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Highlights

� Similar structural effects were observed for both peptides in the monolayer and bilayer 
models, however, the magnitude of the effect was greater in the presence of the 
chemically modified peptide.

� Improved hydrophobicity and electrostatic interactions with lipid head groups resulting in 
thickening of the peptide layer, along with lipid translocation in the inner tail region of 
the bilayer, strongly suggests that the modified clupeine may use the carpet mechanisms 
to exert its effect on model membranes.

� Simultaneous fitting of neutron reflectometry and x-ray reflectometry data from 
PE:PG:CL monolayer model systems, resulted in quantitative determination of surface 
excess values for both native and modified clupeine.
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ABSTRACT: Clupeine, a cationic antimicrobial peptide found in fish, is of interest as a food 31 

additive but non-specific binding of the peptide to anionic molecules reduces its antimicrobial 32 

activity. The overall positive charge of clupeine can be reduced by blocking 10% of its arginine 33 

residues with 1,2-cyclohexanedione (CHD). The modified peptide retains antimicrobial activity 34 

but it is not known if its effect on the structure of Gram-negative model membranes is the same as 35 

the native peptide. In the presented paper, neutron reflectometry (NR) and X-ray reflectometry 36 

were used to investigate the effect of native and modified clupeine on the structure of model 37 

monolayer membranes composed of Phosphatidylethanolamine (PE), Phosphatidylglycerol (PG), 38 

and Cardiolipin (CL). The effect of the peptides on the structure of 1,2-dipalmitoyl (d62)-sn-39 

glycero-3-phosphocholine (DPPC)/PE:PG:CL bilayers were also examined by NR. In both model 40 

systems, modified clupeine demonstrated a greater effect on the lipid structure. Charge reduction 41 

in the modified sample also resulted in improved hydrophobicity, and the formation of thicker 42 

peptide layers in the membrane models. Some lipid translocation was observed in the inner tail 43 

region (~69 ± 0.24% DPPC and ~24 ± 0.02% PE:PG:CL); and in the outer tail region (~24 ± 0.02% 44 

DPPC and ~56 ± 0.01% PE:PG:CL). Improved hydrophobicity and electrostatic interactions with 45 

lipid head groups, strongly suggests that the modified clupeine may use the carpet mechanisms to 46 

exert its effect on model membranes. These findings suggest that changing the charge on the native 47 

peptide changes the way in which the modified peptide disrupts Gram-negative model membranes.   48 

 49 

Keywords: Clupeine, cationic antimicrobial peptide, Gram-negative bacteria, neutron 50 
reflectometry, and X-ray reflectometry, and protamine. 51 
 52 

 53 

 54 



1 Introduction 55 
 56 

Bacteria can have both beneficial and harmful effects in food systems. For example, their 57 

use as probiotics (lactic acid bacteria) in fermented foods provide beneficial effects on human 58 

health (Ohashi & Ushida, 2009; Doyle, Steenson, & Meng, 2013). On the other hand, approaches 59 

to ensure the safety of food components and to combat illnesses caused by food-borne pathogens 60 

must confront the global problem of bacterial resistance (Manyi-Loh, Mamphweli, Meyer, & 61 

Okoh, 2018). Molecular studies have emphasized that the remarkable ability of bacteria to 62 

undermine the efficacy of antimicrobial agents is due in part to their ability to adapt under selective 63 

pressure and develop resistance through mutations or by acquiring genes from other bacteria 64 

(Canu, A., Malbruny, B., Coquemont, M., Davies, T., Appelbaum, P., & Leclercq, 2002; Spratt, 65 

Bowler, Zhang, Zhou, & Smith, 1994). Thus, for the past three decades, a major scientific priority 66 

has been the pursuit of new sources of antimicrobial agents with alternate mechanisms of action, 67 

which can limit the development of bacterial resistance (Munita & Arias, 2016).  68 

In this context, cationic antimicrobial peptides (CAPs) have attracted interest as potential 69 

alternatives to conventional antimicrobial agents because they have exhibited broad spectrum 70 

inhibitory activity against several foodborne pathogens, and there have only been a few reports of 71 

developed resistance (Anaya-López, López-Meza, J., & Ochoa- Zarzosa, 2013). CAPs are found 72 

in many organisms including plants and fish (Omardien, Brul, & Zaat, 2016), and some can be 73 

cheaply extracted from waste streams (Gill, Singer, & Thompson, 2006). In spite of differences in 74 

their overall structure and sequence, many CAPs are characterized by their amphipathic domains, 75 

and their polycationic nature due to the presence of lysine, arginine or histidine residues (Wu, 76 

Maier, Benz, & Hancock, 1999).  77 

Several membrane disruption models including the barrel-stave, carpet, and the toroidal 78 

pore models have been proposed for CAPs. The validity of these models, and therefore 79 



antimicrobial activity largely depend on the cationic charge and amphipathic nature of CAPs 80 

(Straus & Hancock, 2006). In the barrel-stave model (BSM), the amphipathic nature of CAPs is 81 

utilized, here their hydrophobic peptide regions align into the lipid environment, whereas the 82 

hydrophilic side chains are aligned inward to form trans-membrane pores (Brogden, 2005). It is 83 

through these pores that cytoplasmic contents can leak from the cell, and result in cell death. 84 

Similarly, in the toroidal pore model, CAPs are inserted into the bilayer and cause the latter to 85 

bend and form a pore. As a result, phospholipid head groups and polar peptide surfaces line the 86 

pore lumen and local aggregations of varied numbers of peptide molecules within the membrane 87 

provide a route of passage of ions (Brogden, 2005). On the other hand, in the carpet model, the 88 

peptides bind to the cell surface in an electrostatic manner, and form a layer that alters membrane 89 

fluidity and or reduces the barrier properties of the membrane (Pelegrini, del Sarto, Silva, Franco, 90 

& Grossi-de-Sa, 2011). 91 

Among CAPs, protamine, is a small peptide (4112 Da) which may be extracted from the 92 

sperm cells of fish such as herring (clupeine) and salmon (salmine). Similar to most CAPs 93 

protamine is very cationic and consists of 31 amino acids, with 20 of those residues being arginine 94 

(Suzuki & Ando, 1972). However, unlike most CAPs, protamine is not amphipathic, and lacks 95 

secondary structure due to the even distribution of positive charges along the peptide backbone 96 

