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  Dedicated to Professor Kaoru Fuji on the occasion of his 80th birthday 

Abstract – The extraction properties of tetra(4-hydroxyphenyl)-BTPhen have been 

investigated. Liquid-liquid extraction studies in proposed SANEX diluents, 

cyclohexanone and 1-octanol, indicate that actinide-lanthanide separation is 

superior in cyclohexanone; whereas actinide-actinide separation is more efficient in 

1-octanol. Immobilization of the ligand onto a silica support results in the 

separation factor becoming dependent upon the concentration of nitrate anions in 

the aqueous phase. The immobilized ligand was also applied to the extraction of 

transition metals, resulting in >70% uptake of all transition metals examined, in the 

presence of alkali and alkaline earth metals.

Spent nuclear fuel (SNF) consists largely of uranium (U, 94%), fission and corrosion products (Sr, Cs, I, Tc, 

Ni, Pd, Ag, Cd 4-5%) plutonium (Pu, 1%) and minor actinides (Np, Am, Cm, 0.1%). The fission products 

are responsible for the majority of the radiotoxicity of SNF; however, their short half-lives result in a quick 

decrease in radiotoxicity. On the other hand, the major long-term radiotoxicity is caused by the minor 

actinides (Np, Am and Cm), despite contributing only 0.1% to the spent fuel mass.1–3 After removal of U 

and Pu by the plutonium-uranium reductive extraction process (PUREX), the separation of actinides from 

fission products, particularly the chemically very similar lanthanides, is crucial to allow partitioning and 

transmutation of the actinides to reduce the radiotoxicity of the waste further.4 The transmutation process 
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may be carried out in new Generation IV reactors or ADS (Accelerator Driven Systems) dedicated 

transmuters where high-energy neutrons are used to convert the actinides into shorter-lived radionuclides or 

stable elements. In such reactors, the high neutron-capture cross-section of the lanthanides would be a 

hindrance to the transmutation process.  

The selective actinide extraction (SANEX) process currently involves a liquid-liquid extraction process 

using hydrophobic ligands containing multiple soft N-donor atoms to separate actinides from lanthanides 

selectively.5–7 The SANEX process is typically carried out with an aqueous phase containing nitric acid 

with a ligand dissolved in the organic phase.8 

6,6'-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[1,2,4]triazin-3-yl)-2,2'-bipyridine (CyMe4-BTBP) 1 

(Figure 1) is the current European benchmark ligand for the SANEX process. It is capable of performing 

selective actinide extraction, and a laboratory demonstration has been successfully carried out on 

post-PUREX raffinate.9 Quadridentate ligands such as CyMe4-BTBP 1 exploit the more covalent nature of 

the metal-ligand bond with actinides, as a result of more diffuse nature of the actinide 5f orbitals that extend 

further than the 6d orbitals.10 The more recently developed CyMe4-BTPhen 2 (Figure 1) has improved 

An/Ln separation performance, at least in part due to being locked into the binding conformation.11–13 In 

1-octanol, CyMe4-BTPhen 2 has an extraction efficiency of 2 orders of magnitude higher than 

CyMe4-BTBP 1 along with faster extraction kinetics.13,14 Different analogues of the BTPhen system have 

been tested to determine the most effective structure for actinide separation. This paper investigates the 

extraction efficiency of tetra(4-hydroxyphenyl)-BTPhen 3 (Figure 1) in cyclohexanone and octanol at 

various nitric acid concentrations. Ligand 3 was also immobilized onto functionalized silica via the 

phenolic groups and we report herein the effect of nitrate ions concentration upon An/Ln separation factor, 

as well as the uptake of possible fission products. 

 

Figure 1: Structures of CyMe4-BTPhen 1, CyMe4-BTBP 2 and tetra(4-hydroxyphenyl)-BTPhen 3. 

Prospective diluents for the SANEX process must display high organic solubility of the ligand and its 

complexed species, high flashpoint, low water solubility (to avoid formation of emulsions), high stability in 

acidic media (4 M HNO3), resistance to radiolysis and be available in industrial quantities at low cost.16,17 
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Both cyclohexanone and 1-octanol fulfil these requirements and have been proposed to be used in model 

SANEX processes. Tetra(4-hydroxyphenyl)-BTPhen 3 is more soluble in cyclohexanone (higher than 10 

mM) than in octanol (5 mM), which raises the possibility for better extraction efficiency. However, 

1-octanol is less water-soluble and has been used in other actinide separation processes around the 

world.18,19 Therefore, the comparison between different diluents is crucial to find the optimum solvent for 

any SANEX process.  

