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BAYESIAN SPATIAL PROBIT ESTIMATION:
A PRIMER AND AN APPLICATION TO HYV RICE

ADOPTION

Garth Holloway,a   Bhavani Shankarb  and  Sanzidur Rahmanc

Abstract

Increasingly, spatial econometric methods are becoming part of the standard
toolkit of applied researchers in agricultural, environmental and development
economics.  Nonetheless, applications in discrete-choice settings remain few
and, despite its appeal, applications of the Bayesian paradigm in these settings
are still fewer.  We provide a primer to the Bayesian spatial probit with
objectives to broaden the scope of Bayesian applications, in general, and to
make accessible to non-users a class of iterative estimation methods that have
become fairly routine in Bayesian circles, offer an extremely powerful
addition to applied researchers toolkits, and are essential in Bayesian
implementation of spatial econometric models.  We demonstrate the methods
and apply them to estimate the ‘neighborhood effect’ in high-yielding variety
adoption among Bangladeshi rice producers.  A neighborhood effect exists
when a propensity to adopt by one farm causes another to adopt.  We estimate
the strength of this relationship using a standard, spatial probit model and
compare the policy conclusions with and without the neighborhood effect
included.  (162 words)

Keywords: Bayesian spatial probit, Markov-chain Monte Carlo methods, HYV rice
adoption, Bangladesh. (11 words)
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1. Introduction

Discrete choice models abound in areas of agricultural economics, including technology

adoption and land-use decision-making.  Inevitably, these problems are characterised by

some form of spatial dependence.  Although accounting for spatial interactions is becoming

prevalent in applications involving continuous dependent variables, such aspects are rarely

incorporated into discrete choice models.   

The importance of accounting for spatial dependence in these situations cannot be

over-emphasized.  For example, the spatial autoregression parameter (the ‘neighborhood

effect’) in a technology adoption setting contains important policy information for public

policy planning (Case, 1992).  Knowledge of the location and scale of its distribution can be

important in informing extension agents and planners about the likelihood that initial

investments will generate further ‘secondary’ or ‘copy’ adoption in a locality.  And this

information, in turn, can aid decision-making so that research portfolio and public investment

schedules are optimized.

One reason likely for the paucity of spatial discrete choice modelling is the

complexity that it entails.  Most of the available methods involve multidimensional

integration.  Bayesian techniques incorporating Markov chain Monte Carlo (MCMC)

methods provide a powerful means to circumvent these problems.  The advantages of this

approach compared to available alternatives include non-reliance on asymptotic properties to

ensure validity and generation of standard errors as a by-product of the estimation algorithm.

The Bayesian approach provides a powerful alternative to conventional sampling theory

techniques in handling the many tricky issues that confront applied spatial research.

Currently in agricultural economics, however, application of the Bayesian paradigm is not

widespread.
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Our objective in this paper is to provide a step-by-step approach to the Bayesian

spatial probit demonstrating its reliance on basic building blocks with which many of us are

familiar and, as a by-product, demonstrating the full power of a class of techniques that are

now becoming common place in other areas of applied research.

We focus attention on one of two Bayesian models that have been applied recently to

implement truncated and discrete-choice data, namely the spatially autoregressive probit

(SARP) model, which is the framework of choice for modelling new technology adoption and

is the model applied in the empirical section of the paper.  Pedagogically, the Bayesian

spatial probit is but a step-wise generalization of the MCMC routine that is required to

estimate the standard, normal linear model.  Because it represents the cornerstone of almost

all MCMC work in applied Bayesian science and our main objectives are pedagogic, the

normal model provides a natural starting-point from which to incorporate additional

computational detail.  A focus on normal data provides, thus, ideal motivation for

understanding the additional difficulties that spatial dependencies entail.

 Section two presents an introduction to MCMC methods using normal data and

outlines the Gibbs sampling algorithm that is the backbone of the spatial probit algorithm.

This introductory section is intended for readers who are unfamiliar with Markov chain

methods and, perhaps, the Bayesian view.  Section three extends the basic method to a spatial

econometric model with continuous left-hand-side data and incorporates two trivial

modifications to derive the spatial probit algorithm.  Section four introduces some

institutional detail about the empirical application and introduces the data and section five

presents the results of the spatial probit algorithm applied to the Bangladeshi data.

Conclusions are offered in section six.  Throughout the emphasis is on routine application of

MCMC to solve complexities arising due to spatial dependence.
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2. Demonstrations Using Normal Data

Suppose data y ≡ (y1, y2, .., yN)′ are normal with unknown mean, µ, and unknown variance σ2

so that the data generating model is

(1) yi  =  µ + ε i, 

i = 1, 2, .., N; where µ denotes the mean of the distribution for y; ε i is a random error term

that is normally distributed with mean zero and variance σ2; and, hence, we may write, in a

standard notation, ε1, ε2, .., εN ~ iid N(µ, σ2).  We observe the data, y, but do not observe the

errors, εε  ≡ (ε1, ε2, .., εN)′, nor the parameters µ and σ; and the objective is to make efficient

use of y in deriving inferences about µ and σ.

Equation (1), together with the distributional assumption on the error term, is

sometimes referred to as the normal-means model.  Because this data-generating model is so

familiar it serves as a natural starting point from which to introduce a generic notation which

we retain throughout the demonstration.  We continue to use y ≡ (y1, y2, .., yN)′ to denote data

but use ƒA(b|c,d,..,z) to denote a probability density function (pdf) for the data where the

symbols ‘A,’ ‘b,’ ‘c,’ ‘d,’ and ‘z’ denote, respectively, the form of the density, its argument,

and any parameters that are needed to charaterize its location and scale, skewness, kurtosis,

and so on.

It is important to note for later developments that the function ƒ(⋅) is in the form of a

conditional probability density function.  Sometimes this conditioning will play a pivotal role

in deriving efficient estimation strategies and sometimes it will not, and we make a point of

symbolizing when conditioning is important through the notation ƒ(⋅|⋅) (the variables

preceding the slash depending on the ones that follow).  In the context of the data generating

model ƒA(b|c, d, .., z), our task is typically to use observable data ‘b’ to make inferences
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about variables (parameters) ‘c,’ ‘d,’ .., ‘z,’ which we will refer to collectively as the

unknowns, or, compactly, by ΘΘ , ΘΘ ≡ (c, d, .., z)′.

The point of departure between the present contribution and others within this Special

Issue, is the single observation that, because the parameters in ΘΘ  are unknown they are, of

course, random and have, therefore, associated probability distributions.