(Bonora, Ferrara, Paolillo, Toniolo, & Trivellone, 1979). Protamine has also exhibited 97 

antimicrobial activity toward food-borne pathogenic bacteria but widespread applications in foods 98 

are made difficult due to non-specific interactions with food components (Truelstrup Hansen & 99 

Gill, 2000; Ueno, Fujita, Yamamoto, & Kozakai, 1988). These non-specific interactions can be 100 

overcome by chemically blocking arginine residues with 1,2-cyclohexanedione (CHD), which also 101 

reduces the surface charge of the peptide (Potter et al., 2005). The CHD-treated peptide also has 102 



improved antimicrobial activity as demonstrated by reduced growth of Listeria monocytogenes in 103 

milk as well as in ground beef (Potter, Truelstrup Hansen, & Gill, 2005) but the effects of the 104 

peptides on bacterial membrane structure is not fully known. Accordingly, our objective was to 105 

use two complementary biophysical techniques, neutron reflectometry (NR) and X-ray 106 

reflectometry (XRR), to investigate the effect of native and modified clupeine on the structure of 107 

model monolayer membranes composed of zwitterionic (Phosphatidylethanolamine, PE), and 108 

anionic phospholipids (Phosphatidylglycerol, PG and Cardiolipin, CL). These phospholipids are 109 

present in the natural, cytoplasmic membrane of Gram-negative bacteria in an approximate 79:17:4 110 

mole % ratio (Sohlenkamp & Otto, 2016). The effect of the peptides on the structure of 1,2-111 

dipalmitoyl (d62)-sn-glycero-3-phosphocholine (DPPC)/PE:PG:CL bilayers was also investigated 112 

by NR. Understanding the initial steps involved in native and modified clupeine membrane 113 

interactions will begin to define characteristics of the peptides and the target bacteria that will be 114 

useful in understanding the peptides’ mode of action.  115 

2 Materials and Methods 116 
 117 
2.1 Materials 118 
 119 

DPPE, 1,2-dipalmitoyl-glycero-3-phosphoethanolamine, MW 691.97 (zwitterionic and 120 

synthetic purity > 99%); DPPG, 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol] (anionic 121 

sodium salt), MW 744.96; and 1,1’2,2’-tetramyristoyl cardiolipin (anionic sodium salt), MW 122 

1,285.62 were all purchased from Avanti Polar Lipids (Alabaster, AL, USA). Stock solutions of 123 

all lipids were prepared using a 3:1 mixture of HPLC grade chloroform to methanol (Sigma-124 

Aldrich, Oakville, ON, Canada) in a ratio (PE:PG:CL; 79:17:4 mole %), hereafter referred to as 125 

PPC and stored at -20°C.. Native clupeine (clupeine sulfate (MW 4112 Da, P4505)), L-arginine, 126 

0.1 M HCL solution, CHD (MW 112.13 g/mol), 8-hydroxyquinoline, sodium hydroxide, liquid 127 



bromine, and HPLC grade chloroform were obtained from Sigma-Aldrich (Oakville, Oakville, 128 

ON, Canada): 129 

2.2 Clupeine Modification 130 
 131 

To reduce the surface charge of arginine CHD (2.8 g) was dissolved in 500 mL of 0.2 M 132 

boric acid buffer (pH 8.5) then 2.5 g of native clupeine was added and the contents of each flask 133 

stirred for 20 s (Potter et al., 2005).  The samples were incubated at 37ºC for 2.5 min and then 500 134 

mL of cold 5 % (v/v) acetic acid was added. Control samples were prepared in a similar manner 135 

except that no CHD was added to the reaction flasks. The modified samples were concentrated to 136 

200 mL, and then exhaustively dialyzed in a Prep/Scale Millipore Model P34404 ultrafiltration 137 

apparatus (Millipore, Toronto, ON, Canada) equipped with 900 cm2, 1000 Da tetrafluoroethylene 138 

(TFE) filters and flushed with five volumes of 1% (v/v) acetic acid and ten volumes of distilled, 139 

deionized water (DDW) and concentrated once again to 200 mL as described by Potter et al. 140 

(2005). Finally, the purified samples were frozen at -30ºC and then freeze dried (Labconco, 141 

Missouri, USA). Stock solutions were prepared by dissolving 0.1 g of the powder in 40 mL of 1% 142 

(v/v) acetic acid. Working solutions were prepared by diluting the stock solutions 1:50 with DDW. 143 

The Sakaguchi reaction (Sakaguchi, 1950; Potter et al., 2005), which is specific for arginine, was 144 

used to determine the unmodified arginine residues in the CHD-treated clupeine. The percent 145 

modification of arginine residues was determined using an arginine-HCl standard curve and taking 146 

into account that ~20 of the 30 amino acid residues in clupeine are arginine (Ando et al., 1973). 147 

Only CHD-treated clupeine with 10% of the arginine residues modified was chosen for further 148 

testing because it has been reported that moderate reductions in charge led to improved 149 

antimicrobial efficacy (Potter et al., 2005).  150 

2.3 Peptide Surface Hydrophobicity 151 
 152 



The surface hydrophobicity (So) of the native and modified samples was measured using  153 

a fluorescent probe, 6-propionyl-2-(N,N-dimethylamino) naphthalene (PRODAN) as outlined by 154 

Alizadeh-Pasdar and Li-Chan (2000) with modifications. A PRODAN standard curve was 155 

developed using concentrations ranging from 0 to 0.95 µM. Using this PRODAN binding curve, 156 

it was possible to measure the amount of PRODAN bound to the peptide samples. PRODAN (20 157 

µL, 7.6 mM) was added to 4 mL of peptide in a 0.01 M phosphate buffer (pH 7). After 15 min 158 

incubation in the dark, the relative fluorescent intensity (RFI) was measured using a Photo 159 

Technology International (PTI) fluorescence spectrophotometer, with excitation and emission 160 

wavelengths set at 390 and 470 nm, respectively.  161 

2.4 Zeta Potential 162 

The net charge density of the peptides was measured as zeta potential (mV) using a Zetasizer 163 

Nano Model ZS (Malvern Instruments, Derbyshire, UK) as outline by Paulson and Tung (1987) 164 

with modifications. Measurements were made at 20°C in triplicate. The zeta potential was 165 

calculated from the electrophoretic mobility of individual particles, measured using laser Doppler 166 

velocimetry (Malvern Instruments Ltd, 2004).  167 

2.5 Surface Pressure Measurements 168 
 169 

Surface pressure measurements on a Langmuir trough (model 611 Nima Technology, 170 

