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Critical levels, where the wind vanishes in the atmosphere,
are of key importance for gravity wave drag parametriza-
tion. The reflectivity of these levels to mountain waves is
investigated here using a combination of high-resolution
numerical simulations and insights from linear theory. A
methodology is developed for relating the reflection coeffi-
cient R of 2D hydrostatic orographic gravity waves to the
extrema of the associated drag as a function of an indepen-
dent flow parameter. This method is then used to infer the
variation of the reflection coefficient with flow nonlinear-
ity. To isolate the effect of critical levels, a wind profile
with negative shear is adopted, which is characterized by
its Richardson number Ri and the dimensionless mountain
height Nh0/U0, based on the mountain height h0, Brunt-
Väisälä frequency N and surface incoming wind speed U0.
Subject to the assumptions of linear theory, the drag is shown
to be modified by wave refraction and reflection. The mod-
ulation of the drag by wave reflection is used to derive the
reflection coefficient from the drag diagnosed from the nu-
merical simulations. Despite considerable uncertainty, the
critical level is found to have an R that first increases with
Nh0/U0 for low values of this parameter, and for stronger
nonlinearity saturates to a value of about 0.6. The flow con-
figuration in this saturated regime is characterized in the
case of high-drag states by constructive wave interference,
resembling downslopewindstorms. Wave reflection by crit-
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ical levels enhances the flow nonlinearity and the associ-
ated drag amplification, more than doubling it for values of
Nh0/U0 as low as 0.12. These results emphasize the need
to represent this process in orographic gravity wave drag
parametrizations, and suggest a possible way of doing it us-
ing a prescribed critical level reflection coefficient, derived
using the present methodology.

K E YWORD S

Mountain waves, Gravity wave drag, Critical levels, Wave
reflection, Nonlinear effects, Hydrostatic flow

1 | INTRODUCTION

Orographic gravity wave drag remains one of the key subgrid-scale physical processes that need to be parametrized
in weather forecast and climate models (Teixeira, 2014). The importance of its representation, whose absence would
decisively degrade the quality of forecasts and introduce spurious biases, was first shown compellingly by Palmer et al.
(1986). In most existing orographic drag parametrizations, that force is represented in a very simplified way, typically
ignoring wind profile effects on its net surface value (Lott and Miller, 1997), and often also neglecting nonlinear
effects associated with high-amplitude mountain wave breaking, although a few exceptions regarding this last aspect
do exist (Kim and Doyle, 2005). However, there are clear indications that both of these neglected effects may have
a strong impact on the drag, under specific flow conditions. By its very nature, nonlinear drag amplification in high-
amplitude mountain waves gives a disproportionate contribution to the drag at the regional or global scales. Even in
the linearized approximation, which provides a rough indication of the drag dependence on the flow parameters, the
drag is proportional to the square of the orography elevation (Phillips, 1984), which skews its contribution towards
high-amplitude waves. Miranda and James (1992) and Ólafsson and Bougeault (1996) explored the enhancement of
the drag by flow nonlinearity, showing that for a value of the dimensionless mountain height of order one a wave
breaking regime sets in, with amplification of the drag by a substantial factor relative to its reference value given by
linear theory, even for an atmosphere with constant wind and static stability. The existence of shear considerably
complicates this picture.

The importance of wave breaking for Clear-Air Turbulence generation in flows with directional shear has been
investigated recently by Guarino et al. (2016, 2018) and Guarino and Teixeira (2017). Concurrently, it has been shown
that the variation of the wind with height also leads to modifications to the net drag, either if this variation is gradual
(Teixeira and Miranda, 2006, 2009; Teixeira and Yu, 2014), or more expressively if the variation is sudden, causing
vertical reflection of the wave energy and some form of resonant wave interference (Teixeira et al., 2005, 2008).
While these mechanisms are already present and quite important in linear flow, they become especially powerful
in nonlinear flow, leading to amplification of the drag by factors of 2 or more, relative to its value in the absence of
wave reflections (Miranda and Valente, 1997; Teixeira et al., 2005, 2008). Wave reflections and the attendant resonant
drag enhancement may occur basically due to two physical mechanisms (understandable in a linear framework): either
partial reflection, resulting from discontinuities in atmospheric parameters or their vertical derivatives (Wang and Lin,
1999; Teixeira et al., 2005, 2008), or total reflection at so-called turning-points, i.e., levels where the waves transition
from being vertically-propagating to evanescent, originating trapped lee waves (Teixeira et al., 2013a; Yu and Teixeira,
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2015; Teixeira and Miranda, 2017).

Critical levels, where the wind speed vanishes and the wave equation becomes singular, are important for two
reasons: they are heights where according to Eliassen-Palm’s theorem the wave momentum flux may vary vertically
even in steady and inviscid conditions (Eliassen and Palm, 1960), and they affect the net drag produced by mountain
waves, as described next. Both of these effects are of key importance for gravitywave drag parametrization. Under the
linear theory approximation, critical levels never lead to any wave reflection, but rather either transmit or absorb the
waves, as shown originally by Booker and Bretherton (1967) and further elaborated on by Teixeira andMiranda (2009),
Teixeira and Yu (2014) and Xu et al. (2012, 2013, 2017). However, as nonlinearity increases, this situation is thought
to change, as suggested by various studies (Breeding, 1971; Clark and Peltier, 1984; Smith, 1985). It is especially
difficult to disentangle the effects of wind profile variation and critical levels on drag behaviour, because typically
the incoming wind profiles used to investigate flows with critical levels have variable shear, to ensure boundedness
of the wind speed. For example, Miranda and Valente (1997), Wang and Lin (1999) and Teixeira et al. (2005, 2008)
used piecewise-linear wind profiles to produce critical levels, whereas Scinocca and Peltier (1991), Lott (2007, 2016)
and Damiens et al. (2018) adopted for the same purpose hyperbolic-tangent wind profiles. Qualitatively, both kinds
of wind profiles have (smoothed or sudden) changes in their vertical shear, which affect the waves and hence the
associated drag, either by refraction (in the former case) or more likely by reflection (in the latter case, but also in the
former if the shear changes fast enough). Wave reflections at transitions in the vertical shear of the incoming wind
have been invoked byWang and Lin (1999) and Teixeira et al. (2005, 2008) to interpret the behaviour of the drag and
wave structure. Whilst this approach was successful at low wave amplitudes, the behaviour of nonlinear flow pointed
towards a more complicated role of critical levels, probably involving their transition from absorptive to reflective,
confirming the initial conjectures of Breeding (1971) and Clark and Peltier (1984).

One of the few caseswhere the effect of a critical level may be isolated is that of a linear wind profilewith constant
negative shear. Although highly idealized, this profile has been adopted by Smith (1986), Grubišić and Smolarkiewicz
(1997), Teixeira and Miranda (2006) and Teixeira et al. (2008) to understand gravity wave drag mechanisms. When
this wind profile is adopted in numerical simulations, however, the wind velocity must typically be bounded, to avoid
the risk of computational instability problems arising due to violation of the CFL condition. In such cases, it is usual
to limit the wind magnitude at some height above the critical level, which of course implies a discontinuity or other
variation of its vertical gradient (Teixeira et al., 2008). Nevertheless, this does not usually have a large impact on the
wave characteristics below the critical level or the wave drag, since the critical level to a certain extent insulates the
flow from what goes on above it due to its absorptive characteristics, as shown by Teixeira et al. (2008).

