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Abstract 25 

Microplastics attract widespread attention, including for their potential to transport toxic chemicals in 26 

the form of plasticisers and associated hydrophobic organic chemicals, such as polybrominated 27 

diphenyl ethers (PBDEs). The aims of this study were to investigate how nylon (polyamide) 28 

microplastics may affect PBDE accumulation in snails, and the acute effects of nylon particles and 29 

PBDEs on survival, weight change and inherent microbiome diversity and community composition of 30 

the pond snail Lymnaea stagnalis. Snails were exposed for 96 hours to BDEs-47, 99, 100 and 153 in 31 

the presence and absence of 1% w/w nylon microplastics in quartz sand sediment. No mortality was 32 

observed over the exposure period. Snails not exposed to microplastics lost significantly more weight 33 

compared to those exposed to microplastics. Increasing PBDE concentration in the sediment resulted 34 

in an increased PBDE body burden in the snails, however microplastics did not significantly influence 35 

total PBDE uptake. Based on individual congeners, uptake of BDE 47 by snails was significantly 36 

reduced in the presence of microplastics. The diversity and composition of the snail microbiome was 37 

not significantly altered by the presence of PBDEs nor by the microplastics, singly or combined. 38 

Significant effects on a few individual operational taxonomic units (OTUs) occurred when comparing 39 

the highest PBDE concentration with the control treatment, but in the absence of microplastics only. 40 

Overall within these acute experiments, only subtle effects on weight loss and slight microbiome 41 

alterations occurred. These results therefore highlight that L. stagnalis are resilient to acute exposures 42 

to microplastics and PBDEs, and that microplastics are unlikely to influence HOC accumulation or the 43 

microbiome of this species over short timescales.  44 

  45 
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1. Introduction 46 

Microplastics are a widely-recognised pollutant. The impacts of microplastics on biota and ecosystems, 47 

and their interactions with other environmental pollutants under various environmental conditions, are 48 

highly uncertain and existing studies have produced contradictory results (see discussions of expert 49 

committee summarised in the report published by SAPEA (2019)). Due to the high affinity of 50 

microplastic surfaces for hydrophobic organic chemicals (HOCs), there is potential for particles to sorb 51 

HOCs (Hirai et al., 2011; Karapanagioti et al., 2011; Rochman et al., 2013b), which may lead to elevated 52 

or reduced bioaccumulation of HOCs by organisms that ingest these microplastics (Bakir et al., 2016; 53 

Besseling et al., 2013; Rochman et al., 2013a). However, other studies have not found clear evidence 54 

for microplastics altering bioaccumulation or toxicity of HOCs (Ašmonaitė et al., 2018; Beiras and 55 

Tato, 2019; Besseling et al., 2017; Horton et al., 2018). The question therefore remains as to whether 56 

microplastics will significantly alter the impacts of HOCs on organisms.  57 

Within the group of HOCs, polybrominated diphenyl ethers (PBDEs), brominated hydrocarbons 58 

commonly used as flame-retardants, are one of the priority pollutant groups. They are found widely 59 

throughout the environment (Guan et al., 2007; Hassanin et al., 2004), including in riverine sediments 60 

(up to 16088 ng g-1 dry weight total PBDEs in riverbank sediment in China (Luo et al., 2007)). Although 61 

the majority of PBDE effects have been reported on mammals (He et al., 2011; Ji et al., 2011), PBDEs 62 

have been shown to have a range of toxic effects on aquatic invertebrates including neurotoxicity, 63 

genotoxicity and endocrine disrupting properties (Breitholtz and Wollenberger, 2003; Díaz-Jaramillo 64 

et al., 2016). 65 

As with other persistent organic pollutants, due to their relatively high log Kow, PBDEs sorb to 66 

particulate and organic matter within the environment, and to fatty tissues of organisms where they can 67 

bioaccumulate (Rahman et al., 2001). Where microplastics and PBDEs occur together, there is the 68 

likelihood of interactions. One environmental study found microplastics from the Central Pacific Gyre 69 

had surface concentrations of PBDEs up to 9900 ng g-1 (Hirai et al., 2011). Teuten et al. (2009) found 70 

lower concentrations of up to 57 ng g-1 from microplastics at the same location, however both these 71 

studies suggest the potential for such interactions to influence organism exposure. While some of these 72 
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measured concentrations likely derive from flame-retardant additives rather than sorbed chemicals, the 73 

hydrophobic nature of PBDEs and widespread presence of PBDEs suggests that a proportion is sorbed 74 

from the environment (Hirai et al., 2011; Mizukawa et al., 2009). Chua et al. (2014) and Rochman et 75 

al. (2013a) have shown that the presence of microplastics within experimental systems can lead to 76 

increased body burdens of PBDEs in amphipods and fish, with the type and concentration of 77 

microplastics affecting the dynamics of bioaccumulation. Microplastics can also change the way in 78 

which different PBDE congeners are accumulated, with higher brominated congeners more likely to be 79 

accumulated when microplastics are present (Chua et al., 2014).  80 

The gut microbiome is important for nutrition, metabolic function and immunity, with perturbations to 81 

the microbial community understood to have implications for organism health and fitness (Licht and 82 

Bahl, 2018; Zhu et al., 2018a). A number of studies have been carried out to determine the effects of 83 

PBDEs on the gut microbiome of various organisms. Chen et al. (2018) investigated the effects of BDE-84 

71 on the gut microbiome of zebrafish, finding that, in the presence of BDE-71, bacterial diversity was 85 

significantly reduced, and bacterial metabolic functioning was altered in a 7-day exposure. Li et al. 86 

