Druim-Høvdarhagi and LAN1-325 tephras which are also thought to 

726 originate from the Torfajökull complex (Pyne-O’Donnell, 2007; Ranner et al., 2005; Lind and 

727 Wastegård, 2011; Matthews, 2008). Further work is needed to establish whether the Crudale 

728 Tephra extends to other sites in the British Isles and whether glass analyses for this tephra 

729 may offer a more chemically distinctive marker for the LLS-Holocene transition than those for 

730 the Abernethy Tephra.

731

732 3.5.2 The Hässeldalen Tephra

733 The Hässeldalen Tephra has become one of the most important early-Holocene tephra 

734 horizons for palaeoclimate records in NW Europe. First identified in southern Sweden 

735 (Davies et al., 2003), this rhyolitic tephra has been repeatedly found in close association with 

736 proxy responses to the onset of the Pre-Boreal Oscillation (PBO; Wohlfarth et al., 2006; Ott 
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737 et al., 2016). Several Icelandic sources have been proposed for the Hässeldalen Tephra 

738 including Snæfellsjökull in western Iceland (Davies et al., 2003; Figure 1). However, recent 

739 work by Wastegård et al. (2018) shows that glass shards of tephras originating from this 

740 centre have distinctively high Al2O3 values (c. 15-16 wt %), which the Hässeldalen Tephra 

741 does not exhibit (Table 1). An alternative source proposed by Wastegård et al. (2018) is the 

742 Thórdarhyrna volcano located under the Vatnajökull ice-cap (Figure 1); however, at present 

743 this correlation is based on whole-rock analyses, and an investigation of the vitreous phase 

744 of Thórdarhyrna will be necessary to further test this hypothesis.

745

746 Extensive radiocarbon dating at the type-site, Hässeldala port, has generated an age 

747 estimate of 11,387 ± 270 cal. BP (Ott et al., 2016), although remodelling of the Høvdarhagi 

748 bog sequence in the Faroe Islands by Wastegård et al. (2018) has recently refined this 

749 estimate to 11,316 ± 124 cal. BP. The Hässeldalen Tephra has a frequent occurrence in 

750 Scandinavia and northern Europe (e.g. Davies et al., 2003; Lind and Wastegård, 2011; Lane 

751 et al., 2012b; Housley et al., 2013; Lilja et al., 2013; Larsen and Noe-Nygaard, 2014; Wulf et 

752 al., 2016), but at present a fairly limited distribution in the British Isles. Only tentative 

753 evidence is available from Rubha Port an t-Seilic on Islay (Mithen et al., 2015) and from 

754 Quoyloo Meadow on Orkney Mainland (Timms et al., 2017), with both records subject to 

755 stratigraphic uncertainties. A more robust record, however, has been obtained from Crudale 

756 Meadow on Orkney Mainland (Timms et al., 2018) and more recently from the central 

757 Scottish Highlands (Lowe et al., in prep). On present evidence it appears that the 

758 Hässeldalen ash plume had a narrow dispersal range over the northernmost part of the 

759 British Isles (Wastegård et al., 2018). However, this distribution pattern could be misleading, 

760 as its presence could be masked by remobilisation of more abundant Vedde Ash glass 

761 shards, a problem that complicates the refinement of many early Holocene 

762 tephrostratigraphies (e.g. Mangerud et al., 1984; MacLeod et al., 2015; Timms et al., 2017; 

763 2018).

764

765 3.5.3 The Askja-S and CRUM1 510 tephras

766 The Askja-S Tephra was first identified in a distal setting at Hässeldala port, south-eastern 

767 Sweden (Davies et al., 2003), and is thought to derive from the Askja-Dyngjufjöll system, a 

768 caldera in the central Highlands of Iceland (Sigvaldason, 2002; Figure 1). Also referred to as 

769 the Askja-10ka Tephra, it is one of the few LGIT distal tephra layers with a known proximal 

770 correlative (Sigvaldason, 2002; Jones et al., 2017) it is one of the most widely dispersed 

771 tephras originating from Iceland during the LGIT, being found as far south as the Alps, 

772 Slovenia and east into Romania (Lane et al., 2011b; Kearney et al 2018). Characterised by 

773 distinctive FeO (c. 2.52 wt %) values and relatively low K2O (2.49 wt %) totals (Table 1), the 
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774 Askja-S was first identified in the British Isles as a series of deposits in Northern Ireland 

775 (Turney et al., 2006), but has more recently been traced to sites in central Scotland (Kelly et 

776 al., 2017; Lowe et al., 2017; Lowe et al., in prep), Wales (Jones et al., 2017) and Orkney 

777 Mainland (Timms et al., 2017, 2018; Figure 2). The widespread distribution of the Askja-S, 

778 its glass compositional distinctiveness for the time period and its presence in a series of 

779 high-resolution sedimentary records, has enabled a well-constrained age estimate of 10,824 

780 ± 97 cal. BP to be derived by composite or ‘multi-site’ Bayesian age-modelling (Kearney et 

781 al., 2018; Bronk Ramsey et al., 2015). This age estimate has recently been challenged by 

782 Ott et al. (2016), who suggested an estimate of 11,228 ± 226 cal. BP, based on the Askja-S’ 

783 occurrence within an annually resolved record in Lake Czechowskie, Poland. However, there 

784 is some uncertainty as to how the age of the Askja-S Tephra was derived in this study, the 

785 varve record is floating, but has been anchored in time by importing the age estimate for the 

786 Hässeldalen Tephra, which is also present in the record. This is slightly problematic, as it is 

787 unclear whether it is the age of the Hässeldalen, the age of the Askja-S, or both tephra age 

788 estimates which may need revision. Thus although the results from Lake Czechowskie offer 

789 an excellent opportunity to refine the age of early Holocene tephras, it is evident that further 

790 work is necessary to anchor the Czechowskie varve chronology at a point independent from 

791 the two tephra isochrons that are under scrutiny. Hence until this point is cleared up, we 

792 adopt the age estimate generated by Kearney et al. (2018). 

793

794 At Crudale Meadow, Orkney Mainland, the Askja-S Tephra is identified alongside a basaltic 

795 ash layer, provisionally named the CRUM1 510 Tephra, sourced from the Grímsvötn 

796 volcano, which lies beneath the Vatnajökull ice cap (Timms et al., 2018; Figure 1). With an 

797 estimated age of 10,837 ± 148 cal. BP, this is the oldest Grímsvötn eruptive to have been 

798 detected in the British Isles during the Holocene, and this is the first record where the Askja-

799 S Tephra is found in association with a basaltic glass component. Like the earlier 

800 Hässeldalen Tephra, the Askja-S and CRUM1 510 tephras are closely associated with the 

801 PBO, with the latter two tephras appearing to coincide with the termination of this event 

802 (Davies et al., 2003; Wohlfarth et al., 2006). This combination of the Hässeldalen, Askja-S 

803 and CRUM1-510 tephras all found in such close association will constitute a powerful tool for 

804 testing the spatial and temporal variability of the environmental response to the PBO across 

805 the British Isles and mainland Europe.

806

807 3.5.4. The Ashik Tephra

808 The Ashik Tephra, first identified at Loch Ashik on the Isle of Skye, has a bi-modal glass 

809 chemistry with a rhyolitic component derived from Torfajökull in south-central Iceland (Figure 

810 10), and a basaltic component from Grímsvötn (Pyne-O’Donnell 2005, 2007; Figure 1; Table 

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298



23

811 1). The tephra has a limited spatial distribution, with the rhyolitic component being identified 

812 only in sequences from the Inner Hebrides and Orkney (Pyne-O’Donnell 2007; Timms et al., 

813 2017; Figure 2). A possible rhyolitic correlative has also been described from Loch Laggan in 

814 the central Grampian Highlands, but it is unclear whether this ash layer relates to the Ashik 

815 Tephra or to one of the younger Torfajökull-derived tephras (MacLeod, 2008; Supplementary 

816 Figure S1). The basaltic component has thus far been chemically analysed only at the site of 

817 Druim Loch, on the Isle of Skye, and correlated with the Loch Ashik tephra series on the 

818 basis of tephrostratigraphic superposition (Pyne-O’Donnell, 2005). The age of the Ashik 

819 Tephra was not well known, described as being “below the Saksunarvatn Ash” (Pyne-

820 O’Donnell, 2007), until refined by a tephra-based Bayesian age model for the site of Quoyloo 

821 Meadow on Orkney, to 10,716 ± 230 cal. BP (Timms et al., 2017). 

822

823 A key question concerning the Ashik Tephra is its tephrostratigraphic relationship with the 

824 Askja-S Tephra. These ash layers have a limited distribution in the British Isles, but occupy a 

825 very similar stratigraphic position within the early Holocene. This close association has 

826 recently been highlighted by the high-resolution work of Timms et al. (2017), who identified 

827 both tephra layers in consecutive 1 cm samples at Quoyloo Meadow (QM1 187, QM1 188 

828 respectively). In this case, it was only the contiguous chemical analyses of adjacent samples 

829 which facilitated a separation of these ash layers. As a result it is now known that the 

830 rhyolitic component of the Ashik Tephra lies stratigraphically above the Askja-S Tephra. 

831 What is not presently clear, however, is the relationship of these ash layers with the basaltic 

832 component of the Ashik Tephra and the CRUM1 510 Tephra. With the closely spaced nature 

833 of these tephras, it could be that the CRUM1 510 Tephra identified at Crudale Meadow is the 

834 same as the ‘basaltic Ashik Tephra’ described elsewhere (i.e. at Loch Ashik, Druim Loch and 

835 Loch an t'Suidhe). Further investigations at finer sampling resolutions or in stratigraphically 

836 expanded sequences are required to establish the precise relationship between the rhyolitic 

837 Ashik Tephra, the rhyolitic Askja-S Tephra and the accompanying Grímsvötn basalt (i.e. the 

838 CRUM1 510 and/or the basaltic Ashik Tephra). Despite these uncertainties, the close 

839 association between the Ashik and Askja-S tephras makes the former ash layer another 

840 potential marker for constraining the end of the PBO phase of climate instability (Pyne-

841 O’Donnell 2007). 

842

843 3.5.5 The Hovsdalur Tephra

844 The Hovsdalur Tephra, like the Hässeldalen Tephra, is thought to originate from the 

845 Thórdarhyrna volcano in Iceland (Wastegård et al., 2018; Table 1; Figure 1). Only two sites 

846 in NW Europe are reported to host the Hovsdalur, the type-site of the same name located in 

847 the Faroe Islands (Wastegård, 2002) and Quoyloo Meadow located on Orkney Mainland 
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848 (Timms et al., 2017). At the type-site, the Hovsdalur Tephra was discovered at the base of 

849 the sequence and was dated by a simple linear extrapolation from a single radiocarbon date 

850 obtained from a higher level in the sequence, an approach which may have underestimated 

851 the age of the ash layer (Wastegård et al., 2018). This potentially erroneous age has been 

852 used to argue that the Hovsdalur at the type-site is misidentified Hässeldalen Tephra 

853 (Wastegård et al., 2018), a plausible proposition because they have overlapping glass 

854 compositions and both lie within early Holocene deposits (Lind and Wastegård, 2011). At 

855 Quoyloo Meadow, however, the layers assigned to the Hovsdalur and Hässeldalen tephras 

856 are separated by 5 cm of sediment and by the Askja-S Tephra; crucially, no shards with a 

857 Hovsdalur/Hässeldalen signature were detected in the Askja-S layer (eight shards 

858 analysed), making reworking from the Hässeldalen layer unlikely in this instance (Timms et 

859 al., 2017). While evidence for the Hovsdalur Tephra is currently limited, the Quoyloo 

860 Meadow record does suggest the possibility of a younger (post-Askja-S) eruption event with 

861 a Hässeldalen-type signature, but corroborating evidence is needed to confirm this.  

