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Abstract

Synthetic copper sulfides have emerged as promising non-toxic and low-cost materi-

als for thermoelectric power generation in low-grade waste heat recovery systems. Sim-

ilarly to tetrahedrite and colusite, mawsonite Cu6Fe2SnS8 exhibits a modified corner

sharing Cu-S tetrahedral network which usually leads to p-type character and low ther-

mal conductivity. In order to explore the applicative potential of mawsonite, we studied
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the band structure, the phonon dispersions, the electronic and transport coefficients as

well as the effect of isovalent substitutions of Fe, Sn and S. The combined analysis of

electronic and vibrational properties highlights the role of the weakly bonded copper

component in achieving a very low thermal conductivity. We also demonstrate that

the Cu-S bond builds a 2D conductive network where the contribution from other ele-

ments is negligible. Magnetic calculations point to an anti-ferromagnetic ground state

substantially affected by the covalency of the bonds with the conductive plane. The

chemical substitution of Fe with Ni leads to non-magnetic metals whereas Cu6Fe2SnSe8,

Cu6Fe2PbS8, and Cu6Fe2GeX8 with X=S, Se, and Te are semiconductors.

Introduction

Thermoelectric (TE) devices provide waste-heat recovery solutions that are robust, envi-

ronmentally friendly, and maintenance-free. Available estimates1,2 indicate that thermal

losses exceed 50% of the total energy production of the United States, underlining that even

marginally efficient conversion may have an enormous impact on the economies of industrial-

ized countries. Although there have been significant advances in TE performance for power

generation at high temperatures, there is a dearth of low-cost and sustainable materials for

the recovery of industrial low-grade waste heat (T ≤ 600 K) which according to recent es-

timates represents about 60% of industrial emissions.3 To the best of our knowledge, the

most promising materials in this temperature window are β-ZnSb3
4 (ZT = 1.3 @ 670 K),

AgPb18SbTe20
5 (ZT = 2.2 @ 800 K), Mg2Si1-xSnx

6 (ZT = 1.3 @ 700 K), Na1−xPbmSbTem+2
7

(ZT = 1.7 @ 650 K), PbTeSrTe8 (ZT = 2.5 @ 923 K), PbTe−AgTeLa9 (ZT = 1.6 @ 775 K).

Traditional TE devices are engineered using doped p- and n- legs to form a thermocouple

in which heat current flows in parallel whereas charge flows in series. Ideally, in each leg, the

only carriers available are holes or electrons: the combination of low thermal conductivity

(κ ) and large power factor (S2σ, where S is the Seebeck coefficient and σ is the electrical

conductivity) is essential for the generation of large voltage when a temperature gradient is

2
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applied through the device. The energy conversion efficiency of a TE material is expressed

in terms of the figure of merit ZT = S2σT/κ - where T is the temperature at which the

device operates.

Increasing the efficiency of the thermoelectric energy conversion is a difficult task which

requires the optimization of intertwined electrical and thermal degrees of freedom. The

main strategies used to target improved TE performance have been based on the joint effort

of synthesis, characterization, and theoretical/computational studies. This is the case of

the band-engineering, a procedure that relies on the accurate knowledge of the electronic

structure to increase the effective masses and the number of carriers pockets at the Fermi

energy with the goal to optimize the power factor.10–12 More recently, the manipulation of

structural and bonding features that affect the electron relaxation time has also been suc-

cessful.13 The optimization of lattice thermal conductivity, κlat, can be controlled by tuning

the anharmonicity of the bonds14,15 or by introducing additional scattering channels for the

heat carrier vibrations. This design criterion to reduce lattice thermal conductivity has been

pursued by disrupting the crystalline order through the inclusion of heavy elements in the

crystal structure (e.g. AgPbSbTe2,
5 Bi2Te3,

16 BaLaYbCoSb12,
17) or through nanostructur-

ing.18 Unfortunately, most of the new materials turned out to include rare, expensive, or/and

toxic chemical elements making them less ideal for technological deployment.