(2018) showed BDEs-47 and 99 to significantly affect the gut microbial diversity of mice, leading to 87 

up- and down-regulation of 45 bacterial OTUs (5-day exposure), while Wang et al. (2018) also found 88 

BDE-47 to also lead to a significant reduction in mouse gut microbial diversity and an alteration in the 89 

community structure (21-day exposure). Studies have shown that microplastics can similarly alter the 90 

gut microbiome of both vertebrates (Jin et al., 2018; Lu et al., 2018) and invertebrates (Zhu et al., 2018a; 91 

Zhu et al., 2018b). These studies clearly show that microbiome alterations, expressed as species richness 92 

and diversity, are a sensitive endpoint responding to HOC and microplastic exposure, even over short 93 

timescales. Therefore, microbiome analysis together with host fitness could provide a fast screening 94 

tool for assessing the effects of combined HOCs and microplastics during acute exposures. 95 

The aim of this study was to investigate the effects of microplastics and PBDEs, individually and in 96 

combination, on the accumulation, physiology and microbiome of the great pond snail Lymnaea 97 

stagnalis (Linnaeus 1758). Molluscs have been shown to bioaccumulate organic chemicals (and metals) 98 

as they lack the oxidase systems to metabolise xenobiotic substances (Geyer et al., 1982). These traits 99 
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make them well suited as a test organism for investigating organic pollutant accumulation (Amorim et 100 

al., 2019). Although microplastics and PBDEs have been shown to individually alter the gut 101 

microbiome of organisms once ingested, no studies to date have investigated the effects of co-exposure 102 

to these pollutants with respect to microbiome responses. We hypothesise that increasing PBDE 103 

sediment concentrations will lead to significant changes in the microbiome community (diversity and 104 

composition) and that the presence of microplastics will reduce this effect through strong binding of 105 

PBDEs, making them less bioavailable to microbiota within the gut. We also hypothesise that the 106 

presence of microplastics will reduce PBDE accumulation in the snail.  107 

 108 

2. Materials and methods 109 

2.1. Organisms 110 

Adult Lymnaea stagnalis were obtained from Blades Biological, UK, and were acclimatised for one 111 

week under laboratory conditions prior to the exposure. Cultures were maintained and exposure studies 112 

carried out using ISO artificial freshwater as recommended by the OECD for L. stagnalis (OECD, 113 

2016). An air pump with an air stone was provided for system oxygenation. Stock cultures and 114 

exposures were maintained at 20°C with a 16:8 h light:dark cycle. Snails in culture were fed well-115 

washed iceberg lettuce ad libitum.  116 

 117 

2.2. Microplastic particles 118 

Nylon 6 powder (mono-constituent substance, density 1.13 g cm-3) was purchased from Goodfellow 119 

(Huntingdon, UK).  This powder consisted of heterogeneous fragments <50 µm, with a mean size of 120 

13-19 µm, measured using a Coulter Counter (Multisizer 3, Beckman, USA) and had been stained with 121 

Nile Red dye. 122 

 123 

2.3. PBDEs 124 
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Method 527 PBDE Mixture was purchased from LGC Standards (Teddington, UK). This mixture 125 

contained BDE- 47, 99, 100, 153 and PBB- 153 (PBB-153 was not considered or measured throughout 126 

this study), each at a concentration of 500 µg ml-1 in ethyl acetate. With respectively log Kows of 6.81, 127 

7.32, 7.24, and 7.9, these BDEs were all highly hydrophobic. These congeners are commonly detected 128 

within aquatic organisms and have a high propensity for bioaccumulation (Hirai et al., 2011; 129 

Shanmuganathan et al., 2011). A serial dilution was carried out in ethyl acetate in order to provide the 130 

ultimate concentrations of each BDE congener in sediment of 3000, 1500, 750, 375, 188 and 94 ng g-1. 131 

These concentrations were chosen to reflect concentrations found within freshwater sediments (Luo et 132 

al., 2007; Sellström et al., 1998; Yin et al., 2017).  133 

 134 

2.4. Experimental setup 135 

All experimental treatments (PBDEs and controls) consisted of either sediment without added 136 

microplastics, or sediment with added microplastics (1% nylon powder by sediment mass, i.e. 10 g kg-137 

1). This is a higher microplastic concentration than has previously been found in freshwater sediments, 138 

for example up to 71 mg kg-1 found in the Antuã River, Portugal (Rodrigues et al., 2018), and 1 g kg-1 139 

found by Klein et al. (2015) along the river Rhine in Germany. This concentration was therefore not 140 

chosen to represent environmental relevance, but to enable maximum binding of PBDEs to a large 141 

available microplastic surface area, with the intention of assessing how this may influence 142 

bioaccumulation in a controlled and heavily contaminated exposure. Each microplastic treatment was 143 

prepared by weighing 0.8 g nylon powder and mixing with white quartz sand (SiO2, particle size 210-144 

300 µm, Sigma-Aldrich, Poole, UK) to make up to 80 g. All treatments were also run without 145 

microplastics, in which case only 80 g quartz sand was weighed into a vessel. For each PBDE treatment, 146 

