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Abstract 7 

 Most research into microplastics (MPs) in freshwaters has concentrated on measurements 8 

under controlled conditions without any link to the natural environment. Here we studied the 9 

effects of a 15 µm polystyrene MP on Daphnia magna survival, growth, and reproduction in 10 

the laboratory.  We also exposed fifteen 25L freshwater mesocosms to a high concentration of 11 

the same MPs. Five were controls seeded with five species found in all ponds (mosquito, water 12 

flea, midge, spire shell and water mite), five identical but treated with 15 µm polystyrene MPs 13 

and five seeded with only mosquitoes and water fleas. The laboratory chronic toxicity test for 14 

both adults and neonate Daphnia magna revealed that effects were more related to the 15 

availability of food rather than the toxicity of MPs. In the mesocosms most of the MPs settled 16 

in the sediment after the first week of exposure.  After four weeks the D. magna population 17 

decreased significantly in the MP mesocosms compared to the control mesocosms, although it 18 

subsequently recovered.   There was no impact on other organisms added to the mesocosms, 19 

other than a difference in timing of lesser water boatman (Corixa punctata) colonisation, which 20 

colonised the control mesocosms in week 4 and the treated 4 weeks later.  The detrivorous, 21 

sediment sifting, mayfly Leptophlebia marginata appeared in mesocosms in the fourth week 22 

of sampling and with significantly higher numbers in the MP treated mesocosm. Their activity 23 

had no significant impact on MPs in the water column, although numbers did increase above 24 

zero. The significant decline of D. magna suggests that their effect in a natural situation is 25 

unpredictable where environmental conditions and invertebrate communities may add 26 

additional stresses.   27 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polystyrene
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polystyrene


Introduction  28 

Plastic pollution in aquatic habitats is a serious environmental issue worldwide that has 29 

galvanised businesses, the general public and governments into taking action.  Much of the 30 

early research focussed on highly visible macroplastics in marine ecosystems with fewer than 31 

4% of research papers on freshwater (Wagner and  Lambert 2018).  In recent years, interest 32 

has shifted towards freshwater ecosystems and, in particular, the impact of microplastics 33 

(MPs) (Wagner et al. 2014; Eerkes-Medrano et al. 2015; Wagner and  Lambert 2018).  34 

Microplastics are diverse plastics, including polyethylene and polystyrene, whose fragments 35 

are smaller than 5 mm in size and are produced by the degradation of larger particles or are 36 

manufactured as microbeads for use in, for example, cosmetics and toiletries (Andrady, 2011; 37 

Imhof et al., 2013; Eriksen et al., 2014). Whilst bans on the use of MPs in toiletries have been 38 

in place for a number of years, the problems remain significant since there are many pollution 39 

routes and types of MP (Rochman et al, 2019).   40 

 41 

There is no doubt that MP pollution is widespread, with a growing body of evidence to suggest 42 

that much higher MP concentrations are found in sediments compared to the water column. In 43 

Lake Taihu (China) the average number of MPs found in the water body was 3.4 - 25.8 MPs 44 

L-1, while 11– 234.6 MPs kg-1 was found in the benthic sediment (Su et al., 2016). Similarly 45 

in Lake Chiusi (Italy) an average of 0.03 MPs L-1 were found in the surface water whereas 234 46 

MPs kg-1 found in the sediment (Fischer et al., 2016). Higher levels of MPs have also been 47 

measured in river sediments including sediment of the River Thames, found to contain up 48 

to 660 MPs kg-1 (Horton et al., 2016). It is almost certain that the organisms living in these 49 

waters are ingesting MPs. However it is premature to generalise on whether the sediment or 50 

water column will have higher numbers of MPs since the data collected, as illustrated above, 51 

use very different methodologies.  52 



 53 

Although there are numerous studies to investigate the occurrence and abundance of MPs in 54 

freshwater environments including rivers and lakes, relatively few have looked at the impact 55 

on the organisms being exposed (Sighicelli et al., 2018; Wagner and Lambert, 2018). Their 56 

size results in them being easily ingested by many aquatic organisms at various trophic levels 57 

and stages of development, including freshwater invertebrates ( Cole et al., 2013; Scherer et 58 

al., 2017; Al-Jaibachi et al., 2018a; Aljaibachi and Callaghan, 2018; Liu et al., 2019).   59 

Microplastics can be carriers of toxic chemicals e.g. polychlorinated biphenols or plasticizers 60 

added during production and bacteria that can absorb onto their surface (Talsness et al., 61 