It is this step and this single step alone from which all subsequent developments

emanate and it is important to bear this mind as we develop our MCMC strategy to estimate

the Bayesian spatial probit model.  This application requires two inputs, namely a likelihood

for the entire data, which we denote l(ΘΘ |y), and a prior probability density function

characterizing uncertainty about the unknown parameters, which we denote π(ΘΘ ).  The

assumption that the errors are independent allows us to multiply the individual normal

densities comprising the likelihood into the form l(ΘΘ |y) ≡ ∏i ƒN(yi|µ,σ), which, when viewed

as a function of the complete data y, is observed to have the normal form

(2) l(ΘΘ |y)  ≡  ƒN(y|ιι Nµ,INσ),

where ιι N denotes an N-dimensional unit vector and IN denotes the N×N identity matrix.  To

draw inferences about ΘΘ , we will update between the prior pdf π(ΘΘ ) and the posterior pdf

π(ΘΘ |y) making use of Bayes’ rule,

(3) π(ΘΘ |y)  ∝  l(ΘΘ |y) π(ΘΘ ).

The right-side of equation (3) omits the scale factor that makes the integral of the left side

equal to one and, hence, justifies its interpretation as a true probability density function.  The

fact that we are able to avoid the computations implied by the integrals

(4) ƒ(y)  =  ∫∫∫∫
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is worth stressing because it is precisely these computations that are the major stumbling

blocks to the widespread application of the Bayesian paradigm.  Although noteworthy

exceptions exist, this development seems to have been more retarded in the agricultural

economics literature than elsewhere.  The advent of MCMC has, of course, changed this

situation elsewhere and will do the same in agricultural economics—once the full power of

the technique is widely accepted.  With this goal in mind, it is useful to note that the term on

the right-hand-side of this expression is the marginal likelihood for the data, a quantity that

plays a pivotal role in model comparisons.  We will not undertake model comparisons in this

paper, although it is useful to note that the methods presented can be extended in a simple

way to assess model probabilities (Chib, 1995; Chib and Jeliazkov, 2001).  But the main

point for computational gains is that, because ƒ(y) is not a function of ΘΘ  we can ignore it in

subsequent developments concerning ΘΘ .  Those developments typically involve the

characterization of marginal pdfs for the model parameters and the difficult task confronting

us is the derivation of these marginal quantities from the joint posterior through the

integrations

(5) π(θj|y)  =  ∫∫∫∫∫∫
θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

−

−

+

+

−

−

1

1

2

2

1j

1j

1j

1j

1k

1k

k

k

....  π(θ1, θ2, ..,  θk| y) dθ1 dθ2 .. dθj-1 dθj+1 .. dθk-1 dθk.

Derivation of the marginal distribution of an unknown quantity of interest is usually the target

of any Bayesian investigation.  Problems arise when the marginal density may not exist (not

considered here); or, if the marginal density exists but may not have moments that do

(considered in the empirical section); or, when the marginal pdf exists but may not have a

form for which the integrating constant (the constant that makes the area beneath the density

sum to one) is available in closed form.  It is precisely this latter situation in which MCMC

and, a special case, the Gibbs sampler, have particular advantages in exploiting conditional

dependencies that prevail in almost all statistical settings.  When the marginal distributions
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are not available in closed form, but the fully conditional distributions, π(θj|θ1, θ2, .., θj-1, θj+1,

.., θk, y) satisfy weak regularity conditions (Gelfand and Smith, 1990) and are easy to sample

from, the Gibbs sampler provides an extremely powerful and easy-to-implement approach to

simulate draws from the marginal pdf.  In short, the Gibbs sampler provides a route for

sampling from the marginal pdf even though we cannot express it explicitly.  And when the

fully conditional distributions are not all available in closed form a generalization of the

Gibbs sampler known as the Metropolis-Hastings algorithm can then be used to simulate

from a target distribution.  Although its requires more computation time than the Gibbs

sampler it is just as powerful and is more versatile due to the fewer conditions that are

required for its use.  Two examples will help to demonstrate.

The Gibbs Sampler

In the normal-means set-up, the marginal distribution for µ, is a t distribution which, in its

non-standardized form, is characterized by its mean, µ̂  ≡ (ιι ′ιι)-1ιι′y; its degrees-of-freedom, ν

≡ N-1; and its scale, 2σ̂  ≡ (y-ιι µ̂ )′(y-ιι µ̂ )/ν.  The marginal distribution for σ is an inverse-

gamma distribution with degrees of freedom, ν ≡ N-1 and scale 2σ̂ .  The two marginal

distributions π(µ|y) ≡ ƒT(µ| µ̂ ,ν, 2σ̂ ) and π(σ|y) ≡ ƒIG(σ|ν, 2σ̂ ) offer a complete description of

the unknown quantities and are the target of the exercise.  Although these marginal

distributions are easily obtained by direct integration, we are interested in characterizing them

through the Gibbs sample, for which we require the full conditional distributions.  To derive

these distributions we need to first establish the form of the joint posterior,

(6) π(µ,σ|y)  ∝  σ-(N+1) exp{ 22
1
σ

(y-ιιµ)′(y-ιιµ)},

which evolves from combining the non-informative prior π(µ, σ) ∝ σ-1 (Jeffreys; Zellner,

1996, pp. 708), with the likelihood in (2) via (3).  The full conditionals are π(µ|σ,y) ≡
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ƒN(µ| µ̂ ,σ) and π(σ|µ,y) ≡ ƒIG(σ|ν,s2), s2 ≡ (y-ιιµ)′(y-ιιµ)/ν, which we obtain from the joint

distribution simply by viewing it solely as a function of a single unknown quantity and then

identifying that the resulting form is well-known.  The Gibbs sampler operates by iterating

sequentially between these two conditional distributions drawing, in turn, an inverse-gamma

random variable and a normal random variable.  For S sufficiently large, and a starting value

µ = µ0, the Gibbs samples {σ(s), s = 1, 2, .., S} and {µ(s), s = 1, 2, .., S}, obtained by the

sequence σ1 ~ ƒIG(σ|ν,µ0), µ1 ~ ƒN(µ| µ̂ ,σ1), .., σs ~ ƒIG(σ|ν,µs-1), µs ~ ƒN(µ|µ̂ ,σs) provides

accurate estimates of posterior moments and, indeed, the marginal distributions themselves.

Figures 1-3 present results for the Gibbs sampler applied to the normal data in table 1.  The

data y are generated from ƒN(yi|-ιι , I10) and generate a posterior mean µ̂  = 99 and sample

variance 2ŝ  = 99.  Figure

1 presents plots of the first 50 iterations in the Gibbs sample based on the start value µ0 =

(ιι ′ιι)-1ιι′y and figures 2 and 3 compare the frequencies of draws obtained from the first 1,000

iterations of the sample with frequencies generated by the target pdfs.  The figures illustrate

three important points.  First, independent of the starting values, the draws mimic the actual

draws one expects to obtain in draws from the true marginal pdfs.  Second, very few

iterations are required before the Gibbs sequence converges to the true pdf’s.  Third, when it

is emphasized that there are only ten observations in the sample, convergence is obtained

under very limited information.