1 ml of each diluted PBDE stock was added to the 80 g quartz sand substrate (with or without 147 

microplastics, hereafter referred to as ‘sediment’) and stirred for 2 minutes 30 seconds using a glass 148 

rod. This bulk mixture was divided between six replicate 100 ml glass exposure vessels (13 g per 149 

vessel). A solvent carrier was used for spiking the PBDEs into the sediment, therefore an ethyl acetate 150 

solvent control was also set up (1.25 % ethyl acetate in sediment) by carrying out this procedure with 151 
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ethyl acetate only. Following dosing, the vessels were left under a fume hood for two days with 152 

occasional agitation to ensure complete evaporation of the solvent. Blank controls containing no PBDEs 153 

or solvent were also set up both with and without microplastics, but without the need for solvent 154 

evaporation. This gave a total of 96 vessels to include blank controls (6 replicates), solvent controls (6 155 

replicates) and PBDE treatments (6 concentrations x 6 replicates) without microplastics, and the same 156 

treatments with 1% microplastics. 157 

To prevent suspension of nylon particles due to water surface tension, a small spray bottle of ISO test 158 

water was used to spray eight times onto the surface of the dry sediment. 100 ml of ISO test water was 159 

then gently introduced to the vessel and the water surface sprayed another seven times to break the 160 

water surface tension and allow any floating nylon particles to sink (15 sprays total). Vessels were left 161 

to equilibrate for 48 hours prior to introducing the organisms.  162 

One snail was exposed per vessel. Before being added to the test vessels, each snail was rinsed in ISO 163 

test water and the shell gently rubbed with a gloved finger to remove any faeces/algae present and patted 164 

dry with a tissue. Each snail was weighed and length of shell measured; only snails > 25mm were used 165 

in the bioassays at which size all individuals can be expected to be mature (Coeurdassier et al., 2004; 166 

Zonneveld and Kooijman, 1989). 167 

During exposures, jars were covered with Parafilm® to prevent escape of snails, pierced 10 times to 168 

allow for oxygenation. Exposures ran for 96 hours. No food was provided during test exposures in order 169 

to run as a simple an exposure as possible, to avoid complex organic interactions which may confound 170 

interpretation of the processes occurring. Snails were observed daily to check for mortality. At the end 171 

of the exposure, snails were removed from the water, washed in DI water, patted dry with tissue and 172 

weighed. Snails were euthanised and preserved: of the six replicate snails for each treatment, three were 173 

preserved for microbiome analysis (directly placed into ethanol) and three for tissue PBDE 174 

concentration analysis (immediately frozen at -80°C). Snails were not depurated before weighing or 175 

preservation as it was decided that analysing organisms with a full gut would give a more natural 176 

representation of environmental exposure and associated internal concentration. The overlying water 177 

from the exposure vessels was poured away and sediments were dried in a temperature-controlled 178 
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chamber at 25°C until dry (approx. 2 days). Sediment PBDE concentrations were measured in the dried 179 

samples at the end of the experiment. 180 

 181 

2.5. Chemical analysis 182 

Half of a snail was thawed, removed from the shell and dissected lengthways to obtain a representative 183 

sample of the whole body. This tissue was then weighed, ground with sand and dried with anhydrous 184 

sodium sulphate. The remaining half snail was refrozen and stored for fluorescence microscopy, to 185 

verify microplastic ingestion. Each sample (snail/sediment) was spiked with labelled recovery standards 186 

(13C BDE 47, 13C BDE 126 and 13C BDE 153; Cambridge Isotope Laboratories) and soxhlet extracted 187 

in dichloromethane (DCM) for 16 h. A small portion of the extract was evaporated to zero volume and 188 

the lipid content was determined gravimetrically. The remaining extract was cleaned using automated 189 

size exclusion chromatography followed by deactivated (5% deionised water; w/w) alumina column.  190 

The clean extract, was then spiked with labelled internal standards (BDE 77and 13C BDE 138; 191 

Cambridge Isotope Laboratories) and 100 μl of sample was injected into a GC-MS (Agilent) with 192 

programmable temperature vaporization (PTV) inlet. The PTV injector was kept at 55°C for 0.45 min, 193 

and heated to 325°C at a rate of 700°C min-1 and kept at 325°C for 5 min. Then the temperature was 194 

reduced to 315°C min-1 at a rate of 10°C min-1.The GC-MS had a 25 m HT8 column (0.22 mm internal 195 

diameter and 0.25 μm film thickness, SGE Milton Keynes, UK) and the carrier gas was helium (2.0 ml 196 

min-1). The temperature programme was: isothermal at 80°C for 2.4 min, 25°C min-1 to 200°C, 5°C 197 

min-1 to 315°C and was held at 315°C for 9.8 min. Residues were quantified using internal standard 198 

method and also calibration curves of the standard PBDEs (Cambridge Isotope Laboratories) and were 199 

recovery corrected. The mean recoveries were: 13C BDE 47- 85%, 13C BDE 126 – 105% and 13C BDE 200 

153- 96% and the LOD was 0.109 ng g-1 wet weight. 201 

 202 

2.6. Ingestion of microplastics 203 
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The snail tissue remaining following the chemical analysis was analysed using a fluorescence 204 

microscope (Olympus BX41 microscope with an Olympus U-LH100HG 100W mercury lamp using the 205 

green filter of the Cy3 (Olympus U-M39004) filter cube, with Olympus analySIS software) to image 206 

and qualitatively verify ingestion of microplastics by the snails.  207 

  208 

2.7. Microbiome analysis 209 

2.7.1. DNA extraction and sequencing 210 

DNA was extracted from three snails per treatment (whole snail excluding shell) following the protocol 211 

described in the SI. Sample DNA required an additional cleaning step through the application of 212 

Genomic DNA Clean & Concentrator kit (Zymo research, USA) under the manufacturer’s 213 

recommended protocol. Resultant DNA was quantified using the nanodrop 8000 UV-Vis 214 

spectrophotometer (ThermoFisher scientific, USA). 215 

Approximately 40 ng of template DNA was amplified using Q5 high-fidelity DNA polymerase (New 216 

England Biolabs, Hitchin, UK) each with a unique dual-index barcode primer combination (Kozich et 217 

al., 2013). Individual PCR reactions employed 25 cycles of an initial 30 s, 98°C denaturation step, 218 

followed by an annealing phase for 30 s at 53°C, and a final extension step lasting 90 s at 72°C. Primers 219 

were based upon the universal primer sequence 341F and 806R (Takahashi et al., 2014). An amplicon 220 

library consisting of ~550 bp amplicons spanning the V3-V4 hypervariable regions of encoding for the 221 