In the present study this simple linear wind profile will be used to investigate the reflective properties of critical
levels in moderately nonlinear flow. Breeding (1971) was able to infer that the reflection coefficient of critical levels
in nonlinear conditions increased with decreasing Richardson number (Ri ), but given the limited number of cases
considered, he was unable to establish a systematic dependence of the reflection coefficient on the nonlinearity
parameter. On the other hand, the study of Teixeira et al. (2008) raised a number of intriguing questions about the
behaviour of the drag as a function of both Ri and the dimensional mountain height. While for the wind profile with
positive shear (without a critical level), the drag was seen to be amplified more relative to its value calculated from
linear theory for low Ri than for high Ri , for a wind profile with negative shear (and a critical level) the opposite was
seen to occur. In particular, the amplification of the drag at the highest values of Ri considered did not approach
the value predicted by weakly-nonlinear theory (Miles and Huppert, 1969) for zero shear (infinite Ri ), the latter of
which was nevertheless confirmed by numerical simulations for the same dimensionless mountain heights. In other
words, for nonlinear flow the high-Ri limit, concerning drag behaviour, does not seem to approach the infinite-Ri
limit. The purpose of the present contribution is to clarify this issue, in the simplest possible conditions that allow
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isolation of the relevant physical processes. With that aim, the focus will be on inviscid, non-rotating, hydrostatic flow,
the latter assumption (conjugated with a wind profile with no curvature) automatically ruling out trapped lee waves.
The chosen approach relies on a connection between the behaviour of the drag and the corresponding reflection
coefficient, which is derived here and extrapolated from linear theory.

This paper is organized as follows: section 2 presents the theoretical framework used to interpret the results.
Section 3 describes the numerical simulations used to represent mountain waves with varying degrees of nonlinearity.
Section 4 presents the results and their interpretation, trying to clarify the dependence of the reflection coefficient of
a critical level on nonlinearity for flows with relatively weak shear. Finally, section 5 summarizes the main conclusions
of this study.

2 | THEORY

Inviscid, non-rotating, hydrostatic, steady waves generated by a 2D mountain ridge will be considered. For linearized
flow with the Boussinesq approximation described in Fourier space, the Taylor-Goldstein equation reads:

ŵ ′′ +

(
N 2

U 2
−
U ′′

U

)
ŵ = 0. (1)

Here, ŵ (k , z ) is the Fourier transform of the vertical velocity perturbation (k is the horizontal wavenumber of the
waves), N andU are the Brunt-Väisälä frequency and wind velocity of the mean incoming flow and the primes denote
differentiation with respect to height, z.

It will be assumed that the wind near the surface, at least up to the critical level and possibly beyond, varies
linearly with uniform negative shear such that

U (z ) = U0 − αz , (2)

where U0 is the wind speed at the surface and α > 0 is a constant shear rate. For this wind profile, the term with the
second derivative of the incoming wind in (1) vanishes, and the solution to that equation is of the form:

ŵ (k , z ) = β (k )

(
U (z )

U0

) 1
2 −i µs

+ γ(k )

(
U (z )

U0

) 1
2 +i µs

, (3)

where s = sgn(k ), i =
√
−1, µ = (Ri − 1/4)1/2, Ri = N 2/α2 is the Richardson number of the incoming flow, and

β and γ are coefficients to be determined that depend on the boundary conditions. Note that the first and second
terms correspond to waves whose energy propagates upward and downward, respectively. Equation (3) may also be
expressed in the form

ŵ (k , z ) = β (k )


(
U (z )

U0

) 1
2 −i µs

+ F (k )

(
U (z )

U0

) 1
2 +i µs

 , (4)

where F = γ/β may be related to a reflection coefficient, as will be seen.

The surface boundary condition, ŵ (z = 0) = iU0k ĥ, where ĥ is the Fourier transform of the terrain elevation,
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implies that

β =
iU0k ĥ

1 + F
. (5)

On the other hand, the Fourier transform of the pressure perturbation associated with the waves is given by

p̂ =
i ρ0
k

(
U ′ŵ −Uŵ ′

)
, (6)

where ρ0 is a reference (constant) density. If the solution to (1) in the form (4) is used, (6) may be written at the surface
(z = 0) as follows:

p̂(z = 0) = −
ρ0U0αĥ

1 + F

[
1

2
(1 + F ) − i µs(1 − F )

]
. (7)

Using Parseval’s theorem, the orographic gravity wave drag on the 2D ridge (per unit length) may be expressed as
(Teixeira, 2014)

D = 2πi

∫ +∞

−∞

k p̂∗(z = 0)ĥdk = −2πi

∫ +∞

−∞

k p̂(z = 0)ĥ∗dk , (8)

where the asterisk denotes complex conjugate. Inserting the definition of p̂(z = 0) given by (7) into (8) yields

D = 2πρ0U0α

∫ +∞

−∞

k |ĥ |2µs
1 − F

1 + F
dk , (9)

where use was made of the fact that the drag is a real quantity, and hence the first real term inside the square brackets
in (7) gives no contribution.

In order to further simplify (9), two properties of F (k ) must be taken into account. Firstly, for hydrostatic flow F

is not actually a function of the magnitude of k , but only of its sign, i.e., F = F (s). This is because (1) does not depend
on k , and its solution (4) only depends on the magnitude of k via the lower boundary condition, which is accounted
for by (5). Since F is the ratio of γ and β , the dependence on k of each coefficient cancels out. Secondly, F satisfies
F ∗(s) = F (−s), a property that will be used below. This results from (4)-(5) and from the fact that w (x , z ) is real, and
so ŵ ∗(k , z ) = ŵ (−k , z ). Given this property, (9) may be rewritten as

D = 2πρ0NU0
µ

Ri 1/2

∫ +∞

0
k |ĥ |2

[
1 − F (s)

1 + F (s)
+

1 − F (−s)

1 + F (−s)

]
dk . (10)

Since F (s) is not a function of k , the expression in square brackets in (10) can be moved outside the integral. On the
other hand, the drag for a constant wind equal to its surface value U0 is

D0 = 4πρ0NU0

∫ +∞

0
k |ĥ |2dk , (11)

which means that the drag (10) normalized by this value takes the form

D

D0
=

1

2

µ

Ri 1/2

[
1 − F (s)

1 + F (s)
+

1 − F ∗(s)

1 + F ∗(s)

]
, (12)
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where the property of F pointed out above has been used. Now, noting that the two terms in the square brackets in
(12) are the complex conjugate of each other, that equation may be expressed further as

D

D0
=

(
1 −

1

4Ri

)1/2 1 − |F |2

1 + 2Re(F ) + |F |2
, (13)

where the definition of µ has also been used. If, as Teixeira et al. (2005) and Teixeira et al. (2008) did, a wave reflection
coefficient is defined as R = |F |, then

F = Re i θ = R (cos θ + i sin θ) , (14)

where θ = arctan[Im(F )/Re(F )], and (13) can be alternatively written

D

D0
=

(
1 −

1

4Ri

)1/2 1 − R 2

1 + 2R cos θ + R 2
. (15)

This equation makes it particularly transparent that the drag is affected by two distinct processes: wave refraction and
wave reflection. Wave refraction is accounted for by the factor [1−1/(4Ri )]1/2 (this is the scaling of the drag for a linear
wind profile that extends indefinitely (Smith, 1986, Teixeira andMiranda, 2004). The factor (1−R 2)/(1+2R cos θ+R 2),
on the other hand, accounts for wave reflections. Note that it does not assume anything about the process that
produces the reflection apart from the reflection coefficient R and the phase of the reflection θ. To isolate the effect
of reflections, one may define

D00 = D0

(
1 −

1

4Ri

)1/2
, (16)

in terms of which (15) becomes simply

D

D00
=

1 − R 2

1 + 2R cos θ + R 2
. (17)

This perfectly isolates the effect of wave reflections. A formally similar expression applies in the case of a flow with
no shear (and no critical level) in the region of interest, as is consistent with the explicit dependence of (15) on Ri .

