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SUMMARY

It is shown that Bretherton’s view of baroclinic instability as the interaction of two counter-propagating
Rossby waves (CRWs) can be extended to a general zonal � ow and to a general dynamical system based on
material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude
and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude
in regions of positive meridional PV gradient and propagates westwards relative to the � ow in such regions.
Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward
relative to the zonal � ow there. Two methods of construction are described. In the � rst, more heuristic, method a
‘home-base’ is chosen for each CRW and the other CRW is de� ned to have zero PV there. Consideration of the PV
equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases
of both CRWs. They involve only three coef� cients describing the mutual interaction of the waves and their
self-propagation speeds. These coef� cients relate to PV anomalies formed by meridional � uid displacements
and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are de� ned by
orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of
home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of
the PV equation, but the three coef� cients are global integrals that are not so readily described by ‘PV-thinking’
arguments. Each CRW could not continue to exist alone, but together they can describe the time development of
any � ow whose initial conditions can be described by the pair of growing and decaying normal modes, including
the possibility of a super-modal growth rate for a short period. A phase-locking con� guration (and normal-mode
growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are
positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are
easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by
Fjørtoft.

KEYWORDS: Orthogonality PV gradient Wave interaction Zonal propagation

1. INTRODUCTION

Bretherton (1966b) and Hoskins et al. (1985), suggested a potential-vorticity (PV)
based description of baroclinic/barotropic instability in terms of the zonal propagation
and mutual interaction of two Rossby waves on a zonal shear � ow (see Fig. 1). There is
likely to be signi� cant continuing interaction if the phase speeds of the two waves, in the
absence of interaction, are similar. Since propagation relative to the zonal � ow (hereafter
shortened to ‘propagation’) has opposite sign to the basic-state meridional PV gradient
(hereafter, ‘PV gradient’) it is anticipated that the stronger eastward zonal � ow must be
associated with a positive PV gradient to slow the wave in that region. Similarly, the
weaker (or negative) zonal � ow might be expected to be associated with a negative PV
gradient to make the wave there propagate eastwards, thus achieving a similar phase
velocity (advection plus propagation) to the � rst wave. This qualitative argument of
‘counter-propagating Rossby waves’ (CRWs), encapsulates the two signed PV-gradient
baroclinic instability condition of Charney and Stern (1962), and the correlation of the
mean zonal wind U and the mean PV-gradient condition of Fjørtoft (1951).

If the relative phases of the two waves are speci� ed, then the sense of the interaction
between the CRWs can be ascertained following the arguments by Hoskins et al. (1985).

¤ Corresponding author: Department of Meteorology, University of Reading, PO Box 243, Earley Gate, Reading,
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Figure 1. Schematic illustration of the upper and lower counter-propagating Rossby waves (CRWs) on a
baroclinic basic state where qy is the mean potential-vorticity (PV) gradient and the mean wind, U.z/, relative to
its average is indicated by the blank arrows. The phase of each CRW is indicated by its PV anomalies, q 0, and each
wavy line indicates the corresponding meridional displacements of a PV contour. The solid zonal arrows indicate
the propagation direction of each CRW (counter to the relative zonal � ow). The other solid arrows indicate the
meridional wind associated with each CRW at its own level and the dashed arrows indicate the wind induced at
the level of the other CRW. In (a) the PV anomalies of the upper CRW are shifted to the west of the lower CRW’s
PV anomalies by a phase between 0 and ¼=2. Consequently, the CRWs ‘help’ each other to counter-propagate
and to grow. In (b) the phase difference between the upper and lower CRW is between ¼=2 and ¼ . Consequently

the CRWs still grow mutually but ‘hinder’ each other’s counter-propagation.

For discussion purposes we take the pure baroclinic case U.z/ where the zonal � ow
increases with height and is shown relative to a mid-level value in Figs. 1(a) and (b).
An upper CRW exists on a positive PV gradient and a lower CRW on a negative PV
gradient. In Fig. 1(a) the upper PV wave is shifted to the west of the lower PV wave by
less than ¼=2. The strongest poleward � ow, and hence negative PV tendency, induced
by the lower wave at the level of the upper wave is between ¼=2 and 0 to the west of the
upper-wave negative PV extremum. It therefore ampli� es the upper wave and enhances
the propagation westwards. Similarly, the poleward � ow (and hence the positive PV
tendency induced by the upper wave at the level of the lower wave) is between 0 and
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¼=2 to the east of the lower-wave positive PV. This leads to growth and more rapid
propagation eastwards. The interaction of the two CRWs leads to growth of each and
makes each propagate more rapidly against the relative zonal � ow. As each wave is
assisting the other in its counter-propagation, this is referred to as ‘helping’.

For a westward shift with height between ¼=2 and ¼ (Fig. 1(b)), the negative PV
tendency induced by the lower wave at the level of the upper wave is between 0 and ¼=2
to the east of the upper wave negative PV. There is again growth, but this time the upper
CRW’s westward propagation is reduced by the interaction. Similarly, it can be argued
that the lower CRW grows and propagates less rapidly to the east as a consequence of its
interaction with the upper wave. Thus, the interaction of the two CRWs again leads to
growth of each but ‘hinders’ their counter-propagation (against the relative zonal � ow).

Since the interaction acts to increase the westward phase shift when it is between 0
and ¼=2 and decrease it when it is between ¼=2 and ¼ , then if the interaction is strong
enough it can be expected to lead to the phase remaining in the range of 0 ! ¼ and
to continued growth. The equilibrium position for the phase would correspond to the
growing normal mode. For eastward phase shifts, similar arguments apply and there is
decay. However, in this case the hindering/helping mechanism tends to shift the phase
from the decaying range of ¡¼ ! 0 toward the growing range of 0 ! ¼ . This indicates
the non-modal evolution mechanism in the initial value problem which leads towards
convergence to the phase-locking con� guration of the growing normal mode.

This appealing picture of baroclinic instability was � rst proposed by Bretherton
(1966b) in the context of the two-layer model. In this case, it is a direct physical descrip-
tion of the two layers. Following Bretherton’s argument, boundary potential temperature
can be considered as a ±-function in PV: a positive potential-temperature anomaly on
the lower boundary acting as positive PV, and as negative PV on the upper boundary.
The illumination of non-modal wave behaviour provided by Bretherton’s theory led
Bishop (1993b) to extend the quantitative application of CRW theory to the non-
autonomous problem of baroclinic waves undergoing horizontal deformation.
Bishop found that, while normal-mode theory was unable to explain the evolution of
these waves, CRW theory concisely explained a wide range of deforming baroclinic-
wave evolution scenarios. It also suggested a phase diagram to summarize these scenar-
ios graphically (Bishop 1993a). Similarly, Bishop and Thorpe (1994a,b), in considering
frontal waves during frontogenesis, and Barcilon and Bishop (1998), in considering
baroclinic waves in horizontal shear, found understanding of these inherently non-modal
wave regimes via quantitative extensions of Bretherton’s theory.

