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Abstract: Doppler wind LiDAR (Light Detection And Ranging) makes use of the principle of optical
Doppler shift between the reference and backscattered radiations to measure radial velocities at
distances up to several kilometers above the ground. Such instruments promise some advantages,
including its large scan volume, movability and provision of 3-dimensional wind measurements,
as well as its relatively higher temporal and spatial resolution comparing with other measurement
devices. In recent decades, Doppler LiDARs developed by scientific institutes and commercial
companies have been well adopted in several real-life applications. Doppler LiDARs are installed
in about a dozen airports to study aircraft-induced vortices and detect wind shears. In the wind
energy industry, the Doppler LiDAR technique provides a promising alternative to in-situ techniques
in wind energy assessment, turbine wake analysis and turbine control. Doppler LiDARs have also
been applied in meteorological studies, such as observing boundary layers and tracking tropical
cyclones. These applications demonstrate the capability of Doppler LiDARs for measuring backscatter
coefficients and wind profiles. In addition, Doppler LiDAR measurements show considerable
potential for validating and improving numerical models. It is expected that future development of
the Doppler LiDAR technique and data processing algorithms will provide accurate measurements
with high spatial and temporal resolutions under different environmental conditions.

Keywords: Doppler LiDAR; wind measurement; backscatter coefficients; atmospheric meteorology

1. Introduction

Wind field measurements are fundamental observations in several scientific areas such as
meteorology and aerodynamics. Numerical simulations, reduced-scale wind tunnel tests and full-scale
field measurements are widely adopted in analyzing wind field patterns. Both simulations and wind
tunnel tests are only capable of representing part of the reality, and validation and verification are
required to assure their respective accuracy and reliability. In contrast, although field measurements
have their own limitations, they are able to capture flow features affected by various factors, such as
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land use, radiation and cloud activities. In addition, field measurements can be taken as references to
validate numerical models and wind tunnel tests.

There are several categories of instruments for field measurement of wind flow pattern, and some
of them were invented in the 18th and 19th centuries [1]. They are roughly classified into two
categories: local anemometers that include mechanical and sonic anemometers, and remote sensors
that include Sound Detection and Ranging Devices (SODARs) and Doppler wind LiDARs. While wind
measurements carried out by local anemometers have high spatial resolutions and are often considered
as references to evaluate the performance of remote sensors, they are limited to a small spatial coverage
and limited heights. On the other hand, remote sensors measure air in a probe volume within a large
range of spatial coverage. The advantages and disadvantages of several techniques for the purpose of
wind measurement are briefly summarized in Table 1.

Table 1. A brief summary of wind measurement techniques.

Technique Advantages Disadvantages

Mechanical anemometers
(e.g., cup anemometers) Extremely robust and easy to maintain [2]. Insufficient to measure weak and unsteady

wind field [3].

Sonic anemometer

High sampling frequency (e.g., 100 Hz) [4].
Able to measure 3-dimensional (3D) wind
vector field [5]. Most widely used technique
in turbulence measurements [3].

Unable to measure the dissipation range of
turbulence accurately [6]. Additional errors
may be introduced to sonic measurements
due to sensor wake effects [3]. Sensitive to
temperature changes [7].

Sound detection and
ranging devices
(SODARs)

Able to measure 3D wind vector [8]. Low
sampling rate (e.g., 0.1 Hz) [2].

Generating audible acoustic noise.
Measurements may be polluted by ambient
noise [9], e.g., noise from construction
activities.

Doppler wind LiDARs
Able to measure 3D wind vector field.
Maximum measurement distance up to 10 km
and beyond [10].

Ineffective under adverse weather
conditions such as rainfall and fog.

Doppler LiDAR is a relatively new technique for obtaining wind measurements and was
developed rapidly over the past decades [11]. Instead of acoustic energy utilized in SODARs, LiDARs
obtain wind field measurements based on the light energy backscattered by aerosols. The primary
advantage of Doppler LiDARs is their unique capability to remotely measure atmospheric winds with
relatively higher resolutions compared to SODARs [10]. Beneficial from the development of optical
fibre amplifiers, the maximum measurement range of modern LiDARs can exceed 10 km. LiDAR
measurements can cover a larger spatial region depending on environmental conditions and provide
information at different vertical levels.

According to methods used to determine the frequency shift, the Doppler LiDAR system can be
divided into two broad categories: coherent (or heterodyne) detection LiDAR and direct detection
LiDAR. In the coherent LiDAR systems, frequency shifts are measured by comparing the return
signal to a reference signal; while in the direct detection systems, the return signal is filtered or
resolved into its spectral components to obtain frequency shifts. Compared to the direct detection
system, the coherent detection system has several advantages: (1) Only the spectral components
close to the reference signal are unfiltered, therefore the coherent system has high tolerance of
background light [12,13]; (2) The uncertainties are independent of temperature and properties of
optical components in the system [14]; (3) The enhanced receiver sensitivity reduces the time required
for wind measurements [15,16]. In the coherent LiDAR system, the laser beam can be in the form of
continuous wave (CW) or pulses [17–19]. Pulsed LiDARs have great capacity for remote measurements,
e.g., for distances of more than 10 km [20]. Depending on pulse duration and range gate width, pulsed
LiDARs have blind measurement regions of tens to several hundred meters near the beam source.
Although CW LiDARs do not have such blind measurement regions, their range resolution is poor
beyond a few hundred meters [21]. The range uncertainty of CW LiDARs highly depends on the
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measurement distance. For example, the range uncertainty of a CW LiDAR with a telescope diameter
of 500 mm is around 2 m at a distance of 100 m, which increases to more than 200 m at a distance of
1000 m [14].

This paper overviews fundamentals and applications of pulsed coherent Doppler LiDARs.
The sections are organized as follows: basic concepts are introduced to offer a glimpse of LiDAR
measurements in Section 2; Section 3 gives a report of LiDAR applications in the areas of aerospace,
wind energy and meteorology; and in Section 4, challenges and trends for future LiDAR research
are discussed.

2. Fundamentals of Coherent Doppler Wind LiDAR

The acronym LiDAR (Light Detection And Ranging) for measurements using light pulses was
first introduced in 1953 and developed rapidly due to the invention of high-energy lasers in recent
decades [22]. Depending on the interaction processes of the emitted radiation, different types of
LiDARs are capable of performing a diverse range of tasks, which include determination of forest
density, river bed elevation, as well as measuring atmospheric variables such as particle depolarization
(depolarization LiDAR), concentration of various gaseous compounds (absorption LiDAR), organic
compounds (fluorescence LiDAR) and winds (Doppler LiDAR) [23,24].

Doppler LiDAR systems that measure wind along the line of sight by determining frequency
shifts were first demonstrated in the mid-late 1960s [10]. By 1970s, pulsed CO2 coherent LiDARs with
a wavelength of 10.6 µm has become a choice for wind measurement [25]. For eye safety reasons,
solid-state lasers with a wavelength of 2 µm are more frequently used in modern LiDAR systems after
1990 [26]. More recently, fibre lasers with wavelengths of 1.5–1.6 µm have been used to improve the
compactness and efficiency of coherent LiDAR systems [10]. Nowadays, Doppler LiDAR is a powerful
technique for measuring wind vectors from ground-based, shipborne and airborne platforms.

2.1. Measurement Principles and Uncertainties

A Doppler wind LiDAR estimates the component of wind velocity projected onto the laser beam
propagation direction, named line-of-sight velocity or the radial velocity vR, based on the measurement
of Doppler wavelength shift distribution. The schematic diagram of a coherent Doppler wind LiDAR
is shown in Figure 1. In the LiDAR system, the master oscillator laser emits a laser pulse with wave
length λ0 and frequency f0 = c/λ0, where c is the speed of light. Generally, λ0 of a LiDAR system is
in the near infrared spectral range (from 1.4 to 2.5 µm) to achieve the highest possible transmission
of light signals, at the same time ensuring eye safety [27]. The output of the master oscillator laser
is split into two parts. The first part seeds an amplifier to create a transmit light beam, while the
second part is used as the reference light beam, named local oscillator beam, which may be created by
a separate laser in some systems [10]. The radiation transmitted to the atmosphere is backscattered by
moving particles, and part of the radiation is captured by the receiving optics. The return signal with
frequency f0 + ∆ f is mixed with the reference light in the interferometer. Then the combined single
field is focused onto a detector. Using the Doppler shift ∆ f obtained from the mixed signal by fast
Fourier transform or other methods [28,29], the radial velocity vR is then calculated by

vR =
c

2 f0
∆ f . (1)

Since the width of the laser beam is finite, the radial velocity vR is measured in a probe volume
along the beam direction. In contrast to CW LiDARs, of which the spatial resolution is dependent on
the measurement range, the spatial resolution of pulsed LiDARs is determined by the pulse width
and the distance the pulse travels during the sampling time [30]. Although reducing pulse duration
can improve spatial resolution, a reasonable sampling duration is required to promise the accuracy
of velocity estimation. Currently, the spatial resolution of commercial LiDARs are typically from 30
to 100 m [29]. As shown in Figure 2, if the LiDAR is placed at the origin of the Cartesian coordinate
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system, the beam orientation is defined in terms of the azimuth angle θ and the elevation angle φ.
Generally, a set of radial velocity measurements are combined with appropriate assumptions to extract
useful information for wind field analysis, such as wind speeds and directions.

Figure 1. Schematic diagram of the coherent Light Detection And Ranging (LiDAR) system.

Figure 2. Wind measurements from the coherent LiDAR system. vR, θ and φ represent the radial
velocity, the azimuth angle, and the elevation angle respectively.

The accuracy of vR estimates is dependent on uncertainties that are tied to the hardware or
introduced by atmospheric effects. Due to the nature of coherent detection, prevailing noise in the
coherent LiDAR system is proportional to the power of the local oscillator, e.g., relative intensity
noise, while noise sources that are independent of the power of local oscillator are negligible [12,19].
Inherent uncertainties of the LiDAR system are also influenced by errors in identifying sensing distance
and elevation angle [31]. Environmental conditions, such as turbulence intensity and precipitation,
introduce additional uncertainties in velocity measurements. In flat terrain, the turbulence only
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introduces a random error on the measurement (represented by standard deviation), while in complex
terrain, both absolute and relative biases can be introduced. Presence of rain will introduce a strong
negative bias on vertical velocities since the radiation backscattered by raindrops will also be measured
by the LiDAR system [32].

The ratio between the average signal power and the average noise power, or signal-to-noise ratio
(SNR), is commonly used to assess the accuracy of LiDAR measurements [33]. SNR is dependent on
both the instrument and atmospheric variabilities within the resolution volume [34]. For example,
Gryning et al. [35] found that high SNR was generally associated with high wind speed conditions
during long-term measurements. Following Rye and Hardesty [36], Pearson et al. [37] estimated the
standard deviation δe of the Doppler velocity in the weak signal regime using:

δe =

(
4
√

π∆v2
f

αNP
(1 + 0.16α)2

)1/2

, (2)

where α is the ratio of the LIDAR detector photon count to the speckle count; ∆v f is the spectral width
of the signal; NP = SNRMn is the accumulated photon count; M is the number of points per range
gate; and n represents the number of pulses averaged. α is explicitly calculated by:

α =
SNR

(2π)1/2
(

∆v f /B
) , (3)

with B being the bandwidth of the receiver. Pearson et al. [37] confined their approximation below
−5 dB, and O’Connor et al. [38] found that the influence of SNR on the estimated δe was insignificant
when SNR was larger than 0 dB. The recommended value of ∆v f was 1.5 m/s and and 2 m/s in the
study of Pearson et al. [37] and O’Connor et al. [38], respectively. Since δe increases monotonically for
low values of SNR [38], a tolerable error on vR can be determined according to such SNR. A threshold
SNR, below which data will be discarded, can be provided by the manufacturer or test measurements.
Manufacturer Halo Photonics suggests a threshold SNR of −18.2 dB for their StreamLine LiDAR,
while tests under quiescent atmospheric conditions suggest a value of −20 dB for the same instrument,
resulting in a 40% increase in data availability [34]. In addition, to better estimate the ratio of the wind
gust speed to the mean wind speed, Suomi et al. [39] suggested using the spike removal technique
instead of SNR threshold for data filtering.