Coventry, England) interfaced with a computer data acquisition system were carried out by the 171 

Wilhelmy plate method as described by Lad, Birembaut, Clifton, Frazier, Webster, & Green, 172 

(2007). Clean troughs were filled with 80 mL of 0.02 M phosphate buffer (pH 7), and 20 µL of 173 

the lipid solution in chloroform was spread dropwise using a Hamilton syringe (Hamilton 174 

Company, Reno, NV) on the surface of the buffer to form a monolayer. The lipid monolayer was 175 

compressed to a target surface pressure of ~25 mN m-1. Control checks were carried out for ~ 4.2 176 



h on the bare PPC monolayers to determine their stability. For each experiment, the compressed 177 

film was relaxed for 20 min at ~25 mN m-1 prior to the addition of 1 mL of native or modified 178 

clupeine solution to the subphase (final peptide concentration of 0.48 µM). Compression isotherms 179 

were recorded as surface pressure (π) vs. area (A) curves prior to the addition of the peptides and 180 

on addition of the peptide to the subphase, and plots of surface pressure vs. time were recorded to 181 

follow adsorption of the peptides to the lipid layer. All compressions were repeated until a 182 

reproducible trace was obtained and the final surface pressure values had a standard deviation of 183 

±1 mN m-1. Similar experiments were carried out using the negatively charged phospholipid, 184 

DPPG, as a control. 185 

2.6 Neutron Reflectometry Measurements on PPC 186 
 187 

NR measurements were carried out using the white beam SURF reflectometer at the 188 

Rutherford Appleton Laboratory (Didcot, Oxfordshire, UK), using neutron wavelengths from 0.5 189 

to 6.5 Å. The beam intensity was calibrated with respect to a clean D2O surface. The sample 190 

preparation and NR method were carried out as described by Clifton, Sanders, Hughes, Neylon, 191 

Frazier, & Green (2011) with some modifications. Briefly, all the NR experiments were performed 192 

at room temperature and the lipid films were prepared by spreading the PPC lipid mix (from the 193 

stock solution) in a 200 x 400 mm Langmuir trough (Nima Technology, Coventry, UK)  containing 194 

a 20 mM phosphate buffer (pH 7.0).  Films were compressed to a surface pressure of 23 mN m-1 195 

and the films were relaxed for 20 min at 23 mN m-1 prior to the addition of native or CHD-treated 196 

clupeine solutions (0.48 µM) to the lipid monolayer. NR curves were recorded at two angles of 197 

incidence (θ = 1.5 and 0.8°) to yield a momentum transfer range of ~0.01 – 0.6 Å-1 both before and 198 

after the addition of native or CHD-treated clupeine. NR was measured under multiple isotopic 199 

contrasts and this was achieved by using hydrogenated and deuterated lipids in a non-reflecting 200 



water subphase compared to air, NRW (8% D2O, 92% H2O), and D2O.  Measurements using 201 

hydrogenated lipids (h-lipids) on NRW were done to observe protein binding since the h-lipid will 202 

be largely non-reflecting (𝜌(ℎ − 𝑙𝑖𝑝𝑖𝑑) = −0.39 x  10−6Å−𝟐), where 𝜌 represents the scattering 203 

length density (SLD). Repeat experiments using isotopic contrasts with d-lipid (𝜌(𝑑 − 𝑙𝑖𝑝𝑖𝑑) =204 

7.5 x  10−6Å−𝟐) on NRW were also done to reveal any changes in lipid layer structure caused by 205 

the interaction. Contrasts of h-lipid on D2O were also done to enable differentiation between 206 

peptide adsorbed beneath the interface and the lipid head group (Clifton, Neylon, & Lakey 2013a).  207 

2.7 X-Ray Reflectometry Measurements on PPC 208 
 209 

X-ray reflectometry experiments were performed at the I07 beamline at the Diamond Light 210 

Source (Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK). The sample 211 

preparation and method described by Clifton et al. (2012) was carried out. Experiments were 212 

performed at room temperature and the lipid films were prepared by spreading the PPC lipid mix 213 

(from the stock solution) in a 200 x 400 mm Langmuir trough containing a 20 mM phosphate 214 

buffer (pH 7.0). The films were compressed to a surface pressure of 23 mN m-1 and then relaxed 215 

for 20 min at 23 mN m-1 prior to the addition of native or CHD-treated clupeine solutions (0.48 216 

µM). A monochromatic X-ray wavelength of 0.992 Å (corresponding to a photon energy, E of 217 

12.5keV) was used and a fast shutter was applied to avoid over-exposure to the X-ray beam. 218 

The experiments were also performed in a helium atmosphere, the reflectivity profiles were 219 

measured in a Qz range of 0.01 to 0.8 Å-1 and data were collected on a Dectris Pilatus 100 k 220 

detector. XRR data were reduced by performing a normalisation and a “footprint correction” step. 221 

There were three parts to the normalisation, the first part involved dividing by the incident flux 222 

since this varies with the incident angle. The second part involved stitching the three regions 223 

together; by overlapping points at the extremes of each region. The third part involved scaling the 224 



data so that reflectivity at the critical edge was equal to one. The detector also used two ‘regions 225 

of interest’ (ROI) to simultaneously measure the signal, and this background was subtracted from 226 

all the data sets (Clifton et al., 2012). 227 

2.8 Bilayer Deposition and Neutron Reflectometry Measurements 228 
 229 

Gram-negative model, single bilayer membranes were prepared at the ISIS Biological 230 

Sample Laboratory (Rutherford, England) as outlined by Clifton et al. (2013b). NR measurements 231 

were carried out using the white beam SURF reflectometer, using neutron wavelengths from 0.5 232 

to 6.5 Å. The collimated neutron beam was reflected from the silicon-liquid interface at three 233 

different glancing angles of incidence, 0.35⁰, 0.65⁰ and 1.5⁰.  234 

A neutron flow-cell was placed at the bottom of a clean Langmuir-Blodgett (LB) trough 235 

(KSV-Nima, Biolin Scientific, Finland) and the cell was flushed with ultrapure water (Millipore, 236 