862

863 3.5.6 The Saksunarvatn Ash (Saksunarvatn 10-ka series)

864 Originating from the Grímsvötn volcanic system, the basaltic Saksunarvatn Ash has long 

865 stood as an important marker horizon for the early Holocene in NW Europe (Jöhansen, 

866 1977; Mangerud et al., 1986; Birks et al., 1996; Björck et al., 2001). The widespread 

867 distribution of this tephra has allowed it to be traced to a number of high-resolution records 

868 where it has been dated precisely to 10,210 ± 70 cal. BP at Kråkenes in western Norway 

869 (Lohne et al., 2014), and to 10,347 ± 89 GICC05 a b2k in the Greenland ice-core records 

870 (Rasmussen et al., 2006).

871

872 In the British Isles, the Saksunarvatn Ash was first identified at Dallican Water in Shetland 

873 (Bennett et al., 1992), but has since been traced to a number of other records including Loch 

874 of Benston on Shetland (Bondevik et al., 2005), Quoyloo Meadow (Bunting, 1994; Timms et 

875 al., 2017), Crudale Meadow (Bunting, 1994; Timms et al., 2018) and was initially thought to 

876 be present at Loch Ashik (Pyne-O’Donnell 2007; c.f. Kelly et al., 2017). Tentative 

877 correlations based on superposition have also been proposed for the Borrobol sequence 

878 (Turney, 1998b) and Loch an t'Suidhe, located on the Isle of Mull (Pyne-O’Donnell, 2005), 

879 although no chemical evidence is available to support these correlations (Figure 2; 

880 Supplementary Figure S1; Supplementary Table S1).

881

882 Recent evidence has cast doubt over the use of the Saksunarvatn Ash as a single 

883 isochronous marker, because several separate Grímsvötn ash layers appear to have been 

884 deposited around the time interval c. 10.4 – 9.9 ka BP that was originally assigned to the 
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885 ‘Saksunarvatn Ash’  (Jennings et al., 2002, 2014; Jóhannsdóttir et al., 2005; Kristjánsdóttir et 

886 al., 2007; Kylander et al., 2011; Thordarson, 2014; Neave et al., 2015; Harning et al., 2018; 

887 Wastegård et al., 2018). In total it is believed that as many as seven Grímsvötn tephra layers 

888 may have been produced during this 500-year interval, hence leading to the term the 

889 ‘Saksunarvatn 10-ka series’, although it is not clear how many of these were dispersed 

890 towards mainland Europe (Jóhannsdóttir et al., 2005; Jennings et al., 2014; Neave et al., 

891 2015; Wastegård et al., 2018). At Havnardalsmyren in the Faroe Islands, five Grímsvötn 

892 tephra layers have been reported within early Holocene sediments, and two of these, Havn-3 

893 and Havn-4, can be distinguished on the basis of lower glass-derived MgO values than 

894 found in other ‘Saksunarvatn Ash’ glass analyses (Wastegård et al., 2018). This distinction 

895 has significance for the British tephrostratigraphic framework because the basaltic layer in 

896 the Loch Ashik sequence assigned by Pyne-O’Donnell et al. (2007) to the ‘Saksunarvatn 

897 Ash’ also has this characteristically low MgO signal (Wastegård et al., 2018), being further 

898 reflected in additional glass analyses provided for this layer in Kelly et al. (2017; Figure  11). 

899 It is more likely therefore that the ‘Saksunarvatn Ash’ at Loch Ashik is a correlative of the 

900 Havn-3 or Havn-4 eruptions, which date to between c. 10.37 and 10.3 ka BP, and thus we 

901 have revised the tephra record for the Loch Ashik sequence accordingly (Figure 2; 

902 Supplementary Figure S1; Supplementary Table S1).  

903

904 Following this revision, we have reassessed the glass compositional evidence obtained from 

905 ‘Saksunarvatn Ash’ layers in the British Isles (Figure 11). The analyses of the Saksunarvatn 

906 Ash at Crudale Meadow by Bunting (1994) clearly exhibit two glass populations, one 

907 correlating with the Grímsvötn series and the other plotting close to the compositional 

908 envelope of Veiðivötn- Bárðarbunga. Importantly, Veiðivötn- Bárðarbunga glass analyses 

909 are also reported from the Havn-0 horizon at Havnardalsmyren (Wastegård et al., 2018), and 

910 from Bæjarvötn, a lake-site of similar age in the NW of Iceland (Harning et al., 2018). 

911 Wastegård et al. (2018) consider the Havn-0 horizon to represent reworking due to their 

912 coeval presence with Grímsvötn analyses. However, at Bæjarvötn the Veiðivötn- 

913 Bárðarbunga analyses form a distinct 1 cm marker horizon layered between Grímsvötn 

914 tephra layers of the 10-ka Saksunarvatn series (Harning et al., 2018). This finding hints at 

915 the possible discovery of a new isochronous marker in the North Atlantic region and one 

916 independent of the issues associated with the Saksunarvatn series. However, reinvestigation 

917 of the Crudale Meadow sequence by Timms et al. (2018) failed to detect any glass shards 

918 with a Veiðivötn-Bárðarbunga signature despite 29 analyses being obtained. Presently it is 

919 not exactly clear why this may be, but a speculative reason might be a slight difference in 

920 core location at the Crudale Meadow basin between the studies conducted by Bunting 
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921 (1994) and Timms et al. (2018). On current evidence therefore, the significance of the 

922 Veiðivötn-Bárðarbunga analyses from Crudale Meadow is not yet substantiated.

923

924 All other ‘Saksunarvatn’ Ash analyses obtained from records in the British Isles plot within 

925 the main Grímsvötn envelope, suggesting these probably correlate to either the Havn-2 or 

926 Havn-1 tephras described from the Faroe Islands (Wastegård et al., 2018). The recent 

927 findings of Harning et al. (2018) and Wastegård et al. (2018) with regard to the 10-ka 

928 Saksunarvatn series go some way to resolving, or at the very least circumnavigating, the 

929 complex issue of repeated Grímsvötn activity and the associated tephras recorded in early 

930 Holocene sedimentary deposits in the North Atlantic region.

931

932 3.5.7 The Fosen Tephra 

933 The Fosen Tephra has a chemical composition similar to that of the Borrobol-type tephras of 

934 the Late Pleistocene (Table 1) and has been described from sites in western Norway (Lind et 

935 al., 2013), Denmark (Larsen, 2013), eastern Iceland (Gudmundsdóttir et al., 2016) and 

936 Orkney, where it has been dated indirectly using a tephra-based Bayesian age model to 

937 10,139 ± 116 cal. BP (Timms et al., 2017). A tentative correlative of this eruptive has also 

938 been proposed from a sediment sequence in Loch Laggan in the central Grampian 

939 Highlands (MacLeod, 2008; Supplementary Table S1). In the early Holocene, analyses of 

940 glass from four other ash layers bear some chemical resemblance to that of the Fosen: the 

941 Högstorpsmossen Tephra in Sweden, dated to c. 10,200 cal. BP (Björck and Wastegård, 

942 1999); a component of the L-274 Tephra on the Faroe Islands, dated to c. 10,200 cal. BP 

943 (Lind and Wastegård, 2011); population 3 of the QUB-608 Tephra on the Lofoten Islands, 

944 dated to c. 9500 cal. BP (Pilcher et al., 2005); and the SSn Tephra c. 7300 cal. BP (Boygle, 

945 1999). All of these ash layers can be described as ‘Borrobol-type’ in terms of their 

946 composition, and there is a strong possibility that at least the first three could represent the 

947 same eruptive event (Lind et al., 2013; 2016). At present, poor age control for these records 

948 prevents more definitive conclusions, though it seems quite possible that the ‘Fosen Tephra’ 

949 could have a much wider dispersal range than is currently acknowledged.

950

951 In Norway and Orkney, the Fosen Tephra has been recognised as occurring just above the 

952 Saksunarvatn Ash (Lind et al., 2013; Timms et al., 2017). Therefore the Fosen may form a 

953 more useful stratigraphic marker in delineating the 10.3 ka event (Björck et al., 2001), 

954 especially given the uncertainties of the Saksunarvatn 10-ka series discussed above 

955 (section 3.5.6). The stratigraphic position of the Fosen Tephra may also make it a useful 

956 isochron for marking the onset of the ‘Erdalen Events’ (c. 10.10-10.05 ka BP and 9.7 ka BP), 

957 a series of glacier advances in Norway thought to have been triggered by a phase of climatic 
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958 instability (Dahl et al., 2002). These Erdalen Events are relatively understudied in NW 

959 Europe, but their effects may have been felt elsewhere around the periphery of Scandinavia, 

960 including in the British Isles. Tracing of the Fosen Tephra beyond its current known limits 

961 may therefore help focus research into understanding their wider geographical impacts. 

962

963 3.5.8 The An Druim-Høvdarhagi Tephra

964 The An Druim Tephra is the third of four early Holocene rhyolitic ash layers thought to 

965 originate from the Torfajökull volcanic centre (Figure 10) and, like its predecessors, the 

966 Crudale Tephra and the Ashik Tephra, has a limited distribution (Figure 2; Table 1). The 

967 tephra was originally described from Lochan An Druim on the north coast of Scotland 

968 (Ranner et al., 2005), but recent work by Kelly et al. (2017) and Timms et al. (2017) have 

969 confirmed the occurrence of this tephra in sites in the Grampian Highlands and in Orkney. 

970 These studies also present a strong case for linking the An Druim Tephra with the 

971 Høvdarhagi Tephra identified in the Faroe Islands and for both being representative of the 

972 same eruption. Lind and Wastegård (2011) on the other hand have argued for a separation 

973 of these tephras based on marginally higher CaO and MgO wt % values in analyses of glass 

974 of the Høvdarhagi Tephra (Figure 10). This small chemical variance could result from the 

975 delivery of shards with a narrower chemical range to Scottish sequences and/or as an 

976 artefact of smaller sample sizes used in the Scottish studies (Kelly et al., 2017; Timms et al., 

977 2017; Wastegård et al., 2018), or through analytical imprecision (e.g. Lowe, D. et al. 2017). 

978 A re-run of the Lochan An Druim and Høvdarhagi age-depth models using the updated 

979 OxCal parameters of Bronk Ramsey (2008; 2009), Bronk Ramsey and Lee (2013), and 

980 utilising the IntCal13 calibration curve (Reimer et al., 2013), indicates that these tephras 

981 overlap chronologically (Timms, 2016), adding weight to the argument that they share the 

982 same source. We propose on current evidence that the best-estimate age for the An Druim- 

983 Høvdarhagi Tephra is 9648 ± 158 cal. BP, based on the remodelled An Druim chronology, 

984 and therefore provisionally offers an additional marker horizon for establishing the wider 

985 impacts of the early Holocene Erdalen Events (Timms, 2016).  

986

987 3.5.9 The LAN1-325 Tephra

988 Within the current British tephrostratigraphic framework, the LAN1-325 Tephra is the fourth 

989 and youngest ash layer thought to originate from the Torfajökull volcanic centre (Table 1; 

990 Figure 10; Matthews, 2008). The tephra’s glass shards are characterised chemically by 

991 seven analyses and at present the tephra has only been detected at the type-site, 

992 Loughanascaddy Crannog, Ireland (Figure 2). It is, however, well constrained 

993 stratigraphically, occurring  just below the Lairg A Tephra (6903 ± 94 cal. BP), and 13 cm 

994 above sediment with a radiocarbon date of 7620 ± 50 14C yrs. Bayesian age modelling 
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995 suggests an age for this tephra of 8434 ± 96 cal. BP. There is some possibility therefore that 

996 the LAN1-325 Tephra may correlate with the proximal Slettahraun deposit in Iceland, which 

997 has been dated to c. 8000 yr BP (MacDonald et al., 1990; McGarvie et al., 1990). At present, 

998 however, the available chemical data for comparing the two are limited. Glass analyses for 

999 the LAN1-325 tephra are based on EPMA, and are published here for the first time 

1000 (Supplementary Table S2), whereas the proximal analyses are based on whole-rock X-ray 

1001 Fluorescence (XRF). Single grain glass analysis of the latter will be needed to provide more 

1002 directly comparable data. Nonetheless, the age of the tephra means that it is has the 

1003 potential to become a regionally valuable horizon for marking environmental responses to 

1004 the 8.2 ka event.