CRW theory is most simply explained, however, in the framework of autonomous
systems that do support normal-mode solutions. In this context, Davies and Bishop
(1994) extended the quantitative CRW description to the Eady problem, and Heifetz
et al. (2000) applied it to the barotropic model of Rayleigh (1880). There, the CRWs
are edge waves on the two boundaries and there are no PV gradients in the interior.
Robinson (1989) used quasi-geostrophic PV � uxes to show how the normal modes of
the Charney (1947) model depend on interaction between surface thermal anomalies
and a thin layer of PV anomalies centred just above the steering level, suggestive of a
CRW extension to this problem.

The main question addressed here is whether the CRW perspective of baroclinic
instability is just an attractive qualitative picture that can be made quantitative in very
special cases, or whether it has more general quantitative validity. Baines and Mitsudera
(1994) showed that the phase-locking mechanism between two CRW edge waves is
responsible for instability in a general class of shear pro� les, provided that the velocity
pro� le is symmetric, the two CRWs being located at the edges of the unstable region.
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Here, we consider perturbations to a general � ow U.y; z/ governed by the horizontal
advection of a PV that can be inverted to obtain the meridional � ow. It is shown that there
exists a class of perturbations that can be described by the interaction of two CRWs.
This class of perturbation is the one that can be generated by the growing and decaying
normal-mode subset, which is also referred to as the discrete spectrum.

Two methods are presented for determining the CRWs from the (discrete spectrum)
normal modes. The ‘home-base method’ (section 2) draws a direct analogy with the
‘PV-thinking’ picture given by Hoskins et al. (1985), and makes those arguments
quantitative. However, the home-base method involves a subjective choice; it is unclear
where the home-base location should be in � ows such as barotropic jets in which like-
signed PV gradients are spatially separated. This lack of objectivity is not suffered by
‘the orthogonality method’ presented in section 3. There, orthogonality constraints with
respect to well known globally conserved properties for disturbances to steady zonally-
symmetric states are used to de� ne the CRWs. CRW evolution equations can be derived
via global integrals of the displacement form of the PV equation (subsection 3(c)),
or from the Hamiltonian equations for the conservative system where the CRWs are
the components (appendix). It is shown that the orthogonality method yields the same
form for the CRW evolution equations as the home-base method but with different
expressions for the coef� cients describing interaction. These coef� cients have identical
values in circumstances when home-bases can be appropriately de� ned for the CRWs
determined from the orthogonality method. Readers who are not concerned with the
details of obtaining CRWs objectively may want to skip section 3. Baroclinic growth
from any initial condition (which could alternatively be described by a growing normal
mode and its complex conjugate) is discussed by examining the evolution equations for
a CRW pair in section 4. Some concluding comments are made in section 5.

The CRW analysis has been applied to the Charney problem by Heifetz et al. (2004,
hereafter referred to as Part II). New insights are obtained into the unstable Charney and
Green modes and into the behaviour at neutral wavelengths. Methven et al. (personal
communication) have shown how the CRW analysis can be applied to an examination
of baroclinically unstable perturbations to realistic zonal jets on the sphere, as described
by the primitive equations.

2. THE HOME-BASE METHOD

(a) General CRW de� nition
We consider a basic � ow U.y; z/ and assume that the perturbation problem is

described by the linearized horizontal advection of PV:
³

@

@t
C U

@

@x

´
q 0 C v0 @q

@y
D 0; (1)

where q 0 is the perturbation PV, qy is the meridional gradient of PV in the basic state
and v0 is the perturbation meridional wind. The equation could describe the advection of
Ertel–Rossby PV on isentropic surfaces, or quasi-geostrophic PV on horizontal surfaces.
It is assumed that horizontal boundaries are included using the Bretherton (1966a)
±-function technique, so that (1) applies everywhere in the domain. It is also assumed
that the distribution of q 0 in the domain may be inverted to give v0 everywhere. Using the
Fourier series:

q 0 D
X

qk eikx ; v0 D ¡i
X

vk eikx; (2a,b)
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(1) becomes ³
@

@t
C ikU

´
qk ¡ ivk

@q

@y
D 0: (3)

If a structure is to be purely propagating, then v0 must be out of phase with q 0

everywhere. This is possible if q 0 and, by inversion, v0 are untilted in y and z. Since v0

is §¼=2 out of phase with q 0 everywhere, if qk is chosen to be real then vk must also be
real. The minus sign in (2b) is chosen so that vk and qk both have the same sign if the
maximum in v0 is to the east of the maximum in q 0, as expected for a simple cyclonic
PV structure. From here on, the suf� x k will be dropped. For a wave-like solution of the
form eik.x¡ct/, (3) implies that the local Rossby wave speed,

c D U ¡
°

k
; (4)

where ° D .v=q/@q=@y . Since c is a function of y and z, the untilted structure will, in
general, not be retained in time if it occurs in isolation. Nevertheless, we shall refer to it
as a Rossby wave.

We seek a solution of the full problem (3) in terms of two Rossby waves:

q D ®1.t/q1 C ®2.t/q2; v D ®1.t/v1 C ®2.t/v2; (5a,b)

where q1, q2, v1 and v2 can all be taken to be real functions of y and z since the waves
are untilted, but ®1 and ®2 are, in general, complex. We set,

®1 D a1 ei²1 ; ®2 D a2 ei²2 ; (6a,b)

where a1;2 are the amplitudes and ²1;2 are the phases of waves 1 and 2.

(b) CRW construction from a growing normal mode using home-bases
Now consider two such Rossby waves, each describing the PV completely at two

different zonal lines, corresponding to points P1.y1; z1/ and P2.y2; z2/, in the y–z plane.
The � rst Rossby wave .q1; v1/ has non-zero PV at its home-base P1 and zero PV at P2,
and the second Rossby wave .q2; v2/ has non-zero PV at its home-base P2 and zero PV
at P1.