In the last decade, the need to conciliate performance with environmental and cost con-

straints has triggered research toward synthetic sulfide minerals, which often contain non-

toxic and Earth-abundant elements. Despite the sulfur’s light atomic weight and the strong

ionic character, which are usually detrimental to the TE effects, sulfides emerged as good

candidates for p-type TE conversion. This is the case of the superionic phase of chalcocite19

Cu2-xS (0.5 < ZT < 1.7), where disordered Cu ions contribute to extremely low ther-

mal conductivity while keeping electrical properties similar to normal semiconductors. The

strong migration of Cu ions can be mitigated by adding other metallic species into the com-

position extending the exploration to ternary/quaternary compounds, like tetrahedrite20,21

3
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Cu12-xMxSb4S13 with M = Mn, Fe, Co, Ni, Zn, colusite22,23 Cu26V2Sn6S32, bornite24 Cu5FeS4,

stannoidite25 Cu8Fe3Sn2S12 and germanite26 Cu26Fe4Ge4S32, to mention a few. In particu-

lar tetrahedrite and chalcocite are among the most widespread ores on Earth. The largest

values for ZT in sulfide minerals were reported near 0.5 at 500K for pristine compositions

without specific optimization (see for instance Ref. Pavan Kumar et al. 13, Fig. 10) making

this family of materials of great interest for low grade waste-heat recovery.

In this manuscript we present a first-principles theoretical study of the bulk properties of

mawsonite Cu6Fe2SnS8, a sulfide mineral found in hydrothermal copper ores within volcanic

rocks. Our results are discussed in light of a recently published experimental study,27 that

shows very low value for lattice thermal conductivity, below 1 W m−1 K−1 in the range of

temperature 300 < T < 650 K, and the figure of merit ZT = 0.43 at T = 623 K for the un-

doped structure. Besides providing some considerations on the crystal structure presented

in Zhang et al. 27 , we analyse the band structure and the vibrational dispersion to rationalize

the electronic transport properties and the magnetic properties. In particular, we identify the

special role of the weakly bonded Cu component in lowering the frequency of optic modes.

We will show that the vibrational properties in weakly bonded subsystems display marked

similarities to the ones observed in liquids or amorphous solids. In this conceptual framework,

the low thermal conductivity strictly depends on the coexistence of weakly bonded quasi-

liquid subsystems, CuS4, within a crystalline matrix. The anti-ferromagnetism induced by

Fe as well as the consequence of the covalency of the Cu-S bonds is also discussed. We also

assess the effect of chemical tuning in mawsonite by replacing Fe with Ni, S with Se and Te,

and Sn with Ge, and Pb.

4
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Figure 1: Unit cell of mawsonite Cu6Fe2SnS8 (space group N◦ 115) with S(4j) and S(4k) (yel-
low) corner-sharing tetrahedral network centered around Cu(4i) (green) and Cu(2g) (blue),
Fe(1b) and Fe(1c) (red) and Sn(1a) (gray) ions. Isosurface of the spin polarization positive
(yellow)/negative (magenta) indicates the AFM ordering as well as a presence of an induced
spin polarization on the plan shared by Fe and Cu (4i).
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Computational methods

All calculations in this work are based on spin-polarized density functional theory (DFT)

as implemented in Quantum Espresso28,29 integrated in the high-throughput infrastructure

of AFLOWπ+PAOFLOW,30,31 which allows for an automated and simplified calculation of

vibrational spectra, elastic properties, dielectric functions, and transport coefficients among

the others. With respect to traditional approaches for computing solids properties based on

plane-wave basis set, PAOFLOW provides an effective and accurate representation of the

ab initio electronic structure in terms of localized basis set. Once the ab initio electronic

structure is solved on a well converged plane-wave basis set, it is mapped into a tight binding

(TB) model that precisely reproduces a selected number of bands of interest. The Hamil-

tonian for a specific material, is computed in real space using pseudo atomic orbitals from

the pseudopotential of any given element as basis set. With this method one can first build

and then operate with the real space ab initio TB Hamiltonian that accurately reproduces

the DFT band structure. This procedure is convenient especially when the use of a very

dense k-point grid is preferable, as it happens in the computation of transport properties.