2009). Therefore the behaviour of MPs in a pristine state may be very different from those 62 

released into the environment. 63 

 64 

The majority of research on the uptake and effect of MPs in freshwater organisms has been 65 

conducted in the laboratory which does not reflect the many variables found in the environment 66 

(Phuong et al., 2016; de Sá et al., 2018).  Laboratory studies are nearly all undertaken on 67 

individual organisms which ignores the interactions that occur in the natural environment 68 

(Rosenkranz et al., 2009; Jemec et al., 2016). That said, these studies do give useful information 69 

on the uptake and ecotoxicity of polystyrene  MPs in both laboratory and natural field 70 

conditions. Laboratory work on D. magna has shown that MPs can enter their gut system and 71 

show concentration-time dependent patterns (Nasser and Lynch, 2016; Ogonowski et al., 2016; 72 

Aljaibachi and Callaghan, 2018; Canniff and Hoang, 2018; Martins and Guilhermino, 2018). 73 

Similar results have been found in Gammarus fossarum (Blarer and Burkhardt-Holm, 2016), 74 

annelids (Lumbriculus variegatus), crustaceans (Gammarus pulex), ostracods (Notodromas 75 

monacha), mosquitoes (Culex pipiens), and gastropods (Potamopyrgus antipodarum) (Imhof 76 

et al. 2013; Al-Jaibachi, et al. 2018b). These studies are important since initial ingestion is 77 



more likely in lower trophic organisms which could enhance the transfer through the food chain 78 

( Anbumani & Kakkar 2018; Al-Jaibachi, et al. 2018a).  79 

 80 

The relationship between laboratory results and the behaviour and interaction of MPs and 81 

invertebrates in the natural environment must be determined using more natural exposure 82 

methods. Microplastics entering a natural environment are unlikely to remain stationary but 83 

will instead be transported between environmental compartments (Lambert and Wagner, 84 

2018). The fate and movement of MPs will depend on hydrology and vegetation (Lambert 85 

and Wagner, 2018) and in lakes is likely to depend on sediment disturbance. The abundance 86 

of MPs in most freshwater environments investigated highlights questions about their impact 87 

on the biota biodiversity, food chain, community composition and predator-prey interactions 88 

and the possibility to accumulate in the food chain or transfer ontogenically to different 89 

environments (Wright et al., 2013; Al-Jaibachi et al., 2018a; Cuthbert et al., 2019).     90 

Here we investigated the chronic ecotoxicological impact of PS MPs size 15 m in laboratory 91 

condition on adults and neonate Daphnia magna before taken it out into the field to study the 92 

abundance and impact on a community of freshwater invertebrates. Daphnia magna is a 93 

standard ecotoxicity model and shows a high sensitivity to toxicants (Pablos et al., 2015).  They 94 

are also used as models of filter feeders in the freshwater environment and have been utilised 95 

to examine the uptake and depuration of MP sizes from 1 nm to 2 m (Besseling, Wang, Lu, 96 

et al. 2014; Aljaibachi and  Callaghan 2018). Work has also been directed to life-history effects 97 

and both the acute and chronic toxicity of MPs on D. magna (Ogonowski et al., 2016; 98 

Aljaibachi and Callaghan, 2018; Martins and Guilhermino, 2018) . 99 

Freshwater mesocosms are widely recognised as supporting greater regional invertebrate 100 

diversity than most other freshwater ecosystems in the UK and across Europe and can be 101 

rapidly colonised by variety of organism ( Krebs and Davies, 2009; Céréghino et al., 2010). 102 



The small mesocosms chosen to implement the experiment have been studied previously and 103 

have demonstrated their value in rapidly measuring the impact of environmental stressors on 104 

freshwater communities in a  controlled but natural environment (Céréghino et al., 2008).  105 

Fluorescent 15 m PS MPs were chosen for studies into the ecotoxicological effect on Daphnia 106 

magna because of concerns regarding our ability to detect smaller MPs in the mesocosms. The 107 

impact of MPs on the population size and community were examined by manipulating the 108 

mesocosms so that at the start of the study had the same population size and composition. The 109 

animals used were all taken from the mesocosms where they had naturally colonised. They 110 

included C. pipiens and D. magna as well as predators and animals that dwell in the sediment. 111 