18.2 MΩ cm-1) to remove air bubbles and was then filled with 20 mM phosphate buffer (pH 7.0) 237 

A Piranha-cleaned (H2O2/H2SO4/H2O 1:4:1) silicon (SiO2) crystal was then mounted onto the 238 

dipping mechanism of the trough in a vertical position and with the active face away from the 239 

center, then the block was submerged under the buffer. Two bilayers were prepared and 150 µL 240 

of tail-hydrogenated or deuterated 1,2-dipalmitoylphosphatidylcholine (h-DPPC and d-DPPC) in 241 

1 mg/mL in chloroform, was spread onto the clean water surface. The lipid was compressed to an 242 

initial pressure of 10 mN m-1 and then equilibrated for 15 min. The lipid layer was then compressed 243 

to 35 mN m-1 at a rate of 3 mm min-1. Pressure-area isotherms were recorded to confirm the 244 

homogeneity of the film.  245 

For LB deposition of the inner bilayer leaflet, the submerged silicon crystal was lifted 246 

through the air-water interface at a rate of 3 mm/min and at a constant pressure of 35 mN m-1. The 247 

entire LB deposition procedure took 45 min. For Langmuir Schaefer (LS) transfer, a clean neutron 248 



flow-cell was placed in the bottom of the trough before it was filled with cold 20 mM Hepes buffer 249 

(pH 7.2). A monolayer was formed on the surface by adding 150 µL of the PE:PG:CL (79:17:4 250 

mole %) lipid mix, and the latter was compressed to 35 mN m-1. The silicon crystal containing the 251 

LB-deposited DPPC monolayer was placed on the dipping mechanism of the trough, with the 252 

crystal face parallel to the water surface. The silicon crystal with the deposited LB film was then 253 

dipped through the interface at a constant rate of 3 mm min-1 and lowered into the neutron flow-254 

cell at the bottom of the trough. Native or CHD-treated clupeine (0.48 µM) were added to the cell 255 

in a 20 mM Hepes buffer (pH 7).  256 

2.9 Reflectivity Data Analysis for Monolayers 257 
 258 

NR and XRR data were analyzed using a Matlab version of RasCal (version 1.1.2, Hughes, 259 

A., ISIS Spallation Neutron Source, Rutherford, Appleton Laboratory). In RasCal, structures 260 

across the interface were modeled as a series of layers and each layer was described by three main 261 

parameters: thickness (τ), SLD (ρ), and roughness (Clifton et al., 2013a).  The SLD of the lipids 262 

(head groups and tails), solvents and peptides were calculated using equation 1:  263 

                                                                                                                                 Eq. 1 264 

𝜌 =
∑b
V

 265 

Where b represented the SL for each element and V represented the molecular volume (Lad, 2006). 266 

The XRR and NR data were first fitted individually then fitted simultaneously as described by 267 

Nelson (2006) and Clifton et al. (2012) to place restrictions on the NR fit. The thickness and 268 

roughness parameters were linked in a single model and the SLD and background values were 269 

allowed to vary (Nelson, 2006).  270 

Bare lipid monolayers with no peptides were divided into two layers, the first, a lipid chain 271 

layer containing CH3 and CH2 groups and the second, a head group layer containing the lipid head 272 



groups (Dabkowska, Fragneto, Hughes, Quinn, & Lawrence, 2009). This classification was based 273 

on two assumptions: (1) the first layer contained only lipid component and the second layer 274 

contained only the head group; (2) the second assumption was related to the area per molecule and 275 

assumed that this value was the same for both the lipid head group and the tail region (Clifton et 276 

al., 2011). However, in order to measure peptide binding to the monolayer, a third layer was 277 

included in the model to represent the presence of the peptides below the lipid monolayer 278 

(Saunders, Clifton, Frazier, & Green, 2016). A set of reflectivity profiles measured under the three 279 

isotopic contrasts hydrogenated (h)-lipid in NRW; h-lipid in D2O and deuterated (d)-lipid in NRW 280 

were fitted together and the large difference between the scattering lengths of hydrogen (-0.56 x 281 

10-6 Å-2) and deuterium (6.35 x 10-6 Å-2) was used to detect the location of different components 282 

in the monolayer. The parameters of the measured data were then fitted to the theoretical model 283 

until the best fit was achieved. The quality of the fit was also assessed visually. The fitted SLD for 284 

each isotopic contrast was related to the volume fraction of each component using equation 2, 285 

where Φ represented the volume fraction, ρ represented the SLD, ρ(D) and ρ(H)  represented the  286 

fitted SLD and  ρ(D-L) - ρ(H-L) represented the calculated SLD. 287 

                                                                                                                                              Eq. 2 288 

Φ (𝑙𝑖𝑝𝑖𝑑) =
ρ(D) − 𝜌(𝐻)

𝜌(𝐷 − 𝐿) − 𝜌(𝐻 − 𝐿)
 289 

The SLDs and the molecular volume for the native and CHD-treated peptides were calculated as 290 

outlined in the ISIS Biomolecular SLD Calculator (http://psldc.isis.rl.ac.uk/Psldc/). To calculate 291 

the SLD for the lipid mixture of PPC, the SLD of each individual lipid head and tail was calculated 292 

and then multiplied by its fraction in the mixture. The molecular volumes of the lipid components 293 

were calculated using the Molinspiration Property Calculator 294 

(http://www.molinspiration.com/cgi-bin/properties). The area per molecule (A) occupied by the 295 

http://psldc.isis.rl.ac.uk/Psldc/
http://www.molinspiration.com/cgi-bin/properties


peptide and the lipid in each layer and the surface excess (Γ) for each component in the system 296 

were calculated using equations 3 and 4, where b represented the scattering length, ρ represents 297 

the SLD, and τ represented the layer thickness obtained from the model fit (Clifton et al., 2011).  298 

                                                                                                                                   299 

                                      𝐴 = ∑b
𝜏𝜙𝜌

                                                                                   Eq. 3 300 

  301 

                                         𝛤 = MW
A∗6.02 g /mol

                                                                             Eq. 4    302 

 303 

2.10 Reflectivity Data Analysis for Bilayers 304 
 305 

Model biomembranes systems composed of either tail deuterated or tail hydrogenated 306 

DPPC as the inner leaflet and hydrogenated-PPC as the outer leaflet were prepared, then NR 307 

experiments were carried out using three different solution subphases; (1) D2O (100%, ρ=6.35 x 308 

10 -6 Å-2); (2) silicon matched water (SMW, 38% D2O and 62% H2O, ρ=2.07 x 10 -6 Å-2); and (3) 309 