Further, the TB representation allows the efficient computation of two-electron integrals for

the development of a local exchange functional. The ACBN0 functional approach provides

a direct and self-consistent evaluation of the on-site Coulomb U and exchange J-parameters

at a low computational cost.32 Better accuracy for lattice parameters, energy band gap

and phonon dispersions are obtained.33 Initially, norm-conserving (NC) PBE pseudopoten-

tials34 (energy cut off of 250 Ry and 6 x 6 x 8 grid) are used to determine the effective

Hubbard corrections. Even though our implementation of ACBN0 uses norm-conserving

pseudo-potentials, the transferability of the U -values has been tested on different pseudo-

potentials.35 The phonons calculations use ultrasoft pseudopotentials (energy-cut off of 45

Ry and 6 x 6 x 8 grid) with the PBESol exchange-correlation functional36 and Hubbard U

corrections reported in the caption of Figure 3.
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Transport properties - Seebeck coefficient S, electrical conductivity σ and electronic con-

tribution to thermal conductivity κel - are computed by solving Boltzmann transport equa-

tion within the constant relaxation time and the rigid band approximation as implemented

in PAOFLOW.37 In agreement with similar compound, colusite23, we set to 10−15 s when

estimating the resistivity. A very dense interpolated k-mesh of 18 x 18 x 24 grid is used

for accurate calculations. When discussing the electronic structure, we report transport

properties across a large range of temperature whereas the chemical potential is considered

constant throughout the temperature range. PAOFLOW provides the generalized transport

tensors by independent calculations for spin-majority (↑) and spin-minority(↓).

Lsα =
1

4π3

∫
τ
∑
n

vsn(k)⊗ vsn(k)
∂f0
∂εs

[εsn − µ]dk, (1)

with α = 0, 1, 2, s =↑, ↓ is the spin index, τ is the constant scattering time, vn(k) is the

electron velocity for the n-th band on each k-point, f0 is the equilibrium distribution function

and ε is the electron energy in each spin configuration s. Taking into account the spin

polarization, the relevant transport quantities can be defined according to the two-current

model38 in which the spin-flip scattering is neglected:

σ = e2(L↑0 + L↓0), (2)

S = − 1

Te
([L↑0]−1 · L

↑
1 + [L↓0]−1 · L

↓
1), (3)

κel =
1

T
[(L↑2 + L↓2)− (L↑1 · [L

↑
0]
−1 · L↑1+ (4)

L↓1 · [L
↓
0]
−1 · L↓1]. (5)

Vibrational properties have been obtained using the finite-displacement method as imple-

mented in Quantum ESPRESSO with a supercell of 2 x 2 x 2, whose volume has been relaxed

first. Between each ionic step of the geometry optimization the force convergence tolerance

is set to 10−3 Ry/Bohr, while the energy tolerance is 10−4 Ry to ensure accuracy. In the self-

7
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consistent electronic calculation instead the energy threshold is set to 10−10 Ry. The phonon

dispersion provides a starting point for the computation of the lattice thermal conductivity,

as expressed in the Debye-Callaway model.39,40 Even though the integrated Grüneisen pa-

rameter is not directly correlated to thermal conductivity,41 the frequency distribution of the

Grüneisen parameter resolved by modes seems to be a good qualitative descriptor for the

lattice thermal conductivity.15,42,43 Within the quasiharmonic approximation we compute

the mode resolved Grüneisen parameter γqj for the wave vector q and the phonon branch j

by taking the derivative of the dynamical matrix with respect to the volume:

γqj =
Veq
2ωqj

∑
j

eqj
∂Dq

∂V
e∗qj, (6)

where Dq is the dynamical matrix for a wave-vector q, ωqj is the vibrational frequency, and

eqj is the eigenvector for phonon branch j. We also compute the contribution of each atomic

species. In our calculations the cell volume varies by 1% with respect to the relaxed volume.

Finally, magnetic ordering has been studied with spin-polarized formalism by setting a start-

ing magnetization to break the symmetry and to provide a starting point for self-consistency.

Both ferromagnetic and antiferromagnetic orders have been explored.

Crystal Structure

Mawsonite Cu6Fe2SnS8 is a typical copper-iron sulfide with a complex unit cell composed

of 17 atoms (space group P 4̄m2, N◦ 115). Similarly to colusite, chalcopyrite and kesterite,

mawsonite crystallizes in a tetragonal structure derived from the zinc-blende: corner sharing

SnS4 and CuS4 distorted tetrahedrons, centered around the cations Sn (1a) and Cu (2g

and 4i), are stacking along the same axis, whereas regular FeS4 (1b and 1c) tetrahedrons

share edges. In Figure 1 the green Cu(4i) atoms highlight a layered sublattice that builds a

continous network. We report in Table 1 the optimized lattice and structural parameters for

the psedopotentials used (and experimental data for comparison). The theoretical volumes

8
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obtained with a variable cell calculation are within 6% of the experimental values.