16S small subunit ribosomal RNA gene (16S rRNA), was sequenced at a concentration of 6 pM with a 222 

10%  addition of control phiX DNA, on an Illumina MiSeq platform using V3 chemistry (Illumina Inc., 223 

San Diego, CA, USA).  224 

 225 

2.7.2. Bioinformatics analysis 226 

Sequenced paired-end reads were joined using VSEARCH (Rognes et al., 2016), quality filtered using 227 

FASTX tools (hannonlab.cshl.edu), length filtered with the minimum length of 300 bp, presence of 228 
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PhiX and adapters were checked and removed with BBTools (jgi.doe.gov/data-and-tools/bbtools/), and 229 

chimeras were identified and removed with VSEARCH_UCHIME_REF (Rognes et al., 2016) using 230 

Greengenes Release 13_5 (at 97%) (DeSantis et al., 2006). Singletons were removed and the resulting 231 

sequences were clustered into operational taxonomic units (OTUs) with VSEARCH_CLUSTER 232 

(Rognes et al., 2016) at 97% sequence identity (Tindall et al., 2010). Representative sequences for each 233 

OTU were taxonomically assigned by RDP Classifier with the bootstrap threshold of 0.8 or greater 234 

(Wang et al., 2007) using the Greengenes Release 13_5 (full) (DeSantis et al., 2006) as the reference. 235 

Unless stated otherwise, default parameters were used for the steps listed. The raw sequence data 236 

reported in this study have been deposited in the European Nucleotide Archive under study accession 237 

number PRJEB27672 (ERP109787). 238 

 239 

2.8. Statistical analysis 240 

2.8.1. Chemistry data 241 

Sediment concentration and snail body concentration data were log transformed for normality. As only 242 

one sediment concentration was measured per treatment, it was assumed that each of the three snails 243 

analysed per treatment was exposed to this measured concentration. To compare the concentrations of 244 

PBDEs in sediment and organisms with and without microplastics, only treatments with added PBDEs 245 

were included in the analyses of chemical data (i.e. no control treatments) as the control treatments 246 

showed very low or non-detected values which could not be log-transformed. Two-way ANOVAs were 247 

carried out for each BDE congener, and the total PBDEs, to determine the relationship between snail 248 

tissue concentration, the concentration of PBDEs in the sediment and the presence of microplastics (R 249 

statistical software).   250 

 251 

2.8.2. Snail weight data 252 

A two-way ANOVA was conducted considering the effects on snail weight change of PBDE 253 

concentration and presence of microplastics as factors, and also their interaction.  254 
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 255 

2.8.3. Microbiome data 256 

After quality filtering, a total of 2626755 sequences remained. One sample was removed from the 257 

analysis due to low sequencing efficiency (<6000 sequences). Rarefaction curves were used to ensure 258 

the sample depth represented the full community. To account for uneven sequencing depth (inherent in 259 

NGS platforms) samples were normalized to lowest sequence depth using the rarefy_even_depth 260 

function in the R package ‘Phyloseq V 1.22.3’ (McMurdie and Holmes, 2013). For simplicity, for 261 

microbiome analysis with respect to PBDE concentration, nominal PBDE concentrations were used. In 262 

order to assess any subtle changes, communities were subdivided into ‘core’ OTUs (occurring in >50% 263 

of samples, at an abundance of >2%) and ‘non-core’ (all other community members), using the function 264 

‘prevalence’ in the R package ‘microbiome’ (McMurdie and Holmes, 2013). Analyses were firstly 265 

carried out on the whole community and subsequently on the subdivided core and non-core 266 

communities.  267 

To visualise the relationship between 16 rRNA sequence-based community profiles from different 268 

treatments, nonmetric multidimensional scaling (NMDS) was performed using the ‘metaMDS’ 269 

function, based on dissimilarities calculated using the Bray–Curtis index. Additionally, bacterial 270 

diversity were assessed using Fishers log series [alpha], as this is largely unaffected by sample sizes > 271 

1000 (Magurran, 2004). Differences in bacterial diversity for each PBDE compound and nominal PBDE 272 

concentration were tested through the multiple Kruskal-Wallis (H) test, a test which does not assume 273 

data normality, using the function ‘kruskalmc’ in R package ‘Pgirmess’ version 1.6.9 (Giraudoux et al., 274 

2018). An additional Kruskal-Wallis test was run to determine whether there were differences in 275 

microbiome diversity between control and solvent control treatments (Fig. 3). Similarity percentages 276 

breakdown procedure (SIMPER) was used to infer the importance of community members within 277 

treatments (Clarke, 1993) and again Kruskal-Wallis was used to test significance. Finally, the effect of 278 

PBDE concentration, presence of microplastics and their interaction upon community dissimilarity was 279 

assessed using the Bray–Curtis index through Permutational Multivariate Analysis of Variance 280 

(PERMANOVA, using the ‘ADONIS’ function in R package ‘Vegan’ v2.0-10 (Anderson, 2001; 281 

Oksanen et al., 2013)). Taxonomic composition was plotted using the R package ‘ggplot2’ (Wickham, 282 
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2016). For each treatment, relative abundances per treatment were calculated to account for unequal 283 

sampling, taking into account the combined data of the three replicates (Figs. 5, S4 and S5).  284 

 285 

3. Results 286 

3.1. Concentration of PBDEs in the presence and absence of microplastics  287 

The control treatments (no PBDEs, with and without microplastics) contained trace concentrations of 288 