100% water (ρ=-0.56 x 10 -6 Å-2). Each deuterated and hydrogenated lipid bilayer was measured 310 

under all three isotopic contrasts (D2O; SMW and H2O) thus resulting in a total of six different 311 

reflectivity profiles. The large difference between the SLD for deuterated-DPPC (7.45 x 10-6 Å-2) 312 

and hydrogenated-DPPC (-0.39 x 10-6 Å-2) tail regions made it possible to determine structural 313 

parameters from the tail region within each individual bilayer. Reflectivity data were obtained for 314 

the six contrasts before and after the addition of native and CHD-treated clupeine and the data 315 

were analyzed as described in Clifton et al. (2013) using a Matlab version of RasCal. The three 316 

membrane components in the bilayer were DPPC, PPC and water and their individual 317 

contributions to the bilayer were determined from the fitted values obtained for the tail deuterated-318 



DPPC SLDs in the three subphase mixtures (100% D2O, SMW (30% D2O and 100% water). The 319 

SLD (ρ) of a given layer was related to the three membrane components by the following equation: 320 

                                                                                                                                               Eq. 2 321 
𝜌 = (𝜌𝐷𝑃𝑃𝐶)(𝜙𝐷𝑃𝑃𝐶) + (𝜌𝑃𝑃𝐶)(𝜙𝑃𝐸:𝑃𝐺:𝐶𝐿) +  (𝜌𝑊𝑎𝑡𝑒𝑟) (𝜙𝑊𝑎𝑡𝑒𝑟) 322 

 323 

Where ρ represented the SLD of a given layer and 𝜌𝐷𝑃𝑃𝐶, 𝜌𝑃𝑃𝐶 𝑎𝑛𝑑 𝜌𝑊𝑎𝑡𝑒𝑟 represented the SLD 324 

of DPPC, PPC and water respectively, while 𝜙𝐷𝑃𝑃𝐶,𝜙𝑃𝑃𝐶 𝑎𝑛𝑑 𝜙𝑊𝑎𝑡𝑒𝑟  represented the volume 325 

fractions of the same components. Because the DPPC and PPC lipid tail regions do not contain 326 

labile hydrogens and would not undergo solvent-contrast-related changes in SLD (Clifton et al., 327 

2013b), the volume fraction of water was determined from the following equation: 328 

                                                                                                                                                                     Eq. 6 329 

𝜙𝑊𝑎𝑡𝑒𝑟 =
ρwater contrast1 −  𝜌𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡2

𝜌𝑤𝑎𝑡𝑒𝑟1− 𝜌𝑤𝑎𝑡𝑒𝑟2
 330 

 331 
Where ρwater contrast1 and 𝜌𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡2 represented the SLDs of the same layer in any two of 332 

the three contrasts (H2O, SMW or D2O) used, while 𝜌𝑤𝑎𝑡𝑒𝑟1− 𝜌𝑤𝑎𝑡𝑒𝑟2 represented the SLDs of 333 

each solvent mixture. Once the volume fraction of water (𝜙𝑊𝑎𝑡𝑒𝑟) was determined, then the DPPC 334 

fraction in the d-DPPC/h-PPC bilayer system was determined using equation 6.                                                                                                                               335 

                                                                                                                                                                  Eq. 7 336 
𝜌 − (𝜌𝑤𝑎𝑡𝑒𝑟𝜙𝑤𝑎𝑡𝑒𝑟) = (𝜌𝐷𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠)(𝜙𝐷𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠) + (𝜌𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠)(𝜙𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠) 337 

 338 
Equation 7 was used to find the value of 𝜌 − (𝜌𝑤𝑎𝑡𝑒𝑟𝜙𝑤𝑎𝑡𝑒𝑟), which was needed in order to fully 339 

complete equation 8: 340 

                                                                                                                                                                    Eq. 8 341 

𝜙𝐷𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠 = (
(ρ − (ρ(water)ϕwater) − (𝜌𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠(1 − 𝜙𝑤𝑎𝑡𝑒𝑟)))

(ρd−DPPC tails − 𝜌𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠)
) 342 

 343 



Once the relative contribution of the 𝜙𝐷𝑃𝑃𝐶 𝑡𝑎𝑖𝑙𝑠 were determined, then the relative contributions 344 

of the PPC tails to the bilayer were determined by using equation 9: 345 

 346 
                                                                                                                                                                  Eq. 9 347 

𝜙𝑃𝑃𝐶 = 1 − (𝜙𝐷𝑃𝑃𝐶𝑡𝑎𝑖𝑙𝑠 + 𝜙𝑤𝑎𝑡𝑒𝑟) 348 

2.11 Model to Experimental Data Fitting Analyses 349 
 350 
The ‘bootstrap’ error analysis function in RasCal was used to obtain model to experimental data 351 

fitting errors as previously described by (Clifton et al., 2012; Clifton et al., 2013b). The original 352 

data set was resampled, then new data sets were fitted using the methods described earlier. “The 353 

parameter value distributions obtained across these fits were used to estimate errors, and these 354 

values were then propagated through the calculations of the derived parameters according to 355 

error treatment methods” (Clifton et al., 2013b). 356 

3 Results and Discussion 357 
 358 
3.1 Net charge density and surface hydrophobicity 359 
 360 

The native peptide was far less hydrophobic than the modified sample (P=0.02, n=3) at the  361 

pH level tested (Figure 1A ). Since the native clupeine is highly cationic in nature, the use of an 362 

anionic probe such as 1-anilinonaphthalene-8-sulfonic acid (ANS) would have resulted in greater 363 

interaction with the positively charged sites on the peptide, thus overestimating the 364 

hydrophobicity. This supports the use of the uncharged probe PRODAN which eliminated the 365 

possible electrostatic contributions in the hydrophobicity measurements (Alizadeh-Pasdar & Li-366 