The mesocosms were monitored for 12 weeks. We  hypothesized that MPs would sink to the 112 

sediment and be unavailable to animals in the water column with a consequent lack of effect 113 

on population size or community composition.   114 



2. Materials and Methods 115 

2.1.  Preparation of microplastics (MPs) 116 

Fluorescent 15 μm green carboxylate-modified polystyrene MPs (density 117 

1.06 g cm−3, excitation 470 nm; emission 505 nm, Sigma-Aldrich, UK) were used in all 118 

experiments. Microplastics were stored as a stock suspension (1%) and mixed as per Aljaibachi 119 

et al. (2018a).  The number of PS particles from the stock solution were counted under the epi-120 

fluorescent microscope at 10x magnification (Carl Zeiss Axioskop, Wetzlar, Germany). Each one 121 

milliliter of stock solution contained 5 x 106, MPs mL-1. 2.2. Daphnia cultures 122 

Daphnia magna were obtained from the Water Research Centre (WRC, Medmenham, UK) 123 

and cultured at the University of Reading for more than ten years prior to this experiment. 124 

Full details of culturing methods are given in (Hooper et al., 2006). Daphnia were maintained 125 

in Organization for Economic Co-operation and Development (OECD) reconstituted water 126 

(media) and fed yeast and C. vulgaris var Viridis following the methods of (Hayashi et al., 127 

2008). New cultures of Daphnia were prepared with 15 neonates in 1,200 ml beakers filled 128 

with OECD media (the progeny of these neonates are the first brood). Juveniles were 129 

removed regularly from the culture and the media was changed once a week. The third brood 130 

produced by the original 15 neonates were used for experiments.  131 

2.2 Uptake of microplastics with and without algae 132 
  133 

Individual 18 day old D. magna were placed in 50 ml beakers filled with media and starved for 134 

24 h prior to exposure. In a random design, animals were exposed to one of 4 concentrations 135 

of MP (2, 4, 8 and 16 x 105 ml-1) with varying amounts of algae (Table 1) for 60 min. Each 136 

treatment was replicated three times. Animals were rinsed in distilled water to remove any MPs 137 

adhering to the outside and frozen at -20oC. Individual animals were homogenized using a glass 138 

Kontes Pellet Pestle (Fisher Sciences Loughborough, UK), in 500 μl distilled water in a 1.5 ml 139 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polystyrene
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/excitation
https://www.sciencedirect.com/science/article/pii/S0048969718339871?via%3Dihub#bb0015
https://www.sciencedirect.com/science/article/pii/S0048969718339871?via%3Dihub#bb0015


Eppendorf tube. A further 500 μl distilled water was pipetted over to rinse the pestle. The 140 

homogenate was mixed using a whirlimixer and 500 μl removed and placed onto a nucleopore 141 

track-etched membrane (Whatman, UK) 10 μm with a white background. A manual air pump 142 

was used to filter the homogenate. The membrane was examined under an epi-fluorescent 143 

microscope (Zeiss Axioskop) at a magnification of 10x to count the MPs.   144 

2.3  Adult Chronic Toxicity Tests   145 

Third brood D. magna adults (18 days old) were placed individually into glass beakers filled 146 

with 50 mL of OECD reconstituted water (media) and exposed to one of six treatments ranging 147 

from only algae or only MPs and combinations of the two (Table 1), each with five replicates. 148 

Media and concentrations of MPs were renewed three times per week. In all treatments, life 149 

history characteristics (survival and reproduction) were monitored for 21 days. Neonates were 150 

counted daily and removed. Animals unable to swim after gentle stirring for 15 s were counted 151 

as dead. The experiment was run at 20 ± 2 ºC, light:dark 16:8 h. 152 

2.4. Neonate Chronic Toxicity Test  153 

A standard chronic toxicity test was conducted with reference to OECD guideline 211, with 154 

the exception that five individuals were used (OECD, 2012). Five individuals from third-brood 155 

neonates (< 24 h) were placed in 50 mL glass beakers and exposed to MPs and/or green algae 156 

Chlorella vulgaris (Table 2). Media and concentrations were renewed three times a week and 157 

life history characteristics (survival, reproduction and growth) were monitored daily for 21 158 

days. Body length (from the top of the head to the base of the tail spine) was measured every 159 

other day under a stereomicroscope. The experiment was run at 20 ± 2 ºC, light : dark 16:8 h. 160 