PBDEs in some instances, although most (overall 73%) were below the detection limit of 0.108 ng g-1. 289 

The concentrations of different PBDE congeners in relation to its nominal concentrations varied 290 

between 41% and 74% (Table 1). When considering all congeners and concentrations both with and 291 

without microplastics, measured sediment concentrations overall were 54% of the nominal 292 

concentration. PBDEs were present within sediment at statistically significantly comparable 293 

concentrations regardless of the presence or absence of microplastics (p > 0.05, ANOVA).  294 

 295 

Table 1. Nominal and measured sediment concentrations for each BDE congener, for all PBDE 296 

treatments with and without microplastics. Sediment PBDE concentrations were measured at the end 297 

of the experiment (one replicate per treatment). 298 

    Measured sediment concentration (ng g-1) 

 

Nominal concentration 

(ng g-1, per BDE) BDE 47 BDE 100 BDE 99 BDE 153 

 

Total BDEs 

 

 

Without 

microplastics 

 

 
 

0 0 0 0 0 0 

0 (solvent control) 0 0 0 0 0 

94 34.42 42.67 66.63 88.41 232.12 

188 46.80 67.44 108.19 109.85 332.27 

375 61.92 117.09 191.70 215.99 586.70 

750 233.24 332.20 499.45 456.24 1521.14 

1500 341.34 494.64 805.90 906.48 2548.36 
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3000 1776.98 1765.79 2681.38 2290.35 8514.49 

With 

microplastics 

 

 
 

0 0 0 0 0.41 0.41 

0 (solvent control) 0 0 6.93 0.54 7.47 

94 50.77 39.42 68.30 58.05 216.54 

188 56.24 50.58 78.46 81.65 266.92 

375 170.47 141.11 209.81 197.16 718.55 

750 326.44 281.85 408.44 367.71 1384.44 

1500 825.13 667.41 978.23 832.01 3302.77 

3000 1449.14 1242.28 1804.11 1593.52 6089.05 

 299 

The (measured) sediment PBDE concentrations significantly affected PBDE uptake by snails, for all 300 

PBDEs independently and combined, higher sediment concentrations resulted in a significantly higher 301 

snail body burden (p < 0.01, ANOVA, Fig. 1). BDE 47 was the only PBDE congener that showed a 302 

significant effect of microplastics on the uptake of PBDEs by snails, with microplastics leading to a 303 

significantly lower body burden (p < 0.01, ANOVA, Fig. 1). There were no significant interactions 304 

between the concentration of PBDEs within the sediment and the presence of microplastics for any of 305 

the congeners (p > 0.05, two-way ANOVA).  306 

 307 

3.2. Survival and weight change 308 

There was 100% survival throughout the exposure. A significant difference was observed in snail wet 309 

weight change between microplastic and non-microplastic treatments, with non-microplastic treatments 310 

losing significantly more weight on average (0.11 ± 0.13 g) than microplastic treatments (0.03 ± 0.12 311 

g) (two-way ANOVA, p < 0.01, Fig. 2). Concentration of PBDE had no effect on weight change (two-312 

way ANOVA, p > 0.05) and there was no interaction between PBDEs and microplastics (two-way 313 

ANOVA, p > 0.05).  314 

 315 
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3.3. Ingestion of microplastics 316 

Using fluorescence microscopy, ingestion of microplastics was evident within all snails exposed to 317 

microplastics (Fig. S1 D-I). Microplastics could be observed both on the surface of the sample (Fig. S1, 318 

G and I) and behind membranes (i.e. within organs, Figs. S1. D, F and H). Based on the way the samples 319 

were prepared and analysed, it is not possible to quantitatively analyse ingestion, nor to identify the 320 

specific locations where microplastics were found or accumulated. However, ingestion could be 321 

qualitatively confirmed.  322 

 323 

3.4. Microbiome data  324 

3.4.1. Control treatments 325 

Using a multiple-comparison Kruskal-Wallis test, there were no significant differences in microbial 326 

diversity (Fisher’s Log alpha) between blank controls and solvent controls, nor between control 327 

treatments with and without microplastics (Fig. 3. p > 0.05, Kruskal-Wallis). This highlights that there 328 

was no effect of the solvent control, or of microplastics alone (in the absence of PBDEs), on snail 329 

microbiome structure.  330 

 331 

3.4.2. Community composition and diversity  332 

Community diversity assessed by Fisher’s log alpha (Fig. 4) showed no significant differences between 333 

different PBDE concentrations (all p < 0.05, multiple Kruskal-Wallis, H). However, although not 334 

significant, it should be noted that diversity does appear to appear to be lower at higher PBDE 335 

concentrations when microplastics are absent, while the diversity of communities in treatments with 336 

microplastics appear largely unaffected by PBDE concentration (Fig. 4). This decline in diversity 337 

pattern could be related to a loss in richness (count) of non-core OTUs in treatment with high 338 

concentrations of PBDE, in the absence of microplastics (Fig. 4 and Fig. S2). Permutational 339 

Multivariate Analysis of Variance showed no significant effect on community dissimilarity based on 340 
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PBDE concentration, presence of microplastics and their interactions (p > 0.05 for all comparisons, Fig. 341 

S3). 342 

 343 

3.4.3. Taxonomic microbiome composition 344 

The greatest number of 16S rRNA gene sequences within the L. stagnalis microbiome were found to 345 

be from the Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Flavobacteria and Bacilli 346 

(Fig. S4) irrespective of treatment. The most dominant order across all treatments are the 347 