Chan, 2000). The measured zeta potential of the native clupeine was 7.2 ± 0.2 mV, which was 367 

similar to the value reported by Arbab et al. (2004). Conversely, the modified sample registered a 368 

zeta potential of 5.3 ± 0.1 mV.  369 

3.2 Peptide binding to lipid monolayer using surface pressure measurements 370 
 371 



The surface pressure change on addition of clupeine to a compressed PPC monolayer at 372 

the air/water interface was investigated as a function of time (Figure 1). The data showed an 373 

increase in surface pressure for CHD-treated clupeine that was not seen for the native peptide. The 374 

maximum increase seen after 300 min from addition of the treated clupeine to the subphase was 375 

approximately 11 mN/m. This suggests that the CHD-treated clupeine had penetrated into the lipid 376 

layer leading to increase compression of the layer, an effect previously reported by (Abuillan et 377 

al., 2013; Oliveira et al., 2009). For the native clupeine no increase in surface pressure was 378 

observed, although a gradual decrease was seen that could be due to lipid removal at the surface, 379 

but was more likely a consequence of the stability of the lipid layer and not an indication of any 380 

clupeine interaction. Importantly, this could have been resolved if an equivalent volume of peptide-381 

free buffer was added to the subphase and the same decrease in surface pressure was observed. 382 

Conversely, if no effect on surface pressure was observed over the same time period, this would 383 

suggest that the peptide did not sit at the air-water surface (Dabkowska et al., 2009).  384 

3.3 Impact of peptide on lipid monolayer structure 385 
 386 

NR and XRR reflectivity data were fitted simultaneously to provide characterisation of the 387 

interfacial layer structure before and after peptide addition. The PPC monolayer characterization 388 

prior to peptide addition was determined using two reflectivity profiles, the d-PPC on an NRW 389 

buffer subphase (NR) and the h-PPC on a H2O phosphate buffer subphase (XRR). Models of the 390 

XRR fits are not shown. A two layer model was used to fit the data, where layer 1 was the acyl 391 

chain region with a thickness (τ) of 15 ± 0.64 Å and a volume fraction (ΦL) of 0.97 ± 0.02, whereas 392 

layer 2 was the lipid head group of the condensed PE:PG:CL monolayer, with a τ of  12.9 ± 1.2 Å 393 

(Table A2). Ciumac et al. (2017) and Dabkowska et al. (2009) have also reported similarly thin 394 



hydrophobic chain regions for DPPC or DPPG and for 1,2-dioleoyl-sn-glycero-3-phosphocholine  395 

or palmitoyl-oleoyl-glycero-3-phosphoserine (DOPC/ POPS) monolayers.   396 

A third layer was included into the model to allow for fitting of clupeine adsorbed below the 397 

lipid layer (Figure 2). In addition, the hydrogenated contrasts in NRW proved to be informative in 398 

identifying the contribution of the peptide to the monolayer. As shown in Figure 2 A, the three 399 

layer model proposed for native clupeine adsorbed to the condensed phase PPC monolayer, fitted 400 

the data well. Peptide binding in the presence of native clupeine showed minimal adsorption in the 401 

lipid layer (surface excess (Γ) = 0.005 ± 0.02), but a greater effect was observed in the lipid head 402 

group region (Γ = 0.297 ± 0.02) and a thickening of the peptide layer (τ, increased from 15.0 ± 403 

0.01 Å to 15.3 ± 0.07 Å). Conversely, in the presence of the modified peptide a greater effect on 404 

the structure of the monolayer was observed (Figure 3). For example, there was a 25% and 15% 405 

increase in surface excess and a peptide layer thickness, respectively, compared to the measured 406 

values in the presence of the native peptide (Table 1). Slight increases in SLD, 1.07 ± 0.06 x 10-407 

6Å-2 or 1.69 ± 0.05 x 10-6Å-2 in the presence of native or CHD-treated clupeine, respectively, were 408 

also observed (Table 1). Notable, the difference in the fitted SLDs and the total adsorbed peptide 409 

was almost two-fold in the presence of the modified peptide compared to the native peptide.  410 

The requirement of a third layer below the monolayer supports the observation from the 411 

surface pressure studies for the modified clupeine, and confirms that the peptide interacted with 412 

the PE:PG:CL monolayer (Figure 1). More importantly, the advantage of using two different 413 

techniques to characterize peptide interaction with the PPC monolayer is emphasized since, NR is 414 

sensitive to the total amount of material at the interface. Thus although the presence of native 415 

clupeine on the PPC monolayer led to a decrease in surface pressure change, NR measurements 416 

clearly revealed a thickening of the layer (Table1). Work with Puroindoline-b (pin-b) protein 417 



mutants has also shown little change in surface pressure when the proteins were inserted onto 418 

DPPC or DPPG monolayers, however, similar to native and CHD-treated clupeine, NR revealed 419 

most of the peptide situated below the lipid region (Clifton, Lad, Green, & Frazier, 2007; Clifton, 420 

Green, Hughes, & Frazier, 2008). Moreover, NR and XRR methods were advantageous since 421 

differences in the radiation source (XRR versus NR) result in different scattering length densities 422 

(SLD), and selective SLD modification with deuterium (D2O) labeling made it possible to reveal 423 

subtle changes in membrane structure in the presence of the peptides (Lopez-Rubioa, & Gilbert, 424 

2009). 425 

3.4 Impact of Peptides on Bilayer Structure 426 
 427 

To validate that the trends observed with the monolayer work were not dependent on the 428 

lipid layer model used, bilayer studies were performed. Figure 4 shows the NR profiles and data 429 

fits of bilayers in the presence of native (4A), and modified clupeine (4B) examined under three-430 

solution contrasts (D2O, SMW and H2O). In the outer lipid head group region there was a change 431 

in SLD from 2.5 to 2.2 or 2.3 x 10-6Å-2 in the presence of native or modified clupeine, respectively 432 

(Table 2). The decrease in SLD may be explained by lipid removal from the bilayer in the presence 433 

of the peptides. Lipid loss was also accompanied by an increase in hydration of the lipid head 434 

group, from 17.9 ± 12.7% on the bare bilayer compared to 26.9 ± 5.5% in the presence of native 435 

clupeine and 48.2 ± 11.5% in the presence of the modified clupeine. The greater degree of 436 

hydration in the lipid head group region in the presence of modified peptide compared to the native 437 

peptide is observed as a broader peak in Figure 4 D compared to Figure 4 F and may also indicate 438 

greater solvent penetration.  439 

The model used to fit the reflectivity data from the deuterated lipids (Figure 4B) showed 440 

that it was possible to form asymmetric bilayers with ~90% DPPC inner leaflet composition and 441 



an outer layer of ~80% PPC. Although it is now known how closely the model membrane fits the 442 

real membrane, similar percent coverages have been reported by Fernandez et al. (2013). Lipid 443 

translocation was also observed in the inner tail region (~69 ± 0.24% DPPC and ~24 ± 0.02% PPC) 444 

and in the outer tail region (~24 ± 0.02% DPPC and ~56 ± 0.01% PPC) (Table 2). Lipid 445 

translocation may have resulted due to lateral heterogeneity in the bilayer which leads to the 446 

formation of domains (Epand, 2013). Vorobyov and Allen (2011) discussed the importance of 447 

bilayer charge in mediating peptide interaction and showed that adsorption of cationic peptides to 448 

anionic bilayers is significantly higher than in zwitterionic membranes. Importantly, electrostatic 449 

interactions between peptides and anionic lipids has also been postulated as another factor that 450 

supports the formation of domains (Epand, 2013). In the present study it is possible that the 451 

peptides could exert part of their effect by changing lateral organization in the membrane. 452 