If there is some process that causes the phase of the wave reflection to vary as a function of some independent
flow parameter (for example, Ri ), such that the phase angle θ takes all possible values in the interval [0, π] or spans an
evenwider interval, therewill be some situationswith θ = 0⇒ cos θ = 1, and some situationswith θ = π ⇒ cos θ = −1.
Then, according to (17), the drag takes, respectively, its minimum and its maximum values, given by

Dmin
D00

=
1 − R

1 + R
,

Dmax
D00

=
1 + R

1 − R
. (18)

One consequence of this is that (18) may be inverted to obtain R from the drag behaviour. In particular R may be
obtained either from Dmax /D00 or Dmin/D00 if D00 is known, namely

R =

Dmax
D00
− 1

Dmax
D00

+ 1
=

1 −
Dmin
D00

1 +
Dmin
D00

. (19)
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If, on the other hand, D00 is not known beforehand, it can be determined from (18) as D00 = (DmaxDmin )
1/2, and R

can also be determined directly from (18) in terms of Dmax /Dmin as

R =

(
Dmax
Dmin

)1/2
− 1(

Dmax
Dmin

)1/2
+ 1

. (20)

Note that underlying all these manipulations is the assumption that R does not change appreciably with the flow
parameter that causes the drag modulation (mentioned above), particularly between its values for which Dmax and
Dmin are attained. Once R is known, θ may be determined in terms of D/D00 as it varies with this flow parameter, via

cos θ =
1 − R 2 − (1 + R 2) DD00

2R D
D00

. (21)

Equations (20) and (21) allow a deduction of all parameters of the wave reflection simply from the behaviour of the
drag, if this has discernible maxima and minima. Nothing is assumed about the nature of the process that causes the
reflection itself. This provides a tool for evaluating the wave reflection coefficient and phase from the drag provided
by generic numerical simulations of mountain waves where wave reflections are believed to occur. This tool will
be used in the present paper with numerical simulations of flow with varying degrees of nonlinearity to try to infer
the reflection properties of a critical level. A subtlety touched upon above is that, to find the extrema of D/D00,
its variation must be investigated as a function of some flow parameter (here Ri ), and it is possible that R itself is
a function of that same parameter (this is indeed the case in the simple example presented next). This precludes a
perfectly accurate estimate of R (as shown next). However, as long as θ varies faster with changes in Ri than R , the
estimate of R can still be quite accurate. Given that, in the parameter range that will be considered here, the extrema
of D/D00 are too sparse, no attempt will be made to estimate θ, which would require a continuous description of the
variation of both D/D00 and R with Ri in order to use (21).

2.1 | Preliminary test of the method

The feasibility and accuracy of the method outlined above is best tested using linear theory, in which analytical solu-
tions of the flow exist and all the details that can be deduced from the method are known and may be checked. The
wind profiles considered by Teixeira et al. (2008) are essentially similar to the one that will be used here: the wind
speed either decreases linearly with height, reaching a critical level (as described by (2)), or it increases linearly instead,
below a height where the shear changes discontinuously to zero. From the linear solutions, the first case, with nega-
tive shear (described by Figure 1(c) of Teixeira et al. (2008)), does not show any substantial wave reflection because
of wave absorption by the critical level (that situation changes in nonlinear conditions, which are the focus here). But
substantial wave reflection does occur (at the shear discontinuity) in the case with positive shear (described by Figure
1(a) of Teixeira et al. (2008)). The latter flow (similar to (2) near the surface, but with α < 0) will be considered in the
tests presented next, since, from the above, it is irrelevant for the method what causes the wave reflection (either a
shear discontinuity or a nonlinear critical level).

The reflection coefficient for this flow is given by (cf. Teixeira et al. (2008)):

R =

(
1 − µ/Ri 1/2

1 + µ/Ri 1/2

)1/2
. (22)
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Although Teixeira et al. (2008) did not calculate θ, it may be shown that

θ = 2µ log
����U1

U0

���� − δ + π, (23)

where U1 is the wind velocity at the height where their wind profile becomes constant (see Figure 1(a) of Teixeira
et al. (2008)), and δ = arccos[1/(2Ri 1/2)]. If these two definitions are used in (17), an equation equivalent to the drag
expression of Teixeira et al. (2008) for this case (their Eq. (17)) is recovered:

D

D00
=

µ

Ri 1/2

1 − 1
4Ri cos

(
2µ log

���U1U0 ���) − µ
2Ri sin

(
2µ log

���U1U0 ���) . (24)

Figure 1 shows D/D00 (solid lines), R (dashed lines) and cos θ (dotted lines) obtained from (24), (22) and (23),
respectively, as a function of Ri−1, for two different values of |U1/U0 |: 4 (Figure 1(a)) and 8 (Figure 1(b)). As can be
seen (and was found previously by Teixeira et al. (2008)), D/D00 oscillates with Ri−1, with the oscillations increasing
in amplitude as Ri decreases. Clearly, this is due to the increase of R as Ri decreases (see (22)), which reaches a
value of 1 (perfect reflection) at Ri = 1/4. The oscillations of D/D00 are closely connected with θ. In particular, when
θ = 0⇒ cos θ = 1 thewave interference is destructive, leading tominima inD/D00, whereaswhen θ = π ⇒ cos θ = −1

the wave interference is constructive, leading to maxima in D/D00 (as discussed above in generic terms). Perfect
constructive wave interference and total reflection at Ri = 1/4 lead to an infinite value of D/D00. D/D00 and cos θ are
approximately in phase opposition (with maxima of D/D00 corresponding to minima of cos θ and vice-versa), but this
correspondence is not perfect, because part of the modulation of D/D00 is due to the variation of R . This is especially
visible in the extrema on the right limit of the graphs, because that is where R varies faster with Ri−1, and is an intrinsic
limitation of the method adopted here.

Figure 2 shows R (solid lines), (D/D00−1)/(D/D00+1) (dashed lines) and (1−D/D00)/(1+D/D00) (dotted lines) as a
function of Ri−1 for the same values of |U1/U0 | as Figure 1. According to (19), (D/D00−1)/(D/D00+1) should coincide
with R at drag maxima and (1 − D/D00)/(1 + D/D00) should coincide with R at drag minima. The dots shown on the
curves representing these quantities correspond to drag maxima and minima respectively. Clearly, the dots provide
quite a good estimate (although a localized one in Ri parameter space) of the value of R . The quality of this estimate
is slightly less good for the lowest values of Ri where R varies faster with Ri−1, as pointed out above, but as long as
the result that the phase varies faster than R with Ri (which seems well fulfilled for high Ri ) can be extrapolated to
nonlinear conditions, the method should work satisfactorily.

Table 1 shows a comparison between R for the values of Ri for which D/D00 attains extrema with the estimates
obtained from (19), and the corresponding relative error. Only cases with Ri < 64were included, since R is otherwise
quite small. It can be seen that the estimates are quite accurate, and only become less accurate for the lowest Ri
where R changes faster with Ri−1. Nevertheless, the error never rises above a few percent, which is good enough for
the present purposes.