A simple method for constructing the required two wave structures is from the
growing and decaying normal modes, which are themselves solutions of (3). If the
growing mode is

qg D .y; z/ exp[ifÁ.y; z/ ¡ kcrtg C kcit]; (7a)

then the decaying mode is

qd D .y; z/ exp[if¡Á.y; z/ ¡ kcrtg ¡ kcit]; (7b)

where the suf� ces r and i denote the real and imaginary parts. To make a structure
that has zero PV signature at P2, where the phase structure function Á.y2; z2/ D Á2 D
constant, consider

q1 D e¡iÁ2qg0 ¡ eiÁ2qd0; (8)

where the suf� x zero refers to the modal structures (7a) at time t D 0 and g and d indicate
the growing and decaying components. Then

q1 D 2i .y; z/ sin[Á.y; z/ ¡ Á2]: (9)
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Hence, q1 is an untilted structure which is zero at P2 and will, in general, be non-zero
at P1. Similarly, q2 can be constructed using the difference of the growing and decaying
mode structures, phase shifted by minus and plus Á1, respectively. According to (4) the
Rossby wave speed for wave i at its home-base is:

ci
i D U i ¡

° i
i

k
; (10)

where ° i
i
=k D f.vi=qi/@q=@ygi=k is the propagation speed of wave i relative to the

zonal-mean � ow at its home-base. Here, and subsequently, the super� x refers to the
level at which the quantity is evaluated and the suf� x refers to the wave. In general c1

1
and c2

2 will be different.
Any initial conditions that can be written in terms of q1 and q2 can then be written as

a sum of qg and qd. These develop in time according to their normal-mode propagation
and growth or decay. At any subsequent time, the qg and qd components can each be
written in terms of q1 and q2. Hence, the solution can be written as a linear sum of
q1 and q2 in the form (5a,b) for all time. Substituting (5a,b) and (6a,b) into the basic
equation (3) at P1 and P2 gives the CRW evolution equations:

Pa1 D ¡° 1
2 a2 sin ²; Pa2 D ° 2

1 a1 sin ²; (11a,b)

P²1 D ¡kc1
1 C ° 1

2
a2

a1
cos ²; P²2 D ¡kc2

2 C ° 2
1

a1

a2
cos ²: (12a,b)

Here, ² D ²2 ¡ ²1 is the phase difference and

° i
j D

³
vj

qi

@q

@y

í

; (13)

for i; j D 1; 2. The interaction coef� cient ° 1
2 is associated with the effect on the PV at P1

due to the meridional advection induced by wave 2, even though the latter has zero PV
there. Similarly, ° 2

1 represents the effect on the PV at P2 due to wave 1. Equations (10)–
(13) are a generalization of the equations derived for the Eady problem by Davies and
Bishop (1994). As pointed out by them, these equations give the time invariants,

1

2° 1
2

a1
2 C

1

2° 2
1

a2
2 D const; (14a)

1

2° 1
2

a1
2 ¡

1

2° 2
1

a2
2 ¡

2

¹
a1a2 cos ² D const: (14b)

At this stage it has only been proved that, if a solution of the form (5a,b) is to exist,
then the results (10)–(14b) follow from the satisfaction of the basic equation (3) at P1
and P2. However, it has not been shown that (3) is satis� ed everywhere. Substituting
(5a,b) and (6a,b) into (3) and using the de� nitions (4) and (10), the form of solution
(5a,b) is consistent if everywhere,

.c1 ¡ c1
1/q1 D ¡

° 2
1

k
q2; .c2 ¡ c2

2/q2 D ¡
° 1

2

k
q1: (15a,b)

These equations express the conditions that the differential advection of each wave
is balanced by the interaction with the other so that it retains its untilted structure. It can
be con� rmed analytically that the q1 and q2 constructed from the normal modes in this
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manner do indeed satisfy the coupled pair of equations (15a,b). Further, apart from
amplitude scaling, the construction is unique for initial conditions that can be expressed
in terms of the growing and decaying normal-mode pair and for given P1 and P2.

The pair of coupled equations (15a,b) contains four unknown constants: the values
of ° i

j , for i; j D 1; 2. If the PV perturbations are caused solely by meridional advection
of PV, then the meridional displacements can be de� ned as

´i D ¡qi

³
@y

@q

´
; (16)

and the four constants can be written

° i
j D

³
¡

vj

´i

í

: (17a)

Alternatively, in terms of PV � uxes,

° i
j D

³
½vj qi

@q

@y

í

.½qi
2/i

: (17b)

Both forms for ° i
j show how it expresses the normalized in� uence of wave j on

wave i at Pi . The form (17b) stresses the link between the present discussion and that by
Robinson (1989), who used such PV � uxes to show how Charney modes can be viewed
as mutually reinforcing interactions between the disturbance PV at different levels.

The strength of the home-base method is its direct encapsulation of the PV-thinking
perspective given in the introduction and in Fig. 1. However, unless the PV gradients
are concentrated in two distinct regions, there is an arbitrariness about the choice of
the two home-bases. For a � ow independent of y and with signi� cant baroclinicity
at the surface, it is natural to take P1 to be at this level. This allows the construction
of wave 2. As is discussed in Part II, there is not great sensitivity to the exact level
chosen for P2 when analysing Charney waves. However, in principle the home-base
method does have a weakness in the subjective choice of the home-bases and the related
indeterminacy in phase-locked angle ² and, therefore, whether the CRWs are mutually
helping or hindering their counter-propagation. Hence, in the next section we present a
more robust method to determine the CRWs which eliminates the subjective choice of
home-bases.

3. THE ORTHOGONALITY METHOD

(a) Pseudomomentum orthogonality
In this section the analysis will be restricted to the quasi-geostrophic problem.

The generalization to disturbances described by primitive-equation dynamics has been
made by Methven et al. (personal communication). As shown by Bretherton (1966a),
when all PV anomalies arise from displacing the PV gradient or boundary potential-
temperature gradient, the volume-averaged meridional eddy PV � ux vanishes,Z Z

v0q 0½ dy dz D 0; (18)

where the overbar represents a zonal average. It is useful to de� ne an inner product for
wave-like quantities p0 D Refpk eikx g:

hp0; q 0i ´
Z Z

p0q 0½ dy dz D
Z Z

1
4 .p¤

kqk C pkq¤
k /½ dy dz; (19)
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where the asterisk indicates complex conjugate. For a purely propagating untilted CRW,
v and q are ¼=2 out of phase, and therefore the zonally averaged contribution to the
meridional PV � ux vanishes. Thus, using the de� nitions (2a,b), (5a,b) and (6a,b), (18)
becomes

a1a2 sin ²fhv2; q1i ¡ hv1; q2ig D 0: (20)

Hence, the contributions to the integrated meridional PV � uxes that each untilted CRW
induces on the other are equal. Using the meridional displacement de� nition (16), then
(18) can be written as

¡
1

2

@

@t
´;

@q

@y
´ ´ ¡

@

@t
D 0; (21)

where is the wave activity or the pseudomomentum. The sign used here for is
that of Held (1985), and the negative of that used in the de� nition by Andrews and
McIntyre (1976). Note that extreme values of correspond to regions where both wave
amplitude and PV gradient are large. Our illustration of CRWs (Fig. 1) suggests that
the upper and lower CRWs have large positive and negative respectively. As pointed
out by Bretherton (1966a), the conservation of yields immediately the Charney and
Stern (1962) condition for instability; qy must change sign within the domain in order
for wave growth.