(Insert figures 1-3 about here.)

Random-Walk Metropolis-Hastings Sampling

When the full conditional distributions are not available in closed form a more general set of

iteration methods must be invoked.  One of these—the focus in empirical work—is the

Random-Walk Metropolis-Hastings (RW) algorithm.  Although its roots are old (Metropolis,
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et al., 1953; Hastings, 1970), it is difficult to locate applications of the technique in

agricultural economics.  The RW algorithm is but one of many variants of a basic accept-

reject procedure which are suitable to model spatial dependence.  Space limitations prevent

reporting results across an array of models that the authors experimented with in the course of

this project; but the RW algorithm proved considerably superior in terms of execution time

and provided accurate estimates of system parameters with minimal fuss.  Like the Gibbs

sequence, the RW sequence generates a Markov chain with desirable convergence properties;

but, unlike the Gibbs sampler only a subset of the proposed draws in the algorithm are

accepted.  This key difference makes the search for ‘efficient’ strategies to improve the basic

algorithm desirable and this goal is an ongoing focus in statistical research  (see, in particular,

the papers by Raftery and Lewis, 1992; Robert, 1995; Gilks, Richardson and Spiegelhalter,

1996, among many others).  Continuing with notation developed previously, and the normal-

means example, suppose that we wish to simulate a draw from the target density ƒ(µ|⋅), which

is not of a standard form.  We obtain a draw—a ‘proposal’—from another distribution that,

among other properties, is known (known integrating constant) and is easy to sample from

and we accept and reject the proposals based on a probability rule that results in the accepted

sequence of draws generating a Markov chain that, eventually, converges to the target

distribution.  Use m to denote the proposal value and use ƒP(m|⋅) to denote the proposal

density.  In general, the proposal density can be conditional on a prior draw for the parameter

of interest and, hence, let us use ƒP(m|µ) top denote this fact.  The defining feature of the RW

algorithm is that the current draw for the parameter, m, depends on the previous draw, µ,

through a random walk.  In other words, the proposal and current values are related through

the condition

(7) m = µ + ε,



- 9 -

where ε is a random perturbation with distribution ƒP(ε) that is independent of µ (and,

therefore, m).  It follows from (7) that the proposal distribution has the form ƒP(m-µ) and we

consider a second experiment.  Suppose that the distribution for ε is the standard normal

distribution ƒP(ε) = ƒN(ε |0,1).  The distribution for m is ƒN(m|µ,1) and we proceed by

successively drawing from the normal distribution with mean the current draw µ and variance

one.  Then, the following steps simulate draws from the target distributions of interest

(Robert and Casella, p. 245):  Step 1: Generate a starting value µ = µ′.  Step 2: Generate m

~ ƒP(m|µ).  Step 3: Generate u ~ ƒU(u|0,1).  Step 4:  If  u ≤  ƒ(m)/ƒ(µ) set µ = m.  Step 5:

Return to step 2.  Figure 4 presents plots of the first 50 iterations of the Gibbs sequence with

the draw for µ simulated by the RW step.  The draws are quite similar to the draws from the

Gibbs sample and they mimic the values of the actual parameter values used to generate the

data.  Figures 5 and 6 present plots of the histograms generated by the first 1000 draws.  The

simulated densities are quite close to the actual target densities.  In summary, the RW

algorithm provides a versatile alternative to the Gibbs sampler to simulate draws from the

two target distributions.

(Insert figures 4-6 about here.)

The methods applied in this section are the building blocks of almost all the variants of the

Gibbs sampler and the Metropolis-Hastings algorithm that appear in the literature.

Collectively, these steps provide an extremely powerful tool kit from which the investigator

can launch more sophisticated analyses.  Nowadays, Bayesian research is not constrained by

the need to provide numerical approximations to difficult integral calculations by area

methods such as Simpson’s Rule.  Freed from the constraints that these integrations have, in

past, bounded investigations, we are now in a position to extend the normal-means

framework to the target setting of spatial probit estimation.  A manipulation that aids this link
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and is important in subsequent developments is to write x ≡ ιι  and β  ≡ µ in the data generating

model in (3) and recall the definitions of the means and variances in the original model,

namely µ̂  ≡ (x′x)-1x′y ≡ β̂ and 2σ̂  ≡ (y-xβ)′(y-xβ)/ν, with x, an N×K matrix of observations

on a set or relevant covariates and, hence, β  a K-vector.  And so, the normal linear regression

model has also been accurately simulated through the Gibbs and Random-Walk Metropolis-

Hastings algorithms.

3.  Spatial Models

The previous section based on the normal-means (normal-linear regression) model serves to

illustrate the powerful way in which the various algorithms serve as alternatives to

conventional approaches (direct integration in the case of normal data) to derive inferences

with respect to a target marginal distribution.  But the normal data environment is, of course,

simplistic and the results of the demonstrations, particularly the accuracy of the derived

distributions, can be questioned.  Such scepticism is, we show, unmerited because the two

spatial models of interest—the spatial autoregressive (SAR) model and the spatial-

autoregressive probit (SARP) model—are but simple extensions of the normal-linear model.

A principal source of information for learning about these models in the Bayesian

environment are the papers (LeSage, 1997, 2000, 2002) and much of what we present in this

section is a ‘resampling’ of some of this work, together with several personal

communications about various sampling issues (LeSage, 2002b, 2002c).  We now continue a

step-by-step development of the extensions from the normal regression model that are needed

in spatial inference.  Unlike that model, spatial problems generate distributions for which the

marginal pdfs are unavailable in closed form and require application of MCMC methods.  In

this case, measures of accuracy are now no longer available for all of the parameters in
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question.  Nevertheless, it is possible with what we have established so far to give a heuristic

indication of what a correctly implemented algorithm should produce.

Before presenting results from simulated probit data, we consider the standard spatial

framework, where the dependent variable is a known continuous measure of observed data.

We are concerned with the model

(8) y  =  ρ w y + x ββ  + εε ,

where y(N×1) ≡ (y1, y2, .., yN)′ denotes observations on a dependent variable of interest across

spatially delimited units, i = 1, 2, ..N; ρ(1×1) denotes correlation between units; w(N×N) denotes

a spatial-weight matrix, defined in more detail, subsequently; x(N×K) ≡ (x1, x2, .., xK),  x1(N×1)

≡ (x11,  x21, .., xN1)′, x2(N×1)  ≡ (x12,  x22, .., xN2)′, .., xK(N×1) ≡ (x1K,  x2K, .., xNK)′ denotes

observations on the covariates; ββ (K×1) ≡ (β1, β2, .., βK)′ denotes the ceteris paribus relationship

between x and y; and εε (N×1) ≡ (ε1, ε2, .., εN)′ denotes random error, which, we assume, is

distributed normally with mean zero and covariance σ2IN; in other words, εε  ~ ƒN(εε |0N,σ2IN),

where 0N is the length-N null vector and IN is the dimension-N identity matrix.  The

econometrician observes x, w and y and makes inferences about ρ, ββ  and σ.