2.2. Scan Patterns

Since a LiDAR system measures the radial velocity, the vertical component of a velocity vector
can be directly obtained through a LiDAR measurement at an elevation angle of 90◦. To retrieve
two-dimensional (2D) or three-dimensional (3D) flow fields, a sequence of radial velocities measured
by beams of different directions through LiDAR scanning are required. The scan patterns of LiDAR
systems can be categorized according to the number of degree of freedom (DOF) [40].

In the staring mode (zero DOF), the laser beam is fixed in a certain direction. Information obtained
from staring is sufficient to estimate SNR [34], vertical wind component [41], backscatter intensity [42]
and wind fluctuations in the mean wind direction [43]. In addition, staring can be used in the pre-test
to detect regions with high turbulence intensity in turbulence structure studies [44].

Scan patterns in one DOF include complete cone, arc sector and vertical slice scans. In conical
scanning, named plan position indicator (PPI) (In some studies, the PPI is also called velocity azimuth
display (VAD). In this paper, the VAD is a method for wind retrieval described in Appendix A.1.), φ is
kept constant while the laser beam scans a number of discrete positions within a complete cone
(i.e., full 360◦). The PPI scan (see Figure 3a) is the most widely used pattern in LiDAR experiments
(see Table A1 in Appendix B). In the arc sector scan in Figure 3b, the laser beam sweeps a range of θ

(less than 360◦) at a constant φ. Since only a limited range of θ is scanned, the temporal sampling rate
of the arc sector scan is higher than that of PPI [45]. The arc sector scan has been adopted in studies
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on wind turbine wakes where only flow fields behind the turbine were of interest [46,47]. LiDAR
beam can also be swept through a slice, as shown in Figure 3c. This pattern is known as the range
height indicator (RHI) and is commonly used in dual or multiple LiDAR systems [48–51]. In addition,
the vertical structure of flow field obtained from RHI scans provides valuable information for the
analysis of aircraft/turbine wake features [52,53], as well as for validation of 3D flow features obtained
from 2D data [54]. Figure 3d illustrates the scan geometry employed at Hong Kong International
Airport to detect the wind shear to be encountered by the airplane [55]. In this scan pattern, the laser
beam slides along the glide path.

(a) Plan position indicator (PPI) scan.

(b) Arc sector scan.
Figure 3. Cont.
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(c) Range height indicator (RHI) scan.

(d) Glide path scan.
Figure 3. Schematic diagrams of scan patterns in one degree of freedom (DOF). LiDAR is placed at the
origin of the Cartesian coordinate system.

A typical two DOF scan is Doppler beam swinging (DBS). As shown in Figure 4, several
measurements are taken at different θ along with one measurement in the vertical direction. Since only
a few measurements have to be taken, the DBS is fast and simple in terms of hardware and for the
purpose of data analysis, but it lacks sufficient information to evaluate the reliability of the results [14].
The minimum requirement of DBS is having 3 orthogonal line of sight scans, i.e., vertical, tilted to
the north and tilted to the east respectively. Sathe et al. [56] proposed a DBS scheme with five tilted
and one vertical beams, called the “six beam scheme” in their study, and the corresponding retrieval
method for calculating six components of the Reynolds stress tensor. Other types of two DOF scans can
be made up of a sequence of simple scans [40], e.g., a combination of the staring, PPI, DBS and RHI.
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Figure 4. Schematic diagrams of DBS scan. LiDAR is placed at the origin of the Cartesian coordinate system.

2.3. Methods for Wind Field Retrieval

As a single LiDAR system only measures a single component (i.e., vR) of the wind vector
(i.e., u (u, w, w)) over an area or within a volume, retrieval approaches are commonly required to
obtain horizontal components (i.e., u and v) or all three components (i.e., u, v and w) of u from the
LiDAR observations.

The velocity azimuth display (VAD) [57] and volume velocity processing (VVP) [58] techniques
based on the linear least squares regression are widely used to retrieve wind field from LiDAR
measurements. In VAD, basis functions are determined by Fourier expansion; while in VVP,
basis functions are depending on parameters of interest (i.e., velocity and its gradient). Because of
the inherent orthogonality of Fourier series, the VAD is robust. Due to the linear assumption,
velocity estimates are normally inaccurate under flow conditions with high nonlinearities [59]. Thus,
the number of radial velocity data points and their distribution should be carefully considered to avoid
violation of the linear assumption. It is suggested to use equally spaced measurements with five to
seven distributed azimuth angles [47,60].

Some efforts have been made to retain the nonlinear properties of the wind field. The optimal
interpolation (OI) uses covariance functions and statistical interpolation technique to retrieve wind
field [61]. This method can retain local features of the wind field [62] and is suitable for wind retrieval
in both simple and complex terrains [63]. Since the estimated covariance function is assumed to
hold on a horizontal plane, OI is only valid for wind retrieval at low elevation angles (generally
for φ < 5◦). Instead of minimizing the variance of interpolation error in OI, variational methods
solve the minimization problem of the cost function [64]. The velocity components can be modeled
by orthonormal functions [65] or obtained by minimizing the difference between observations and
physical models [66]. Physically based variational methods demonstrate great potential to analyze
the performance of computational fluid dynamics (CFD) methods, but are computationally expensive
compared to other methods. A detailed description of these retrieval methods is provided in Appendix A.

2.4. Limitations and Precautions

The performance of Doppler LiDARs is significantly affected by four atmospheric factors,
namely aerosol backscatter, humidity, precipitation and atmospheric refractive turbulence [67].
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The actual range of Doppler wind LiDARs depends on the strength of radiation signals backscattered by
aerosol particles. As aerosols above the atmospheric boundary layer (ABL) are in low concentrations,
it is beyond the capability of LiDARs to measure the wind velocity above the ABL, except in the
presence of desert dust or volcanic plumes at high altitudes [68]. In very clean sky conditions, e.g.,
after rain brings aerosols to the ground, the returning signal will be too weak for LiDARs to provide
meaningful estimates when aerosol particles are absent [69]. The study conducted by Risan [43]
indicated that the strength of backscattered signal was proportional to humidity. Iungo et al. [44]
suggested increasing the number of laser ray emissions for each velocity profile, as a result enhancing
the accuracy even when aerosol concentration is low. Due to strong attenuation of laser beams,
the maximum range of LiDARS is limited in fogs and the laser beam cannot penetrate through thick
clouds. The maximum horizontal range of LiDARs will decease during sunny days , which is caused
by the negative effects of refractive index turbulence on the efficiency of heterodyne detection [68].

As discussed in Section 2.1, the accuracy of a LiDAR system relies on hardware and atmospheric
conditions. Therefore, methods for LiDAR measurements should be validated individually against
well-defined reference measurements, especially when conditions change, otherwise unanticipated
discrepancies may arise [68]. Scan patterns (Section 2.2) and retrieval methods (Section 2.3) also
have impacts on bias and precision of the retrieved wind fields. Bonin et al. [70] compared the
performance of three scan patterns on turbulence measurements (i.e., turbulence kinetic energy and
velocity variances). In their study, DBS measurements provided the best estimates; PPI measurements
had a negative bias decreasing with the height; and the precision of RHI measurements was low but
their bias was insignificant. In the study on tropical cyclones [71], wind velocities retrieved by the
VVP were problematic in high gradient regions, i.e., the tropical cyclone center. Thus, it is important
to select appropriate scan patterns and retrieval methods according to desired flow properties and
their applications.

Site or platform conditions should also be taken into consideration during LiDAR measurements.
If the view of a site is limited by obstacles such as buildings and trees, a larger φ should be adopted
to decrease the impacts of the obstacles. In addition, signals originating from obstacles need to be
excluded from measurements [68]. To reduce influences of electromagnetic radiation (e.g., by mobile
radio or cellular phone networks), the LiDAR system should be shielded properly [68]. It is suggested
to install the LiDAR system at least 3 m above the ground, preferably on a grass-covered ground,
to reduce impacts of turbulence on its performance [68]. When the LiDAR system is installed on a ship,
motion stabilization system is necessary to derive reliable measurements [72]. For the airborne LiDAR
system, corrections to beam directions are required to compensate for aircraft roll and pitch angles [73].

3. Applications of Doppler Wind LiDARs

Pulsed Doppler LiDARs developed by scientific institutes such as Deutsches Zentrum für Luft-
und Raumfahrt (DLR), literally German Center for Aviation and Space Flight, and National Oceanic
and Atmospheric Administration (NOAA) and commercial companies such as Leosphere (France),
Halo Photonics (UK) and Lockheed Martin Coherent Technologies (USA) have been used worldwide
to study wake vortices (e.g., generated by an aircraft, a wind turbine or a building), strong wind
phenomena (e.g., wind shear and cyclones), and aerosol backscatters. Representative examples in the
areas of aerospace, wind energy and meteorology are provided in this section.

3.1. Aviation Safety

Takeoff and landing are considered the most difficult stages of flight. According to existing
database, more than half of aviation accidents occurred at these two stages [74]. Many of these
accidents are related to the complex flow conditions near the airport, which have important impacts
on aircraft performance during takeoff and landing. Doppler wind LiDARs are installed in around a
dozen airports to detect wake vortices and dangerous wind shears [27].
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3.1.1. Aircraft Wake Vortex

Strong vortices generated by a heavy aircraft (see Figure 5) are potentially hazardous to other
flying vehicles. Real-time detection and tracking positions and intensities of wake vortices are
prerequisites to optimize separation distances dynamically, which potentially reduce accidents and
increase airport capacity. In addition, it provides valuable information for aircraft design. Up to now,
Doppler wind LiDAR is the only device recommended by the International Civil Aviation Organization
(ICAO) for vortex detection in clear air [75].

Figure 5. Cross section of wake vortices generated by the lift producing surfaces of an aircraft [76].

Several techniques have been developed to derive the strength of wake vortices from LiDAR
measurements. The velocity envelope method extracts the positive and negative velocity envelopes
with the aid of a spectrum threshold [77]. The threshold is dependent on SNR and the circulation,
which needs to be fine-tuned to optimize the performance of the envelope method. The vortex core
position can be determined from the extrema of the velocity spectrum. The vortex circulation is
calculated by integrating the envelope in a specified area near the vortex core, e.g., radius of region
between 5 m and 15 m. The radial velocity method proposed by Smalikho and Banakh [78] solves
several minimization and maximization problems that identify the distance between the LiDAR and
the vortices. The vortex circulation is obtained by fitting the velocity measured by LiDAR to that
computed by the Burnham-Hallock vortex model. In the study conducted by Smalikho et al. [79],
the radial velocity method and the velocity envelope method showed similar performance in predicting
the vortex position, while the error of vortex circulation estimated by the radial velocity method was
5 times higher. Computationally expensive methods that make use of estimators on spectrum-based
analytical models are more accurate. For example, the bias in vortex circulation given by the maximum
likelihood estimator was found to be less than 1% [80]. Since estimator-based methods take signal
response functions into consideration, they are suitable for vortex identification when SNR is low [75].
To provide accurate vortex estimation in a reasonable time frame, a hybrid method was developed
to use the velocity envelopes to locate aircraft wake vortices and employ the maximum likelihood
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algorithm to estimate the vortex circulation [81]. The root mean square error in circulation estimated
by such hybrid method was less than 5% [82].