Partitioning the meridional displacement into the two CRWs:

´ D a1.t/ ei²1.t /´1 C a2.t/ ei²2.t /´2; (22)

and de� ning the pseudomomentum bracket

ij ´ ´i ;
@q

@y
´j ; (23)

then ij D j i , since ´1 and ´2 are real by de� nition. Note that the Eady edge waves
de� ned by Davies and Bishop (1994) are orthogonal with respect to the pseudomomen-
tum norm, because each edge wave has zero meridional displacement on its opposing
boundary and because qy is non-zero only at the two boundaries. If we impose pseudo-
momentum orthogonality for the general CRWs, i.e.

12 D 21 D 0; (24)

then the invariant total pseudomomentum can be written as

D 11

2
a1

2 C 22

2
a2

2 D const; (25)

which is analogous to (14a). In the Eady model, the mean PV gradient has opposite signs
on the two boundaries, and therefore 11 and 22 have opposite signs. (25) indicates
that, in the general case, synchronous growth of the two CRWs is possible only if the
spatial correlations between the magnitude of each CRW displacement and the mean
PV gradient have opposite signs. Thus, (25) can be regarded as the CRW version of the
Charney and Stern condition.

Since two independent orthogonality relations are required in order to determine
both CRW phases, we next seek an orthogonality relation which makes the Fjørtoft
(1951) condition for instability transparent in terms of CRW interaction.
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(b) Energy-growth orthogonality
The global eddy-energy growth can be written (e.g. Pedlosky 1987) as

@E

@t
D hiv; Uqi D hiv; .U ¡ Um/qi; (26)

where the global eddy energy is

E D
1

2

³
hu; ui C hv; vi C

f

N
µ;

f

N
µ

´
; (27)

f is the Coriolis parameter, N is the Brunt–Väisälä frequency, µ is the scaled pertur-
bation potential temperature and Um is some constant reference wind. For the CRW
partition, (26) becomes

@E

@t
D a1a2 sin ²fhv1; .U ¡ Um/q2i ¡ hv2; .U ¡ Um/q1ig: (28)

Using (20) in the right-hand side of (28) veri� es that the eddy-energy growth is
invariant to the Galilean transformation by Um. (28) indicates that, for positive vertical
shear, if on average the PV structure of wave 2 is concentrated above the PV structure of
wave 1, then a con� guration that is favourable for energy growth is when wave 2 located
to the west of wave 1 (sin ² > 0).

Considering the perturbation PV to arise solely from advection of the mean PV, as
described in (16), then (26) can be written as,

@E

@t
D

1

2

@

@t
´; .U ¡ Um/

@q

@y
´ ; (29)

which leads, using (21), to the conservation of pseudoenergy,

´ E ¡
1

2
´; U

@q

@y
´ D const: (30)

De� ning, for the CRW partition,

ij ´ ´i ; .U ¡ Um/
@q

@y
´j D ij ¡ Um ij ; (31a)

ij ´ ´i ; U
@q

@y
´j ; (31b)

then it is clear that, for the Eady edge waves de� ned by Davies and Bishop (1994),

12 D 21 D 0: (32)

If we apply this orthogonality relation in the general case, then (29) becomes

@E

@t
D 11

2

@.a1
2/

@t
C 22

2

@.a2
2/

@t
: (33)

Hence, although each CRW enables the other to grow, condition (32) allows the
total-energy growth to be composed of separate contributions from the two CRWs.
However, it should be noted that (32) does not imply orthogonality with respect to the
energy norm itself. (33) shows that growth of the CRW amplitudes lead to energy growth
if the mean PV gradient and zonal wind are positively correlated in the regions where
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the CRWs are concentrated. Therefore, (33) can be regarded as the CRW version of the
Fjørtoft condition for instability.

Satisfying the two orthogonality conditions (24) and (32) is suf� cient to determine
the phases of the two CRWs, eliminating the two degrees of freedom involved with the
home-base method. Furthermore, as we see in the following subsection, the constraints
(24) and (32) enable the evolution equation for any given CRW to be obtained via an
inner product between the CRW itself and the PV equation. Using these constraints, it
is also possible to derive the CRW evolution equations directly from the conservation of
pseudoenergy using Hamiltonian methods (see the appendix).

(c) The global CRW equations
Writing the PV equation (3) in terms of meridional displacement (16), then

³
@

@t
C U

@

@x

´
´ D ¡iv: (34)

For the CRW partition (5a,b),(6a,b) this equation becomes:
³

@

@t
C ikU

´
.a1 ei²1´1 C a2 ei²2´2/ D ¡i.a1 ei²1v1 C a2 ei²2v2/: (35)

Multiplying both sides of (35) by ½´1qy and integrating over the whole volume, and
using the orthogonality relations (24) and (32), we obtain:

11. Pa1 C ia1 P²1/ C ik 11 Pa1 D ¡i 11a1 ¡ i 12a2 ei²; (36)

where here we de� ne

ij ´ ´i ;
@q

@y
vj : (37)

Then, extracting the real and the imaginary parts of (36) yields, respectively,

Pa1 D
³

12

11

´
a2 sin ²; (38a)

P²1 D ¡k

»³
11

11

´
C

³
11

k 11

´¼
¡

³
12

11

´
a2

a1
cos ²: (38b)

Recalling the form (17a) for ° i
j in the home-base method, we de� ne

° i
j ´ ¡ ij

ii
D

´i ; ¡
@q

@y
vj

´i ;
@q

@y
´i

; (39a)

so that it has the same meaning as ° i
j , but in a globally averaged sense. (A.5) shows that

it is also proportional to the interaction energy. Similarly, de� ning

U i ´ ii

ii

; (39b)

then the self-propagation speed of CRW 1 can be de� ned as

c1
1 D U1 ¡ ° 1

1 =k: (39c)
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Substituting (39) into (38) we obtain

Pa1 D ¡° 1
2 a2 sin ²; P²1 D ¡kc1

1 C ° 1
2

a2

a1
cos ²: (40a,b)

Multiplying both sides of (35) by ½´2qy , and integrating globally gives:

Pa2 D ° 2
1 a1 sin ²; P²2 D ¡kc2

2 C ° 2
1

a1

a2
cos ²: (40c,d)

We denote equation set (40a,b,c,d) as the global CRW evolution equations.
Although they are homomorphic to the home-base CRW equations (11a,b) and (12a,b),
note that their derivation did not include any subjective choice for the home-base loca-
tions. Nevertheless, since the zonal winds (39b) play the same role as the home-base
winds in (11a,b) and (12a,b), they may be viewed as home-base winds although they are
actually weighted integrals of winds at many locations.

Note that the integral performed to obtain (36), and hence the CRW equations
(40a,b), from (35) is equivalent to evaluating the inner product of the PV conservation
equation (34) with the CRW structure function ´1. Hence, from a geometric perspective,
the evolution equation for CRW 1 is obtained from the PV equation (34) by � nding its
component (or projection) in the direction given by ´1. This is possible if and only if ´1
and ´2 satisfy (24) and (32).