Equation (8) is the data-generating equation for the spatial autoregressive (SAR)

model.  The SAR model is one of two conventional specifications discussed in the literature.

The other model allows for correlations among errors across the spatial units.  Our main

interest in the empirical part of this paper concerns correlation across the dependent variables

(not the errors) and, so, for this reason and the interests of space, we focus on the SAR

formulation.  Developments for both models are present neatly in LeSage (2000, equations

(1) through (7)).  The empirical application to follow motivates the spatial correlation

parameter, ρ, and the important spatial-weight matrix, w.  Suppose that our interest lies in

estimating the correlation across crop yields in contiguous settings (a situation only slightly
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dissimilar from our empirical application) and, suppose that, perhaps for policy purposes, we

are interested in estimating the extent to which yields in associated areas are correlated; areas

with high yields, presumably, associated with contiguous high-yielding areas, and so on.  In

this setting w represents an assignment of ones and zeros corresponding to contiguous areas,

such that, wij = 1 if observations i and j are in the same ‘location’ and wij = 0, otherwise, i, j =

1, 2, .., N, i ≠ j.  We assume that the correlation between an observation unit and itself is zero

and, hence, that wii = 0, i = 1, 2, .., N.  In most practical applications of this model it is

customary to normalize each row of w such that each of the Ni (< N) contiguous units

affecting observation i has one Ni
th contribution to the total impact on i; but this normalization

is not necessary.  The condition ρ ≠ 0 implies correlation within locations and forces

endogenity (qua simultaneity) between the crop yields; and the condition ρ = 0 implies that

there is no correlation and forces the model to collapse to the standard multivariate model

which can be handled without the need to Gibbs sample (Zellner, 1996, pp. 224-236).  The

anology in the non-spatial context is simply the difference between a simultaneous-equations

set-up and its reduced-form and the presence of non-zero ρ is the defining distinction, indeed

the raison d’être for the MCMC approach.  But more precisely, it is the combination of the

combined impacts of w and  ρ that lead to endogeneity, and whereas ρ denotes an unobserved

parameter with an associated probability distribution that must be estimated, w denotes given

data.  It is useful to note in passing that it would be desirable to estimate the elements of w

but that most useful parameterizations lead to identification problems.  We suspect that the

development of more robust specifications of w is, perhaps, the most fruitful avenue for

advances in spatial methods, at least where adoption issues are the focus.  Finally, this

statement assumes deeper meaning when it is recognized that (at least, in experimental
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settings) the choices of w and ρ are not independent.  In fact, as Anselin (1988) shows any

draw for ρ in a Metropolis scheme must satisfy

(9) ρ   ≤  ρ  ≤  ρ ,

where  ρ  is the inverse of the minimum eigenvalue of w and ρ  is the inverse of the

maximum eigenvalue.

With reference to (8), in the case ρ = 0, we have the normal-linear model and all of

the previous results go through, with the reinterpretation that K = 1 and µ(1×1) = ββ (K×1) and

x(N×K) = ιι(N×1).  Consequently, the extension to consider spatial effects rests importantly on the

distribution for ρ.  We will follow the practice outlined above and use a non-informative prior

pdf for the unknowns ΘΘ  ≡ (ρ, ββ , σ)′, form the likelihood for the unknowns conditional on the

data y, and study the form of the resulting posterior as a starting point to formal analyses.

The posterior is

(10) π(ΘΘ |y)  ∝  |A| σ-(N+1) exp{ 22
1
σ

 (Ay-xββ )′ (Ay-xββ )′ },

where A(N×N) ≡ IN - ρw arises from the Jacobian of the transformation between y and εε .  It is

important for later developments to recognize that the matrix A contains the unknown

parameter ρ and that, when ρ = 0, A = IN and the model reduces to the normal-linear

regression model.  However, even for non-zero correlation, the joint posterior for ΘΘ  is very

similar to the posterior for the normal-means model and, so, many of those same concepts

prevail.  Because there are now three components of interest, we must fix two of these

constant when developing the Gibbs strategy for estimation.  First, in deriving the conditional

distribution for σ, we treat ββ  and ρ as known constants.  Given ββ  and ρ, inspection of (10)

and comparison with Zellner (1996, p. 371, equation (a.37b)) reveals that the posterior for σ

has the form
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(11) π(σ|ββ , ρ, y)  ∝ ƒIG(σ|ν,s2),

an inverse-gamma distribution with ν ≡ N and s2 ≡ (Ay-xββ )′(Ay-xββ )/ν.  Hence, the

dependence of σ on ββ , ρ and y is through the expression s2.  Second, holding σ and ρ

constant, the posterior is in an identical form to the multivariate regression model with the

dependent variable redefined to be z(N×1) = Ay.  Consequently, all of Zellner’s results (pp. 65-

66) go through with this reinterpretation and we find that the conditional distribution for ββ ,

has the form

 (12) π(ββ |ρ, σ, y)   ∝  ƒN(ββ |β̂ ,
ββ̂

V ),

β̂  ≡ (x′x)-1 x′z and 
ββ̂

V  ≡ σ2(x′x)-1.  Thus, the full conditional distribution for ββ  is multivariate

normal with mean β̂  and covariance matrix 
ββ̂

V .  Finally, with σ and ββ  assumed fixed, we

observe that the form of the posterior for ρ is precisely the form of the joint posterior (10).

That is, π(ρ|σ,ββ ,y) ∝ π(ΘΘ |y) and no further simplification is possible.  Due to the appearance

of the determinant resulting from the Jacobian transformation, this density does not have a

well-known form and, hence, we are in the situation motivated previously of requiring the

application of MCMC methods.

As we outlined above, in the case of the RW algorithm we will need a proposal

density from which to generate draws.  The normal distribution is a natural choice in each of

the three cases due to the fact that, net of the Jacobian term, |A|, the fully conditional density

for ρ is normal with known mean and variance.  More precisely, by completing the square in

ρ (see the text above equation (7)) it is possible to write for ρ

(13) π(ρ|σ,ββ ,y)  ∝  |A| exp{ 22
1
σ

 (ρ- ρ̂ )′ (wy)′ (wy) (ρ- ρ̂ )},
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 where ρ̂  ≡ ((wy)′(wy))-1 (wy)′ (y-xββ ).  Hence, π(ρ|σ,ββ ,y) ∝ |A| ƒN(σ| ρ̂ , ρ̂V ), where ρ̂V ≡ σ2

((wy)′(wy))-1.  The fact that the full conditional distribution for ρ contains a normal

component makes it sensible to choose as the proposal distribution a normal density.  And

this is what we do in the demonstration that follows.