Themethod just developed and testedwill be applied next to the output fromnumerical simulations, where, unlike
in linear conditions, drag extrema exist for flows with negative shear. Note that, due to the fact that the dependence
of R on Ri is not known in that case, and R is only estimated for discrete values of Ri , it is not possible to infer the
continuous variation of θ with Ri , although it will be (reasonably) assumed that when D/D00 is a maximum θ ≈ π and
when D/D00 is a minimum θ ≈ 0.
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3 | DESCRIPTION OF NUMERICAL SIMULATIONS

Fully nonlinear 2D numerical simulations are carried out using the FLEX meso-to-microscale numerical model (Argaín,
2003), written in orthogonal curvilinear coordinates, which has been tested for a range of conditions, both inviscid
(Teixeira et al., 2012, Teixeira et al., 2013a, Teixeira et al., 2013b) and including a full representation of boundary layer
processes (Argaín et al., 2009, Argaín et al., 2017). The model is run in quasi-inviscid mode, i.e. using a Lilly subgrid-
scale turbulence closure scheme, but a free-slip surface boundary condition. Since the incoming flow (described by
(2) above) is dynamically stable, the turbulence closure is never activated except in regions of wave breaking and flow
overturning. A grid of 200×375 points with spacings of 1760m and 85.33m (in the horizontal and vertical, respectively)
is used in all simulations except those for the highest mountain, giving a domain width of 352 km (176 km to each side
of the mountain) and a domain height of 32 km. For the simulations with the highest mountain, the vertical grid
comprises instead 444 points, giving a domain height of 38 km. The shape of the lower boundary corresponds to a
2D bell-shaped mountain given by

h(x ) =
h0

1 + (x/a)2
, (25)

where h0 is the maximum height and a the half-width of the mountain. The mountain width is fixed at a = 16 km and
themountain height takes values between h0 = 10m and h0 = 500m. The incoming flow is characterized by a constant
Brunt-Väisälä frequency N = 0.01 s−1, a wind speed at the surface U0 = 10ms−1, yielding a dimensionless mountain
width N a/U0 = 16 (i.e. approximately hydrostatic flow), a dimensionless mountain height between Nh0/U0 = 0.01

(strongly linear flow) and Nh0/U0 = 0.5 (moderately nonlinear flow), and variable shear rates α , corresponding to
values of the Richardson number Ri = N 2/α2 ranging from Ri = 0.33 to Ri = 64 (except for the h0 = 500m mountain,
in which case the upper limit is instead Ri = 128). The resolution is such that there are about 9 grid points per half-
width of the mountain, and about 73 grid points per vertical wavelength of the wave based on the surface parameters:
λz = 2πU0/N = 6283m. Approximately 5.1 of these vertical wavelengths fit vertically into the computational domain,
but the actual vertical wavelength is variable due to shear, approaching in particular zero at the critical level. This
vertical resolution, while not very high, was nevertheless ensured to capture the dynamics of critical levels accurately.
Tests at a resolution twice higher showed essentially similar results, with small (< 10%) departures, demonstrating
the robustness of the adopted approach. Sponges are employed to damp spurious flow perturbations at the lateral
boundaries of the domain, over a distance 2.5a . Another sponge is applied at the top boundary of the domain to damp
any wave reflections, having a thickness 1.5λz . The time step is 10 s and the simulation time has an average length
of 160a/U0 or 3 days, but has a fairly wide range of variation, depending on the flow conditions. Simulations are run
until the drag stabilizes to a constant value for a period of at least several tens of a/U0, which occurs in all runs. For
computational stability reasons, the wind profile (2) needs to be limited above the critical level. This is done so that
it never decreases below U = −10ms−1, i.e. |U1/U0 | = 1 in the notation of Teixeira et al. (2008). Tests made with
|U1/U0 | = 2 showed little sensitivity to this parameter, something not unexpected because the critical level insulates
the atmosphere above it from what goes on below, irrespective of whether it absorbs or reflects waves underneath.

4 | RESULTS

The quantity that will serve as the basis for all the results that follow is the steady-state drag produced in the numerical
simulations described in the preceding section, particularly its maximum and minimum values as a function of Ri . The
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fact that these drag extrema often occur at disparate values of Ri for a given value of Nh0/U0, or at different values of
Ri for different Nh0/U0, carries with it the risk that it may be difficult to interpret systematically the variation of the
drag (and of the reflection coefficient derived from it) as a function of Nh0/U0, because of its (necessarily unknown)
dependence on Ri , but this is a risk that must be accepted for lack of a better alternative. Despite this risk, the results
allow one to infer some interesting constraints and trends concerning the wave reflection process which substantially
extend our current understanding of it.

Figure 3 shows the variation of D given by FLEX normalized by D00 defined by (16) with Ri for different values
of Nh0/U0 (see caption). When Nh0/U0 is very low (e.g. 0.01 or 0.02), D/D00 differs little from 1, meaning that there
is essentially no wave reflection. As Nh0/U0 increases, maxima and minima of D/D00 start to emerge and to depart
progressively more from 1, tending to occur at preferred values of Ri . While for Nh0/U0 between 0.01 and 0.08, drag
maxima occur for Ri = 0.5 or Ri = 0.33 (i.e. rather strong shear), for Nh0/U0 ≥ 0.1 they occur for higher values of Ri ,
ranging between Ri = 4 (for Nh0/U = 0.12) and Ri = 70 (for Nh0/U0 = 0.5). Drag minima tend to occur at a narrower
range of Ri , namely between Ri = 11 and Ri = 14 for Nh0/U0 ≤ 0.16, and for somewhat higher values of Ri (up to
80) for Nh0/U0 > 0.16. This distribution of the drag extrema determines the behaviour of the reflection coefficient,
as will be seen next. A feature of the drag behaviour that stands out is that while drag minima are reasonably regular
for all values of Nh0/U0, drag maxima seem to undergo a regime transition from Nh0/U0 = 0.1 to Nh0/U0 = 0.12, with
massive drag amplification (Dmax /D00 > 3.5) after this transition. This amplification is especially striking given that all
considered values of Nh0/U0 (up to 0.5) are quite moderate, or even small, and for a constant wind profile without a
critical level, the drag is very little amplified relative to its value estimated from linear theory (as confirmed by Teixeira
et al., 2008). On the other hand, especially for Nh0/U0 ≥ 0.16, the drag displays a very sudden variation from its
maximum (attained at a given value of Ri ) and much lower values below 1 in the vicinity of its minimum, for Ri only
slightly higher. The Ri at which this jump takes place increases with Nh0/U0, as can be seen in Figure 3.

Figure 4 summarizes results for drag extrema and the values of the reflection coefficient derived from them.
Figure 4(a) shows the drag maxima Dmax /D00 and minima Dmin/D00 as a function of Nh0/U0 (irrespective of the value
of Ri at which they occur), as well as the geometric mean of the two quantities, (DminDmax )1/2/D00. According to
section 2, this should be taken as a reference drag in the absence of wave reflections, and in linear conditions it should
take in particular the normalized value 1. The dashed line in Figure 4(a) corresponds to D/D00 = 1 and the solid line
denotes the nonlinear drag expression derived by Miles and Huppert (1969) for a flow without wind shear:

D

D00
= 1 +

7

16

(
Nh0
U0

)2
. (26)