Enterobacterales (Fig. 5), and within that order the genus Klebsiella (Fig. S5). When comparing 348 

individual OTUs in the controls vs the highest PBDE concentration, similarity of percentage (SIMPER) 349 

analysis shows that in the absence of microplastics there was a significantly higher relative abundance 350 

of OTUs 5512 and 4432 (both identified as belonging to the Enterobacteriaceae) in the highest PBDE 351 

concentration treatment (Table S1). There was also a significant reduction in OTU 8733 (identified as 352 

belonging to the Flavobacteriaceae), in the highest dose treatment compared to the control (Kruskal-353 

Wallis test P < 0.05, df =1). In contrast, no significant differences were observed in individual relative 354 

OTU abundance when microplastics were present (Table S1). Some orders are present only in PBDE 355 

treatments, notably sulfate-reducing bacteria (Desulfobacterales and Syntrophobacterales). 356 

 357 

 4. Discussion 358 

4.1. The snail microbiome 359 

The individuals used in this test were taken from the field and acclimated for this test, therefore the 360 

microbial data acquired here is likely representative of biological variability within wild L. stagnalis. 361 

Laboratory conditions and the lack of food throughout the exposure would likely have led to changes 362 

over time, but this would not have been expected to lead to individual or treatment-specific differences. 363 

While the microbiome analysis in this study considered the whole microbiome of the snail, it is expected 364 

that the majority of OTUs derive from the gut bacterial community. This is highlighted in the 365 
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communities across all treatments being dominated by Enterobacterales (Fig. 5), a common order 366 

comprising gut bacteria (Hu et al., 2018). For example, Klebsiella, the most dominant genus observed 367 

here within the family Enterobacteriacae (Fig. S5), is a polysaccharide degrader linked to the presence 368 

of cellulase (Imran et al., 2016). The L. stagnalis core microbiome in this study appears to be similar to 369 

other freshwater snails and associated habitats including Enterobacterales, Flavobacterales and 370 

Bacillales corresponding to lactic acid production (food fermentation) and cellulose degradation 371 

(Béguin, 1990; Dar et al., 2017; Hu et al., 2018).  372 

 373 

4.2. PBDE accumulation and effects on microbiome 374 

All sediment PBDE concentrations were lower than the nominal concentrations when measured at the 375 

end of the exposures. The half-lives of BDEs-47, 99, 100 and 153 are all estimated to be approximately 376 

14,400 hours in sediment (Wania and Dugani, 2003), therefore degradation over the experimental time 377 

period is not likely to have been a significant factor leading to the discrepancies between nominal and 378 

measured concentrations observed here (estimated 0.3% loss due to degradation over 96 hours based 379 

on a half-life of 14,400 hours). Some loss of PBDEs may have occurred as a result of volatilisation 380 

during the solvent evaporation step, and some may also have bound to the walls of the glass exposure 381 

vessels. 382 

BDE 47 has the lowest log Kow, which would indicate a greater (although still low) partitioning into 383 

the water phase than for the other more hydrophobic PDBEs. In a marine study, Mizukawa et al. (2009) 384 

found that proportionally, higher brominated BDE congeners (BDE 209) associated most strongly with 385 

sediments, while the composition within overlying seawater was dominated by lower brominated 386 

congeners (predominantly BDE 47, but also including BDEs 99 and 100). In our study, BDE 47 387 

followed by BDE 99 accumulated most in the snail tissue, with higher internal concentrations compared 388 

to the other congeners (Fig. 1). This corresponds with evidence which shows that BDEs 47 and 99 are 389 

the most bioavailable PBDE congeners, due to a lower molecular weight and smaller molecules than 390 
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higher brominated congeners (Liang et al., 2010; Mizukawa et al., 2009; Watanabe and Sakai, 2003; 391 

Zhang et al., 2016). 392 

There were a number of sulfate reducing bacteria observed within snails exposed to PBDEs (most 393 

notably Desulfobacterales and Syntrophobacterales, Fig. 5), bacteria also recognised to be associated 394 

with the debromination of PBDEs (Zhao et al., 2018). These bacteria have not commonly been 395 

described in relation to other freshwater snail species (Hu et al., 2018) and were not present within the 396 

controls. Burkholderiales, one of the dominant orders found within these snails across all treatments, 397 

are also associated with PBDE degradation, especially lower brominated congeners (Robrock et al., 398 

2009). 399 

PBDE concentration had no significant influence on the microbiome, a result which is in contrast to 400 

other studies which found that PBDEs affected bacterial community composition and diversity in 401 

sediments and within guts, with changes being congener-dependent (Li et al., 2018; Wang et al., 2018; 402 

Yen et al., 2009). We therefore reject the starting hypothesis that increasing PBDE sediment 403 

concentrations lead to significant structural changes in the microbiome community over an acute 404 

timescale. The difference between this and other studies is likely to be because these represent different 405 

exposure scenarios (via food or water), plus other studies have usual run for longer time periods, and 406 

have generally used much higher PBDE concentrations (e.g. µg g-1 concentrations in food)  407 

 408 

4.3. Effects of microplastics on snail physiology and microbiome 409 

There was no effect of any exposure condition on survival. Microplastics did subtly affect the wet 410 

weight of the snails. In general, the weight of all snails declined throughout the experiment, likely due 411 

to the lack of food within the exposure. However, this decline was less pronounced in snails exposed to 412 

microplastics (average 0.03 g weight decline in microplastic-exposed snails, compared to average 0.11 413 

g decline in non microplastic-exposed snails, Fig. 4). The reasons for this difference are not clear; most 414 

microplastic exposure studies observe a more pronounced weight decline in exposed organisms 415 

(Besseling et al., 2013; Zhu et al., 2018a).  416 
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The lack of significant influence of microplastics on the microbiome (Fig. 3) is in contrast to other 417 

studies on the microbiome response in invertebrates (Zhu et al., 2018a; Zhu et al., 2018b). For example, 418 