1005

1006 3.5.10 The Suduroy Tephra

1007 The Suduroy Tephra is a rhyolitic ash layer with a silicic Katla chemical signature (Table 1; 

1008 Wastegård, 2002; Lane et al., 2012a). It was first identified at Hovsdalur on the Faroe 

1009 Islands where it was dated to 8073 ± 192 cal. BP (Wastegård, 2002). In the British Isles, this 

1010 tephra has been identified at two sites: Loch Laggan in the central Grampian Highlands 

1011 (MacLeod, 2008) and Rubha Port an t-Seilich on Islay (Mithen et al., 2015; Figure 2). The 

1012 tephra has also been identified in a series of North Atlantic marine deposits (Kristjánsdóttir et 

1013 al., 2007; Gudmundsdóttir et al., 2012) as well as in sites in mainland Europe (Pilcher et al., 

1014 2005; Housley et al., 2012). There is some concern, however, that the Suduroy may 

1015 represent reworked material from antecedent Vedde Ash deposits in some sites (Wastegård 

1016 et al., 2018). However, this seems unlikely at Loch Laggan as a number of discrete tephras 

1017 lie between what is hypothesised to represent the Vedde Ash based on stratigraphic 

1018 superposition, and the glass-shard based chemically correlated Suduroy Tephra (MacLeod, 

1019 2008). At Rubha Port an t-Seilich the correlation is slightly more tentative as low 

1020 concentrations of glass shards occur throughout the stratigraphic column suggesting a 

1021 problem of reworked shards. Despite these concerns, if the Suduroy Tephra can be shown 

1022 to represent primary fallout at sites to which it is traced, the age of the isochron means that 

1023 like the LAN1-325 Tephra, the Suduroy Tephra may be particular useful in marking 

1024 environmental response to the 8.2 ka event.

1025

1026 3.5.11 The Breakish Tephra

1027 This is a rhyolitic ash layer which may originate from the Askja volcanic centre and its glass 

1028 components exhibit distinctly high TiO2 (c. 0.49 wt %) and FeO (c. 3.59 wt %) values (Table 

1029 1). So far, it has been detected in the Loch Ashik sequence on Skye only, where it was 

1030 reported as lying stratigraphically above the Saksunarvatn Ash (now considered to be the 

1031 Havn-3 or 4 eruption, see section 3.5.6; Pyne-O’Donnell, 2007). At present the ash layer has 
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1032 not been dated directly, while the nearest match on the basis of glass composition is the 

1033 Glen Garry Tephra (Pyne-O’Donnell, 2007; Lowe et al., 2016) which, being dated to 2176 ± 

1034 164 cal. BP (Barber et al., 2008), is hence too young to be a viable correlative. Recently a 

1035 number of other Askja-derived tephras have been identified in early-Holocene sequences, 

1036 the Askja-L (c. 9400 cal. BP), and the Askja-H (c. 8850 cal. BP; Gudmundsdóttir et al., 

1037 2016). These are unlikely correlatives for the Breakish Tephra, however, as both exhibit 

1038 glass chemical signatures very similar to those of the Askja-S, which the Breakish Tephra 

1039 does not consistently match (Pyne-O’Donnell, 2007). Presently the potential usefulness of 

1040 this ash layer within the British tephrostratigraphic framework is uncertain, and hence it has 

1041 limited value until corroborative records can be found.

1042

1043 4. Synthesis: an emerging tephrostratigraphic framework for the British Isles (16-8.0 
1044 ka BP) and its validation
1045

1046 The previous section presented, in order of stratigraphic superposition from oldest to 

1047 youngest, the record of tephra layers detected in the British Isles for the period 16-8 ka BP. 

1048 Establishing this order was guided initially by the relative positions of individual tephra layers 

1049 with respect to the boundaries for the DS, WI, LLS and early Holocene stratigraphic units, 

1050 while additional order could be imposed where two or more tephra layers are co-registered 

1051 within the same sequence and stratigraphic unit, as in the case of the Borrobol and Penifiler 

1052 Tephras, both of which are detected in a number of sediment records dating to the early WI 

1053 (Supplementary Figure S1; Supplementary Table S1). Integration of the complete 

1054 tephrostratigraphic dataset using common marker tephras leads to the regional 

1055 tephrostratigraphic scheme presented in row F of Figure 12. Parts of this scheme should, 

1056 however, be considered provisional in view of the points raised in section 3 over the origins 

1057 of some layers, whether they represent primary fall events or, in the cases of those detected 

1058 at a single site only, whether they have the potential to serve as regional isochrons. For 

1059 these reasons, the tephras are coded in row F, Figure 12, to signify: (i) those considered to 

1060 be based on the most robust glass analytical data, with consistent stratigraphic positions and 

1061 well-defined ages (n=6); (ii) those for which reasonably robust glass analytical data are 

1062 available, but questions remain about their precise origins, stratigraphic integrity or age 

1063 (n=9); and (iii) those most in need of further investigation to test their potential to serve as 

1064 regional isochrons in the British Isles (n=11). It is tephras from these first two categories 

1065 which we provisionally include within the formalised tephrostratigraphic framework (Table 4).

1066

1067 To validate and extend this regional framework, a number of stratigraphic constraints need 

1068 to be taken into account. First, very few sites with tephra layers dating to the DS or to the 
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1069 DS-WI transition have been discovered in the British Isles so far, a reflection perhaps of the 

1070 geographical bias of recent tephrostratigraphical research, which has predominantly focused 

1071 on sites in the Scottish Highlands. While parts of Scotland were deglaciated by c. 16.0 ka BP 

1072 (Clark et al., 2012; Hughes et al., 2016; Ballantyne and Small, 2018), the current tephra 

1073 record suggests that much of the Scottish Highlands did not become ice-free until, or 

1074 marginally before, c. 14.0 ka BP. This inference is indicated by the frequency with which the 

1075 Borrobol Tephra is found close to the base of the earliest sediments to have accumulated in 

1076 a number of lake basins (Walker and Lowe, 2017; Supplementary Figure S1), whereas in the 

1077 Tirinie basin located in the Grampian Highlands, the younger Penifiler Tephra occupies this 

1078 position (Candy et al., 2016). Thus far, the only terrestrial sites in the British Isles in which 

1079 pre-WI tephra layers have been discovered are located on the Summer Isles in The Minch, 

1080 off the north-west coast of Scotland, and on Orkney, north of the Scottish mainland, i.e. in 

1081 parts of Scotland for which independent evidence indicates retreat of ice-sheet margins by or 

1082 before 16.0 ka BP (e.g. Phillips et al., 2008; Ballantyne et al., 2012; Hughes et al., 2016). 

1083 Hence the search for possible additional tephra records of pre-WI age in the British Isles 

1084 may prove more profitable if focused on sites located in areas outside of the Scottish 

1085 Highlands.

1086

1087 Only two tephra layers that date to within the WI have been proposed as viable regional 

1088 isochrons: the Borrobol and Penifiler tephras which both date to between c. 14.19 and 13.9 

1089 ka BP. Whilst uncertainty surrounds the origin of the Penifiler tephra (section 3.3.1), there is 

1090 nevertheless a degree of stratigraphic consistency in tephra records showing at least two 

1091 shard peaks of Borrobol chemistry in the lower part of the WI. Additional stratigraphic 

1092 markers help to constrain the age of these tephra layers for proxy environmental records 

1093 from the British Isles are increasingly indicating evidence for two short-lived oscillations 

1094 during the WI, which are assumed to equate with the GI-1d and GI-1b events (column A, 

1095 Figure 12) in the Greenland stratotype record (e.g. Brooks and Birks, 2000; Marshall et al., 

1096 2002; Lang et al., 2010; Watson et al., 2010; van Asch et al., 2012; Whittington et al., 2015; 

1097 Brooks et al., 2012; 2016). In a number of tephra records, one of the peaks (usually the 

1098 more prominent) clearly pre-dates the oscillation equated with GI-1d, while the younger, less 

1099 prominent peak lies within this interval (Matthews et al., 2011; Brooks et al., 2012; 2016). 

1100

1101 Some of the evidence on which these stratigraphic relationships are based has, however, 

1102 relied on correlations resting entirely on lithostratigraphic criteria, represented by loss-on-

1103 ignition (LOI) data (e.g. Lowe et al., 1999; Turney et al., 2006; Pyne-O’Donnell, 2007; Pyne-

1104 O’Donnell et al., 2008). Although the lithostratigraphic changes within the WI are clearly 

1105 evident in some sequences, they are poorly developed in others (cf. columns B and C, 
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1106 Figure 12). This inconsistency could reflect the influence of local factors that acted to 

1107 dampen or enhance the impacts of the environmental conditions that caused these 

1108 lithostratigraphic changes, for example,  the degree of shelter or exposure afforded to 

1109 different catchments, or poor resolution of these sedimentary features due to very low rates 

1110 of sedimentation. To complicate matters further, some sequences show evidence for at least 

1111 six lithological sub-units within the WI interval (e.g. column B, Figure 12  in which the more 

1112 minerogenic layers are numbered 1-3), and hence the possible occurrence of three short-

1113 lived climatic oscillations rather than two (see Whittington et al., 2015; Candy et al., 2016; 

1114 Walker and Lowe, 2017). Finally, it cannot be assumed that these lithological changes 

1115 necessarily reflect climatic impacts. Short-lived increases in the rate of minerogenic 

1116 sediment supply to lake basins could reflect localised soil or land disturbance caused, for 

1117 example, by sediment or rock failures. A more secure basis, therefore, for assessing the 

1118 significance of these lithological changes would be by inclusion of palaeoclimate proxies in 

1119 site investigations, for example the analysis of stable oxygen isotope variations (column D, 

1120 Figure 12) or chironomid assemblages (column E, Figure 12), but detailed records of this 

1121 type that extend through the Lateglacial and early Holocene are presently available for only 

1122 a handful of records in the British Isles (e.g. Marshall et al., 2002; Brooks et al., 2012; 

1123 Whittington et al., 2015; Candy et al., 2016). Nevertheless, the few lake records that are 

1124 presently available that combine tephrostratigraphic with palaeoclimatic data do support the 

1125 view that two Borrobol-type tephra peaks dating to the early WI are distinguishable by 

1126 stratigraphic position relative to a short-lived climatic oscillation provisionally equated with 

1127 the GI-1d event (Brooks et al., 2016).

1128

1129 One of the main challenges facing the tephrostratigraphic scheme is the further refinement 

1130 and validation of tephras located between the LLS-Holocene transition and c. 8.0 ka BP. 

1131 Fifteen tephra layers have been proposed for this interval so far (section 3.5; Figure 12; 

1132 Table 4), some with very similar major and minor element glass compositions, some in close 

1133 stratigraphic proximity, and some sharing overlapping age ranges. In addition, there is a 

1134 likelihood that a proportion of these tephra layers, where present, will be conflated together 

1135 in a single horizon. This is due to the marked warming at the start of the Holocene, the 

1136 expansion of higher plant communities and the consequential stabilisation of catchment 

1137 soils, all of which would have led to a reduction in the sediment supply rate to lake basins 

1138 compared with the preceding Lateglacial period (e.g. Brauer et al., 1999). Furthermore, in 

1139 most lake basin sites in the British Isles, the early Holocene deposits lack the clear 

1140 lithostratigraphic markers that characterise Lateglacial sediment sequences (Column B and 

1141 C, Figure 12). This means that other indictors must play a more prominent role in refining the 

1142 stratigraphic superposition of tephra layers. For example, greater reliance may be placed 
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1143 upon those tephras with distinctive glass chemical compositions or shard morphology as key 

1144 markers, such as the Hässeldalen, Askja-S and traditionally the Saksunarvatn Ash, although 

1145 the robustness of the latter is now doubtful. Recourse can also be made to other ‘proxy’ 

1146 stratigraphical information–for example, pollen-stratigraphic records for the early Holocene 

1147 throughout much of the British Isles reflect a characteristic plant colonisation sequence 

1148 dominated successively by Empetrum, Juniperus, Betula and Betula-Corylus (Walker, 1984; 

1149 Birks, 1989). In records obtained from sites in the Scottish Highlands, the Askja-S Tephra is 

1150 consistently found within the upper part of the Juniperus phase, whereas deposition of the 

1151 An Druim Tephra post-dates the local establishment of Betula-Corylus woodland (Ranner et 

1152 al., 2005; Kelly et al., 2017; Lowe et al., 2017). Whether these relationships hold for other 

1153 parts of the British Isles is unclear, however, as the process of plant colonisation over a 

1154 wider area is likely to have been time-transgressive (Tipping, 1987; Birks, 1989; Huntley, 

1155 1993; Normand et al., 2011).