In the experiment we use the data in table 1 (column 2), which are simulated from the

model (8) with ΘΘ  = (ρ, β , σ)′ = (-0.75, -1.0, 1.0)′ and (column 3) x ~ ƒN(x|0N,10IN).  In each

of the three cases we sample sequentially with the insertion of an additional step to simulate

the draw for ρ, which is not available as a known pdf.  We use r to denote the candidate

draws from the proposal density and use ρ to denote an accepted draw.  Some experiments

suggested that an acceptance rate of around fifty percent produced stable estimates in a timely

manner and we therefore endogenized the step size of the RW algorithm by allowing the

standard deviation in the random walk error, ξ, to increase (respectively, decrease) by a scale

factor 1.1 whenever the acceptance rate exceeded the upper bound from below (exceeded the

lower bound from above) in a band set at acceptance rate limits of forty and sixty percent.

Figure 7 plots the first 100 draws in the Gibbs sequence with the RW step inserted.

The sequence was quick to converge and produced draws for each of the three parameters

that are close to the given values used to generate the data, namely (ρ, β , σ)′ = (-.75, -1, 1).

The sample was obtained in less than a minute of real time.  Figures 7 presents plots of the

histograms for ρ generated from the experiment.  The distribution is centered close to the

given parameter value (-0.75) and is approximately normal.  Experiments with different start

values generated almost identical distributions and we conclude that the RW-Gibbs sequence

produces robust estimtes of the SAR model parameters.

(Insert figures 7 and 8 about here.)
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Random-Walk Metropolis Sampling The Bayesian Spatial Probit

Our final demonstration is the framework we apply to the empirical model introduced in the

next section.  Having provided a heuristic justification for the methods in the context of

continuous sample data y, we consider the application of the RW algorithm to the spatial

probit model.  With reference to (8), we are now concerned with the model

(14)   z  =  ρ w z + x ββ  + εε ,

and we observe yi = 1 if zi > 0 and yi = 0, otherwise.  Hence, the components of z ≡ (z1, z2, ..,

zN)′ as opposed to y ≡ (y1, y2, .., yN)′ are latent and, in terms of our desire for step-by-step

development, we have introduced one additional unknown into the model.  Consequently, the

Gibbs sampling algorithm will require one additional step for its implementation and that

step—as might now be expected—is to obtain a draw for the latent endogenous variable, z,

from its fully conditional distribution.  This distribution is obtained by interpreting the

posterior solely as a function of the unknown vector z and by completing the square in the

exponential part of the normal kernel.  The product is the truncated, multivariate-normal

distribution

(15) π(z|ρ,σ,ββ ,y)   ∝   ƒTN(z| ẑ , zVˆ ),

where ẑ  ≡ (A′A)-1 A′x ββ  and zVˆ  ≡ σ2(A′A)-1 and the truncation satisfies the conditions stated

in the data generating model (14).  Although this single step is but a slight complication over

the SAR algorithm, drawing from this conditional distribution can pose problems.  This is

because a simple acceptance scheme whereby the latent z is accepted if each component

satisfies the inequality constraints has a very small chance of acceptance.  Except for very

small problems, this method is computationally impractical.  The approach suggested by

Geweke (1992) and adopted previously by LeSage (2002) is to use the acceptance scheme on

the fully conditional distributions for each of the components of the vector z.  However, this
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approach can still result in an unreasonably large number of rejected draws.  The alternative

is to retain the conditional approach but use efficient one-for-one draws by applying the

probability integral transform (e.g., Mood, Graybill and Boes, 1974, p. 202).  We found that

both methods generated accurate estimates, but that the probability integral transform method

was far superior in terms of execution time.

One additional modification to the previous algorithm is required prior to

implementation.  This adjustment is to fix one of the unknown parameters in order to identify

the other unknowns in the model.  This is the familiar scaling problem that exists in

conventional probit estimation and arises because the probit model is valid only up to a scalar

transformation.  The usual practice, which we adopt here, is to fix the variance at one.

Hence, (13) is implemented by imposing the restriction σ = 1.

An experiment is implemented using the second and third columns of table 1.  Note in

column 2 that four of the endogenous values are positive and six are negative.  If we simulate

draws assuming that these binary outcomes represent the observed data we expect to obtain

draws for the latent data that are centered about the table values.  This, essentially, is the case

and, although space prohibits reporting the probability distribution so obtained, the histogram

for ρ is only slightly different from the distribution obtained from the spatial model with

observable, continuous response data.  Figure 9 compares the draws for the spatial

econometric model (SAR) and the spatial probit model (SARP).  The simulated frequencies

from the SARP model are the unfilled bars and the frequencies simulated by the SAR model

are the filled bars.  Both sets of frequencies are generated from a Gibbs sample of 1,000

accepted draws.  The start values for ρ in the two models are the same and we follow a

suggestion in Albert and Chib using z0 = y as the start value in the spatial probit algorithm.

Experiments with other start values suggest that the results are independent of this choice.
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Except for some skewness in the draws from the probit model, the frequencies generated by

the two models are remarkably similar.

(Insert figure 9 about here.)

In summary, the Gibbs sampler provides an extremely powerful technique for simulating

from a marginal distribution that is not available in closed form.  The addition of a

Metropolis step within the algorithm provides considerable versatility that facilitates

estimation of spatial econometric and spatial probit models.  The technique is attractive and,

when viewed as a set of logical extensions to the normal linear model, is mostly rather

simple.  Its practical implementation met with few obstacles in a hardware/software

environment that is widely available to other researchers.  The technique provides accurate

estimates of spatial model parameters and appears to be extremely robust, working well in a

limited-information environment (ten observations).  The success of the technique in the

experimental settings raises considerable scope for its application in empirical work.

4. Empirical Application

Application of the SAR probit model, equation (14) to neighborhood effects in HYV rice

adoption evolves from previous work by Case (1992).  Readers are referred to that source for

further details and motivation.  Briefly, a farmer’s expected profit from adopting an HYV

plant, in place of a local variety (LV) depends upon a set of a set of price variables (input and

output prices), a set of fixed factors (say, farm assets, land holding), a set of socio-economic

characteristics (for example, education, wealth), and neighborhood influences (expected

profits to neighbours from adoption).  The first three sets of characteristics are, of course,

standard fare in adoption models.  They are accounted for by the matrix x(N×K) in equation

(14).  The fourth effect is, of course, modelled through the combination of the spatial weight

matrix w(N×N) and the spatial correlation parameter ρ.  In Case’s application of to sickle-
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harvester adoption in Java, the term ‘neighbors’ refers to all other farmers in the same

district.  All neighbors are weighted equally, and the neighborhood effects for each farmer are

normalised to 1.  In other words, the row restriction ∑j Wij = 1 is imposed column-wise on

the rows.  We follow these procedures in the this empirical application.