Zhu et al. (2018b) found a significant increase in the family Bacillaceae within collembolan guts 419 

following exposure to microplastics, while our analysis found the order Bacillales to be present in both 420 

the microplastic and non-microplastic treatments (Fig. 5). Many gut bacteria are derived from, and 421 

influenced by, ingested material, therefore feeding behaviour is likely to have a significant influence on 422 

the gut microbiome (Turnbaugh et al., 2009; Zhu et al., 2018b). It was chosen not to feed the snails 423 

during the acute exposure, and hence any alterations within the microbiome community could be 424 

ascribed solely to the microplastic, PBDEs and their interaction. Despite the lack of significance of 425 

microplastics alone, the microbiome analysis suggests that microplastics can subtly influence PBDE 426 

impacts on the microbiome. For example, while not significant, there appears to be a tendency for the 427 

diversity of non-core bacteria to be lower at higher PBDE concentrations in the absence of 428 

microplastics, a trend which is not evident when microplastics were present (Fig. 4, Fig. S2). 429 

Microplastics also appear to slightly reduce variability between individuals within the microplastic 430 

controls compared to non-microplastic controls i.e. ‘reference’ gut conditions (Figs. 3 and 4). Within 431 

natural conditions, a higher microbial diversity between individuals may be beneficial for populations, 432 

increasing resilience to perturbation (Heiman and Greenway, 2016; Lozupone et al., 2012). 433 

 434 

4.4. Influence of microplastics and PBDE co-exposure on accumulation and microbiome  435 

Microplastics did not influence sediment PBDE concentrations. This result was expected as the 436 

microplastics were not removed from the sediment samples before analysis, therefore during analysis, 437 

PBDEs were likely to have been extracted from both the sediment and microplastics simultaneously. 438 

The concentrations of PBDEs within the sediment significantly affected the amount of PBDEs taken up 439 

within the snail, in line with the expected relationship between external exposure concentration and 440 

snail body burden.  441 
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Given that snails were not depurated before chemical analysis of the whole body, this analysis took into 442 

account any chemicals present within the gut content, in addition to those in snail tissues. Microplastics 443 

did not influence the uptake of BDEs-99, 100, 153, nor PBDE uptake as a whole. Therefore these 444 

PBDEs were equally available regardless of the presence of microplastics and our hypothesis was not 445 

supported. This is in contrast to previous studies carried out on microplastic and PBDE interactions, 446 

where microplastics have been shown to enhance uptake of PBDEs into fish tissue (Rochman et al., 447 

2013a) and amphipods (Chua et al., 2014). This could be a result of different polymer types used, 448 

different exposure conditions (e.g. temperature, pH) and also the susceptibility of the organism to 449 

accumulate or metabolise hydrophobic chemicals. 450 

Previous studies have shown that PBDEs can transfer from microplastics into body tissues (Chua et al., 451 

2014; Rochman et al., 2013a). Hence, the concentrations measured here are likely to be a combination 452 

of both gut content and tissue concentrations, especially as fluorescence analysis showed that the nylon 453 

particles were ingested by snails (Fig. S1). PBDEs entering tissues are unlikely to be taken up only by 454 

ingestion of contaminated particles, as the foot of the snail will be exposed to the sediment-based 455 

PBDEs by direct contact with the sediment, and to aqueous phase PBDEs through contact with the 456 

water phase (Bakir et al., 2016). To allow uptake into tissues, desorption of the chemical from the 457 

sediment (or microplastic) surface, whether externally or within the gut, is needed as a prelude to uptake. 458 

While it is anticipated that the main route of exposure to PBDEs was via the sediment (either dermally 459 

or via ingestion) (Mizukawa et al., 2009), aqueous phase uptake may also be important and the precise 460 

nature of exposure may also vary dependent on the behaviour of the BDE congener: BDE 47 was the 461 

only PBDE whose concentration in snails was significantly reduced in the presence of microplastics. 462 

BDE 47 is the congener with the lowest log Kow at 6.81, which would be expected to sorb the least 463 

strongly to particles (both microplastics and sediment) compared to the other congeners (although it is 464 

still highly hydrophobic). This reduced binding affinity could have led to greater BDE 47 partitioning 465 

into the water phase in the absence of microplastics, facilitating uptake. The presence of microplastics 466 

may have increased the partitioning of BDE 47 to sediment through the addition of a further surface 467 
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binding phase with a high affinity for HOCs, thus reducing BDE 47 in the more bioavailable water 468 

phase, resulting in reduced bioavailability and uptake (Fig. 1). 469 

While microplastics can sorb chemicals, other media (e.g. organic matter, sediment) may also 470 

accumulate HOCs and therefore should be also be taken into account when considering pathways for 471 

exposure and bioavailability (Bakir et al., 2016; Koelmans et al., 2016). Further, if considering trophic 472 

transfer, the interactions with the sediment also indicate the importance of measuring organisms with a 473 

full gut, as we did within this study (rather than depurated organisms as is usually the case in chemical 474 

bioaccumulation studies), given that PBDEs associated with the gut content may also be bioavailable. 475 

No consistent significant differences were observed in snail microbiome community diversity in 476 

response to either the microplastic or PBDE treatments, although a trend for reduced diversity at high 477 

PDBE concentrations in the absence of microplastics was suggested, which warrants further 478 

investigation. Hence, our hypothesis of chemical effects on the snail microbiome, influenced by 479 

microplastics, was not supported over the short exposure timescale used. When investigating the 480 

differences in abundance of specific OTUs, significant differences were seen in the abundance of 481 