As can be seen in Figure 4(a), over the range of conditions simulated, the normalized drag maxima are always above 1
and the drag minima always below 1, but whereas the drag minima have an almost monotonic behaviour, decreasing
as Nh0/U0 increases (except between 0.41 and 0.5), the drag maxima have a more irregular behaviour, with an initially
smooth increase with Nh0/U0, then a large jump between 0.1 and 0.12 (as mentioned above), an absolute maximum
attained at Nh0/U0 = 0.16, and for higher values of Nh0/U0 stabilization at a value of Dmax /D00 ≈ 4. This is reflected
on the behaviour of (DminDmax )1/2/D00, which is around 1 for Nh0/U = 0.01, 0.02, 0.04, 0.08, 0.1, 0.32 and 0.41, but
departs systematically towards higher values for Nh0/U0 = 0.12, 0.16, 0.23 and 0.5. This may be an indication either
that the dependence of the reflection coefficient R on Ri is too strong for drag extrema obtained at different values of
Ri to be usable for inferring the dependence of R on Nh0/U0, or a sign that the process that is amplifying (or reducing)
the drag in these flow configurations cannot be understood simply as a wave reflection, or possibly both reasons.
Note that the value of drag amplification that would be expected from (26) purely due to nonlinear effects (i.e. in the
absence of wave reflections) (solid line) is very modest, being only about 11% for Nh0/U0 = 0.5.
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Figure 4(b) shows the reflection coefficient derived from the drag extrema displayed in Figure 4(a). The red sym-
bols correspond to the reflection coefficient derived from drag maxima, Rmax , obtained from the first equation of (19),
the blue symbols correspond to the reflection coefficient derived from drag minima, Rmin , obtained from the second
equation of (19), and the black symbols correspond to the reflection coefficient derived from (20), R i nt , equivalent to
replacing D00 by (DminDmax )1/2 in (19). If wave reflection was unquestionably the process leading to drag amplifica-
tion or reduction in these numerical simulations, and if the drag maxima and minima were obtained for values of Ri
for which R did not differ, all three symbols should coincide. Their non-coincidence can in principle be ascribed to
violation of either of these assumptions, although other explanations involving additional assumptions of the method
described in section 2 cannot be ruled out. All the information contained in Figure 4 is summarized in numerical form
in Table 2.

It can be seen in Figure 4(b) that Rmin , Rmax and R i nt are fairly coincident up to Nh0/U0 = 0.08, but start to diverge
for Nh0/U0 = 0.1, becoming highly discrepant for Nh0/U0 = 0.12, 0.16 and 0.23, but coming again in closer agreement
for Nh0/U0 = 0.32, 0.41, before finally diverging again for Nh0/U0 = 0.5. Looking at the values of Ri at which the
drag extrema occur (see Table 2), no obvious pattern is discernible relating the discrepancy between Rmax , Rmin and
R i nt and the values of Ri at which the corresponding drag maximum and minimum occur for each value of Nh0/U0.
Although, because of the disagreements just pointed out, substantial uncertainty exists in the diagnosed value of R ,
some broad trends are identifiable. Firstly, the reflection coefficient seems to increase roughly linearly for relatively
low Nh0/U0. Secondly R seems to saturate to a constant value for Nh0/U0 above a certain threshold. The first aspect
is more apparent for Rmin , which perhaps can be attributed to the fact that the value of Ri at which Dmin/D00 occurs
does not vary so much as Nh0/U0 increases, being limited to the interval between Ri = 11 and Ri = 21 (the equivalent
range for Dmax /D00 is between Ri = 0.33 and Ri = 43). The portion of the Rmin variation between Nh0/U0 = 0.01 and
Nh0/U0 = 0.23 can be fairly well approximated by the relation Rmin = 2(Nh0/U0). On the other hand, for relatively
high Nh0/U0 (and this can be most clearly seen from Rmax due to the plateau reached by Dmax /D00 in Figure 4(a),
but also from Rmin and R i nt , at least for Nh0/U0 = 0.32, 0.41), the reflection coefficient appears to saturate at an
asymptotic value of R ≈ 0.6.

While the uncertainty implied by the range spanned by the different symbols might be ascribed to the rather
disparate values of Ri for which drag extrema occur in the cases with Nh0/U0 = 0.12, 0.16 and to a lesser extent
Nh0/U0 = 0.23, this argument does not seem valid for the case with Nh0/U0 = 0.5, where actually the drag maximum
and minimum occur for apparently quite close values of Ri . However, it might not be possible to carry over the
argument from linear theory about the more gradual variation of R than θ with Ri to this case, since the flow may
have become too nonlinear to allow it. This speculation would need to be tested via a more thorough exploration of
parameter space, which is beyond the scope of the present paper. Additionally, how ‘close’ two values of Ri are is an
essentially subjective judgement, unless some rational way to quantify it is developed.

4.1 | Analysis of the flow structure

An analysis of the flow structure is useful to attribute specific flow regimes to a given drag behaviour, and its associated
wave reflection coefficient. Figure 5 illustrates snapshots of the steady-state flow configuration associated with every
drag maximum and minimum value included in Figure 4(a). The panels are ordered by ascending value of Nh0/U0 (i.e.
increasing flow nonlinearity), and a pair of flow cross-sections is presented for each value of Nh0/U0: the first one
for the drag maximum and the second one for the drag minimum. Displayed are the normalized streamwise velocity
perturbation, u/(Nh0) (colour contours) and the streamlines of the flow, obtained from isentropes since the flow is
adiabatic (thin solid lines). The orography profile is shown in black and the horizontal dashed line represents the critical
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level in each flow. Apart from the fact that drag maxima occur for much lower critical levels than drag minima, the flow
behaviour for Nh0/U0 = 0.01, 0.02, 0.04 and 0.08 (Figure 5(a)-(h)) is unremarkable. Maximum values of the normalized
streamwise velocity perturbation are uniformly ≈ 1.4 in magnitude (i.e. for positive and negative lobes of the field of
this variable). However, higher values of u/(Nh0) occur near the ground, particularly in the lee of the mountain, for the
drag maxima than for the drag minima. Since the flow is inviscid and therefore governed by Bernoulli’s equation, this is
consistent with differences in the pressure perturbation that cause the drag in each case, which are necessarily higher
for the dragmaxima than for theminima. In Figure 5(a),(c),(e),(g), there is a signature of gravity waves propagating in the
atmosphere above the critical level (where the incoming wind is reversed), which is consistent (at least qualitatively)
with the prediction from linear theory that the critical level transmits 4% of the wave energy for Ri = 0.5 and 17%
of the wave energy for Ri = 0.33, but their amplitude is relatively weak. However, one aspect that is not predictable
from linear theory is the increase of R from almost zero to about 0.19 as Nh0/U0 increases from 0.01 to 0.08.