In the past three decades, LiDAR measurements have provided extensive data collection for the
analysis of vortex formation, movement and decay. According to long-term measurements obtained
by Doppler LiDARs, at least 3% of wake vortices generated by landing aircraft is within a distance of
25 m to the following aircraft at Charles de Gaulle airport [83]. Körner and Holzäpfel [84] analyzed
8052 aircraft landings recorded by Doppler LiDARs at several international airports, concluding that
3.7% of the landing vortices were generated below 50 m. To artificially accelerate wake vortex decay
or destruct wake vortices for the purpose of aviation safety, it is crucial to uncover the physical
mechanism of wake vortex decay, particularly during landing phase and the touchdown process.
LiDAR observations indicated that continuous vortex decay was associated with strong turbulence [85]
while the two-phase decay, i.e., an initial phase of moderate decay followed by a phase of rapid
decay, occurred in weakly turbulence environments [86], corroborating the vortex evolution found in
corresponding CFD simulations [87]. With the help of LiDAR measurements, it was found that the
radii of vortex cores were almost constant during the decay process [88] and this process could be
accelerated by ground effects [75]. To increase the decay rate of wake vortices, Holzäpfel et al. [89]
suggested installing a plate line on the ground surface. A reduction of 3% in the lifetime of strong
vortices was recorded by a Doppler LiDAR, demonstrating the capacity of surface modification for
vortex decay acceleration [89]. With increasing understanding of wake vortices generated by aircraft,
new separation standards based on dynamic detection and individual wake characterisation are
expected to be implemented worldwide in the foreseeable future [90].

3.1.2. Low Level Wind Shear

Low level wind shear, defined as the sudden change of wind velocity and/or direction in 600 m
by the ICAO, may be associated with the frontal surface, convective clouds, microbursts, surrounding
terrain, or thermal instabilities. It may affect aircraft performance and present a hazard to aviation
safety [91]. Reliable and timely alerts can help pilots to recognize quickly and respond appropriately
when wind shear occurs. Over recent years, the Doppler LiDAR technique has been verified to be
effective in low-level wind shear alerting under clear air conditions.

The first Doppler LiDAR System for wind shear alerting was installed at the Hong Kong
International Airport in August 2002. Chan and his collaborators [55,92–96] have conducted
comprehensive studies on wind shear events observed by the LiDAR system, which is a part of
the wind shear and turbulence warning system at the Hong Kong International Airport. An automatic
wind shear detection algorithm dependent on glide path scan (Section 2.2) has been developed and
successfully applied for detection and alerting of terrain-induced wind shear [55]. Hit rates of around
70%, defined as the ratio of the number of wind shear alerts based on the headwind profiles measured
by the LiDAR system to the number of wind shear reported by pilots, were achieved for several
departure and approach corridors when the availability of LiDAR data was promised [92]. When the
headwind gradient was introduced into the alert system by a windshear hazard factor, the hit rate
increased to more than 80% [94,95]. Then, a simple smoothing algorithm was employed to reduce the
time cost in processing headwind data, resulting in a similar performance as in the previous study
using flight simulator software for data smoothing [96].

In the last decade, LiDAR systems for wind shear detection have been tested at several
international airports besides the Hong Kong International Airport. Yoshino [97] analyzed the flight
record data and LiDAR measurements from PPI scans, concluding that the low level wind shear
recorded at the Narita International Airport on 20 June 2012 was caused by horizontal roll vortices.
At the Lanzhou Zhongchuan International Airport, wind shear conditions observed by a Doppler
LiDAR in PPI scan mode with an elevation angle of 3◦ were used to assist an aircraft to modify its
flight path on 31 May 2016 [27]. At the Beijing Capital International Airport, DBS scans were used to
retrieve background wind field, and the step-wise scans shown in Figure 6 were used to identify wind
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shear events [91]. During the field campaign in 2015 and 2016, more than 2000 scans were analyzed
and 14 wind shear events identified from LiDAR measurements were confirmed by pilot reports [91].

Figure 6. A step-wise scan along the glide path applied to detect wind shear during aircraft landing at
the Beijing Capital International Airport [91]. The elevation angles φ are 3◦, 2◦, 1◦ and 0◦ in the range
of azimuth angles θ = 207◦–219◦, 219◦–231◦, 231◦–243◦ and 243◦–260◦, respectively.

As discussed in Section 2.4, raindrops have negative effects on LiDAR performance. Therefore,
Doppler radars, which perform well in the rain, should be incorporated into the alerting system to
detect wind shear in rainy days [98]. In addition, in case of less common weather conditions, such
as fog, other measurement systems are required. A wind shear alert system based on the LiDAR
system, the terminal Doppler weather radar, ground-based anemometers, weather buoys and wind
shear warnings issued by the aviation weather forecasters has demonstrated its capability for detecting
severe wind shear events at the Hong Kong International Airport, covering more than 90% wind shear
events reported by pilots from 2002 to 2015 [99].

3.2. Wind Energy

Due to the rapid development of wind industry, wind farms are being built both further offshore
and in complex terrain, leading to increasing research on assessment of wind resources under
inhomogeneous flow conditions. To better estimate potential power output in different terrains,
Wagner et al. [100] suggested using wind speed measurements at different heights instead of the
hub-height wind speed measurement. However, conventional in-situ measurements commonly used
in the wind energy industry are only capable of characterizing the wind velocity at a limited number
of measurement locations. Remote sensors, such as LiDARs, provide promising alternatives to the
in-situ techniques for wind measurements at the turbine hub height and beyond. The ability of
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Doppler LiDAR to measure wind vector remotely is beneficial to the assessment of wind resources,
the understanding of wake physics and turbine control.

3.2.1. Wind Resource Assessment

Analysis of wind resources is desired before installation of wind turbines as well as during their
operations. In recent years, LiDAR technique has grown in popularity for wind resource assessment
because it can quantify wind velocity at several vertical levels to investigate possible impacts on
turbine power output.

Kim et al. [101] evaluated the performance of a pulsed Doppler LiDAR for wind resource
assessment in three different kinds of terrains on Jeju Island. In their study, the ruggedness index
(The ruggedness index is defined as the percentage fraction of the terrain along the prevailing wind
direction over a threshold slope [102]. A threshold slope of 0.3 was assumed in [101].) was introduced to
identify the complexity of a given terrain. Results showed that the differences in ten-minute averaged
wind speed between LiDAR measurements and mechanical anemometer measurements in terrains
with ruggedness indices of 2.91%, 2.05% and 0% were 6.02%, 4.75% and 2.23% , respectively [101].
Based on LiDAR measurements, Krishnamurthy et al. [103] generated an averaged wind map on a
terrain layer at the hub height of 80 m within an area of around 100 km2, locating a region that showed
great potential for power production, where the mean wind speeds were higher than 12 m/s. Then,
the spatial distribution of wind speeds was applied in a simple topology gradient algorithm to optimize
a wind farm layout that maximizes power output. According to their results, the estimate of power
output based on wind speed measurement at the hub height (i.e., 80 m) is 0.49% lower than that based
on a combination of wind speeds measured at three different heights, as shown in Figure 7. Therefore,
they suggested predicting potential power output based on wind profiles at several vertical levels.

Figure 7. Estimates of wind power density at 50 m, 80 m and 110 m above the ground level and
combined power density of these three layers. X (km) and Y (km) are the distances from lidar in the
respective directions [103].
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As a part of the European Wind Atlas project [104], a series of experiments including the Kassel,
Reducing Uncertainty of Near-shore wind resource Estimates (RUNE), Østerild, Terry LiDAR and
Perdigão experiments have been conducted in different terrains in Europe. These experiments aimed
at evaluating the performance of numerical models for estimating site-specific wind resources in
Europe. The Kassel experiment [105] conducted in 2014 demonstrated the capability of multi-LiDAR
configuration for measuring turbulent flow in forested complex terrain, providing valuable data to
validate forest models. In 2015 and 2016, the RUNE experiment [106] was conducted at the west
coast of Denmark close to a test station of wind turbines. Besides providing database for model
validation, this campaign aimed at evaluating the performance of different strategies on near-shore
wind measurements. Results showed that ten-minute averaged wind speeds estimated by LiDARs
in PPI and arc-sector scan modes compared well with those measured by dual-LiDAR systems.
In addition, the data availability of ground-based LiDARs in the PPI scan mode was the highest,
generally above 95%. In the experiment performed at Østerild test station for large wind turbines in
2016 [107], Doppler LiDARs were installed on the balconies of light towers at 50 m and 200 m above the
ground. Data obtained from horizontal scans at 50 m above the ground were categorized according to
the inflow velocity measured from a sonic anemometer situated at 37 m above the ground. Analysis of
the wind categories along with tree and terrain height maps indicated that mean wind speeds over flat
and bare terrains, i.e., non-vegetated areas and water bodies, were higher than those over forested
terrains. In the Ferry LiDAR experiment [108], a shipborne LiDAR system was deployed to measure
the wind speeds and directions along a regular ferry route across the Baltic Sea from 7 February
to 8 June 2017. The initial analysis revealed that low-level jet events occurred more frequently in
spring than in winter, owing to the huge difference in temperature between the land and the sea.
In the Perdigão 2017 campaign [109], 49 meteorological towers, 27 LiDARs and many other sensors
were deployed in the valley and on the two parallel ridges to capture multiscale flow interactions.
Initial results indicated that the interaction of synoptic flow with the complex terrain led to surprisingly
complex microscale flows.

Due to the complexity of engineering structures in marine environments, deployment of
a meteorological tower for assessment of nearshore or offshore wind resources is extremely
expensive. As an attractive and applicable alternative to meteorological towers, Doppler LiDARs
have been mounted on different platforms to measure wind speeds and directions over the sea.
Shimada et al. [110] used two ground-based LiDARs to investigate coastal wind modifications,
known as the fetch effect, to determine the optimal distance from the coast for a nearshore wind farm.
Their results indicated that the wind speed increased with the increase of the fetch length within 5 km
of the coast. They suggested installing wind turbines a few kilometers away from the coast. To assess
offshore wind resources efficiently, preliminary measurements can be taken by shipborne [111] or
airborne [112] LiDARs within a large region. Then, ground-based [113] or floating [114] LiDARs may
be used for obtaining long-term measurements at selected sites.

3.2.2. Turbine Wake

Since turbine induced wakes can reduce power output and increase structural fatigue of
downstream turbines, a better understanding of wake properties is helpful in optimizing the
performance of wind turbines and the layout of wind farms. Moreover, by taking into account
the influence of turbine wakes in wind resource assessment process, predictions of future power
production will likely be improved [115]. Doppler LiDAR is an ideal instrument to measure turbine
wakes that cover a large downstream volume [116], which has been applied to investigate wakes
generated by an individual turbine as well as interactions between multiple turbine wakes [117,118].