1156

1157 The British Isles represent the most intensively studied area for LGIT-aged cryptotephra 

1158 anywhere, but it is clear from the above sections that the tephrostratigraphic scheme 

1159 presented here is still in need of further refinement (Figure 12; Table 4). Even though future 

1160 tephra studies will have a variety of specific goals, those offering the greater potential for 

1161 improving the tephrostratigraphic scheme presented here are likely to be those based on 

1162 sedimentary records that are: (i) capable of analysis at high stratigraphic and temporal 

1163 resolution, allowing closely timed ash-falls to be clearly separated and sequenced, such as 

1164 the Askja-S and Ashik tephras; and (ii) part of multi-proxy programmes of research, which 

1165 allow the local and wider climatic and environmental context at the time of deposition to be 

1166 assessed. Critical to this is the inclusion of palaeoclimatic reconstructions, enabling the 

1167 alignment of tephra layers with local or regional climatostratigraphic events to be established 

1168 (Figure 12). It should not be assumed, however, that these records need to be located within 

1169 the British Isles as sites with better resolution and more secure stratigraphic settings may be 

1170 available elsewhere in Northern Europe. A possible weakness that needs to be noted, 

1171 however, is that of circular argument where, on the one hand, tephra layers are used as 

1172 stable marker horizons to test for asynchronous climatic behaviour, while 

1173 climatostratigraphic boundaries are used to judge the isochronous nature of tephra layers, 

1174 an example being that of the Borrobol and Penifiler tephras (see section 3.3.1; see also 

1175 studies on this topic by Newnham and Lowe, 1999). In view of the growing evidence from 

1176 Europe that suggests climatic changes during the period c.16-8 ka were time-transgressive 

1177 (e.g. Lane et al., 2013; Rach et al., 2014; Muschitiello and Wohlfarth, 2015), care needs to 

1178 be exercised when adopting this approach. Likewise the use of local pollen-stratigraphic 

1179 boundaries for correlation purposes, as in the example given above of the Askja-S Tephra, is 
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1180 also potentially problematic. This dilemma could be avoided if all tephra layers were 

1181 chemically distinct, stratigraphically separable and reliably dated with narrow age ranges, 

1182 but, as illustrated in section 3, such an ideal scenario is far from the case. Thus the process 

1183 of establishing the consistent stratigraphic context and isochronous nature of cryptotephra 

1184 layers will continue to be an iterative one.

1185

1186 5. Future targets and prospects
1187

1188 The tephrostratigraphic scheme outlined in Figure 12 reflects the current available evidence 

1189 in the British Isles, but aspects of the scheme require further refinement and to aid this we 

1190 identify reference records for each proposed tephra isochron, including those that cannot yet 

1191 be integrated confidently into the framework (Table 4). Most of these reference records are 

1192 provisional and were selected using a combination of criteria, notably the resolution and 

1193 magnitude of peak shard concentrations, the robustness of supporting glass analytical data, 

1194 and the precision and reliability of associated age estimates. Note that an individual 

1195 reference record is not necessarily that from which the proposed isochron or tephra layer 

1196 was first recognised in the British Isles, because later discoveries may be considered 

1197 superior. For example, the Tirinie sequence is selected as the reference record for the 

1198 Penifiler Tephra in the British Isles for two mains reasons: (i) it has a better resolved shard 

1199 peak than is the case for the Druim Loch record from Skye, which is located close to the 

1200 village of Penifiler, after which the tephra is named; (ii) the site has robust palaeoclimatic 

1201 data available; and (iii) the collective stratigraphic evidence for the Tirinie sequence provides 

1202 the strongest argument against the Penifiler Tephra being derived by reworking of the 

1203 Borrobol Tephra (see section 3.3.1), at least in this instance, since the onset of sediment 

1204 accumulation in the Tirinie basin post-dates deposition of the Borrobol Tephra (Candy et al., 

1205 2016). In due course, more secure reference records may emerge from investigations of 

1206 new sites, or through more rigorous re-examination of previously studied sequences that, for 

1207 example, are in need of analysis at a higher stratigraphic or temporal resolution, or for which 

1208 glass shards are currently weakly characterised. To this end, development of reference 

1209 records and the tephrostratigraphic framework as a whole will be enhanced by addressing 

1210 the following issues: (i) spatial and stratigraphic sampling biases; (ii) glass-shard analytical 

1211 data, both for major and trace elements, and the need for improved resolution and scrutiny 

1212 of existing compositional data, and (iii) ongoing refinement of tephra age estimates.

1213

1214 Studies over the past 25 years have revealed a wealth of tephrostratigraphic data for British 

1215 LGIT sediment sequences, but knowledge gaps remain. These include finding additional 

1216 isochrons and establishing the full geographic ranges over which they are traced. In this 
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1217 context, Scotland has been the most intensely studied area in the British Isles for tephra 

1218 layers dating to this interval, yet fewer than 20% of known sites containing suitable deposits 

1219 have so far been explored for their tephra content (Walker and Lowe, 2017), while the 

1220 comparable ratios for sites in England, Wales and Ireland are much lower (Figure 2; 

1221 Supplementary Figure S1). Given the relative abundance of mid-late Holocene tephra 

1222 detected in other areas of the British Isles (Swindles et al., 2011; Plunkett and Pilcher, 

1223 2018), it is probable that more tephra layers await discovery, including those dating to the 

1224 LGIT. Particularly intriguing in this respect are tephras that have been detected in a single 

1225 site only, such as the Roddans Port and LAN1-325 tephras in Ireland and the recent 

1226 discovery of ‘ultra-distal’ tephras from North American centres. It is not clear whether these 

1227 sparse records reflect a very limited impact of the corresponding ash clouds in the British 

1228 Isles, a failure to detect these layers in other records, or both. 

1229

1230 Pertinent to this point is the strategy adopted when investigating the glass shard content of 

1231 sediment sequences. In some cases records have not been investigated in full, either 

1232 because research questions were focused on specific age intervals, or because certain 

1233 tephras were seen as more important than others and were preferentially targeted, or 

1234 because sampling resolution or methods were not sufficient to detect cryptotephras. 

1235 Understanding the purpose and sampling limitations behind individual tephrostratigraphic 

1236 studies is therefore important when synthesising records to construct a regional 

1237 tephrostratigraphic framework. In some previous records there has been a tendency to focus 

1238 attention on selected key marker horizons, such as the Vedde and Saksunarvatn ash layers 

1239 (e.g. Wastegård 2000; Bramham-Law et al., 2013). These tephra are understood to 

1240 represent the most explosive and voluminous eruptive events that occurred during the period 

1241 16-8 ka, but other tephra which have been explored less assiduously may prove to serve as 

1242 equally important isochrons, with dispersal ranges possibly just or as nearly widespread. The 

1243 recent eruptions of Eyjafjallajökull and Grímsvötn in Iceland (Davies et al., 2010; Stevenson 

1244 et al., 2012; 2013) have demonstrated that relatively small to moderate eruptions can have 

1245 much greater dispersal ranges than those presently recognised in the palaeo-tephra record. 

1246 This raises the question as to whether important ash layers are being overlooked by 

1247 selective low resolution sampling methods and the over emphasis and exploration of ‘key 

1248 marker’ horizons (Timms et al., 2017). Given this concern, more studies are now adopting 

1249 contiguous high resolution sampling strategies as routine practice, most being rewarded with 

1250 improved tephrostratigraphic resolution and discrimination, and more secure tephra-linkages 

1251 than coarse sampling strategies tend to yield (e.g. MacLeod 2008; Matthews et al., 2011; 

1252 Timms et al., 2017; 2018). It follows that if the tephrostratigraphic scheme and its 

1253 applications are to be optimised, this practice needs to be more commonly applied. 
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1254

1255 In other cases the nature of negative information (the absence of glass shards) is not always 

1256 made clear. Gaps in the tephra record could reflect unsampled intervals, or cases where 

1257 investigations have been carried out but no tephra (glass) was found. In times of the latter, it 

1258 is recommended that such negative findings are always reported, as they are particularly 

1259 valuable for: (i) assessing the efficiency of different approaches employed for tephra 

1260 detection and extraction; (ii) reconstructing the geographical distribution (‘footprints’) of 

1261 individual tephra isochrons, and (iii) evaluating the taphonomic and other factors that 

1262 influence the deposition and preservation of volcanic glass shards. Negative results, where 

1263 known, have been compiled for this review (Supplementary Figure 1; Supplementary Table 

1264 1), and are beginning to be reported more routinely (e.g. Wastegård et al., 2000; van Asch et 

1265 al., 2012; Jones et al., 2017).

1266  

1267 Thorough tephrostratigraphic investigations should be coupled with robust chemical 

1268 determinations conducted at a comparable stratigraphic resolution (see Lowe, D. et al., 

1269 2017). However, the greater scrutiny this enables will inevitably result in exposing further 

1270 levels of complexity for, as outlined in earlier sections of this paper, the LGIT 

1271 tephrostratigraphic record is already populated with tephra layers that share closely similar 

1272 or indistinguishable major element signatures. Whether this similarity extends to trace 

1273 element compositions remains to be widely tested, but as recommended elsewhere, when 

1274 major elements prove equivocal trace elemental analyses should be prioritised (e.g. Lowe 

1275 2011, Lowe, D. et al., 2017). This contribution has also shown the frequency with which a 

1276 single shard concentration peak may include shards with a range of different chemical 

1277 (major element) compositions (Supplementary Table S2), raising the question of whether 

1278 even finer resolution studies are required to resolve such complexities, including, for 

1279 example, high-resolution imaging techniques to better understand the local depositional 

1280 context (see Griggs et al., 2015). However, this greater scrutiny may only serve to highlight 

1281 the scales at which mixing processes occur, if shards are already known to be spread over 

1282 cm’s, further examination at mm scales, or finer, may not yield further useful information. It 

1283 may be required, therefore, that future studies focusing on resolving regional 

1284 tephrostratigraphies be conducted in records that are less susceptible to taphonomic 

1285 processes, or in records where stratigraphic integrity can be reliably demonstrated e.g. 

1286 annually laminated records. Whatever the cause, repeating chemical signatures are 

1287 probably the greatest challenge to the refinement of any tephrostratigraphic scheme, and 

1288 may only be resolved by more comprehensive assays of the major, minor and trace element 

1289 compositions of the glass components of each tephra layer, coupled with a detailed 

1290 understanding of the stratigraphic context (Lowe, 2011; Lowe, D. et al., 2017). 
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1291

1292 A further target for future research will be refinement of the age estimates assigned to each 

1293 tephra isochron, for a number of those included in the tephrostratigraphic framework outlined 

1294 here presently have wide ranges or conflicting age estimates. Examples include the Penifiler 

1295 Tephra (see section 3.3.1), the Askja-S Tephra (section 3.5.3) and the Saksunarvatn Ash, 

1296 this last example made more complicated by the likelihood that several closely-spaced 

1297 eruptions have become conflated under the single name (section 3.5.6). Since these age 

1298 uncertainties compromise the use of tephra isochrons for the development or testing of age 

1299 models based on other methods, the search for new sites which offer opportunities for 

1300 significantly reducing the uncertainties must be a priority. In this regard we advocate the 

1301 RESET approach (Bronk Ramsey et al., 2015; Lowe et al., 2015), where all the 

1302 chronological information associated with an individual tephra isochron is evaluated using 

1303 Bayesian probabilistic modelling to generate an optimised age estimate. This has the 

1304 potential advantage, depending on the number and uncertainty ranges of the dates 

1305 available, that no single erroneous estimate will heavily bias the outcome, although it is 

1306 recommended that this is only applied to sequences where correlations are robust and 

1307 unequivocal. 