Table 1: Structural parameters determined theoretically for the mawsonite structure. Ex-
perimental data from Szymanski44 are in excellent agreement with the calculations. Lattice
parameters were determined using PBESol pseudopotentials, a=7.476 Å and c=5.178 Å,
and PBE pseudopotentials a=7.556 Å and c=5.356 Å. The experimental values given by the
American Mineralogist Crystal Structure Database45 are a=7.603 Å and c=5.358 Å.

x y z

Sn(1a) 0.0000 0.0000 0.0000
Cu(2g) 0.5000 0.0000 0.0001
Cu(4i) 0.2471 0.2471 0.5000
Fe(1b) 0.5000 0.5000 0.0000
Fe(1c) 0.5000 0.5000 0.5000
S(4j) 0.2625 0.0000 0.2533
S(4k) 0.2565 0.5000 0.2487

Although Zhang et al. have reported the synthesis and thermoelectric properties of

mawsonite,27 careful examination of the powder X-ray diffraction data presented by these

authors highlights major discrepancies between their experimental and calculated diffraction

patterns, see Figure 2. According to Szymanski,44 mawsonite crystallises in a superstructure

of sphalerite, and previously reported powder diffraction patterns of mawsonite show char-

acteristic superstructure peaks at 2θ values of 16.5◦ (110), 20.3◦ (101), 23.4◦ (200) and 31.1◦

(211) (Cu Kα radiation),46 which are in excellent agreement with the calculated pattern

using the reported crystal structure.44 These characteristic superstructure peaks are absent

in the experimental powder diffraction pattern reported by Zhang et al.,27 which instead

contains markedly different superstructure peaks, presumably corresponding to another su-

perstructure of sphalerite. More recently, these authors have identified the material prepared

by them as a mixture of phases, rather than pure mawsonite.47

9
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Figure 2: X-ray powder diffraction patterns for the DFT relaxed (yellow) and experimental
(blue) mawsonite Cu6Fe2SnS8 as reported by Szymanski et al.44 We also report the pattern
of a sample (red) with composition Cu6Fe2SnS8, prepared under similar conditions to those
reported by Zhang et al. 27 For reference we include the experimental patterns for stannite
(black) and stannoidite (green); these structures are from the American Mineralogist Crystal
Structure Database.45
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Electronic structure and transport properties

Experimentally copper-sulfides with a large content of copper with respect to other metals,

i.e. [Cu]/[M]> 1, exhibit p-type conductivity.20,48,49 Indeed, the ability of the univalent

copper to accomodate tetrahedral coordination and to form a tridimensional framework is

favorable to the delocalization of p-type carriers. These considerations, together with charge

balance, suggest: Cu+1, Fe+3, Sn+4, S−2; these are confirmed by Mössbauer experiments

where mawsonite is shown to contain only ferric iron.50 To address the general features of

the electronic structure of Cu6Fe2SnS8, we computed the spin polarized band structure and

the projected DOS in Figure 3, where spin polarization is considered to properly describe the

transition metal Fe 3+. Mawsonite is a semiconductor which experimentally tends to exhibit

p-type transport, therefore our interest is in the upper valence band (VB) mainly composed

of strongly hybridized S p-orbitals and Cu d-orbitals. More specifically, the projected density

of states resolved by site shows a major contribution from Cu(4i) with respect to Cu(2g)

in the energy range close to Fermi, see Figure S1a Supporting Information. This feature

suggests that Cu(4i)-S bonding builds a 2D conductive network with negligible contribution

from other species. Conductive networks have been observed in other diamond-like copper-

sulfides51 where Cu-(S,Se) atoms determine the relevant electronic states for the transport

properties. Despite the strong localized character of the Cu d-orbitals, the hybridization

with S p-orbitals favors the delocalization of p-type carrier and provides heavy but still con-

ductive bands with remarkable features for thermoelectric transport; near the Fermi level,