Interestingly, there is nothing in the constraints (24) and (32) that demands that
´1 and ´2 be constructed from growing and decaying normal-mode pairs. Thus, in
principle, the orthogonality method allows CRW-type equations to be constructed
to describe the initial evolution of any two linearly-independent untilted structures.
The key advantage in using complex-conjugate normal modes as a basis for CRWs is
that any initial conditions that can be described entirely in terms of two such normal-
mode CRWs will evolve into a structure that can still be described entirely by the same
two CRWs. In contrast, initial conditions composed of two non-normal-mode CRWs
will evolve into a structure that cannot, in general, be described entirely by the same
CRWs. Thus, using a normal-mode basis simpli� es matters considerably and it is all we
consider in this paper.

Recall that the integrated PV � uxes that each CRW induces on the other are equal.
Therefore, it may be shown that 12 D 21 (using (20) and (37)). Additionally, if we
choose to renormalize the CRWs with respect to pseudomomentum:

11 D ¡ 22; (41)

then the interaction coef� cients are equal and opposite:

¡° 1
2 D ° 2

1 D ¾ : (42)

In order to complete the symmetry between the two CRWs, we can de� ne the
reference wind to be:

Um D
1

2
.U 1 C U2/ D

1

2

³
11

11
C 22

22

´
(43)

so that the magnitudes of the two CRWs with respect to the energy-growth norm (31a)
become equal to each other; that is,

11 D 22 D 1
2 . 11 C 22/: (44)
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Consequently, in the case of the Eady model, the linear combination of normal-mode
structures that satisfy the orthogonality constraints given above are the same as the linear
combination given by Davies and Bishop (1994). In addition, the orthogonality method
extracts home-base winds (39b) at the boundaries of the Eady model. For a general zonal
� ow, it can be shown that the orthogonality method yields two CRWs that represent
extreme values of negative and positive pseudomomentum given that each CRW has the
same amplitude with respect to the energy growth norm (31a).

The orthogonality method provides an objective means to determine the CRW
phases from the normal-mode structures. In time, any disturbance consisting of a
growing normal mode and its complex conjugate will eventually be dominated by the
growing normal mode. Alternatively, this behaviour can be described by a CRW pair
that tend towards a phase-locked position. By expressing the left-hand side of (5a,b)
in terms of the real and imaginary components of the growing normal-mode structure,
a relationship between these components and the phase-locked CRWs is determined.
This relation can be inverted to express each CRW structure (´i ) as a combination
of the real and imaginary parts of the growing normal-mode displacement structure
(i.e. ´i D bi.´r C ei´i/ for i D 1; 2, where bi and ei are real coef� cients). Together, the
orthogonality relations (24) and (32) are suf� cient to determine coef� cients e1 and e2
in terms of the inner products rr, ri, ii, rr, ri and ii. It can be readily shown
that tan ²1 D ¡1=e2, tan ²2 D ¡1=e1 and the phase-locked angle for the growing normal
mode is ²C D ²2 ¡ ²1.

4. THE CRW PERSPECTIVE ON BAROCLINIC GROWTH

(a) Summary of the two methods for obtaining CRWs
We have shown that baroclinic (or barotropic) growth on any zonally-symmetric

state (in thermal-wind balance) can be considered in terms of the growth and prop-
agation of two zonally-untilted waves, in circumstances where the initial disturbance
consists of a linear combination of a growing normal mode and its decaying complex
conjugate. The basic de� nitions of the wave structures were given in section 2(a); these
structures do not change with time other than in amplitude and phase. Meridional wind
is out of phase with PV in such a way that a positive PV anomaly in an isolated zonal
wave-train would be associated with cyclonic circulation. Two such waves are referred
to as ‘counter-propagating Rossby waves’ (or CRWs).

In sections 2 and 3, two methods have been presented to infer the CRWs’ phases
when locked into the growing normal-mode structure. This is suf� cient to determine
the structures of both CRWs. Both methods also result in evolution equations for the
CRW phases and amplitudes which have essentially the same form, but with different
expressions for the interaction coef� cients ° i

j . The home-base method (section 2(b))
relies on the CRWs having maximum wave activity at two distinct locations in the
latitude–height plane—the � rst located where the PV gradient is negative and the second
where it is positive. Once these home-bases have been determined, the CRW structures
can be calculated from (9) and their evolution can be discussed fully in terms of the
PV equation and meridional wind induced at each of these home-bases without further
consideration of the rest of the domain. The schematic Fig. 1 and associated PV-thinking
arguments on mutual growth and relative propagation then apply rigorously to the CRWs
de� ned using their home-bases.

The drawback of the home-base method is that suitable home-base locations must
be anticipated from the basic state before the CRW structures are known. The orthog-
onality method provides an objective means to determine the CRW phases from the
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growing normal-mode structure. The orthogonality conditions on CRW pseudomomen-
tum (24) and energy growth (32) are suf� cient to determine their phase-locked positions,
²1 and ²2, and also their structures, although amplitudes are only determined uniquely by
the renormalization (41). However, the interaction coef� cients obtained by this method
involve global integrals over the CRW structures which are harder to interpret than the
local expressions obtained by the home-base method.

It is important to note that the evolution of a CRW pair obtained by the orthogonality
method can be described by the home-base CRW equations (10)–(13), provided that the
following home-bases can be de� ned. If a point exists where the zero PV contour of
wave 1, q1.y; z/ D 0, intersects the zonal-wind contour U.y; z/ D U2 in the meridional
plane (where U2 is the mean wind (39b)), it can de� ne the home-base of wave 2, P2.
Similarly, if q2.y; z/ D 0 intersects U.y; z/ D U 1, this point can de� ne P1. The CRW
phases, structures and phase speeds obtained by the home-base method for this particu-
lar P1 and P2 would be identical to those from the orthogonality method.

(b) Baroclinic development
A normal-mode description of the development from initial conditions composed of

a growing normal mode and its decaying complex conjugate has the advantage of simple
temporal behaviour of time-independent structures. An advantage for the interacting
Rossby-wave description is that the structures are typically much simpler, being untilted
in both y and z. Further, the behaviour can be understood readily in PV terms by
considering the propagation and interaction of waves at just two locations, the home-
bases P1 and P2.

In the following discussion, it will be assumed that the PV in wave 1 is characterized
by its distribution at P1 in the sense that inversion gives the expected cyclonic circulation
corresponding to positive PV there, and further that the circulation has the same phase
at P2. This was the assumption made in the introduction for the discussion of Fig. 1.
A corresponding assumption is also made for the second wave. If q1

1 and q2
2 are taken to

be positive, then using (2) these assumptions amount to stating that v1
1 , v2

1 , v2
2 and v1

2 are
all positive.