2.4. Study site and mesocosms  161 

Thirty two mesocosms had previously been dug in the experimental grounds at the University 162 

of Reading, Berkshire, England (51°26'12.2"N, 0°56'31.2"W) in 2012. The mesocosms were 163 



laid out in a Latin square, with three metre intervals in three rows of eight mesocosms. Each 164 

mesocosm was a sunked bucket of diameter 48 cm depth 30 cm lined with a rubber pond liner. 165 

Fifteen of these mesocosms were randomly selected for use in this study.  166 

The mesocosms had been naturally colonised by macroinvertebrates over the previous five 167 

years. These were all removed including the sediments by passing the mesocosm water through 168 

a sieve (dimensions 6 x 12 cm; 250 µm pore size) and placing contents onto a white plastic 169 

sampling tray (25 x 35 x 5 cm) with some water.  170 

2.4.1 Preparation and sampling of the mesocosms community  171 

Ten of the 15 mesocosms were randomly selected for this experiment. Previous analysis of 172 

abundances during a pilot state determined that five species could be reintroduced in the same 173 

numbers into each mesocosm, in numbers that reflected the natural populations at the time 174 

(species and numbers in Table 2). Each mesocosm was filled with 25L of rain water then the 175 

level marked to allow refilling each week to maintain the water level.  Five randomly selected 176 

mesocosms were left untreated as a control. Another five were treated with 500 µl of the 177 

original washed MP stock (5,000,000 MPs mL-1) as a final concentration of 100 MPs mL-1. 178 

The mesocosms were then left for one week to allow for any disturbance and stress to 179 

organisms caused by setting up the experiment.   180 

 181 

Weekly sampling then followed using a standardised technique; using a mesocosm net of 182 

approx. 60mm x 120mm, with a small enough mesh size to collect both the zooplankton such 183 

as D. magna and other invertebrates such as mosquito larvae (Culex spp.). The net was swept 184 

through the water using a figure of 8 motion four times 10-15 cm below the surface of the 185 

water. Samples were then placed in a 1 litre plastic bottle and removed to identify 186 



macroinvertebrates in the laboratory using a stereo microscope and number of keys (Croft, 187 

1986; Greenhalgh and Ovenden, 2007; Dobson et al, 2013). Identified organisms were counted 188 

and then returned to the mesocosm from which they came. All members of each species were 189 

individually counted, except for D. magna, numbers of which were estimated by counting the 190 

number of individuals in 1mL, and then multiplying this by the number of mL in the sample 191 

due to the very high numbers of individuals. This process was repeated once per week over 12 192 

weeks, with the initial set up on and addition of the MPs on the 12th June 2017, first data 193 

collection on the 19th June 2017, and the final samples taken on the 29th August 2017. Samples 194 

were taken between 10am and 12pm weekly. 195 

2.4.2 Distribution of microplastics in mesocosms  196 

Five of the 15 mesocosms not used in section 2.4.1 were treated as before but to each was 197 

added 2 kg of soil from the area around the mesocosms along with 25 L of rain water. These 198 

were set up to specifically measure the distribution of the MPs in the pond over time, not the 199 

animals. Nevertheless approximately equal numbers of D. magna and Culex larvae were added 200 

to the mesocosms since they were the dominant organisms in the mesocosms. The mesocosms 201 

were then treated with 500 µl of stock MP solution as detailed in section 2.4.1. The mesocosms 202 

were re-filled with rain water to 25 L weekly after samples were taken. 203 

 204 

The mesocosms were left undisturbed for a week, then samples were taken weekly from the 205 

22nd June 2017 until the 10th August 2017. Five 1mL water samples were taken from each of 206 

two depths (5cm under water surface and 5cm above sediment), using a 1 mL and then water 207 

samples were mixed together before being filtered onto a nucleopore track-etched membrane 208 

(Whatman, Kent, UK) <10 µm, by using a glass vacuum filter holder connected to a manual 209 

air pump.  210 



Approximately 5g of sediment was collected using a spatula and stored in a 5 mL plastic tube. 211 

Half of this sediment was spread directly onto a glass microscope slide to count the MPs under 212 

an epi-fluorescent microscope.  213 

2.5. Statistical analysis  214 

Generalized linear model (GLM) and post hoc Tukey’s comparisons of laboratory life history 215 

data were undertaken using SPSS 21 (SPSS, 2012),. Growth rate data were analysed using 216 

UNIANOVA (mixed model), followed by post-hoc pairwise comparisons (growth rate  217 

treatments  time). 218 

Probit analysis was conducted for the chronic toxicity tests (mortality rate for adults and 219 

neonates) and response curves for different concentrations were produced as a scatter plot using 220 