For Nh0/U0 = 0.1, apart from the fact that u/(Nh0) is higher at the surface in the lee of the mountain for the drag
maximum than for the drag minimum, and that the drag maximum now occurs for a much higher critical level, not
much remarkable exists. Of course the mountain waves have a substantially higher amplitude than for lower Nh0/U0,
but since both drag extrema occur in this situation for quite high values of Ri , essentially no leakage of wave energy
occurs to the region above the critical level, as would be expected from linear theory. ForNh0/U0 ≥ 0.12, however, the
flow radically changes qualitatively. Now, the situation associated with drag maxima is systematically characterized
by a very fast layer of flow attached to the ground, with a region of flow stagnation above (Figure 5(k),(m),(o),(q),(s),(u)).
In these situations, typically the flow perturbation u/(Nh0) attains its maximum immediately above the ground, with
magnitude > 2.6, but in some cases reaching values as high as 3.2 or even 3.6 (see the results for Nh0/U0 = 0.16, 0.23).
This kind of flow configuration, where a typical upstream-tilted structure of the gravity waves is no longer visible,
at least in the regions downstream of the mountain, is strongly reminiscent of the flows associated with ‘downslope
windstorms’ in the studies of Clark and Peltier (1984), Smith (1985), or Bacmeister and Pierrehumbert (1988), having
an apparently ‘hydraulic’ character. The downstream extent of the layer of fluid attached to the ground (with high
wind speed), as well as the flow stagnation region overlying it, increases with Nh0/U0. The time it takes to attain a
steady state of the drag in these simulations is roughly proportional to the downstream extent of these layers, which
take several days to stabilize. Whether it makes sense to apply a concept of wave reflection to such flows is open
to question, but it is certainly true that the value of R is relatively well constrained for Nh0/U0 = 0.32, 0.41 (where
such flow configuration does occur), and the critical level is in all of these cases (for which Ri is quite large) unable to
transmit any wave energy to the region of the atmosphere above it, apparently because it completely either absorbs
or reflects the waves in the region of the atmosphere below it. The behaviour of the flow for the drag minima for
this range of Nh0/U0 is not as spectacular, with considerably lower-amplitude waves (albeit sometimes still breaking –
see Figure 5(r),(t),(v)), but very little variation of the maximum values attained by u/(Nh0). In these cases, this variable
keeps on attaining maxima of ≈ 1.2 − 1.4, but perhaps the most salient feature, as Nh0/U0 increases from 0.12 to
0.5 is the progressively more pronounced symmetry of the flow. This is seen especially regarding the maximum of
u/(Nh0) overlying the mountain, which initially is located downstream of the mountain but tends to migrate towards
the peak as Nh0/U0 increases. This is perhaps the most unmistakable signature of wave reflection seen in Figure 5,
since Teixeira et al. (2005) have shown it to be characteristic of reflectedwaves with destructive interference (see their
Figures 3(c) and 6(c)). Obviously, the strong wind in the lee of the mountain is associated with the observed maximum
drag values, whereas this almost symmetric wind maximum tends to produce the lowest drag values instead.
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4.2 | Wind profiles over the mountain

To better understand the flow regime transition that occurs in Figure 5 between Nh0/U0 = 0.1 and 0.12, it is useful
to examine how the wind profiles directly above the orography (x = 0) are affected by the wave perturbations. Figure
6 shows the total horizontal wind velocity (U + u ) normalized by its surface valueU0 as a function of height (red lines)
at the drag maxima and minima for cases with Nh0/U0 = 0.02, 0.1, 0.12, 0.23, at the same times as used for evaluating
the drag (i.e. end of the simulations). These values of Nh0/U0 represent conditions that are nearly linear, immediately
before and after the regime transition, and with a relatively large wave amplitude, respectively. In the latter case, the
relatively low value Nh0/U0 = 0.23 is selected because the flow structure does not change qualitatively for higher
Nh0/U0 (see Figure 5). The incoming wind profile is presented in Figure 6 for reference as the blue line. Note that
in Figure 6 height is normalized by the critical level height zc , which differs markedly between different cases. For
example, in the case considered in Figure 6(a), which corresponds to the flow field in Figure 5(c), the critical level is
much lower than in the case of Figure 6(b), which corresponds to the flow field in Figure 5(d).

The results of Figure 6 confirm more distinctly the aspect already noted in Figure 5 that critical levels in the
background flow prevent almost completely the propagation of mountain waves above them, even when these are
of relatively high amplitude. In all graphs, there is a clear correspondence between the maxima and minima in the
profiles and those shown in the corresponding u/(Nh0) fields in Figure 5. The case Nh0/U0 = 0.02 (Figure 6(a),(b))
shows very little departure of the wind profile over the mountain from its incoming form, due to the small amplitude
of the waves. For Nh0/U0 = 0.1 (Figure 6(c),(d)), the wave amplitude is much larger. Although the total wind speed
U + u oscillates and gets close to zero below the critical level, particularly for the drag maximum (Figure 6(c)), it does
not quite reach zero, so the critical level associated with the total flow coincides with that of the background flow,
located at z = zc . For Nh0/U0 = 0.12 (Figure 6(e),(f)), the situation changes qualitatively. While for the drag minimum
(Figure 6(f)) the critical level is still unchanged, at the drag maximum (Figure 6(e)) the critical level of the total flowU +u

is translated downward by about 0.2zc relative to that of the background flow. This so-called self-induced critical level
is probably the reason why the flow becomes much more accelerated near the surface downstream of the mountain
(see Figure 6(k)), producing much higher drag. For a still higher value of Nh0/U0 = 0.23, the wind profile corresponding
to the drag maximum has a self-induced critical level at z ≈ 0.6zc (Figure 6(g)), which presumably is responsible for
producing a similar effect on the flow and on the drag, whereas the wind profile corresponding to the drag minimum
has no self-induced critical level (Figure 6(g)), although its amplitude is almost sufficient to produce one.

The existence of self-induced critical levels and the modified values of Ri that characterize them locally likely
change the height from which waves are reflected, and the behaviour of this reflection, as suggested by Peltier and
Clark (1979), but this phenomenon is difficult to understand and study systematically. It is noteworthy that self-
induced critical levels are confined spatially in the horizontal direction to the vicinity of the mountain, whereas critical
levels in the background flow exist everywhere at a fixed height. Additionally, the interpretation of the effects of
self-induced critical levels is somewhat confusing, since those levels include in their definition the wave field they
are supposed to affect. For these reasons, the characteristics of the background atmospheric profile should still be
what ultimately drives these processes from upstream, justifying the approach adopted here. Finally, it is worth noting
that the flow perturbations in the high-drag cases are larger downstream of the mountain than directly over it, but
it is perhaps more meaningful to think about what happens over the mountain as triggering the behaviour observed
further downstream, hence the focus on x/a = 0 here.
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4.3 | Comparison with linear theory

Flow fields similar to those presented in Figure 5 may be calculated using a linear model assuming the wind profile
(2) and implementing solutions of the form (3), such as used, for example, by Teixeira et al. (2005) and Teixeira et al.
(2008). This is easily done based on (3) by taking into account mass conservation in 2D

i k û + ŵ ′ = 0, (27)

to obtain û and then calculating the inverse Fourier transform to obtain the streamwise velocity perturbation. Other
variables may be related to ŵ in Fourier space, and inversely Fourier transformed to obtain useful fields in physical
space, such as the buoyancy perturbation, which allows the calculation of isentropes. This is done in Figure 7 for the
same values of Nh0/U0 as considered in Figure 6.