Figure 3 points to a multi-valley character with large effective masses especially at M, Z, R

high symmetry points of the Brillouin zone, two features that contribute to a large Seebeck

coefficient and enhanced electrical conductivity. In this perspective, out-of-network atoms

could serve as doping/alloying sites to tune other properties without affecting the conduct-

ing states. Also, Figure 3 displays hybridized iron d- and sulfur p-orbitals at the bottom of

conduction band (CB), where a single and relatively heavy band singles out, possibly leading

to spin polarized n-type transport.
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The band structure in Figure 3 corresponds to an antiferromagnetic ordered ground

Figure 3: Spin polarized electronic band structure (a) and atom projected density of states
(b) of Cu6Fe2SnS8. Spin up (down) channel is represented in red (black). Hubbard U
corrections are computed self-consistently within the ACBN0 approach: U(Cu)=6.595 eV,
U(Fe in 1b)=0.551 eV, U(Fe in 1c)=0.518 eV, U(S)=0.952 eV, U(Sn)= 0.002 eV

state. This configuration is energetically favored with respect to the ferromagnetic one,

EFM − EAM=0.16 eV per formula unit, and the large energy difference suggests a high or-

dering temperature, in agreement with experimental results for another tetragonal sulfide,

the chalcopyrite CuFeS2 (TNeel=823K).52,53. Further, spin majority and minority bands

have direct and indirect gap respectively, ∆E↑ = 0.6 eV and ∆E↓ = 0.4 eV. The two spin

channels, up (red) and down (black), are shifted one with respect to the other, thus pro-

ducing a spin polarized isolated band in the bottom of CB. The shift arises because of the

asymmetry in the magnetic moment distribution between the two iron sites, µFe1 = 3.01µB

and µFe2 = −2.89µB. This effect is highlighted also by different profiles in the projected

DOS (compare green to purple curve in Figure 3b), the values of the Hubbard correction,

U , see Figure 3) as well as in local spin polarization isosurface in Figure 1. The unusually

low value of the magnetic moments for Fe 3+ are due to deviations from the ionic picture54
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which are observed by inspecting the electron localization factor, Figure 4.

The features revealed in the band structure analysis have a correspondence in the depen-

dence on temperature of the Seebeck coefficient S and electrical conductivity σ, displayed in

Figure 5. For both the VB and CB, σ increases with temperature as it is usual for semicon-

ductors. Seebeck coefficients, which do not depend on the choice of the constant relaxation

time, are predicted in excess of 250 µV
K

for light p-type doping at 500 K. Comparable nega-

tive values for light n-type were obtained. As mentioned in the computational method, our

Boltzmann transport calculations consider a constant scattering time τ across the range of

temperature. The conductivities (with our assumption of τ = 10−15 s) are monotonically

increasing with temperature and quite small. The smaller values observed for the CB are

due to the presence of the “isolated” single band at the botton of the conduction band. Due

to the uncertainity on the value of the relaxation time, conductivity predictions should be

taken with caution. Indeed τ = 10−14 s will make mawsonite much more promising for ther-

moelectric applications. We noticed, however, that with τ = 10−15 s, despite the difference

in the crystal structure pointed out when discussing the crystal structure, the computed S

and σ are in agreement with experimental data reported in Zhang et al. 27 once the chemi-

cal potential is shifted toward the valence band, µ = −0.11eV . This may indicate that the

transport properties are mainly determined by common features such as a similar conductive

network (Cu-S atoms).

Vibrational properties and lattice thermal conductivity

The phonon dispersion and atom-resolved phonon DOS computed by first principles are in