(Minitab V. 17).  221 

The abundance of MPs in the mesocosms were analysed using (GLM). Analysis assumed a 222 

quasi-Poisson error distribution as counts were found to be over dispersed compared to degrees 223 

of freedom. 224 

The weekly abundance of invertebrate groups was analysed in R v3.4.2 (R Development Core 225 

Team, 2017). Generalized Linear Model (GLM) was used assuming a quasi-Poisson error 226 

distribution since they were not normally distributed, as assessed by Shapiro-Wilk's test (p < 227 

0.05).  228 

 Rainfall and air temperature data were obtained from the University of Reading Atmospheric 229 

Observatory and analysed by correlation analysis package in R v3.4.2 against MPs number in 230 

the mesocosm water column.   231 



3. Results  232 

3.1. Uptake of increasing concentrations of MPs 233 

Ingestion of MPs by D. magna without algae increased significantly as MP concentration 234 

increased (F 3,32=14.12, p< 0.001, Fig S1). The same was true wherever MPs> algae (F 235 

3,32=29.20, p< 0.001). When D. magna were exposed to equal amounts of MP and algae 236 

(MP=algae), there was no increase in ingestion with increasing concentration (F 3,32=0.415, 237 

p=0.743). The mean number of MPs ingested by D. magna exposed to algae>MPs 238 

significantly decreased as algal concentration increased (F 3,32=148.63, p < 0.001). 239 

 240 

3.2 Adult Chronic toxicity test   241 

Low availability of algae significantly increased adult mortality (X2(5, n=30) =17.4, p=0.004) 242 

(Fig. 1). The presence of MPs had no impact, positively or negatively on survival, either with 243 

low (U= 10, p=0.317) or high algal concentrations (U=10, p=0.513).  244 

3.3.  Reproduction Test  245 

A 21-day reproduction test of adult D. magna revealed significant differences in the mean 246 

number of offspring between treatments (X2(5, n=30) = 216.1, p= 0.001) (Fig. 2). This was 247 

because treatments with low food were associated with low numbers of offspring (S1 Table 248 

1).  249 

3.4. Neonate chronic toxicity test  250 

Mortality tests were significantly different between treatments exposed to low and high algae 251 

concentrations, irrespective of the presence of MPs (X2(5, n=30) =17.79, p = 0.003) (Fig. 3). 252 

 253 

3.5. Reproduction test following neonate exposure to MPs 254 

A 21-day reproduction test of adult D. magna revealed significant differences in the mean 255 

number of offspring between treatments (X2(5, n=30) = 1032, p>0.001, Fig. 4). This was 256 



because low amounts of algae were associated with a reduction in reproduction: MPs had no 257 

impact  (S1 Table 2).   258 

 259 

3.6 Growth Rate  260 

There were highly significant differences in growth rate between the treatments (F 45,283=3.455, 261 

p< 0.001) (Fig. 5). Growth rate was higher in treatments with high levels of algal food (S1 262 

Table 3).  263 

3.7  Distribution of microplastics between the water and sediment in mesocosms 264 

Significantly more MPs were measured in sediment compared to water over time (F(2,68)=59.4, 265 

p <0.001) (Fig. 6). The number of MPs in the water body remained constant over time, with 266 

no evidence of a change in number (F(1,33)=0.33, p= 0.567) (Fig. 6).  The abundance of MPs in 267 

the water column showed no correlation with increase in air temperature, correlation = - 0.06 ; 268 

F(1,5)= 0.018, p= 0.898 and a non-significant negative with rainfall correlation of = - 0.70; 269 

F(1,5)= 0.1361, p= 0.727. 270 

 271 

3.8.Effects of microplastics on species abundance 272 

Daphnia magna numbers fluctuated between weeks but overall there were no significant 273 

differences between controls and mesocosms exposed to MPs at the end of 12 weeks (Fig. 7) ( 274 

Z=0.918, p=0.36). However, on a week by week basis, there were some highly significant 275 

differences, with lower D. magna numbers in the MP treated mesocosms in the first half of the 276 

experiment (SI Table 4).  277 

Similarly overall abundances of other macroinvertebrates showed no effect of treatment over 278 

the 12 weeks (C. pipiens Z=-1.055, p=0.29; P. antipodarum Z= 1.596; P = 0.110; 279 