In the Turbine Wake and Inflow Characterization Study (TWICS) experiment [119–121] took
place at the National Wind Technology Center in Colorado in 2011, a high-resolution Doppler LiDAR
developed by the National Oceanic and Atmospheric Administration (NOAA) was used to investigate
wakes generated by a 2.3 MW turbine with a rotor diameter of 101 m and a height of 80 m. According to
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data from arc sector and PPI scans, Smalikho et al. [119] found that the lengths of wind turbine wakes
ranged from 120 m to 1180 m under different atmospheric conditions. They concluded that the wake
length was proportional to the turbulence energy dissipation rate. The study of Aitken et al. [120]
focused on analyzing the velocity deficit and the wake boundaries. It was shown that the vertical
deficit was 50–60% immediately behind the turbine and reduced to 15–25% at 657 m away from
the turbine. The vertical width of turbine wakes increased significantly slower than the horizontal
width because of the presence of ground. Banta et al. [121] developed procedures to characterize the
3D structure of turbine wakes and presented a case study based on the data sampled in the TWICS
experiment. In their study, maximum deficits of up to 80% were observed at 60 m–200 m behind the
turbine rotor.

The Crop Wind Energy Experiment (CWEX) [122–124] was conducted within a wind farm with
200 1.5-MW turbines in central Iowa in United States. In summer 2011, flux stations and Doppler
LiDARs were deployed to investigate the atmospheric influence of wind turbines on surrounding
crops. It was found that wind turbine wakes modified the surface micro climate, resulting in higher
CO2 flux down into the crop canopy during daytime and higher temperature during nighttime [122].
Analysis of wind velocities measured upwind and downwind of a turbine indicated that wake
propagation was sensitive to inflow wind direction [123]. The maximum velocity deficit was observed
near the hub height at different inflow wind speeds, consistent with existing research results [123].
Mirocha et al. [124] validated CFD simulations implemented with the generalized actuator disk (GAD)
model against the CWEX observations in the near wake region, and concluded that the GAD model
was unable to capture the variance of the streamwise velocity.

Iungo et al. [44] measured wakes generated by a 2-MW turbine located in Canton de Valais,
Switzerland, and observed a sharp increase in turbulence at the turbine top tip height. This represents
a typical feature of wind turbine wakes and has been observed in wind tunnel tests [125] and numerical
simulations [126]. In the LiDAR experiment conducted in the offshore wind farm Alpha Ventus in
Germany, Bastine et al. [127] observed homogeneous isotropic turbulence in the inner wake region
of a wind turbine under the free flow condition of anisotropic turbulence. The isotropic turbulence
might result from the formation of a new turbulent cascade near the rotor, hence the flow features
inside the turbine wake are independent of the surrounding atmospheric flow [127]. In the same wind
farm, Dorren et al. [128] tested a non-synchronous dual LiDAR system and demonstrated the capacity
of their proposed multiple-LiDAR wind field evaluation algorithm for turbine wake measurements.
LiDAR experiments conducted in three wind farms in China from 2013 to 2015 indicated that the
differences in velocity deficit, wake length and dissipation rate between day and night were significant,
while the difference in turbulence intensity was insignificant [129].

In the Smart Rotors to Improve Wind Energy Efficiency and Sustainability (SMARTEOLE)
project, two nacelle-mounted LIDARs were deployed to investigate wakes generated by two wind
turbines [117]. It was observed that the turbine wakes were aligned with the wind direction, and the far
wake of the upstream turbine merged with the wake generated by the downstream turbine. The CWEX
campaign in 2013 focused on a region characterized by strong diurnal cycles of atmospheric stability
and frequent jets [118]. Doppler LiDARs were deployed to study wakes generated by a row of four
turbines, as shown in Figure 8. The results indicated that the velocity deficits of the outer turbines was
lower than that of the inner ones. Moreover, outer turbines showed larger angular changes of wake
centerlines, which were related to the wind veer, compared to the inner ones [118].
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Figure 8. Radial velocity vR measured by a Doppler LiDAR [118]. The LiDAR is located at the origin
of the Cartesian coordinate system. The arrows indicate the wind direction.

3.2.3. Turbine Control

Wind turbine control is widely used in the wind energy industry to ensure long structural life
and efficient performance of wind turbines operating under complex environmental conditions [130].
In recent decades, Doppler LiDAR technique has received considerable interest in the possibility of
improving wind turbine control by providing look-ahead wind measurements in front of the rotor
plane [131].

Nacelle mounting and spinner mounting are two main options for LiDAR installation [21].
The numerical study conducted by Bossanyi et al. [132] indicated that the performance of nacelle
mounted LiDAR and spinner mounted LiDAR was similar. Although the rotating blades can block
the laser beam at some instant, nacelle mounted LiDAR is popular for turbine control due to its
simplicity since a proof-of-principle experiment in 2003 [21]. The first spinner mounted LiDAR
was deployed in the spinner of a 2.5 MW wind turbine in the “Tjæreborg Spinner-lidar Experiment”
in 2009 [133]. CW LiDARs were used in the pioneered experimental studies in 2003 [21] and in
2009 [133]. In the past few years, field tests [134,135] also demonstrated the capacity of pulsed
LiDARs mounted on turbine nacelle for upstream wind measurements (Figure 9). In addition,
numerical simulations indicated pulsed LiDARs were suitable for spinner mounting configuration in
turbine control applications [132,136].

Figure 9. The pulsed LiDAR mounted on the three-bladed Controls Advanced Research Turbine
located at the National Wind Technology Centercite in Boulder, Colorado [135]. Photo credit: Lee Jay
Fingersh, National Renewable Energy Laboratory (NREL).
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Generator torque control, yaw control and blade pitch control are three typical strategies of wind
turbine control [137]. In the LiDAR-assisted control system, the PPI scan pattern is generally used
and the optimal scan configurations are dependent on control objectives. For example, in the study
of Bossanyi et al. [132], LiDAR scanning at smaller φ, i.e., larger half cone angle between the laser
beam and the centerline, provided better wind direction estimates, which were important for yaw
control; while the accuracy of estimated longitudinal wind speed and shear gradients was worse.
Schlipf et al. [138] used a brute force method to search for the optimal scan configuration for collective
pitch feedforward control, noting that the pulsed LiDAR performed well when it scanned at a half
cone angle of 21.8◦, with 6 beam directions, the first range gate at 0.625 rotor diameter and a range
gate distance of 0.125 rotor diameter.

Simulations conducted by Schlipf et al. [139] showed that the improvement in power output by
introducing LiDAR measurements to assist variable speed control was insignificant since the standard
variable speed control was already well optimized. In addition, the torque control strategy led to a
dramatic increase in loads on the shaft [140]. Experimental and numerical studies indicated that yaw
control and pitch control could benefit from wind fields obtained from LiDAR measurements [131].
Fleming et al. [135] estimated an increase of 2.4% in annual energy production if LiDAR data was used
to correct wind vane measurements in yaw control. LiDAR-assisted pitch control can improve rotor
speed regulation as well as reduce structural loads [141]. Bossanyi et al. [132] performed simulations to
investigate collective pitch control and individual pitch control, concluding that both control strategies
were improved by LiDAR measurements.

3.3. Meteorological Research

Doppler wind LiDAR is well suited to measure boundary layer and mesoscale variations in the
wind field, which are essential to meteorology and climate studies [142]. An individual Doppler
LiDAR system can measure atmospheric parameters such as boundary layer height and wind profiles,
while more meteorological quantities can also be obtained when Doppler LiDAR is collocated with
other devices. Full-scale wind field measurements are helpful in the improvement and validation of
numerical models.

3.3.1. Boundary Layer

Observations of the mixed layer height (MLH) are helpful to improve weather and air quality
predictions since MLH is an important parameter in numerical modeling of pollutant dispersion [69]
and cloud development [41]. Two LiDAR based parameters, i.e., the velocity variance and backscatter
coefficient, can be used to derive MLH [37,143]. Since the velocity variance is more closely connected to
the driving process of entrainment, it will provide better estimates of MLH [144]. Through comparing
with 141 MLHs derived from radiosonde measurements with the bulk Richardson number method,
Schween et al. [69] concluded that the velocity variance was more appropriate for MLH estimation than
the aerosol backscatter coefficient. Barlow et al. [145] observed that the backscatter-derived boundary
layer lagged approximately two hours behind the velocity-derived boundary layer, as shown in
Figure 10. However, when the velocity variance was poorly defined due to the weakly unstable
conditions over the water, aerosol backscatter was useful to estimate MLH [146].
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Figure 10. Plot of averaged boundary layer top (BL), backscatter-derived layer height (aerosol) and
velocity-derived boundary layer (MH) for the diurnal cycle in clean sky conditions [145]. The boundary
layer top was defined as a layer where there was a large gradient in backscatter. Error bars show
standard error.

Due to the blind measurement region near the beam source of pulsed LiDARs, vertical velocity
variance derived from data measured by a LiDAR in staring or scan modes with high elevation
angles were insufficient to identify boundary layers below the minimum measurement range. In the
experiment conducted in 2015 and 2016, Vakkari et al. [147] derived the MLH from radial velocity
variance measured by PPI scans at low elevation angles. Their results showed that the MLHs estimated
from PPI scans compared well with those estimated from vertical staring when there was overlapping
coverage. In the experiment, MLH was below the lowest vertical range for more than 40% of the
time at Limassol, Cyprus and Loviisa, Finland [147]. To take advantage of different scan patterns,
Bonin et al. [148] proposed a fuzzy logic–based composite technique to estimate MLH from the surface
up to several kilometers. They applied this technique to analyze the MLH in suburban Indianapolis in
2016, revealing that the afternoon MLH was larger around the summer solstice, while the nocturnal
MLH was larger in winter because of stronger near-surface winds in winter. In contrast, Halios and
Barlow [149] found that the night-time MLH in London was lower in winter than that in summer,
reflecting the annual cycle of thermal forcing.

Hogan et al. [150] used higher order moments such as vertical velocity skewness to reveal
“upside down” convective mixing caused by stratocumulus clouds. Harvey et al. [151] went on
to develop a boundary layer classification scheme to better understand the physics of boundary
layer dynamics based on the backscatter coefficient, the vertical velocity skewness and the vertical
velocity variance estimated from LiDAR measurements, as well as the surface flux measured by a
sonic anemometer. Analysis of data measured by a vertical staring LiDAR and a sonic anemometer at
the Chilbolton Observatory in southern England from 1 June 2008 to 31 May 2011 indicated that the
stable boundary layer with clear skies was the most common type, occurring 40% of the time [151].
Following Harvey et al. [151], Manninen et al. [152] proposed a method to classify turbulent mixing
within the boundary layer and identified a turbulent source with the aid of the attenuated backscatter
coefficient, the vertical velocity skewness, the dissipation rate of turbulent kinetic energy, the vertical
profiles of horizontal wind, and the vectorial wind shear estimated from LiDAR measurements.
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Analysis of data measured at Hyytiälä, Finland and Jülich, Germany in 2015 and 2016 showed that
surface-driven convection was a dominant source of turbulent mixing during spring, summer and
autumn. In addition, low level jets were also an important source of nocturnal mixing [152].

3.3.2. Urban Meteorology

Doppler LiDARs are suitable for operation in urban areas, with focus on detecting aerosols emitted
from human activities. Besides urban boundary layer identification [42,143,149,153,154], they have
also been deployed to measure wind speeds in urban areas.