Enterobacteriaceae and Flavobacteriaceae between the control and high PBDE concentration, only 482 

when microplastics were absent (Table S1). Enterobacterales can be induced to bloom within the gut 483 

under conditions of stress, for example inflammatory responses produced by the gut immune system 484 

(Stecher et al., 2012), which may explain their increase in the presence of high PBDE concentrations. 485 

Flavobacterales have been associated with polymer degradation (Mergaert and Swings, 1996; Nogales 486 

et al., 2011) and have been commonly found associated with marine plastic debris (Bryant et al., 2016; 487 

Oberbeckmann et al., 2018) which could explain their decline in the absence of microplastics (combined 488 

with high PBDE concentrations), although it is not possible to link those characteristics directly to this 489 

study. The fact that these results were seen only in the absence of microplastics suggests that 490 

microplastics may be buffering the effects of PBDEs on the microbiota, although only subtly.  491 

 492 

4.5. Long term implications and outlook  493 
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Short and long-term exposure are likely to lead to very different microbial community responses, 494 

therefore acute exposures can provide information on initial responses to perturbation that would be not 495 

be observed during chronic tests (Shade et al., 2012). There is evidence to suggest that microbiomes 496 

will respond very quickly to perturbations, for example a study by Yen et al. (2009) found that BDEs 497 

153 and 154 rapidly and irreversibly changed the bacterial community within sediment (within 24 498 

hours). Studies which have found significant changes in organism microbiomes following invertebrate 499 

exposure to microplastics usually run for longer timescales, e.g. enchytraeids exposed for seven days 500 

(Zhu et al., 2018a) and collembolans exposed for 56 days (Zhu et al., 2018b).  501 

It is recognised that given the simplicity of this exposure, this does not well represent the complexity 502 

of an environmental exposure. However, the data here improve our understanding of the interactions 503 

between microplastics PBDEs and organisms within a simple controlled exposure, where any effects 504 

will be easier to observe and interpret than under complex realistic environmental conditions. The subtle 505 

variations in response of the snail microbiome to microplastic exposure, PBDE exposure and co-506 

exposure over a 96-hour exposure indicated that these stressors do affect the structure of the gut 507 

community. However, overall response to aspects such as overall diversity were not evident to the same 508 

extent as for studies with other species conducted over longer exposure times. These results, therefore, 509 

highlight the complexity of responses of organisms to microplastics and organic chemicals, and show 510 

the importance of carrying out further studies to understand the interaction between microplastics and 511 

HOCs and their influence on organisms in a variety of exposure scenarios and time-scales.  512 

 513 

5. Conclusions 514 

Microplastics did not affect survival of the snails. The weight of all snails generally declined throughout 515 

the exposure period, however, this decline was less in snails exposed to microplastics. An increased 516 

concentration of PBDE in the sediment led to an increased body burden within the snails, however 517 

microplastics did not significantly influence this uptake when considering all PBDE congeners overall. 518 

BDE 47 was the only congener influenced by the presence of microplastics, leading to a significantly 519 
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reduced internal concentration in the presence of microplastics. Overall, the diversity and composition 520 

of the snail microbiome was not significantly altered by the presence of PBDEs or microplastics, or 521 

both combined. However, when considering individual OTUs, significant effects on individual 522 

responses were found that can be functionally linked to the exposure of snails to the PBDEs added, a 523 

result only observed in the absence of microplastics. This suggests that microplastics influence how 524 

PBDEs will impact on specific OTUs. In summary, these results suggest that microplastics and PBDEs 525 

have a limited effect both individually and when combined on HOC accumulation and the microbiome 526 

of Lymnaea stagnalis within an acute exposure. However the subtle effects seen highlight the 527 

importance of carrying out further studies to better understand the mechanisms causing the interaction 528 

between microplastics and HOCs given that these relationships may become more pronounced over 529 

extended time-scales.  530 
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Figure captions 738 

Fig. 1. Measured PBDE concentrations in sediment, compared to the concentration within snails, for 739 

each BDE congener, with and without microplastics. ‘No MP’ = without microplastics, ‘MP’ = with 740 

microplastics. Fitted lines represent linear regression.   741 

 742 

Fig. 2. Average snail wet weight change for all PBDE treatments (nominal concentration in ng g-1 within 743 

sediment) with and without microplastics, based on weight difference between 0 and 96 hours exposure. 744 

‘No MP’ = without microplastics, ‘MP’ = with microplastics. Error bars represent standard deviation 745 

(n = 6). 746 

 747 

Fig. 3: Comparison of changes in microbial community diversity of the snails (Fisher’s Log alpha) in 748 

the blank and solvent controls, with and without microplastics. The boxes denote interquartile ranges 749 

(IQR) with the median as a black line. Whiskers represent lowest and highest values within 1.5 IQR (n 750 

= 3). 751 

 752 

Fig. 4. Boxplots to show differences in microbial diversity in snails exposed to PBDEs in the absence 753 

and presence of microplastics, showing whole data for the whole microbial community, then subsequent 754 

separation into ‘core’ and ‘non-core’ community. The boxes denote interquartile ranges (IQR) with the 755 

median as a black line. Whiskers represent lowest and highest values within 1.5 IQR (n = 3). 756 

 757 

Fig. 5. Order composition of bacterial communities at each nominal PBDE concentration (ng g-1), with 758 

and without microplastics (present/absent). Relative abundance was calculated as rarefied number of 759 

sequences in OTU/total sequences in each sample (= 6359), relative abundances per treatment (N=3) 760 

are plotted on Y axis. For ease of representation taxa of an abundance of <0.02 (2%) from an individual 761 
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sample were excluded. Each column represents a PBDE concentration (0-3000 ng g-1). *Note one 762 

sample was removed from this treatment due to inefficient sequencing, therefore N=2. 763 
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