1308

1309 Finally, a more fully developed and secure tephrostratigraphic scheme potentially can yield a 

1310 number of dividends, not only in terms of improved dating and correlation of sedimentary 

1311 sequences, but also with respect to important palaeoenvironmental questions. For example, 

1312 it is noticeable that for the period 16-11.7 ka, only four clearly-defined tephras have been 

1313 detected in sites in the British Isles (the Dimna, Borrobol, Penifiler and Vedde), although 

1314 there are tentative signs that others may be added in due course. This record contrasts 

1315 starkly, however, with the much higher number of tephra layers detected in the shorter 

1316 period between 11.7 and 8 ka (Figure 12). The question that arises is what may have 

1317 caused this difference. One possibility is an increased frequency and perhaps magnitude of 

1318 volcanic eruptions in Iceland during the early Holocene. Tephrochronological research in 

1319 Iceland is increasingly pointing to a connection between the frequency and magnitude of 

1320 volcanic activity on the one hand, and glacial unloading due to a warming climate on the 

1321 other (e.g. Maclennan et al., 2002; Carrivick et al., 2009; Sigmundsson et al., 2010). 

1322 However, an alternative explanation for this contrast in the British tephrostratigraphical 

1323 record would be a major change in climatic regime in the North Atlantic region between the 

1324 end of the Pleistocene and start of the Holocene, which resulted in more ash plumes being 

1325 driven from Iceland towards the British Isles in the latter period. It is difficult on present 

1326 evidence to support either argument. There are also apparent notable differences in the 

1327 trajectories and dispersal limits of individual tephra layers, but these may be misleading due 
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1328 to geographical bias in the distribution of sites from which detailed tephrostratigraphic 

1329 records have been obtained and the degree to which some tephra layers have been 

1330 preferentially targeted. Hence caution should be exercised when drawing conclusions about 

1331 the factors that influenced tephra dispersal patterns (e.g. magnitude of eruption; wind 

1332 strength and direction; seasonal climatic conditions) until more robust tephra ‘footprints’ over 

1333 Europe become available.

1334

1335 6. Conclusions and recommendations
1336

1337 The synthesis presented here, obtained from 54 sites and including 26 well established or 

1338 potential eruptives, indicates the British Isles to be one of the most intensely studied regions 

1339 in the world for cryptotephra deposition. This network of sites offers an exceptional 

1340 opportunity for testing the timing of abrupt climatic transitions and their environmental, 

1341 archaeological and geological impacts during the LGIT. It is hoped that the tephra framework 

1342 presented here will, in time, help to resolve some of the long standing debates concerning 

1343 the precise chronology of events in the British Isles and Europe during the LGIT (e.g. Lowe, 

1344 2001; Palmer and Lowe, 2017; Peacock and Rose, 2017). Tephrochronology has the 

1345 potential to emerge as a ubiquitous connecting and dating method to support late 

1346 Quaternary palaeoenvironmental investigations, and is capable of enhancing and testing 

1347 more traditional geochronological techniques, given sufficient integration and development. 

1348 A systematic search for tephra in many more European palaeoclimate investigations should 

1349 foster more robust correlations, and allow the reconstruction of environmental changes with 

1350 a greater degree of finesse than has been achieved hitherto. It is essential therefore that 

1351 local tephra frameworks are developed in new regions, and particularly in areas where little 

1352 tephra exploration has been undertaken to date. As previously noted, very few tephras of 

1353 LGIT age have been identified in England, Wales and Ireland, while the level of such enquiry 

1354 is even lower for many other European countries. 

1355

1356 Whilst it is now possible to precisely link sequences from the British Isles to Greenland, 

1357 Scandinavia, continental Europe and the Mediterranean region, with further development, 

1358 the potential for much wider trans-continental synchronisation appears to be within grasp. 

1359 The recent discovery of the Glacier Peak B Tephra in Scotland (Pyne-O’Donnell and Jensen, 

1360 2018) and the coeval discovery of the Glacier Peak and Mount St Helens J eruptions at 

1361 Finglas River (reported here) are significant finds which adds to the growing body of 

1362 literature describing ultra-distal tephras in the British Isles (Jensen et al. 2014; Plunkett and 

1363 Pilcher, 2018). Studies focused on mid to late Holocene records in Europe and the North 

1364 Atlantic margin are already reporting the discovery of multiple trans-continental ashes from a 
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1365 variety of volcanic centres (Van der Bilt et al. 2017; Watson et al., 2017; Cook et al., 2018b); 

1366 there is no good reason, therefore, why tephras from these centres should remain 

1367 unregistered in records spanning the LGIT.

1368

1369 The challenges summarised above are not unique to the LGIT, or to the British Isles, but 

1370 serve to highlight some important considerations for optimising tephrostratigraphic 

1371 investigations and the construction of regional tephrostratigraphic frameworks, especially 

1372 where the evidence comprises or includes cryptotephra layers with very low shard 

1373 concentrations. Key recommendations for adoption are some or preferably all of the 

1374 following:  

1375

1376  Contiguous sampling of sedimentary records at a coarse stratigraphic resolution, 

1377 followed by more intensive re-sampling at a finer resolution, is an efficient approach 

1378 for achieving a thorough assessment of a sites (crypto-)tephra content; this 

1379 approach, however, promotes coverage over detail, with the potential result that 

1380 eruptions represented by trace amounts of cryptotephra could be overlooked; this is 

1381 particularly evident where more ‘minor’ (crypto-)tephras coincide with eruptions that 

1382 produce more copious ash-fall; refined contiguous sampling at high stratigraphic 

1383 resolution may therefore be required to detect and resolve these instances of 

1384 conflated tephra layers (see Timms et al., 2017, 2018);

1385

1386  The chemical classification of tephra layers has traditionally relied on the 

1387 measurement of major and minor element ratios, an approach which has often  

1388 proved inadequate as a discriminatory tool, especially for distinguishing between 

1389 successive tephras from the same volcanic source (as in the case of the Borrobol-

1390 type tephras discussed here); for greater discriminatory power, therefore, recourse to 

1391 the analysis of trace (including rare-earth) elements should perhaps become more 

1392 routine;

1393

1394  The development of a (crypto-)tephrostratigraphy is best conducted in parallel with 

1395 detailed litho-, bio- and climatostratigraphic investigations, particularly where these 

1396 provide regionally consistent ‘zones’ which can aid in the interpretation and 

1397 correlation of tephras;

1398
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1399  Where possible, tephra layers should be dated independently and all chronological 

1400 information for individual isochrons integrated using a Bayesian age modelling 

1401 procedure;

1402

1403  The primary limitation in developing a regional (crypto-)tephrostratigraphic framework 

1404 is the time needed to detect, extract, chemically fingerprint and independently date 

1405 glass shards representing the individual tephra layers, and hence further 

1406 experimental work that leads to significant paring of the laborious procedures 

1407 involved would greatly augment the potential applications of (crypto-

1408 )tephrochronology. 

1409

1410 The framework proposed here marks a major step in the consolidation of tephrostratigraphic 

1411 data dating to the LGIT in NW Europe. The scheme is, however, a work in progress and we 

1412 hence encourage efforts to further refine the scheme, if possible by adopting the above 

1413 recommendations, in order to enhance its potency as an aid for the correlation and dating of 

1414 events during the LGIT.

1415
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1473 Figure Captions
1474

1475 Figure 1

1476 Overview of the British Isles and location of volcanic centres discussed in text that contribute 

1477 to the British and European tephra frameworks. 

1478

1479 Figure 2

1480 Summary of LGIT tephrostratigraphic sites in the British Isles. Note: only sites where glass 

1481 shards from tephras have been chemically characterised are included here. Each site is 

1482 represented by a segmented chart with the coloured sections corresponding to the presence 

1483 of a particular tephra. A coloured section affixed with a ? symbol indicates a degree of 

1484 uncertainty with the correlation. A ? symbol overlapping several segments signifies a likely 

1485 correlation to one of those tephra, but at present a correlation is indeterminable. A 

1486 complementary schematic is presented in Supplementary Figure S1 which includes 

1487 individual site stratigraphic data, negative findings of glass shards and sites whereby tephra 

1488 have been assigned on the premise of stratigraphy. A tabulated summary of tephra 

1489 correlations and sampling strategies can be found in Supplementary Table S1. Glass-shard 

1490 compositional analyses used to make these correlations can be accessed from 

1491 Supplementary Table S2.

1492

1493 Figure 3

1494 Last Termination or Last Glacial to Interglacial Transition (LGIT) event stratigraphy for 

1495 Greenland, NW Europe, and the British Isles. The Greenland event stratigraphy is divided 

1496 into Stadials (GS: cold phase), and Interstadials (GI: warm phase), with comparable, but not 

1497 necessarily synchronous phases identified in European and British climate archives. GI-1 is 

1498 divided into seven subunits, with (GI-1d, GI-1c2, GI1b) reflecting short lived cold events 

1499 punctuating an otherwise comparatively warm interval (GI-1e, GI-1c3, GI-1c1, GI-1a; Björck 

1500 et al. 1998; Rasmussen et al. 2006). In the early Holocene a number of similar revertence 

1501 episodes are also identified, most notably the 11.4 ka event (Pre-Boreal Oscillation), 9.3 ka 

1502 event and the 8.2 ka event. The example stratigraphy (Loch Etteridge) shows how these 

1503 climatic events can be expressed in the sedimentological record, a pattern which can be 

1504 recognised in basin sediments across the British Isles (Walker and Lowe, 2017). 

1505

1506 Figure 4

1507 Selected chemical bi-plots of non-normalised glass compositional data from Dimlington 

1508 Stadial tephras identified in Scottish sequences. Correlations can be made to the Dimna Ash 

1509 (Koren et al., 2008) and the Borrobol-type tephra series. Low CaO wt % values exhibited by 
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1510 glass analyses of the Dimlington Borrobol-type tephra negates a correlation to the 

1511 Greenland GS-2.1 Borrobol-type tephra identified by Cook et al. (2018). The Dimlington 

1512 Borrobol-type tephra is therefore given the provisional name of ‘Tanera Tephra’ after the 

1513 island where this tephra is presently most clearly defined. The site-specific glass analytical 

1514 data used for this figure is included in Supplementary Table S2. References for the chemical 

1515 envelopes are listed in Supplementary Table S3.

1516

1517 Figure 5

1518 Schematic showing the inconsistent stratigraphic interpretation of the Borrobol-type tephra 

1519 series at the site of Borrobol, NW Scotland. Records from: A) Turney et al., (1997); B) Pyne-

1520 O’Donnell, (2007); C) Lind et al., (2016).

1521

1522 Figure 6 

1523 Selected chemical bi-plots of non-normalised glass compositional data showing the similarity 

1524 between the basaltic component of the Penifiler Tephra identified at Loch Ashik and the 

1525 NGIP-1573m Tephra. These tephra have an overlapping age estimate and share 

1526 indistinguishable glass compositions that match with those of the Katla volcanic centre and 

1527 of the Vedde Ash-type tephra series. The Loch Ashik glass analyses used for this figure are 

1528 included in Supplementary Table S2. References for the chemical envelopes are listed in 

1529 Supplementary Table S3.

1530

1531 Figure  7

1532 Selected chemical bi-plots of non-normalised glass compositional data for tephras identified 

1533 at Finglas River. Three glass compositional populations can be identified, group A matches 

1534 with the Glacier Peak G Tephra, shard B matches with the Mount St Helens J Tephra and 

1535 shard C matches with the Borrobol-type series. The Finglas River glass analyses used for 

1536 this figure are included in Supplementary Table S2. References for the chemical envelopes 

1537 are listed in Supplementary Table S3.