Hydrachnidia  Z= 0.005; P = 0.996; C. plumbeus Z= -1.168, P = 0.24). Abundances of 280 



macroinvertebrates that had independently colonised the mesocosms suggested an impact on 281 

only one species, the mayfly Leptophlebia spp. which started to appear from the fourth week 282 

of sampling and was significantly dominant in mesocosms treated with MPs X2(1) = 5.62, p 283 

=0.018 (Fig. 8 A). Corixa punctata (Lesser water boatman), which also appeared in the 284 

fourth week of sampling in the control mesocosm was not affected by MP treatmentX2 (1) = 285 

0.683, p =0.40) (Fig. 8 B). Despite the lack of overall significant differences, there were 286 

clearly significant differences between treatments in various mesocosms in certain weeks 287 

(Tables SI 5-7).  288 

4. Discussion  289 

Microplastic pollution in freshwater environments is a global challenge to ecosystem and 290 

human health, and the long-term effect are still poorly understood (Horton et al., 2017; 291 

Rochman et al., 2019). Most studies have focused on laboratory experiments to examine the 292 

uptake and toxicity of MPs in freshwater invertebrates with limited results from fields studies 293 

(Wagner and Lambert, 2018).  Here, for the first time we examine the abundance and chronic 294 

ecotoxicological effects of 15 m polystyrene MPs on freshwater organisms in the laboratory 295 

and in small mesocosms.   296 

Laboratory chronic toxicity tests with D. magna adults and neonates exposed to two 15 m 297 

polystyrene MP concentrations (100 and 800 MPs/mL) revealed that mortality was linked to 298 

algal food availability, not exposure to MPs, despite MP ingestion. This suggests some 299 

selectivity in eating algae over MPs, something that has been demonstrated previously. 300 

Daphnia exposed to primary MPs or kaolin, with low and high food concentrations, revealed 301 

life history trait changes solely linked to food concentration, not MPs (Ogonowski et al., 2016).   302 



Our previous research using 2 m polystyrene MPs was designed to look specifically at the 303 

impact of food, using MPs of approximately the same size of the algal cell with algal 304 

concentrations chosen based on the minimum and maximum normal daily feeding of Daphnia 305 

(Aljaibachi and Callaghan, 2018).  When exposed to a single concentration of 2 m MPs 306 

Daphnia almost immediately ate them in large quantities in proportion to their concentration, 307 

a finding replicating that of Pavlaki et al., (2014). However we found that Daphnia given algae 308 

with MPs were quite selective, preferentially eating algae over 2 m MPs (Aljaibachi and 309 

Callaghan, 2018), a result found elsewhere with Daphnia selectively feeding on phytoplankton 310 

rather than clay particles (DeMott, 1986).  311 

A number of studies have shown that MPs fed to laboratory organisms have practically no 312 

impact in the confines of the systems used (Schür et al., 2019; Wang et al., 2019). Reproduction 313 

tests for adults and neonates showed a similar effect in that food availability had an impact, but 314 

MPs did not. A similar result was found with Daphnia exposed to primary MPs or kaolin, with 315 

low and high food concentrations, where Daphnia life history trait differences were linked to 316 

food concentration, not MPs (Ogonowski et al., 2016).   317 

Given that the MPs used were pristine and had not been in contact with any toxins which might 318 

adhere to their surface, we can say with confidence that, in themselves, these particles have no 319 

important effect on laboratory Daphnia. It could simply be the case that they are too large to 320 

be ingested by neonates, but the experiments here took neonates through to adults, with no 321 

effect and animals definitely ingested MPs.  322 

Studies on different types of MPs and smaller sizes of MP have found toxic effects. Deposit-323 

feeding marine lugworms, Arenicola marinara, fed on plasticised polyvinylchloride under 324 

laboratory conditions at concentrations found in the environment suffered depleted energy 325 

reserves which were probably linked to a reduction in feeding and an inflammatory response 326 



(Wright et al., 2012). Likewise, marine mussels Mytilus edulis fed factory clean high-density 327 

polyethylene up to 80 μm in size displayed toxic effects including a strong inflammatory 328 

response and was related to cellular uptake (von Moos et al 2012). One explanation for the lack 329 

of effect in our research is that the polystyrene is less toxic than other MPs (Wright et al., 2012; 330 

von Moos et al., 2012). A study on  20 μm polystyrene MPs in the marine copepod Calanus 331 

hegolandicus also found no effect on egg production or survival (Cole et al 2015). Looking at 332 

these and other studies, a theme has emerged in that different plastics and MP sizes are being 333 