In the Bangladeshi context, rice is the staple for the vast majority of the population,

and the predominantly agrarian economy revolves around the production of rice year-round,

in three seasons.  Food security continues to be a predominant concern, with the population

expanding by 2.2 million a year.  The Bangladesh Rice Research Institute has released dozens

of varieties of HYVs over the years, and these modern varieties are known to enable

substantially better yields than local varieties.  In spite of such varietal development activity

and progress in irrigation provision, Bangladesh has one of the lowest HYV adoption rates in

Asia (Azam, 1998).  The adoption issue is, thus, a critical one for Bangladesh.

A literature does exist on HYV adoption in Bangladesh, mostly employing OLS or

probit regressions of adoption on variables such as farm size and farmer education (see, for

example, Hossain (1989), Ahmed and Hossain (1990) and Allaudin and Tisdell (1991)).

However, as in the broader technology adoption literature, this literature has not considered

the role played by the adoption attitudes of ‘neighbors’ in influencing the adoption decisions

of individual farmers.  As Case (1992) has argued, ignoring neighborhood influences not only

biases the estimated parameters in standard adoption models, but also sacrifices important

policy-relevant information.  For example, a key principle in rural extension activity in many

developing countries is to disseminate information to a critical mass of farmers such that

positive externalities in the form of ‘secondary’ or ‘copy’ adoption in the locality carry

forward the momentum generated by the initial investment.  The size of this externality

constitutes important data for policymakers operating under limited budgets and wishing to

maximise returns to extension investment.
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There is evidence that a village-level synergy exists in technology adoption in

Bangladesh.  One example of this is the experience of INTERFISH, a large

agriculture/aquaculture extension project designed to promote the spread of rice-fish cropping

systems in rural Bangladesh.  An external team reviewing the achievements of the project

found that ‘copy farmers’ (secondary adopters) abounded in the areas where the project was

based (Best et al. 1998).  These secondary adopters were seen to commit increasing amounts

of land to the new technology following positive adoption decisions by neighboring farmers.

The review team estimated that the spatial reach via secondary adoption could be a radius of

two to three kilometres and, on this basis, suggested that future project activities should allow

sufficient space between sites in order to maximize returns to the project’s investment.

The empirical application applies the spatial lag model to cross-sectional, primary

data for the Aman (monsoon rice) crop of 1996 in Bangladesh.  The data were collected in an

intensive farm-survey coordinated by one of the authors.  Multistage random sampling

techniques were used in selecting study locations as well as the sample respondents.  In our

application, neighborhoods are defined by villages; in other words, it is assumed that the

attitude towards HYV adoption for farmer i depends not only on its own internal

characteristics, but also on the influence of other farmers in the village.  The effects of

farmers in surrounding villages is assumed to be negligible.  The survey, conducted in 1996,

had strict constraints on budgets and personnel, and was not designed with spatial estimation

in mind.  Thus surveys were carried out in clusters of villages in each of the 3 districts.  The

three clusters had 8, 7 and 6 villages, respectively, making 21 villages in all in our sample.

The districts (clusters) themselves are hundreds of kilometres apart from each other, and

therefore can safely be considered not to be in each other’s neighborhoods.  Within each

cluster, individual villages are between 2.5 and 8 kilometres apart.  While these are not

apparently great distances, our experience of Bangladesh enables us to be reasonably
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comfortable with the assumption that none of the villages is in the other’s ‘neighborhood’

(interactions terms between villages in the w matrix are zero).  Agrarian activities in

Bangladesh are known to be intricately linked with the socio-economic dynamics of

individual villages (Herbon, 1994).  At the same time, villages are typically located around

small waterbodies, and the agriculture is strongly adapted to the local micro-relief.  It is

therefore not surprising to find very different mixes of crops and modes of production in

areas just a few miles away from each other.  In light of these facts, and given the

geographical makeup of our data, we have adopted the ‘village’ definition of ‘neighbors’.

The survey collected information on varietal choice; input and output prices; levels of

fixed factors; and socio-economic characteristics of the farm families.  A total of 406

observations on local varietal use (76 observations) and modern varieties (330 observations)

constitute the sample.  The variables included in the model are the following:  DISTRICT:

Dummy variable representing the district in which the farm is located.  NGO: Dummy

variable indicating whether the household received assistance from NGOs.  ASSETS: Value

of farm assets in thousands of Taka.  EDUCATION: Number of years of schooling for

household head.  EXPERIENCE:  Years of farming experience for household head.

HOUSEHOLD SIZE: Number of people in household.  FARM SIZE: Total size of holding in

hectares.  RENTED HECTARES: Hectares of land rented in hectares.  MARKET: Distance

from nearest market (‘growth center’), in kilometres.  RICE MILL: Distance from nearest

rice mill.  EXTENSION: Distance from nearest Department of Agriculture Extension office.3

Table 2 presents summary statistics by adoption status.

(Insert table 2 about here.)
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5.  Results

Estimation results both with and without neighbourhood influences are presented in table 3.

Confidence intervals (highest posterior density intervals) at the 95% percentile are reported in

parentheses.  Because the qualitative effects (signs of coefficients) of most of the covariates

remain the same between the two models, it is worth contemplating the interpretation of the

qualitative effects before discussing differences in coefficient magnitudes between models.

Of the human capital variables (education, experience), only education is significant.

While the negative and significant estimate for education may appear counter-intuitive, it is

consistent with the findings of a previous study based on a simple probit estimate from earlier

data.  Rosenzweig (1981) postulates that education can affect new technology adoption in

different ways.  On the one hand, it can encourage adoption by lowering learning costs.  On

the other, it may discourage adoption since education provides more profitable off-farm

employment opportunities, and new technologies may reduce the ability of farm operators to

substitute their time inputs away from cultivation.  Although education has been found to

positively affect HYV adoption in other rice economies such as Indonesia (Pitt and

Sumodiningrat, 1991), we are able to strengthen the evidence for the opposite trend in the

case of Bangladesh.

NGO contact and asset values of the farm have insignificant coefficients.   Family

size is insignificant too; however it becomes significant at the 10% level (not reported here).

With the exception of planting and harvesting periods in which all family members contribute

to operations, routine laboring is undertaken by adult males.  But in the planting and

harvesting periods, there is an acute shortage of labor (Metzel and Ateng, 1993), and every

spare hand, including children, is pressed into farm work.  This phenomeon is even more

acute in HYV cultivation, where crop management is generally more labor intensive.  In this
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regard, a larger family size is more conducive to HYV adoption, and this observation is

reflected in the table 3 estimates.  A consumption-based explanation for this phenomenon has

also been advanced for the case of Bangladesh.  Hossain (1989) finds a similar result and

interprets it as a confirmation of the Chayanovian hypothesis that higher subsistence pressure

leads to greater adoption of new technology.