Figure 6. Even though calculations within the harmonic approximation do not provide any

direct information on the thermal conductivity, they constitute a starting point to discuss

heat transport, especially the acoustic modes with larger velocity. Low frequencies optic
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Figure 4: Contour of the electron localization factor shown on selected planes. Contour plot
of the electron localization factor (ELF) shown on selected planes. Atoms are colored as
in Figure 1. Values for the ELF range between 0 and 1: ELF=0.5 (corresponding to the
blue contours) indicates free electron behavior and ELF=1.0 (red contour) indicates perfect
localization. Values smaller than 0.5 are less significant and usually point to small local
electron density. Substantial localization is observed in proximity of S and one Fe (1b). Di-
rectional covalent bonds are observed between the Sn and the S. The plane containing Cu(4i)
exhibit pockets of “free electron” (ELF=0.5) potentially associated with larger metallicity.
These considerations agree with the COHP analysis shown in the Figure S2 Supporting
Information.
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Figure 5: Temperature dependence of electrical conductivity (left panel) and absolute value
of the Seebeck coefficient (right panel). The red and blue shade highlight the range of values
taken by these quantities as the chemical potential moves inside valence and conduction
band, respectively. Red (blue) dots represent the top (bottom) of the valence (conduction)
band, while red (blue) squares refers to a chemical potential in the valence (conduction)
band (∆µ = 0.1eV ). Resistivities were computed assuming τ = 10−15 s.

modes sharing the frequency window with acoustic vibrations are a source of phonon scat-

tering and affects the thermal transport. Despite the traditional use of heavy ions as rattlers

to open scattering channels,17,55 recently similar performance have been reported in materi-

als containing light elements, such as colusite Cu26V2Sn6S32
23 and BiOCuQ (Q = Se, Te).15

Low frequency modes centered around 40-60 cm−1 appear in mawsonite phonon dispersion

in Figure 6. The atom resolved DOS suggests that the Cu contribution at low frequency

exceeds the ones from other species. Due to the light Cu mass, we must assume very weak

bonds near Cu sites. In order to evaluate the role of Cu in lowering the lattice thermal con-

ductivity, we use the quasi-harmonic apporximation to estimate the degree of anharmonicity

of mawsonite through the mode-resolved Grüneisen parameter γqj, see Eq. [6], and its atoms

projection as a function of the frequency. Our results, displayed in Figure 7, clearly indi-

cate that modes are highly anharmonic throughout the spectrum, but specifically in the low

frequency range 50-175 cm−1, see Figure 7a, where the major contribution comes from Cu
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Figure 6: Phonon dispersion and atom-projected vibrational density of states of Cu6Fe2SnS8.
Notice the prominent role of Cu at low frequency; optic modes at frequency lower than 100
cm-1 contribute to scattering phenomena that lower the lattice thermal conductivity.

ions, see Figure 7b. This finding also support the conjecture that Cu has a special role as a

weakly bonded component in mawsonite.

The temperature dependence of the total thermal conductivity κ (squares) and its elec-

tronic κel (dots) and lattice (green dots) components κlatt is presented in Figure 8. κtot

decreases on the whole temperature range from 0.6 to 0.23 W m−1 K−1, and is dominated

by the lattice component. Similar behavior is observed for p- and n-type doping. Based

on the analysis of the vibrational spectra, the origin of this low thermal conductivity is

mainly attributed to the scattering effects induced by the disordered Cu, that scatter long

wavelength phonons. This is confirmed by the sound velocities for acoustic phonons re-

ported in Table S2 Supporting Information. Mawsonite’s values appear sensibly higher than

the ones reported for SnSe.56 The close values for the thermal conductivities for the two

compounds suggest that anharmonic effects in mawsonite plays a major role in getting a

thermal conductivity as low as for SnSe. In this picture low thermal conductivity depends

on the coexistence of weakly bonded quasi-liquid subsystems within a crystalline matrix.

This is different to the traditional phonon-glass electron-crystal paradigm as understood in

cage-materials, where instead there is a disordered set of non-interacting point defects. Maw-

sonite has weakly-bonded component (Cu) whose mobility is suppressed due to the absence
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Figure 7: (a) Mode resolved Grüneisen parameter γqj as a function of mode frequency;
(b-f) contribution of each atomic species to the total Grüneisen as a function of the mode
frequency.
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of a suitable diffusion path. This is definitely relevant for thermoelectric application, given

the detrimental effect of ion migration to the device.

Figure 8: Individual components and total thermal conductivity computed according to
the Debye-Callaway model as a function of temperature for different chemical potentials:
electronic component κel calculated at top of the valence band (red dots) and at bottom
of the conduction band (blue dots), lattice component κlat (green dots) and total thermal
conductivity κel + κlat for p-type mawsonite (red squares) and n-type (blue squares).