used in different studies, generating conflicting results.  MPs cannot be treated as though they 334 

are one type of stressor and conclusions based on simple experiments and approaches are 335 

probably not informative.  There is an argument for a systematic analysis of MP size, type, 336 

concentration, test organism and exposure method (de Sa et al 2018).  . We would also argue 337 

that studies of effects should not be confined to laboratory systems. Laboratory experiments 338 

have little relation to natural systems where external factors can play a role in the disturbance 339 

and abundance of MPs, including the presence of competitors, predators and temperature and 340 

rainfall. 341 

The mesocosm experiment was conducted during a year with an extremely hot and dry summer 342 

and evaporation of water from the mesocosms was an issue; water had to be added to maintain 343 

the volume. This was an issue in both control and treated mesocoms and there was no evidence 344 

that this mixed the MPs up into the water column. Temperature and rainfall were also not 345 

significantly correlated with MP numbers in the water column.  After the second week of the 346 

experiment MPs fell to the bottom of the mesocosms, leaving almost none in the water column. 347 

This has also been shown in larger, more natural systems such as lakes (Su et al., 2016).      348 

Daphnia magna population numbers were lower in mesocosms exposed to MPs compared to 349 

the controls for the first seven weeks of exposure. Although MPs fell to the sediment after two 350 



weeks, Daphnia would have been exposed to high levels of MPs initially. Any negative impact 351 

would be evident in the first few weeks but disappear in a new generation (after 21 days)  as 352 

the MPs effectively disappeared.   This is in line with transgenerational research where D. 353 

magna exposed to pristine microspheres (mixed sizes of 1–5 μm) recovered if they were placed 354 

into clean water, although they suffered effects on mortality, reproduction and the population 355 

growth rate up to third generations post exposure (Martins and Guilhermino, 2018).  356 

The population abundance of other species in the mesocosms was variable. The mosquito C. 357 

pipiens fluctuated in number over 12 weeks in both control and treated mesocosms but it is 358 

well known that mosquito populations are very variable and seasonal (Ortiz-Perea et al., 2018; 359 

Townroe and Callaghan, 2015). Culex pipiens was not significantly affected by the presence 360 

of MPs which agrees with research on Culex mosquitoes showing that 15 MPs had no effect 361 

on mortality or growth rate (Al-Jaibachi et al, 2018).  362 

 363 

Although not added at the start of the experiment, the mayfly Leptophlebia spp rapidly 364 

colonised the mesocosms with significantly more in MP-treated mesocosms. Since 365 

Leptophlebia species are detritivores (Sweeney et al, 1986), there would have been more food 366 

availability in treated ponds from D. magna deaths in the first 6 weeks. This may have resulted 367 

in more individuals surviving and being collected during sampling.  A second species to 368 

colonise ponds was the lesser water boatman, Corixa punctata. This is a potential competitor 369 

for food since it has a diet of algal cells but there was no significant difference in numbers 370 

between mesocosm treatments.  371 

 372 

The abundance of MPs in most freshwater environments investigated highlights questions 373 

about their impact on the biota biodiversity, food chain, community composition and predator-374 

prey interactions and the possibility to accumulate in the food chain or transfer ontogenically 375 



to different environments. Trophic transfer via predation has been identified as a potentially 376 

major pathway through which MPs can move through food webs (Batel et al., 2016; Chae and 377 

An, 2017; Nelms et al., 2018; Provencher et al., 2018), however quantifications of how 378 

exposure to MP pollution influences trophic interaction strengths are lacking, especially in 379 

highly vulnerable, understudied freshwater environments (Blettler et al., 2018). aibachi, et al. 380 

2018a; Al-Jaibachi, et al. 2018b; Rillig 2012; Wright et al. 2013) we demonstrate that MPs can 381 

be transferred and retained trophically from filter feeding organisms to higher predators, and 382 

that trophic transference relates to consumption rates. Predation by larval C. flavicans towards 383 

larval mosquito prey was significant irrespective of prior prey exposure to MPs. Neither search 384 

efficiency (attack rate) nor time taken to subdue, capture and digest prey (handling time) was 385 

significantly affected by prey MP exposure. Whilst both the area of attack rate and handling 386 

time parameters have been shown to be heavily context-dependent e.g. (Barrios-O’Neill et al., 387 