Equation (4) then gives the usual sense of Rossby-wave propagation, that each
wave’s speed is westward or eastward relative to the zonal � ow at its base, depend-
ing on whether qy is positive or negative there. From (13), the sign of the interaction
coef� cients ° 1

2 and ° 2
1 is that of qy at P1 and P2, respectively. From (11a,b), the growth

of both waves implies that ° 1
2 and ° 2

1 have opposite signs. This implies that qy must
have opposite signs at P1 and P2 which is a local version of Charney and Stern (1962)
condition for instability.

By imposing the two orthogonality constraints, or de� ning two home-base points,
the structure of the lower wave .q1; v1/ is determined up to some arbitrary constant
factor, b1, and the upper wave .q2; v2/ is determined up to a different factor, b2.
There is freedom to renormalize the amplitudes so that their interaction coef� cients
are of equal magnitude, ¾ , but opposite in sign (42), which in turn determines the
ratio b1=b2. For orthogonal CRWs this is equivalent to specifying that they have equal
and opposite pseudomomentum (41). Throughout, we refer to the wave with negative
pseudomomentum as the ‘lower wave’ since it must have greatest wave activity near
the ground where the PV gradient (± function) is negative (therefore ° 1

2 and ° 1
1 are

negative). The ‘upper wave’ has positive pseudomomentum and, therefore, exists where
the positive interior PV gradient is large (thus ° 2

1 and ° 2
2 are positive). From (10),

the upper wave moves westward relative to the � ow at P2 and the lower wave moves
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eastward relative to the � ow at P1. In this situation the CRW equations (11a,b) and
(12a,b) (or from orthogonality (40a,b,c,d)) reduce to

PÂ D ¾ .1 ¡ Â 2/ sin ²; P² D ¹ C ¾

³
Â C

1
Â

´
cos ² (45a,b)

where Â is the amplitude ratio a1=a2 and

¹ D ¡k.c2
2 ¡ c1

1/ (46)

is proportional to the difference in Rossby-wave speeds associated with self-induced
propagation. (45a,b) shows that the evolution of any initial-value problem of (3) that can
be described in terms of two interacting CRWs depends solely on their initial amplitude
ratio Â0 and initial phase difference ²0.

Following Davies and Bishop (1994), we � rst consider synchronized growth, Â D 1.
From (45a) it is clear that, if initially Â D 1, it will remain so. Note that, because
of renormalization (42), Â D 1 does not imply that the two waves have the same
PV amplitude at their respective home-bases. Nevertheless, we call a1; a2 the CRW
amplitudes. In this case (11a,b) and (12a,b) reduce to

Pa D ¾a sin ²; P² D ¹ C 2¾ cos ²: (47a,b)

The growing and decaying normal modes are the synchronized growth solutions
with P² D 0, and so the relative phase angle for phase locking, ²C, can be expressed as:

cos ²C D ¡¹=2¾ D
k.c2

2 ¡ c1
1/

2.¡° 1
2 ° 2

1 /1=2
: (48)

This equation has solutions only if the modulus of the right-hand side is less than or
equal to unity. The difference in Rossby-wave speeds must be small enough and the
mutual interaction large enough for phase locking to occur. From (10), this condition
may be written k.U 2 ¡ U1/ ¡ ° 2

2 C ° 1
1

< 2.¡° 1
2 ° 2

1 /1=2: (49)

Assuming that the meridional wind induced by each wave is stronger at its home-
base than at the other base, or equivalently (since ° 1

2 D ¡° 2
1 ) the wind induced by itself

at its home-base is stronger than the wind induced there by the other CRW, we can write
the following relations:

¡° 1
1 > ¡° 1

2 > 0 and ° 2
2 > ° 2

1 > 0: (50)

In this case (49) implies that

f.¡° 1
1 /1=2 ¡ .° 2

2 /1=2g2 < k.U 2 ¡ U1/ < f.¡° 1
1 /1=2 C .° 2

2 /1=2g2: (51)

Hence, a necessary condition for normal-mode solutions is that .U 2 ¡ U1/ is pos-
itive. This is clearly related to the Fjørtoft (1951) condition that qy and U must be
positively correlated over the whole domain (since CRW 2 has the positive pseudomo-
mentum). The inequality (51) indicates that the self-propagation speed of both CRWs
should be large enough, relative to the shear, in order to resist it and maintain a phase-
locked state. In a normal-mode con� guration the two CRWs propagate with the same
phase speed,

cr D ¡P²1=k D ¡P²2=k; (52)
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Figure 2. The relative phase angle, ², in the synchronous initial-value problem. There is growth for 0 < ² < ¼
and decay for ¡¼ < ² < 0. For ¡¼=2 < ² < ¼=2 each wave ‘helps’ the other one propagate against the relative
� ow at its home-base, while in the other half domain each wave ‘hinders’ this propagation of the other (i.e. each
wave acts to move the other in the sense of the relative � ow at its home-base). ²C corresponds to the growing
normal-mode phase and ²¡ to the decaying normal-mode phase. Here, the case is shown where the normal-mode
phases are in the range of hindering. In the synchronous initial-value problem the phase difference changes in the
sense of moving from ²¡ to ²C , as indicated. When amplitudes are not equal, the phase behaviour can be more

complicated initially.

where the subscript r denotes the real part. Thus, using (12a,b), (42) and Â D 1 we obtain
for the normal-mode con� guration that

cr D 1
2.c1

1 C c2
2/: (53)

From (47a) the growth rate of the unstable normal mode is

¾C D ¾ sin ²C; (54)

where 0 < ²C < ¼ while, for the decaying normal mode, ¾¡ D ¡¾C and, therefore,
²¡ D ¡²C. This implies that, for the growing mode, the lower wave leads the upper
wave, a westward tilt with height. If the phase speed c2

2 of the upper wave exceeds
that of the lower wave c1

1, (48) implies that the phase difference must be between 0
and ¼=2. If the upper wave moves slower, then the difference must be between ¼=2
and ¼ (as is the case for the CRWs of the Charney’s gravest mode, where ²C ¼ 0:79¼ ).
These deductions are all consistent with Fig. 1 and the discussion there.

Figure 2 indicates the behaviour in the synchronous initial-value problem de-
scribed by (47a,b). There is growth whenever 0 < ² < ¼ and decay when ¡¼ < ² < 0.
The maximum instantaneous growth rate is ¾ and occurs when the phase difference is
¼=2. From (54) this instantaneous growth rate will be larger than, or equal to, that of the
normal mode. For ¡¼=2 < ² < ¼=2 each wave ‘helps’ the other to propagate against
the relative � ow at its home-base and, in the other half domain, each wave ‘hinders’ this
propagation of the other, i.e. each wave acts to move the other in the sense of the relative
� ow at its home-base.