An alternative to a liquid-liquid separation is the use of a liquid-solid process where the immobilization of 

actinide-selective ligands onto a solid support averts the need for phase separation and mixing; removing 

the requirement for large volumes of solvent that results in the concomitant generation of large amounts of 

waste.18,19 This technique is particularly advantageous for the recovery of small quantities of metals from 

bulk solution.22 In general, such separation materials can be classified as extraction chromatographic 

(EXC) resins or solid-phase extractants (SPE) depending on their nature. Extraction chromatographic 

resins typically comprise a ligand that is impregnated into an inert support. The behavior of such materials 

can be readily described / predicted using the properties of the ligand in liquid-liquid extraction. Contrary to 

EXC, solid-phase extractants represent solid supports that have been derivatized by selective ligands that 

are covalently bound to the support.23 Extraction chromatographic separation studies of the trivalent 

actinides and lanthanides have been demonstrated using various N-donor ligands (BTP, BTBP and BTPhen 

derivatives) on different supports (SiO2–P, PAN, XAD resin).24–32 A recent example of solid-phase 

extractants developed for actinide–lanthanide separation include the triazine soft N-donor (Me4BTPhen) 

linked covalently with poly(vinylbenzyl) chloride to generate PVB–Me4BTPhen.33 In an earlier study, we 

have demonstrated that tetra(4-hydroxyphenyl)-BTPhen functionalized silica gel 4 (Figure 2) was able to 

extract actinides from lanthanides with a separation factor SFAm/Eu ≈ 140 in 4 M HNO3.
32  

Much of the focus of fuel reprocessing has been on the separation of actinides from lanthanides and far less 

has been on the partitioning of adjacent minor actinide elements Am(III) and Cm(III) and no such 

large-scale process is currently available. Cm(III) produces a lot of heat in the decay process and cannot be 

transmuted with Am(III) as the excess heat will cause problems in fuel fabrication, requiring additional 

shielding.34 The separation of Am(III) and Cm(III) is challenging due to their similar ionic radii and bond 

forming properties and is possibly one of the most difficult separations in the overall partitioning and 

transmutation process.35,36 Many different approaches have been studied including high-pressure ion 

exchange, extraction chromatography and solvent extraction using di(2-ethylhexyl)phosphoric acid 

(HDEHP). More recently, we’ve shown separation of Am(III) and Cm(III) (SFAm/Cm = 7.9).21,37–39 
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Figure 2: Structure of tetra(4-hydroxyphenyl)-BTPhen functionalized silica gel 4 and 

tetra-bromomethyl-BTBP on functionalized silica gel 5. 

Separation of the minor actinides from the corrosion and fission products such as Ni, Pd, Ag and Cd is 

crucial to simplify the separation of the trivalent actinides destined for transmutation.40 CyMe4-BTBP 

co-extracts the fission products with the minor actinides, but is a poor extractant of U and Pu, hence our 

previous publication proposed the use of a two column technique, one for extracting fission and corrosion 

products, and another for extracting the minor actinides. This technique requires the fabrication and use of 

two different types of ligand, complicating the process. Production of similar ligands with mostly identical 

reagents and synthesis steps that produce the ligands that meet the differing specifications would therefore 

be advantageous. 

The distribution ratios DAm and DEu and separation factors (SFAm/Eu) shown in Figure 3 and Figure 4 display 

the separation for Am(III) over Eu(III) for the tetra(4-hydroxyphenyl)-BTPhen ligand 3 in cyclohexanone 

and in octanol respectively, as a function of nitric acid concentration (0.001 – 4 M). The value of the 

separation factor close to unity in 0.001 M HNO3 in cyclohexanone (Figure 3) indicates that, in this diluent, 

the ligand 3 does not distinguish Am(III) over Eu(III) at low concentrations of nitric acid. However, the 

overall trend in the separation factors for cyclohexanone shows an increase in separation factor with 

increasing concentration of nitric acid, with separation factors at 0.5 M and 1 M HNO3 (SFAm/Eu = 26.0 ± 1.5 

for 1 M HNO3) suggesting either pH or the ligating effect of nitrate ions is affecting the selectivity. 