1538

1539 Figure 8 

1540 Selected chemical bi-plots of non-normalised glass compositional data comparing the 

1541 Roddans Port and LAS-1 tephras with regional marker horizons of equivalent Windermere 

1542 Interstadial (WI) age. Some similarity can be observed between the analyses of the Roddans 

1543 Port B and LAS-1(B) glass shards with those from North American centres (i.e. Glacier Peak 

1544 and Mount St Helens), however, this similarity is not consistent across all major and minor 

1545 elements. The Roddans Port and LAS-1 glass analyses used for this figure are included in 
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1546 Supplementary Table S2. References for the chemical envelopes are listed in 

1547 Supplementary Table S3.

1548

1549 Figure 9

1550 Selected chemical bi-plots of non-normalised glass compositional data from the Abernethy 

1551 Tephra plotted against glass analyses of the Vedde Ash and Windermere Interstadial (WI) 

1552 Borrobol-type tephras. It is clear that in two of the three sites where the Abernethy Tephra 

1553 has been analysed, the layer in question has returned a bi-modal glass compositional 

1554 signature. The site-specific glass analyses used for this figure are included in Supplementary 

1555 Table S2. References for the chemical envelopes are listed in Supplementary Table S3.

1556

1557 Figure 10

1558 Chemical bi-plot (MgO vs. TiO2) of non-normalised glass analyses from tephras originating 

1559 in the Torfajökull volcanic centre during the early Holocene. An enrichment in TiO2, Al2O3, 

1560 MgO and CaO is noted in postglacial rhyolitic rocks from this centre (McGarvie et al., 1990). 

1561 This trend seems to apply to a the majority of the Torfajökull-type tephras identified in the 

1562 British Isles, however, the An Druim-Høvdarhagi Tephra seems to partially reverse this, 

1563 exhibiting both a ‘less-evolved’ and ‘more-evolved’ bi-modal glass composition. The site 

1564 specific glass analyses used for this figure are included in Supplementary Table S2. 

1565 References for the chemical envelopes are listed in Supplementary Table S3.

1566

1567 Figure 11

1568 Chemical bi-plot (CaO vs. MgO) of non-normalised glass analyses from tephras correlated to 

1569 the Saksunarvatn 10-ka series in the British Isles. The ‘Saksunarvatn Ash’ at Loch Ashik has 

1570 been reassigned to the Havn-3/ Havn-4 Tephra on the premise of characteristically ‘low’ 

1571 MgO wt % values (Wastegård et al., 2018). The ‘Saksunarvatn’ Ash layer identified at 

1572 Crudale Meadow by Bunting (1994) exhibits a bi-modal glass composition, group A 

1573 correlates to the Grímsvötn volcanic centre, whilst group B shows a greater affinity to glass 

1574 analyses of the Veiðivötn-Bárðarbunga system. The site specific glass analyses used for this 

1575 figure are included in Supplementary Table S2. References for the chemical envelopes are 

1576 listed in Supplementary Table S3.

1577

1578 Figure 12

1579 Regional tephrostratigraphic scheme for the British Isles. A) GICC05 δ18O ‰, and regional 

1580 event stratigraphy (Rasmussen et al., 2006). B) Crudale Meadow sediment stratigraphy; 

1581 note the three numbered minerogenic bands within the Interstadial marl sediments (Timms 

1582 et al., 2018). C) Tanera Mòr 1 sediment stratigraphy, note the absence of any 
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1583 sedimentological change through the Interstadial sediments (Timms, 2016). D) Oxygen-

1584 isotope record from Crudale Meadow (Whittington et al., 2015). E) Chironomid derived 

1585 summer temperature reconstruction from Muir Park Reservoir (Brooks et al., 2016). F) 

1586 Regional tephrostratigraphic scheme for the British Isles, bar length denotes degrees of 

1587 confidence: (i) those considered to be based on the most robust glass analytical data, with 

1588 consistent stratigraphic positions and well-defined ages (n=6); (ii) those for which reasonably 

1589 robust glass analytical data are available, but questions remain about their precise origins or 

1590 age (n=9); and (iii) those most in need of further investigation, to test their potential to serve 

1591 as regional isochrons (n=11). Note: the alignment of the individual proxy series with the 

1592 GICC05 event stratigraphy is not intended to illustrate climatic synchronicity between the 

1593 records.

1594

1595 Table Captions
1596

1597 Table 1 

1598 Combined non-normalised glass-shard analytical data of tephras identified in the British Isles 

1599 dating to the Last Glacial to Interglacial Transition (LGIT c. 16-8 ka BP). The value shown in 

1600 the ‘Number of sites’ row relates only to those locations where correlations are secure: see 

1601 Supplementary Table S1 for further details on the number of tentative correlations for each 

1602 tephra. Mean glass data derived from: Roberts, (1997); Turney et al. (1997); Darville, (2011); 

1603 Davies et al. (2001); Mackie et al. (2002); Ranner et al. (2005); Pyne-O’Donnell, (2007), 

1604 Matthews, (2008); Pyne-O’Donnell et al. (2008); Matthews et al. (2011); Lane et al. (2012a); 

1605 Weston, (2012); MacLeod et al. (2015); Mithen et al. (2015); Lind et al. (2016); Timms, 

1606 (2016); Jones et al. (2017); Kelly et al. (2017); Lowe et al., (2017); Timms et al. (2017, 

1607 2018); Lowe et al. (in prep). Glass compositional data are available in full from 

1608 Supplementary Table S2.

1609

1610 Table 2 

1611 List of sites in the British Isles where the Borrobol (n=13), Penifiler (n=15) and CRUM1 597 

1612 tephras have been proposed. Based on major and minor element analyses of glass shards, 

1613 13 sites are understood to contain the Borrobol Tephra, 15 sites the Penifiler Tephra and 2 

1614 sites the CRUM1 597 Tephra. A further 3 Borrobol, 4 Penifiler and 4 CRUM1 597 records 

1615 are tentatively proposed based on stratigraphic superposition and are indicated by a ? 

1616 symbol.

1617

1618 Table 3 
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1619 Sites from which glass analyses have been obtained and used to claim the presence of the 

1620 ‘Abernethy Tephra’. In all cases except the Glen Turret Fan record, a mixed chemical 

1621 assemblage has been revealed, implicating the possibility of reworking and amalgamation of 

1622 older tephra deposits. 

1623

1624 Table 4 

1625 Summary of tephra isochrons included, and those not yet considered suitable for inclusion, 

1626 within the British Isles tephrostratigraphic scheme (c. 16-8 ka BP). Also shown are reference 

1627 records for each tephra; these are the sites in the British Isles which each tephra is currently 

1628 best represented at. Categories i, ii and iii are explained in the text.

1629

1630 Supplementary Files
1631

1632 Supplementary Figure S1

1633 Summary of LGIT tephrostratigraphic sites in the British Isles. Each site, where possible, is 

1634 represented by a tephra concentration diagram and loss-on-ignition (LOI) or calcium 

1635 carbonate (CaCO3) signal. Where multiple investigations have been conducted at a single 

1636 site, those profiles which best represent the tephrostratigraphic results have been selected. 

1637 A solid coloured bar denotes a correlation made using glass-based analyses, a dashed 

1638 coloured bar signals a correlation made on the premise of stratigraphic superposition. A 

1639 band featuring two alternating represents an uncertain correlation between two tephras with 

1640 glass components of indistinguishable major and minor element chemistry. A ? symbol 

1641 indicates a degree of uncertainty with the correlation. A list of references is provided in 

1642 Supplementary Table S1. Glass compositional data used to make these correlations can be 

1643 accessed from Supplementary Table S2. This figure is best viewed in its original A0 format.

1644

1645 Supplementary Table S1

1646 Compilation of published and unpublished reports of tephra records in the British Isles dating 

1647 to the LGIT. The numbered 'Ref' column indicates the order in which the sites are numbered 

1648 in Supporting Figure S1. The green infill in the four chronostratigraphic columns show which 

1649 LGIT chronozone units are present at each site, whereas ticks illustrate whether a 

1650 tephrostratigraphic study has been undertaken. Ticks associated with the tephra columns 

1651 indicate which tephra layers have been identified/proposed for each site. Black boxes 

1652 surrounding a ticked tephra indicate that the horizon forms a visible tephra layer. An orange 

1653 infill indicates that the basaltic end member of the tephra is present - this is only relevant for 

1654 the Vedde Ash, Ashik Tephra and Penifiler Tephra. A ? symbol indicates that there is a 

1655 degree of uncertainty with the interpretation, with the details of such listed in the 
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1656 corresponding 'comments' column. A * symbol in association with the site co-ordinates 

1657 denotes an approximate position only and not the exact core location.

1658

1659 Supplementary Table S2

1660 Database of major and minor element analyses for glass shards reported from tephra 

1661 records in the British isles dating to the LGIT (c. 16-8 ka BP). Data presented as raw (un-

1662 normalised) and normalised.

1663

1664 Supplementary Table S3

1665 Reference list for analyses used to derive bi-plot figure envelopes.
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Table 1 

Combined non-normalised glass-shard analytical data of tephras identified in the British Isles dating to the Last Glacial to Interglacial Transition 

(LGIT c. 16-8 ka BP). The value shown in the ‘Number of sites’ row relates only to those locations where correlations are secure: see 

Supplementary Table S1 for further details on the number of tentative correlations for each tephra. Mean glass data derived from: Roberts, 

(1997); Turney et al. (1997); Darville, (2011); Davies et al. (2001); Mackie et al. (2002); Ranner et al. (2005); Pyne-O’Donnell, (2007), 

Matthews, (2008); Pyne-O’Donnell et al. (2008); Matthews et al. (2011); Lane et al. (2012a); Weston, (2012); MacLeod et al. (2015); Mithen et 

al. (2015); Lind et al. (2016); Timms, (2016); Jones et al. (2017); Kelly et al. (2017); Lowe et al., (2017); Timms et al. (2017, 2018); Lowe et al. 

(in prep). Glass compositional data are available in full from Supplementary Table S2.

Tephra name CRUM1 676 
Tephra Dimna Ash Tanera Tephra Borrobol Tephra Penifiler Tephra 

(R)
Penifiler Tephra 
(B)

Number of sites in 
British Isles 1 2 3 13 15 1 

Identified outside 
British Isles? no yes uncertain yes uncertain uncertain 

Current best age 
estimate unknown 15,100 ± 300 cal. 

BP unknown 14,098 ± 94 cal. BP 13,939 ± 132 cal. 
BP

13,939 ± 132 cal. 
BP

Reference for age 
estimate N/A Koren et al. (2008) N/A Bronk Ramsey et 

al. (2015)
Bronk Ramsey et 
al. (2015)

Bronk Ramsey et 
al. (2015)

Source unknown Katla, Iceland unknown, Iceland unknown, Iceland unknown Katla, Iceland
Chemical composition Dacite Rhyolite Rhyolite Rhyolite Rhyolite Basaltic 
Major oxide (wt %) n=1 2σ n=8 2σ n=11 2σ n=243 2σ n=177 2σ n=12 2σ
SiO2 62.15 0.56 70.32 3.01 72.59 2.72 73.21 1.49 73.49 2.12 47.31 0.85
TiO2 1.24 0.02 0.27 0.01 0.13 0.02 0.12 0.04 0.11 0.04 4.60 0.29
Al2O3 15.00 0.88 13.26 0.64 12.31 0.71 12.28 0.56 12.23 0.65 13.11 0.19
FeO 5.12 0.38 3.73 0.32 1.54 0.20 1.48 0.19 1.33 0.40 14.81 0.25
MnO 0.14 0.00 0.14 0.03 0.04 0.04 0.04 0.04 0.04 0.05 - -
MgO 1.42 0.00 0.17 0.06 0.08 0.07 0.08 0.06 0.06 0.06 5.03 0.17
CaO 3.67 0.39 1.28 0.12 0.82 0.10 0.75 0.11 0.68 0.20 9.85 0.28
Na2O 5.12 0.83 5.20 0.22 4.00 0.44 3.83 0.80 3.89 0.88 3.09 0.25



K2O 2.47 0.12 3.58 0.33 3.82 0.31 3.76 0.24 3.89 0.63 0.78 0.07
P2O5 0.93 0.15 0.18 0.01 0.02 0.02 0.01 0.01 0.02 0.12 - -
Cl - - 0.03 0.00 0.13 0.03 0.06 0.12 0.13 0.02 - -
Total 97.26 1.44 98.04 3.26 95.39 3.19 95.59 1.81 95.74 2.26 98.58 1.30