The phase difference always changes in the sense of moving from ²¡ to ²C.
This tendency has extrema P² D ¹ § 2¾ , when the actual phase difference is 0 and ¼
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Figure 3. Phase diagram for all initial-value problems described by the interaction of the counter-propagating
Rossby-wave pair obtained from superposing the fastest growing Charney mode (g) and its decaying complex
conjugate (d) using the ‘home-base method’. The abscissa is the phase difference, ², between the upper and the
lower CRWs, scaled by ¼ . The ordinate is the inverse tangent, » , of the amplitude ratio of the upper and the lower
CRWs, scaled by ¼=4. The arrows indicate the phase-space � ow where their x and y components are the time

derivative of the scaled ² and » , as determined respectively by (55a,b).

and tends to zero near ²¡ and ²C. At the maximum instantaneous growth (² D ¼=2),
P² D ¹, and is associated purely with the differential Rossby-wave speeds.

As in the paper by Davies and Bishop (1994), analytic solutions can be found
for both the synchronous problem and for the problem with one CRW initially zero.
For the general initial-value problem solution paths can be illustrated using phase-space
diagrams. In order to avoid singularity in Â for the initial condition of zero wave 2, we
transform (45a,b) into

P» D ¾ cos .2» / sin ²; P² D ¹ C
2¾ cos ²

sin 2»
; (55a,b)

where » D arctan Â , so that Â D a1=a2 2 .0; 1/ corresponds to » 2 .0; ¼=2/†. Then,
a compact way to visualize the evolution from any initial condition .²0; »0/, can be
obtained by following the � ow on a phase space of .²; » /. Figure 3 shows such a phase
space for the CRWs of the most unstable Charney mode (for more details on the Charney
model CRWs see Part II). Although this is a speci� c case, it demonstrates clearly the
nature of CRW evolution. The abscissa in Fig. 3 is ²=¼ and the ordinate is » , scaled
by ¼=4 so that values 0; 1; 2 of the ordinate correspond to a1 D 0, a1 D a2, a2 D 0,
respectively. At each point .²; »/ of the phase space, an arrow is plotted with horizontal

† (55a,b) generalize (15a,b) of Heifetz et al. (2000), which are the edge-wave equations for the barotropic Rayleigh
(1880) model of shear instability. In their notation ° corresponds to » and 1² to ². For the Rayleigh model
¾ D .3=2/ e¡K and ¹ D 3.1 ¡ K/, where 3 and K are the normalized meridional mean shear and wave number,
respectively.
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and vertical components equal to the local values of P² and P» , respectively, which are
calculated from (55a,b). Then, the evolution from any initial condition .²0; »0/ can be
easily tracked by simply following the arrows.

For the general initial-value problem, a1 and a2 both still grow or decay according
to the sign of sin ². Hence, the right-hand side of Fig. 3 corresponds to the growing
regime and the left-hand side to the decaying regime. Since, from (11a,b), the growth
or decay of each CRW depends on the amplitude of the other CRW, the smaller of the
waves grows or decays faster. Consequently, in the growing regime the growth tends to
equalize the CRWs’ amplitudes toward synchronous growth, and therefore in the right-
hand side of the phase space all arrows point toward the synchronous line » D ¼=4.
Similarly, decay tends to increase the amplitude ratio, and therefore on the left-hand side
of Fig. 3 all arrows point away from the synchronous line. (45a) indicates that Â will
tend to unity, i.e. the synchronous case, on a time-scale of order ¾ ¡1. If the initial value
of Â is far from unity, then (45b) indicates that the initial phase changes will be rapid
and the growing and decaying normal-mode phases can be crossed. This is indicated
in Fig. 3 by the arrows above and below ‘g’ and ‘d’. For the non-synchronous case the
curve of phased-locked con� guration, P² D 0, satis� es from (55b) cos ² D cos ²C=sin 2» .
However (55a) indicates that then P» 6D 0. Hence, if the two CRWs approach a phase-
locked state, the amplitude ratio will continue to change until it is unity at state ‘g’.

The Eady model discussion by Davies and Bishop (1994) is a particular case of
the general analysis presented here. The two levels z1 and z2 are at the two boundaries
and the CRWs propagate on the boundary temperature gradients. As pointed out by
Bretherton (1966b), the Eady model has a short-wave cut-off which arises when the
CRW depth scale, which is proportional to wavelength, becomes too small relative to
the speci� ed separation of the boundaries. When this occurs (51) cannot be satis� ed—
the counter-propagation of Eady edge waves against the vertical wind shear becomes
too weak to maintain phase-locking.

5. CONCLUDING REMARKS

Consider a dynamical system of two pendulums coupled by a spring. It is a simple
matter to solve the eigenproblem of this system and � nd the two normal modes whose
superposition can describe any linear motion. However, the mathematical solution does
not necessarily provide a complete understanding of how the system is working. In this
example, we know the independent behaviour of each pendulum under the restoring
force of gravity and the elastic properties of the spring and, therefore, it is easy to
combine this information and suggest a mechanistic intuitive explanation of how these
three components are working together as a system.

Due to the complex nature of problems in � uid dynamics it is usually very dif� cult
to provide such mechanistic explanations, even when eigensolutions are found mathe-
matically. Nevertheless, Bretherton (1966b) provided such an explanation for the two-
layer baroclinic instability problem. In this view, the basic components of the system
are two counter-propagating Rossby waves. The propagation mechanism for each wave,
as described in the introduction, is provided by a simple restoring mechanism, referred
to by McIntyre (1992) as the ‘Rossby elasticity’. Each wave only has PV anomalies,
associated with � uid displacements in the presence of a meridional PV gradient, in one
layer of the � uid. However, the circulation anomalies induced by each wave are felt in
the other layer, resulting in interaction between the CRWs. The sense of interaction can
be described through knowledge of the relative phase of the CRWs, the PV gradient and
zonal wind in each layer. Using this approach it is straightforward to combine mentally
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the information and to predict how, for example, an initially isolated upper-level distur-
bance could create, reinforce and lock onto a lower-level disturbance in a normal-mode
con� guration, resulting in their mutual growth.

The main criticism of Bretherton’s explanation has been that it applies only to a
two-layer model, or to a situation in which the CRWs are edge waves that must be
supported on a corresponding PV gradient structure which is concentrated into delta
functions on the boundaries, as in the Eady (1949) model. In the general case, however,
the mean PV gradient might � ll all space; normal mode solutions do exist, but it has
not been clear how to generalize Bretherton’s insight. The beauty and the simplicity
of the CRW explanation has provided motivation for the search for a generalization that
would be applicable to any given baroclinic and/or barotropic basic state which supports
normal-mode instability.