Figure 7 presents a comparison, of the flow fields calculated from the FLEX model and from linear theory below
the critical level (which now corresponds to the top of the displayed domain) side by side. It can be seen that for
Nh0/U = 0.02, 0.1 (first two rows), the qualitative agreement is quite good. The flow structure typical of vertically
propagating mountain waves can be seen, with a field of u/(Nh0) and streamlines that tilt upstream. An obvious
difference is that linear theory displays a much higher amplification of u/(Nh0) (and of the streamline perturbation)
as the critical level is approached (where u/(Nh0) actually diverges in the linear approximation) than the numerical
simulations. This is partly due to the limited vertical resolution of FLEX, and is dictated by the inevitable computational
dissipation that accompanies it. A more subtle but relevant difference is that the numerical results corresponding to
the drag maxima (Figure 7(a),(c),(e),(g)) have a magnitude of u/(Nh0) near the ground larger than linear theory, an
aspect that obviously is accounted for by the (relatively modest) wave reflection they show in Figure 4(b). A striking
qualitative change of flow regime occurs for Nh0/U0 = 0.12 (Figure 7(i)) (as noted in the description of Figures 5 and
6), which is due to the sudden amplification of u/(Nh0) and change in the wave structure, with creation of a flow
stagnation region in the lee of the mountain and an accelerated flow beneath it near the ground. None of this flow
structure, or the magnitude of the associated flow perturbations, are captured by linear theory (Figure 7(j)), where,
on the contrary the flow retains the same structure as for lower values of Nh0/U0, albeit with an increased amplitude
of the streamline displacements. For the corresponding drag minima, on the contrary (Figure 7(k),(l)), differences
between numerical results and linear theory are relatively slight. Moving on to a more nonlinear flow, Figure 7(m)-(p)
shows similar comparisons for Nh0/U0 = 0.23. In the numerical simulations for the drag maximum (Figure 7(m),(q)), the
downslope windstorm region extends further downstream, and its intensity becomes larger. For the drag minimum
(Figure 7(o)), the flow perturbations remain modest, but their maxima migrate towards the mountain top. The linear
model (Figure 7(n),(p)) is clearly unable to reproduce either of these features, due to lack of a mechanism for wave
reflections, although obviously the low-amplitude flow that occurs at drag minima is approximated more closely. A
curious feature to notice in these results is that the lowest region of flow overturning from linear theory is more
pronounced in the case corresponding to the drag maximum than in that corresponding to the drag minimum. For
example, in Figure 7(n) the minimum of u/(Nh0) is below -1.8, whereas in Figure 7(p) it is only below -1.6 (the actual
difference is even more significant, because the level where it occurs in the first case is closer to the critical level –
and thus with a lower background wind speed – than in the second). This suggests that the degree of stability of the
flow as predicted by linear theory may influence the way in which the flow evolves to different fully nonlinear states,
as suggested by Teixeira et al. (2005), even if the final nonlinear states resulting from this bifurcation may have very
little in common with the corresponding linear states.
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5 | CONCLUDING REMARKS

The aim of the present contribution was to investigate the reflection properties of a mountain wave critical level for
moderately nonlinear flow. This is a long-standing question, since, on the one hand, linear theory excludes wave
reflection as one of the processes taking place at critical levels, only predicting wave absorption or transmission
(depending on the Richardson number of the incoming flow). On the other hand, existing numerical studies of this
process have not treated it systematically enough, and thus were largely inconclusive regarding the behaviour of the
reflectivity of critical levels as a function of flow nonlinearity.

An especially puzzling finding is that while relatively weak flownonlinearity causes a small departure of orographic
gravitywave drag from its linear estimate in the absence of critical levels, the drag amplification and/or reduction tends
to be much more pronounced when a critical level does exist, even when it has a very high Richardson number. In this
respect the limit of sheared flow with a critical level at very high Ri does not seem to approach the infinite-Ri limit
(without a critical level). Part of the explanation may be that, no matter how linear the flow at the surface is, as one
approaches a critical level nonlinearity always becomes strong due to the vanishing wind speed that occurs there.

To isolate the effect of a critical level from that of any sudden or gradual variation of the wind profile, a wind
profile with negative shear was considered here. This has the advantage of reducing the relevant parameters of the
incoming flow to two: the Ri of the wind profile, and a nonlinearity parameter formed with the surface wind: Nh0/U0.
A method was developed to relate the reflection coefficient of a gravity wave associated with a generic process that
causes wave reflections to the surface drag. This method allows deriving the reflection coefficient from the extrema
of the drag as a function of Ri for numerical simulations of hydrostatic flow over a 2D ridge.

Underlying the application of the method to output from numerical simulations with Nh0/U0 ≤ 0.5 is the idea
that the reflection coefficient varies more slowly with Ri than the phase of the reflection causing the drag extrema.
The method was first tested for a flow with forward shear near the surface and zero shear above a certain height, for
which linear theory predicts drag modulation due to wave reflection at the shear discontinuity, and both the reflection
coefficient and the wave phase may be calculated analytically. The results confirm the above hypothesis, at least for
linear flow.

The method was then applied to nonlinear flow with a critical level, which is known to become reflective. It was
implied that the assumptions that a wave reflection coefficient can be related to the gravity wave drag and that this
reflection coefficient varies with Ri more slowly than the wave phase extend to these conditions. The results suggest
that the reflection coefficient of the critical level increases roughly linearly for low Nh0/U0 ≤ 0.3, and for higher
Nh0/U0 saturates at a value of ≈ 0.6. However, some uncertainty remains regarding the value of R obtained from its
various definitions derived using linear theory. This may be either because in nonlinear conditions it becomes harder
to disentangle the dependencies of R on Nh0/U0 and Ri , or due to more complicated intrinsically nonlinear reasons,
for which no interpretative framework currently exists. Clearly, these dependencies still need to be investigated more
extensively.

While the flow structure (but not the reflection coefficient) can be predicted reasonably well by linear theory for
Nh0/U0 ≤ 0.1, for higher Nh0/U0 the drag displays a very sudden transition from its maximum to its minimum as Ri
increases, at a value of Ri that itself becomes larger with Nh0/U0. Hence the drag extrema used to infer the reflection
coefficient can only be detected at very high Ri (i.e. very high critical levels). This seems to question the partial results
of Breeding (1971), which pointed towards an increase of the reflection coefficient for low Ri .

The flow structure associatedwith the dragmaxima is characterized by a strongly acceleratedwind downstreamof
the mountain (resembling a downslope windstorm), attached to the surface for a downstream distance that increases
with Nh0/U0. In the establishment of this flow regime, self-induced critical levels appear to play a role, by modifying
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the heights at which wave reflection occurs relative to the background flow. On the other hand, the drag minima,
which occur for only slightly higher values of Ri , correspond to much weaker winds, with a maximum almost over the
peak of the mountain. This behaviour suggests a bifurcation separating these two flow regimes, that is very sensitive
to the value or Ri , i.e., the height of the critical level (possibly triggered by subtle differences in the corresponding
flows predicted by linear theory).

The method developed in this paper for relating drag extrema and the wave reflection coefficient is especially
powerful in 2D hydrostatic flow, because the absence of wave dispersion allows these two quantities to be related
in a closed analytical form. Either the directional dispersion that exists in flow over 3D mountains or the dispersion
associated with non-hydrostatic effects makes the reflection coefficient depend, respectively, on the wavenumber
direction or on its value (Teixeira et al., 2005; Teixeira et al., 2013a), which complicates its relation to the drag (an
integrated quantity). However, a similar concept might still be applicable to these situations, with some modifications.

The relevance of wave reflections at critical levels for gravity wave drag parametrization is evident. Inasmuch as
wave reflections can amplify the drag caused by flow over mountains by factors of 2-4, their overall impact cannot be
neglected. One way to represent this effect would be by prescribing a drag amplification consistent with a reflection
coefficient parametrized according to the results presented here. A difficulty to be overcome is, however, the high
sensitivity of the drag amplification to the wave phase. The fact that critical levels at high altitudes can affect the drag
so substantially is an aspect that requires special attention, as the wind profiles that cause such high-drag states may
be virtually indistinguishable at low levels from those that cause no drag enhancement, or even drag reduction.

Apart from the other simplifying assumptions adopted in this study (inviscid approximation, 2D geometry, hydro-
static flow), a noteworthy limitation is that all results are obtained for steady flows, some of which take a substantial
amount of time to stabilize. Whether these flowsmay be realized in Nature depends on the persistence of the synoptic
circulation incident on the orography.
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TABLE 1 Examples of estimation of R from (Dmax /D00 − 1)/(Dmax /D00 + 1) or (1 −Dmin/D00)/(1 +Dmin/D00) and
the corresponding error, for Ri < 64. Values in the table correspond to the dots in Figure 2. (a) |U1/U0 | = 4, (b)
|U1/U0 | = 8.