Tephra name Mount St Helens J 
Tephra

Glacier Peak-G 
Tephra

Roddans Port A 
Tephra

Roddans Port B 
Tephra

CRUM1 597 
Tephra Vedde Ash (R)

Number of sites in 
British Isles 1 2 1 1 2 23 

Identified outside 
British Isles? yes yes no no no yes 

Current best age 
estimate

13.86-12.80 cal. ka 
BP

13,710-13,410 cal. 
BP 

unknown
 

unknown
 

12,457 ± 896 cal. 
BP 

12,023 ± 86 cal. 
BP

Reference for age 
estimate Clynne et al. (2008) Kuehn et al. (2009) Turney et al. (2006) Turney et al. (2006) Timms et al. (2018) Bronk Ramsey et 

al. (2015)
Source Mount St Helens Glacier Peak, USA unknown unknown unknown Katla, Iceland
Chemical composition Rhyolite Rhyolite Rhyolitic Rhyolitic Rhyolitic Rhyolitic 
Major oxide (wt %) n=1 2σ n=2 2σ n=10 2σ n=5 2σ n=29 2σ n=428 2σ
SiO2 72.88 - 73.03 2.67 68.99 2.23 75.08 2.71 73.32 0.73 70.36 2.58
TiO2 0.24 - 0.22 0.07 0.72 0.05 0.21 0.09 0.12 0.01 0.28 0.07
Al2O3 12.82 - 11.84 0.71 16.15 1.67 12.47 1.04 12.03 0.46 13.19 0.76
FeO 1.15 - 0.95 0.08 2.93 0.18 1.05 0.76 1.47 0.23 3.69 0.32
MnO 0.05 - 0.03 0.08 - -   0.04 0.02 0.14 0.06
MgO 0.31 - 0.26 0.06 0.65 0.06 0.18 0.21 0.07 0.05 0.20 0.06
CaO 1.34 - 1.12 0.18 1.58 0.19 1.12 0.61 0.74 0.14 1.25 0.18
Na2O 3.76 - 3.10 0.03 4.97 0.49 3.24 1.59 4.11 0.28 4.73 1.19
K2O 2.09 - 3.12 0.55 3.54 0.12 3.49 2.65 3.73 0.20 3.50 0.27
P2O5  - - - - - - - - - 0.04 0.03
Cl  - - - - - - - 0.01 0.01 0.18 0.05
Total 94.64 - 93.66 3.18 99.54 1.26 96.83 3.39 95.64 1.08 97.42 3.34



Tephra name Vedde Ash (B) Abernethy Tephra 
(pop A)

Abernethy Tephra 
(pop B) Crudale Tephra Hässeldalen 

Tephra Askja-S Tephra

Number of sites in 
British Isles 5 4 3 2 3 10 

Identified outside 
British Isles? yes uncertain uncertain no yes yes 

Current best age 
estimate 12,023 ± 86 cal. BP 11,462 ± 144 cal. 

BP
11,462 ± 144 cal. 
BP

12,111 - 11,174 
cal. BP

11,316 ± 124 cal. 
BP

10,824 ± 97 cal. 
BP 

Reference for age 
estimate

Bronk Ramsey et 
al. (2015)

Bronk Ramsey et 
al. (2015)

Bronk Ramsey et 
al. (2015) Timms et al. (2018) Wastegård et al. 

(2018) 
Kearney et al. 
(2018)

Source Katla, Iceland Katla, Iceland Unknown, Iceland Torfajökull, Iceland Thórdarhyrna, 
Iceland

Askja-Dyngjufjöll, 
Iceland

Chemical composition Basaltic Rhyolitic Rhyolitic Rhyolitic Rhyolitic Rhyolitic 
Major oxide (wt %) n=106 2σ n=33 2σ n=8 2σ n=5 2σ n=23 2σ n=177 2σ
SiO2 46.74 1.49 71.10 2.63 74.12 1.07 73.70 2.50 74.13 2.11 73.45 2.93
TiO2 4.55 0.31 0.27 0.02 0.09 0.04 0.15 0.04 0.08 0.01 0.30 0.04
Al2O3 12.66 0.93 13.18 0.72 12.79 0.60 11.64 0.71 11.64 0.98 11.85 0.69
FeO 14.59 1.39 3.67 0.29 1.49 0.25 2.55 0.25 1.08 0.18 2.52 0.23
MnO 0.22 0.08 0.15 0.02 0.06 0.02 0.06 0.04 0.04 0.02 0.09 0.04
MgO 5.01 0.51 0.19 0.04 0.05 0.05 0.01 0.04 0.04 0.05 0.24 0.05
CaO 9.68 0.69 1.24 0.11 0.74 0.08 0.38 0.04 0.52 0.24 1.59 0.17
Na2O 2.98 0.44 4.91 0.70 3.92 0.50 4.52 0.51 3.68 1.25 4.16 0.61
K2O 0.73 0.12 3.50 0.23 4.82 1.33 4.09 0.38 4.10 0.42 2.49 0.20
P2O5 0.51 0.09 0.05 0.14 0.06 0.17 0.01 0.01 0.01 0.01 0.04 0.02
Cl - - 0.01 0.04 0.00 0.01 - - - - - -
Total 97.54 2.34 98.26 3.64 98.12 2.01 97.12 2.89 95.32 2.76 96.72 3.78

Tephra name CRUM1 510 
Tephra Ashik Tephra (R) Ashik Tephra (B) Hovsdalur Tephra CRUM1 444 

Tephra
Havn-3/Havn-4 
Tephra

Number of sites in 
British Isles 1 3 1 1 1 1

Identified outside 
British Isles? uncertain no uncertain yes uncertain yes 



Current best age 
estimate

10,837 ± 148 cal. 
BP

10,716 ± 230 cal. 
BP 

10,716 ± 230 cal. 
BP 

10,475 ± 350 cal. 
BP 

10,476 ± 254 cal. 
BP

~10.37 and ~10.3 
ka BP

Reference for age 
estimate Timms et al. (2018) Timms et al. (2017) Timms et al. (2017) Wastegård, (2002) Timms et al. (2018) Wastegård et al. 

(2018) 

Source Grímsvötn, Iceland Torfajökull, Iceland Grímsvötn, Iceland Thordarhyrna, 
Iceland Grímsvötn, Iceland Grímsvötn, Iceland

Chemical composition Basaltic Rhyolitic Basaltic Rhyolitic Basaltic Basaltic 
Major oxide (wt %) n=27 2σ n=19 2σ n=6 2σ n=4 2σ n=8 2σ n=31 2σ
SiO2 49.24 0.95 71.28 2.46 49.15 2.69 75.12 2.14 48.33 1.89 48.96 1.04
TiO2 3.05 0.12 0.22 0.09 3.34 1.50 0.10 0.01 3.04 0.17 3.39 0.80
Al2O3 12.80 0.71 13.31 2.51 13.26 0.75 12.09 0.58 12.76 0.86 12.85 0.59
FeO 14.26 0.83 2.77 0.30 13.86 1.55 1.05 0.37 14.30 0.68 13.55 0.72
MnO 0.23 0.02 0.06 0.02  0.00 0.03 0.01 0.23 0.01 0.21 0.08
MgO 5.31 0.36 0.08 0.06 5.26 1.26 0.02 0.04 5.40 0.25 4.69 0.38
CaO 9.73 0.46 0.44 0.16 9.70 1.49 0.42 0.13 9.76 0.42 9.58 0.85
Na2O 2.64 0.50 4.70 0.82 2.94 0.40 3.39 0.70 2.44 1.01 3.06 0.46
K2O 0.47 0.05 4.14 0.39 0.64 0.42 5.30 1.78 0.49 0.08 0.64 0.48
P2O5 0.30 0.05 0.02 0.01 - 0.00 0.01 0.01 0.53 0.93 - -
Cl - - - - - 0.00 - - - - - -
Total 98.05 2.24 96.94 2.71 98.16 1.45 97.53 2.49 97.28 3.24 96.91 1.39

Tephra name Saksunarvatn Ash Fosen Tephra An Druim Tephra The LAN1-325 
Tephra

The Suduroy 
Tephra

The Breakish 
Tephra

Number of sites in 
British Isles 4 1 3 1 2 1 

Identified outside 
British Isles? yes yes yes uncertain yes no 

Current best age 
estimate 10,210 ± 35 cal. BP 10,139 ± 116 cal. 

BP 9648 ± 158 cal. BP 8245-8041 cal. BP  8073 ± 192 cal. BP unknown
 

Reference for age 
estimate Lohne et al. (2014) Timms et al. (2017) Timms, (2016) Matthews, (2008) Wastegård, (2002) Pyne-O'Donnell, 

(2007)

Source Grímsvötn, Iceland unknown Torfajökull, Iceland Torfajökull, Iceland Katla, Iceland Askja-Dyngjufjöll, 
Iceland?



Chemical composition Basaltic Rhyolitic Rhyolitic Rhyolitic Rhyolitic Rhyolitic 
Major oxide (wt %) n=106 2σ n=10 2σ n=39 2σ n=7 2σ n=5 2σ n=4 2σ
SiO2 49.28 1.55 73.36 0.74 70.82 1.85 70.12 1.41 71.43 0.33 71.44 0.96
TiO2 3.03 0.51 0.12 0.01 0.18 0.06 0.32 0.03 0.29 0.03 0.49 0.02
Al2O3 12.92 2.38 11.92 0.33 11.90 0.78 12.38 0.77 13.64 0.14 12.74 0.25
FeO 14.13 1.88 1.52 0.19 2.79 0.35 2.16 0.40 3.82 0.12 3.59 0.20
MnO 0.23 0.06 0.04 0.01 0.08 0.07 0.13 0.04 0.12 0.02 0.08 0.04
MgO 5.42 0.96 0.07 0.06 0.05 0.04 0.16 0.04 0.20 0.02 0.42 0.04
CaO 9.87 0.98 0.71 0.04 0.37 0.14 0.55 0.12 1.30 0.12 2.32 0.11
Na2O 2.70 0.56 4.11 0.29 5.12 0.44 4.09 1.03 5.40 0.27 3.55 0.17
K2O 0.43 0.16 3.77 0.25 4.34 0.23 3.80 0.51 3.58 0.20 2.07 0.06
P2O5 0.35 0.18 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.03 - -
Cl - - - - - - 0.12 0.01 - - - -
Total 98.39 2.09 95.62 1.04 95.64 2.12 93.95 1.59 99.77 0.68 96.67 1.47



Table 2 
List of sites in the British Isles where the Borrobol (n=13), Penifiler (n=15) and CRUM1 597 tephras have been proposed. Based on major and 

minor element analyses of glass shards, 13 sites are understood to contain the Borrobol Tephra, 15 sites the Penifiler Tephra and 2 sites the 

CRUM1 597 Tephra. A further 3 Borrobol, 4 Penifiler and 4 CRUM1 597 records are tentatively proposed based on stratigraphic superposition 

and are indicated by a ? symbol.

Site Borrobol Penifiler CRUM1 597 Reference Comment

The Loons ? ? ? Callicott (2015)
A single Borrobol-type tephra was identified and chemically analysed 
within Windermere Interstadial sediments. It is not  possible to confidently 
propose a correlation at present.

Quoyloo 
Meadow x x Timms et al. (2017)  

Spretta 
Meadow x Timms (2016)

A Borrobol-type tephra has been identified at the Windermere Interstadial-
Loch Lomond Stadial transition supporting the presence of the CRUM1 
597 Tephra. Importantly no older sediments with earlier Windermere 
Interstadial tephras are present at Spretta Meadow.

Crudale 
Meadow x x x Timms et al. (2018) Site of first discovery for the CRUM1 597 Tephra

Lochan An 
Druim ? Ranner et al. (2005)

A Borrobol-type tephra (S30 Tephra) was identified within Windermere 
Interstadial deposits and dated to 13.6 cal ka BP.  It is uncertain as to 
which, if any, of the Borrobol-type tephras the S30 correlates to.