Drew et al. [155] deployed a Doppler LiDAR to determine wind speed profiles over central
London from May 2011 to January 2012, aiming at evaluating models to assist calculations of potential
wind loading on buildings. It was found that the mean wind speed during the entire experiment fitted
well with a logarithmic wind profile below 1000 m. Above 1000 m, the wind speed increased sharply
and deviated significantly from the logarithmic profile. In addition, the wind profile during low wind
speed periods where neutral conditions occurred 6% of the time showed poor agreement with the
logarithmic profile, while that during high wind speed periods where neutral conditions occurred 30%
of the time compared well with the logarithmic profile. By comparing results of Engineering Sciences
Data Unit (ESDU) models with LiDAR measurements in strong wind conditions, Drew et al. [155]
suggested conducting assessments regarding the nature of urban surface when ESDU models are
adopted to estimate urban wind profiles, as a result the wind loading on tall buildings can be effectively
calculated. In the study of Kent et al. [156], wind speeds predicted by a logarithmic model, the Deaves
and Harris model, a non-equilibrium model, the power law and the Gryning profile were extrapolated
to 200 m above the canopy for comparison with LiDAR observations. When the height variability
estimated by morphometric models was taken into consideration, results of the Deaves and Harris
model and the Gryning profile showed better agreement with LiDAR measurements compared to
all other considered models [156]. Sepe et al. [157] used the vertical wind profiles measured by a
Doppler LiDAR to search for optimal parameters in the logarithmic model and the Deaves and Harris
mode, via curve fitting approaches. Although the optimized logarithmic model and Deaves and Harris
model compared well with experimental data, the optimal values of roughness length were tied to
the wind direction and were larger than standard values adopted in the field of wind engineering.
In addition, both models overestimated the amount of turbulence [157]. LiDAR measurements taken
in Aversa, Italy during the period from October 2015 to July 2016 were used to optimize parameters of
the logarithmic model and the Deaves and Harris wind model [157]. It was found that when the mean
wind speed at 50 m was less than 4 m/s, the wind direction changed frequently due to thermal effects,
while the variability of the wind direction was small when the wind speed exceeded 10 m/s [157].
To better estimate approaching wind velocity in wind-driven ventilation assessment, a Doppler LiDAR
was placed on a building rooftop in Tokyo to determine the wind profile [158,159]. It was found that
the power law index for estimating the potential of natural ventilation was time dependent, having
a value of 0.2–0.3 in evenings, nights and mornings, but decreasing to less than 0.1 during daytime
because of the diurnal cycle in convection [158]. In addition, the power law produced poor estimates
of wind profiles under low wind speed conditions due to significant deviation in wind direction at
different altitudes [159].

Wood et al. [160] investigated airflow channeling along the River Thames with a Doppler LiDAR
for better understanding of ventilation within central London. The speed of the air flow over the
river showed obvious diurnal variation on sunny days, while the variation on cloudy days was
insignificant [160]. On 27 May 2008, a well-developed sea-breeze front was observed in the Tokyo
metropolitan area [161]. The propagation speed of the sea breeze estimated from Figure 11 was
4.7 m/s, which was higher than that of 3.7 m/s predicted by a theoretical model. A strong updraft
with the maximum vertical velocity of 5 m/s was observed when the sea breeze front was approaching
the LiDAR, as shown in Figure 11b. Another sea breeze was captured by a Doppler LiDAR in the
Fukuoka–Kitakyushu metropolitan area on 11 September 2015 [162]. The observations were used to
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evaluate the performance of the Weather Research and Forecasting model when it was combined with
different land-use datasets [162].

(a) Local time: 15:39

(b) Local time: 15:52

(c) Local time: 16:08
Figure 11. Plots of radial velocity measured by a Doppler LiDAR located at the origin of the Cartesian
coordinate system [161]. Black arrows represent the retrieved velocity vectors. The thick black
lines are boundaries estimated by location of the maximum gradient of the radial velocity in the
azimuthal direction.
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3.3.3. Tracking Atmospheric Flows

Doppler LiDARs are capable of investigating intense wind phenomena such as cyclones,
because they possess relatively high spatial and temporal resolutions. Several studies have employed
combined systems including Doppler LiDARs and other devices to gather certain information, e.g.,
mass flux, in the atmosphere.

During the Observing system Research and Predictability Experiment (THORPEX) Pacific Asian
Regional Campaign (T-PARC) in 2008, airborne LiDAR systems were first applied to observe Typhoon
Nuri [163] and Typhoon Sinlaku [164]. Afterwards, airborne LiDAR systems were employed to collect
wind profiles in Hurricane Earl (2010) [165], Tropical Storm Erika (2015) [166], and Tropical Cyclones
Danny (2015), Erika (2015), Earl (2016), and Javier (2016) [71]. In these studies, LiDAR measurements
showed good agreement with dropsonde measurements. In the study of Zhang et al. [166], a tilt
of the Erika vortex was observed when the altitude was greater than 750 m, as shown in Figure 12.
Compared to a typical hurricane, the boundary layer in the Tropical Storm Erika was deeper and the
asymmetry of the tangential and radial winds in Erika was more significant.

(a) At the altitude of 250 m. (b) At the altitude of 500 m.

(c) At the altitude of 750 m. (d) At the altitude of 1000 m.
Figure 12. Contours of relative vorticity calculated from LiDAR measurements [166]. Black lines denote
the streamlines.

In 2009 and 2010, a Doppler LiDAR and a X-band Doppler radar was mounted on a truck
to identify tornadoes in Oklahoma, Texas, Kansas and Colorado respectively. It was found that
the tornadogenesis was not correlated with the appearance of horizontal convective rolls or their
orientations. In southwestern Germany, 12 extratropical cyclones were observed by a ground-based
LiDAR in 2016 and 2017 [167]. Initial results indicated that wind gusts might be caused by sting jets or
convection embedded in the cold front [167].
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As a part of the German Vertical Transport and Orography project, an airborne Doppler wind
lidar, a rawinsonde, a dropsonde, a wind-temperature radar, a ground-based aerosol LiDAR, and two
pilot balloons were used to analyze the vertical structure of Alpine pumping. The mass flux quantified
by the Doppler LiDAR indicated that the entire layer of air up to 1900 m between Munich (80 km
north of the Alps) and the Alpine rim was transported to the Alps on a sunny day in summer
(19 July 2002) [168]. Kiemle et al. [73] measured latent heat fluxes over the Black Forest mountains
with water vapour differential absorption and Doppler wind LiDARs installed on a Falcon research
aircraft. Their results showed that the latent heat flux was roughly constant with height, while varied
significantly between flight legs in the range of 100–500 W/m2 [73]. A Doppler wind LiDAR and in-situ
instruments, including particle impactors were used to investigate the properties of the ash plume
from the Eyjafjalla volcano [169]. During the period from April to May 2010, the volcano emitted about
3 Tg of SO2 and spread over large parts of Central Europe. The ash mass concentrations derived from
measurements were used to predict ash loading and support aviation agencies, especially for their
airspace decisions when volcanic ash is present, for example air traffic decisions and judgments [169].

3.3.4. Model Validation and Improvement

Validation is a crucial part in terms of numerical studies. It is important to validate numerical
models before their corresponding predictions can be adopted in complicated assumptions and initial
conditions. Davies et al. [42] compared boundary layer heights determined by national and local
air-quality forecasting models with corresponding LiDAR observations of 5 days. They found that
both models overestimated the boundary layer height by 100% in the day prior to thunderstorms [42].
Risan et al. [43] validated detachment eddy and Reynolds-averaged Navier–Stokes simulations against
LiDAR measurements in complex terrain. In their study, velocities were measured directly in the
direction aligned with the mean flow velocity (staring pattern in Section 2.2) to avoid errors introduced
by retrieval methods. Chen [170] investigated the air flow that passed through a tall cylinder building
in Tainan with the aid of LiDAR measurements and CFD simulations, and emphasized the importance
of inflow boundary conditions in CFD simulations.

Some efforts have been made to use LiDAR measurements to improve the accuracy of numerical
models [171]. Pu et al. [163] evaluated the performance of an advanced research version of the Weather
Research and Forecasting model [172] in predicting the formation and intensity of Typhoon Nuri.
They found that when the model was initialized with the wind field retrieved from airborne Doppler
LiDAR measurements, better numerical predictions were obtained. A comprehensive study [164]
on assimilation of LiDAR measurements in global models for typhoon forecasts showed that LiDAR
observations led to a 9% reduction of 12 h–120 h track errors in the European Centre for Medium-Range
Weather Forecasts (ECMWF) modeling system. Moreover, an improvement of 3% in 2–4 day forecasts
of geopotential height over Europe was achieved when LiDAR measurements were assimilated in the
ECMWF modeling system [173].

4. Summary and Outlook

Remote sensors are appealing alternatives to traditional anemometers for wind field
measurements. Doppler LiDARs estimate the radial velocity by measuring the frequency shift between
a reference laser beam (i.e., local oscillator beam) and the radiation backscattered by aerosols. Due to
their capabilities to estimate atmospheric parameters from a large distance, Doppler LiDARs have been
installed on ground-based, airborne, shipborne and truck-mounted platforms and undertake different
tasks. Corresponding studies show great potential of Doppler LiDARs for aeronautical, wind energy
and meteorological applications.

Since a Doppler LiDAR only measures radial velocities, some assumptions are required to
retrieve three velocity components of the wind field from LiDAR data (Section 2.3). In single
LiDAR applications, the uncertainties of LiDAR measurements over complex terrain are of great
importance, where the homogeneous assumption used in retrieval methods is violated. Many efforts
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have been made to correct LiDAR data based on linear models or CFD simulations. An improvement
of around 1.5% can be achieved when the LiDAR measurements are corrected with a flow model
for the inhomogeneities [174]. However, the performance of model corrections is case dependent,
which may result from insufficiently specified terrain complexity. Therefore, it is suggested to validate
LiDAR measurements individually against well-defined reference measurements, especially in complex
terrains. In addition, numerical simulations can be conducted in advance of a measurement campaign
to support the experiment design under local conditions. Another way to reduce uncertainties related
to inhomogeneous flow is the use of multi-LiDAR configuration. The major drawback of synchronized
multi-LiDAR measurements is the low availability of data due to blockage (e.g., the available data from
dual LiDARs scanning ridges was 50–70% [175]). Recently, new LiDAR systems with three spatially
separated emitters [176] or with three receiving units [177] have been developed to measure 3D wind
vector with high spatial and temporal resolutions. These systems show considerable potentials for
conducting wind measurements in complex terrain, as well as for gust detection where high temporal
resolution is desired. To pave the way for LiDAR applications in the airborne wind shear detection
and alert system, or the nacelle-based wind turbine control system, Doppler LiDAR technique needs
to be better developed to meet cost, size and weight constrains.

Doppler LiDARs have played important roles in uncovering the physical mechanism of formation
and decay of aircraft induced vortices, and they have shown remarkable performance for vortex
detection. In particular, the probability of detecting an aircraft induced vortex in the first LiDAR
scan was found to be about 94% in a 9-month experiment at Lanzhou Zhongchuan Airport [27].
Further investigations on vortex behavior are expected to support the concepts of dynamic distance
separation of aircraft and acceleration of wake vortex decay. Data from Doppler LiDAR can provide
insights to long-distance vortex transport, the interaction of wake vortices with the ground and
influences of atmospheric conditions on vortex intensity. These studies will pave the way for
quantification of the degree of vortex hazard and prediction of the vortex lifetime, thus serving
as prerequisites for dynamic separation. Although several field campaigns have demonstrated
the capacity of Doppler LiDARs for wind shear detection and alert, it is difficult to evaluate the
performance of Doppler LiDARs quantitatively, because the intensity and location of wind shear
reported by pilots is highly dependent on their experience. Further analysis of long term wind shear
statistics based on data recorded by airborne sensors, ground-based ultrasonic anemometer and
Doppler LiDARs is necessary to improve the hit rate of wind shear alert. In addition, airborne LiDARs
at cruise altitude show great potential for improving air data system reliability and flight safety, such as
providing a sufficient advance warning of air dynamics hazards. Moreover, studies that focus on
fulfilling functional needs from pilot points of view will be beneficial to the ongoing development of
commercial airborne LiDAR systems.