(a)

Ri R

Dmax
D00

−1

Dmax
D00

+1

1−
Dmin
D00

1+
Dmin
D00

Error (%)

2.4 0.1673 - 0.1598 -4.4

7.7 0.0907 0.0902 - -0.5

15.2 0.0643 - 0.0638 -0.8

25.6 0.0495 0.0494 - -0.4

38.3 0.0405 - 0.0403 -0.5

54.1 0.0340 0.0340 - -0.0

(b)

Ri R

Dmax
D00

−1

Dmax
D00

+1

1−
Dmin
D00

1+
Dmin
D00

Error (%)

1.1 0.2565 - 0.2429 -5.3

3.5 0.1363 0.1355 - -0.6

6.9 0.0962 - 0.0958 -0.3

11.4 0.0744 0.0741 - -0.4

17.1 0.0607 - 0.0605 -0.3

23.9 0.0513 0.0510 - -0.6

31.8 0.0444 - 0.0442 -0.4

41.0 0.0391 0.0390 - -0.3

51.6 0.0348 - 0.0348 -0.1

62.8 0.0316 0.0316 - -0.1
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TABLE 2 Maximum and minimum drag for a range of Nh0/U0, from the numerical simulations, values of Ri at
which they occur, and values of R derived from them.

Nh0
U0

Ri Dmax
D00

Dmin
D00

(DminDmax )
1/2

D00
Rmax =

Dmax
D00

−1

Dmax
D00

+1
Rmin =

1−
Dmin
D00

1+
Dmin
D00

R i nt =

(
Dmax
Dmi n

)1/2
−1(

Dmax
Dmi n

)1/2
+1

0.01 0.5 1.055 - 1.003 0.027 - 0.025

0.01 11 - 0.953 1.003 - 0.024 0.025

0.02 0.33 1.101 - 1.005 0.048 - 0.046

0.02 11 - 0.917 1.005 - 0.043 0.046

0.04 0.33 1.231 - 1.019 0.103 - 0.094

0.04 14 - 0.844 1.019 - 0.085 0.094

0.08 0.33 1.525 - 1.045 0.208 - 0.187

0.08 14 - 0.716 1.045 - 0.165 0.187

0.1 43 1.816 - 1.094 0.290 - 0.248

0.1 14 - 0.659 1.094 - 0.206 0.248

0.12 4 3.833 - 1.526 0.586 - 0.431

0.12 14 - 0.607 1.526 - 0.244 0.431

0.16 8 4.562 - 1.538 0.640 - 0.496

0.16 14 - 0.519 1.538 - 0.317 0.496

0.23 12 4.037 - 1.249 0.603 - 0.527

0.23 18 - 0.387 1.249 - 0.442 0.527

0.32 14 3.858 - 1.048 0.588 - 0.573

0.32 21 - 0.285 1.048 - 0.557 0.573

0.41 32 3.905 - 1.005 0.592 - 0.591

0.41 37 - 0.259 1.005 - 0.589 0.591

0.5 70 4.081 - 1.529 0.606 - 0.455

0.5 80 - 0.573 1.529 - 0.272 0.455
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F IGURE 1 Normalized drag D/D00 from (24) (solid line), reflection coefficient R from (22) (dashed line) and cos θ
from (23) (dotted line) as a function of Ri−1, for the 2D flow with positive shear of Teixeira et al. (2008), from linear
theory. (a) |U1/U0 | = 4, (b) |U1/U0 | = 8.
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F IGURE 2 Reflection coefficient R (solid line), (D/D00 − 1)/(D/D00 + 1) (dashed line), (1 − D/D00)/(1 + D/D00)

(dotted line) (both quantities roughly coinciding at their maxima with R ), and points corresponding to drag maxima
and minima (dots), as a function of Ri−1, for the 2D flow with positive shear of Teixeira et al. (2008), from linear
theory. (a) |U1/U0 | = 4, (b) |U1/U0 | = 8.
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dimensionless mountain height Nh0/U0. Solid black line: Nh0/U0 = 0.01, solid red line: Nh0/U0 = 0.02, solid blue line:
Nh0/U0 = 0.04, solid magenta line: Nh0/U0 = 0.08, solid green line: Nh0/U0 = 0.1, solid orange line: Nh0/U0 = 0.12,
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line: Nh0/U0 = 0.41, dotted green line: Nh0/U0 = 0.5.
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F IGURE 4 (a) Normalized drag maxima Dmax /D00 (red circles) and minima Dmin/D00 (blue circles) and their
geometric average (DminDmax )1/2/D00 (black circles) (in the range of Ri considered in Figure 3) as a function of the
dimensionless mountain height Nh0/U0. Dashed line: D/D00 = 1, solid line: D/D00 = 1 + (7/16)(Nh0/U0)

2. (b)
Reflection coefficient as diagnosed from drag maxima, Rmax (red circles), as diagnosed from drag minima, Rmin (blue
circles), given, respectively, by the first and second equations of (19), and as diagnosed from a combination of both,
R i nt (black circles), given by (20). Dashed line: R = 2(Nh0/U0), dotted line: R = 0.6.
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F IGURE 5 Cross sections of the flow for the situations associated with drag maxima ((a), (c), (e), (g), (i), (k), (m), (o),
(q), (s), (u)) and drag minima ((b), (d), (f), (h), (j), (l), (n), (p), (r), (t), (v)) in Figure 3. Colour contours: normalized
streamwise velocity perturbation u/(Nh0) (see colour scale), thin black solid lines: lines of constant potential
temperature (spacing 0.5K). Horizontal black dashed line: height of critical level zc . Results for the following values
of (Ri ,Nh0/U0): (a) (0.5, 0.01), (b) (11, 0.01), (c) (0.33, 0.02), (d) (11, 0.02), (e) (0.33, 0.04), (f) (14, 0.04), (g) (0.33, 0.08), (h)
(14, 0.08), (i) (43, 0.1), (j) (14, 0.1), (k) (4, 0.12), (l) (14, 0.12), (m) (8, 0.16), (n) (14, 0.16), (o) (12, 0.23), (p) (18, 0.23), (q)
(14, 0.32), (r) (21, 0.32), (s) (32, 0.41), (t) (37, 0.41), (u) (70, 0.5), (v) (80, 0.5).
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F IGURE 6 Total horizontal wind velocity U + u normalized by the incoming wind velocity at the surface U0 (red
lines) as a function of height normalized by the critical level height zc , at drag maxima ((a), (c), (e), (g)) and drag minima
((b), (d), (f), (h)). Results for the following values of (Ri ,Nh0/U0): (a) (0.33, 0.02), (b) (11, 0.02), (c) (43, 0.1), (d) (14, 0.1),
(e) (4, 0.12), (f) (14, 0.12), (g) (12, 0.23), (h) (18, 0.23). Blue lines denote the incoming wind profile.
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F IGURE 7 Comparison of flow cross-sections between numerical simulations ((a), (c), (e), (g), (i), (k), (m), (o)) and
linear theory ((b), (d), (f), (h), (j), (l), (n), (p)), in the region of space below the critical level, for the drag maxima ((a), (b),
(e), (f), (i), (j), (m), (n)) and minima ((c), (d), (g), (h), (k), (l), (o), (p)) selected in Figure 6. Colour contours: normalized
streamwise velocity perturbation u/(Nh0) (same colour scale as Figure 5), thin black solid lines: lines of constant
potential temperature (variable spacing, but the same between matching numerical simulation and linear calculation).
Results for the following values of (Ri ,Nh0/U0): (a),(b) (0.33, 0.02), (c),(d) (11, 0.02), (e),(f) (43, 0.1), (g),(h) (14, 0.1), (i),(j)
(4, 0.12), (k),(l) (14, 0.12), (m),(n) (12, 0.23), (o),(p) (18, 0.23).