2016; Cuthbert et al., 2018b), here we show that the presence of MP pollution does not elicit 388 

changes to predation rates. Therefore, MPs are likely to be readily transferred to predators from 389 

prey in MP-polluted systems. 390 

 391 

To conclude, this research addresses a key knowledge gap, namely that little is known about 392 

the ecological impacts of MPs in the freshwater natural environment. Most research to date has 393 

focused on laboratory studies which don’t take biotic and abiotic environmental changes into 394 

account. Daphnia numbers were significantly reduced in MP treated mesocosms despite no 395 

effect on other organisms, other than an increase in de novo colonisation, and no effect on 396 

Daphnia life history parameters in the laboratory.    The effects of 15 µm polystyrene MPs on 397 

Daphnia magna survival, growth, and reproduction in the laboratory were similar to a parallel 398 

study of ours using 2 µm polystyrene MPs. This showed that the availability of algal food was 399 

far more important than any toxic impact of the MPs. This demonstrates that laboratory studies 400 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polystyrene
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polystyrene


can indicate effects only under the conditions set. Most of the MPs had settled in the mesocosm 401 

sediment after the first week of exposure which was not possible in the laboratory since no 402 

sediment was used.   The study highlights a need to look at the availability of both food and 403 

MPs in natural environments where a community of organisms are interacting.  404 

  405 



Figure legends 406 

 407 

Figure 1 Mortality of Daphnia magna for 21 days, expressed as a function of time, after chronic 408 

MP exposure in the laboratory under high and low food conditions.   409 

Figure 2 Effects of combinations of high and low MPs and algae concentrations on the mean 410 

number of offspring of Daphnia magna. Error bars indicate ± 95% confidence intervals. 411 

Results obtained under laboratory conditions.   412 

Figure 3 Mortality rate over 21 days for neonate Daphnia magna after exposure to different 413 

treatments of MPs and algae, under laboratory conditions.  414 

Figure 4 Daphnia magna reproduction (neonate production) after 21 days exposure to a range 415 

of MP and algae treatments (algae (Low), algae (High), Algae = MP (Low), Algae = MP(High), 416 

Algae>MP, MP>Algae). Error bars indicate ± 95% confidence. Results obtained under 417 

laboratory conditions.   418 

Figure 5 Effect of 21 days exposure to different combinations of MPs and algae (Algae (Low), 419 

Algae (High), Algae = MP(Low), Algae = MP(High), Algae >MP, MP> Algae) on the body 420 

length of Daphnia magna. Each point represents the mean of five replicates ± standard error 421 

(SE). Results obtained under laboratory conditions.   422 

Figure 6 The mean number of MPs in the mesocosm sediment and water body  SE. In the 423 

mesocosms.   424 

Figure 7 Mean abundance of Daphnia magna in the mesocosms over the experimental period 425 

in relation to treatments. The error bars indicate the standard error (±SE) of the mean.  426 



Figure 8 The mean abundance of (A) Leptophlebia spp. (mayfly larvae) and (B) Corixa 427 

punctate (lesser water boatman)  in the mesocosms over the experimental period in relation to 428 

treatments. The error bars indicate the standard error SE of the mean.   429 
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 603 

  604 



Table 1 Concentrations of MPs (MPs ml-1) and algae (l) added to each treatment to study 605 

chronic toxicity in D. magna.  606 

Treatments Algae concentrations 

(l) 

Microplastics 

concentrations 

(MPs ml-1) 

Algae (Low) 100 0 

Algae (High) 800 0 

Algae=MPs (Low) 100 100 

Algae=MPs (High) 800 800 

Algae>MPs 800 100 

MPs>Algae 100 800 

 607 

 608 

Table 2 Classification and number of the species added to each mesocosms. 609 

 Species Habitat and feeding Classification  Number in each 

pond 

Daphnia magna Water column 

Filter feeder 

Class: Branchiopoda 

Order: Cladocera 

Family: Daphniidae  

1000 

Culex pipiens Water column and 

surface 

Filter feeder 

Class: Insecta 

Order: Diptera 

Family: Culicidae 

15 



Chironomus 

plumosus 

Sediment 

Filter feeder 

Class: Insecta 

Order: Diptera 

Family: Chironomidae 

30 

Jenkins spire-shell 

Potamopyrgus 

antipodarum 

Water surface and 

sides 

Herbivore 

Class: Gastropoda  

Order: Littorinimorpha 

Family: Tateidae 

15 

Water mite 

Hydrachnidia 

Water column 

Predator 

Class:  Arachnida 

Order:  Trombidiformes 

Family:  Hydrachnidiae 

15 

 610 

 611 

 612 