Farm size and rented hectares both have significant coefficients.  Smaller farms

appear to have a greater propensity for HYV adoption.  Once again, a ‘subsistence pressure’

argument fits well with this finding.  Land rental imposes an additional payment burden in

cash or crop-share, which may provide an incentive for the adoption of higher surplus

yielding varieties.

Turning to the variables measuring infrastructural underdevelopment (distances to

markets, rice mills and extension offices) we find that their coefficients are all insignificant.

While the sign on the coefficient for distance from extension is counterintuitive in addition to

being insignificant, coefficients for distances from markets have the expected sign.  With

distances from markets and rice mills increasing, one would expect incentives for HYV

adoption to be depressed.  The insignificance of coefficients for these variables possibly

indicates that the underlying variables are not well measured.  In capturing the effects of

extension activity on adoption, for instance, one would ideally like to have actual measures of

extension contact, such as numbers of visits from extension agents.  Unfortunately, these data

are unavailable.

Two measures of primary importance in the study are the signs and magnitudes of the

neighborhood correlation coefficient, ρ.  The posterior means estimate of this parameter is

0.54, and the confidence interval presented in table 1 suggests that the estimate is

significantly different from zero.  Figure 10 presents the complete distribution of draws from

the Gibbs sample.  This distribution, recall, is derived from a random-walk Metropolis step.
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The distribution is uni-modal and appears to be almost symmetric.  Its key fature is its

location.  Very little of the density resides in the negative part of the real line.  Hence, with

few caveats, there exists a strong, positive neighborhood effect among the Bangladeshi

respondents.

(Insert figure 10 about here).

With significant local synergies in adoption confirmed, the question arises about the extent to

which ignoring these influences biases policy conclusions.  The marginal probabilities

reported in table 3 do not seem to vary greatly between the spatial and non-spatial models for

most variables.  For example, the presence of one additional family member increases the

probability of adoption by 8% according to the traditional model.  In contrast, inclusion of

neighborhood effects results in a marginal probability of 11%.  However, the difference in

predictions is seen to be substantial for a few variables.  For instance, both models predict

increased distances from markets to depress adoption probabilities.  But the non-spatial

model overstates this effect very significantly, predicting that ceteris paribus every additional

kilometre from the market reduces adoption probability by 12%, while the spatial model

estimates the same effect to be only 6%.

Finally, we consider the implications of ignoring the neighborhood effects in one

situation that has significant relevance in the Bangledeshi context.  This is the notion of some

form of optimal size in the structure of farm units.  From the estimates for the probit and

spatial probit models we note that there is a significantly negative response to farm size.  The

larger the farm the less inclined an operator is to adopt HYV inputs.  But, in policy

discussions concerning this potentially important effect it is natural to ask the size of farm at

which adoption status changes.  In other words, we seek the size of the farm operation at

which a non-adopter decides to adopt and the size at which an adopter decides to reject the

HYV input.  This quantity will vary among respondents and may be useful for planning
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purposes and land-use strategies and it is desirable to have an estimate of this quantity in

policy discussions.

Our sample is quite ‘unbalanced.’  About 80% of the sample consists of adopters.

This imbalance makes policy prediction more difficult.  Nevertheless, as we change farm

size, we can imagine a spectrum of ‘reservation values’ (specified in terms of hectares of land

holding) at which each respondent changes adoption status.  These reservation values are

estimable for each farmer through the insertion of one additional step in the Gibbs algorithm.

This step is to find the level of the covariate in question for which the dependent variable in

the regression model is exactly zero or, in other words, the level ix̂  such that

(16) ix̂   =   
j

j-j-

β
ββx-

,

Here x-j denotes the covariate matrix with the column corresponding to the land variable

(column j) excluded, ββ -j denotes the corresponding coefficient vector, and β j denotes the

coefficient of the land variable in the original regression.  Due to the appearance of the latter

in the denominator the left hand side of (16) does not have a form that enables direct

simulation.  But, once again, using the Gibbs sequence we are able to generate a sample of

draws for ix̂  and, in so doing, characterize its location and scale.  Although the estimates

themselves may be extremely important for policy purposes, in the spirit of the

methodological contributions of the paper we are mostly interested in how these estimates are

affected by the exclusion of neighborhood effects.

Figure 11 presents two sets of estimates of 95% highest-posterior density zones for

the quantities in (16) from the standard probit model (dotted lines) and the spatial probit

model (solid lines).  The two distributions are dissimilar with the estimates obtained from the

SARP model considerably more precise.  The importance of allowing for neighbourhood

impacts appears, thus, to play an important role in the Bangladeshi data and, to reiterate the
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cautionary remarks offered by Case, their exclusion significantly biases empirical results and,

thus, the policy conclusions that evolve from them.  A strong, positive neighbourhood effect

is present in the Bangladeshi data and we must take care to account for it in devising policy

prescriptions.

(Insert figure 11 about here.)

5. Conclusions

Markov chain Monte Carlo methods have completely revolutionized Bayesian inference.

Problems that were not manageable just a decade ago have become routine and, with them,

Bayesian philosophy is making inroads in many fields of empirical research.  In this paper we

provide a stepping-stone primer to Bayesian spatial probit estimation and demonstrate its

importance in policy formation.  Policy conclusions are affected by the propensity of

adoption decisions by neighbors to affect others and we find a strong, positive neighbourhood

effect in the Bangladeshi data.  This conclusion is obtained robustly through a simple

extension of a basic algorithm used to estimate the normal linear model.  The algorithm is

implemented with hardware and software that is widely available to other researchers and

generates precise estimates of policy parameters, efficiently, robustly and with few

computational demands.  If adopted by our neighbors, the class of techniques presented here

are likely to stimulate additional advances in the growing field of applied spatial inference.
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Footnotes

1 The convention followed in sampling theory of presenting t-statistics associated with

regression parameters is not followed here for two reasons.  First, because the simulated

distributions are, themselves approximations to t-distributions the result that normalization by

standard errors brings the estimate into a t-distribution no longer holds.  Second, the highest

posterior density regions are the conventional statistics in Bayesian applications.

2  As a referee points out, it is possible in some settings that adoption encourages land rental

instead of vice-versa, because the surplus generated by HYV adoption may prompt farm

expansion by rental.  In the Bangladesh context, however, it has been our observation that

renting is common for marginal, entrant farmers as well as larger, more commercial farms.

Indeed, land is so coveted and in such short supply that renting is often the only way in which

landless labourers can become cultivators themselves.