In the wind industry, Doppler LiDARs have been accepted as alternatives of the traditional
mast-based wind sensors for wind resource assessment, power performance estimation and turbine
wake analysis. Doppler LiDARs are popular for offshore applications because of their mobility and
capacity to measure wind remotely. According to the report on International Energy Agency (IEA)
Wind Task 32, the use of Doppler LiDARs to detect and measure complex flow, to estimate second-order
statistics for load verification and to assist turbine control has to be further developed [178].
As mentioned previously, incorporating numerical models in reconstruction of wind fields from LiDAR
measurements will generally provide better estimates. However, the development of combining
simulation outputs and LiDAR measurements, as well as methods for uncertainty estimation is
still at an early stage. Clear guidance on scan pattern choice, model correction and uncertainty
characterization are required to support LiDAR practices and standards in the wind industry.
Since most models were originally developed over land, more offshore observations are suggested to
validate and improve these models for offshore applications. Long-term records of wind variations,
e.g., caused by storms, gusts or coastal irregularities, will be helpful to estimate the wind loading in
fatigue testing of turbine blades. Due to the multidisciplinary nature of turbine control, scan patterns
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and retrieval methods have to be optimized to satisfy data requirements for the control system, e.g.,
quick assessment of the rotor effective wind speed. Taking full advantage of the pulsed Doppler LiDAR
scanning over a large spatial area, LiDAR-based algorithms targeted at controlling the entire wind
farm would be helpful to maximize power output and reduce damages caused by severe wind events.

Doppler LiDARs provide possibilities to better understand atmospheric wind, to improve
numerical forecasts, and to validate models with more available observations. It is a challenging task
to deduce atmospheric turbulence from raw LiDAR data, especially from near ground measurements,
where the influence of probe volume averaging is significant. Development of scan patterns and
corresponding retrieval methods for turbulence measurement is still an active research topic in the last
two decades [179]. In the future, synchronized multi-LiDAR configurations and LiDAR systems with
three emitting or receiving units may provide possibilities to remove the impediment to turbulence
measurements, thus improving our understanding of turbulence. Due to the high concentration
of aerosol, Doppler LiDAR is a promising technique for boundary layer and wind measurements
in urban areas, especially above the urban canopy. LiDAR measurements are expected to provide
valuable information in studies on urban ventilation, air pollution dispersion, sea breezes, heat island
and flow disturbances caused by tall buildings. Wind profiles obtained by Doppler LiDARs would
considerably improve the setting up of initial and boundary conditions for conducting numerical
simulations, particularly in complex circumstances, such as assessing ventilation at the pedestrian
level. In addition, measurements of winds, temperature and moisture profiles with a deployment of
instruments including Doppler LiDARs are valuable for model validations.

Author Contributions: Conceptualization: Z.L., J.F.B., P.-W.C., J.C.H.F., Y.L., H.W.L.M., C.R., E.N.; Methodology:
Z.L., J.F.B., H.W.L.M, P.-W.C. ; Formal Analysis: Z.L., J.F.B., H.W.L.M.; Writing-Original draft preparation: Z.L.;
Writing-Review and Editing: H.W.L.M., J.F.B.; Supervision: J.F.B., E.N.; Funding acquisition: E.N.

Acknowledgments: We thank the reviewers for the constructive comments which helped us a lot in the revision
of paper and in making a better presentation of our work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
4DVAR four-dimensional variational data assimilation
CFD computational fluid dynamics
CW continuous wave
CWEX Crop Wind Energy Experiment
DBS doppler beam swinging
DLR Deutsches Zentrum für Luft- und Raumfahrt
DOF degree of freedom
ECMWF Medium-Range Weather Forecasts
ESDU Engineering Sciences Data Unit
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ICAO International Civil Aviation Organization
LiDAR Light Detection And Ranging
MLH mixed layer height
NOAA National Oceanic and Atmospheric Administration
OI optimal interpolation
PPI plan position indicator
RHI range height indicator
RUNW Reducing Uncertainty of Near-shore wind resource Estimates
SNR Signal-to-Noise Ratio
SODAR Sound Detection and Ranging Device
TWICS Turbine Wake and Inflow Characterization Study
VAD velocity azimuth display
VVP volume velocity processing

Appendix A. Wind Retrieval Methods

This section describes retrieval methods based on the linear least squares regression (velocity
azimuth display in Appendix A.1 and volume velocity processing in Appendix A.2) and two
data assimilation techniques (optimal interpolation in Appendix A.3 and variational methods in
Appendix A.4). Methods to retrieve wind fields from datasets obtained by multiple LiDARs are
discussed in Appendix A.5.

Appendix A.1. Velocity Azimuth Display

Based on the assumption that the wind field is horizontally homogeneous, the basic idea of the
velocity azimuth display (VAD) is to fit the observed wind velocity at a given elevation angle to a
sinusoidal curve [180]. Assuming that the velocity vector varies linearly around the center of the circle
being scanned, the first order Taylor approximation of 3 velocity components (u, v, w) are given by

u = u0 +
∂u
∂x

x +
∂u
∂y

y +
∂u
∂z

z,

v = v0 +
∂v
∂x

x +
∂v
∂y

y +
∂v
∂z

z,

w = w0 +
∂w
∂x

x +
∂w
∂y

y +
∂w
∂z

z,

(A1)

where u0, v0 and w0 are velocity components at the center of the circle being scanned by LiDAR.
As shown in Figure A1, the Cartesian coordinates (x, y, z) is converted to the spherical coordinates
(r, θ, φ) by

x = r cos φ sin θ,

y = r cos φ cos θ,

z = r sin φ.

(A2)

Here r denotes the radial distance from the LiDAR, φ is the elevation angle and θ is the azimuthal
angle. The radial velocity vR is expressed as:

vR = u sin θ cos φ + v cos θ cos φ + w sin φ. (A3)
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Substituting Equations (A1) and (A2) into Equation (A3), vR is written as:

vR =u0 sin θ cos φ + v0 cos θ cos φ + r cos2 φ cos θ sin θ

(
∂u
∂y

+
∂v
∂x

)
+ r cos2 φ sin2 θ

∂u
∂x

+ r cos2 φ cos2 θ
∂v
∂y

+ r sin φ cos φ sin θ
∂u
∂z

+ r sin φ cos φ cos θ
∂v
∂z

+ w0 sin φ + r cos φ sin φ sin θ
∂w
∂x

+ r cos φ sin φ cos θ
∂w
∂y

+ r sin2 φ
∂w
∂z

.

(A4)

Neglecting vertical derivatives, i.e., ∂u
∂z and ∂v

∂z , and derivatives of w in Equation (A4) gives a
Fourier series in θ:

vR = a0 +
2

∑
n=1

(an sin nθ + bn cos nθ) , (A5)

with coefficients:

a0 =
1
2

r cos2 φ

(
∂u
∂x

+
∂v
∂y

)
+ w0 sin φ,

a1 = u0 cos φ,

b1 = v0 cos φ,

a2 =
1
2

r cos2 φ

(
∂u
∂y

+
∂v
∂x

)
,

b2 =
1
2

r cos2 φ

(
∂v
∂y
− ∂u

∂x

)
.

(A6)

When n radial velocity observations (vi
R, i = 1, 2, ..., n) are obtained, Equation (A4) is converted to:

vi
R = PK + εi, (A7)

where P = [1, sin θ, cos θ, sin 2θ, cos 2θ] is the parameter vector that consists of basis functions;
KT = [a0, a1, b1, a2, b2] is the combination of Fourier coefficients; and εi represents the model error.
Then, a linear least squares regression can be used to estimate K, which is related to the velocity
components and kinematic information of the wind field. If the flow is assumed to be uniform, vR can
be calculated using the first harmonics in Equation (A5).
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Figure A1. Schematic overview of Doppler LiDAR used to measure wind profiles. u is the wind
velocity vector at the measurement point, u0 is the reference velocity vector at the center of the circle
being scanned by LiDAR, vR is the radial velocity, r is the radial distance from the LiDAR, φ is the
elevation angle, and θ is the azimuthal angle.

Appendix A.2. Volume Velocity Processing

Instead of using Fourier series (Equation (A5)), volume velocity processing (VVP) technique
determines a set of basis functions that are dependent on desired parameters. With the assumption
that u varies linearly with u0 (the same as the VAD in Appendix A.1), the vector that consists of all
kinematic parameters K is denoted by:

KT =

[
u0, v0,

(
∂u
∂y

+
∂v
∂x

)
,

∂u
∂x

,
∂v
∂y

,
∂u
∂z

,
∂v
∂z

, w0,
∂w
∂z

,
∂w
∂x

,
∂w
∂y

]
, (A8)

and the vector of corresponding functions P is given by:

PT =



cos φ sin θ

cos φ cos θ

r cos2 φ cos θ sin θ

r cos2 φ sin2 θ

r cos2 φ cos2 θ

r cos φ sin φ sin θ

r cos φ sin φ cos θ

sin φ

r sin2 φ

r cos φ sin φ sin θ

r cos φ sin φ cos θ



. (A9)

Similar to VAD described in Appendix A.1, the least squares fit is employed to estimate K.
The primary difference between the VAD and VVP lies on the method to choose parameters (i.e., K)
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and the corresponding basis functions (i.e., P). In VVP, P is not inherent orthogonality, which may
lead to numerical instability. To cope with this problem, Boccippio [181] suggested to neglect vertical
shear terms (i.e., ∂u

∂z , ∂v
∂z , ∂w

∂z ). The diagnostic analysis shows that the influence of neglecting vertical
shear terms is insignificant and can be further mitigated by increasing spatial resolution in the vertical
direction, i.e., z direction [181].

Appendix A.3. Optimal Interpolation

In the optimal interpolation (OI), the wind velocity u = (u, v)T is projected onto the analyzed
coordinate system (l, t). As shown in Figure A2, the l axis is parallel to xj − xi and the t axis is
perpendicular to the l axis. α = arctan

[(
yj − yi

)
/
(
xj − xi

)]
is the angle between the x axis and the l

axis. ul and ut are components of u in the l and t directions, respectively. Velocity components (u, v)
are related to (ul , vt) through (ul , vt)T = R(α) · (u, v)T , where R(α) denotes the rotation matrix [182].
The covariance function of velocities, i.e., ui and uj at positions xi and xj respectively, is defined as

C =< ui, uj
T >, (A10)

where < • > is the statistical mean. If strict isotropy holds true [61], the relation between covariance
tensors in the (x, y) and the (l, t) coordinate systems is given by:

Cxy =

[
< uiuj > < uivj >

< viuj > < vivj >

]
=

[
Cll cos2 α + Ctt sin2 α (Cll − Ctt) sin α cos α

(Cll − Ctt) sin α cos α Cll sin2 α + Ctt cos2 α

]
, (A11)

where Cll and Ctt are diagonal elements of the covariance tensor Clt =< (ul,i, vt,i)
T(ul,j, vt,j) >.

With the assumptions of homogeneity and isotropy, elements in Clt are functions of r =√(
xj − xi

)2
+
(
yj − yi

)2 and are independent of α. Similarly, the covariance function of the radial
velocity vR is given by

Crr,ij =< vR,ivR,j >=< (ui cos βi + vi sin βi)
(
uj cos β j + vj sin β j

)
>

=
1
2
[
(Cll + Ctt) cos

(
βi − β j

)
+ (Cll − Ctt) cos

(
βi + β j − 2α

)]
,

Ctr,ij =< vT,ivR,j >=< (ui cos βi − vi sin βi)
(
uj cos β j + vj sin β j

)
>

=
1
2
[
− (Cll + Ctt) sin

(
βi − β j

)
+ (Cll − Ctt) sin

(
βi + β j − 2α

)]
,

(A12)

where vT is the velocity component perpendicular to the radial velocity vR.
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Figure A2. Decomposition of velocities at two points xi and xj.