Chemical substitutions

Chemical replacement in prototypical materials has been extensively used to optimize the

functional properties of thermoelectric materials. Starting from the mawsonite structure,

we substituted Fe with Ni, S with Se, Te, and Sn with Ge, Pb. We have checked the

thermodynamical stability of the resulting compounds by computing the formation energy
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Ef as the difference between the total energy of the substituted compound and the total

energy of each component in the crystalline form: Ef = E[Cu6X2Y Z8]− 6E[Cu]− 2E[X]−

E[Y ] − 8E[Z]. All the compounds are shown to be stable, as reported in the Table S1

Supporting Information. The band structure and projected DOS of the pristine mawsonite

are displayed in Figure S3 Supporting Information on a larger energy window, where it is

more evident that the conductive network formed by CuS tetrahedra defines the manifold at

the bottom of the valence band and the one in the conduction band above 3 eV. In between

these energy windows, we observe the contribution of other cations: a manifold of flat bands

from the d−orbitals of the transition metal ions (Fe) strongly hybridized with S p−orbitals,

and a highly dispersive band arising from hybridization of Sn s−orbital with S p−orbitals.

The Ni substitution, see Figure S4 Supporting Information, changes the magnetic character

of the pristine mawsonite and shifts the d-manifold down toward the valence band forming a

metallic band structure for all the Ni-compounds. Similarly the substitutions of Sn mainly

affect the s−band that is shifted from the region close to 3 eV to the transition metal

manifold as one moves from Ge to Pb. The isolated bands is obtained as long as there is

energy difference between s− and p− orbitals of the IV group element, and such difference

increases moving along the IV group elements, from Ge to Pb. Finally, the effect of the

chalcogenide substitution: from band structures (Figure S5-S20 Supporting Information),

we observe the common trend that sulfides have generally a larger band gap (more ionicity),

that decreases with Se, Te substitution due to the stronger hybridization between p- and

d-orbitals. Sn substitutions preserve the features we previously pointed out for mawsonite

(such as flat band and valley degeneracy).

Overall the semiconductor character is preserved in Cu6Fe2SnSe8, Cu6Fe2GeX8 with X=S,

Se, and Te, as well as in Cu6Fe2PbS8. All the other cases, we investigated, result in a metallic

band structure due to a relative shift of Cu-S manifold and transition metal bands.
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Conclusions

Materials with the mawsonite structure, namely Cu6X2YZ8 with X=Fe, Ni, Y=Ge, Pb,

and Z=S, Se, Te, have been studied from the point of view of their thermoelectric poten-

tials for low-cost and environmentally sound, low-grade energy recovery systems. We used

state-of-the-art first principles methodologies based on self-consistent DFT+U to compute

band structure, projected density of states (DOS), and electronic transport coefficients. In

addition, in selected cases, we determined the phonon dispersions and the lattice thermal

conductivity. Our findings indicate that the low thermal conductivity is due to low-frequency

vibrational modes of the copper atoms that activate scattering channels for acoustic phonons

thus affecting the heat transport. As corroborated by the Grüneisen calculations, mawsonite

has a quasi-liquid disordered component (Cu) within the crystalline matrix but do not present

ion migration due to the absence of suitable diffusion paths. The analysis of the transport

coefficients supported by band structure calculation highlights a 2D conductive network

built by Cu(4i)-S bonds which determines the TE properties of the p-type mawsonite. The

covalency of the Cu(4i)-S bonding causes an asymmetry in the distribution of the Fe mag-

netic moments, that originates an isolated band possibly leading to a spin-polarized n-type

transport. Finally, chemical substitution of out of network species shifts the manifolds in

the conduction band and change the compound character from semiconducting to metallic,

thus consequently affecting the magnetic order. Overall, as displayed in Figure 9 , the com-

bination of good electronic transport and low thermal conductivity provides promising TE

performance in the medium temperature range with a ZT value that point to 0.5 @ 750 K.
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Figure 9: Temperature dependence of power factor (left pane) and ZT (right panel). The
red and blue shade highlight the range of values taken by these quantities as the chemical
potential moves inside valence and conduction band, respectively. Red (blue) dots represent
the top (bottom) of the valence (conduction) band, while red (blue) squares refers to a
chemical potential in the valence (conduction) band (∆µ = 0.1eV ).
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