We have suggested two methods of generalization. In the � rst, the home-base
method, we followed the physical rationale behind the CRW structures in a two-layer
model, by characterizing two untilted CRWs, which are constructed from a pair of
growing and decaying modes, by their behaviour at two zonal lines, referred to as
their home-bases. Although both CRWs � ll all space we forced the PV signature of
each to vanish on the home-base of the other. We could then write the CRW evolution
equations on those two home-bases in an exact analogous form to the Eady edge-wave
equations derived by Davies and Bishop (1994). The modal phase-locking con� guration,
as well as the non-modal evolution, of the discrete spectrum initial value solution, can
all be interpreted in terms of simple CRW interaction which depends on the CRWs’
amplitude ratio, phase difference, interaction coef� cient and the difference in wave
speeds. Furthermore, local versions of the global integral conditions for instability of
Charney and Stern (1962) and Fjørtoft (1951) are obtained, suggesting a mechanistic
CRW explanation for why a change in the sign of the mean PV gradient within the
domain, and a positive correlation between the mean PV gradient and the mean zonal
wind, are necessary to obtain instability.

Although we demonstrated that a CRW description can indeed be applied for a
general baroclinic basic state, the home-base method suffers from the need to de� ne
two home-base locations, the choice of which is in general subjective. If the mean
PV gradient is mainly concentrated into two layers with opposite signs (for example, a
negative PV gradient at the surface associated with temperature gradients and a positive
PV gradient at the tropopause), then this method can be applied straightforwardly by
locating the home-bases in the centres of the two layers. However, for a more realistic
PV gradient, such as the case of baroclinic jet, it is not clear where to locate the home-
bases.

Thus, in order to make the CRW description more robust, we suggested an alterna-
tive method—the ‘orthogonality method’—which eliminates the two subjective choices
by making the CRWs orthogonal with respect to wave activity (pseudomomentum) and
orthonormal with respect to energy growth. The motivation for this method came from
noting that the Eady edge waves satisfy such conditions. The pseudomomentum orthog-
onality constraint (24) is the only one enabling CRW evolution equations to be derived,
either from the global inner product of the displacement form of the PV equation with
the PV structure of each CRW (see section 3(c)) or by Hamiltonian methods where the
CRWs are the system components and the Hamiltonian is the pseudoenergy (see the ap-
pendix). Enforcing orthogonality of the shear term (32) as the second constraint is the
only means to obtain an interaction coef� cient, ¾ , which depends solely upon the PV
and meridional wind structures of the CRWs and PV gradient, as was found with the
home-base method. The disadvantage of the orthogonality method is that it does not
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relate so directly to the PV-thinking analysis of the introduction and Fig. 1, because the
interaction coef� cients are evaluated by global integrals rather than local properties at
home-bases. However this can sometimes be recovered when home-bases can be deter-
mined from the orthogonal CRWs.

It should be emphasized that the CRW structures discussed here, in both methods,
are constructed from normal modes. Therefore, in contrast to the Eady model where the
edge waves can be constructed independently, here in the general case one must solve
a priori the eigenproblem and � nd the normal modes in order to obtain the CRWs. Thus,
the CRWs should be regarded as an analysis tool which provides some fundamental
insight into the baroclinic growth mechanism of the discrete spectrum solution.

CRWs cannot address those aspects of the initial-value problem related to the con-
tinuous spectrum (Pedlosky 1964; Farrell 1982). However, Badger and Hoskins (2001)
have shown how the behaviour of rapidly growing initial structures can be analysed in
PV terms, and that they quickly develop into near normal-mode-like structures. Thus,
CRWs together with Badger and Hoskins (2001) work may be considered as giving
a basic PV framework for the discussion of the linear growth of mid-latitude weather
systems.

In Part II we apply the two CRW methods to the Charney (1947) model. We choose
the Charney model as an example since its basic state is quite similar to the Eady model,
yet it contains only one boundary and a mean PV gradient which � lls all space. It is
found that, for Charney modes, the CRWs derived by the two methods are in fact very
similar. Therefore, the PV-thinking explanation for baroclinic growth, afforded by the
association of Fig. 1 with the CRWs obtained by the home-base method, applies to a
good approximation to CRWs obtained using the orthogonality method. This highlights
the parallels between baroclinic growth on the Eady and Charney basic states. It is shown
that the CRW perspective provides new insights into the behaviour of perturbations
in the Charney problem. Methven al. (personal communication) have obtained the
CRWs from normal-mode disturbances to realistic zonal jets described by the primitive
equations on the sphere. Some aspects of the nonlinear evolution of these baroclinic
waves are also explained by the CRW analysis.

ACKNOWLEDGEMENTS

Craig Bishop acknowledges support from National Science Foundation grants
ATM-96-12502 and ATM-98-14376. Support from the Of� ce of Naval Research grant
N00014-00-1-0106 and Program Element 0601153N Project number BE-0333-0345are
also gratefully acknowledged. John Methven is grateful for an Advanced Fellowship
sponsored jointly by the Natural Environment Research Council and the Environment
Agency. All authors thank the two anonymous referees for their helpful reviews.

APPENDIX

Hamiltonian derivation of the CRW evolution equations
If a CRW pair is orthogonal with respect to pseudomomentum then the total

pseudomomentum is composed of separate contributions from each CRW:

p1 D a1
2

11=2I p2 D a2
2

22=2 (A.1)

as seen from (25). The CRWs can also be assigned positions:

x1 D ²1=kI x2 D ²2=k: (A.2)
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The total pseudoenergy (30) for the pair of CRWs can be written:

D a1
2.E11 ¡ 11=2/ C a2

2.E22 ¡ 22=2/ C 2a1a2.E12 ¡ 12=2/ cos ² (A.3)

where Eij denotes disturbance energies and ij is the shear term (31b). Now consider
the conservative system where the Hamiltonian is the pseudoenergy (A.3) and the CRWs
are the components. The Hamiltonian equations:

@pi

@t
D ¡

@

@xi
I

@xi

@t
D

@

@pi
(A.4)

reduce to the CRW evolution equations (40a,b,c,d), where the interaction coef� -

cients are given by ° 1
2 D k.2E12 ¡ 12/= 11 and ° 2

1 D k.2E12 ¡ 12/= 22. The CRW

self-induced phase speeds are c1
1 D . 11¡2E11/= 11 and c2

2 D . 22¡2E22/= 22.
For quasi-geostrophic dynamics it can be shown that the disturbance energy E D
¡hÃ; qi=2, where Ã is disturbance stream function. Hence

Eij D ¡ ij =.2k/; (A.5)

showing that the interaction coef� cients and self-propagation speeds obtained from
the Hamiltonian are identical to (39) obtained by global integrals of the PV equation
(section 3(c)), provided that the second orthogonality constraint 12 D 12 D 0 is
applied. Thus orthogonal CRWs can be regarded as components of a Hamiltonian
system describing disturbance evolution and their strength of interaction is proportional
to the interaction energy E12.
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