To determine the covariance function Crr,ij, it is further assumed that the observation errors are
uncorrelated with background errors and are not auto-correlated when r > ro, where ro represents the
range of observation error correlation [183]. The innovation correlation is defined as [183]:

< didj >=


Crr,ij

σ2
d

when r > ro,
Crr,ij+Co

rr,ij

σ2
d

when r ≤ ro,
(A13)

where di = (vRd,i− < vRd,i >) /σdi is the normalized innovation of the ith observation point; vRd,i =

vRo,i − vRb,i is the innovation; vRo,i is the observed radial velocity; vRb,i is the background radial
velocity; σd,i =< (vRd,i− < vRd,i >)2 > is the innovation variance; and σd is the averaged innovation
variance over all available observations points. The background field can be provided by another
instrument [183] or retrievals from VAD [62,103]. Then, the background error covariance matrix Crr

and observation error covariance matrix Co
rr are estimated based on the innovation correlation in the

range of r > ro and r ≤ ro, respectively [62].
Based on the assumption that the background and observation errors are Gaussian random and

independent of each other [184], the variational cost function is written as:

J = (x− xb)
T B−1 (x− xb) + (yo −H · x)T R−1 (yo −H · x) , (A14)

where x is the vector of desired variables in the analysis space; xb is the vector of background
information in the analysis space; yo is the vector of observations in the observation space; B and R are
respectively the background and observation error covariance matrices; and H is the matrix consisting
of linear observation operators that maps vectors in the observation space to the corresponding analysis
space [61]. To minimize the cost function in Equation (A14), the velocity increment ∆a = (∆ar, ∆at) =

x− xb = B (B + R)−1 (yo −H · xb) should satisfy the following two conditions [185]:

∆ar = Crr (Crr + Co
rr)
−1 d,

∆at = Ctr (Crr + Co
rr)
−1 d,

(A15)
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where d = yo −H · x = [d1, d2, ..., dn]T is a vector containing n normalized innovation di defined
previously. The increment in u can be obtained with:

∆ui = ∆ar,i cos βi − ∆at,i sin βi,

∆vi = ∆ar,i sin βi + ∆at,i cos βi.
(A16)

Appendix A.4. Variational Methods

In variational methods, weak or penalty constraints can be directly added to the cost function.
According to models that compute analytical variables x in Equation (A14), variational methods can
be classified into two types [186]: function fitting-based methods, e.g., two-step variational method
(2SVAR); and physical-based method, e.g., four-dimensional variational data assimilation (4DVAR).

In the 2SVAR, the cost function is defined as:

J =∑
x,y

W1 (u− ub)
T (u− ub) + ∑

x,y
W2 (vR − vRo)

2 + ∑
x,y

W3 (∆x)2 (∇ · u)2

+ ∑
x,y

W4 (∆x)2
(

∂v
∂x
− ∂u

∂y

)2
+ ∑

x,y
W5 (∆x)4

(
∑
F=u,v

∇2F
)2

+ ∑
x,y

∑
t

W6

(
∂vRo

∂t
+ u · ∇vRo

)2
,

(A17)

where vR is predicted by control functions; ub = (ub, vb)
T is the background velocity; ∆x is the grid

spacing; and ∑x,y denotes summation over a 2D space. The third, fourth and fifth terms on the
right hand side of Equation (A17) are smoothing terms involving divergence, vorticity and Laplacian
of the velocity field, respectively. The last term is a conservation constraint [93]. The weights in
Equation (A17) are chosen to ensure all the terms having the same order of magnitudes [186]. To model
velocity components (u, v), the second order orthonormal functions are employed:

u (x, y) =
2

∑
ix=0

2

∑
iy=0

aix,iyPix (x) Qiy (y) ,

v (x, y) =
2

∑
ix=0

2

∑
iy=0

bix,iyPix (x) Qiy (y) ,

(A18)

where Pix (x) and Qiy (y) are Legendre polynomials [187]. The first step of the 2SVAR is to determine
coefficients aix,iy and aix,iy for ub, which can be done via minimizing the cost function in Equation (A17)
by setting W1 = 0. Then, based on the background velocity field obtained in the previous step, a similar
minimization procedure is adopted to retrieve the velocity field.

In the 4DVAR, the cost function is defined as:

J = ∑
t

∑
x,y,z

Wα (vR − vRo)
2 + ∑

x,y,z

[
Wβ (∇ · u)2

]
t=0

+ ∑
F=u,v,w,θT

∑
t

∑
x,y,z

WF
(
∇2F

)2
, (A19)

where vR is predicted by the incompressible Navier–Stokes equations; ∑t and ∑x,y,z denotes summation
over time and 3D space, respectively; θT is the temperature; and Wα is a coefficient related to the
quality of the observational dataset. The second term on the right hand side of Equation (A19) is a
penalty constraint to suppress divergence of the initial field with Wβ = 100 [188]. WF is adjusted
dynamically to ensure the contribution of the last term is less than 20%. Due to the unpredictable
nature of turbulence, the impact of background variables is difficult to predict and is omitted in
the 4DVAR system [188]. A gradient-based optimization method is employed to minimize the cost
function in Equation (A19) [189].



Remote Sens. 2019, 11, 2522 31 of 47

Appendix A.5. Retrieval Methods of Multiple LiDARs

In order to fully characterize the wind vector u, three linearly independent vR measurements are
required. Efforts have been made to combine space and time synchronized measurements from two
or three LiDARs at different locations. Figure A3 illustrates a dual LiDAR scan with 4 intersecting
points. Multi-LiDAR configurations can improve time resolution by sampling the same volume
simultaneously from different directions, thus decrease the uncertainties caused by inhomogeneity of
fluid [40].

Based on simple trigonometry, Collier et al. [190] computed velocity components at a limited
number of intersecting points of two LiDAR beams. A similar method was used by Calhoun et al. [48]
and Cheynet et al. [191] to retrieve the wind field by solving 2D linear equations. This idea provides
a simple way to calculate velocity components on the plane determined by the intersecting laser
beams. Since only two linearly independent vR have been measured, the linear system with three
orthogonal velocity components (i.e., u, v and w) is underdetermined. In order to obtain 3D wind
fields from dual LiDAR observations, Drechsel et al. [50] and Newsom et al. [192] incorporated the
incompressible continuity equation (i.e.,∇ · u) into the linear system by employing a central difference
numerical scheme or by minimizing a cost function. When dual LiDAR observations were used in
4DVAR retrievals, the accuracy of 4DVAR increased from 80–90% to 90–94% compared to the single
LiDAR system.

A semi-synchronized system with three LiDARs was used by Berg et al. [193] to increase the
temporal resolution of mean wind estimates. In the study on instantaneous wind estimates [194],
the turbulent quantities measured by three LiDARs staring at a point close to a sonic anemometer
compared well with corresponding sonic anemometer measurements. In synchronized trinal
LiDAR configurations, 3D wind velocity variance can be directly obtained by solving 3D linear
equations [195,196].

Figure A3. Schematic diagram of a dual LiDAR scan. Blue solid circles represent the intersecting points
of two LiDAR beams.
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Appendix B. Summary of Literature on Pulsed Doppler Wind LiDARs

Table A1. Literature on pulsed Doppler LiDARs. Measurements using a LiDAR system made by a Manufacturer were conducted during a certain Time period in
Location with certain Scan Pattern. Instruments were used as references for validating LiDAR datasets. NA: Not Available.

Author Location Time Manufacturer Scan pattern Instruments Remarks

Chai et al. (2004)
[197]

Leon 24 Oct 1999 NOAA 1 PPI 2 NA 4DVAR 3

Köpp et al. (2004)
[77]

Tarbes Jun 2002 DLR 4 RHI 5 NA Aircraft wake vortices

Newsom & Banta
(2004) [189]

Kansas 25 Oct 1999 NOAA PPI NA 4DVAR

Collier et al. (2005)
[190]

London 23 Jul 2003 University of Salford PPI and RHI NA Dual LiDAR

Ishii et al. (2005) [198] Wakkanai 3 and 4 Sep 2002 Lockheed
Martin Coherent
Technologies

PPI Radiosondes and
radar

Airborne

Köpp et al. (2005)
[86]

Tarbes Jun 2002 DLR RHI NA Aircraft wake vortices

Newsom et al. (2005)
[188]

Oklahoma 28 Jun to 31 Jul 2003 CLR Photonics RHI NA 4DVAR

Smalikho et al.
(2005) [199]

Tarbes 27 and 28 Aug 2003 DLR RHI NA Turbulence

Weissmann et al.
(2005) [168]

Southern Germany 19 Jul 2002 DLR PPI Dropsonde Airborne

Wulfmeyer & Janjić
(2005) [41]

Pacific 23 Jun 1999 NOAA Staring and PPI Radiosonde Shipborne, Boundary layer

Calhoun et al. (2006)
[48]

Oklahoma 9 Jul 2003 Lockheed
Martin Coherent
Technologies

RHI SODAR and radar Dual LiDAR

Chan & Shao (2007)
[93]

Hong Kong 2002 to 2006 NA PPI and RHI Anemometer and
weather buoy

Two-step variational method

Davies et al. (2007)
[42]

Northolt 3 weeks in Jul 2003 University of Salford Staring NA Boundary layer

Weissmann &
Cardinali (2007) [173]

north Atlantic 14 to 28 Nov 2003 DLR PPI Dropsonde Airborne

Xia et al. (2007) [49] Oklahoma 28 Jun to 31 Jul 2003 CLR Photonics RHI NA Dual LIDAR, 4DVAR
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Table A1. Cont.

Author Location Time Manufacturer Scan pattern Instruments Remarks

Drechsel et al. (2008)
[50]

Owens Valley 14 Mar to 25 Apr 2006 Lockheed
Martin Coherent
Technologies

PPI and RHI Radiosonde and wind
profiler

Dual LiDAR

Shun & Chan (2008)
[55]

Hong Kong 2003 to 2006 NA PPI, RHI and glide
patch scan

Quick access recorder Airport wind shear

Pearson et al. (2009)
[37]

Cardington 51 days in 2007 Halo Photonics PPI Radiosonde, radar
and ultrasonic
anemometer

Boundary layer

Tucker et al.
(2009)[146]

Houston Jul 2006 NOAA Staring, PPI and RHI Radiosonde Shipborne, Boundary layer

Hill et al. (2010) [51] Owens Valley 25 Mar 2006 Lockheed
Martin Coherent
Technologies

RHI NA Dual LiDAR

Käsler et al. (2010)
[46]

Bremerhaven NA DLR Arc sector and RHI NA Turbine wake

Pu et al. (2010) [163] Pacific 16 to 17 Aug 2008 NA NA Dropsonde Airborne, Typhoon
Barlow et al. (2011)
[145]

London 25 Oct to 13 Nov 2007 Halo Photonics Staring Sonic anemometer Turbulence

Iwai et al. (2011)
[161]

Tokyo 14 May to 15 Jun 2008 NICT 6 PPI and RHI Ceilometer Sea breeze

Kiemle et al. (2011)
[73]

Rhine valley 30 Jul 2007 DLR PPI In-situ sensors Airborne, Complex terrain

Sathe et al. (2011)
[200]

Høvsøre Jan to Apr 2009 Leosphere PPI Sonic anemometers Turbulence

Schumann et al.
(2011) [169]

Southern Germany
and Iceland

19 April to 18 May
2010

DLR PPI In-situ aerosol
instrumentation

Airborne, Valcano plume

Tang et al. (2011) [54] Hong Kong Apr 2008 to Feb 2009 NA PPI and RHI NA Two-step variational method
Aitken et al. (2012)
[67]

Boulder and central
Iowa

Jun to Aug 2010 Leosphere PPI Ceilometer LiDAR performance
assessment

Koch et al. (2012)
[113]

Virginia Beach 4 Oct to 17 Oct 2011 NA Arc sector In-situ anemometer Offshore wind measurement

Kongara et al. (2012)
[62]

Oklahoma 28 Jun to 31 Jul 2003 CLR Photonics PPI NA Optimal interpolation
method

Pichugina et al. (2012)
[111]

New England 9 Jul to 12 Aug 2004 NOAA PPI and RHI NA Shipborne

Weissmann et al.
(2012) [164]

Pacific 11 to 21 Sep 2008 DLR PPI Dropsonde Airborne, Typhoon
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Table A1. Cont.