Unfortunately, the distribution ratios for Am(III) (DAm) were rather low, with the highest value being 

observed in 1 M HNO3 with DAm = 1.7 ± 0.1. These data imply that in cyclohexanone 3 can differentiate 

Am(III) over Eu(III) at > 0.5 M HNO3 but its extraction efficiency is too low.  
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Figure 3: Extraction of Am(III) and Eu(III) by 10 mM tetra(4-hydroxyphenyl)-BTPhen 3 in 

cyclohexanone as a function of nitric acid concentration. The system was shaken for 90 mins at 1800 rpm. 

 

Figure 4: Extraction of Am(III) and Eu(III) by 5 mM tetra(4-hydroxyphenyl)-BTPhen 3 in octanol as a 

function of nitric acid concentration. The system was shaken for 90 mins at 1800 rpm.  

With octanol as diluent (Figure 4), the most surprising finding is the decreasing trend of DAm with 

increasing nitric acid concentration. This is in contradiction to the behaviour of all the BTPhen- and 

BTBP-family ligands studied previously in octanol and may be due to hydrogen bonding interactions 

between the relatively acidic phenolic groups on the ligand and the octanol solvent. The DAm distribution 

ratios observed in octanol were even lower than those in cyclohexanone and did not exceed unity under any 

conditions. 
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The data indicates that octanol is not an efficient diluent for actinide extraction from lanthanides for ligand 

3.  

Table 1: Comparison of distribution weight ratios and separation factors of similar BTPhen ligands in 

1-octanol. 

 

 

 

Entry Name Dw,Am at 4M HNO3 SFAm/Eu at 4M HNO3 

1 Tetra(4-hydroxyphenyl)-BTPhen 3 0.008 ± 0.001 >2.7 

2 CyMe4-BTPhen 2 1314 41 398 

3 C5-BTPhen 6 101 42 178 

4 n-C4-BTPhen 7 ca. 50 43 ca. 125 

5 Sec-C4-BTPhen 8 ca. 100 43 ca. 210 

Surprisingly, unlike other BTPhen ligands 2, 6, 7, 8, ligand 3 shows very low Dw,Am and separation factors 

(Table 1). This phenomenon may be a result of mesomeric electron donation by the phenolic groups 

increasing the pKa of the triazole rings. 

Figure 5 shows the distribution ratios of Am(III) and Cm(III) (DAm and DCm) for 

tetra(4-hydroxyphenyl)-BTPhen 3 in cyclohexanone and the corresponding separation factors. In addition 

to the DAm–gamma (similar to the case of DEu measurement), DAm values measured by alpha-spectrometry 

are shown in the graph. Excellent agreement of the DAm–gamma with the DAm values serves as validation of 

the experimental procedure. Whilst there is an increasing separation factor as the concentration of nitric 

acid increases, the maximum value (SFAm/Cm = 2.1 ± 0.2 at 1 M HNO3) is below the values observed 

previously for other ligands in this family. As discussed above, the Am(III) distribution ratios are rather low 

and DAm exceed unity for [HNO3] ≥ 0.5 M (DAm = 1.6 ± 0.1 for 1 M HNO3). The distribution ratios show 

that, in cyclohexanone, this ligand is show moderate selectivity for Am(III) over Cm(III) at higher 

concentrations of nitric acid. 
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The octanol studies of 3, shown in Figure 6, indicate rather scattered separation factors. At higher 

concentrations of HNO3 ([HNO3] ≥ 0.5 mol/L), both the DAm and DCm are close to, or even below, the limit 

of detection. Hence, this system is not a candidate for Am (III) / Cm (III) separation. 

 

Figure 5: Extraction of Am(III) and Cm(III) by 10 mM tetra(4-hydroxyphenyl)-4BTPhen 3 in 

cyclohexanone as a function of nitric acid concentration. The system was shaken for 90 mins at 1800 rpm. 

 

Figure 6: Extraction of Am(III) and Cm(III) by 5 mM tetra(4-hydroxyphenyl)-BTPhen 3 in octanol as a 

function of nitric acid concentration. The system was shaken for 90 mins at 1800 rpm.  