Borrobol x x

Turney et al. (1997); 
Pyne-O'Donnell 
(2007); Lind et al. 
(2016)

Site of first discovery for the Borrobol Tephra

Tanera Mòr 1 x x
Roberts (1997); 
Roberts et al. (1998); 
Timms (2016)

 

Tanera Mòr 2 x x ? Weston (2012)
A tephra with Borrobol-type morphological properties lies at the boundary 
between the Windermere Interstadial and the Loch Lomond Stadial 
indicating a possible correlation with the CRUM1 597 Tephra.



Eilean Fada 
Mòr ? ? ? Callicott, (2013)

Three peaks in glass shard concentration were identified within what is 
believed to be Windermere Interstadial sediments, although part of the 
sequence may be Dimlington in age. Shards in these peaks are typically 
Borrobol-type in morphology i.e. Blocky, cuspate and inclusion rich.  No 
chemical analyses have been obtained to date.

Priest Island x x Valentine (2015)  

Druim Loch x Pyne O'Donnell 
(2007) Site of first discovery for the Penifiler Tephra

Loch Ashik x x

Pyne O'Donnell 
(2007); Pyne 
O'Donnell et al. 
(2008; Brooks et al. 
(2012)

 

Abernethy 
Forest x x Matthews et al. 

(2011)  

Loch Etteridge x ?

Albert (2007); 
Hardiman (2007); 
Lowe et al. (2008); 
MacLeod et al. 
(2015)

Glass shards positioned in the mid-Windermere Interstadial have 
previously been correlated to the Penifiler Tephra (Lowe et al., 2008), 
however, the major element chemistry of these does not support this 
correlation (see Supplementary Table S2). A tephra of low concentration 
has been noted at the Windermere Interstadial-Loch Lomond Stadial 
transition by Albert (2007) and Hardiman (2007). Crucially the shards 
comprising this tephra have been described as 'blocky' - characteristic of 
the Borrobol-type series.

Pulpit Hill ? x Lincoln (2011)
Stratigraphic evidence (a peak in glass shard concentrations) exists for the 
Borrobol Tephra, however, this has yet to be confirmed with chemical 
analyses.

Loch an 
t'Suidhe x x ?

Davies (2003); Pyne 
O'Donnell, (2007); 
Pyne O'Donnell et al. 
(2008)

The LAS-1 tephra was identified within Loch Lomond Stadial sediments by 
Davies (2003). Unfortunately, chemical analyses returned low analytical 
totals and a wide scatter in the data set. Whilst these analyses cannot be 
considered completely reliable, morphological analysis reveals some 
shards of a blocky and microlitic composition - characteristics of the 
Borrobol-type series. 

Tirinie x Candy et al. (2016)  

Tynaspirit 
West x x

Turney et al. (1997); 
Pyne O'Donnell 
(2007); Pyne 
O'Donnell et al. 
(2008)

 



Muir Park 
Reservior x x

Roberts (1997); 
Cooper (1999); Lowe 
and Roberts (2003); 
Brooks et al. (2016)

 

Whitrig Bog x x
Turney et al. (1997); 
Pyne O'Donnell et al. 
(2008)

 

Traeth Mawr ? Williams et al. (2007) Borrobol Tephra correlated by stratigraphy.

Finglas River ? Turney (1998b)

A single shard of a Borrobol-type composition have been identified 
alongside shards of the Glacier Peak and Mount St Helens J eruptions. 
Due to stratigraphic position it is likely this shard relates to the Penifiler 
Tephra, although this is not certain.

Table 3 
Sites from which glass analyses have been obtained and used to claim the presence of the ‘Abernethy Tephra’. In all cases except the Glen 
Turret Fan record, a mixed chemical assemblage has been revealed, implicating the possibility of reworking and amalgamation of older tephra 
deposits.

Site n.o. of analyses 
obtained % Katla-type % Borrobol-type % Other Abernethy Tephra 

declared present Reference
Abernethy 
Forest 12 83 17 0 Yes Matthews et al. (2011)

Loch 
Etteridge 20 70 30 0 Yes MacLeod et al. (2015)

Glen Turret 
Fan 4 100 0 0 Yes MacLeod et al. (2015)

Kingshouse 2 8 63 0 37 Yes Lowe et al. (in prep)
Crudale 
Meadow 12 42 50 8 No Timms et al. (2018)

Tanera Mòr 35 89 11 0 No Timms (2016)



Table 4 
Summary of tephra isochrons included, and those not yet considered suitable for inclusion, within the British Isles tephrostratigraphic scheme 

(c. 16-8 ka BP). Also shown are reference records for each tephra; these are the sites in the British Isles which each tephra is currently best 

represented at. Categories i, ii and iii are explained in the text.

Tephras included within the British Isles tephrostratigraphic framework

Tephra Category Age estimate British Isles 
reference site

Reference 
source 
publication

Sites identified

Identified 
outside 
the 
British 
Isles?

Dimna Ash ii 15,100 ± 300 
cal. BP Tanera Mòr 2 Weston (2012) Tanera Mòr 1, Tanera Mòr 2, Priest Island yes

Tanera 
Tephra ii unknown Tanera Mòr 1 Timms (2016) Quoyloo Meadow, Tanera Mòr 1, Priest Island uncertain

Borrobol 
Tephra i 14,098 ± 94 

cal. BP
Abernethy 
Forest

Matthews et al. 
(2011)

Quoyloo Meadow, Crudale Meadow, Borrobol, Tanera 
Mòr 1, Tanera Mòr 2, Priest Island, Loch Ashik, 
Abernethy Forest, Loch Etteridge, Loch an t'Suidhe, 
Tynaspirit West, Muir Park Reservior, Whitrig Bog

yes

Penifiler 
Tephra ii 13,939 ± 132 

cal. BP Tirinie Candy et al. 
(2016)

Quoyloo Meadow, Crudale Meadow, Borrobol, Tanera 
Mòr 1, Tanera Mòr 2, Priest Island, Druim Loch, Loch 
Ashik, Abernethy Forest, Tirinie, Pulpit Hill, Loch an 
t'Suidhe, Tynaspirit West, Muir Park Reservior, Whitrig 
Bog

uncertain

Glacier Peak 
G & B ii 13,710-13,410 

cal. BP Finglas River this study Finglas River, Loch Ashik yes

Vedde Ash i 12,023 ± 86 
cal. BP Loch Ashik

Davies et al. 
(2001); Pyne-
O'Donnell  
(2011)

The Loons, Quoyloo Meadow, Crudale Meadow, Spretta 
Meadow, Lochan An Druim, Borrobol, Tanera Mòr 1, 
Tanera Mòr 2, Priest Island, Loch Ashik, Kennethmont, 
Abernethy Forest, Loch Etteridge, Mishnish, Tirinie, 
Pulpit Hill, Loch an t'Suidhe, Tynaspirit West, Inches 
(Lake of Menteith), Muir Park Reservior, Howburn Farm, 
Whitrig Bog, Palaeolake Flixton

yes

Abernethy ii 11,462 ± 144 Abernethy Matthews et al. Abernethy Forest, Loch Etteridge, Glen Turret Fan, yes



Tephra cal. BP Forest (2011) Kingshouse 2
Hässeldalen 
Tephra i 11,316 ± 124 

cal. BP
Crudale 
Meadow

Timms et al. 
(2018) Quoyloo Meadow, Crudale Meadow, Kingshouse 2 yes

Askja-S 
Tephra i 10,830 ± 114 

cal. BP 
Crudale 
Meadow

Timms et al. 
(2018)

Quoyloo Meadow, Crudale Meadow, Tanera Mòr 1, 
Loch Ashik, Glen Turret Bank, Inverlair, Kingshouse 2, 
Pant-y-Llyn, Lough Nadourcan, Long Lough

yes

Ashik Tephra ii 10,716 ± 230 
cal. BP Loch Ashik Pyne-O'Donnell 

(2007) Quoyloo Meadow, Druim Loch, Loch Ashik no

Saksunarvat
n 10-ka 
series (Havn-
3/4)

ii ~10.37 and 
~10.3 ka BP Loch Ashik Pyne-O'Donnell 

(2007) Loch Ashik yes

Saksunarvat
n 10-ka 
series 
(Saksunarvat
n Ash sensu 
stricto)

ii 10,210 ± 35 
cal. BP

Crudale 
Meadow

Timms et al. 
(2018)

Dallican Water, Loch of Benston, Quoyloo Meadow, 
Crudale Meadow yes

Fosen 
Tephra i 10,139 ± 116 

cal. BP 
Quoyloo 
Meadow

Timms et al. 
(2017) Quoyloo Meadow yes

An Druim 
Tephra i 9648 ± 158 cal

. BP
Lochan An 
Druim

Ranner et al. 
(2005) Quoyloo Meadow, Lochan An Druim, Inverlair yes

Suduroy 
Tephra ii 8073 ± 192 

cal. BP 
Loch Laggan 
East MacLeod (2008) Loch Laggan East, Rubha Port an t-Seilich yes

Tephras not yet included within the British Isles tephrostratigraphic framework

CRUM1 676 iii unknown Crudale 
Meadow

Timms et al. 
(2018) Crudale Meadow no

Mount St 
Helens J iii 13.860-12.800 

cal. BP Finglas River Turney (1998b); 
this study Finglas River yes

Roddans Port 
A iii unknown Roddans Port Turney et al. 

(2006) Roddans Port no

Roddans Port 
B iii unknown Roddans Port Turney et al. 

(2006) Roddans Port no

CRUM1 597 iii 12,457 ± 896 
cal. BP 

Crudale 
Meadow

Timms et al. 
(2018) Crudale Meadow, Spretta Meadow no

Crudale iii c. 12,111- Crudale Timms et al. Crudale Meadow, Tynaspirit West uncertain



Tephra 11,174 cal. BP Meadow (2018)
CRUM1 510 
Tephra iii 10,837 ± 148 

cal. BP
Crudale 
Meadow

Timms et al. 
(2018) Crudale Meadow no

Hovsdalur 
Tephra iii 10,475 ± 350 

cal. BP 
Quoyloo 
Meadow

Timms et al. 
(2017) Quoyloo Meadow yes

Saksunarvatn 
10-ka series 
(CRUM1 444)

iii 10,476 ± 254 
cal. BP

Crudale 
Meadow

Timms et al. 
(2018) Crudale Meadow uncertain

Breakish 
Tephra iii unknown Loch Ashik Pyne-O'Donnell 

(2007) Loch Ashik no

LAN1-325 iii 8245-8041 cal. 
BP  

Loughanascadd
y crannog Matthews (2008) Loughanascaddy crannog uncertain

Breakish 
Tephra iii unknown Loch Ashik Pyne-O'Donnell 

(2007) Loch Ashik no



Summary of LGIT tephrostratigraphic sites in the British Isles.
Supplementary Figure S1 
Summary of LGIT tephrostratigraphic sites in the British Isles. Each site, where possible, is represented by a tephra concentration diagram and loss-on-ignition (LOI) or calcium carbonate (CaCO3) signal. Where multiple investigations have been 
conducted at a single site, those profiles which best represent the tephrostratigraphic results have been selected. A solid coloured bar denotes a correlation made using glass-based analyses, a dashed coloured bar signals a correlation made on the 
premise of stratigraphic superposition. A band featuring two alternating represents an uncertain correlation between two tephras with glass components of indistinguishable major and minor element chemistry. A ? symbol indicates a degree of uncer-
tainty with the correlation. A list of references is provided in Supplementary Table S1. Glass compositional data used to make these correlations can be accessed from Supplementary Table S2. This figure is best viewed in its original A0 format.
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(Lind et al., 2016)
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(10,837 ± 148 cal. BP)

Hässeldalen Tephra
(11,316 ± 124 cal. BP)
Crudale Tephra
(12,111-11,174 cal. BP )

CRUM1 597 Tephra
(12,457 ± 896 cal. BP)

Penifiler Tephra
(13,939 ± 132 cal. BP)

Borrobol Tephra
(14,098 ± 94 cal. BP)

Roddans Port A
(unknown age)

Roddans Port B
(unknown age)

CRUM1 676
(unknown age)

Tanera Tephra
(unknown age)

Dimna Ash
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