Increased hydrophobicity of the modified clupeine may also explain the increased magnitude of 453 

the effect on the lipid structure. Furthermore, thicker peptide layers in the presence of the modified 454 

peptide (11.04 ± 6.0 Å versus 4.15 ± 2.9 Å in the presence of the native peptide) (Table 2), implies 455 

the accumulation of peptides to form a layer that can interact with negatively charged components 456 

in the membrane. Thus, it appears that both hydrophobic and electrostatic interactions may govern 457 

the mode of action of the modified clupeine, and strongly suggests that the modified clupeine may 458 

use the carpet mechanisms to exert its effect on model membranes. These observations support the 459 

findings of Pink, Hasan, Quinn, Winterhalter, Mohan, and Gill (2014) who reported that native 460 

clupeine can internalize and kill some Gram-negative bacteria without lysis or pore formation.  461 

Conclusion 462 

The initial interactions of native and CHD-treated clupeine in model membranes has been 463 

investigated by combining NR and XRR techniques. In the less complex monolayer system, 464 



quantitative amounts of peptides could be determined as surface excess values in the presence of 465 

both peptides. Lipid translocation was observed in the inner acyl chains of the bilayer membrane 466 

however, but the peptides were not able to penetrate the bilayer membrane. Similar effects on the 467 

model membrane structure were observed, although peptide perturbation of the membranes 468 

appeared different. Increased hydrophobicity along with electrostatic interactions of the modified 469 

peptide were attributed to the improved peptide-lipid interactions. A more comprehensive 470 

understanding of the safety and toxicology of these peptide is required before they can be 471 

considered for food applications in Canada. 472 
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 712 

 713 

 714 

 715 
 716 

 717 

Figure 1. Surface pressure versus time plot for CHD-treated clupeine and native clupeine adsorbed 718 
on a PPC monolayer. There was a general increase (4.6%) in surface pressure after adding the 719 
CHD-treated peptide. On the other hand, the addition of the native peptide resulted in a decrease 720 
(2.3%) in surface pressure. These experiments were repeated twice. 721 
 722 
*Note that PPC is the abbreviation of PE:PG:CL. 723 
 724 
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 734 

Figure 2. Neutron and X-ray reflectometry profiles and model data fits, and corresponding SLD 735 
profiles after equilibrium adsorption of native clupeine. (A) Reflectivity of PPC lipid monolayer 736 
in NRW with adsorbed native clupeine on the deuterated lipid in (red) and the hydrogenated lipid 737 
in (black) is plotted against Qz (Å-1), the momentum transfer. The bare lipid with no peptide is 738 
shown in blue and the experimental data are represented with error bars whereas the best fit 739 
simulated data are represented as continuous lines. The SLD profile as a function of distance from 740 
the interface as determined from the fit is shown in (B).  741 
 742 
*Note that PPC is the abbreviation of PE:PG:CL. 743 
 744 
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 759 

Figure 3. Neutron and X-ray reflectometry profiles and model data fits, and corresponding SLD 760 
profiles after equilibrium adsorption of CHD-treated clupeine.  (A) Reflectivity of PE:PG:CL 761 
monolayer in NRW with adsorbed CHD-treated clupeine on the deuterated lipid in (purple) and 762 
the hydrogenated lipid in (black). The bare lipid with no peptide is shown in blue and the 763 
experimental data are represented with error bars whereas the best fit simulated data are 764 
represented as lines. The SLD profile as a function of distance from the interface as determined 765 
from the fit is shown in (B).  766 
 767 
*Note that PPC is the abbreviation of PE:PG:CL. 768 
 769 
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 785 

Figure 4. Reflectivity curves and SLD profiles from d/h-DPPC:h-PPC lipid bilayer. A.  786 
Reflectivity data for the h-DPPC:h-PPC bilayer lipids in D2O (gray), SMW (red), and H2O (black) 787 
containing native clupeine. The corresponding fits are shown as lines, D2O (black), SMW (black), 788 
and H2O (blue). B. Reflectivity data for the h-DPPC:h-PPC bilayer lipids in D2O (grey), SMW 789 
(blue), and H2O (pink) containing CHD-treated clupeine. The fits are shown as black lines for all 790 
contrasts. C. SLD profiles for the bilayer in water contrast in the presence of native clupeine. The 791 
data are plotted as points with error bars and the fits are represented as a black line. SLD profile 792 
for bilayer in water contrast in the presence of CHD-treated clupeine. The data are plotted as points 793 
with error bars and the fits are represented as a blue line. The greater degree of hydration in the 794 
lipid head group region in the presence of CHD-treated clupeine compared to the native peptide is 795 
observed as a broader peak in Figure 4 D compared to Figure 4 C.  796 

 *Note that PPC is the abbreviation of PE:PG:CL. 797 
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Table 1 Structural parameters obtained from the three layer model fits of native and CHD-800 
treated clupeine (0.48 µM) adsorbed to PPC monolayers. The fits were repeated three times. 801 
Parameters  Thickness 

τ (Å)    
SLD 
(10-6Å-2) 

Layer 
roughness 
(Å) 

Γ Surface 
excess  
(mg/m2) 

(ΦL) Lipid 
volume 
fraction 

Layer 1, acyl chain       
d-PPC, NRW   
h-PPC, NRW  
h-PPC, XRR                   

15.0±0.01 
15.0±0.01 
15.0±0.01 

 1.60± 0.01 
-0.37±0.01 
 9.69± 0.03 

3.51 ± 0.15 0.005 ± 0.02 0.59 ± 0.02 

Layer 2, head 
group 

     

d- PPC, NRW   
h- PPC, NRW  
h- PPC, XRR                  

12.7±0.01 
12.7±0.01 
12.7±0.01 

1.07± 0.06 
1.07± 0.06 
12.9± 0.40 

 0.297 ± 0.02  

Layer 3, peptide 
layer (native) 