Subsequently, the ligand was immobilized onto silica gel and the resulting functionalized silica gel 4 was 

used in a solid-liquid extraction system. Our previous work with this silica-immobilized extractant showed 

high weight distribution ratios across a range of nitric acid concentrations (Dw,Am = 28 – 4883 mL g-1, Dw,Eu 

= 0.2 – 630 mL g-1 from 0.001 – 4 M HNO3) for Am(III) and Eu(III) and the highest separation factor value 
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was calculated to be SFAm/Eu ≈ 140 at 4 M HNO3.
32 Herein, we report the effect of the concentration of 

perchloric acid on the extraction of Am(III), Eu(III), and Cm(III) (Figure 7) to test the effect of pH vs anion 

concentration on extraction selectivity because ClO4
- is a non-chelating counterion, unlike the coordinating 

nitrate ion. When comparing these data, it can be seen that, similar to the nitric acid case reported 

previously,32 the separation factor SFAm/Eu initially increases with increasing HClO4 concentration but then 

decreases sharply with perchloric acid concentrations higher than 0.1 M.  

 

Figure 7 Extraction of Am(III) from Eu(III) by 6.4 mg of silica immobilized 

tetra(4-hydroxyphenyl)-BTPhen 4 as a function of perchloric acid concentration. V/m = 143 mLg-1. The 

system was shaken for 90 mins at 1800 rpm.  

Therefore, upon comparing the extraction data, the immobilized tetra(4-hydroxyphenyl)-BTPhen 4 does 

not extract at higher concentrations of perchloric acid. However, the decrease of extraction efficiency with 

increasing acid concentration is much lower in nitric acid. Interestingly, the extraction data are not too 

dissimilar at lower concentrations of the acids. This would support the conclusion that pH is more important 

than the concentration of nitrate ions at pH < 0.1 M and the concentration of nitrate ions becomes more 

prevalent at concentrations > 0.1 M.   

As previously reported, tetra-bromomethyl-BTBP on silica 5 demonstrated excellent extraction capacities 

for transition metals.32 Silica immobilized tetra(4-hydroxyphenyl)-BTPhen 4 was also tested for transition 

metal extraction. The immobilized ligand (1 g, ~9.8% BTPhen loading) was packed into a glass column 

(internal diameter = 13 mm), and washed with 2% HNO3 solution (10 mL). Stock solutions (10 mL, 100 

ppb) in 2% HNO3 were passed through the column at rate of 1 mL per minute. The filtrate was collected and 

analysed by ICP-MS, indicating >70% uptake of Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Mo4+, Ag+, Cd2+, Pb2+, Pd2+, 
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Os4+, Pt4+, Au3+, Zr4+, Nb5+, Hf4+, Ta5+, and W6+ at pH 0.5. Re4+, Ir3+ and Sb5+ showed lower uptakes at 68, 

40, 50% respectively (Figure 8). More significantly, Ni2+, Pd2+, Ag+ and Cd3+, the corrosion and fission 

products from PUREX raffinates, were found to be near quantitatively extracted. Like its BTBP counterpart, 

the ligand did not extract Group I, II or III metals (Li+, Na+, K+, Mg2+, Ca2+, Al3+). 

 

Figure 8 Percentage uptake of metal ions (10 ppb) from aqueous solution at pH 0.5 (HNO3) by 

tetra(4-hydroxyphenyl)-BTPhen functionalized silica 4.  

In conclusion, we report the effect of diluent on the liquid-liquid extraction properties of 

tetra(4-hydroxyphenyl)-BTPhen 3. Cyclohexanone offers higher solubility and greater separation factors 

for actinide–lanthanide extraction over octanol; whereas, with octanol, the D-values were too low for 

practical application. The ligand 3 was also immobilized onto silica gel and the effects of a non-ligating 

acid (perchloric acid) versus a ligating acid (nitric acid) were examined. Extraction of both actinides and 

lanthanides was seen at lower concentrations of perchloric acid (up to 0.1 M HClO4) but not at higher 

concentration as had previously been observed with nitric acid. These findings support the conclusion that 

the extraction ability of a ligand is strongly correlated with the complexation of the acid anions to the 

metal(III) ion and is only pH dependent at very low acid concentrations. The immobilized ligand system 4 

was also tested for extraction of transition metals, showing >70% uptake of most with particular affinity for 

Ni2+, Pd2+, Ag+ and Cd2+, the corrosion and fission products from PUREX raffinates  
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