Author Location Time Manufacturer Scan pattern Instruments Remarks

Drew et al. (2013)
[155]

London 22 May 2011 to 6 Jan
2012

Halo Photonics DBS 7 Sonic anemometer Urban flow

Harvey et al. (2013)
[151]

Southern England 2009 Halo photonics Staring NA Boundary layer

Iungo et al. (2013)
[44]

Canton de Valais Jun to Aug 2011 Halo Photonics Staring, RHI NA Dual LiDAR, Turbine wake

Krishnamurthy et al.
(2013) [103]

NA Jun to Jul 2007 Lockheed
Martin Coherent
Technologies

PPI Cup anemometers
and vanes

Wind farm optimization

Lane et al. (2013)
[201]

London 06 Jul 2010 to 11 Jan
2012

Halo Photonics DBS Sonic anemometer Urban flow

Rajewski et al. (2013)
[122]

Central Iowa 2010 and 2011 Leosphere NA NA Turbine wake

Smalikho et al. (2013)
[119]

Boulder Apr 2011 NOAA Arc sector and PPI Sonic anemometer Turbine wake

Aitken et al. (2014)
[120]

Boulder 5 Apr to 3 May 2011 NOAA Arc sector and RHI NA Turbine wake

Bluestein et al. (2014)
[202]

Oklahoma, Texas
Panhandle, Kansas
and Colorado

May to Jun 2010 Lockheed
Martin Coherent
Technologies

Arc sector X-band Doppler
radar

Truck-mounted, Tornado

Fuertes et al. (2014)
[194]

Cabauw Dec 2012 Halo Photonics Staring Sonic anemometer Trinal LiDAR, Turbulence

Iungo et al. (2014)
[116]

Collonges Jun to Oct 2012 Halo Photonics Staring, PPI and RHI Sonic anemometer Turbine wake

Kavaya et al. (2014)
[165]

Atlantic Aug to Sep 2010 NA Arc sector Dropsonde Airborne, Hurricane

Koch et al. (2014)
[112]

Virginia and
Maryland

2012 and 2013 NA Arc sector and RHI NA Airborne, Offshore wind
measurement

Schween et al.
(2014)[69]

Jülich Dec 2011 to Nov 2012 Halo Photonics NA Radiosondes Boundary layer

Achtert et al. (2015)
[72]

Arctic 5 Jul to 5 Oct 2014 Halo Photonics PPI Radiosonde Shipborne

Banta et al. (2015)
[121]

Boulder Mar to Apr 2011 NOAA Arc sector and RHI NA Turbine wake

Bastine et al. (2015)
[127]

North Sea NA Leosphere Staring Ultrasonic
anemometer

Turbine wake

Berg et al. (2015)
[193]

Høvsøre Jun 2013 Technical University
of Denmark

Sonic anemometers Arc sector and RHI Trinal LiDAR
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Devara et al. (2015)
[154]

Pune 2009 and 2010 Leosphere PPI and DBS Radiosonde Boundary layer

Klaas et al. (2015)
[203]

Kassel NA Leosphere PPI Cup and ultrasonic
anemometers

Complex terrain

Newsom et al. (2015)
[192]

Oklahoma 21 Oct to 22 Nov 2010 Halo Photonics PPI and RHI Sonic anemometer,
wind profiler and
radiosonde

Dual LiDAR

Päschke et al. (2015)
[34]

Tauche 2 Oct 2012 to 2 Oct
2013

Halo Photonics PPI Radar and
radiosonde

LiDAR performance
assessment

Sathe et al. (2015) [56] Høvsøre 1 to 28 Jul 2013 Technical University
of Denmark

PPI and DBS Cup anemometer Turbulence

Smalikho et al. (2015)
[79]

Tomsk Summer 2014 Halo Photonics RHI NA Aircraft wake vortices

Vakkari et al. (2015)
[147]

Limassol and Loviisa 22 Aug to 15 Oct 2013
and 10 Dec 2013 to 17
Mar 2014

Halo Photonics PPI NA Boundary layer

Wang et al. (2015)
[47]

Colorado 15 to 25 Feb 2013 SgurrEnergy Arc sector Cup and sonic
anemometers and
wind vanes

LiDAR performance
assessment

Aubrun et al. (2016)
[117]

Ablaincourt-Pressoir Nov to Dec 2015 Leosphere Arc sector NA Multiple turbine wakes

Choukulkar et al.
(2016) [63]

Lamar 2 weeks in Sep 2003 NOAA PPI NA Prediction for power
generated by a wind turbine

Floors et al. (2016)
[106]

Denmark Nov 2015 to Feb 2016 Leosphere PPI, RHI and arc
sector

NA Dual LIDAR

Kim et al. (2016) [101] Jeju Island 4 Feb to 23 Mar 2015 Leosphere PPI Cup anemometer and
wind vane

Influence of terrain
complexity

Pauscher et al. (2016)
[105]

Kassel 3 Jul to 17 Aug 2014 Leosphere Staring and DBS Sonic anemometer Trinal LiDAR, Complex
terrain

Van Dooren et al.
(2016) [128]

North Sea NA Leosphere Arc sector NA Dual LiDAR, Turbine wake

Wu et al. (2016) [53] Longgang and
Rudong

2013 to 2015 Seaglet
Environmental
Technology

PPI and RHI Wind mast Turbine wake

Bonin et al. (2017)
[70]

Erie 15 to 31 May 2015 Leosphere Staring, PPI, RHI and
DBS

Sonic anemometer Turbulence
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Bodini et al. (2017)
[118]

Central Iowa June to September
2013

Leosphere Arc sector, PPI and
RHI

NA Multiple turbine wakes

Chen (2017) [170] Tainan 28 Jul 2015 Leosphere DBS NA Building wake
Cherukuru et al.
(2017) [186]

North Sea 31 Aug 2016 Leosphere PPI Cup and vane
anemometer

Two-dimensional variational
data assimilation

Cheynet et al. (2017)
[191]

Bjørnafjord May to Jun 2016 Technical University
of Denmark

Staring and arc sector Sonic Anemometer Dual LiDAR

Huang et al. (2017)
[143]

Beijing Jun to Sep 2015 Leosphere DBS Sonic anemometers
and open-path gas
analyzers

Boundary layer

Kawamoto (2017)
[162]

Fukuoka 11 Sep 2015 Leosphere DBS NA Sea breeze and urban heat
island

Kikumoto et al.
(2017) [159]

Tokyo Sep to Dec 2013 and
Apr to Jun 2014

NA PPI ultrasonic
anemometer

Urban flow

Lim et al. (2017) [158] Tokyo 1 Sep 2013 to 30 Jun
2014

Leosphere PPI NA Urban flow

Newsom et al. (2017)
[204]

Oklahoma 6 Mar to 16 Apr 2015 Halo Photonics PPI Sonic anemometer LiDAR performance
assessment

Suomi et al. (2017)
[39]

Høvsøre 10 and 11 Oct 2015 Leosphere DBS Sonic anemometer Wind gusts

Thobois et al. (2017)
[52]

Paris NA Leosphere RHI NA Aircraft wake vortices

Vasiljević et al. (2017)
[195]

Perdigão 4 May to 29 Jun 2015 Technical University
of Denmark

Staring and RHI NA Trinal LiDAR

Zhai et al. (2017)
[129]

Shandong, Jiangsu
and Xinjiang

2013 to 2015 Seaglet
Environmental
Technology

PPI, arc sector and
RHI

NA Turbine wake

Bonin et al. (2018)
[148]

Indianapolis 2016 Halo Photonics Staring, PPI and RHI NA Boundary layer

Bucci et al. (2018) [71] East Pacific 2, 3, 8 and 9 Aug 2016 NA PPI Dropsonde Airborne, Tropical cyclones
Gao et al. (2018) [88] Hong Kong 2014 Lockheed

Martin Coherent
Technologies

RHI NA Aircraft wake vortices

Gottschall et al.
(2018) [108]

Southern Baltic Sea 7 Feb to 8 Jun 2017 Leosphere DBS NA Shipborne

Halios & Barlow
(2018) [149]

London 2011 and 2012 Halo Photonics Staring and DBS NA Boundary layer
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Karagali et al. (2018)
[107]

Northern Denmark Apr to Aug 2016 Leosphere RHI and arc sector NA Dual LiDAR, Complex
terrain

Kotthaus et al. (2018)
[153]

London 21 Sep 2010 to 2 Mar
2011

Halo Photonics Staring, DBS and RHI NA Boundary layer

Manninen et al.
(2018) [152]

Hyytiälä and Jülich 1 May 2015 to 31 Dec
2016

Halo Photonics Staring, PPI and DBS NA Boundary layer

Pantillon et al. (2018)
[167]

Karlsruhe Dec 2016 to Mar 2017 Lockheed
Martin Coherent
Technologies

PPI and RHI Doppler C-band
radar and
instrumented tower

Extratropical cyclones

Risan et al. (2018) [43] Central Norway 13 Apr to 11 Jun 2015 Halo Photonics Staring Sonic anemometer Complex terrain

Sepe et al. (2018)
[157]

Aversa 9 Oct 2015 to 27 Jul
2016

Leosphere PPI NA Urban flow

Shimada et al. (2018)
[110]

Hazaki Oct 2015 to Dec 2016 Leosphere Staring NA Fetch effect

Thobois et al. (2018)
[27]

Lanzhou 9 months in 2016 Leosphere PPI and RHI NA Airport wind shear. Aircraft
wake vortices

Wildmann et al.
(2018) [196]

Central Portugal 8 May to 14 Jun 2017 Leosphere PPI and RHI Sonic anemometer Trinal LiDAR, Turbine wake

Zhang et al. (2018)
[166]

Atlantic 26 August 2015 Lockheed
Martin Coherent
Technologies

Arc sector Dropsonde and
Doppler radar

Airborne, Tropical cyclone

Fernando et al. (2019)
[109]

Perdigão 1 May to 15 Jun 2017 NA PPI and RHI NA Trinal LiDAR, Complex
terrain

Palma et al. (2019)
[205]

Perdigão 2017 NA RHI NA Complex terrain

Wu et al. (2019) [75] Beijing 2017 QINGDAO Leice
Transient Technology

RHI NA Aircraft wake vortices

Yoshino (2019) [97] Narita 20 Jun 2012 NA PPI and RHI NA Airport wind shear
Zhang et al. (2019)
[91]

Beijing 2015 and 2016 NA Arc sector, RHI and
DBS

NA Airport wind shear

1 National Oceanic and Atmospheric Administration (NOAA); 2 Plan position indicator; 3 Four-dimensional variational data assimilation; 4 Deutsches Zentrum für Luft- und
Raumfahrt; 5 Range height indicator; 6 National Institute of Information and Communications Technology; 7 Doppler beam swinging.
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