     

d- PPC, NRW   
h- PPC, NRW  
h- PPC, XRR 
    

15.3±0.07  
15.3±0.07 
15.3±0.07 

1.00± 0.09 
1.00± 0.01 
10.9± 0.01 
 

 3.88 ± 0.32 0.364 ± 0.02  

Layer 1, acyl chain      
d- PPC, NRW   
h- PPC, NRW  
h- PPC, XRR       

16.5±0.14 
16.5±0.14 
16.5±0.14 

 2.08± 0.05 
-0.37± 0.01 
 8.64± 0.01 

3.83 ± 0.06 0.007 ± 0.03 0.69 ± 0.03 

Layer 2, head group     
d- PPC, NRW   
h- PPC, NRW  
h- PPC, XRR  

8.27±0.06 
8.27±0.06 
8.27±0.06 

1.69± 0.05 
1.69± 0.05 
12.5± 0.06 

 0.372 ± 0.03 

Layer 3, peptide 
layer (CHD)  

    

d- PPC, NRW   
h- PPC, NRW  
h- PPC, XRR                  

17.6±0.05 
17.6±0.05 
17.6±0.05 

1.42 ± 0.44 
1.22 ± 0.25 
9.25 ± 0.05 

3.50 ± 0.44 0.59 ± 0.14 

τ, represents layer thickness; Γ, represents, clupeine surface excess; and ΦL represents lipid 802 
volume fraction 803 
*Note that PPC is the abbreviation of PE:PG:CL. 804 
 805 

 806 

 807 
 808 

 809 



Table 2.  Best fit values and error estimates of asymmetrically deposited bare h-DPPC (inner 810 
leaflet) E. coli PPC (outer leaflet) bilayer deposited on a silicon surface and the bilayer in the 811 
presence of native and CHD-treated clupeine. 812 
 813 
Parameters of the Bilayer Bare h-

bilayer 
h-bilayer + 
native clupeine 

h-bilayer + 
CHD- treated 
clupeine 

Oxide layer thickness (Å) 
Oxide layer hydration (%) 
Oxide layer roughness (Å) 

11.9 ± 2.6 
15.6 ± 2.4 

  3.58 ± 0.95 

nf nf 

 
Inner head gp SLD (10-6 Å-2)   
Inner head group hydration (%) 
Inner head group thickness (Å) 

 
1.53 ± 0.01 

   31.3 ± 5.5 
   11.9 ± 3.3 

 
nf 

 
nf 

 
Inner tail SLD (10-6 Å-2)   
Inner tail hydration (%) 
Inner tail thickness (Å) 

 
-0.39 

8.18 ± 1.5 
15.7 ± 2.2 

 
nf 

 
nf 

 
Outer tail SLD (10-6 Å-2)   
Outer tail hydration (%) 
Outer tail thickness (Å) 

 
-0.39 

4.45 ± 0.93 
19.2 ± 0.89 

 
nf 

 
nf 

 
Outer head gp SLD (10-6 Å-2) 
Outer head group hydration (%) 
Outer head group thickness (Å) 

 
2.51 ± 0.30 
17.9 ± 12.7 
7.94 ± 0.54 

 
2.17 ± 0.50 

      26.9 ± 5.5 
8.52 ± 0.04 

 
2.27 ± 0.48 

      48.2 ± 12 
8.13 ± 0.66 

 
Bilayer roughness (Å) 

 
4.99 ± 0.01 

 
nf 
 

 
nf 
 

Clupeine hydration (%) n.a. 48.8 ± 3.1 
 

58.9 ± 15 
 

Clupeine thickness (Å) n.a. 4.15 ± 2.9 
 

11.0 ± 6.0 
 

Clupeine roughness (Å) n.a. 3.15 ± 2.7 
 

6.91 ± 1.6 
 

nf = not fitted and n.a. = not applicable        814 
*Note that PPC is the abbreviation of PE:PG:CL. 815 
 816 

 817 
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Figure 1A. The binding of PRODAN to native and modified clupeine. The surface hydrophobicity 
of the native and modified clupeine was measured using an uncharged probe, PRODAN. A 
PRODAN standard curve was developed which was used to measure the amount of probe bound 
to the clupeine samples. 
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Table A1. Summary of Scattering length scattering length densities, molecular weights, and 
molecular volumes of the lipids (PPC and DPPC) and peptides used in the present study.

Parameters Scattering 
length ∑b 
(10-3Å)    

SLD
(10-6Å-2)

Molecular
Weight 
(g/mol)

Molecular
Volume (Å3)

h-PPC (head + tail)
h-PPC (hd. group) 
d-PPC tail
h-PPC tail                   

0.339
0.598
6.24

-0.326

0.300
2.06
7.49

-0.394

     720
     273
     496
     434

1128
288
838
838

Native clupeine in NRW
CHD-treated clupeine in 
NRW
h-DPPC (head + tail)
h-DPPC  (hd. group)
h-DPPC tail
d-DPPC tail

29.0
29.0

0.277
0.597

2.02
2.02

0.241
1.74

-0.39a

7.45a

     4200
     4200

     734
     311

1152
342

a These values were obtained from Clifton et al. (2013 b).
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Table A2 Structural parameters obtained from a two-layer model fit of a condensed phase d-
PE:PG:CL monolayer obtained from simultaneously fitting NR and XRR profiles. The structural 
parameters described for each layer are the layer thickness (τ), the SLD (ρ) and the corresponding 
layer roughness. The fits were repeated three times.

Parameters Thickness

τ (Å)

SLD
(10-6Å-2)

Layer 
roughness (Å)

Lipid volume 

fraction (ΦL)

Layer 1, acyl chain

d-PE:PG:CL, NR
h-PE:PG:CL, XRR              

15.0 ± 0.64
15.0 ± 0.64

7.28 ± 0.76
9.55 ± 0.49

3.93 ± 1.1 0.97 ± 0.02

Layer 2, head 
group
d-PE:PG:CL, NR
h-PE:PG:CL, XRR  

12.9 ± 1.2
12.9 ± 1.2

0.46 ± 0.25
13.2 ± 0.07

τ, represents layer thickness and ΦL, represents lipid volume.