3 Unfortunately, we do not have data on one key variable, soil/land quality, which could

potentially cause spatial correlations.  However, a recent study by Barr (2000) in Bangladesh

has found that soil properties do not seem to affect cropping decisions by farmers.

4 Additional references on Bayesian estimation, especially in a spatial context are available at

Jim LeSage’s web site (www.spatial-econometrics.com).
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Tables

Table 1. Experimental data

Normal Means Regression

yi yi xi

-0.26 -5.35 4.82

-0.36 1.93 -5.17

0.61 10.69 -11.05

-0.70 19.56 -14.32

-2.38 1.11 -1.44

0.44 10.45 -10.89

-3.60 -8.33 8.37

-1.79 -5.46 -2.77

-1.13 6.40 -3.08

-0.56 -4.24 1.58

-0.97 2.67 -3.39

ŷ  = -0.97 ŷ  = 8.98 x̂  = -3.39

σ̂  = 1.30 σ̂  = 2.67 σ̂  = 7.24
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Table 2: Summary statistics by adoption status.

Variable Non-dopters
Mean

Non-adopters
Std dev.

Adopters

Mean

Adopters:

Std. Dev

NGO 0.26 0.44 0.22 0.42

ASSET 4620 10058 4762 14285

EDUCATION 5.29 4.58 3.26 4.26

EXPERIENCE 23.13 13.84 25.87 15.23

FAMILY SIZE 6.28 2.54 5.84 2.43

FARM SIZE 0.67 0.69 0.65 0.55

RENTED LAND 0.09 0.18 0.19 0.29

MARKET 3.77 2.56 2.78 1.49

RICE MILL 6.42 4.97 8.74 5.29

EXTENSION 10.08 5.47 12.94 5.04
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Table 3.  Equation estimates and marginal effects.

Variable Spatial probit
coefficient

  Non-spatial

     probit

 coefficient

Spatial probit
   marginal

     effects

  Non-spatial
      Probit

marginal effects

ρ           0.54

   (0.41, 0.67)

District 1           0.01

    (-0.70, 0.71)

          0.22

    (-0.50, 0.99)

          0.00

    (-0.25, 0.24)

          0.06

    (-0.14, 0.27)

District 2            0.29

    (-0.84, 1.46)

           0.36

    (-1.12, 1.90)

           0.10

    (-0.29, 0.51)

           0.11

    (-0.35, 0.58)

District 3         -0.35

    (-1.85, 1.17)

         0.94

    (-2.88, 0.91)

          -0.12

    (-0.64, 0.42)

          -0.28

    (-0.93, 0.30)

NGO          -0.20

    (-0.47, 0.04)

         -0.24

    (-0.52, 0.02)

          -0.07

    (-0.16, 0.02)

          -0.07

    (-0.16, 0.01)

ASSET           0.03

    (-0.01, 0.08)

          0.03

    (-0.02, 0.08)

          0.01

    (-0.00, 0.03)

          0.01

    (-0.01, 0.02)

EDUCATION          -0.15

    (-0.28, 0.02)

         -0.16

    (-0.29, 0.03)

         -0.05

    (-0.10, -0.01)

         -0.05

    (-0.09, -0.01)

EXPERIENCE          -0.12

   (-0.36, 0.10)

         -0.12

   (-0.35, 0.10)

         -0.04

   (-0.12, 0.04)

         -0.04

   (-0.10, 0.02)

FAMILY SIZE           0.32

   (-0.02, 0.66)

          0.25

   (-0.08, 0.58)

          0.11

   (-0.01, 0.23)

          0.08

   (-0.02, 0.18)

FARM SIZE          -0.21

   (-0.38, -0.03)

         -0.18

   (-0.35, -0.01)

         -0.07

   (-0.13, -0.01)

         -0.06

   (-0.11, -0.00)
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RENTED LAND           0.17

   (0.08, 0.26)

          0.17

    (0.08, 0.26)

          0.06

    (0.03, 0.09)

          0.05

    (0.03, 0.08)

MARKET          -0.17

   (-0.52, 0.19)

         -0.43

   (-0.86, -0.02)

         -0.06

   (-0.18, 0.06)

         -0.12

   (-0.27, 0.00)

RICE MILL          -0.19

  (-0.55, 0.20)

         -0.27

  (-0.78, 0.29)

         -0.07

  (-0.19, 0.07)

         -0.08

  (-0.24, 0.07)

EXTENSION          0.50

   (-0.36, 1.40)

         1.21

   (0.13, 2.36)

         0.17

   (-0.13, 0.47)

         0.36

   (0.03, 0.71)

adoption percent
(non-adopters)

             70%            77%

adoption percent
(non-adopters)

             88%            75%

Note: 95% highest posterior density regions in parentheses.
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Figure 1.  Plots of the first fifty draws in the Gibbs sample based on ten observations drawn

from N(-1,1) and start value µ0 = (ιι ′ιι )-1 ιι′y′.
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Figure 2.  Plots of simulated frequencies (filled bars) for sigma from the Gibbs sample versus

true frequencies (unfilled bars) from the inverse-gamma distribution.
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Figure 3.  Plots of simulated frequencies (filled bars) for mu from the Gibbs sample versus

true frequencies (unfilled bars) from the ƒT(µ| µ̂ , ν, σ̂ ) distribution.
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Figure 4.  Plots of the first fifty draws in the Gibbs sample based on ten observations drawn

from N(-1,1) and start value µ0 = (ιι ′ιι )-1 ιι′y′.
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Figure 5.  Plots of simulated frequencies (filled bars) for sigma from the Gibbs sample using

a random-walk Metropolis step versus true frequencies (unfilled bars) from the inverse-

gamma distribution.
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Figure 6.  Plots of simulated frequencies (filled bars) for mu from the Gibbs sample using a

random-walk Metropolis step versus true frequencies (unfilled bars) from the ƒT(µ| µ̂ , ν, σ̂ )

distribution.
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Figure 7.  Plots of the first fifty draws in the Gibbs sample for the SAR model with a random-

walk metropolis step or σ (solid line), ρ (dotted line) and β  (dashed line) based on the ten

observations table 1 (columns 2 and 3) and start values µ0 = (ιι ′ιι)-1 ιι ′y′, ρ = 0.
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Figure 8.  Plots of simulated frequencies for ρ in the SAR simulation using a random-walk

Metropolis step.
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Figure 9.  Plots of simulated frequencies for ρ in the SARP simulation using a random-walk

Metropolis step.
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Figure 10.  Empirical distribution for ρ (the ‘neighbrhood’ effect) in Bangladeshi data.
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Figure 11.  Ninety-five highest-posterior density regions for estimates of the farm size at

which adoption status changes using resultd from the probit model (dashed lines) and the

spatial probit model (solid lines).


